Pai, Vaibhav P; Lemire, Joan M; Chen, Ying; Lin, Gufa; Levin, Michael
2015-01-01
Bioelectric signals, particularly transmembrane voltage potentials (Vmem), play an important role in large-scale patterning during embryonic development. Endogenous bioelectric gradients across tissues function as instructive factors during eye, brain, and other morphogenetic processes. An important and still poorly-understood aspect is the control of cell behaviors by the voltage states of distant cell groups. Here, experimental alteration of endogenous Vmem was induced in Xenopus laevis embryos by misexpression of well-characterized ion channel mRNAs, a strategy often used to identify functional roles of Vmem gradients during embryonic development and regeneration. Immunofluorescence analysis (for activated caspase 3 and phosphor-histone H3P) on embryonic sections was used to characterize apoptosis and proliferation. Disrupting local bioelectric signals (within the developing neural tube region) increased caspase 3 and decreased H3P in the brain, resulting in brain mispatterning. Disrupting remote (ventral, non-neural region) bioelectric signals decreased caspase 3 and highly increased H3P within the brain, with normal brain patterning. Disrupting both the local and distant bioelectric signals produced antagonistic effects on caspase 3 and H3P. Thus, two components of bioelectric signals regulate apoptosis-proliferation balance within the developing brain and spinal cord: local (developing neural tube region) and distant (ventral non-neural region). Together, the local and long-range bioelectric signals create a binary control system capable of fine-tuning apoptosis and proliferation with the brain and spinal cord to achieve correct pattern and size control. Our data suggest a roadmap for utilizing bioelectric state as a diagnostic modality and convenient intervention parameter for birth defects and degenerative disease states of the CNS.
Yuan, Xi; Liu, Wen-Jie; Li, Bing; Shen, Ze-Tian; Shen, Jun-Shu; Zhu, Xi-Xu
2017-08-01
This study was conducted to compare the effects of whole brain radiotherapy (WBRT) and stereotactic radiotherapy (SRS) in treatment of brain metastasis.A systematical retrieval in PubMed and Embase databases was performed for relative literatures on the effects of WBRT and SRS in treatment of brain metastasis. A Bayesian network meta-analysis was performed by using the ADDIS software. The effect sizes included odds ratio (OR) and 95% confidence interval (CI). A random effects model was used for the pooled analysis for all the outcome measures, including 1-year distant control rate, 1-year local control rate, 1-year survival rate, and complication. The consistency was tested by using node-splitting analysis and inconsistency standard deviation. The convergence was estimated according to the Brooks-Gelman-Rubin method.A total of 12 literatures were included in this meta-analysis. WBRT + SRS showed higher 1-year distant control rate than SRS. WBRT + SRS was better for the 1-year local control rate than WBRT. SRS and WBRT + SRS had higher 1-year survival rate than the WBRT. In addition, there was no difference in complication among the three therapies.Comprehensively, WBRT + SRS might be the choice of treatment for brain metastasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca; Aoyama, Hidefumi; Kocher, Martin
Purpose: To perform an individual patient data (IPD) meta-analysis of randomized controlled trials evaluating stereotactic radiosurgery (SRS) with or without whole-brain radiation therapy (WBRT) for patients presenting with 1 to 4 brain metastases. Method and Materials: Three trials were identified through a literature search, and IPD were obtained. Outcomes of interest were survival, local failure, and distant brain failure. The treatment effect was estimated after adjustments for age, recursive partitioning analysis (RPA) score, number of brain metastases, and treatment arm. Results: A total of 364 of the pooled 389 patients met eligibility criteria, of whom 51% were treated with SRSmore » alone and 49% were treated with SRS plus WBRT. For survival, age was a significant effect modifier (P=.04) favoring SRS alone in patients ≤50 years of age, and no significant differences were observed in older patients. Hazard ratios (HRs) for patients 35, 40, 45, and 50 years of age were 0.46 (95% confidence interval [CI] = 0.24-0.90), 0.52 (95% CI = 0.29-0.92), 0.58 (95% CI = 0.35-0.95), and 0.64 (95% CI = 0.42-0.99), respectively. Patients with a single metastasis had significantly better survival than those who had 2 to 4 metastases. For distant brain failure, age was a significant effect modifier (P=.043), with similar rates in the 2 arms for patients ≤50 of age; otherwise, the risk was reduced with WBRT for patients >50 years of age. Patients with a single metastasis also had a significantly lower risk of distant brain failure than patients who had 2 to 4 metastases. Local control significantly favored additional WBRT in all age groups. Conclusions: For patients ≤50 years of age, SRS alone favored survival, in addition, the initial omission of WBRT did not impact distant brain relapse rates. SRS alone may be the preferred treatment for this age group.« less
Doré, M; Martin, S; Delpon, G; Clément, K; Campion, L; Thillays, F
2017-02-01
To evaluate local control and adverse effects after postoperative hypofractionated stereotactic radiosurgery in patients with brain metastasis. We reviewed patients who had hypofractionated stereotactic radiosurgery (7.7Gy×3 prescribed to the 70% isodose line, with 2mm planning target volume margin) following resection from March 2008 to January 2014. The primary endpoint was local failure defined as recurrence within the surgical cavity. Secondary endpoints were distant failure rates and the occurrence of radionecrosis. Out of 95 patients, 39.2% had metastatic lesions from a non-small cell lung cancer primary tumour. The median Graded Prognostic Assessment score was 3 (48% of patients). One-year local control rates were 84%. Factors associated with improved local control were no cavity enhancement on pre-radiation MRI (P<0.00001), planning target volume less than 12cm 3 (P=0.005), Graded Prognostic Assessment score 2 or above (P=0.009). One-year distant cerebral control rates were 56%. Thirty-three percent of patients received whole brain radiation therapy. Histologically proven radionecrosis of brain tissue occurred in 7.2% of cases. The size of the preoperative lesion and the volume of healthy brain tissue receiving 21Gy (V 21 ) were both predictive of the incidence of radionecrosis (P=0.010 and 0.036, respectively). Adjuvant hypofractionated stereotactic radiosurgery to the postoperative cavity in patients with brain metastases results in excellent local control in selected patients, helps delay the use of whole brain radiation, and is associated with a relatively low risk of radionecrosis. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Frontal lobe connectivity and cognitive impairment in pediatric frontal lobe epilepsy.
Braakman, Hilde M H; Vaessen, Maarten J; Jansen, Jacobus F A; Debeij-van Hall, Mariette H J A; de Louw, Anton; Hofman, Paul A M; Vles, Johan S H; Aldenkamp, Albert P; Backes, Walter H
2013-03-01
Cognitive impairment is frequent in children with frontal lobe epilepsy (FLE), but its etiology is unknown. With functional magnetic resonance imaging (fMRI), we have explored the relationship between brain activation, functional connectivity, and cognitive functioning in a cohort of pediatric patients with FLE and healthy controls. Thirty-two children aged 8-13 years with FLE of unknown cause and 41 healthy age-matched controls underwent neuropsychological assessment and structural and functional brain MRI. We investigated to which extent brain regions activated in response to a working memory task and assessed functional connectivity between distant brain regions. Data of patients were compared to controls, and patients were grouped as cognitively impaired or unimpaired. Children with FLE showed a global decrease in functional brain connectivity compared to healthy controls, whereas brain activation patterns in children with FLE remained relatively intact. Children with FLE complicated by cognitive impairment typically showed a decrease in frontal lobe connectivity. This decreased frontal lobe connectivity comprised both connections within the frontal lobe as well as connections from the frontal lobe to the parietal lobe, temporal lobe, cerebellum, and basal ganglia. Decreased functional frontal lobe connectivity is associated with cognitive impairment in pediatric FLE. The importance of impairment of functional integrity within the frontal lobe network, as well as its connections to distant areas, provides new insights in the etiology of the broad-range cognitive impairments in children with FLE. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minniti, Giuseppe, E-mail: gminniti@ospedalesantandrea.it; Department of Neurological Sciences, Scientific Institute IRCCS Neuromed, Pozzilli; Esposito, Vincenzo
2013-07-15
Purpose: To evaluate the clinical outcomes with linear accelerator-based multidose stereotactic radiosurgery (SRS) to large postoperative resection cavities in patients with large brain metastases. Methods and Materials: Between March 2005 to May 2012, 101 patients with a single brain metastasis were treated with surgery and multidose SRS (9 Gy × 3) for large resection cavities (>3 cm). The target volume was the resection cavity with the inclusion of a 2-mm margin. The median cavity volume was 17.5 cm{sup 3} (range, 12.6-35.7 cm{sup 3}). The primary endpoint was local control. Secondary endpoints were survival and distant failure rates, cause of death,more » performance measurements, and toxicity of treatment. Results: With a median follow-up of 16 months (range, 6-44 months), the 1-year and 2-year actuarial survival rates were 69% and 34%, respectively. The 1-year and 2-year local control rates were 93% and 84%, with respective incidences of new distant brain metastases of 50% and 66%. Local control was similar for radiosensitive (non-small cell lung cancer and breast cancer) and radioresistant (melanoma and renal cell cancer) brain metastases. On multivariate Cox analysis stable extracranial disease, breast cancer histology, and Karnofsky performance status >70 were associated with significant survival benefit. Brain radionecrosis occurred in 9 patients (9%), being symptomatic in 5 patients (5%). Conclusions: Adjuvant multidose SRS to resection cavity represents an effective treatment option that achieves excellent local control and defers the use of whole-brain radiation therapy in selected patients with large brain metastases.« less
Abnormal brain synchrony in Down Syndrome☆
Anderson, Jeffrey S.; Nielsen, Jared A.; Ferguson, Michael A.; Burback, Melissa C.; Cox, Elizabeth T.; Dai, Li; Gerig, Guido; Edgin, Jamie O.; Korenberg, Julie R.
2013-01-01
Down Syndrome is the most common genetic cause for intellectual disability, yet the pathophysiology of cognitive impairment in Down Syndrome is unknown. We compared fMRI scans of 15 individuals with Down Syndrome to 14 typically developing control subjects while they viewed 50 min of cartoon video clips. There was widespread increased synchrony between brain regions, with only a small subset of strong, distant connections showing underconnectivity in Down Syndrome. Brain regions showing negative correlations were less anticorrelated and were among the most strongly affected connections in the brain. Increased correlation was observed between all of the distributed brain networks studied, with the strongest internetwork correlation in subjects with the lowest performance IQ. A functional parcellation of the brain showed simplified network structure in Down Syndrome organized by local connectivity. Despite increased interregional synchrony, intersubject correlation to the cartoon stimuli was lower in Down Syndrome, indicating that increased synchrony had a temporal pattern that was not in response to environmental stimuli, but idiosyncratic to each Down Syndrome subject. Short-range, increased synchrony was not observed in a comparison sample of 447 autism vs. 517 control subjects from the Autism Brain Imaging Exchange (ABIDE) collection of resting state fMRI data, and increased internetwork synchrony was only observed between the default mode and attentional networks in autism. These findings suggest immature development of connectivity in Down Syndrome with impaired ability to integrate information from distant brain regions into coherent distributed networks. PMID:24179822
Patel, Kirtesh R; Prabhu, Roshan S; Kandula, Shravan; Oliver, Daniel E; Kim, Sungjin; Hadjipanayis, Constantinos; Olson, Jeffery J; Oyesiku, Nelson; Curran, Walter J; Khan, Mohammad K; Shu, Hui-Kuo; Crocker, Ian
2014-12-01
The aim of this study was to compare outcomes of postoperative whole brain radiation therapy (WBRT) to stereotactic radiosurgery (SRS) alone in patients with resected brain metastases (BM). We reviewed records of patients who underwent surgical resection of BM followed by WBRT or SRS alone between 2003 and 2013. Local control (LC) of the treated resected cavity, distant brain control (DBC), leptomeningeal disease (LMD), overall survival (OS), and radiographic leukoencephalopathy rates were estimated by the Kaplan-Meier method. One-hundred thirty-two patients underwent surgical resection for 141 intracranial metastases: 36 (27 %) patients received adjuvant WBRT and 96 (73 %) received SRS alone to the resection cavity. One-year OS (56 vs. 55 %, p = 0.64) and LC (83 vs. 74 %, p = 0.31) were similar between patients receiving WBRT and SRS. After controlling for number of BM, WBRT was associated with higher 1-year DBC compared with SRS (70 vs. 48 %, p = 0.03); single metastasis and WBRT were the only significant predictors for reduced distant brain recurrence in multi-variate analysis. Freedom from LMD was higher with WBRT at 18 months (87 vs. 69 %, p = 0.045), while incidence of radiographic leukoencephalopathy was higher with WBRT at 12 months (47 vs. 7 %, p = 0.001). One-year freedom from WBRT in the SRS alone group was 86 %. Compared with WBRT for patients with resected BM, SRS alone demonstrated similar LC, higher rates of LMD and inferior DBC, after controlling for the number of BM. However, OS was similar between groups. The results of ongoing clinical trials are needed to confirm these findings.
Convergent Differential Regulation of Parvalbumin in the Brains of Vocal Learners
Hara, Erina; Rivas, Miriam V.; Ward, James M.; Okanoya, Kazuo; Jarvis, Erich D.
2012-01-01
Spoken language and learned song are complex communication behaviors found in only a few species, including humans and three groups of distantly related birds – songbirds, parrots, and hummingbirds. Despite their large phylogenetic distances, these vocal learners show convergent behaviors and associated brain pathways for vocal communication. However, it is not clear whether this behavioral and anatomical convergence is associated with molecular convergence. Here we used oligo microarrays to screen for genes differentially regulated in brain nuclei necessary for producing learned vocalizations relative to adjacent brain areas that control other behaviors in avian vocal learners versus vocal non-learners. A top candidate gene in our screen was a calcium-binding protein, parvalbumin (PV). In situ hybridization verification revealed that PV was expressed significantly higher throughout the song motor pathway, including brainstem vocal motor neurons relative to the surrounding brain regions of all distantly related avian vocal learners. This differential expression was specific to PV and vocal learners, as it was not found in avian vocal non-learners nor for control genes in learners and non-learners. Similar to the vocal learning birds, higher PV up-regulation was found in the brainstem tongue motor neurons used for speech production in humans relative to a non-human primate, macaques. These results suggest repeated convergent evolution of differential PV up-regulation in the brains of vocal learners separated by more than 65–300 million years from a common ancestor and that the specialized behaviors of learned song and speech may require extra calcium buffering and signaling. PMID:22238614
Ayala-Peacock, Diandra N.; Peiffer, Ann M.; Lucas, John T.; Isom, Scott; Kuremsky, J. Griff; Urbanic, James J.; Bourland, J. Daniel; Laxton, Adrian W.; Tatter, Stephen B.; Shaw, Edward G.; Chan, Michael D.
2014-01-01
Background We review our single institution experience to determine predictive factors for early and delayed distant brain failure (DBF) after radiosurgery without whole brain radiotherapy (WBRT) for brain metastases. Materials and methods Between January 2000 and December 2010, a total of 464 patients were treated with Gamma Knife stereotactic radiosurgery (SRS) without WBRT for primary management of newly diagnosed brain metastases. Histology, systemic disease, RPA class, and number of metastases were evaluated as possible predictors of DBF rate. DBF rates were determined by serial MRI. Kaplan–Meier method was used to estimate rate of DBF. Multivariate analysis was performed using Cox Proportional Hazard regression. Results Median number of lesions treated was 1 (range 1–13). Median time to DBF was 4.9 months. Twenty-seven percent of patients ultimately required WBRT with median time to WBRT of 5.6 months. Progressive systemic disease (χ2= 16.748, P < .001), number of metastases at SRS (χ2 = 27.216, P < .001), discovery of new metastases at time of SRS (χ2 = 9.197, P < .01), and histology (χ2 = 12.819, P < .07) were factors that predicted for earlier time to distant failure. High risk histologic subtypes (melanoma, her2 negative breast, χ2 = 11.020, P < .001) and low risk subtypes (her2 + breast, χ2 = 11.343, P < .001) were identified. Progressive systemic disease (χ2 = 9.549, P < .01), number of brain metastases (χ2 = 16.953, P < .001), minimum SRS dose (χ2 = 21.609, P < .001), and widespread metastatic disease (χ2 = 29.396, P < .001) were predictive of shorter time to WBRT. Conclusion Systemic disease, number of metastases, and histology are factors that predict distant failure rate after primary radiosurgical management of brain metastases. PMID:24558022
The role of whole brain radiation therapy in the management of melanoma brain metastases
2014-01-01
Background Brain metastases are common in patients with melanoma, and optimal management is not well defined. As melanoma has traditionally been thought of as “radioresistant,” the role of whole brain radiation therapy (WBRT) in particular is unclear. We conducted this retrospective study to identify prognostic factors for patients treated with stereotactic radiosurgery (SRS) for melanoma brain metastases and to investigate the role of additional up-front treatment with whole brain radiation therapy (WBRT). Methods We reviewed records of 147 patients who received SRS as part of initial management of their melanoma brain metastases from January 2000 through June 2010. Overall survival (OS) and time to distant intracranial progression were calculated using the Kaplan-Meier method. Prognostic factors were evaluated using the Cox proportional hazards model. Results WBRT was employed with SRS in 27% of patients and as salvage in an additional 22%. Age at SRS > 60 years (hazard ratio [HR] 0.64, p = 0.05), multiple brain metastases (HR 1.90, p = 0.008), and omission of up-front WBRT (HR 2.24, p = 0.005) were associated with distant intracranial progression on multivariate analysis. Extensive extracranial metastases (HR 1.86, p = 0.0006), Karnofsky Performance Status (KPS) ≤ 80% (HR 1.58, p = 0.01), and multiple brain metastases (HR 1.40, p = 0.06) were associated with worse OS on univariate analysis. Extensive extracranial metastases (HR 1.78, p = 0.001) and KPS (HR 1.52, p = 0.02) remained significantly associated with OS on multivariate analysis. In patients with absent or stable extracranial disease, multiple brain metastases were associated with worse OS (multivariate HR 5.89, p = 0.004), and there was a trend toward an association with worse OS when up-front WBRT was omitted (multivariate HR 2.56, p = 0.08). Conclusions Multiple brain metastases and omission of up-front WBRT (particularly in combination) are associated with distant intracranial progression. Improvement in intracranial disease control may be especially important in the subset of patients with absent or stable extracranial disease, where the competing risk of death from extracranial disease is low. These results are hypothesis generating and require confirmation from ongoing randomized trials. PMID:24954062
Beucke, Jan C; Sepulcre, Jorge; Buhlmann, Ulrike; Kathmann, Norbert; Moody, Teena; Feusner, Jamie D
2016-10-01
Individuals with body dysmorphic disorder (BDD) and obsessive-compulsive disorder (OCD) are categorized within the same major diagnostic group and both show regional brain hyperactivity in the orbitofrontal cortex (OFC) and the basal ganglia during symptom provocation. While recent studies revealed that degree connectivity of these areas is abnormally high in OCD and positively correlates with symptom severity, no study has investigated degree connectivity in BDD. We used functional magnetic resonance imaging (fMRI) to compare the local and distant degree of functional connectivity in all brain areas between 28 unmedicated BDD participants and 28 demographically matched healthy controls during a face-processing task. Correlational analyses tested for associations between degree connectivity and symptom severity assessed by the BDD version of the Yale-Brown obsessive-compulsive scale (BDD-Y-BOCS). Reduced local amygdalar connectivity was found in participants with BDD. No differences in distant connectivity were found. BDD-Y-BOCS scores significantly correlated with the local connectivity of the posterior-lateral OFC, and distant connectivity of the posterior-lateral and post-central OFC, respectively. These findings represent preliminary evidence that individuals with BDD exhibit brain-behavioral associations related to obsessive thoughts and compulsive behaviors that are highly similar to correlations previously found in OCD, further underscoring their related pathophysiology. This relationship could be further elucidated through investigation of resting-state functional connectivity in BDD, ideally in direct comparison with OCD and other obsessive-compulsive and related disorders. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
The Effects of Divided Attention on Speech Motor, Verbal Fluency, and Manual Task Performance
ERIC Educational Resources Information Center
Dromey, Christopher; Shim, Erin
2008-01-01
Purpose: The goal of this study was to evaluate aspects of the "functional distance hypothesis," which predicts that tasks regulated by brain networks in closer anatomic proximity will interfere more with each other than tasks controlled by spatially distant regions. Speech, verbal fluency, and manual motor tasks were examined to ascertain whether…
Kotecha, Rupesh; Damico, Nicholas; Miller, Jacob A; Suh, John H; Murphy, Erin S; Reddy, Chandana A; Barnett, Gene H; Vogelbaum, Michael A; Angelov, Lilyana; Mohammadi, Alireza M; Chao, Samuel T
2017-06-01
Although patients with brain metastasis are treated with primary stereotactic radiosurgery (SRS), the use of salvage therapies and their consequence remains understudied. To study the intracranial recurrence patterns and salvage therapies for patients who underwent multiple SRS courses. A retrospective review was performed of 59 patients with brain metastases who underwent ≥3 SRS courses for new lesions. Cox regression analyzed factors predictive for overall survival. The median age at diagnosis was 52 years. Over time, patients underwent a median of 3 courses of SRS (range: 3-8) to a total of 765 different brain metastases. The 6-month risk of distant intracranial recurrence after the first SRS treatment was 64% (95% confidence interval: 52%-77%). Overall survival was 40% (95% confidence interval: 28%-53%) at 24 months. Only 24 patients (41%) had a decline in their Karnofsky Performance Status ≤70 at last office visit. Quality of life was preserved among 77% of patients at 12 months, with 45% experiencing clinically significant improvement during clinical follow-up. Radiation necrosis developed in 10 patients (17%). On multivariate analysis, gender (males, Hazard Ratio [HR]: 2.0, P < .05), Karnofsky Performance Status ≤80 (HR 3.2, P < .001), extracranial metastases (HR: 3.6, P < .001), and a distant intracranial recurrence ≤3 months from initial to repeat SRS (HR: 3.8, P < .001) were associated with a poorer survival. In selected patients, performing ≥3 SRS courses controls intracranial disease. Patients may need salvage SRS for distant intracranial relapse, but focal retreatments are associated with modest toxicity, do not appear to negatively affect a patient's performance status, and help preserve quality of life. Copyright © 2017 by the Congress of Neurological Surgeons
Bruneau, Emile G; Dufour, Nicholas; Saxe, Rebecca
2012-03-05
In contexts of cultural conflict, people delegitimize the other group's perspective and lose compassion for the other group's suffering. These psychological biases have been empirically characterized in intergroup settings, but rarely in groups involved in active conflict. Similarly, the basic brain networks involved in recognizing others' narratives and misfortunes have been identified, but how these brain networks are modulated by intergroup conflict is largely untested. In the present study, we examined behavioural and neural responses in Arab, Israeli and South American participants while they considered the pain and suffering of individuals from each group. Arabs and Israelis reported feeling significantly less compassion for each other's pain and suffering (the 'conflict outgroup'), but did not show an ingroup bias relative to South Americans (the 'distant outgroup'). In contrast, the brain regions that respond to others' tragedies showed an ingroup bias relative to the distant outgroup but not the conflict outgroup, particularly for descriptions of emotional suffering. Over all, neural responses to conflict group members were qualitatively different from neural responses to distant group members. This is the first neuroimaging study to examine brain responses to others' suffering across both distant and conflict groups, and provides a first step towards building a foundation for the biological basis of conflict.
Dysfunctional whole brain networks in mild cognitive impairment patients: an fMRI study
NASA Astrophysics Data System (ADS)
Liu, Zhenyu; Bai, Lijun; Dai, Ruwei; Zhong, Chongguang; Xue, Ting; You, Youbo; Tian, Jie
2012-03-01
Mild cognitive impairment (MCI) was recognized as the prodromal stage of Alzheimer's disease (AD). Recent researches have shown that cognitive and memory decline in AD patients is coupled with losses of small-world attributes. However, few studies pay attention to the characteristics of the whole brain networks in MCI patients. In the present study, we investigated the topological properties of the whole brain networks utilizing graph theoretical approaches in 16 MCI patients, compared with 18 age-matched healthy subjects as a control. Both MCI patients and normal controls showed small-world architectures, with large clustering coefficients and short characteristic path lengths. We detected significantly longer characteristic path length in MCI patients compared with normal controls at the low sparsity. The longer characteristic path lengths in MCI indicated disrupted information processing among distant brain regions. Compared with normal controls, MCI patients showed decreased nodal centrality in the brain areas of the angular gyrus, heschl gyrus, hippocampus and superior parietal gyrus, while increased nodal centrality in the calcarine, inferior occipital gyrus and superior frontal gyrus. These changes in nodal centrality suggested a widespread rewiring in MCI patients, which may be an integrated reflection of reorganization of the brain networks accompanied with the cognitive decline. Our findings may be helpful for further understanding the pathological mechanisms of MCI.
Bruneau, Emile G.; Dufour, Nicholas; Saxe, Rebecca
2012-01-01
In contexts of cultural conflict, people delegitimize the other group's perspective and lose compassion for the other group's suffering. These psychological biases have been empirically characterized in intergroup settings, but rarely in groups involved in active conflict. Similarly, the basic brain networks involved in recognizing others' narratives and misfortunes have been identified, but how these brain networks are modulated by intergroup conflict is largely untested. In the present study, we examined behavioural and neural responses in Arab, Israeli and South American participants while they considered the pain and suffering of individuals from each group. Arabs and Israelis reported feeling significantly less compassion for each other's pain and suffering (the ‘conflict outgroup’), but did not show an ingroup bias relative to South Americans (the ‘distant outgroup’). In contrast, the brain regions that respond to others' tragedies showed an ingroup bias relative to the distant outgroup but not the conflict outgroup, particularly for descriptions of emotional suffering. Over all, neural responses to conflict group members were qualitatively different from neural responses to distant group members. This is the first neuroimaging study to examine brain responses to others' suffering across both distant and conflict groups, and provides a first step towards building a foundation for the biological basis of conflict. PMID:22271787
Epicenters of dynamic connectivity in the adaptation of the ventral visual system.
Prčkovska, Vesna; Huijbers, Willem; Schultz, Aaron; Ortiz-Teran, Laura; Peña-Gomez, Cleofe; Villoslada, Pablo; Johnson, Keith; Sperling, Reisa; Sepulcre, Jorge
2017-04-01
Neuronal responses adapt to familiar and repeated sensory stimuli. Enhanced synchrony across wide brain systems has been postulated as a potential mechanism for this adaptation phenomenon. Here, we used recently developed graph theory methods to investigate hidden connectivity features of dynamic synchrony changes during a visual repetition paradigm. Particularly, we focused on strength connectivity changes occurring at local and distant brain neighborhoods. We found that connectivity reorganization in visual modal cortex-such as local suppressed connectivity in primary visual areas and distant suppressed connectivity in fusiform areas-is accompanied by enhanced local and distant connectivity in higher cognitive processing areas in multimodal and association cortex. Moreover, we found a shift of the dynamic functional connections from primary-visual-fusiform to primary-multimodal/association cortex. These findings suggest that repetition-suppression is made possible by reorganization of functional connectivity that enables communication between low- and high-order areas. Hum Brain Mapp 38:1965-1976, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, Minesh P.; Tsao, May N.; Whelan, Timothy J.
2005-09-01
Purpose: To systematically review the evidence for the use of stereotactic radiosurgery in adult patients with brain metastases. Methods: Key clinical questions to be addressed in this evidence-based review were identified. Outcomes considered were overall survival, quality of life or symptom control, brain tumor control or response and toxicity. MEDLINE (1990-2004 June Week 2), CANCERLIT (1990-2003), CINAHL (1990-2004 June Week 2), EMBASE (1990-2004 Week 25), and the Cochrane library (2004 issue 2) databases were searched using OVID. In addition, the Physician Data Query clinical trials database, the proceedings of the American Society of Clinical Oncology (ASCO) (1997-2004), ASTRO (1997-2004), andmore » the European Society of Therapeutic Radiology and Oncology (ESTRO) (1997-2003) were searched. Data from the literature search were reviewed and tabulated. This process included an assessment of the level of evidence. Results: For patients with newly diagnosed brain metastases, managed with whole-brain radiotherapy alone vs. whole-brain radiotherapy and radiosurgery boost, there were three randomized controlled trials, zero prospective studies, and seven retrospective series (which satisfied inclusion criteria). For patients with up to three (<4 cm) newly diagnosed brain metastases (and in one study up to four brain metastases), radiosurgery boost with whole-brain radiotherapy significantly improves local brain control rates as compared with whole-brain radiotherapy alone (Level I-III evidence). In one large randomized trial, survival benefit with whole-brain radiotherapy was observed in patients with single brain metastasis. In this trial, an overall increased ability to taper down on steroid dose and an improvement in Karnofsky performance status was seen in patients who were treated with radiosurgery boost as compared with patients treated with whole-brain radiotherapy alone. However, Level I evidence regarding overall quality of life outcomes using a validated instrument has not been reported. All randomized trials showed improved local control with the addition of radiosurgery to whole-brain radiotherapy. For patients with multiple brain metastases, there is no overall survival benefit with the use of radiosurgery boost to whole-brain radiotherapy (Level I-III evidence). Radiosurgery boost is associated with a small risk of early or late toxicity. In patients treated with radiosurgery alone (withholding whole-brain radiotherapy) as initial treatment, there were 2 randomized trials, 2 prospective cohort studies, and 16 retrospective series. There is Level I to Level III evidence that the use of radiosurgery alone does not alter survival as compared to the use of whole-brain radiotherapy. However, there is Level I to Level III evidence that omission of whole-brain radiotherapy results in poorer intracranial disease control, both local and distant (defined as remaining brain, outside the radiosurgery field). Quality of life outcomes have not been adequately reported. Radiosurgery is associated with a small risk of early or late toxicity. Radiosurgery as salvage for patients with brain metastases was reported in zero randomized trials, one prospective study, and seven retrospective series. Conclusions: Based on Level I-III evidence, for selected patients with small (up to 4 cm) brain metastases (up to three in number and four in one randomized trial), the addition of radiosurgery boost to whole-brain radiotherapy improves brain control as compared with whole-brain radiotherapy alone. In patients with a single brain metastasis, radiosurgery boost with whole-brain radiotherapy improves survival. There is a small risk of toxicity associated with radiosurgery boost as compared with whole-brain radiotherapy alone. In selected patients treated with radiosurgery alone for newly diagnosed brain metastases, overall survival is not altered. However, local and distant brain control is significantly poorer with omission of upfront whole-brain radiotherapy (Level I-III evidence). Whether neurocognition or quality of life outcomes are different between initial radiosurgery alone vs. whole-brain radiotherapy (with or without radiosurgery boost) is unknown, because this has not been adequately tested. There was no statistically significant difference in overall toxicity between those treated with radiosurgery alone vs. whole-brain radiotherapy and radiosurgery boost based on an interim report from one randomized study. There is insufficient evidence as to the clinical benefit/risks radiosurgery used in the setting of recurrent or progressive brain metastases, although radiographic responses are well-documented.« less
Lohkamp, Laura-Nanna; Vajkoczy, Peter; Budach, Volker; Kufeld, Markus
2018-05-01
Estimating efficacy, safety and outcome of frameless image-guided robotic radiosurgery for the treatment of recurrent brain metastases after whole brain radiotherapy (WBRT). We performed a retrospective single-center analysis including patients with recurrent brain metastases after WBRT, who have been treated with single session radiosurgery, using the CyberKnife® Radiosurgery System (CKRS) (Accuray Inc., CA) between 2011 and 2016. The primary end point was local tumor control, whereas secondary end points were distant tumor control, treatment-related toxicity and overall survival. 36 patients with 140 recurrent brain metastases underwent 46 single session CKRS treatments. Twenty one patients had multiple brain metastases (58%). The mean interval between WBRT and CKRS accounted for 2 years (range 0.2-7 years). The median number of treated metastases per treatment session was five (range 1-12) with a tumor volume of 1.26 ccm (mean) and a median tumor dose of 18 Gy prescribed to the 70% isodose line. Two patients experienced local tumor recurrence within the 1st year after treatment and 13 patients (36%) developed novel brain metastases. Nine of these patients underwent additional one to three CKRS treatments. Eight patients (22.2%) showed treatment-related radiation reactions on MRI, three with clinical symptoms. Median overall survival was 19 months after CKRS. The actuarial 1-year local control rate was 94.2%. CKRS has proven to be locally effective and safe due to high local tumor control rates and low toxicity. Thus CKRS offers a reliable salvage treatment option for recurrent brain metastases after WBRT.
Hamberger, Anders; Viano, David C; Säljö, Annette; Bolouri, Hayde
2009-06-01
An animal model of concussions in National Football League players has been described in a previous study. It involves a freely moving 300-g Wistar rat impacted on the side of the head at velocities of 7.4 to 11.2 m/s with a 50-g impactor. The impact causes a 6% to 28% incidence of meningeal hemorrhages and 0.1- to 0.3-mm focal petechiae depending on the impact velocity. This study addresses the immunohistochemical responses of the brain. Twenty-seven tests were conducted with a 50-g impactor and velocities of 7.4, 9.3, or 11.2 m/s. The left temporal region of the helmet-protected head was hit 1 or 3 times. Thirty-one additional tests were conducted with a 100-g impactor. Diffuse axonal injury in distant regions of the brain was assessed with immunohistochemistry for NF-200, the heaviest neurofilament subunit, and glial fibrillary acidic protein, an intermediate filament protein in astrocytes. Hemorrhages were analyzed by unspecific peroxidase. There were 10 controls. A single impact at 7.4 and 9.3 m/s velocity with the 50-g impactor causes minimal neuronal injury and astrocytosis. Repeat impacts with 11.2 m/s velocity and more than 9.3-m/s impacts with 100 g cause diffuse axonal injury and distant injury bilaterally in the cerebral cortex, the subcortical, the white matter, the hippocampus CA1, the corpus callosum, and the striatum, as indicated by NF-200 accumulation in neuronal perikarya 10 days after impact. It also causes reactive astrocytosis in the midline regions of the cerebral cortex and periventricularly. Regions with erythrocyte-loaded blood capillaries indicated brain edema in regions of the cerebral cortex, the brainstem, and the cerebellum. When the immunohistochemical results are extrapolated to professional football players, concussions result in no or minimal brain injury. Repeat impacts at higher velocity or with a heavier mass impactor cause extensive and distant diffuse axonal injury. Based on this model, the threshold for diffuse axonal injury is above even the most severe conditions for National Football League concussion.
Intraoperative monitoring of brain tissue oxygenation during arteriovenous malformation resection.
Arikan, Fuat; Vilalta, Jordi; Noguer, Montserrat; Olive, Montserrat; Vidal-Jorge, Marian; Sahuquillo, Juan
2014-10-01
In normal perfusion pressure breakthrough (NPPB) it is assumed that following arteriovenous malformation (AVM) resection, vasoparalysis persists in the margins of the lesion and that a sudden increase in cerebral blood flow (CBF) after AVM exclusion leads to brain swelling and postsurgical complications. However, the pathophysiology NPPB remains controversial.The aim of our study was to investigate the oxygenation status in tissue surrounding AVMs and in the distant brain using intraoperative monitoring of cerebral partial pressure of oxygen (PtiO(2)) to achieve a better understanding of NPPB pathophysiology. Patients with supratentorial AVMs were monitored intraoperatively using 2 polarographic Clark-type electrodes. To establish reference values, we also studied PtiO(2) in a group of patients who underwent surgery to treat incidental aneurysms. Twenty-two patients with supratentorial AVMs and 16 patients with incidentally found aneurysms were included. Hypoxic pattern was defined as PtiO(2)≤15 mm Hg and/or PtiO(2)/PaO(2) ratio ≤0.10. Tissue hypoxia was detected in 63.6% of the catheters placed in the perinidal area and in 43.8% of catheters placed in a distant area. AVM excision significantly improved oxygenation both around the AVM and in the distant area. The PtiO(2)/PaO(2) ratio is a better indicator than absolute PtiO(2) in detecting tissue hypoxia in mechanically ventilated patients. Intraoperative monitoring showed tissue hypoxia in the margins of AVMs and in the distant ipsilateral brain as the most common finding. Surgical removal of AVMs induces a significant improvement in the oxygenation status in both areas.
Muscle metastasis from non-small cell lung cancer: two cases and literature review.
Tezcan, Y; Koc, M
2014-08-01
Non-small cell lung cancers (NSCLC) is the most commonly observed group among lung cancers. Adenocancers are histopathologically more common. Males are more affected than females, an effect which is directly related to smoking. They generally cause distant haematogenous and lymphatic metastasis. Distant haematogenous metastases are often seen in contralateral lung, brain, bone, adrenals, and liver. Muscle metastases from NSCLC are quite rare and male cases are more frequently affected compared to female cases. NSCLC cases with muscle metastasis are at the same time accompanied by distant organ metastases such as bone, brain, and liver. All treatment approaches are considered to be palliative in these cases, which are symptomatologically quite severe. In the present study, we presented the rarely observed cases of two male patients with muscle metastasis from NSCLC together with the related literature.
Modeling the impact of COPD on the brain.
Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing
2008-01-01
Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable-COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p < or = 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities.
Modeling the impact of COPD on the brain
Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing
2008-01-01
Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p ≤ 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities. PMID:18990971
Taggar, Amandeep; MacKenzie, Joanna; Li, Haocheng; Lau, Harold; Lim, Gerald; Nordal, Robert; Hudson, Alana; Khan, Rao; Spencer, David; Voroney, Jon-Paul
2016-05-17
To audit outcomes after introducing frameless stereotactic radiosurgery (SRS) for brain metastases, including co-interventions: neurosurgery, systemic therapy, and whole brain radiotherapy (WBRT). We report median overall survival (MS), local failure, and distant brain failure. We hypothesized patients treated with SRS would have clinically meaningful improved MS compared with historic institutional values. We further hypothesized that patients treated with co-interventions would have clinically meaningful improved MS compared with patients treated with SRS alone. One hundred twenty patients (N = 120) with limited intracranial disease underwent 130 frameless SRS sessions from April 2010 to May 2013. Median follow-up was 11 months. MS was measured from brain metastases diagnosis, local failure, and distant brain failure from the time of first SRS. Practice pattern during the first year of the study favored upfront WBRT (79%) over SRS (21%) while upfront SRS (45%) was almost as common as upfront WBRT (55%) in the last year of the study. MS was 18 months; 37% received SRS alone as initial radiotherapy (MS 12 months); 63% received WBRT prior to SRS (MS 19 months); 50% received systemic therapy post-SRS (MS 21 months); and 26% had tumor resection then SRS to the surgical cavity (MS 42 months). Local failure occurred in 10% of lesions and radio-necrosis occurred in 4%. Differences in distant brain failure among patients treated with upfront SRS (40% rate), WBRT followed by SRS (33% rate) or systemic therapy post-SRS (37% rate) were not statistically significant. Frameless SRS effectively treats surgical cavities, persistent tumors post-WBRT, and can be used as an upfront treatment of brain metastases. Surgery, systemic therapy, and WBRT are associated with longer MS. Patients can live for years while receiving multiple therapies. Systemic therapy for patients with brain metastases is increasingly common, palliative care occurs earlier and improves survival, and WBRT use is not routine. Modern series sometimes produce unexpectedly good results. Classification and treatment protocols are evolving. This practice audit is note-worthy for (i) high median overall survival, (ii) systemic therapy after radiosurgery for patients with tumors treated by radiosurgery, (iii) distant brain failure not significantly related to WBRT, and (iv) neurosurgery, systemic therapy, and WBRT are independently associated with improved MS.
Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain.
Aerts, Hannelore; Schirner, Michael; Jeurissen, Ben; Van Roost, Dirk; Achten, Eric; Ritter, Petra; Marinazzo, Daniele
2018-01-01
Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong-Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance.
Panasevich, E A; Tsitseroshin, M N
2011-01-01
Research of topical features of spatial structure of EEG distant relationships has been performed with correlation and coherent analyses of EEG for 26 children of 5-6 years old (12 boys and 14 girls) in comparison to the data at 33 adult subjects (15 men and 18 women). Men have much higher level of EEG intrahemispherical relations of posttemporal and frontal regions of the left hemisphere whereas women have the higher level prevalence of interhemispheric interactions, especially of bilateral-symmetrical arials of both hemispheres. Preschoolers have another character of sex differences in the system organization of inter-regional interactions of brain biopotentials than adults. In particularly the girls have exceeding of EEG distant relations in the same zones of left hemispheres, where at men such relations have exceeding in comparison with woman. The obtained data shows that the pronounced sexual dimorphism of inter-regional interactions of cortical biopotentials at adults and at children is formed, first of all, owing to of EEG distant relations topology differing in males and females subject. Investigation sex differences of spatial-temporal organization of biopotentials of the brain in children can promote forming of more hole and deep understanding of role of sex factor in development of human brain system activity.
Vuilleumier, Patrik; Richardson, Mark P; Armony, Jorge L; Driver, Jon; Dolan, Raymond J
2004-11-01
Emotional visual stimuli evoke enhanced responses in the visual cortex. To test whether this reflects modulatory influences from the amygdala on sensory processing, we used event-related functional magnetic resonance imaging (fMRI) in human patients with medial temporal lobe sclerosis. Twenty-six patients with lesions in the amygdala, the hippocampus or both, plus 13 matched healthy controls, were shown pictures of fearful or neutral faces in task-releant or task-irrelevant positions on the display. All subjects showed increased fusiform cortex activation when the faces were in task-relevant positions. Both healthy individuals and those with hippocampal damage showed increased activation in the fusiform and occipital cortex when they were shown fearful faces, but this was not the case for individuals with damage to the amygdala, even though visual areas were structurally intact. The distant influence of the amygdala was also evidenced by the parametric relationship between amygdala damage and the level of emotional activation in the fusiform cortex. Our data show that combining the fMRI and lesion approaches can help reveal the source of functional modulatory influences between distant but interconnected brain regions.
Kawasaki, Masahiro; Uno, Yutaka; Mori, Jumpei; Kobata, Kenji; Kitajo, Keiichi
2014-01-01
Electroencephalogram (EEG) phase synchronization analyses can reveal large-scale communication between distant brain areas. However, it is not possible to identify the directional information flow between distant areas using conventional phase synchronization analyses. In the present study, we applied transcranial magnetic stimulation (TMS) to the occipital area in subjects who were resting with their eyes closed, and analyzed the spatial propagation of transient TMS-induced phase resetting by using the transfer entropy (TE), to quantify the causal and directional flow of information. The time-frequency EEG analysis indicated that the theta (5 Hz) phase locking factor (PLF) reached its highest value at the distant area (the motor area in this study), with a time lag that followed the peak of the transient PLF enhancements of the TMS-targeted area at the TMS onset. Phase-preservation index (PPI) analyses demonstrated significant phase resetting at the TMS-targeted area and distant area. Moreover, the TE from the TMS-targeted area to the distant area increased clearly during the delay that followed TMS onset. Interestingly, the time lags were almost coincident between the PLF and TE results (152 vs. 165 ms), which provides strong evidence that the emergence of the delayed PLF reflects the causal information flow. Such tendencies were observed only in the higher-intensity TMS condition, and not in the lower-intensity or sham TMS conditions. Thus, TMS may manipulate large-scale causal relationships between brain areas in an intensity-dependent manner. We demonstrated that single-pulse TMS modulated global phase dynamics and directional information flow among synchronized brain networks. Therefore, our results suggest that single-pulse TMS can manipulate both incoming and outgoing information in the TMS-targeted area associated with functional changes.
Ruschin, Mark; Ma, Lijun; Verbakel, Wilko; Larson, David; Brown, Paul D.
2017-01-01
Abstract Over the past three decades several randomized trials have enabled evidence-based practice for patients presenting with limited brain metastases. These trials have focused on the role of surgery or stereotactic radiosurgery (SRS) with or without whole brain radiation therapy (WBRT). As a result, it is clear that local control should be optimized with surgery or SRS in patients with optimal prognostic factors presenting with up to 4 brain metastases. The routine use of adjuvant WBRT remains debatable, as although greater distant brain control rates are observed, there is no impact on survival, and modern outcomes suggest adverse effects from WBRT on patient cognition and quality of life. With dramatic technologic advances in radiation oncology facilitating the adoption of SRS into mainstream practice, the optimal management of patients with multiple brain metastases is now being put forward. Practice is evolving to SRS alone in these patients despite a lack of level 1 evidence to support a clinical departure from WBRT. The purpose of this review is to summarize the current state of the evidence for patients presenting with limited and multiple metastases, and to present an in-depth analysis of the technology and dosimetric issues specific to the treatment of multiple metastases. PMID:28380635
Wu, San-Gang; Li, Hui; Tang, Li-Ying; Sun, Jia-Yuan; Zhang, Wen-Wen; Li, Feng-Yan; Chen, Yong-Xiong; He, Zhen-Yu
2017-06-01
To investigate the effect of distant metastases sites on survival in patients with de novo stage-IV breast cancer. From 2010 to 2013, patients with a diagnosis of de novo stage-IV breast cancer were identified using the Surveillance, Epidemiology, and End Results database. Univariate and multivariate Cox regression analyses were performed to analyze the effect of distant metastases sites on breast cancer-specific survival and overall survival. A total of 7575 patients were identified. The most common metastatic sites were bone, followed by lung, liver, and brain. Patients with hormone receptor+/human epidermal growth factor receptor 2- and hormone receptor+/human epidermal growth factor receptor 2+ status were more prone to bone metastases. Lung and brain metastases were common in hormone receptor-/human epidermal growth factor receptor 2+ and hormone receptor-/human epidermal growth factor receptor 2- subtypes, and patients with hormone receptor+/ human epidermal growth factor receptor 2+ and hormone receptor-/human epidermal growth factor receptor 2+ subtypes were more prone to liver metastases. Patients with liver and brain metastases had unfavorable prognosis for breast cancer-specific survival and overall survival, whereas bone and lung metastases had no effect on patient survival in multivariate analyses. The hormone receptor-/human epidermal growth factor receptor 2- subtype conferred a significantly poorer outcome in terms of breast cancer-specific survival and overall survival. hormone receptor+/human epidermal growth factor receptor 2+ disease was associated with the best prognosis in terms of breast cancer-specific survival and overall survival. Patients with liver and brain metastases were more likely to experience poor prognosis for breast cancer-specific survival and overall survival by various breast cancer subtypes. Distant metastases sites have differential impact on clinical outcomes in stage-IV breast cancer. Follow-up screening for brain and liver metastases might be effective in improving breast cancer-specific survival and overall survival.
Wang, Pengyun; Li, Rui; Yu, Jing; Huang, Zirui; Yan, Zhixiong; Zhao, Ke; Li, Juan
2017-01-01
Few studies to date have investigated the background network in the cognitive state relying on executive function in mild cognitive impairment (MCI) patients. Using the index of degree of centrality (DC), we explored distant synchronization of background network in MCI during a hybrid delayed-match-to-sample task (DMST), which mainly relies on the working memory component of executive function. We observed significant interactions between group and cognitive state in the bilateral posterior cingulate cortex (PCC) and the ventral subregion of precuneus. For normal control (NC) group, the long distance functional connectivity (FC) of the PCC/precuneus with the other regions of the brain was higher in rest state than that working memory state. For MCI patients, however, this pattern altered. There was no significant difference between rest and working memory state. The similar pattern was observed in the other cluster located in the right angular gyrus. To examine whether abnormal DC in PCC/precuneus and angular gyrus partially resulted from the deficit of FC between these regions and the other parts in the whole brain, we conducted a seed-based correlation analysis with these regions as seeds. The results indicated that the FC between bilateral PCC/precuneus and the right inferior parietal lobule (IPL) increased from rest to working memory state for NC participants. For MCI patients, however, there was no significant change between rest and working memory state. The similar pattern was observed for the FC between right angular gyrus and right anterior insula. However, there was no difference between MCI and NC groups in global efficiency and modularity. It may indicate a lack of efficient reorganization from rest state to a working memory state in the brain network of MCI patients. The present study demonstrates the altered distant synchronization of background network in MCI during a task relying on executive function. The results provide a new perspective regarding the neural mechanisms of executive function deficits in MCI patients, and extend our understanding of brain patterns in task-evoked cognitive states.
Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery
Liew, Sook-Lei; Santarnecchi, Emilliano; Buch, Ethan R.; Cohen, Leonardo G.
2014-01-01
Non-invasive brain stimulation (NIBS) may enhance motor recovery after neurological injury through the causal induction of plasticity processes. Neurological injury, such as stroke, often results in serious long-term physical disabilities, and despite intensive therapy, a large majority of brain injury survivors fail to regain full motor function. Emerging research suggests that NIBS techniques, such as transcranial magnetic (TMS) and direct current (tDCS) stimulation, in association with customarily used neurorehabilitative treatments, may enhance motor recovery. This paper provides a general review on TMS and tDCS paradigms, the mechanisms by which they operate and the stimulation techniques used in neurorehabilitation, specifically stroke. TMS and tDCS influence regional neural activity underlying the stimulation location and also distant interconnected network activity throughout the brain. We discuss recent studies that document NIBS effects on global brain activity measured with various neuroimaging techniques, which help to characterize better strategies for more accurate NIBS stimulation. These rapidly growing areas of inquiry may hold potential for improving the effectiveness of NIBS-based interventions for clinical rehabilitation. PMID:25018714
Intensity-Modulated Radiotherapy for Sinonasal Tumors: Ghent University Hospital Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madani, Indira; Bonte, Katrien; Vakaet, Luc
2009-02-01
Purpose: To report the long-term outcome of intensity-modulated radiotherapy (IMRT) for sinonasal tumors. Methods and Materials: Between July 1998 and November 2006, 84 patients with sinonasal tumors were treated with IMRT to a median dose of 70 Gy in 35 fractions. Of the 84 patients, 73 had a primary tumor and 11 had local recurrence. The tumor histologic type was adenocarcinoma in 54, squamous cell carcinoma in 17, esthesioneuroblastoma in 9, and adenoid cystic carcinoma in 4. The tumors were located in the ethmoid sinus in 47, maxillary sinus in 19, nasal cavity in 16, and multiple sites in 2.more » Postoperative IMRT was performed in 75 patients and 9 patients received primary IMRT. Results: The median follow-up of living patients was 40 months (range, 8-106). The 5-year local control, overall survival, disease-specific survival, disease-free survival, and freedom from distant metastasis rate was 70.7%, 58.5%, 67%, 59.3%, and 82.2%, respectively. No difference was found in local control and survival between patients with primary or recurrent tumors. On multivariate analysis, invasion of the cribriform plate was significantly associated with lower local control (p = 0.0001) and overall survival (p = 0.0001). Local and distant recurrence was detected in 19 and 10 patients, respectively. Radiation-induced blindness was not observed. One patient developed Grade 3 radiation-induced retinopathy and neovascular glaucoma. Nonocular late radiation-induced toxicity comprised complete lacrimal duct stenosis in 1 patient and brain necrosis in 3 patients. Osteoradionecrosis of the maxilla and brain necrosis were detected in 1 of the 5 reirradiated patients. Conclusion: IMRT for sinonasal tumors provides low rates of radiation-induced toxicity without blindness with high local control and survival. IMRT could be considered as the treatment of choi0008.« less
Analysis and Exchange of Multimedia Laboratory Data Using the Brain Database
Wertheim, Steven L.
1990-01-01
Two principal goals of the Brain Database are: 1) to support laboratory data collection and analysis of multimedia information about the nervous system and 2) to support exchange of these data among researchers and clinicians who may be physically distant. This has been achieved by an implementation of experimental and clinical records within a relational database. An Image Series Editor has been created that provides a graphical interface to these data for the purposes of annotation, quantification and other analyses. Cooperating laboratories each maintain their own copies of the Brain Database to which they may add private data. Although the data in a given experimental or patient record will be distributed among many tables and external image files, the user can treat each record as a unit that can be extracted from the local database and sent to a distant colleague.
Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases.
Tsao, May N; Xu, Wei; Wong, Rebecca Ks; Lloyd, Nancy; Laperriere, Normand; Sahgal, Arjun; Rakovitch, Eileen; Chow, Edward
2018-01-25
This is an update to the review published in the Cochrane Library (2012, Issue 4).It is estimated that 20% to 40% of people with cancer will develop brain metastases during the course of their illness. The burden of brain metastases impacts quality and length of survival. To assess the effectiveness and adverse effects of whole brain radiotherapy (WBRT) given alone or in combination with other therapies to adults with newly diagnosed multiple brain metastases. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase to May 2017 and the National Cancer Institute Physicians Data Query for ongoing trials. We included phase III randomised controlled trials (RCTs) comparing WBRT versus other treatments for adults with newly diagnosed multiple brain metastases. Two review authors independently assessed trial quality and abstracted information in accordance with Cochrane methods. We added 10 RCTs to this updated review. The review now includes 54 published trials (45 fully published reports, four abstracts, and five subsets of data from previously published RCTs) involving 11,898 participants.Lower biological WBRT doses versus controlThe hazard ratio (HR) for overall survival (OS) with lower biological WBRT doses as compared with control (3000 cGy in 10 daily fractions) was 1.21 (95% confidence interval (CI) 1.04 to 1.40; P = 0.01; moderate-certainty evidence) in favour of control. The HR for neurological function improvement (NFI) was 1.74 (95% CI 1.06 to 2.84; P = 0.03; moderate-certainty evidence) in favour of control fractionation.Higher biological WBRT doses versus controlThe HR for OS with higher biological WBRT doses as compared with control (3000 cGy in 10 daily fractions) was 0.97 (95% CI 0.83 to 1.12; P = 0.65; moderate-certainty evidence). The HR for NFI was 1.14 (95% CI 0.92 to 1.42; P = 0.23; moderate-certainty evidence).WBRT and radiosensitisersThe addition of radiosensitisers to WBRT did not confer additional benefit for OS (HR 1.05, 95% CI 0.99 to 1.12; P = 0.12; moderate-certainty evidence) or for brain tumour response rates (odds ratio (OR) 0.84, 95% CI 0.63 to 1.11; P = 0.22; high-certainty evidence).Radiosurgery and WBRT versus WBRT aloneThe HR for OS with use of WBRT and radiosurgery boost as compared with WBRT alone for selected participants was 0.61 (95% CI 0.27 to 1.39; P = 0.24; moderate-certainty evidence). For overall brain control at one year, the HR was 0.39 (95% CI 0.25 to 0.60; P < 0.0001; high-certainty evidence) favouring the WBRT and radiosurgery boost group.Radiosurgery alone versus radiosurgery and WBRTThe HR for local brain control was 2.73 (95% CI 1.87 to 3.99; P < 0.00001; high-certainty evidence)favouring the addition of WBRT to radiosurgery. The HR for distant brain control was 2.34 (95% CI 1.73 to 3.18; P < 0.00001; high-certainty evidence) favouring WBRT and radiosurgery. The HR for OS was 1.00 (95% CI 0.80 to 1.25; P = 0.99; moderate-certainty evidence). Two trials reported worse neurocognitive outcomes and one trial reported worse quality of life outcomes when WBRT was added to radiosurgery.We could not pool data from trials related to chemotherapy, optimal supportive care (OSC), molecular targeted agents, neurocognitive protective agents, and hippocampal sparing WBRT. However, one trial reported no differences in quality-adjusted life-years for selected participants with brain metastases from non-small-cell lung cancer randomised to OSC and WBRT versus OSC alone. None of the trials with altered higher biological WBRT dose-fractionation schemes reported benefit for OS, NFI, or symptom control compared with standard care. However, OS and NFI were worse for lower biological WBRT dose-fractionation schemes than for standard dose schedules.The addition of WBRT to radiosurgery improved local and distant brain control in selected people with brain metastases, but data show worse neurocognitive outcomes and no differences in OS.Selected people with multiple brain metastases from non-small-cell lung cancer may show no difference in OS when OSC is given and WBRT is omitted.Use of radiosensitisers, chemotherapy, or molecular targeted agents in conjunction with WBRT remains experimental.Further trials are needed to evaluate the use of neurocognitive protective agents and hippocampal sparing with WBRT. As well, future trials should examine homogeneous participants with brain metastases with focus on prognostic features and molecular markers.
Marcos-Vidal, Luis; Martínez-García, Magdalena; Pretus, Clara; Garcia-Garcia, David; Martínez, Kenia; Janssen, Joost; Vilarroya, Oscar; Castellanos, Francisco X; Desco, Manuel; Sepulcre, Jorge; Carmona, Susanna
2018-06-01
Previous studies have associated Attention-Deficit/Hyperactivity Disorder (ADHD) with a maturational lag of brain functional networks. Functional connectivity of the human brain changes from primarily local to more distant connectivity patterns during typical development. Under the maturational lag hypothesis, we expect children with ADHD to exhibit increased local connectivity and decreased distant connectivity compared with neurotypically developing (ND) children. We applied a graph-theory method to compute local and distant connectivity levels and cross-sectionally compared them in a sample of 120 children with ADHD and 120 age-matched ND children (age range = 7-17 years). In addition, we measured if potential group differences in local and distant connectivity were stable across the age range considered. Finally, we assessed the clinical relevance of observed group differences by correlating the connectivity levels and ADHD symptoms severity separately for each group. Children with ADHD exhibited more local connectivity than age-matched ND children in multiple brain regions, mainly overlapping with default mode, fronto-parietal and ventral attentional functional networks (p < .05- threshold free-cluster enhancement-family-wise error). We detected an atypical developmental pattern of local connectivity in somatomotor regions, that is, decreases with age in ND children, and increases with age in children with ADHD. Furthermore, local connectivity within somatomotor areas correlated positively with clinical severity of ADHD symptoms, both in ADHD and ND children. Results suggest an immature functional state of multiple brain networks in children with ADHD. Whereas the ADHD diagnosis is associated with the integrity of the system comprising the fronto-parietal, default mode and ventral attentional networks, the severity of clinical symptoms is related to atypical functional connectivity within somatomotor areas. Additionally, our findings are in line with the view of ADHD as a disorder of deviated maturational trajectories, mainly affecting somatomotor areas, rather than delays that normalize with age. © 2018 Wiley Periodicals, Inc.
Vidal, Juan R.; Perrone-Bertolotti, Marcela; Kahane, Philippe; Lachaux, Jean-Philippe
2015-01-01
If conscious perception requires global information integration across active distant brain networks, how does the loss of conscious perception affect neural processing in these distant networks? Pioneering studies on perceptual suppression (PS) described specific local neural network responses in primary visual cortex, thalamus and lateral prefrontal cortex of the macaque brain. Yet the neural effects of PS have rarely been studied with intracerebral recordings outside these cortices and simultaneously across distant brain areas. Here, we combined (1) a novel experimental paradigm in which we produced a similar perceptual disappearance and also re-appearance by using visual adaptation with transient contrast changes, with (2) electrophysiological observations from human intracranial electrodes sampling wide brain areas. We focused on broadband high-frequency (50–150 Hz, i.e., gamma) and low-frequency (8–24 Hz) neural activity amplitude modulations related to target visibility and invisibility. We report that low-frequency amplitude modulations reflected stimulus visibility in a larger ensemble of recording sites as compared to broadband gamma responses, across distinct brain regions including occipital, temporal and frontal cortices. Moreover, the dynamics of the broadband gamma response distinguished stimulus visibility from stimulus invisibility earlier in anterior insula and inferior frontal gyrus than in temporal regions, suggesting a possible role of fronto-insular cortices in top–down processing for conscious perception. Finally, we report that in primary visual cortex only low-frequency amplitude modulations correlated directly with perceptual status. Interestingly, in this sensory area broadband gamma was not modulated during PS but became positively modulated after 300 ms when stimuli were rendered visible again, suggesting that local networks could be ignited by top–down influences during conscious perception. PMID:25642199
Suneson, A; Hansson, H A; Seeman, T
1990-03-01
The aim of the present study was to investigate if distant effects could be detected within the central nervous system after impact of a high-energy missile in the left thigh of young pigs. Pressure transducers implanted in various parts of the body of the animal, including the brain, recorded a short-lasting burst of oscillating pressure waves with high frequencies and large amplitudes, traversing the body tissue with a velocity of about that of sound in water (1,460 m/s). The distance between the point of impact and the brain and cervical spinal cord is in the range of 0.5 m. Macroscopic examination revealed that there was no gross brain tissue disruption or visible blood-brain barrier dysfunction. Light microscopic examination demonstrated myelin invaginations in the largest axons and shrinkage of axoplasm. Electron microscopic examination revealed a reduction in the number of microtubules, especially in the larger axons in the brainstem. Disintegration of Nissl substance, i.e., chromatolysis, was noticed after 48 hr in many Purkinje nerve cells in the cerebellum, concomitantly with the appearance of an increased frequency of association between lamellar bodies and mitochondria. Changes could also be observed in the cervical spinal cord and, at reduced frequency and extent, in the optic nerve and in other parts of the brain. These effects were evident within a few minutes after the trauma and persisted even 48 hr after the extremity injury. It is concluded that distant effects, likely to be caused by the oscillating high-frequency pressure waves, appear in the central nervous system after a high-energy missile extremity impact.
Differential Impact of Whole-Brain Radiotherapy Added to Radiosurgery for Brain Metastases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Doo-Sik; Lee, Jung-Il, E-mail: jilee@skku.ed; Im, Yong-Seok
2010-10-01
Purpose: The authors investigated whether the addition of whole-brain radiotherapy (WBRT) to stereotactic radiosurgery (SRS) provided any therapeutic benefit according to recursive partitioning analysis (RPA) class. Methods and Materials: Two hundred forty-five patients with 1 to 10 metastases who underwent SRS between January 2002 and December 2007 were included in the study. Of those, 168 patients were treated with SRS alone and 77 patients received SRS followed by WBRT. Actuarial curves were estimated using the Kaplan-Meier method regarding overall survival (OS), distant brain control (DC), and local brain control (LC) stratified by RPA class. Analyses for known prognostic variables weremore » performed using the Cox proportional hazards model. Results: Univariate and multivariate analysis revealed that control of the primary tumor, small number of brain metastases, Karnofsky performance scale (KPS) > 70, and initial treatment modalities were significant predictors for survival. For RPA class 1, SRS plus WBRT was associated with a longer survival time compared with SRS alone (854 days vs. 426 days, p = 0.042). The SRS plus WBRT group also showed better LC rate than did the SRS-alone group (p = 0.021), although they did not show a better DC rate (p = 0.079). By contrast, for RPA class 2 or 3, no significant difference in OS, LC, or DC was found between the two groups. Conclusions: These results suggest that RPA classification should determine whether or not WBRT is added to SRS. WBRT may be recommended to be added to SRS for patients in whom long-term survival is expected on the basis of RPA classification.« less
Visual control of navigation in insects and its relevance for robotics.
Srinivasan, Mandyam V
2011-08-01
Flying insects display remarkable agility, despite their diminutive eyes and brains. This review describes our growing understanding of how these creatures use visual information to stabilize flight, avoid collisions with objects, regulate flight speed, detect and intercept other flying insects such as mates or prey, navigate to a distant food source, and orchestrate flawless landings. It also outlines the ways in which these insights are now being used to develop novel, biologically inspired strategies for the guidance of autonomous, airborne vehicles. Copyright © 2011 Elsevier Ltd. All rights reserved.
Functional network centrality in obesity: A resting-state and task fMRI study.
García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane
2015-09-30
Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Igaki, Hiroshi; Harada, Ken; Umezawa, Rei; Miyakita, Yasuji; Ohno, Makoto; Takahashi, Masamichi; Sumi, Minako; Inaba, Koji; Murakami, Naoya; Ito, Yoshinori; Narita, Yoshitaka; Itami, Jun
2017-07-31
To determine the clinical efficacy of surgery followed by local brain radiotherapy (LBRT) for patients with a single brain metastasis, by comparing the results with those of postoperative whole brain radiotherapy (WBRT). We performed a retrospective analysis to compare the survival rate, recurrence-free rates, and causes of death for single brain metastasis patients who underwent surgery followed by LBRT or WBRT in the 2010-2015 period. After their surgery, 22 and 32 patients were treated by LBRT and WBRT, respectively. The median survival times for these LBRT and WBRT groups were 18.3 months and 19.2 months, respectively (p = 0.356). The local recurrence-free rates were 81.2% at 1 year and 81.2% at 2 years after LBRT, and 63.8% at 1 year and 58.9% at 2 years after WBRT (p = 0.589). The distant brain recurrence-free rates were 42.5% at 1 year and 25.5% at 2 years after LBRT, and 69.8% at 1 year and 52.4% at 2 years after WBRT (p = 0.044). Distant brain recurrences were observed significantly more frequently in the LBRT group, but the rates of salvage treatment application and survival were not significantly different between the LBRT and WBRT groups. The probability of neurologic death was not significantly higher in the LBRT group compared with the WBRT group. Surgery followed by LBRT for single brain metastasis is not inferior to postoperative WBRT, because survival and the necessity of salvage treatment after LBRT were equivalent to those after WBRT.
Chao, Samuel T; De Salles, Antonio; Hayashi, Motohiro; Levivier, Marc; Ma, Lijun; Martinez, Roberto; Paddick, Ian; Régis, Jean; Ryu, Samuel; Slotman, Ben J; Sahgal, Arjun
2017-11-03
Guidelines regarding stereotactic radiosurgery (SRS) for brain metastases are missing recently published evidence. To conduct a systematic review and provide an objective summary of publications regarding SRS in managing patients with 1 to 4 brain metastases. Using Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, a systematic review was conducted using PubMed and Medline up to November 2016. A separate search was conducted for SRS for larger brain metastases. Twenty-seven prospective studies, critical reviews, meta-analyses, and published consensus guidelines were reviewed. Four key points came from these studies. First, there is no detriment to survival by withholding whole brain radiation (WBRT) in the upfront management of brain metastases with SRS. Second, while SRS on its own provides a high rate of local control (LC), WBRT may provide further increase in LC. Next, WBRT does provide distant brain control with less need for salvage therapy. Finally, the addition of WBRT does affect neurocognitive function and quality of life more than SRS alone. For larger brain metastases, surgical resection should be considered, especially when factoring lower LC with single-session radiosurgery. There is emerging data showing good LC and/or decreased toxicity with multisession radiosurgery. A number of well-conducted prospective and meta-analyses studies demonstrate good LC, without compromising survival, using SRS alone for patients with a limited number of brain metastases. Some also demonstrated less impact on neurocognitive function with SRS alone. Practice guidelines were developed using these data with International Stereotactic Radiosurgery Society consensus. Copyright © 2017 by the Congress of Neurological Surgeons
Tsao, May N.; Rades, Dirk; Wirth, Andrew; Lo, Simon S.; Danielson, Brita L.; Gaspar, Laurie E.; Sperduto, Paul W.; Vogelbaum, Michael A.; Radawski, Jeffrey D.; Wang, Jian Z.; Gillin, Michael T.; Mohideen, Najeeb; Hahn, Carol A.; Chang, Eric L.
2012-01-01
Purpose To systematically review the evidence for the radiotherapeutic and surgical management of patients newly diagnosed with intraparenchymal brain metastases. Methods and Materials Key clinical questions to be addressed in this evidence-based Guideline were identified. Fully published randomized controlled trials dealing with the management of newly diagnosed intraparenchymal brain metastases were searched systematically and reviewed. The U.S. Preventative Services Task Force levels of evidence were used to classify various options of management. Results The choice of management in patients with newly diagnosed single or multiple brain metastases depends on estimated prognosis and the aims of treatment (survival, local treated lesion control, distant brain control, neurocognitive preservation). Single brain metastasis and good prognosis (expected survival 3 months or more): For a single brain metastasis larger than 3 to 4 cm and amenable to safe complete resection, whole brain radiotherapy (WBRT) and surgery (level 1) should be considered. Another alternative is surgery and radiosurgery/radiation boost to the resection cavity (level 3). For single metastasis less than 3 to 4 cm, radiosurgery alone or WBRT and radiosurgery or WBRT and surgery (all based on level 1 evidence) should be considered. Another alternative is surgery and radiosurgery or radiation boost to the resection cavity (level 3). For single brain metastasis (less than 3 to 4 cm) that is not resectable or incompletely resected, WBRT and radiosurgery, or radiosurgery alone should be considered (level 1). For nonresectable single brain metastasis (larger than 3 to 4 cm), WBRT should be considered (level 3). Multiple brain metastases and good prognosis (expected survival 3 months or more): For selected patients with multiple brain metastases (all less than 3 to 4 cm), radiosurgery alone, WBRT and radiosurgery, or WBRT alone should be considered, based on level 1 evidence. Safe resection of a brain metastasis or metastases causing significant mass effect and postoperative WBRT may also be considered (level 3). Patients with poor prognosis (expected survival less than 3 months): Patients with either single or multiple brain metastases with poor prognosis should be considered for palliative care with or without WBRT (level 3). It should be recognized, however, that there are limitations in the ability of physicians to accurately predict patient survival. Prognostic systems such as recursive partitioning analysis, and diagnosis-specific graded prognostic assessment may be helpful. Conclusions Radiotherapeutic intervention (WBRT or radiosurgery) is associated with improved brain control. In selected patients with single brain metastasis, radiosurgery or surgery has been found to improve survival and locally treated metastasis control (compared with WBRT alone). PMID:25925626
Khan, Muhammad; Lin, Jie; Liao, Guixiang; Li, Rong; Wang, Baiyao; Xie, Guozhu; Zheng, Jieling; Yuan, Yawei
2017-07-01
Whole brain radiotherapy has been a standard treatment of brain metastases. Stereotactic radiosurgery provides more focal and aggressive radiation and normal tissue sparing but worse local and distant control. This meta-analysis was performed to assess and compare the effectiveness of whole brain radiotherapy alone, stereotactic radiosurgery alone, and their combination in the treatment of brain metastases based on randomized controlled trial studies. Electronic databases (PubMed, MEDLINE, Embase, and Cochrane Library) were searched to identify randomized controlled trial studies that compared treatment outcome of whole brain radiotherapy and stereotactic radiosurgery. This meta-analysis was performed using the Review Manager (RevMan) software (version 5.2) that is provided by the Cochrane Collaboration. The data used were hazard ratios with 95% confidence intervals calculated for time-to-event data extracted from survival curves and local tumor control rate curves. Odds ratio with 95% confidence intervals were calculated for dichotomous data, while mean differences with 95% confidence intervals were calculated for continuous data. Fixed-effects or random-effects models were adopted according to heterogeneity. Five studies (n = 763) were included in this meta-analysis meeting the inclusion criteria. All the included studies were randomized controlled trials. The sample size ranged from 27 to 331. In total 202 (26%) patients with whole brain radiotherapy alone, 196 (26%) patients receiving stereotactic radiosurgery alone, and 365 (48%) patients were in whole brain radiotherapy plus stereotactic radiosurgery group. No significant survival benefit was observed for any treatment approach; hazard ratio was 1.19 (95% confidence interval: 0.96-1.43, p = 0.12) based on three randomized controlled trials for whole brain radiotherapy only compared to whole brain radiotherapy plus stereotactic radiosurgery and hazard ratio was 1.03 (95% confidence interval: 0.82-1.29, p = 0.81) for stereotactic radiosurgery only compared to combined approach. Local control was best achieved when whole brain radiotherapy was combined with stereotactic radiosurgery. Hazard ratio 2.05 (95% confidence interval: 1.36-3.09, p = 0.0006) and hazard ratio 1.84 (95% confidence interval: 1.26-2.70, p = 0.002) were obtained from comparing whole brain radiotherapy only and stereotactic radiosurgery only to whole brain radiotherapy + stereotactic radiosurgery, respectively. No difference in adverse events for treatment difference; odds ratio 1.16 (95% confidence interval: 0.77-1.76, p = 0.48) and odds ratio 0.92 (95% confidence interval: 0.59-1.42, p = 71) for whole brain radiotherapy + stereotactic radiosurgery versus whole brain radiotherapy only and whole brain radiotherapy + stereotactic radiosurgery versus stereotactic radiosurgery only, respectively. Adding stereotactic radiosurgery to whole brain radiotherapy provides better local control as compared to whole brain radiotherapy only and stereotactic radiosurgery only with no difference in radiation related toxicities.
How do probiotics and prebiotics function at distant sites?
Reid, G; Abrahamsson, T; Bailey, M; Bindels, L B; Bubnov, R; Ganguli, K; Martoni, C; O'Neill, C; Savignac, H M; Stanton, C; Ship, N; Surette, M; Tuohy, K; van Hemert, S
2017-08-24
The realisation that microbes regarded as beneficial to the host can impart effects at sites distant from their habitat, has raised many possibilities for treatment of diseases. The objective of a workshop hosted in Turku, Finland, by the International Scientific Association for Probiotics and Prebiotics, was to assess the evidence for these effects and the extent to which early life microbiome programming influences how the gut microbiota communicates with distant sites. In addition, we examined how probiotics and prebiotics might affect the skin, airways, heart, brain and metabolism. The growing levels of scientific and clinical evidence showing how microbes influence the physiology of many body sites, leads us to call for more funding to advance a potentially exciting avenue for novel therapies for many chronic diseases.
Miller, Jacob A; Kotecha, Rupesh; Ahluwalia, Manmeet S; Mohammadi, Alireza M; Chao, Samuel T; Barnett, Gene H; Murphy, Erin S; Vogelbaum, Michael A; Angelov, Lilyana; Peereboom, David M; Suh, John H
2017-06-15
The current study was conducted to investigate survival and the response to radiotherapy among patients with molecular subtypes of breast cancer brain metastases treated with or without targeted therapies. Patients diagnosed with breast cancer brain metastases at a single tertiary care institution were included. The primary outcome was overall survival, whereas secondary outcomes included the cumulative incidences of distant intracranial failure, local failure, and radiation necrosis. Competing risks regression was used to model secondary outcomes. Within the study period, 547 patients presented with 3224 brain metastases and met inclusion criteria. Among patients with human epidermal growth factor receptor 2 (HER2)-amplified disease, 80% received HER2 antibodies and 38% received HER2/epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The median survival was significantly shorter in the basal cohort (8.4 months), and progressively increased in the luminal A (12.3 months), HER2-positive (15.4 months), and luminal B (18.8 months) cohorts (P<.001). Among patients with HER2-amplified disease, the median survival was extended with the use of both HER2 antibodies (17.9 months vs 15.1 months; P = .04) and TKIs (21.1 months vs 15.4 months; P = .03). The 12-month cumulative incidences of local failure among molecular subtypes were 6.0% in the luminal A cohort, 10.3% in the luminal B cohort, 15.4% in the HER2-positive cohort, and 9.9% in the basal cohort (P = .01). Concurrent HER2/epidermal growth factor receptor TKIs with stereotactic radiosurgery significantly decreased the 12-month cumulative incidence of local failure from 15.1% to 5.7% (P<.001). Molecular subtypes appear to be prognostic for survival and predictive of the response to radiotherapy. TKIs were found to improve survival and local control, and may decrease the rate of distant failure. To preserve neurocognition, these results support a paradigm of upfront radiosurgery and HER2-directed therapy in the HER2-amplified population, reserving whole-brain radiotherapy for salvage. Cancer 2017;123:2283-2293. © 2017 American Cancer Society. © 2017 American Cancer Society.
EEG functional connectivity, axon delays and white matter disease.
Nunez, Paul L; Srinivasan, Ramesh; Fields, R Douglas
2015-01-01
Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. Copyright © 2014 International Federation of Clinical Neurophysiology. All rights reserved.
Control of brain development and homeostasis by local and systemic insulin signalling.
Liu, J; Spéder, P; Brand, A H
2014-09-01
Insulin and insulin-like growth factors (IGFs) are important regulators of growth and metabolism. In both vertebrates and invertebrates, insulin/IGFs are made available to various organs, including the brain, through two routes: the circulating systemic insulin/IGFs act on distant organs via endocrine signalling, whereas insulin/IGF ligands released by local tissues act in a paracrine or autocrine fashion. Although the mechanisms governing the secretion and action of systemic insulin/IGF have been the focus of extensive investigation, the significance of locally derived insulin/IGF has only more recently come to the fore. Local insulin/IGF signalling is particularly important for the development and homeostasis of the central nervous system, which is insulated from the systemic environment by the blood-brain barrier. Local insulin/IGF signalling from glial cells, the blood-brain barrier and the cerebrospinal fluid has emerged as a potent regulator of neurogenesis. This review will address the main sources of local insulin/IGF and how they affect neurogenesis during development. In addition, we describe how local insulin/IGF signalling couples neural stem cell proliferation with systemic energy state in Drosophila and in mammals. © 2014 John Wiley & Sons Ltd.
Press, Robert H.; Prabhu, Roshan S.; Nickleach, Dana C.; Liu, Yuan; Shu, Hui-Kuo G.; Kandula, Shravan; Patel, Kirtesh R.; Curran, Walter J.; Crocker, Ian
2015-01-01
Background The purpose of this study was to evaluate predictors of early distant brain failure (DBF) and salvage whole brain radiotherapy (WBRT) after treatment with stereotactic radiosurgery (SRS) for brain metastases and create a clinically relevant risk score in order to stratify patients’ risk of these events. Methods We reviewed records of 270 patients with brain metastases treated with SRS between 2003-2012. Pre-treatment patient and tumor characteristics were analyzed by univariate and multivariable analyses. Cumulative incidence (CI) of first DBF and salvage WBRT were calculated. Significant factors were used to create a score for stratifying early (6-month) DBF risk. Results No prior WBRT, total lesion volume <1.3 cm3, primary breast cancer or malignant melanoma histology, and multiple metastases (≥2) were found to be significant predictors for early DBF. Each factor was ascribed one point due to similar hazard ratios. Scores of 0-1, 2, and 3-4 were considered low, intermediate, and high risk, respectively. This correlated with 6-month CI of DBF of 16.6%, 28.8%, and 54.4%, respectively (p<0.001). For patients without prior WBRT, the 6-month CI of salvage WBRT by 6-months was 2%, 17.7%, and 25.7%, respectively (p<0.001). Conclusion Early DBF after SRS requiring salvage WBRT remains a significant clinical problem. Patient stratification for early DBF can better inform the decision for initial treatment strategy for brain metastases. The provided risk score may help predict for early DBF and subsequent salvage WBRT if initial SRS is used. External validation is needed prior to clinical implementation. PMID:26242475
Green, Adam E; Kraemer, David J M; Fugelsang, Jonathan A; Gray, Jeremy R; Dunbar, Kevin N
2010-01-01
Solving problems often requires seeing new connections between concepts or events that seemed unrelated at first. Innovative solutions of this kind depend on analogical reasoning, a relational reasoning process that involves mapping similarities between concepts. Brain-based evidence has implicated the frontal pole of the brain as important for analogical mapping. Separately, cognitive research has identified semantic distance as a key characteristic of the kind of analogical mapping that can support innovation (i.e., identifying similarities across greater semantic distance reveals connections that support more innovative solutions and models). However, the neural substrates of semantically distant analogical mapping are not well understood. Here, we used functional magnetic resonance imaging (fMRI) to measure brain activity during an analogical reasoning task, in which we parametrically varied the semantic distance between the items in the analogies. Semantic distance was derived quantitatively from latent semantic analysis. Across 23 participants, activity in an a priori region of interest (ROI) in left frontopolar cortex covaried parametrically with increasing semantic distance, even after removing effects of task difficulty. This ROI was centered on a functional peak that we previously associated with analogical mapping. To our knowledge, these data represent a first empirical characterization of how the brain mediates semantically distant analogical mapping.
Possible Quantum Absorber Effects in Cortical Synchronization
NASA Astrophysics Data System (ADS)
Kämpf, Uwe
The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.
Patterns of breast cancer relapse in accordance to biological subtype.
Ignatov, Atanas; Eggemann, Holm; Burger, Elke; Ignatov, Tanja
2018-04-19
To evaluate the pattern of recurrence of breast cancer according to its biological subtype in a large cohort of patients treated with therapy representative of current practice. Patients treated between 2000 and 2016 with known biological subtype were eligible. Data were prospectively collected. Primary endpoint was the subtype-dependent pattern and time of recurrence. Loco-regional and distant site and time of recurrence were assessed. Median follow-up time was 80.8 months. For 12,053 (82.5%) of 14,595 patients with primary non-metastatic invasive breast cancer a subtype classification was possible. The luminal A subtype had the highest 10-year survival followed by luminal B and luminal/HER2. The worst survival demonstrated HER2 enriched and TNBC. HER2 and TNBC had the highest rate of recurrence in the first 5 years, whereas the rate of recurrence for luminal A and luminal B tumors was initially low, but remained continuously even after 10 years of follow-up. Luminal A tumors demonstrated the lowest rate of distant metastases predominantly in bone. So did luminal B tumors. HER2 enriched subtype was characterized with increased rate of loco-regional recurrence and distant metastases in bone, liver and brain. Luminal/HER2 had pattern of relapse similar to HER2 enriched tumors, with exception of loco-regional relapse and brain metastases. TNBC had higher rate of lung, bone and brain metastases as well as loco-regional relapse. Breast cancer subtypes are associated with different time and pattern of recurrence and it should be considered during treatment decision.
Extensive cortical rewiring after brain injury.
Dancause, Numa; Barbay, Scott; Frost, Shawn B; Plautz, Erik J; Chen, Daofen; Zoubina, Elena V; Stowe, Ann M; Nudo, Randolph J
2005-11-02
Previously, we showed that the ventral premotor cortex (PMv) underwent neurophysiological remodeling after injury to the primary motor cortex (M1). In the present study, we examined cortical connections of PMv after such lesions. The neuroanatomical tract tracer biotinylated dextran amine was injected into the PMv hand area at least 5 months after ischemic injury to the M1 hand area. Comparison of labeling patterns between experimental and control animals demonstrated extensive proliferation of novel PMv terminal fields and the appearance of retrogradely labeled cell bodies within area 1/2 of the primary somatosensory cortex after M1 injury. Furthermore, evidence was found for alterations in the trajectory of PMv intracortical axons near the site of the lesion. The results suggest that M1 injury results in axonal sprouting near the ischemic injury and the establishment of novel connections within a distant target. These results support the hypothesis that, after a cortical injury, such as occurs after stroke, cortical areas distant from the injury undergo major neuroanatomical reorganization. Our results reveal an extraordinary anatomical rewiring capacity in the adult CNS after injury that may potentially play a role in recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Clara Y.H.; Chang, Steven D.; Gibbs, Iris C.
2012-10-01
Purpose: Given the neurocognitive toxicity associated with whole-brain irradiation (WBRT), approaches to defer or avoid WBRT after surgical resection of brain metastases are desirable. Our initial experience with stereotactic radiosurgery (SRS) targeting the resection cavity showed promising results. We examined the outcomes of postoperative resection cavity SRS to determine the effect of adding a 2-mm margin around the resection cavity on local failure (LF) and toxicity. Patients and Methods: We retrospectively evaluated 120 cavities in 112 patients treated from 1998-2009. Factors associated with LF and distant brain failure (DF) were analyzed using competing risks analysis, with death as a competingmore » risk. The overall survival (OS) rate was calculated by the Kaplan-Meier product-limit method; variables associated with OS were evaluated using the Cox proportional hazards and log rank tests. Results: The 12-month cumulative incidence rates of LF and DF, with death as a competing risk, were 9.5% and 54%, respectively. On univariate analysis, expansion of the cavity with a 2-mm margin was associated with decreased LF; the 12-month cumulative incidence rates of LF with and without margin were 3% and 16%, respectively (P=.042). The 12-month toxicity rates with and without margin were 3% and 8%, respectively (P=.27). On multivariate analysis, melanoma histology (P=.038) and number of brain metastases (P=.0097) were associated with higher DF. The median OS time was 17 months (range, 2-114 months), with a 12-month OS rate of 62%. Overall, WBRT was avoided in 72% of the patients. Conclusion: Adjuvant SRS targeting the resection cavity of brain metastases results in excellent local control and allows WBRT to be avoided in a majority of patients. A 2-mm margin around the resection cavity improved local control without increasing toxicity compared with our prior technique with no margin.« less
From structure to function, via dynamics
NASA Astrophysics Data System (ADS)
Stetter, O.; Soriano, J.; Geisel, T.; Battaglia, D.
2013-01-01
Neurons in the brain are wired into a synaptic network that spans multiple scales, from local circuits within cortical columns to fiber tracts interconnecting distant areas. However, brain function require the dynamic control of inter-circuit interactions on time-scales faster than synaptic changes. In particular, strength and direction of causal influences between neural populations (described by the so-called directed functional connectivity) must be reconfigurable even when the underlying structural connectivity is fixed. Such directed functional influences can be quantified resorting to causal analysis of time-series based on tools like Granger Causality or Transfer Entropy. The ability to quickly reorganize inter-areal interactions is a chief requirement for performance in a changing natural environment. But how can manifold functional networks stem "on demand" from an essentially fixed structure? We explore the hypothesis that the self-organization of neuronal synchronous activity underlies the control of brain functional connectivity. Based on simulated and real recordings of critical neuronal cultures in vitro, as well as on mean-field and spiking network models of interacting brain areas, we have found that "function follows dynamics", rather than structure. Different dynamic states of a same structural network, characterized by different synchronization properties, are indeed associated to different functional digraphs (functional multiplicity). We also highlight the crucial role of dynamics in establishing a structure-to-function link, by showing that whenever different structural topologies lead to similar dynamical states, than the associated functional connectivities are also very similar (structural degeneracy).
Ryan, Veronica H; Primiani, Christopher T; Rao, Jagadeesh S; Ahn, Kwangmi; Rapoport, Stanley I; Blanchard, Helene
2014-01-01
The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.
Shannon, Richard J; Timofeev, Ivan; Nortje, Jürgens; Hutchinson, Peter J; Carpenter, Keri L H
2014-01-01
Aims The aims were to determine blood–brain barrier penetration and brain extracellular pharmacokinetics for the anticonvulsant vigabatrin (VGB; γ-vinyl-γ-aminobutyric acid) in brain extracellular fluid and plasma from severe traumatic brain injury (TBI) patients, and to measure the response of γ-aminobutyric acid (GABA) concentration in brain extracellular fluid. Methods Severe TBI patients (n = 10) received VGB (0.5 g enterally, every 12 h). Each patient had a cerebral microdialysis catheter; two patients had a second catheter in a different region of the brain. Plasma samples were collected 0.5 h before and 2, 4 and 11.5 h after the first VGB dose. Cerebral microdialysis commenced before the first VGB dose and continued through at least three doses of VGB. Controls were seven severe TBI patients with microdialysis, without VGB. Results After the first VGB dose, the maximum concentration of VGB (Cmax) was 31.7 (26.9–42.6) μmol l−1 (median and interquartile range for eight patients) in plasma and 2.41 (2.03–5.94) μmol l−1 in brain microdialysates (nine patients, 11 catheters), without significant plasma–brain correlation. After three doses, median Cmax in microdialysates increased to 5.22 (4.24–7.14) μmol l−1 (eight patients, 10 catheters). Microdialysate VGB concentrations were higher close to focal lesions than in distant sites. Microdialysate GABA concentrations increased modestly in some of the patients after VGB administration. Conclusions Vigabatrin, given enterally to severe TBI patients, crosses the blood–brain barrier into the brain extracellular fluid, where it accumulates with multiple dosing. Pharmacokinetics suggest delayed uptake from the blood. PMID:24802902
Hislop, T G; Lamb, C W; Ng, V T
1990-01-01
Cases (n = 263) and controls (n = 200) returned self-administered food frequency questionnaires in 1980-1982 and again in 1986 as part of a case-control study of breast cancer. The questionnaire asked about consumption of specific food items as recalled for four different age periods. K-statistics comparing responses in the first and second questionnaires were generally similar for cases and controls and were consistent across the different age periods. The influence of recent dietary change on dietary recall diminished for the more distant past. The food frequency questionnaire was found to be more reliable for specific food items for the distant past than for the more recent past. Differential misclassification bias between cases and controls was less apparent for the more distant past. The frequency and interpretation of missing values is discussed.
Abdel-Rahman, Omar
2018-03-01
Population-based data on the clinical correlates and prognostic value of the pattern of metastases among patients with cutaneous melanoma are needed. Surveillance, Epidemiology and End Results (SEER) database (2010-2013) has been explored through SEER*Stat program. For each of six distant metastatic sites (bone, brain, liver, lung, distant lymph nodes, and skin/subcutaneous), relevant correlation with baseline characteristics were reported. Survival analysis has been conducted through Kaplan-Meier analysis, and multivariate analysis has been conducted through a Cox proportional hazard model. A total of 2691 patients with metastatic cutaneous melanoma were identified in the period from 2010 to 2013. Patients with isolated skin/subcutaneous metastases have the best overall and melanoma-specific survival (MSS) followed by patients with isolated distant lymph node metastases followed by patients with isolated lung metastases. Patients with isolated liver, bone, or brain metastases have the worst overall and MSS (p < .0001 for both end points). Multivariate analysis revealed that age more than 70 at diagnosis (p = .012); multiple sites of metastases (p <.0001), no surgery to the primary tumor (p <.0001), and no surgery to the metastatic disease (p < .0001) were associated with worse overall survival (OS). For MSS, nodal positivity (p = .038), multiple sites of metastases (p < .0001), no surgery to the primary tumor (p < .0001), and no surgery to the metastatic disease (p < .0001) were associated with worse survival. The prognosis of metastatic cutaneous melanoma patients differs considerably according to the site of distant metastases. Further prospective studies are required to evaluate the role of local treatment in the management of metastatic disease.
Dong, Li; Li, Hechun; He, Zhongqiong; Jiang, Sisi; Klugah-Brown, Benjamin; Chen, Lin; Wang, Pu; Tan, Song; Luo, Cheng; Yao, Dezhong
2016-11-01
The purpose of this study was to investigate the local spatiotemporal consistency of spontaneous brain activity in patients with frontal lobe epilepsy (FLE). Eyes closed resting-state functional magnetic resonance imaging (fMRI) data were collected from 19 FLE patients and 19 age- and gender-matched healthy controls. A novel measure, named FOur-dimensional (spatiotemporal) Consistency of local neural Activities (FOCA) was used to assess the spatiotemporal consistency of local spontaneous activity (emphasizing both local temporal homogeneity and regional stability of brain activity states). Then, two-sample t test was performed to detect the FOCA differences between two groups. Partial correlations between the FOCA values and durations of epilepsy were further analyzed. Compared with controls, FLE patients demonstrated increased FOCA in distant brain regions including the frontal and parietal cortices, as well as the basal ganglia. The decreased FOCA was located in the temporal cortex, posterior default model regions, and cerebellum. In addition, the FOCA measure was linked to the duration of epilepsy in basal ganglia. Our study suggested that alterations of local spontaneous activity in frontoparietal cortex and basal ganglia was associated with the pathophysiology of FLE; and the abnormality in frontal and default model regions might account for the potential cognitive impairment in FLE. We also presumed that the FOCA measure had potential to provide important insights into understanding epilepsy such as FLE.
Pezzulo, G; Levin, M
2015-12-01
A major goal of regenerative medicine and bioengineering is the regeneration of complex organs, such as limbs, and the capability to create artificial constructs (so-called biobots) with defined morphologies and robust self-repair capabilities. Developmental biology presents remarkable examples of systems that self-assemble and regenerate complex structures toward their correct shape despite significant perturbations. A fundamental challenge is to translate progress in molecular genetics into control of large-scale organismal anatomy, and the field is still searching for an appropriate theoretical paradigm for facilitating control of pattern homeostasis. However, computational neuroscience provides many examples in which cell networks - brains - store memories (e.g., of geometric configurations, rules, and patterns) and coordinate their activity towards proximal and distant goals. In this Perspective, we propose that programming large-scale morphogenesis requires exploiting the information processing by which cellular structures work toward specific shapes. In non-neural cells, as in the brain, bioelectric signaling implements information processing, decision-making, and memory in regulating pattern and its remodeling. Thus, approaches used in computational neuroscience to understand goal-seeking neural systems offer a toolbox of techniques to model and control regenerative pattern formation. Here, we review recent data on developmental bioelectricity as a regulator of patterning, and propose that target morphology could be encoded within tissues as a kind of memory, using the same molecular mechanisms and algorithms so successfully exploited by the brain. We highlight the next steps of an unconventional research program, which may allow top-down control of growth and form for numerous applications in regenerative medicine and synthetic bioengineering.
Promoting autonomy in a smart home environment with a smarter interface.
Brennan, C P; McCullagh, P J; Galway, L; Lightbody, G
2015-01-01
In the not too distant future, the median population age will tend towards 65; an age at which the need for dependency increases. Most older people want to remain autonomous and self-sufficient for as long as possible. As environments become smarter home automation solutions can be provided to support this aspiration. The technology discussed within this paper focuses on providing a home automation system that can be controlled by most users regardless of mobility restrictions, and hence it may be applicable to older people. It comprises a hybrid Brain-Computer Interface, home automation user interface and actuators. In the first instance, our system is controlled with conventional computer input, which is then replaced with eye tracking and finally a BCI and eye tracking collaboration. The systems have been assessed in terms of information throughput; benefits and limitations are evaluated.
King, Christopher; Robinson, Timothy; Dixon, C Edward; Rao, Gutti R; Larnard, Donald; Nemoto, C Edwin M
2010-10-01
Therapeutic hypothermia remains a promising treatment for patients with severe traumatic brain injury (TBI). Multiple animal studies have suggested that hypothermia is neuroprotective after TBI, but clinical trials have been inconclusive. Systemic hypothermia, the method used in almost all major clinical trials, is limited by the time to target temperature, the depth of hypothermia, and complications, problems that may be solved by selective brain cooling. We evaluated the effects on brain temperature of a cooling device called the ChillerPad,™ which is applied to the dura in a non-human primate TBI model using controlled cortical impact (CCI). The cortical surface was rapidly cooled to approximately 15°C and maintained at that level for 24 h, followed by rewarming over about 10 h. Brain temperatures fell to 34-35°C at a depth of 15 mm at the cortical gray/white matter interface, and to 28-32°C at 10 mm deep. Intracranial pressure was mildly elevated (8-12 mm Hg) after cooling and rewarming, likely due to TBI. Other physiological variables were unchanged. Cooling was rapidly diminished at points distant from the cooling pad. The ChillerPad may be useful for highly localized cooling of the brain in circumstances in which a craniotomy is clinically indicated. However, because of the delay required by the craniotomy, other methods that are more readily available for inducing hypothermia may be used as a bridge between the time of injury to placement of the ChillerPad.
DOWNSTREAM-WATER-LEVEL CONTROL TEST RESULTS ON THE WM LATERAL CANAL
USDA-ARS?s Scientific Manuscript database
On steep canals, distant downstream water-level control can be challenging. SacMan (Software for Automated Canal Management) was developed, in part, to test various distant downstream water level controllers. It was implemented on the WM canal of the Maricopa Stanfield Irrigation and Drainage Distri...
Ryan, Veronica H.; Primiani, Christopher T.; Rao, Jagadeesh S.; Ahn, Kwangmi; Rapoport, Stanley I.; Blanchard, Helene
2014-01-01
Background The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. Hypothesis AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. Methods The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Results Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Conclusions Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease. PMID:24963629
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultz, David B.; Modlin, Leslie A.; Jayachandran, Priya
Purpose: To report the outcomes of repeat stereotactic radiosurgery (SRS), deferring whole-brain radiation therapy (WBRT), for distant intracranial recurrences and identify factors associated with prolonged overall survival (OS). Patients and Methods: We retrospectively identified 652 metastases in 95 patients treated with 2 or more courses of SRS for brain metastases, deferring WBRT. Cox regression analyzed factors predictive for OS. Results: Patients had a median of 2 metastases (range, 1-14) treated per course, with a median of 2 courses (range, 2-14) of SRS per patient. With a median follow-up after first SRS of 15 months (range, 3-98 months), the median OS from the timemore » of the first and second course of SRS was 18 (95% confidence interval [CI] 15-24) and 11 months (95% CI 6-17), respectively. On multivariate analysis, histology, graded prognostic assessment score, aggregate tumor volume (but not number of metastases), and performance status correlated with OS. The 1-year cumulative incidence, with death as a competing risk, of local failure was 5% (95% CI 4-8%). Eighteen (24%) of 75 deaths were from neurologic causes. Nineteen patients (20%) eventually received WBRT. Adverse radiation events developed in 2% of SRS sites. Conclusion: Multiple courses of SRS, deferring WBRT, for distant brain metastases after initial SRS, seem to be a safe and effective approach. The graded prognostic assessment score, updated at each course, and aggregate tumor volume may help select patients in whom the deferral of WBRT might be most beneficial.« less
Long-term effects of musical training and functional plasticity in salience system.
Luo, Cheng; Tu, Shipeng; Peng, Yueheng; Gao, Shan; Li, Jianfu; Dong, Li; Li, Gujing; Lai, Yongxiu; Li, Hong; Yao, Dezhong
2014-01-01
Musicians undergoing long-term musical training show improved emotional and cognitive function, which suggests the presence of neuroplasticity. The structural and functional impacts of the human brain have been observed in musicians. In this study, we used data-driven functional connectivity analysis to map local and distant functional connectivity in resting-state functional magnetic resonance imaging data from 28 professional musicians and 28 nonmusicians. Compared with nonmusicians, musicians exhibited significantly greater local functional connectivity density in 10 regions, including the bilateral dorsal anterior cingulate cortex, anterior insula, and anterior temporoparietal junction. A distant functional connectivity analysis demonstrated that most of these regions were included in salience system, which is associated with high-level cognitive control and fundamental attentional process. Additionally, musicians had significantly greater functional integration in this system, especially for connections to the left insula. Increased functional connectivity between the left insula and right temporoparietal junction may be a response to long-term musical training. Our findings indicate that the improvement of salience network is involved in musical training. The salience system may represent a new avenue for exploration regarding the underlying foundations of enhanced higher-level cognitive processes in musicians.
Aeinehband, Shahin; Behbahani, Homira; Grandien, Alf; Nilsson, Bo; Ekdahl, Kristina N.; Lindblom, Rickard P. F.; Piehl, Fredrik; Darreh-Shori, Taher
2013-01-01
Acetylcholine (ACh), the classical neurotransmitter, also affects a variety of nonexcitable cells, such as endothelia, microglia, astrocytes and lymphocytes in both the nervous system and secondary lymphoid organs. Most of these cells are very distant from cholinergic synapses. The action of ACh on these distant cells is unlikely to occur through diffusion, given that ACh is very short-lived in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), two extremely efficient ACh-degrading enzymes abundantly present in extracellular fluids. In this study, we show compelling evidence for presence of a high concentration and activity of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT) in human cerebrospinal fluid (CSF) and plasma. We show that ChAT levels are physiologically balanced to the levels of its counteracting enzymes, AChE and BuChE in the human plasma and CSF. Equilibrium analyses show that soluble ChAT maintains a steady-state ACh level in the presence of physiological levels of fully active ACh-degrading enzymes. We show that ChAT is secreted by cultured human-brain astrocytes, and that activated spleen lymphocytes release ChAT itself rather than ACh. We further report differential CSF levels of ChAT in relation to Alzheimer’s disease risk genotypes, as well as in patients with multiple sclerosis, a chronic neuroinflammatory disease, compared to controls. Interestingly, soluble CSF ChAT levels show strong correlation with soluble complement factor levels, supporting a role in inflammatory regulation. This study provides a plausible explanation for the long-distance action of ACh through continuous renewal of ACh in extracellular fluids by the soluble ChAT and thereby maintenance of steady-state equilibrium between hydrolysis and synthesis of this ubiquitous cholinergic signal substance in the brain and peripheral compartments. These findings may have important implications for the role of cholinergic signaling in states of inflammation in general and in neurodegenerative disease, such as Alzheimer’s disease and multiple sclerosis in particular. PMID:23840379
Emerging role of brain metastases in the prognosis of breast cancer patients.
Hambrecht, Amanda; Jandial, Rahul; Neman, Josh
2011-08-10
Cancer starts with one rogue cell. Through mutations and genomic alterations, the cell acquires specific and stem cell-like characteristics necessary for invasion of a distant organ and ultimately metastasis. Metastatic brain cancer is a particularly formidable disease because of its poor prognosis and the highly resistant nature of the tumor to chemotherapy. Although several types of primary tumors have a tendency to metastasize to the brain, the incidence of brain metastases has increased dramatically in some subsets of breast cancer patients. Several conventional treatments are available, but success is limited and often short-lived. Given that no standard treatment options exist, there is a significant need to investigate the biology of these clinically recalcitrant tumors.
Emerging role of brain metastases in the prognosis of breast cancer patients
Hambrecht, Amanda; Jandial, Rahul; Neman, Josh
2011-01-01
Cancer starts with one rogue cell. Through mutations and genomic alterations, the cell acquires specific and stem cell-like characteristics necessary for invasion of a distant organ and ultimately metastasis. Metastatic brain cancer is a particularly formidable disease because of its poor prognosis and the highly resistant nature of the tumor to chemotherapy. Although several types of primary tumors have a tendency to metastasize to the brain, the incidence of brain metastases has increased dramatically in some subsets of breast cancer patients. Several conventional treatments are available, but success is limited and often short-lived. Given that no standard treatment options exist, there is a significant need to investigate the biology of these clinically recalcitrant tumors. PMID:24367178
Cortical Oscillatory Mechanisms Supporting the Control of Human Social-Emotional Actions.
Bramson, Bob; Jensen, Ole; Toni, Ivan; Roelofs, Karin
2018-06-20
The human anterior prefrontal cortex (aPFC) is involved in regulating social-emotional behavior, presumably by modulating effective connectivity with downstream parietal, limbic, and motor cortices. Regulating that connectivity might rely on theta-band oscillations (4-8 Hz), a brain rhythm known to create overlapping periods of excitability between distant regions by temporally releasing neurons from inhibition. Here, we used MEG to understand how aPFC theta-band oscillations implement control over prepotent social-emotional behaviors; that is, the control over automatically elicited approach and avoidance actions. Forty human male participants performed a social approach-avoidance task in which they approached or avoided visually displayed emotional faces (happy or angry) by pulling or pushing a joystick. Approaching angry and avoiding happy faces (incongruent condition) requires rapid application of cognitive control to override prepotent habitual action tendencies to approach appetitive and to avoid aversive situations. In the time window before response delivery, trial-by-trial variations in aPFC theta-band power (6 Hz) predicted reaction time increases during emotional control and were inversely related to beta-band power (14-22 Hz) over parietofrontal cortex. In sensorimotor areas contralateral to the moving hand, premovement gamma-band rhythms (60-90 Hz) were stronger during incongruent than congruent trials, with power increases phase locked to peaks of the aPFC theta-band oscillations. These findings define a mechanistic relation between cortical areas involved in implementing rapid control over human social-emotional behavior. The aPFC may bias neural processing toward rule-driven actions and away from automatic emotional tendencies by coordinating tonic disinhibition and phasic enhancement of parietofrontal circuits involved in action selection. SIGNIFICANCE STATEMENT Being able to control social-emotional behavior is crucial for successful participation in society, as is illustrated by the severe social and occupational difficulties experienced by people suffering from social motivational disorders such as social anxiety. In this study, we show that theta-band oscillations in the anterior prefrontal cortex (aPFC), which are thought to provide temporal organization for neural firing during communication between distant brain areas, facilitate this control by linking aPFC to parietofrontal beta-band and sensorimotor gamma-band oscillations involved in action selection. These results contribute to a mechanistic understanding of cognitive control over automatic social-emotional action and point to frontal theta-band oscillations as a possible target of rhythmic neurostimulation techniques during treatment for social anxiety. Copyright © 2018 the authors 0270-6474/18/385739-11$15.00/0.
Role of the neural niche in brain metastatic cancer
Termini, John; Neman, Josh; Jandial, Rahul
2014-01-01
Metastasis is the relenteless pursuit of cancer to escape its primary site and colonize distant organs. This malignant evolutionary process is biologically heterogeneous, yet one unifying element is the critical role of the microenvironment for arriving metastatic cells. Historically brain metastases were rarely investigated since patients with advanced cancer were considered terminal. Fortunately, advances in molecular therapies have led to patients living longer with metastatic cancer. However, one site remains recalcitrant to our treatment efforts – the brain. The central nervous system is the most complex biological system, which poses unique obstacles but also harbors opportunities for discovery. Much of what we know about the brain microenvironment comes from neuroscience. We suggest that the interrelated cellular responses in traumatic brain injury may guide us towards new perspectives in understanding brain metastases. In this view, brain metastases may be conceptualized as progressive oncologic injury to the nervous system. This review discusses our evolving understanding of the bidirectional interactions between the brain milieu and metastatic cancer. PMID:25035392
Role of the neural niche in brain metastatic cancer.
Termini, John; Neman, Josh; Jandial, Rahul
2014-08-01
Metastasis is the relentless pursuit of cancer to escape its primary site and colonize distant organs. This malignant evolutionary process is biologically heterogeneous, yet one unifying element is the critical role of the microenvironment for arriving metastatic cells. Historically, brain metastases were rarely investigated because patients with advanced cancer were considered terminal. Fortunately, advances in molecular therapies have led to patients living longer with metastatic cancer. However, one site remains recalcitrant to our treatment efforts, the brain. The central nervous system is the most complex biologic system, which poses unique obstacles but also harbors opportunities for discovery. Much of what we know about the brain microenvironment comes from neuroscience. We suggest that the interrelated cellular responses in traumatic brain injury may guide us toward new perspectives in understanding brain metastases. In this view, brain metastases may be conceptualized as progressive oncologic injury to the nervous system. This review discusses our evolving understanding of bidirectional interactions between the brain milieu and metastatic cancer. ©2014 American Association for Cancer Research.
Autobiographical Planning and the Brain: Activation and Its Modulation by Qualitative Features.
Spreng, R Nathan; Gerlach, Kathy D; Turner, Gary R; Schacter, Daniel L
2015-11-01
To engage in purposeful behavior, it is important to make plans, which organize subsequent actions. Most studies of planning involve "look-ahead" puzzle tasks that are unrelated to personal goals. We developed a task to assess autobiographical planning, which involves the formulation of personal plans in response to real-world goals, and examined autobiographical planning in 63 adults during fMRI scanning. Autobiographical planning was found to engage the default network, including medial-temporal lobe and midline structures, and executive control regions in lateral pFC and parietal cortex and caudate. To examine how specific qualitative features of autobiographical plans modulate neural activity, we performed parametric modulation analyses. Ratings of plan detail, novelty, temporal distance, ease of plan formulation, difficulty in goal completion, and confidence in goal accomplishment were used as covariates in six hierarchical linear regression models. This modeling procedure removed shared variance among the ratings, allowing us to determine the independent relationship between ratings of interest and trial-wise BOLD signal. We found that specific autobiographical planning, describing a detailed, achievable, and actionable planning process for attaining a clearly envisioned future, recruited both default and frontoparietal brain regions. In contrast, abstract autobiographical planning, plans that were constructed from more generalized semantic or affective representations of a less tangible and distant future, involved interactions among default, sensory perceptual, and limbic brain structures. Specific qualities of autobiographical plans are important predictors of default and frontoparietal control network engagement during plan formation and reflect the contribution of mnemonic and executive control processes to autobiographical planning.
Visible rodent brain-wide networks at single-neuron resolution
Yuan, Jing; Gong, Hui; Li, Anan; Li, Xiangning; Chen, Shangbin; Zeng, Shaoqun; Luo, Qingming
2015-01-01
There are some unsolvable fundamental questions, such as cell type classification, neural circuit tracing and neurovascular coupling, though great progresses are being made in neuroscience. Because of the structural features of neurons and neural circuits, the solution of these questions needs us to break through the current technology of neuroanatomy for acquiring the exactly fine morphology of neuron and vessels and tracing long-distant circuit at axonal resolution in the whole brain of mammals. Combined with fast-developing labeling techniques, efficient whole-brain optical imaging technology emerging at the right moment presents a huge potential in the structure and function research of specific-function neuron and neural circuit. In this review, we summarize brain-wide optical tomography techniques, review the progress on visible brain neuronal/vascular networks benefit from these novel techniques, and prospect the future technical development. PMID:26074784
Troyer, Melissa; Curley, Lauren B.; Miller, Luke E.; Saygin, Ayse P.; Bergen, Benjamin K.
2014-01-01
Language comprehension requires rapid and flexible access to information stored in long-term memory, likely influenced by activation of rich world knowledge and by brain systems that support the processing of sensorimotor content. We hypothesized that while literal language about biological motion might rely on neurocognitive representations of biological motion specific to the details of the actions described, metaphors rely on more generic representations of motion. In a priming and self-paced reading paradigm, participants saw video clips or images of (a) an intact point-light walker or (b) a scrambled control and read sentences containing literal or metaphoric uses of biological motion verbs either closely or distantly related to the depicted action (walking). We predicted that reading times for literal and metaphorical sentences would show differential sensitivity to the match between the verb and the visual prime. In Experiment 1, we observed interactions between the prime type (walker or scrambled video) and the verb type (close or distant match) for both literal and metaphorical sentences, but with strikingly different patterns. We found no difference in the verb region of literal sentences for Close-Match verbs after walker or scrambled motion primes, but Distant-Match verbs were read more quickly following walker primes. For metaphorical sentences, the results were roughly reversed, with Distant-Match verbs being read more slowly following a walker compared to scrambled motion. In Experiment 2, we observed a similar pattern following still image primes, though critical interactions emerged later in the sentence. We interpret these findings as evidence for shared recruitment of cognitive and neural mechanisms for processing visual and verbal biological motion information. Metaphoric language using biological motion verbs may recruit neurocognitive mechanisms similar to those used in processing literal language but be represented in a less-specific way. PMID:25538604
Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo; Lu Long, Gui
2015-01-01
We propose a scheme to construct the controlled-phase (c-phase) gate on distant transmon qutrits hosted in different resonators inter-coupled by a connected transmon qutrit. Different from previous works for entanglement generation and information transfer on two distant qubits in a dispersive regime in the similar systems, our gate is constructed in the resonant regime with one step. The numerical simulation shows that the fidelity of our c-phase gate is 99.5% within 86.3 ns. As an interesting application of our c-phase gate, we propose an effective scheme to complete a conventional square lattice of two-dimensional surface code layout for fault-tolerant quantum computing on the distant transmon qutrits. The four-step coupling between the nearest distant transmon qutrits, small coupling strengths of the distant transmon qutrits, and the non-population on the connection transmon qutrit can reduce the interactions among different parts of the layout effectively, which makes the layout be integrated with a large scale in an easier way. PMID:26486426
Complex network analysis of resting-state fMRI of the brain.
Anwar, Abdul Rauf; Hashmy, Muhammad Yousaf; Imran, Bilal; Riaz, Muhammad Hussnain; Mehdi, Sabtain Muhammad Muntazir; Muthalib, Makii; Perrey, Stephane; Deuschl, Gunther; Groppa, Sergiu; Muthuraman, Muthuraman
2016-08-01
Due to the fact that the brain activity hardly ever diminishes in healthy individuals, analysis of resting state functionality of the brain seems pertinent. Various resting state networks are active inside the idle brain at any time. Based on various neuro-imaging studies, it is understood that various structurally distant regions of the brain could be functionally connected. Regions of the brain, that are functionally connected, during rest constitutes to the resting state network. In the present study, we employed the complex network measures to estimate the presence of community structures within a network. Such estimate is named as modularity. Instead of using a traditional correlation matrix, we used a coherence matrix taken from the causality measure between different nodes. Our results show that in prolonged resting state the modularity starts to decrease. This decrease was observed in all the resting state networks and on both sides of the brain. Our study highlights the usage of coherence matrix instead of correlation matrix for complex network analysis.
Stress Can Be a Good Thing for Blood Formation.
Speck, Nancy A
2016-09-01
Like politics, most developmental signals are local. However, in this issue of Cell Stem Cell, Kwan et al. (2016) and colleagues describe how a stress-induced signal that originates in the zebrafish brain promotes the formation of blood at a distant site, the dorsal aorta. Copyright © 2016 Elsevier Inc. All rights reserved.
de Foucher, Tiphaine; Roussel, Hélène; Hivelin, Mikael; Rossi, Léa; Cornou, Caroline; Bats, Anne-Sophie; Deloménie, Myriam; Lécuru, Fabrice; Ngô, Charlotte
2017-01-01
Malignant phyllodes tumors (MPT) are rare breast neoplasms. Preoperative diagnosis is often challenging due to the unspecific clinical, radiological, and histological characteristics of the tumor. Dissemination pathways are local with chest wall invasion, regional with lymph nodes metastasis, and distant, hematogenous, mostly to the lungs, bones, and brain. Distant metastasis (DM) can be synchronous or appear months to years after the diagnosis and initial management. The current report describes the case of a 57-year-old woman presenting with a giant/neglected MPT of the breast, with no DM at initial staging, treated by radical modified mastectomy. Motor disorders due to medullar compression by a paravertebral mass appeared at short follow-up, also treated surgically. The patient died from several DM of rapid evolution. To our knowledge, this is the only case described of MPT with metastases to soft tissue causing medullar compression. We present a literature review on unusual metastatic localizations of MPT.
Shannon, Richard J; Timofeev, Ivan; Nortje, Jürgens; Hutchinson, Peter J; Carpenter, Keri L H
2014-11-01
The aims were to determine blood-brain barrier penetration and brain extracellular pharmacokinetics for the anticonvulsant vigabatrin (VGB; γ-vinyl-γ-aminobutyric acid) in brain extracellular fluid and plasma from severe traumatic brain injury (TBI) patients, and to measure the response of γ-aminobutyric acid (GABA) concentration in brain extracellular fluid. Severe TBI patients (n = 10) received VGB (0.5 g enterally, every 12 h). Each patient had a cerebral microdialysis catheter; two patients had a second catheter in a different region of the brain. Plasma samples were collected 0.5 h before and 2, 4 and 11.5 h after the first VGB dose. Cerebral microdialysis commenced before the first VGB dose and continued through at least three doses of VGB. Controls were seven severe TBI patients with microdialysis, without VGB. After the first VGB dose, the maximum concentration of VGB (Cmax ) was 31.7 (26.9-42.6) μmol l(-1) (median and interquartile range for eight patients) in plasma and 2.41 (2.03-5.94) μmol l(-1) in brain microdialysates (nine patients, 11 catheters), without significant plasma-brain correlation. After three doses, median Cmax in microdialysates increased to 5.22 (4.24-7.14) μmol l(-1) (eight patients, 10 catheters). Microdialysate VGB concentrations were higher close to focal lesions than in distant sites. Microdialysate GABA concentrations increased modestly in some of the patients after VGB administration. Vigabatrin, given enterally to severe TBI patients, crosses the blood-brain barrier into the brain extracellular fluid, where it accumulates with multiple dosing. Pharmacokinetics suggest delayed uptake from the blood. © 2014 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Investigation of phase synchronization of interictal EEG in right temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Yu, Haitao; Cai, Lihui; Wu, Xinyu; Song, Zhenxi; Wang, Jiang; Xia, Zijie; Liu, Jing; Cao, Yibin
2018-02-01
Epilepsy is commonly associated with abnormally synchronous activity of neurons located in epileptogenic zones. In this study, we investigated the synchronization characteristic of right temporal lobe epilepsy (RTLE). Multichannel electroencephalography (EEG) data were recorded from the RTLE patients during interictal period and normal controls. Power spectral density was first used to analyze the EEG power for two groups of subjects. It was found that the power of epileptics is increased in the whole brain compared with that of the control. We calculated phase lag index (PLI) to measure the phase synchronization between each pair of EEG signals. A higher degree of synchronization was observed in the epileptics especially between distant channels. In particular, the regional synchronization degree was negatively correlated with power spectral density and the correlation was weaker for epileptics. Moreover, the synchronization degree decayed with the increase of relative distance of channels for both the epilepsy and control, but the dependence was weakened in the former. The obtained results may provide new insights into the generation mechanism of epilepsy.
NASA Astrophysics Data System (ADS)
Davis, Shaun M.; Thomas, Amanda L.; Nomie, Krystle J.; Huang, Longwen; Dierick, Herman A.
2014-02-01
Aggressive behaviour is widespread throughout the animal kingdom. However, its mechanisms are poorly understood, and the degree of molecular conservation between distantly related species is unknown. Here we show that knockdown of tailless (tll) increases aggression in Drosophila, similar to the effect of its mouse orthologue Nr2e1. Tll localizes to the adult pars intercerebralis (PI), which shows similarity to the mammalian hypothalamus. Knockdown of tll in the PI is sufficient to increase aggression and is rescued by co-expressing human NR2E1. Knockdown of Atrophin, a Tll co-repressor, also increases aggression, and both proteins physically interact in the PI. tll knockdown-induced aggression is fully suppressed by blocking neuropeptide processing or release from the PI. In addition, genetically activating PI neurons increases aggression, mimicking the aggression-inducing effect of hypothalamic stimulation. Together, our results suggest that a transcriptional control module regulates neuropeptide signalling from the neurosecretory cells of the brain to control aggressive behaviour.
Pagliaro, Gioacchino; Pandolfi, Paolo; Collina, Natalina; Frezza, Giovanni; Brandes, Alba; Galli, Margherita; Avventuroso, Federica Marzocchi; De Lisio, Sara; Musti, Muriel Assunta; Franceschi, Enrico; Esposti, Roberta Degli; Lombardo, Laura; Cavallo, Giovanna; Di Battista, Monica; Rimondini, Simonetta; Poggi, Rosalba; Susini, Cinzia; Renzi, Rina; Marconi, Linda
2016-01-01
Tong Len meditation is an important therapeutic tool in the Tibetan medicine, and it can be used for self-healing and/or to heal others. Currently, in the West, there is no scientific study concerning the efficacy of a Tong Len distant healing effect on psychological disorders in cancer patients. To evaluate a distant healing effect of Tong Len meditation on stress, anxiety, depression, fatigue, and self-perceived quality of life in cancer patients. These psychological objectives were chosen as a consequence of the limited scientific literature of present day. We performed a double-blind randomized controlled trial on 103 cancer patients with tumors. Overall, 12 meditators used Tong Len in aid of 52 patients randomly selected as experimental group, while the remaining 51 patients constituted the control group. Patients and meditators did not know each other. All patients completed profile of mood states (POMS) and European Quality of Life-5 dimensions (EQ-5D) questionnaires before treatment (T0), after two (T1) and three months of treatment (T2), and one month after treatment cessation (T3). With regard to the parameters related to depression, a statistically significant improvement (P = .003) was observed in the treatment group compared to controls. On the other hand, the vigor/activity parameter saw significant improvements in the control group (P = .009). Both groups exhibited significant improvements in the other factors assessed in the POMS and EQ-5D questionnaires. This study did not provide sufficient evidence supporting an efficacy of Tong Len meditation in distant psychological healing as compared to a control condition. The research highlighted some psychological improvements through Tong Len distant meditation in a group of patients unknown to meditators. Therefore, the enhancement detected in most parameters in both treatment and control groups raises interest on in-depth analysis and evaluation of distant meditation on cancer patients to mitigate psychological problems caused by the disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Clonal development and organization of the adult Drosophila central brain.
Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin
2013-04-22
The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. By determining individual NB clones and pursuing their projections into specific neuropils, we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell-body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often coinnervate the same local neuropil or neuropils and further target a restricted set of distant neuropils. These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farris, Michael, E-mail: mfarris@wakehealth.edu; McTyre, Emory R.; Cramer, Christina K.
Purpose: Prior statistical models attempted to identify risk factors for time to distant brain failure (DBF) or time to salvage whole-brain radiation therapy (WBRT) to predict the benefit of early WBRT versus stereotactic radiosurgery (SRS) alone. We introduce a novel clinical metric, brain metastasis velocity (BMV), for predicting clinical outcomes after initial DBF following upfront SRS alone. Methods and Materials: BMV was defined as the cumulative number of new brain metastases that developed over time since first SRS in years. Patients were classified by BMV into low-, intermediate-, and high-risk groups, consisting of <4, 4 to 13, and >13 newmore » metastases per year, respectively. Histology, number of metastases at the time of first SRS, and systemic disease status were assessed for effect on BMV. Results: Of 737 patients treated at our institution with upfront SRS without WBRT, 286 had ≥1 DBF event. A lower BMV predicted for improved overall survival (OS) following initial DBF (log-rank P<.0001). Median OS for the low, intermediate, and high BMV groups was 12.4 months (95% confidence interval [CI], 10.4-16.9 months), 8.2 months (95% CI, 5.0-9.7 months), and 4.3 months (95% CI, 2.6-6.7 months), respectively. Multivariate analysis showed that BMV remained the dominant predictor of OS, with a hazard ratio of 2.75 for the high BMV group (95% CI, 1.94-3.89; P<.0001) and a hazard ratio of 1.65 for the intermediate BMV group (95% CI, 1.18-2.30; P<.004). A lower BMV was associated with decreased rates of salvage WBRT (P=.02) and neurologic death (P=.008). Factors predictive for a higher BMV included ≥2 initial brain metastases (P=.004) and melanoma histology (P=.008). Conclusions: BMV is a novel metric associated with OS, neurologic death, and need for salvage WBRT after initial DBF following upfront SRS alone.« less
Press, Robert H; Boselli, Danielle M; Symanowski, James T; Lankford, Scott P; McCammon, Robert J; Moeller, Benjamin J; Heinzerling, John H; Fasola, Carolina E; Burri, Stuart H; Patel, Kirtesh R; Asher, Anthony L; Sumrall, Ashley L; Curran, Walter J; Shu, Hui-Kuo G; Crocker, Ian R; Prabhu, Roshan S
2017-07-01
A scoring system using pretreatment factors was recently published for predicting the risk of early (≤6 months) distant brain failure (DBF) and salvage whole brain radiation therapy (WBRT) after stereotactic radiosurgery (SRS) alone. Four risk factors were identified: (1) lack of prior WBRT; (2) melanoma or breast histologic features; (3) multiple brain metastases; and (4) total volume of brain metastases <1.3 cm 3 , with each factor assigned 1 point. The purpose of this study was to assess the validity of this scoring system and its appropriateness for clinical use in an independent external patient population. We reviewed the records of 247 patients with 388 brain metastases treated with SRS between 2010 at 2013 at Levine Cancer Institute. The Press (Emory) risk score was calculated and applied to the validation cohort population, and subsequent risk groups were analyzed using cumulative incidence. The low-risk (LR) group had a significantly lower risk of early DBF than did the high-risk (HR) group (22.6% vs 44%, P=.004), but there was no difference between the HR and intermediate-risk (IR) groups (41.2% vs 44%, P=.79). Total lesion volume <1.3 cm 3 (P=.004), malignant melanoma (P=.007), and multiple metastases (P<.001) were validated as predictors for early DBF. Prior WBRT and breast cancer histologic features did not retain prognostic significance. Risk stratification for risk of early salvage WBRT were similar, with a trend toward an increased risk for HR compared with LR (P=.09) but no difference between IR and HR (P=.53). The 3-level Emory risk score was shown to not be externally valid, but the model was able to stratify between 2 levels (LR and not-LR [combined IR and HR]) for early (≤6 months) DBF. These results reinforce the importance of validating predictive models in independent cohorts. Further refinement of this scoring system with molecular information and in additional contemporary patient populations is warranted. Copyright © 2017 Elsevier Inc. All rights reserved.
Gonzales, Ralph; Corbett, Kitty K; Leeman-Castillo, Bonnie A; Glazner, Judith; Erbacher, Kathleen; Darr, Carol A; Wong, Shale; Maselli, Judith H; Sauaia, Angela; Kafadar, Karen
2005-01-01
Objective To assess the marginal impact of patient education on antibiotic prescribing to children with pharyngitis and adults with acute bronchitis in private office practices. Data Sources/Study Setting Antibiotic prescription rates based on claims data from four managed care organizations in Colorado during baseline (winter 2000) and study (winter 2001) periods. Study Design A nonrandomized controlled trial of a household and office-based patient educational intervention was performed. During both periods, Colorado physicians were mailed antibiotic prescribing profiles and practices guidelines as part of an ongoing quality improvement program. Intervention practices (n=7) were compared with local and distant control practices. Data Collection/Extraction Methods Office visits were extracted by managed care organizations using International Classification of Diseases-9-Clinical Modification codes for acute respiratory tract infections, and merged with pharmacy claims data based on visit and dispensing dates coinciding within 2 days. Principal Findings Adjusted antibiotic prescription rates during baseline and study periods increased from 38 to 39 percent for pediatric pharyngitis at the distant control practices, and decreased from 39 to 37 percent at the local control practices, and from 34 to 30 percent at the intervention practices (p=.18 compared with distant control practices). Adjusted antibiotic prescription rates decreased from 50 to 44 percent for adult bronchitis at the distant control practices, from 55 to 45 percent at the local control practices, and from 60 to 36 percent at the intervention practices (p<.002 and p=.006 compared with distant and local control practices, respectively). Conclusions In office practices, there appears to be little room for improvement in antibiotic prescription rates for children with pharyngitis. In contrast, patient education helps reduce antibiotic use for adults with acute bronchitis beyond that achieved by physician-directed efforts. PMID:15663704
Automatic Camera Control System for a Distant Lecture with Videoing a Normal Classroom.
ERIC Educational Resources Information Center
Suganuma, Akira; Nishigori, Shuichiro
The growth of a communication network technology enables students to take part in a distant lecture. Although many lectures are conducted in universities by using Web contents, normal lectures using a blackboard are still held. The latter style lecture is good for a teacher's dynamic explanation. A way to modify it for a distant lecture is to…
Primary Central Nervous System Fibrosarcoma.
Vinodh, V P; Harun, Rahmat; Sellamuthu, Pulivendhan; Kandasamy, Regunath
2017-08-01
We report a rare case of a young female with primary brain fibrosarcoma, and to the best of our knowledge, we believe that only <50 cases have been reported or described worldwide so far. Fibrosarcoma is a malignant neoplasm, in which histologically the predominant cells are fibroblasts that divide excessively without cellular control and they can invade local tissues or metastasize. Primary central nervous system fibrosarcomas are very aggressive neoplasms and generally have a poor prognosis. This tumor is either from sarcomatous transformation of a meningioma or arises de novo within the brain parenchyma. Our patient, a 48-year-old woman, who presented with progressive speech disorder over the period of 4 months, showed a left temporoparietal lesion with surrounding edema and local mass effect. Total surgical resection was achieved. Histopathology revealed classical fibrosarcoma features and secondary screening revealed no other distant lesion as diagnosis of primary brain fibrosarcoma was established. This case is deemed to be extremely rare because most reports claim that recurrence is within 6 months with poor prognosis; however, this patient is currently recurrence-free at 3 years. This would suggest of the possibility for a relook into this disease's course and recurrence rate when complete excision is achieved. Due to extreme rarity of these tumors, more comparative studies will be needed to improve the disease outcome.
Tsubono, Kenjiro; Thomlinson, Paul; Shealy, C Norman
2009-01-01
Many individuals suffer from various kinds of chronic pain. Some controlled studies on distant healing for chronic pain exist, but no definitive conclusion has been established. To study the effects of distant healing performed by a professional Japanese healer on chronic pain. A double-blind randomized controlled study. Holos University, Fair Grove, Missouri. People suffering from chronic pain (not caused by clear organic diseases or that persists long after a reasonable period of healing following injuries or surgery) were recruited through local radio and newspaper advertising. Subjects were randomly assigned to a treatment group or control group using a double-blind procedure. All subjects met the healer at the initial session at Holos University. At the session, a 20-minute group meditation was performed. The healer went back to Japan after the session and started distant healing only to the treatment group for a 2-month period. All participants were asked to meditate for 20 minutes every day during this 2-month period. The visual analog scale and McGill Pain Questionnaire. A total of 17 subjects were recruited, and 16 subjects completed the study. Comparison of pretreatment and posttreatment visual analog scale indicated a slightly significant effect of distant healing (P=.056). The Present Pain Intensity Scale showed significant improvement in the treatment group compared to the control group (P=.0016). The Pain Rating Index showed improvement in the treatment group, but the difference between both groups was not statistically significant (P=.12).
Marques da Silva, Rafael; Caugant, Dominique A; Josefsen, Roger; Tronstad, Leif; Olsen, Ingar
2004-12-01
There have been a number of reports of brain abscesses suggesting an odontogenic etiology. However, no efforts have been made to compare brain abscess isolates with isolates from the oral cavity using highly discriminative methods. We report a brain abscess caused by Streptococcus constellatus in an immunocompromised patient where oral infection (periodontitis) was suspected to be implicated. The brain abscess and oral isolates were compared by means of one phenotypic and three genetic (restriction fragment length polymorphism [RFLP], ribotyping, and random amplified polymorphic DNA [RAPD]) fingerprinting techniques. The phenotypic method and RFLP showed identical profiles between brain and periodontal isolates, while ribotyping and RAPD showed very close similarity, with only one band difference in one of the three ribotypes and in one of the three polymorphic RAPD. Gene transfer by genetic recombinational events in the periodontal pocket might have been responsible for the emergence of a strain variant of S. constellatus that had the potential to cause an abscess at a distant site (brain). The importance of odontogenic sources as potential foci of infection for brain abscesses is discussed.
Disturbed temporal dynamics of brain synchronization in vision loss.
Bola, Michał; Gall, Carolin; Sabel, Bernhard A
2015-06-01
Damage along the visual pathway prevents bottom-up visual input from reaching further processing stages and consequently leads to loss of vision. But perception is not a simple bottom-up process - rather it emerges from activity of widespread cortical networks which coordinate visual processing in space and time. Here we set out to study how vision loss affects activity of brain visual networks and how networks' activity is related to perception. Specifically, we focused on studying temporal patterns of brain activity. To this end, resting-state eyes-closed EEG was recorded from partially blind patients suffering from chronic retina and/or optic-nerve damage (n = 19) and healthy controls (n = 13). Amplitude (power) of oscillatory activity and phase locking value (PLV) were used as measures of local and distant synchronization, respectively. Synchronization time series were created for the low- (7-9 Hz) and high-alpha band (11-13 Hz) and analyzed with three measures of temporal patterns: (i) length of synchronized-/desynchronized-periods, (ii) Higuchi Fractal Dimension (HFD), and (iii) Detrended Fluctuation Analysis (DFA). We revealed that patients exhibit less complex, more random and noise-like temporal dynamics of high-alpha band activity. More random temporal patterns were associated with worse performance in static (r = -.54, p = .017) and kinetic perimetry (r = .47, p = .041). We conclude that disturbed temporal patterns of neural synchronization in vision loss patients indicate disrupted communication within brain visual networks caused by prolonged deafferentation. We propose that because the state of brain networks is essential for normal perception, impaired brain synchronization in patients with vision loss might aggravate the functional consequences of reduced visual input. Copyright © 2015 Elsevier Ltd. All rights reserved.
Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus
2014-01-01
Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site.
Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus
2014-01-01
Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site. PMID:24760013
NASA Astrophysics Data System (ADS)
Okuda, Wataru; Kawauchi, Satoko; Ashida, Hiroshi; Sato, Shunichi; Nishidate, Izumi
2014-03-01
Blast-induced traumatic brain injury is a growing concern, but its underlying pathophysiology and mechanism are still unknown. Thus, study using an animal model is needed. We have been proposing the use of a laser-induced shock wave (LISW), whose energy is highly controllable and reproducible, to mimic blast-related injury. We previously observed the occurrence of spreading depolarization (SD) and prolonged hypoxemia in the rat brain exposed to an LISW. However, the relationship between these two events is unclear. In this study, we investigated the spatiotemporal characteristics of hypoxemia and SD to examine their correlation, for which multichannel fiber measurement and multispectral imaging of the diffuse reflectance were performed for the rat brain exposed to an LISW. We also quantified tissue oxygen saturation (StO2) in the hypoxemic phase, which is associated with possible neuronal cell death, based on an inverse Monte Carlo simulation. Fiber measurement showed that the region of hypoxemia was expanding from the site of LISW application to the distant region over the brain; the speed of expansion was similar to that of the propagation speed of SD. Simulation showed that oxygen saturation was decreased by ~40%. Multispectral imaging showed that after LISW application, a vasodilatation occurred for ~1 min, which was followed by a long-lasting vasoconstriction. In the phase of vasoconstriction, StO2 declined all over the field of view. These results indicate a strong correlation between SD and hypoxemia; the estimated StO2 seems to be low enough to induce neuronal cell death.
Pattern of distant extrahepatic metastases in primary liver cancer: a SEER based study.
Wu, Wenrui; He, Xingkang; Andayani, Dewi; Yang, Liya; Ye, Jianzhong; Li, Yating; Chen, Yanfei; Li, Lanjuan
2017-01-01
Background and Aims : Primary liver cancer remains still the common cause of cancer-related deaths globally and the prognosis for patients with extrahepatic metastasis is poor. The aim of our study was to assess extrahepatic metastatic pattern of different histological subtypes and evaluate prognostic effects of extrahepatic metastasis in patients with advanced disease. Methods: Based on the Surveillance, Epidemiology and End Results (SEER) database, eligible patients diagnosed with primary liver cancer was identified between 2010 to 2012. We adopted Chi-square test to compared metastasis distribution among different histological types. We compared survival difference of patients with different extrahepatic metastasises by Kaplan-Meier analysis. Cox proportional hazard models were performed to identify other prognostic factors of overall survival. Results: We finally identified 8677 patients who were diagnosed with primary liver cancer from 2010 to 2012 and 1775 patients were in distant metastasis stages. Intrahepatic cholangiocarcinoma was more invasive and had a higher percentage of metastasis compared with hepatocellular carcinoma. Lung was the most common metastasis and brain was the least common site for both hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Extrahepatic metastasis could consider as an independent prognostic factor for patients with liver cancer. Patients with brain metastasis had the worst prognosis, compared with other metastasis in overall survival (OS) and cancer-specific survival (CSS) analysis. Conclusions: Different histological subtypes of liver cancer had different metastasis patterns. There were profound differences in risk of mortality among distant extrahepatic metastatic sites. Results from our studies would provide some information for follow-up strategies and future studies.
Mählmann, K; Hamza, E; Marti, E; Dolf, G; Klukowska, J; Gerber, V; Koch, C
2014-12-01
Recent studies suggest that regulatory T cells (Tregs) are associated with disease severity and progression in papilloma virus induced neoplasia. Bovine papilloma virus (BPV) is recognised as the most important aetiological factor in equine sarcoid (ES) disease. The aim of this study was to compare expression levels of Treg markers and associated cytokines in tissue samples of ES-affected equids with skin samples of healthy control horses. Eleven ES-affected, and 12 healthy horses were included in the study. Expression levels of forkhead box protein 3 (FOXP3), interleukin 10 (IL10), interleukin 4 (IL4) and interferon gamma (IFNG) mRNA in lesional and tumour-distant samples from ES-affected horses, as well as in dermal samples of healthy control horses were measured using quantitative reverse transcription polymerase chain reaction (PCR). Expression levels were compared between lesional and tumour-distant as well as between tumour-distant and control samples. Furthermore, BPV-1 E5 DNA in samples of ES-affected horses was quantified using quantitative PCR, and possible associations of viral load, disease severity and gene expression levels were evaluated. Expression levels of FOXP3, IL10 and IFNG mRNA and BPV-1 E5 copy numbers were significantly increased in lesional compared to tumour-distant samples. There was no difference in FOXP3 and cytokine expression in tumour-distant samples from ES- compared with control horses. In tumour-distant samples viral load was positively correlated with IL10 expression and severity score. The increased expression of Treg markers in tumour-associated tissues of ES-affected equids indicates a local, Treg-induced immune suppression. Copyright © 2014 Elsevier Ltd. All rights reserved.
Maklad, Ahmed Marzouk; Bayoumi, Yasser; Senosy Hassan, Mohamed Abdalazez; Elawadi, AbuSaleh A; AlHussain, Hussain; Elyamany, Ashraf; Aldhahri, Saleh F; Al-Qahtani, Khalid Hussain; AlQahtani, Mubarak; Tunio, Mutahir A
2016-01-01
We aimed to investigate the patterns of failure (locoregional and distant metastasis), associated factors, and treatment outcomes in nasopharyngeal carcinoma patients treated with intensity-modulated radiation therapy (IMRT) combined with chemotherapy. From April 2006 to December 2011, 68 nasopharyngeal carcinoma patients were treated with IMRT and chemotherapy at our hospital. Median radiation doses delivered to gross tumor volume and positive neck nodes were 66-70 Gy, 63 Gy to clinical target volume, and 50.4-56 Gy to clinically negative neck. The clinical toxicities, patterns of failures, locoregional control, distant metastasis control, disease-free survival, and overall survival were observed. The median follow-up time was 52.2 months (range: 11-87 months). Epstein-Barr virus infection was positive in 63.2% of patients. Overall disease failure developed in 21 patients, of whom 85.8% belonged to stage III/IV disease. Among these, there were seven locoregional recurrences, three regional recurrences with distant metastases, and eleven distant metastases. The median interval from the date of diagnosis to failure was 26.5 months (range: 16-50 months). Six of ten (60%) locoregional recurrences were treated with reirradiation ± concurrent chemotherapy. The 5-year locoregional control, distant metastasis control, disease-free survival, and overall survival rates of whole cohort were 81.1%, 74.3%, 60.1%, and 73.4%, respectively. Cox regression analyses revealed that neoadjuvant chemotherapy, age, and Epstein-Barr virus were independent predictors for disease-free survival. Neoadjuvant chemotherapy followed by IMRT with or without chemotherapy improves the long-term survival of Saudi patients with nasopharyngeal carcinoma. Distant metastasis was the main pattern of treatment failure. Neoadjuvant chemotherapy, age, and Epstein-Barr virus status before IMRT were important independent prognostic factors.
Tagge, Chad A; Fisher, Andrew M; Minaeva, Olga V; Gaudreau-Balderrama, Amanda; Moncaster, Juliet A; Zhang, Xiao-Lei; Wojnarowicz, Mark W; Casey, Noel; Lu, Haiyan; Kokiko-Cochran, Olga N; Saman, Sudad; Ericsson, Maria; Onos, Kristen D; Veksler, Ronel; Senatorov, Vladimir V; Kondo, Asami; Zhou, Xiao Z; Miry, Omid; Vose, Linnea R; Gopaul, Katisha R; Upreti, Chirag; Nowinski, Christopher J; Cantu, Robert C; Alvarez, Victor E; Hildebrandt, Audrey M; Franz, Erich S; Konrad, Janusz; Hamilton, James A; Hua, Ning; Tripodis, Yorghos; Anderson, Andrew T; Howell, Gareth R; Kaufer, Daniela; Hall, Garth F; Lu, Kun P; Ransohoff, Richard M; Cleveland, Robin O; Kowall, Neil W; Stein, Thor D; Lamb, Bruce T; Huber, Bertrand R; Moss, William C; Friedman, Alon; Stanton, Patric K; McKee, Ann C; Goldstein, Lee E
2018-01-01
Abstract The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. Unanaesthetized mice subjected to unilateral impact exhibited abrupt onset, transient course, and rapid resolution of a concussion-like syndrome characterized by altered arousal, contralateral hemiparesis, truncal ataxia, locomotor and balance impairments, and neurobehavioural deficits. Experimental impact injury was associated with axonopathy, blood–brain barrier disruption, astrocytosis, microgliosis (with activation of triggering receptor expressed on myeloid cells, TREM2), monocyte infiltration, and phosphorylated tauopathy in cerebral cortex ipsilateral and subjacent to impact. Phosphorylated tauopathy was detected in ipsilateral axons by 24 h, bilateral axons and soma by 2 weeks, and distant cortex bilaterally at 5.5 months post-injury. Impact pathologies co-localized with serum albumin extravasation in the brain that was diagnostically detectable in living mice by dynamic contrast-enhanced MRI. These pathologies were also accompanied by early, persistent, and bilateral impairment in axonal conduction velocity in the hippocampus and defective long-term potentiation of synaptic neurotransmission in the medial prefrontal cortex, brain regions distant from acute brain injury. Surprisingly, acute neurobehavioural deficits at the time of injury did not correlate with blood–brain barrier disruption, microgliosis, neuroinflammation, phosphorylated tauopathy, or electrophysiological dysfunction. Furthermore, concussion-like deficits were observed after impact injury, but not after blast exposure under experimental conditions matched for head kinematics. Computational modelling showed that impact injury generated focal point loading on the head and seven-fold greater peak shear stress in the brain compared to blast exposure. Moreover, intracerebral shear stress peaked before onset of gross head motion. By comparison, blast induced distributed force loading on the head and diffuse, lower magnitude shear stress in the brain. We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses, structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and relationship to traumatic brain injury and its aftermath. PMID:29360998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakst, Richard L.; Lee, Nancy; Pfister, David G.
2011-05-01
Purpose: To evaluate the feasibility of dose-painting intensity-modulated radiation therapy (DP-IMRT) with a hypofractionated regimen to treat nasopharyngeal carcinoma (NPC) with concomitant toxicity reduction. Methods and Materials: From October 2002 through April 2007, 25 newly diagnosed NPC patients were enrolled in a prospective trial. DP-IMRT was prescribed to deliver 70.2 Gy using 2.34-Gy fractions to the gross tumor volume for the primary and nodal sites while simultaneously delivering 54 Gy in 1.8-Gy fractions to regions at risk of microscopic disease. Patients received concurrent and adjuvant platin-based chemotherapy similar to the Intergroup 0099 trial. Results: Patient and disease characteristics are asmore » follows: median age, 46; 44% Asian; 68% male; 76% World Health Organization III; 20% T1, 52% T2, 16% T3, 12% T4; 20% N0, 36% N1, 36% N2, 8% N3. With median follow-up of 33 months, 3-year local control was 91%, regional control was 91%, freedom from distant metastases was 91%, and overall survival was 89%. The average mean dose to each cochlea was 43 Gy. With median audiogram follow-up of 14 months, only one patient had clinically significant (Grade 3) hearing loss. Twelve percent of patients developed temporal lobe necrosis; one patient required surgical resection. Conclusions: Preliminary findings using a hypofractionated DP-IMRT regimen demonstrated that local control, freedom from distant metastases, and overall survival compared favorably with other series of IMRT and chemotherapy. The highly conformal boost to the tumor bed resulted low rates of severe ototoxicity (Grade 3-4). However, the incidence of in-field brain radiation necrosis indicates that 2.34 Gy per fraction is not safe in this setting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Chung-Jan; Head and Neck Oncology Group, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Lin, Chien-Yu
2011-11-15
Purpose: The objective of this retrospective study was twofold: (1) to investigate prognostic factors for clinical outcomes in patients with poorly differentiated oral cavity squamous cell carcinoma and (2) to identify specific prognostic subgroups that may help to guide treatment decisions. Methods and Materials: We examined 102 patients with poorly differentiated oral cavity squamous cell carcinoma. All patients were followed for at least 24 months after surgery or until death. The 5-year rates of local control, neck control, distant metastasis, disease-free, disease-specific, and overall survival served as main outcome measures. Results: The 5-year rates were as follows: local control (79%),more » neck control (64%), distant metastases (27%), disease-free survival (48%), disease-specific survival (52%), and overall survival (42%). Multivariable analysis showed that the number of pathologically positive nodes ({>=}4 vs. {<=}3) was a significant predictor of neck control, distant metastasis, and disease-free, disease-specific, and overall survival rates. In addition, the presence of tumor depth of {>=}11 mm (vs. <11 mm) was a significant predictor of distant metastasis, disease-specific survival, and overall survival rates. The combination of the two predictors (26.5%, 27/102) was independently associated with poorer neck control (p = 0.0319), distant metastasis (p < 0.0001), and disease-free (p < 0.0001), disease-specific (p < 0.0001), and overall survival (p < 0.0001) rates. Conclusions: In patients with poorly differentiated oral cavity squamous cell carcinoma, the presence of at least 4 pathologically positive lymph nodes and of a pathological tumor depth {>=}11 mm identifies a subset of subjects with poor clinical outcomes. Patients carrying both risk factors are suitable candidates for the development of novel therapeutic approaches.« less
Rashid, Barnaly; Damaraju, Eswar; Pearlson, Godfrey D; Calhoun, Vince D
2014-01-01
Schizophrenia (SZ) and bipolar disorder (BP) share significant overlap in clinical symptoms, brain characteristics, and risk genes, and both are associated with dysconnectivity among large-scale brain networks. Resting state functional magnetic resonance imaging (rsfMRI) data facilitates studying macroscopic connectivity among distant brain regions. Standard approaches to identifying such connectivity include seed-based correlation and data-driven clustering methods such as independent component analysis (ICA) but typically focus on average connectivity. In this study, we utilize ICA on rsfMRI data to obtain intrinsic connectivity networks (ICNs) in cohorts of healthy controls (HCs) and age matched SZ and BP patients. Subsequently, we investigated difference in functional network connectivity, defined as pairwise correlations among the timecourses of ICNs, between HCs and patients. We quantified differences in both static (average) and dynamic (windowed) connectivity during the entire scan duration. Disease-specific differences were identified in connectivity within different dynamic states. Notably, results suggest that patients make fewer transitions to some states (states 1, 2, and 4) compared to HCs, with most such differences confined to a single state. SZ patients showed more differences from healthy subjects than did bipolars, including both hyper and hypo connectivity in one common connectivity state (dynamic state 3). Also group differences between SZ and bipolar patients were identified in patterns (states) of connectivity involving the frontal (dynamic state 1) and frontal-parietal regions (dynamic state 3). Our results provide new information about these illnesses and strongly suggest that state-based analyses are critical to avoid averaging together important factors that can help distinguish these clinical groups.
Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You
2017-12-01
The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.
Brain Metastases in Newly Diagnosed Breast Cancer: A Population-Based Study.
Martin, Allison M; Cagney, Daniel N; Catalano, Paul J; Warren, Laura E; Bellon, Jennifer R; Punglia, Rinaa S; Claus, Elizabeth B; Lee, Eudocia Q; Wen, Patrick Y; Haas-Kogan, Daphne A; Alexander, Brian M; Lin, Nancy U; Aizer, Ayal A
2017-08-01
Population-based estimates of the incidence and prognosis of brain metastases at diagnosis of breast cancer are lacking. To characterize the incidence proportions and median survivals of patients with breast cancer and brain metastases at the time of cancer diagnosis. Patients with breast cancer and brain metastases at the time of diagnosis were identified using the Surveillance, Epidemiology, and End Results (SEER) database of the National Cancer Institute. Data were stratified by subtype, age, sex, and race. Multivariable logistic and Cox regression were performed to identify predictors of the presence of brain metastases at diagnosis and factors associated with all-cause mortality, respectively. For incidence, we identified a population-based sample of 238 726 adult patients diagnosed as having invasive breast cancer between 2010 and 2013 for whom the presence or absence of brain metastases at diagnosis was known. Patients diagnosed at autopsy or with an unknown follow-up were excluded from the survival analysis, leaving 231 684 patients in this cohort. Incidence proportion and median survival of patients with brain metastases and newly diagnosed breast cancer. We identified 968 patients with brain metastases at the time of diagnosis of breast cancer, representing 0.41% of the entire cohort and 7.56% of the subset with metastatic disease to any site. A total of 57 were 18 to 40 years old, 423 were 41 to 60 years old, 425 were 61-80 years old, and 63 were older than 80 years. Ten were male and 958 were female. Incidence proportions were highest among patients with hormone receptor (HR)-negative human epidermal growth factor receptor 2 (HER2)-positive (1.1% among entire cohort, 11.5% among patients with metastatic disease to any distant site) and triple-negative (0.7% among entire cohort, 11.4% among patients with metastatic disease to any distant site) subtypes. Median survival among the entire cohort with brain metastases was 10.0 months. Patients with HR-positive HER2-positive subtype displayed the longest median survival (21.0 months); patients with triple-negative subtype had the shortest median survival (6.0 months). The findings of this study provides population-based estimates of the incidence and prognosis for patients with brain metastases at time of diagnosis of breast cancer. The findings lend support to consideration of screening imaging of the brain for patients with HER2-positive or triple-negative subtypes and extracranial metastases.
Prabhu, Roshan S; Press, Robert H; Boselli, Danielle M; Miller, Katherine R; Lankford, Scott P; McCammon, Robert J; Moeller, Benjamin J; Heinzerling, John H; Fasola, Carolina E; Patel, Kirtesh R; Asher, Anthony L; Sumrall, Ashley L; Curran, Walter J; Shu, Hui-Kuo G; Burri, Stuart H
2018-03-01
Patients treated with stereotactic radiosurgery (SRS) for brain metastases (BM) are at increased risk of distant brain failure (DBF). Two nomograms have been recently published to predict individualized risk of DBF after SRS. The goal of this study was to assess the external validity of these nomograms in an independent patient cohort. The records of consecutive patients with BM treated with SRS at Levine Cancer Institute and Emory University between 2005 and 2013 were reviewed. Three validation cohorts were generated based on the specific nomogram or recursive partitioning analysis (RPA) entry criteria: Wake Forest nomogram (n = 281), Canadian nomogram (n = 282), and Canadian RPA (n = 303) validation cohorts. Freedom from DBF at 1-year in the Wake Forest study was 30% compared with 50% in the validation cohort. The validation c-index for both the 6-month and 9-month freedom from DBF Wake Forest nomograms was 0.55, indicating poor discrimination ability, and the goodness-of-fit test for both nomograms was highly significant (p < 0.001), indicating poor calibration. The 1-year actuarial DBF in the Canadian nomogram study was 43.9% compared with 50.9% in the validation cohort. The validation c-index for the Canadian 1-year DBF nomogram was 0.56, and the goodness-of-fit test was also highly significant (p < 0.001). The validation accuracy and c-index of the Canadian RPA classification was 53% and 0.61, respectively. The Wake Forest and Canadian nomograms for predicting risk of DBF after SRS were found to have limited predictive ability in an independent bi-institutional validation cohort. These results reinforce the importance of validating predictive models in independent patient cohorts.
Development of the brain's functional network architecture.
Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L
2010-12-01
A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.
Development of the Brain's Functional Network Architecture
Power, Jonathan D.; Petersen, Steven E.; Schlaggar, Bradley L.
2013-01-01
A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks. PMID:20976563
Zou, Ling; Guo, Qian; Xu, Yi; Yang, Biao; Jiao, Zhuqing; Xiang, Jianbo
2016-04-29
Functional magnetic resonance imaging (fMRI) is an important tool in neuroscience for assessing connectivity and interactions between distant areas of the brain. To find and characterize the coherent patterns of brain activity as a means of identifying brain systems for the cognitive reappraisal of the emotion task, both density-based k-means clustering and independent component analysis (ICA) methods can be applied to characterize the interactions between brain regions involved in cognitive reappraisal of emotion. Our results reveal that compared with the ICA method, the density-based k-means clustering method provides a higher sensitivity of polymerization. In addition, it is more sensitive to those relatively weak functional connection regions. Thus, the study concludes that in the process of receiving emotional stimuli, the relatively obvious activation areas are mainly distributed in the frontal lobe, cingulum and near the hypothalamus. Furthermore, density-based k-means clustering method creates a more reliable method for follow-up studies of brain functional connectivity.
Age-related macular degeneration changes the processing of visual scenes in the brain.
Ramanoël, Stephen; Chokron, Sylvie; Hera, Ruxandra; Kauffmann, Louise; Chiquet, Christophe; Krainik, Alexandre; Peyrin, Carole
2018-01-01
In age-related macular degeneration (AMD), the processing of fine details in a visual scene, based on a high spatial frequency processing, is impaired, while the processing of global shapes, based on a low spatial frequency processing, is relatively well preserved. The present fMRI study aimed to investigate the residual abilities and functional brain changes of spatial frequency processing in visual scenes in AMD patients. AMD patients and normally sighted elderly participants performed a categorization task using large black and white photographs of scenes (indoors vs. outdoors) filtered in low and high spatial frequencies, and nonfiltered. The study also explored the effect of luminance contrast on the processing of high spatial frequencies. The contrast across scenes was either unmodified or equalized using a root-mean-square contrast normalization in order to increase contrast in high-pass filtered scenes. Performance was lower for high-pass filtered scenes than for low-pass and nonfiltered scenes, for both AMD patients and controls. The deficit for processing high spatial frequencies was more pronounced in AMD patients than in controls and was associated with lower activity for patients than controls not only in the occipital areas dedicated to central and peripheral visual fields but also in a distant cerebral region specialized for scene perception, the parahippocampal place area. Increasing the contrast improved the processing of high spatial frequency content and spurred activation of the occipital cortex for AMD patients. These findings may lead to new perspectives for rehabilitation procedures for AMD patients.
Tagge, Chad A; Fisher, Andrew M; Minaeva, Olga V; Gaudreau-Balderrama, Amanda; Moncaster, Juliet A; Zhang, Xiao-Lei; Wojnarowicz, Mark W; Casey, Noel; Lu, Haiyan; Kokiko-Cochran, Olga N; Saman, Sudad; Ericsson, Maria; Onos, Kristen D; Veksler, Ronel; Senatorov, Vladimir V; Kondo, Asami; Zhou, Xiao Z; Miry, Omid; Vose, Linnea R; Gopaul, Katisha R; Upreti, Chirag; Nowinski, Christopher J; Cantu, Robert C; Alvarez, Victor E; Hildebrandt, Audrey M; Franz, Erich S; Konrad, Janusz; Hamilton, James A; Hua, Ning; Tripodis, Yorghos; Anderson, Andrew T; Howell, Gareth R; Kaufer, Daniela; Hall, Garth F; Lu, Kun P; Ransohoff, Richard M; Cleveland, Robin O; Kowall, Neil W; Stein, Thor D; Lamb, Bruce T; Huber, Bertrand R; Moss, William C; Friedman, Alon; Stanton, Patric K; McKee, Ann C; Goldstein, Lee E
2018-02-01
The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. Unanaesthetized mice subjected to unilateral impact exhibited abrupt onset, transient course, and rapid resolution of a concussion-like syndrome characterized by altered arousal, contralateral hemiparesis, truncal ataxia, locomotor and balance impairments, and neurobehavioural deficits. Experimental impact injury was associated with axonopathy, blood-brain barrier disruption, astrocytosis, microgliosis (with activation of triggering receptor expressed on myeloid cells, TREM2), monocyte infiltration, and phosphorylated tauopathy in cerebral cortex ipsilateral and subjacent to impact. Phosphorylated tauopathy was detected in ipsilateral axons by 24 h, bilateral axons and soma by 2 weeks, and distant cortex bilaterally at 5.5 months post-injury. Impact pathologies co-localized with serum albumin extravasation in the brain that was diagnostically detectable in living mice by dynamic contrast-enhanced MRI. These pathologies were also accompanied by early, persistent, and bilateral impairment in axonal conduction velocity in the hippocampus and defective long-term potentiation of synaptic neurotransmission in the medial prefrontal cortex, brain regions distant from acute brain injury. Surprisingly, acute neurobehavioural deficits at the time of injury did not correlate with blood-brain barrier disruption, microgliosis, neuroinflammation, phosphorylated tauopathy, or electrophysiological dysfunction. Furthermore, concussion-like deficits were observed after impact injury, but not after blast exposure under experimental conditions matched for head kinematics. Computational modelling showed that impact injury generated focal point loading on the head and seven-fold greater peak shear stress in the brain compared to blast exposure. Moreover, intracerebral shear stress peaked before onset of gross head motion. By comparison, blast induced distributed force loading on the head and diffuse, lower magnitude shear stress in the brain. We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses, structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and relationship to traumatic brain injury and its aftermath.awx350media15713427811001. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.
Patient-specific connectivity pattern of epileptic network in frontal lobe epilepsy
Luo, Cheng; An, Dongmei; Yao, Dezhong; Gotman, Jean
2014-01-01
There is evidence that focal epilepsy may involve the dysfunction of a brain network in addition to the focal region. To delineate the characteristics of this epileptic network, we collected EEG/fMRI data from 23 patients with frontal lobe epilepsy. For each patient, EEG/fMRI analysis was first performed to determine the BOLD response to epileptic spikes. The maximum activation cluster in the frontal lobe was then chosen as the seed to identify the epileptic network in fMRI data. Functional connectivity analysis seeded at the same region was also performed in 63 healthy control subjects. Nine features were used to evaluate the differences of epileptic network patterns in three connection levels between patients and controls. Compared with control subjects, patients showed overall more functional connections between the epileptogenic region and the rest of the brain and higher laterality. However, the significantly increased connections were located in the neighborhood of the seed, but the connections between the seed and remote regions actually decreased. Comparing fMRI runs with interictal epileptic discharges (IEDs) and without IEDs, the patient-specific connectivity pattern was not changed significantly. These findings regarding patient-specific connectivity patterns of epileptic networks in FLE reflect local high connectivity and connections with distant regions differing from those of healthy controls. Moreover, the difference between the two groups in most features was observed in the strictest of the three connection levels. The abnormally high connectivity might reflect a predominant attribute of the epileptic network, which may facilitate propagation of epileptic activity among regions in the network. PMID:24936418
NASA Astrophysics Data System (ADS)
Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.
2013-02-01
We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.
Vernon, Jordyn; Andruszkiewicz, Nicole; Schneider, Laura; Schieman, Colin; Finley, Christian J; Shargall, Yaron; Fahim, Christine; Farrokhyar, Forough; Hanna, Waël C
2016-11-01
In our model of comprehensive clinical staging (CCS) for lung cancer, patients with a computerized tomography scan of the chest and upper abdomen not showing distant metastases will then routinely undergo whole body positron emission tomography/computerized tomography and magnetic resonance imaging (MRI) of the brain before any therapeutic decision. Our aim was to determine the accuracy of CCS and the value of brain MRI in this population. A retrospective analysis of a prospectively entered database was performed for all patients who underwent lung cancer resection from January 2012 to June 2014. Demographics, clinical and pathological stage (seventh edition of the American Joint Committee on Cancer/Union for International Cancer Control tumor, node, and metastasis staging manual), and costs of staging were collected. Correlation between clinical and pathological stage was determined. Of 315 patients with primary lung cancer, 55.6% were female and the mean age was 70 ± 9.6 years. When correlation was analyzed without consideration for substages A and B, 49.8% of patients (158 of 315) were staged accurately, 39.7% (125 of 315) were overstaged, and 10.5% (32 of 315) were understaged. Only 4.7% of patients (15 of 315) underwent surgery without appropriate neoadjuvant treatment. Preoperative brain MRI detected asymptomatic metastases in four of 315 patients (1.3%). At a median postoperative follow-up of 19 months (range 6-43), symptomatic brain metastases developed in seven additional patients. The total cost of CCS in Canadian dollars was $367,292 over the study period, with $117,272 (31.9%) going toward brain MRI. CCS is effective for patients with resectable lung cancer, with less than 5% of patients being denied appropriate systemic treatment before surgery. Brain MRI is a low-yield and high-cost intervention in this population, and its routine use should be questioned. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Clara Y.H.; Chang, Steven D.; Gibbs, Iris C.
2012-11-01
Purpose: Single-modality treatment of large brain metastases (>2 cm) with whole-brain irradiation, stereotactic radiosurgery (SRS) alone, or surgery alone is not effective, with local failure (LF) rates of 50% to 90%. Our goal was to improve local control (LC) by using multimodality therapy of surgery and adjuvant SRS targeting the resection cavity. Patients and Methods: We retrospectively evaluated 97 patients with brain metastases >2 cm in diameter treated with surgery and cavity SRS. Local and distant brain failure (DF) rates were analyzed with competing risk analysis, with death as a competing risk. The overall survival rate was calculated by themore » Kaplain-Meier product-limit method. Results: The median imaging follow-up duration for all patients was 10 months (range, 1-80 months). The 12-month cumulative incidence rates of LF, with death as a competing risk, were 9.3% (95% confidence interval [CI], 4.5%-16.1%), and the median time to LF was 6 months (range, 3-17 months). The 12-month cumulative incidence rate of DF, with death as a competing risk, was 53% (95% CI, 43%-63%). The median survival time for all patients was 15.6 months. The median survival times for recursive partitioning analysis classes 1, 2, and 3 were 33.8, 13.7, and 9.0 months, respectively (p = 0.022). On multivariate analysis, Karnofsky Performance Status ({>=}80 vs. <80; hazard ratio 0.54; 95% CI 0.31-0.94; p = 0.029) and maximum preoperative tumor diameter (hazard ratio 1.41; 95% CI 1.08-1.85; p = 0.013) were associated with survival. Five patients (5%) required intervention for Common Terminology Criteria for Adverse Events v4.02 grade 2 and 3 toxicity. Conclusion: Surgery and adjuvant resection cavity SRS yields excellent LC of large brain metastases. Compared with other multimodality treatment options, this approach allows patients to avoid or delay whole-brain irradiation without compromising LC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhu, Roshan; Shu, Hui-Kuo; Winship Cancer Institute, Emory University, Atlanta, GA
2012-05-01
Purpose: To describe the use of radiosurgery (RS) alone to the resection cavity after resection of brain metastases as an alternative to adjuvant whole-brain radiotherapy (WBRT). Methods and Materials: Sixty-two patients with 64 cavities were treated with linear accelerator-based RS alone to the resection cavity after surgical removal of brain metastases between March 2007 and August 2010. Fifty-two patients (81%) had a gross total resection. Median cavity volume was 8.5 cm{sup 3}. Forty-four patients (71%) had a single metastasis. Median marginal and maximum doses were 18 Gy and 20.4 Gy, respectively. Sixty-one cavities (95%) had gross tumor volume to planningmore » target volume expansion of {>=}1 mm. Results: Six-month and 1-year actuarial local recurrence rates were 14% and 22%, respectively, with a median follow-up period of 9.7 months. Six-month and 1-year actuarial distant brain recurrence, total intracranial recurrence, and freedom from WBRT rates were 31% and 51%, 41% and 63%, and 91% and 74%, respectively. The symptomatic cavity radiation necrosis rate was 8%, with 2 patients (3%) undergoing surgery. Of the 11 local failures, 8 were in-field, 1 was marginal, and 2 were both (defined as in-field if {>=}90% of recurrence within the prescription isodose and marginal if {>=}90% outside of the prescription isodose). Conclusions: The high rate of in-field cavity failure suggests that geographic misses with highly conformal RS are not a major contributor to local recurrence. The current dosing regimen derived from Radiation Therapy Oncology Group protocol 90-05 should be optimized in this patient population before any direct comparison with WBRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komaki, Ritsuko, E-mail: rkomaki@mdanderson.org; Allen, Pamela K.; Wei, Xiong
Purpose: To test, in a single-arm, prospective, phase 2 trial, whether adding the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib to concurrent chemoradiotherapy for previously untreated, locally advanced, inoperable non-small cell lung cancer would improve survival and disease control without increasing toxicity. Methods and Materials: Forty-eight patients with previously untreated non-small cell lung cancer received intensity modulated radiation therapy (63 Gy/35 fractions) on Monday through Friday, with chemotherapy (paclitaxel 45 mg/m², carboplatin area under the curve [AUC] = 2) on Mondays, for 7 weeks. All patients also received the EGFR tyrosine kinase inhibitor erlotinib (150 mg orally 1/d) on Tuesday-Sunday for 7 weeks, followedmore » by consolidation paclitaxel–carboplatin. The primary endpoint was time to progression; secondary endpoints were overall survival (OS), toxicity, response, and disease control and whether any endpoint differed by EGFR mutation status. Results: Of 46 patients evaluable for response, 40 were former or never-smokers, and 41 were evaluable for EGFR mutations (37 wild-type [WT] and 4 mutated [all adenocarcinoma]). Median time to progression was 14.0 months and did not differ by EGFR status. Toxicity was acceptable (no grade 5, 1 grade 4, 11 grade 3). Twelve patients (26%) had complete responses (10 WT, 2 mutated), 27 (59%) partial (21 WT, 2 mutated, 4 unknown), and 7 (15%) none (6 WT, 2 mutated, 1 unknown) (P=.610). At 37.0 months' follow-up (range, 3.6-76.5 months) for all patients, median OS time was 36.5 months, and 1-, 2-, and 5-year OS rates were 82.6%, 67.4%, and 35.9%, respectively; none differed by mutation status. Twelve patients had no progression, and 34 had local and/or distant failure. Eleven of 27 distant failures were in the brain (7 WT, 3 mutated, 1 unknown). Conclusions: Toxicity and OS were promising, but time to progression did not meet expectations. The prevalence of distant failures underscores the need for effective systemic therapy.« less
Maklad, Ahmed Marzouk; Bayoumi, Yasser; Senosy Hassan, Mohamed Abdalazez; Elawadi, AbuSaleh A; AlHussain, Hussain; Elyamany, Ashraf; Aldhahri, Saleh F; Al-Qahtani, Khalid Hussain; AlQahtani, Mubarak; Tunio, Mutahir A
2016-01-01
Background We aimed to investigate the patterns of failure (locoregional and distant metastasis), associated factors, and treatment outcomes in nasopharyngeal carcinoma patients treated with intensity-modulated radiation therapy (IMRT) combined with chemotherapy. Patients and methods From April 2006 to December 2011, 68 nasopharyngeal carcinoma patients were treated with IMRT and chemotherapy at our hospital. Median radiation doses delivered to gross tumor volume and positive neck nodes were 66–70 Gy, 63 Gy to clinical target volume, and 50.4–56 Gy to clinically negative neck. The clinical toxicities, patterns of failures, locoregional control, distant metastasis control, disease-free survival, and overall survival were observed. Results The median follow-up time was 52.2 months (range: 11–87 months). Epstein–Barr virus infection was positive in 63.2% of patients. Overall disease failure developed in 21 patients, of whom 85.8% belonged to stage III/IV disease. Among these, there were seven locoregional recurrences, three regional recurrences with distant metastases, and eleven distant metastases. The median interval from the date of diagnosis to failure was 26.5 months (range: 16–50 months). Six of ten (60%) locoregional recurrences were treated with reirradiation ± concurrent chemotherapy. The 5-year locoregional control, distant metastasis control, disease-free survival, and overall survival rates of whole cohort were 81.1%, 74.3%, 60.1%, and 73.4%, respectively. Cox regression analyses revealed that neoadjuvant chemotherapy, age, and Epstein–Barr virus were independent predictors for disease-free survival. Conclusion Neoadjuvant chemotherapy followed by IMRT with or without chemotherapy improves the long-term survival of Saudi patients with nasopharyngeal carcinoma. Distant metastasis was the main pattern of treatment failure. Neoadjuvant chemotherapy, age, and Epstein–Barr virus status before IMRT were important independent prognostic factors. PMID:27822060
Individual brain structure and modelling predict seizure propagation
Proix, Timothée; Bartolomei, Fabrice; Guye, Maxime; Jirsa, Viktor K.
2017-01-01
Abstract See Lytton (doi:10.1093/awx018) for a scientific commentary on this article. Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroencephalography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions. PMID:28364550
Blake, Margaret Lehman; Tompkins, Connie A.; Scharp, Victoria L.; Meigh, Kimberly M.; Wambaugh, Julie
2014-01-01
Coarse coding is the activation of broad semantic fields that can include multiple word meanings and a variety of features, including those peripheral to a word’s core meaning. It is a partially domain-general process related to general discourse comprehension and contributes to both literal and non-literal language processing. Adults with damage to the right cerebral hemisphere (RHD) and a coarse coding deficit are particularly slow to activate features of words that are relatively distant or peripheral. This manuscript reports a pre-efficacy study of Contextual Constraint Treatment (CCT), a novel, implicit treatment designed to increase the efficiency of coarse coding with the goal of improving narrative comprehension and other language performance that relies on coarse coding. Participants were four adults with RHD. The study used a single-subject controlled experimental design across subjects and behaviors. The treatment involves pre-stimulation, using a hierarchy of strong- and moderately-biased contexts, to prime the intended distantly-related features of critical stimulus words. Three of the four participants exhibited gains in auditory narrative discourse comprehension, the primary outcome measure. All participants exhibited generalization to untreated items. No strong generalization to processing nonliteral language was evident. The results indicate that CCT yields both improved efficiency of the coarse coding process and generalization to narrative comprehension. PMID:24983133
[Lymph node and distant metastases of thyroid gland cancer. Metastases in the thyroid glands].
Schmid, K W
2015-11-01
The different biological features of the various major entities of thyroid cancer, e.g. papillary, follicular, poorly differentiated, anaplastic and medullary, depend to a large extent on their different metastatic spread. Papillary thyroid cancer (PTC) has a propensity for cervical lymphatic spread that occurs in 20-50 % of patients whereas distant metastasis occurs in < 5 % of cases. Cervical lymphadenopathy may be the first symptom particularly of (micro) PTC. In contrast follicular thyroid cancer (FTC) has a marked propensity for vascular but not lymphatic invasion and 10-20 % of FTC develop distant metastases. At the time of diagnosis approximately one third of medullary thyroid cancer (MTC) cases show lymph node metastases, in 10-15 % distant metastases and 25 % develop metastases during the course of the disease. Poorly differentiated (PDTC) and anaplastic thyroid cancer (ATC) spread via both lymphatic and vascular invasion. Thus distant metastases are relatively uncommon in DTC and when they occur, long-term stable disease is the typical clinical course. The major sites of distant metastases are the lungs and bone. Metastases to the brain, breasts, liver, kidneys, muscle and skin are relatively rare or even rare. The thyroid gland itself can be a site of metastases from a variety of other tumors. In autopsy series of patients with disseminated cancer disease, metastases to the thyroid gland were found in up to 10 % of cases. Metastases from other primary tumors to the thyroid gland have been reported in 1.4-3 % of patients who have surgery for suspected cancer of the thyroid gland. The most common primary cancers that metastasize to the thyroid gland are renal cell (48.1 %), colorectal (10.4 %), lung (8.3 %) and breast cancer (7.8 %) and surprisingly often sarcomas (4.0 %).
Oweira, Hani; Petrausch, Ulf; Helbling, Daniel; Schmidt, Jan; Mannhart, Meinrad; Mehrabi, Arianeb; Schöb, Othmar; Giryes, Anwar; Decker, Michael; Abdel-Rahman, Omar
2017-03-14
To evaluate the prognostic value of site-specific metastases among patients with metastatic pancreatic carcinoma registered within the Surveillance, Epidemiology and End Results (SEER) database. SEER database (2010-2013) has been queried through SEER*Stat program to determine the presentation, treatment outcomes and prognostic outcomes of metastatic pancreatic adenocarcinoma according to the site of metastasis. In this study, metastatic pancreatic adenocarcinoma patients were classified according to the site of metastases (liver, lung, bone, brain and distant lymph nodes). We utilized chi-square test to compare the clinicopathological characteristics among different sites of metastases. We used Kaplan-Meier analysis and log-rank testing for survival comparisons. We employed Cox proportional model to perform multivariate analyses of the patient population; and accordingly hazard ratios with corresponding 95%CI were generated. Statistical significance was considered if a two-tailed P value < 0.05 was achieved. A total of 13233 patients with stage IV pancreatic cancer and known sites of distant metastases were identified in the period from 2010-2013 and they were included into the current analysis. Patients with isolated distant nodal involvement or lung metastases have better overall and pancreatic cancer-specific survival compared to patients with isolated liver metastases (for overall survival: lung vs liver metastases: P < 0.0001; distant nodal vs liver metastases: P < 0.0001) (for pancreatic cancer-specific survival: lung vs liver metastases: P < 0.0001; distant nodal vs liver metastases: P < 0.0001). Multivariate analysis revealed that age < 65 years, white race, being married, female gender; surgery to the primary tumor and surgery to the metastatic disease were associated with better overall survival and pancreatic cancer-specific survival. Pancreatic adenocarcinoma patients with isolated liver metastases have worse outcomes compared to patients with isolated lung or distant nodal metastases. Further research is needed to identify the highly selected subset of patients who may benefit from local treatment of the primary tumor and/or metastatic disease.
Stereotactic radiosurgery for focal leptomeningeal disease in patients with brain metastases.
Wolf, Amparo; Donahue, Bernadine; Silverman, Joshua S; Chachoua, Abraham; Lee, Jean K; Kondziolka, Douglas
2017-08-01
Leptomeningeal disease (LMD) is well described in patients with brain metastases, presenting symptomatically in approximately 5% of patients. Conventionally, the presence of LMD is an indication for whole brain radiation therapy (WBRT) and not suitable for stereotactic radiosurgery (SRS). The purpose of the study was to evaluate the local control and overall survival of patients who underwent SRS to focal LMD. We reviewed our prospective registry and identified 32 brain metastases patients with LMD, from a total of 465 patients who underwent SRS between 2013 and 2015. Focal LMD was targeted with SRS in 16 patients. The median imaging follow-up time was 7 months. The median volume of LMD was 372 mm 3 and the median margin dose was 16 Gy. Five patients underwent prior WBRT. Histology included non-small cell lung (8), breast (5), melanoma (1), gastrointestinal (1) and ovarian cancer (1). Follow-up MR imaging was available for 14 patients. LMD was stable in 5 and partially regressed in 8 patients at follow-up. One patient had progression of LMD with hemorrhage 5 months after SRS. Seven patients developed distant LMD at a median time of 7 months. The median actuarial overall survival from SRS for LMD was 10.0 months. The 6-month and 1-year actuarial overall survival was 60% and 26% respectively. Six patients underwent WBRT after SRS for focal LMD at a median time of 6 months. Overall, focal LMD may be may be treated successfully with radiosurgery, potentially delaying WBRT in some patients.
Formation Flying in Earth, Libration, and Distant Retrograde Orbits
NASA Technical Reports Server (NTRS)
Folta, David C.
2004-01-01
This slide presentation examines the current and future state of formation flying, LEO formations, control strategies for flight in the vicinity of the libration points, and distant retrograde orbit formations. This discussion of LEO formations includes background on perturbation theory/accelerations and LEO formation flying. The discussion of strategies for formation flight in the vicinity of the libration points includes libration missions and natural and controlled libration orbit formations. A reference list is included.
Algorithms for Adaptation in Aerial Surveillance
2002-03-01
In the brain small local structures can involve inhibition whereas more distant functional areas are less likely to have inhibition. This appeals to...and 2. retains a more conventional programming model [than the PDP approach]. The former is achieved by appealing to well understood ideas from...1980s. The statistical techniques used in our implementation of these ideas (GRAVA) are appealing to us for three reasons: 91 5.2. PRIOR WORK 1. GRAVA
Electrocortical correlations between pairs of isolated people: A reanalysis
Radin, Dean
2017-01-01
A previously reported experiment collected electrocortical data recorded simultaneously in pairs of people separated by distance. Reanalysis of those data confirmed the presence of a time-synchronous, statistically significant correlation in brain electrical activity of these distant “sender-receiver” pairs. Given the sensory shielding employed in the original experiment to avoid mundane explanations for such a correlation, this outcome is suggestive of an anomalous intersubjective connection. PMID:28713556
[Distant mental influence on living organisms].
Bonilla, Ernesto
2013-12-01
This article reviews studies of distant mental influence on living organisms, including mental suggestions of sleeping and awakening, mental influence at long distances, mental interactions with remote biological systems, mental effects on physiological activity and the sense of being stared at. Significant effects of distant mental influence have been shown in several randomized controlled trials in humans, animals, plants, bacteria and cells in the laboratory. Although distant mental influence on living organisms appears to contradict our ordinary sense of reality and the laws defined by conventional science, several hypotheses have been proposed to explain the observed effects; they include skeptical, signal transfer, field, multidimensional space/time and quantum mechanics hypotheses. In conclusion, as the progress of physics continues to expand our comprehension of reality, a rational explanation for distant mind-matter interaction will emerge and, as history has shown repeatedly, the supernatural events will evolve into paranormal and then, into normal ones, as the scientific frontiers expand.
Rojas-Líbano, Daniel; Wimmer Del Solar, Jonathan; Aguilar-Rivera, Marcelo; Montefusco-Siegmund, Rodrigo; Maldonado, Pedro Esteban
2018-05-16
An important unresolved question about neural processing is the mechanism by which distant brain areas coordinate their activities and relate their local processing to global neural events. A potential candidate for the local-global integration are slow rhythms such as respiration. In this article, we asked if there are modulations of local cortical processing which are phase-locked to (peripheral) sensory-motor exploratory rhythms. We studied rats on an elevated platform where they would spontaneously display exploratory and rest behaviors. Concurrent with behavior, we monitored whisking through EMG and the respiratory rhythm from the olfactory bulb (OB) local field potential (LFP). We also recorded LFPs from dorsal hippocampus, primary motor cortex, primary somatosensory cortex and primary visual cortex. We defined exploration as simultaneous whisking and sniffing above 5 Hz and found that this activity peaked at about 8 Hz. We considered rest as the absence of whisking and sniffing, and in this case, respiration occurred at about 3 Hz. We found a consistent shift across all areas toward these rhythm peaks accompanying behavioral changes. We also found, across areas, that LFP gamma (70-100 Hz) amplitude could phase-lock to the animal's OB respiratory rhythm, a finding indicative of respiration-locked changes in local processing. In a subset of animals, we also recorded the hippocampal theta activity and found that occurred at frequencies overlapped with respiration but was not spectrally coherent with it, suggesting a different oscillator. Our results are consistent with the notion of respiration as a binder or integrator of activity between brain regions.
Neubauer, Florian B; Sederberg, Audrey; MacLean, Jason N
2014-01-01
During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges.
Neubauer, Florian B.; Sederberg, Audrey; MacLean, Jason N.
2014-01-01
During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges. PMID:25232306
Individual brain structure and modelling predict seizure propagation.
Proix, Timothée; Bartolomei, Fabrice; Guye, Maxime; Jirsa, Viktor K
2017-03-01
See Lytton (doi:10.1093/awx018) for a scientific commentary on this article.Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroencephalography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Liu, Xiaozhen; Yang, Yang; Feng, Xiaolong; Shen, Honghong; Liu, Jian; Liu, Xia; Niu, Yun
2016-01-01
As a new subtype of breast cancer, molecular apocrine breast cancer (MABC) is estrogen receptor (ER) and progesterone receptor (PR) negative expression, but androgen receptor (AR) positive expression. The prognostic significance and clinical biological behavior of MABC have remained unclear up to now. This study aimed to analysis the distant metastasis behavior and response to adjuvant radiotherapy and chemotherapy of MABC subgroup. The report showed that there were significant differences between early and late distant metastasizing tumors with respect to Ki67, epidermal growth factor receptor 2 (HER2) and vascular endothelial growth factor (VEGF) expressions by a retrospective analysis consisting of 410 invasive breast cancer patients, which included 205 MABC and 205 nonMABC cases. MABC subgroup metastasized earlier than nonMABC subgroup, and MABC showed a tendency for a higher metastasis rate in lung, liver and brain, but lower in bone. HER2-positive or VEGF-positive tumors were more inclined to develop bone metastasis within MABC subgroup. The survival rate was superior for patients undergone both adjuvant radiotherapy and chemotherapy than those undergone chemotherapy alone in nonMABC subgroup, but there was no significant difference in MABC subgroup. Our data suggested that MABC subgroup seemed to develop distant metastasis earlier than nonMABC subgroup, and patients with MABC indicated poor prognosis. This study might also provide a foundation for helping patients receive reasonable treatments according to molecular subtype. PMID:27340922
Liu, Xiaozhen; Yang, Yang; Feng, Xiaolong; Shen, Honghong; Liu, Jian; Liu, Xia; Niu, Yun
2016-08-02
As a new subtype of breast cancer, molecular apocrine breast cancer (MABC) is estrogen receptor (ER) and progesterone receptor (PR) negative expression, but androgen receptor (AR) positive expression. The prognostic significance and clinical biological behavior of MABC have remained unclear up to now. This study aimed to analysis the distant metastasis behavior and response to adjuvant radiotherapy and chemotherapy of MABC subgroup. The report showed that there were significant differences between early and late distant metastasizing tumors with respect to Ki67, epidermal growth factor receptor 2 (HER2) and vascular endothelial growth factor (VEGF) expressions by a retrospective analysis consisting of 410 invasive breast cancer patients, which included 205 MABC and 205 nonMABC cases. MABC subgroup metastasized earlier than nonMABC subgroup, and MABC showed a tendency for a higher metastasis rate in lung, liver and brain, but lower in bone. HER2-positive or VEGF-positive tumors were more inclined to develop bone metastasis within MABC subgroup. The survival rate was superior for patients undergone both adjuvant radiotherapy and chemotherapy than those undergone chemotherapy alone in nonMABC subgroup, but there was no significant difference in MABC subgroup. Our data suggested that MABC subgroup seemed to develop distant metastasis earlier than nonMABC subgroup, and patients with MABC indicated poor prognosis. This study might also provide a foundation for helping patients receive reasonable treatments according to molecular subtype.
Apollo’s gift: new aspects of neurologic music therapy
Altenmüller, Eckart; Schlaug, Gottfried
2015-01-01
Music listening and music making activities are powerful tools to engage multisensory and motor networks, induce changes within these networks, and foster links between distant, but functionally related brain regions with continued and life-long musical practice. These multimodal effects of music together with music’s ability to tap into the emotion and reward system in the brain can be used to facilitate and enhance therapeutic approaches geared toward rehabilitating and restoring neurological dysfunctions and impairments of an acquired or congenital brain disorder. In this article, we review plastic changes in functional networks and structural components of the brain in response to short- and long-term music listening and music making activities. The specific influence of music on the developing brain is emphasized and possible transfer effects on emotional and cognitive processes are discussed. Furthermore, we present data on the potential of using musical tools and activities to support and facilitate neurorehabilitation. We will focus on interventions such as melodic intonation therapy and music-supported motor rehabilitation to showcase the effects of neurologic music therapies and discuss their underlying neural mechanisms. PMID:25725918
Apollo's gift: new aspects of neurologic music therapy.
Altenmüller, Eckart; Schlaug, Gottfried
2015-01-01
Music listening and music making activities are powerful tools to engage multisensory and motor networks, induce changes within these networks, and foster links between distant, but functionally related brain regions with continued and life-long musical practice. These multimodal effects of music together with music's ability to tap into the emotion and reward system in the brain can be used to facilitate and enhance therapeutic approaches geared toward rehabilitating and restoring neurological dysfunctions and impairments of an acquired or congenital brain disorder. In this article, we review plastic changes in functional networks and structural components of the brain in response to short- and long-term music listening and music making activities. The specific influence of music on the developing brain is emphasized and possible transfer effects on emotional and cognitive processes are discussed. Furthermore, we present data on the potential of using musical tools and activities to support and facilitate neurorehabilitation. We will focus on interventions such as melodic intonation therapy and music-supported motor rehabilitation to showcase the effects of neurologic music therapies and discuss their underlying neural mechanisms. © 2015 Elsevier B.V. All rights reserved.
Uterine cervical cancer with brain metastasis as the initial site of presentation.
Sato, Yumi; Tanaka, Kei; Kobayashi, Yoichi; Shibuya, Hiromi; Nishigaya, Yoshiko; Momomura, Mai; Matsumoto, Hironori; Iwashita, Mitsutoshi
2015-07-01
Brain metastasis from uterine cervical cancer is rare, with an incidence of 0.5%, and usually occurs late in the course of the disease. We report a case of uterine cervical cancer with brain metastasis as the initial site of presentation. A 50-year-old woman with headache, vertigo, amnesia and loss of appetite was admitted for persistent vomiting. Contrast enhanced computed tomography showed a solitary right frontal cerebral lesion with ring enhancement and uterine cervical tumor. She was diagnosed with uterine cervical squamous cell carcinoma with parametrium invasion and no other distant affected organs were detected. The cerebral lesion was surgically removed and pathologically proved to be metastasis of uterine cervical squamous cell carcinoma. The patient underwent concurrent chemoradiotherapy, followed by cerebral radiation therapy, but multiple metastases to the liver and lung developed and the patient died 7 months after diagnosis of brain metastasis. © 2015 The Authors. Journal of Obstetrics and Gynaecology Research © 2015 Japan Society of Obstetrics and Gynecology.
Rodent Zic Genes in Neural Network Wiring.
Herrera, Eloísa
2018-01-01
The formation of the nervous system is a multistep process that yields a mature brain. Failure in any of the steps of this process may cause brain malfunction. In the early stages of embryonic development, neural progenitors quickly proliferate and then, at a specific moment, differentiate into neurons or glia. Once they become postmitotic neurons, they migrate to their final destinations and begin to extend their axons to connect with other neurons, sometimes located in quite distant regions, to establish different neural circuits. During the last decade, it has become evident that Zic genes, in addition to playing important roles in early development (e.g., gastrulation and neural tube closure), are involved in different processes of late brain development, such as neuronal migration, axon guidance, and refinement of axon terminals. ZIC proteins are therefore essential for the proper wiring and connectivity of the brain. In this chapter, we review our current knowledge of the role of Zic genes in the late stages of neural circuit formation.
Boros, Ákos; Albert, Mihály; Pankovics, Péter; Bíró, Hunor; Pesavento, Patricia A.; Phan, Tung Gia; Delwart, Eric
2017-01-01
A large, highly prolific swine farm in Hungary had a 2-year history of neurologic disease among newly weaned (25- to 35-day-old) pigs, with clinical signs of posterior paraplegia and a high mortality rate. Affected pigs that were necropsied had encephalomyelitis and neural necrosis. Porcine astrovirus type 3 was identified by reverse transcription PCR and in situ hybridization in brain and spinal cord samples in 6 animals from this farm. Among tissues tested by quantitative RT-PCR, the highest viral loads were detected in brain stem and spinal cord. Similar porcine astrovirus type 3 was also detected in archived brain and spinal cord samples from another 2 geographically distant farms. Viral RNA was predominantly restricted to neurons, particularly in the brain stem, cerebellum (Purkinje cells), and cervical spinal cord. Astrovirus was generally undetectable in feces but present in respiratory samples, indicating a possible respiratory infection. Astrovirus could cause common, neuroinvasive epidemic disease. PMID:29148391
Boros, Ákos; Albert, Mihály; Pankovics, Péter; Bíró, Hunor; Pesavento, Patricia A; Phan, Tung Gia; Delwart, Eric; Reuter, Gábor
2017-12-01
A large, highly prolific swine farm in Hungary had a 2-year history of neurologic disease among newly weaned (25- to 35-day-old) pigs, with clinical signs of posterior paraplegia and a high mortality rate. Affected pigs that were necropsied had encephalomyelitis and neural necrosis. Porcine astrovirus type 3 was identified by reverse transcription PCR and in situ hybridization in brain and spinal cord samples in 6 animals from this farm. Among tissues tested by quantitative RT-PCR, the highest viral loads were detected in brain stem and spinal cord. Similar porcine astrovirus type 3 was also detected in archived brain and spinal cord samples from another 2 geographically distant farms. Viral RNA was predominantly restricted to neurons, particularly in the brain stem, cerebellum (Purkinje cells), and cervical spinal cord. Astrovirus was generally undetectable in feces but present in respiratory samples, indicating a possible respiratory infection. Astrovirus could cause common, neuroinvasive epidemic disease.
GBM skin metastasis: a case report and review of the literature
Lewis, Gary D; Rivera, Andreana L; Tremont-Lukats, Ivo W; Ballester-Fuentes, Leomar Y; Zhang, Yi Jonathan; Teh, Bin S
2017-01-01
Glioblastoma (GBM) is the most common type of malignant tumor found in the brain, and acts very aggressively by quickly and diffusely infiltrating the surrounding brain parenchyma. Despite its aggressive nature, GBM is rarely found to spread extracranially and develop distant metastases. The most common sites of these rare metastases are the lungs, pleura and cervical lymph nodes. There are also a few case reports of skin metastasis. We present the clinical, imaging and pathologic features of a case of a GBM with metastasis to the soft tissue scar and skin near the original craniotomy site. In addition, we discuss the details of this case in the context of the previously reported literature. PMID:28718312
Role of inhibitory control in modulating focal seizure spread.
Liou, Jyun-You; Ma, Hongtao; Wenzel, Michael; Zhao, Mingrui; Baird-Daniel, Eliza; Smith, Elliot H; Daniel, Andy; Emerson, Ronald; Yuste, Rafael; Schwartz, Theodore H; Schevon, Catherine A
2018-05-10
Focal seizure propagation is classically thought to be spatially contiguous. However, distribution of seizures through a large-scale epileptic network has been theorized. Here, we used a multielectrode array, wide field calcium imaging, and two-photon calcium imaging to study focal seizure propagation pathways in an acute rodent neocortical 4-aminopyridine model. Although ictal neuronal bursts did not propagate beyond a 2-3-mm region, they were associated with hemisphere-wide field potential fluctuations and parvalbumin-positive interneuron activity outside the seizure focus. While bicuculline surface application enhanced contiguous seizure propagation, focal bicuculline microinjection at sites distant to the 4-aminopyridine focus resulted in epileptic network formation with maximal activity at the two foci. Our study suggests that both classical and epileptic network propagation can arise from localized inhibition defects, and that the network appearance can arise in the context of normal brain structure without requirement for pathological connectivity changes between sites.
Natural world physical, brain operational, and mind phenomenal space-time
NASA Astrophysics Data System (ADS)
Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.
2010-06-01
Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.
Nardin, Charlee; Mateus, Christine; Texier, Mathieu; Lanoy, Emilie; Hibat-Allah, Salima; Ammari, Samy; Robert, Caroline; Dhermain, Frederic
2018-04-01
Anti-programmed cell death-1 (anti-PD1) antibodies are currently the first-line treatment for patients with metastatic BRAF wild-type melanoma, alone or combined with the anti-CTLA4 monoclonal antibody, ipilimumab. To date, data on safety and the outcomes of patients treated with the anti-PD1 monoclonal antibodies, pembrolizumab (PB), or nivolumab, combined with stereotactic radiosurgery (SRS), for melanoma brain metastases (MBM) are scarce. We retrospectively reviewed all patients with MBM treated with PB combined with SRS between 2012 and 2015. The primary endpoint was neurotoxicity. The secondary endpoints were local, distant intracranial controls and overall survival (OS). Among 74 patients with MBM treated with SRS, 25 patients with a total of 58 MBM treated with PB combined with SRS within 6 months were included. Radiation necrosis, occurring within a median time of 6.5 months, was observed for four MBM (6.8%) in four patients. No other significant SRS-related adverse event was observed. After a median follow-up of 8.4 months, local control was achieved in 46 (80%) metastases and 17 (68%) patients. Perilesional oedema and intratumour haemorrhage appearing or increasing after SRS were associated with local progression (P<0.001). The median OS was 15.3 months (95% confidence interval: 4.6-26). The timing between SRS and PB administration did not seem to influence the risk of radiation necrosis, intracranial control or OS. SRS combined with PB was well tolerated and achieved local control in 80% of the lesions. Prolonged OS was observed compared with that currently yielded in this population of patients. Prospective studies are required to explore further the optimal ways to combine immunotherapy and SRS.
Recall bias in the assessment of exposure to mobile phones.
Vrijheid, Martine; Armstrong, Bruce K; Bédard, Daniel; Brown, Julianne; Deltour, Isabelle; Iavarone, Ivano; Krewski, Daniel; Lagorio, Susanna; Moore, Stephen; Richardson, Lesley; Giles, Graham G; McBride, Mary; Parent, Marie-Elise; Siemiatycki, Jack; Cardis, Elisabeth
2009-05-01
Most studies of mobile phone use are case-control studies that rely on participants' reports of past phone use for their exposure assessment. Differential errors in recalled phone use are a major concern in such studies. INTERPHONE, a multinational case-control study of brain tumour risk and mobile phone use, included validation studies to quantify such errors and evaluate the potential for recall bias. Mobile phone records of 212 cases and 296 controls were collected from network operators in three INTERPHONE countries over an average of 2 years, and compared with mobile phone use reported at interview. The ratio of reported to recorded phone use was analysed as measure of agreement. Mean ratios were virtually the same for cases and controls: both underestimated number of calls by a factor of 0.81 and overestimated call duration by a factor of 1.4. For cases, but not controls, ratios increased with increasing time before the interview; however, these trends were based on few subjects with long-term data. Ratios increased by level of use. Random recall errors were large. In conclusion, there was little evidence for differential recall errors overall or in recent time periods. However, apparent overestimation by cases in more distant time periods could cause positive bias in estimates of disease risk associated with mobile phone use.
A High-Resolution Enhancer Atlas of the Developing Telencephalon
Visel, Axel; Taher, Leila; Girgis, Hani; May, Dalit; Golonzhka, Olga; Hoch, Renee; McKinsey, Gabriel L.; Pattabiraman, Kartik; Silberberg, Shanni N.; Blow, Matthew J.; Hansen, David V.; Nord, Alex S.; Akiyama, Jennifer A.; Holt, Amy; Hosseini, Roya; Phouanenavong, Sengthavy; Plajzer-Frick, Ingrid; Shoukry, Malak; Afzal, Veena; Kaplan, Tommy; Kriegstein, Arnold R.; Rubin, Edward M.; Ovcharenko, Ivan; Pennacchio, Len A.; Rubenstein, John L. R.
2013-01-01
Summary The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. While many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified over 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising over 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders. PMID:23375746
Beaming into the News: A System for and Case Study of Tele-Immersive Journalism.
Kishore, Sameer; Navarro, Xavi; Dominguez, Eva; de la Pena, Nonny; Slater, Mel
2016-05-25
We show how a combination of virtual reality and robotics can be used to beam a physical representation of a person to a distant location, and describe an application of this system in the context of journalism. Full body motion capture data of a person is streamed and mapped in real time, onto the limbs of a humanoid robot present at the remote location. A pair of cameras in the robot's 'eyes' stream stereoscopic video back to the HMD worn by the visitor, and a two-way audio connection allows the visitor to talk to people in the remote destination. By fusing the multisensory data of the visitor with the robot, the visitor's 'consciousness' is transformed to the robot's body. This system was used by a journalist to interview a neuroscientist and a chef 900 miles distant, about food for the brain, resulting in an article published in the popular press.
Beaming into the News: A System for and Case Study of Tele-Immersive Journalism.
Kishore, Sameer; Navarro, Xavi; Dominguez, Eva; De La Pena, Nonny; Slater, Mel
2018-03-01
We show how a combination of virtual reality and robotics can be used to beam a physical representation of a person to a distant location, and describe an application of this system in the context of journalism. Full body motion capture data of a person is streamed and mapped in real time, onto the limbs of a humanoid robot present at the remote location. A pair of cameras in the robots eyes stream stereoscopic video back to the HMD worn by the visitor, and a two-way audio connection allows the visitor to talk to people in the remote destination. By fusing the multisensory data of the visitor with the robot, the visitors consciousness is transformed to the robots body. This system was used by a journalist to interview a neuroscientist and a chef 900 miles distant, about food for the brain, resulting in an article published in the popular press.
Development of brain-wide connectivity architecture in awake rats.
Ma, Zilu; Ma, Yuncong; Zhang, Nanyin
2018-08-01
Childhood and adolescence are both critical developmental periods, evidenced by complex neurophysiological changes the brain undergoes and high occurrence rates of neuropsychiatric disorders during these periods. Despite substantial progress in elucidating the developmental trajectories of individual neural circuits, our knowledge of developmental changes of whole-brain connectivity architecture in animals is sparse. To fill this gap, here we longitudinally acquired rsfMRI data in awake rats during five developmental stages from juvenile to adulthood. We found that the maturation timelines of brain circuits were heterogeneous and system specific. Functional connectivity (FC) tended to decrease in subcortical circuits, but increase in cortical circuits during development. In addition, the developing brain exhibited hemispheric functional specialization, evidenced by reduced inter-hemispheric FC between homotopic regions, and lower similarity of region-to-region FC patterns between the two hemispheres. Finally, we showed that whole-brain network development was characterized by reduced clustering (i.e. local communication) but increased integration (distant communication). Taken together, the present study has systematically characterized the development of brain-wide connectivity architecture from juvenile to adulthood in awake rats. It also serves as a critical reference point for understanding circuit- and network-level changes in animal models of brain development-related disorders. Furthermore, FC data during brain development in awake rodents contain high translational value and can shed light onto comparative neuroanatomy. Copyright © 2018 Elsevier Inc. All rights reserved.
Proton MRS of the peritumoral brain.
Chernov, Mikhail F; Kubo, Osami; Hayashi, Motohiro; Izawa, Masahiro; Maruyama, Takashi; Usukura, Masao; Ono, Yuko; Hori, Tomokatsu; Takakura, Kintomo
2005-02-15
Long-echo (TR: 2000 ms, TE: 136 ms) proton MRS of the cerebral tissue in the vicinity to intracranial lesion was done in 15 patients, mainly with parenchymal brain tumors. Significant decrease of N-acetylaspartate (NAA) (P<0.001) and more frequent presence of lactate (P<0.01) comparing with distant normal white matter were found in the perilesional brain tissue. The level of NAA in the perilesional brain tissue had negative associations with presence of lactate in the lesion (P<0.05), excess of lactate in the lesion compared to perilesional brain (P<0.01), grade of the perilesional edema (P<0.01) and patient's age (P<0.05). Multivariate analysis disclosed that identification of lactate in the lesion is associated with lower relative NAA content in the perilesional brain tissue, independently on the presence or absence of any other factor, including brain edema (P<0.001). In patients with lobar lesions who had at least one epileptic seizure during course of their disease the relative NAA content in the perilesional brain was significantly lower, comparing with those who were seizure-free (P<0.05). Therefore, lactate diffused from the tumor, or other metabolites secreted by lactate-producing neoplasm, should be considered as important contributors to the neuronal dysfunction in the surrounding brain. Decrease of NAA in the vicinity to intracranial lesions may reflect neuronal alteration responsible for associated epilepsy.
Abnormal Vestibulo-Ocular Reflexes in Autism: A Potential Endophenotype
2014-08-01
among. Saccades and smooth pursuit are complex sensorimotor behaviors that involve several spatially distant brain regions and long- fiber tracts between...time, at a rate of 100 Hz. Visual stimuli were presented as a red laser -light, generated by NKI Pursuit Tracker® laser . The Pursuit Tracker® laser ...the testing equipment by projecting a laser stimulus onto the cylindrical screen and providing a fixed target at + 10º in both the horizontal and
The role of high-frequency oscillatory activity in reward processing and learning.
Marco-Pallarés, Josep; Münte, Thomas F; Rodríguez-Fornells, Antoni
2015-02-01
Oscillatory activity has been proposed as a key mechanism in the integration of brain activity of distant structures. Particularly, high frequency brain oscillatory activity in the beta and gamma range has received increasing interest in the domains of attention and memory. In addition, a number of recent studies have revealed an increase of beta-gamma activity (20-35 Hz) after unexpected or relevant positive reward outcomes. In the present manuscript we review the literature on this phenomenon and we propose that this activity is a brain signature elicited by unexpected positive outcomes in order to transmit a fast motivational value signal to the reward network. In addition, we hypothesize that beta-gamma oscillatory activity indexes the interaction between attentional and emotional systems, and that it directly reflects the appearance of unexpected positive rewards in learning-related contexts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Measuring Brain Connectivity: Diffusion Tensor Imaging Validates Resting State Temporal Correlations
Skudlarski, Pawel; Jagannathan, Kanchana; Calhoun, Vince D.; Hampson, Michelle; Skudlarska, Beata A.; Pearlson, Godfrey
2015-01-01
Diffusion tensor imaging (DTI) and resting state temporal correlations (RSTC) are two leading techniques for investigating the connectivity of the human brain. They have been widely used to investigate the strength of anatomical and functional connections between distant brain regions in healthy subjects, and in clinical populations. Though they are both based on magnetic resonance imaging (MRI) they have not yet been compared directly. In this work both techniques were employed to create global connectivity matrices covering the whole brain gray matter. This allowed for direct comparisons between functional connectivity measured by RSTC with anatomical connectivity quantified using DTI tractography. We found that connectivity matrices obtained using both techniques showed significant agreement. Connectivity maps created for a priori defined anatomical regions showed significant correlation, and furthermore agreement was especially high in regions showing strong overall connectivity, such as those belonging to the default mode network. Direct comparison between functional RSTC and anatomical DTI connectivity, presented here for the first time, links two powerful approaches for investigating brain connectivity and shows their strong agreement. It provides a crucial multi-modal validation for resting state correlations as representing neuronal connectivity. The combination of both techniques presented here allows for further combining them to provide richer representation of brain connectivity both in the healthy brain and in clinical conditions. PMID:18771736
Skudlarski, Pawel; Jagannathan, Kanchana; Calhoun, Vince D; Hampson, Michelle; Skudlarska, Beata A; Pearlson, Godfrey
2008-11-15
Diffusion tensor imaging (DTI) and resting state temporal correlations (RSTC) are two leading techniques for investigating the connectivity of the human brain. They have been widely used to investigate the strength of anatomical and functional connections between distant brain regions in healthy subjects, and in clinical populations. Though they are both based on magnetic resonance imaging (MRI) they have not yet been compared directly. In this work both techniques were employed to create global connectivity matrices covering the whole brain gray matter. This allowed for direct comparisons between functional connectivity measured by RSTC with anatomical connectivity quantified using DTI tractography. We found that connectivity matrices obtained using both techniques showed significant agreement. Connectivity maps created for a priori defined anatomical regions showed significant correlation, and furthermore agreement was especially high in regions showing strong overall connectivity, such as those belonging to the default mode network. Direct comparison between functional RSTC and anatomical DTI connectivity, presented here for the first time, links two powerful approaches for investigating brain connectivity and shows their strong agreement. It provides a crucial multi-modal validation for resting state correlations as representing neuronal connectivity. The combination of both techniques presented here allows for further combining them to provide richer representation of brain connectivity both in the healthy brain and in clinical conditions.
Ein-Gar, Danit; Steinhart, Yael
2017-01-01
Self-efficacy constitutes a key factor that influences people's inclination to engage in effortful tasks. In this study, we focus on an interesting interplay between two prominent factors known to influence engagement in effortful tasks: the timing of the task (i.e., whether the task is scheduled to take place in the near or distant future) and individuals' levels of self-control. Across three studies, we show that these two factors have an interacting effect on self-efficacy. Low self-control (LSC) individuals report higher self-efficacy for distant-future effortful tasks than for near-future tasks, whereas high self-control (HSC) individuals report higher self-efficacy for near-future tasks than for distant future tasks. We further demonstrate how self-efficacy then molds individuals' willingness to engage in those effortful tasks. Given that a particular task may comprise effortful aspects alongside more enjoyable aspects, we show that the effects we observe emerge with regard to a task whose effortful aspects are salient and that the effects are eliminated when the enjoyable aspects of that same task are highlighted. PMID:29075225
Subirà, Marta; Cano, Marta; de Wit, Stella J; Alonso, Pino; Cardoner, Narcís; Hoexter, Marcelo Q; Kwon, Jun Soo; Nakamae, Takashi; Lochner, Christine; Sato, João R; Jung, Wi Hoon; Narumoto, Jin; Stein, Dan J; Pujol, Jesus; Mataix-Cols, David; Veltman, Dick J; Menchón, José M; van den Heuvel, Odile A; Soriano-Mas, Carles
2016-03-01
Frontostriatal and frontoamygdalar connectivity alterations in patients with obsessive-compulsive disorder (OCD) have been typically described in functional neuroimaging studies. However, structural covariance, or volumetric correlations across distant brain regions, also provides network-level information. Altered structural covariance has been described in patients with different psychiatric disorders, including OCD, but to our knowledge, alterations within frontostriatal and frontoamygdalar circuits have not been explored. We performed a mega-analysis pooling structural MRI scans from the Obsessive-compulsive Brain Imaging Consortium and assessed whole-brain voxel-wise structural covariance of 4 striatal regions (dorsal and ventral caudate nucleus, and dorsal-caudal and ventral-rostral putamen) and 2 amygdalar nuclei (basolateral and centromedial-superficial). Images were preprocessed with the standard pipeline of voxel-based morphometry studies using Statistical Parametric Mapping software. Our analyses involved 329 patients with OCD and 316 healthy controls. Patients showed increased structural covariance between the left ventral-rostral putamen and the left inferior frontal gyrus/frontal operculum region. This finding had a significant interaction with age; the association held only in the subgroup of older participants. Patients with OCD also showed increased structural covariance between the right centromedial-superficial amygdala and the ventromedial prefrontal cortex. This was a cross-sectional study. Because this is a multisite data set analysis, participant recruitment and image acquisition were performed in different centres. Most patients were taking medication, and treatment protocols differed across centres. Our results provide evidence for structural network-level alterations in patients with OCD involving 2 frontosubcortical circuits of relevance for the disorder and indicate that structural covariance contributes to fully characterizing brain alterations in patients with psychiatric disorders.
Demiral, Şükrü Barış; Golosheykin, Simon; Anokhin, Andrey P
2017-05-01
Detection and evaluation of the mismatch between the intended and actually obtained result of an action (reward prediction error) is an integral component of adaptive self-regulation of behavior. Extensive human and animal research has shown that evaluation of action outcome is supported by a distributed network of brain regions in which the anterior cingulate cortex (ACC) plays a central role, and the integration of distant brain regions into a unified feedback-processing network is enabled by long-range phase synchronization of cortical oscillations in the theta band. Neural correlates of feedback processing are associated with individual differences in normal and abnormal behavior, however, little is known about the role of genetic factors in the cerebral mechanisms of feedback processing. Here we examined genetic influences on functional cortical connectivity related to prediction error in young adult twins (age 18, n=399) using event-related EEG phase coherence analysis in a monetary gambling task. To identify prediction error-specific connectivity pattern, we compared responses to loss and gain feedback. Monetary loss produced a significant increase of theta-band synchronization between the frontal midline region and widespread areas of the scalp, particularly parietal areas, whereas gain resulted in increased synchrony primarily within the posterior regions. Genetic analyses showed significant heritability of frontoparietal theta phase synchronization (24 to 46%), suggesting that individual differences in large-scale network dynamics are under substantial genetic control. We conclude that theta-band synchronization of brain oscillations related to negative feedback reflects genetically transmitted differences in the neural mechanisms of feedback processing. To our knowledge, this is the first evidence for genetic influences on task-related functional brain connectivity assessed using direct real-time measures of neuronal synchronization. Copyright © 2016 Elsevier B.V. All rights reserved.
Nervous control of reproduction in Octopus vulgaris: a new model.
Di Cristo, Carlo
2013-06-01
The classic study of Wells and Wells on the control of reproduction in Octopus demonstrated that the activity of the subpedunculate lobe of the brain and environmental illumination both inhibit the release of an unknown gonadotropin from the optic gland. This inhibitory control may be exerted by the neuropeptide Phe-Met-Arg-Phe-NH₂ (FMRFamide). It was later demonstrated that the olfactory lobe is also likely to be involved in the control of optic gland activity. The presence of gonadotropin-releasing hormone in the olfactory lobe suggested that it might exert an excitatory action on optic gland activity. Other neuropeptides have now been localised in the olfactory lobe: neuropeptide Y, galanin, corticotropin-releasing factor, Ala-Pro-Gly-Trp-NH₂ (APGWamide), as well as steroidogenic enzymes and an oestrogen receptor orthologue. This supports the hypothesis that this lobe may also play a part in the control of reproduction in Octopus. The olfactory lobe receives distant chemical stimuli and also appears to be an integrative centre containing a variety of neuropeptides involved in controlling the onset of sexual maturation of Octopus, via the optic gland hormone. This review attempts to summarise current knowledge about the role of the olfactory lobe and optic gland in the control of sexual maturation in Octopus, in the light of new findings and in the context of molluscan comparative physiology.
Hejnol, Andreas; Lowe, Christopher J
2015-12-19
Molecular biology has provided a rich dataset to develop hypotheses of nervous system evolution. The startling patterning similarities between distantly related animals during the development of their central nervous system (CNS) have resulted in the hypothesis that a CNS with a single centralized medullary cord and a partitioned brain is homologous across bilaterians. However, the ability to precisely reconstruct ancestral neural architectures from molecular genetic information requires that these gene networks specifically map with particular neural anatomies. A growing body of literature representing the development of a wider range of metazoan neural architectures demonstrates that patterning gene network complexity is maintained in animals with more modest levels of neural complexity. Furthermore, a robust phylogenetic framework that provides the basis for testing the congruence of these homology hypotheses has been lacking since the advent of the field of 'evo-devo'. Recent progress in molecular phylogenetics is refining the necessary framework to test previous homology statements that span large evolutionary distances. In this review, we describe recent advances in animal phylogeny and exemplify for two neural characters-the partitioned brain of arthropods and the ventral centralized nerve cords of annelids-a test for congruence using this framework. The sequential sister taxa at the base of Ecdysozoa and Spiralia comprise small, interstitial groups. This topology is not consistent with the hypothesis of homology of tripartitioned brain of arthropods and vertebrates as well as the ventral arthropod and rope-like ladder nervous system of annelids. There can be exquisite conservation of gene regulatory networks between distantly related groups with contrasting levels of nervous system centralization and complexity. Consequently, the utility of molecular characters to reconstruct ancestral neural organization in deep time is limited. © 2015 The Authors.
Hejnol, Andreas; Lowe, Christopher J.
2015-01-01
Molecular biology has provided a rich dataset to develop hypotheses of nervous system evolution. The startling patterning similarities between distantly related animals during the development of their central nervous system (CNS) have resulted in the hypothesis that a CNS with a single centralized medullary cord and a partitioned brain is homologous across bilaterians. However, the ability to precisely reconstruct ancestral neural architectures from molecular genetic information requires that these gene networks specifically map with particular neural anatomies. A growing body of literature representing the development of a wider range of metazoan neural architectures demonstrates that patterning gene network complexity is maintained in animals with more modest levels of neural complexity. Furthermore, a robust phylogenetic framework that provides the basis for testing the congruence of these homology hypotheses has been lacking since the advent of the field of ‘evo-devo’. Recent progress in molecular phylogenetics is refining the necessary framework to test previous homology statements that span large evolutionary distances. In this review, we describe recent advances in animal phylogeny and exemplify for two neural characters—the partitioned brain of arthropods and the ventral centralized nerve cords of annelids—a test for congruence using this framework. The sequential sister taxa at the base of Ecdysozoa and Spiralia comprise small, interstitial groups. This topology is not consistent with the hypothesis of homology of tripartitioned brain of arthropods and vertebrates as well as the ventral arthropod and rope-like ladder nervous system of annelids. There can be exquisite conservation of gene regulatory networks between distantly related groups with contrasting levels of nervous system centralization and complexity. Consequently, the utility of molecular characters to reconstruct ancestral neural organization in deep time is limited. PMID:26554039
Human breast cancer metastases to the brain display GABAergic properties in the neural niche.
Neman, Josh; Termini, John; Wilczynski, Sharon; Vaidehi, Nagarajan; Choy, Cecilia; Kowolik, Claudia M; Li, Hubert; Hambrecht, Amanda C; Roberts, Eugene; Jandial, Rahul
2014-01-21
Dispersion of tumors throughout the body is a neoplastic process responsible for the vast majority of deaths from cancer. Despite disseminating to distant organs as malignant scouts, most tumor cells fail to remain viable after their arrival. The physiologic microenvironment of the brain must become a tumor-favorable microenvironment for successful metastatic colonization by circulating breast cancer cells. Bidirectional interplay of breast cancer cells and native brain cells in metastasis is poorly understood and rarely studied. We had the rare opportunity to investigate uncommonly available specimens of matched fresh breast-to-brain metastases tissue and derived cells from patients undergoing neurosurgical resection. We hypothesized that, to metastasize, breast cancers may escape their normative genetic constraints by accommodating and coinhabiting the neural niche. This acquisition or expression of brain-like properties by breast cancer cells could be a malignant adaptation required for brain colonization. Indeed, we found breast-to-brain metastatic tissue and cells displayed a GABAergic phenotype similar to that of neuronal cells. The GABAA receptor, GABA transporter, GABA transaminase, parvalbumin, and reelin were all highly expressed in breast cancer metastases to the brain. Proliferative advantage was conferred by the ability of breast-to-brain metastases to take up and catabolize GABA into succinate with the resultant formation of NADH as a biosynthetic source through the GABA shunt. The results suggest that breast cancers exhibit neural characteristics when occupying the brain microenvironment and co-opt GABA as an oncometabolite.
Human breast cancer metastases to the brain display GABAergic properties in the neural niche
Neman, Josh; Termini, John; Wilczynski, Sharon; Vaidehi, Nagarajan; Choy, Cecilia; Kowolik, Claudia M.; Li, Hubert; Hambrecht, Amanda C.; Roberts, Eugene; Jandial, Rahul
2014-01-01
Dispersion of tumors throughout the body is a neoplastic process responsible for the vast majority of deaths from cancer. Despite disseminating to distant organs as malignant scouts, most tumor cells fail to remain viable after their arrival. The physiologic microenvironment of the brain must become a tumor-favorable microenvironment for successful metastatic colonization by circulating breast cancer cells. Bidirectional interplay of breast cancer cells and native brain cells in metastasis is poorly understood and rarely studied. We had the rare opportunity to investigate uncommonly available specimens of matched fresh breast-to-brain metastases tissue and derived cells from patients undergoing neurosurgical resection. We hypothesized that, to metastasize, breast cancers may escape their normative genetic constraints by accommodating and coinhabiting the neural niche. This acquisition or expression of brain-like properties by breast cancer cells could be a malignant adaptation required for brain colonization. Indeed, we found breast-to-brain metastatic tissue and cells displayed a GABAergic phenotype similar to that of neuronal cells. The GABAA receptor, GABA transporter, GABA transaminase, parvalbumin, and reelin were all highly expressed in breast cancer metastases to the brain. Proliferative advantage was conferred by the ability of breast-to-brain metastases to take up and catabolize GABA into succinate with the resultant formation of NADH as a biosynthetic source through the GABA shunt. The results suggest that breast cancers exhibit neural characteristics when occupying the brain microenvironment and co-opt GABA as an oncometabolite. PMID:24395782
Arıcıgil, Mitat; Dündar, Mehmet Akif; Yücel, Abitter; Arbağ, Hamdi; Aziz, Suhayb Kuria
This study aimes to evaluate platelet and leucocyte indicators, such as the mean platelet volume, platelet distribution width, plateletcrit, white blood cell count, neutrophil to lymphocyte ratio in nasopharyngeal cancer patients and also to evaluate the relationship between these indicators and nasopharyngeal cancer with distant metastasis. The medical records of 118 patients diagnosed with nasopharyngeal cancer in our hospital between January 2006 and August 2015 were reviewed. The nasopharyngeal cancer group was further sub grouped according to the presence or absence of distant metastasis and TNM (tumour - T, node - N, metastasis - M) classification. A control group consisted of 120 healthy patients. The platelet and leucocyte values at the time of the initial diagnosis were recorded. Neutrophil to lymphocyte ratio and platelet distribution width values were significantly higher in the nasopharyngeal cancer group. But only platelet distribution width values were significantly higher in the nasopharyngeal cancer group with distant metastasis compared to the nasopharyngeal cancer group without distant metastasis. Neutrophil to lymphocyte ratio and platelet distribution width values may increase in nasopharyngeal cancer. But only the platelet distribution width values may give us an idea about the distant metastasis in nasopharyngeal cancer.
[Primary pulmonary hemangiopericytoma: 2 new cases].
Essola, B; Remmelink, M; Kessler, R; Scillia, P; Rocmans, P
2003-10-01
We describe two new resected cases of primary pulmonary hemangiopericytoma and the review of cases published in the period 1954-2002. The first patient has a large pulmonary mass of the right apex revealed by scapular pain. The right upper lobectomy with free margins reveals hemangiopericytoma. Pelvic and pulmonary metastases appear two years after surgery, treated by two series of chemotherapy without clinical response. After acute nephrotoxicity controlled by hemodialysis, the patient dies with distant metastases three years and an half after thoracotomy. The second patient develops dry cough and thoracic pain with discovery of a cavitary mass in the right pulmonary field. Fine needle aspiration cytology suggests a mesenchymatous lesion. Three months after extended pneumonectomy, the intrathoracic tumour relapses and regresses partially under chemotherapy. Femoral and brain metastases are irradiated. The patient dies 22 months after thoracotomy. Histology and immunohistochemistry of both tumours closely related to solitary fibrous tumour confirm malignant hemangiopericytoma. Primary pulmonary hemangiopericytoma is rare and may be benign or malignant. Radical resection is the best treatment. Chemotherapy and radiotherapy may improve the prognosis. Compared with lung cancer, the tumour is a slow growing mass, often voluminous, with delayed symptoms, very few lymph node dissemination, rare brain metastasis, more frequent cutaneous or retroperitoneal dissemination, often after long-term and requiring indeed a 10 to 20 years follow-up.
Amygdala Damage Affects Event-Related Potentials for Fearful Faces at Specific Time Windows
Rotshtein, Pia; Richardson, Mark P; Winston, Joel S; Kiebel, Stefan J; Vuilleumier, Patrik; Eimer, Martin; Driver, Jon; Dolan, Raymond J
2010-01-01
The amygdala is known to influence processing of threat-related stimuli in distant brain regions, including visual cortex. The time-course of these distant influences is unknown, although this information is important for resolving debates over likely pathways mediating an apparent rapidity in emotional processing. To address this, we recorded event-related potentials (ERPs) to seen fearful face expressions, in preoperative patients with medial temporal lobe epilepsy who had varying degrees of amygdala pathology, plus healthy volunteers. We found that amygdala damage diminished ERPs for fearful versus neutral faces within the P1 time-range, ∼100–150 ms, and for a later component at ∼500–600 ms. Individual severity of amygdala damage determined the magnitude of both these effects, consistent with a causal amygdala role. By contrast, amygdala damage did not affect explicit perception of fearful expressions nor a distinct emotional ERP effect at 150–250 ms. These results demonstrate two distinct time-points at which the amygdala influences fear processing. The data also demonstrate that while not all aspects of expression processing are disrupted by amygdala damage, there is a crucial impact on an early P1 component. These findings are consistent with the existence of multiple processing stages or routes for fearful faces that vary in their dependence on amygdala function. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. PMID:20017134
Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton.
Bai, Lihui; Harder, Michael; Hyde, Paul; Zhang, Zhaohui; Hu, Can-Ming; Chen, Y P; Xiao, John Q
2017-05-26
Using electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusion length, instead depending on the interplay between the local and global properties of the coupled system, enabling systematic spin current control over large distance scales (several centimeters in this work). This flexibility opens the door to improved spin current generation and manipulation for cavity spintronic devices.
Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo
2016-02-24
We propose a quantum processor for the scalable quantum computation on microwave photons in distant one-dimensional superconducting resonators. It is composed of a common resonator R acting as a quantum bus and some distant resonators rj coupled to the bus in different positions assisted by superconducting quantum interferometer devices (SQUID), different from previous processors. R is coupled to one transmon qutrit, and the coupling strengths between rj and R can be fully tuned by the external flux through the SQUID. To show the processor can be used to achieve universal quantum computation effectively, we present a scheme to complete the high-fidelity quantum state transfer between two distant microwave-photon resonators and another one for the high-fidelity controlled-phase gate on them. By using the technique for catching and releasing the microwave photons from resonators, our processor may play an important role in quantum communication as well.
Incidence and sites of distant metastases from head and neck cancer.
Ferlito, A; Shaha, A R; Silver, C E; Rinaldo, A; Mondin, V
2001-01-01
The incidence of distant metastases in head and neck squamous cell carcinoma (SCC) is relatively small in comparison to other malignancies. Distant metastases adversely impact survival and may significantly affect treatment planning. The incidence of distant metastases is influenced by location of the primary tumor, initial T and N stage of the neoplasm, and the presence or absence of regional control above the clavicle. Patients with advanced nodal disease have a high incidence of distant metastases, particularly in the presence of jugular vein invasion or extensive soft tissue disease in the neck. Primary tumors of advanced T stages in the hypopharynx, oropharynx and oral cavity are associated with the highest incidence of distant metastases. Pulmonary metastases are the most frequent in SCC, accounting for 66% of distant metastases. It may be difficult to distinguish pulmonary metastasis from a new primary tumor, particularly if solitary. Other metastatic sites include bone (22%), liver (10%), skin, mediastinum and bone marrow. An important question remains as to how intensely pre- and postoperative screening for distant metastases should be performed. Preoperative chest X-ray is warranted in all cases. If the primary tumor and nodal status place the patient at high risk for pulmonary metastasis, then preoperative computed tomography scan of the chest should be done. Screening for distant metastases at other sites is usually not indicated in SCC of the upper aerodigestive tract. Postoperatively, annual X-rays of the chest are usually sufficient, but in high-risk situations a chest X-ray performed every 3-6 months may be beneficial. Certain histologic types of primary tumor have greater or lesser propensity to metastasize distantly, and have a different natural history. Adenoid cystic carcinoma metastasizes frequently, even in the absence of extensive local or regional disease. Basaloid squamous cell carcinoma and neuroendocrine carcinomas also metastasize widely. Extensive evaluation for distant metastases is justified for these tumors. Knowledge of the natural history of various neoplasms and the factors that contribute to distant metastases as well as good judgement are essential for cost-effective treatment planning and decision-making with regard to pre- and postoperative evaluation for distant metastases in cancer of the head and neck. Copyright 2001 S. Karger AG, Basel
Ferretti, Francesco
2016-01-01
In this paper, I assume that the study of the origin of language is strictly connected to the analysis of the traits that distinguish human language from animal communication. Usually, human language is said to be unique in the animal kingdom because it enables and/or requires intentionality or mindreading. By emphasizing the importance of mindreading, the social brain hypothesis has provided major insights within the origin of language debate. However, as studies on non-human primates have demonstrated that intentional forms of communication are already present in these species to a greater or lesser extent, I maintain that the social brain is a necessary but not a sufficient condition to explain the uniqueness of language. In this paper, I suggest that the distinctive feature of human communication resides in the ability to tell stories, and that the origin of language should be traced with respect to the capacity to produce discourses, rather than phrases or words. As narrative requires the ability to link events distant from one another in space and time, my proposal is that in order to explain the origin of language, we need to appeal to both the social brain and the ecological brain - that is, the cognitive devices which allow us to mentally travel in space and time.
Gauthier, Lynne V; Taub, Edward; Mark, Victor W; Barghi, Ameen; Uswatte, Gitendra
2012-02-01
Although the motor deficit after stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to constraint-induced movement therapy in patients with chronic stroke may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Voxel-based morphometry analysis was performed on MRI scans from 80 patients with chronic stroke to investigate whether variations in gray matter density were correlated with extent of residual motor impairment or with constraint-induced movement therapy-induced motor recovery. Decreased gray matter density in noninfarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced gray matter density in multiple remote brain regions predicted a lesser extent of motor improvement from constraint-induced movement therapy. Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke.
Gauthier, Lynne V.; Taub, Edward; Mark, Victor W.; Barghi, Ameen; Uswatte, Gitendra
2011-01-01
Background and Purpose Although the motor deficit following stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to Constraint-Induced Movement therapy (CI therapy) in chronic stroke patients may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Methods Voxel-based morphometry (VBM) analysis was performed on MRI scans from 80 chronic stroke patients to investigate whether variations in grey matter density were correlated with extent of residual motor impairment or with CI therapy-induced motor recovery. Results Decreased grey matter density in non-infarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced grey matter density in multiple remote brain regions predicted a lesser extent of motor improvement from CI therapy. Conclusions Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke. PMID:22096036
Presumed choroidal metastasis of Merkel cell carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, K.W.; Rosenwasser, G.O.; Alexander, E. III
1990-05-01
Merkel cell carcinoma is a rare skin tumor of neural crest origin and is part of the amine precursor uptake and decarboxylase system. It typically occurs on the face of elderly people. Distant metastasis is almost uniformly fatal. Choroidal metastasis, to our knowledge, has not been described. We report a patient with Merkel cell carcinoma who had a synchronous solid choroidal tumor and a biopsy-proven brain metastasis. Our 56-year-old patient presented with a rapidly growing, violaceous preauricular skin tumor. Computed tomography of the head disclosed incidental brain and choroidal tumors. Light and electron microscopy of biopsy specimens of both themore » skin and the brain lesions showed Merkel cell carcinoma. Ophthalmoscopy, fluorescein angiography, and A and B echography revealed a solid choroidal mass. The brain and skin tumors responded well to irradiation. A radioactive episcleral plaque was applied subsequently to the choroidal tumor. All tumors regressed, and the patient was doing well 28 months later. To our knowledge this is the first case of presumed choroidal metastasis of Merkel cell carcinoma.« less
Zhao, Jing-Jing; Xiao, Hui; Zhao, Wen-Bo; Zhang, Xiao-Pei; Xiang, Yu; Ye, Zeng-Jie; Mo, Miao-Miao; Peng, Xue-Ting; Wei, Lin
2018-01-01
Background: Remote ischemic postconditioning (RIPostC) appears to protect distant organs from ischemia-reperfusion injury (IRI). However, cerebral protection results have remained inconclusive. In the present study, a meta-analysis was performed to compare stroke patients with and without RIPostC. Methods: CNKI, WanFang, VIP, CBM, PubMed, and Cochrane Library databases were searched up to July 2016. Data were analyzed using both fixed-effects and random-effects models by Review Manager. For each outcome, risk ratio (RR) and mean difference (MD) with 95% confidence interval (CI) were calculated. Results: A total of 13 randomized controlled trials that enrolled a total of 794 study participants who suffered from or are at risk for brain IRI were selected. Compared with controls, RIPostC significantly reduced the recurrence of stroke or transient ischemic attacks (RR = 0.37; 95% CI: 0.26–0.55; P < 0.00001). Moreover, it can reduce the levels of the National Institutes of Health Stroke Scale score (MD: 1.96; 95% CI: 2.18–1.75; P < 0.00001), modified Rankin Scale score (MD: 0.73; 95% CI: 1.20–0.25; P = 0.00300), and high-sensitivity C-reactive protein (MD: 4.17; 95% CI: 4.71–3.62; P < 0.00001) between the two groups. There was no side effect of RIPostC using tourniquet cuff around the limb on ischemic stroke treating based on different intervention duration. Conclusion: The present meta-analysis suggests that RIPostC might offer cerebral protection for stroke patients suffering from or are at risk of brain IRI. PMID:29664057
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Bradford A.; Mettu, Pradeep; Vajzovic, Lejla
2014-05-01
Purpose: To investigate, in the treatment of uveal melanomas, how tumor control, radiation toxicity, and visual outcomes are affected by the radiation dose at the tumor apex. Methods and Materials: A retrospective review was performed to evaluate patients treated for uveal melanoma with {sup 125}I plaques between 1988 and 2010. Radiation dose is reported as dose to tumor apex and dose to 5 mm. Primary endpoints included time to local failure, distant failure, and death. Secondary endpoints included eye preservation, visual acuity, and radiation-related complications. Univariate and multivariate analyses were performed to determine associations between radiation dose and the endpointmore » variables. Results: One hundred ninety patients with sufficient data to evaluate the endpoints were included. The 5-year local control rate was 91%. The 5-year distant metastases rate was 10%. The 5-year overall survival rate was 84%. There were no differences in outcome (local control, distant metastases, overall survival) when dose was stratified by apex dose quartile (<69 Gy, 69-81 Gy, 81-89 Gy, >89 Gy). However, increasing apex dose and dose to 5-mm depth were correlated with greater visual acuity loss (P=.02, P=.0006), worse final visual acuity (P=.02, P<.0001), and radiation complications (P<.0001, P=.0009). In addition, enucleation rates were worse with increasing quartiles of dose to 5 mm (P=.0001). Conclusions: Doses at least as low as 69 Gy prescribed to the tumor apex achieve rates of local control, distant metastasis–free survival, and overall survival that are similar to radiation doses of 85 Gy to the tumor apex, but with improved visual outcomes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodges, Joseph C.; Das, Prajnan, E-mail: PrajDas@mdanderson.or; Eng, Cathy
2009-11-01
Purpose: To determine the rates of toxicity, locoregional control, distant control, and survival in anal cancer patients with para-aortic nodal involvement, treated with intensity-modulated radiotherapy (IMRT) and concurrent chemotherapy at a single institution. Methods and Materials: Between 2001 and 2007, 6 patients with squamous cell anal cancer and para-aortic nodal involvement were treated with IMRT and concurrent infusional 5-fluorouracil and cisplatin. The primary tumor was treated with a median dose of 57.5 Gy (range, 54-60 Gy), involved para-aortic, pelvic, and inguinal lymph nodes were treated with a median dose of 55 Gy (range, 50.5-55 Gy), and noninvolved nodal regions weremore » treated with a median dose of 45 Gy (range, 43.5-45 Gy). Results: After a median follow-up of 25 months, none of the patients had a recurrence at the primary tumor, pelvic/inguinal nodes, or para-aortic nodes, whereas 2 patients developed distant metastases to the liver. Four of the 6 patients are alive. The 3-year actuarial locoregional control, distant control, and overall survival rates were 100%, 56%, and 63%, respectively. Four of the 6 patients developed Grade 3 acute gastrointestinal toxicity during chemoradiation. Conclusions: Intensity-modulated radiotherapy and concurrent chemotherapy could potentially serve as definitive therapy in anal cancer patients with para-aortic nodal involvement. Adjuvant chemotherapy may be indicated in these patients, as demonstrated by the distant failure rates. These patients need to be followed carefully because of the potential for treatment-related toxicities.« less
2011-04-01
fractional anisotropymeasures of axonal tracts derived from diffusion tensor imaging ( DTI ). Nine soldiers who incurred a blast-related mTBI during...nauseous for 24 to 36 h, blurred vision, tingling in legs , poor coordination for 3 h. Yes, for unknown period None 5 Subject was a gunner in a Humvee...pairs of distant electrodes in all frequency bands. DTI acquisition and processing Diffusionweighted images were acquired on a 1.5T Philips Achieva
Zheng, W; Tang, L R; Correll, C U; Ungvari, G S; Chiu, H F K; Xiang, Y Q; Xiang, Y T
2015-09-01
Distant visual impairment in the severely mentally ill is under-researched. This study aimed to assess the frequency and correlates of distant visual impairment in a cohort of Chinese psychiatric patients, including its effect on their quality of life. Adult psychiatric inpatients with schizophrenia, bipolar disorder, and major depressive disorder consecutively admitted to a psychiatric hospital in Beijing, China underwent assessments of psychopathology (Brief Psychiatric Rating Scale, 16-item Quick Inventory of Depressive Symptomatology [Self-Report]), quality of life (12-item Short-Form Medical Outcomes Study [SF-12], 25-item National Eye Institute Visual Function Questionnaire [NEI-VFQ25]), adverse effects (Udvalg for Kliniske Undersøgelser Side Effect Rating Scale), and presenting (as opposed to uncorrected) distant visual acuity (Logarithm of the Minimum Angle of Resolution [LogMAR] chart with patients wearing spectacles, if they owned them). Distant visual impairment was defined as binocular distant visual acuity of a LogMAR score of ≥ 0.5 (< 6/18 Snellen acuity). Among 356 patients who met the study criteria, the frequency of distant visual impairment was 12.6% (15.2% with schizophrenia, 11.9% with bipolar disorder, 8.8% with major depressive disorder). In multiple logistic regression analysis, distant visual impairment was significantly associated with ocular disease only (p = 0.002, odds ratio = 3.2, 95% confidence interval = 1.5-6.7). Controlling for the confounding effect of ocular disease, patients with distant visual impairment had a lower quality of life in the general vision domain of the NEI-VFQ25 (F[2, 353] = 9.5, p = 0.002) compared with those without. No differences in the physical and mental domains of the SF-12 and in other domains of the NEI-VFQ25 were noted in these 2 groups. One-eighth of middle-aged severely mentally ill patients had distant visual impairment. Considering the impact of distant visual impairment on daily functioning, severely mentally ill patients need to be screened for impaired eyesight as part of their comprehensive health assessment.
vanderVaart, Sondra; Berger, Howard; Tam, Carolyn; Goh, Y Ingrid; Gijsen, Violette M G J; de Wildt, Saskia N; Taddio, Anna
2011-01-01
Introduction Approximately 25% of all babies in North America are delivered via Caesarean section (C-section). Though a common surgical procedure, C-section recovery can be painful. Opioids, specifically codeine, are commonly used to ease pain; however, its active metabolite, morphine, passes into breast milk, and may produce unwanted side effects in neonates; therefore, alternatives to opioids are being sought. Reiki is an ancient Japanese form of healing where practitioners transfer healing energy through light touch and positive healing intention. Although 1.2 million Americans use reiki to reduce pain or depression, there is a lack of strong evidence supporting its effectiveness. A recent systematic review showed existing studies to be of poor methodological quality, with the common limitation of lack of blinding. To overcome this issue, the authors used distant reiki to assess its effectiveness in reducing pain following an elective C-section. Methods In this randomised, double-blinded study, women who underwent an elective C-section were allocated to either usual care (control, n=40) or three distant reiki sessions in addition to usual care (n=40). Pain was assessed using a visual analogue scale (VAS). The primary endpoint was the Area Under the VAS-Time Curve (AUC) for days 1–3. Secondary measures included: the proportion of women who required opioid medications and dose consumed, rate of healing and vital signs. Results AUC for pain was not significantly different in the distant reiki and control groups (mean±SD; 212.1±104.7 vs 223.1±117.8; p=0.96). There were no significant differences in opioid consumption or rate of healing; however, the distant reiki group had a significantly lower heart rate (74.3±8.1 bpm vs 79.8±7.9 bpm, p=0.003) and blood pressure (106.4±9.7 mm Hg vs 111.9±11.0 mm Hg, p=0.02) post surgery. Conclusion Distant reiki had no significant effect on pain following an elective C-section. Clinical Trial Registration Number ISRCTN79265996. PMID:22021729
Impact of Blood-Brain Barrier Integrity on Tumor Growth and Therapy Response in Brain Metastases.
Osswald, Matthias; Blaes, Jonas; Liao, Yunxiang; Solecki, Gergely; Gömmel, Miriam; Berghoff, Anna S; Salphati, Laurent; Wallin, Jeffrey J; Phillips, Heidi S; Wick, Wolfgang; Winkler, Frank
2016-12-15
The role of blood-brain barrier (BBB) integrity for brain tumor biology and therapy is a matter of debate. We developed a new experimental approach using in vivo two-photon imaging of mouse brain metastases originating from a melanoma cell line to investigate the growth kinetics of individual tumor cells in response to systemic delivery of two PI3K/mTOR inhibitors over time, and to study the impact of microregional vascular permeability. The two drugs are closely related but differ regarding a minor chemical modification that greatly increases brain penetration of one drug. Both inhibitors demonstrated a comparable inhibition of downstream targets and melanoma growth in vitro In vivo, increased BBB permeability to sodium fluorescein was associated with accelerated growth of individual brain metastases. Melanoma metastases with permeable microvessels responded similarly to equivalent doses of both inhibitors. In contrast, metastases with an intact BBB showed an exclusive response to the brain-penetrating inhibitor. The latter was true for macro- and micrometastases, and even single dormant melanoma cells. Nuclear morphology changes and single-cell regression patterns implied that both inhibitors, if extravasated, target not only perivascular melanoma cells but also those distant to blood vessels. Our study provides the first direct evidence that nonpermeable brain micro- and macrometastases can effectively be targeted by a drug designed to cross the BBB. Small-molecule inhibitors with these optimized properties are promising agents in preventing or treating brain metastases in patients. Clin Cancer Res; 22(24); 6078-87. ©2016 AACRSee related commentary by Steeg et al., p. 5953. ©2016 American Association for Cancer Research.
Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control.
Li, Chuang; Song, Jie; Xia, Yan; Ding, Weiqiang
2018-01-22
Based on Lyapunov control theory in closed and open systems, we propose a scheme to generate W state of many distant atoms in the cavity-fiber-cavity system. In the closed system, the W state is generated successfully even when the coupling strength between the cavity and fiber is extremely weak. In the presence of atomic spontaneous emission or cavity and fiber decay, the photon-measurement and quantum feedback approaches are proposed to improve the fidelity, which enable efficient generation of high-fidelity W state in the case of large dissipation. Furthermore, the time-optimal Lyapunov control is investigated to shorten the evolution time and improve the fidelity in open systems.
Direct imaging of neural currents using ultra-low field magnetic resonance techniques
Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.
2009-08-11
Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.
Weinberg, Brent D; Boreta, Lauren; Braunstein, Steve; Cha, Soonmee
2018-07-01
Glioblastomas are aggressive brain tumors that frequently recur in the subventricular zone (SVZ) despite maximal treatment. The purpose of this study was to evaluate imaging patterns of subventricular progression and impact of recurrent subventricular tumor involvement and radiation dose to patient outcome. Retrospective review of 50 patients diagnosed with glioblastoma and treated with surgery, radiation, and concurrent temozolomide from January 2012 to June 2013 was performed. Tumors were classified based on location, size, and cortical and subventricular zone involvement. Survival was compared based on recurrence type, distance from the initial enhancing tumor (local ≤ 2 cm, distant > 2 cm), and the radiation dose at the recurrence site. Progression of enhancing subventricular tumor was common at both local (58%) and distant (42%) sites. Median survival was better after local SVZ recurrence than distant SVZ recurrence (8.7 vs. 4.3 months, p = 0.04). Radiation doses at local SVZ recurrence sites recurrence averaged 57.0 ± 4.0 Gy compared to 44.7 ± 6.7 Gy at distant SVZ recurrence sites (p = 0.008). Distant subventricular progression at a site receiving ≤ 45 Gy predicted worse subsequent survival (p = 0.05). Glioblastomas frequently recurred in the subventricular zone, and patient survival was worse when enhancing tumor occurred at sites that received lower radiation doses. This recurrent disease may represent disease undertreated at the time of diagnosis, and further study is needed to determine if improved treatment strategies, such as including the subventricular zone in radiation fields, could improve clinical outcomes.
Learning to cooperate is essential for progress in physics
NASA Astrophysics Data System (ADS)
Dickau, Jonathan J.
2012-06-01
At the 10th Frontiers of Fundamental Physics symposium, Gerard't Hooft stated that, for some of the advances we hope to see in Physics during the future, there must be a great deal of cooperation between physicists from different disciplines, as well as mathematicians, programmers, technologists, and others. This requires us to evolve a new mindset; however, as so much of our past progress has come out of a fiercely competitive process - especially since a critical review of our ideas about reality remains essential to making clear progress and checking our progress. We must also address the fact that some frameworks appear incompatible, as with relativity and quantum mechanics, whose unification remains distant despite years of attempts to find a quantum gravity theory. I explore the idea that playful exploration, using both left-brained and right-brained approaches to learning, allows us to resolve conflicting ideas by taking advantage of innate human developmental and learning strategies and brain structure. It may thus foster the kind of interdisciplinary cooperation we are hoping to see.
A high-resolution enhancer atlas of the developing telencephalon.
Visel, Axel; Taher, Leila; Girgis, Hani; May, Dalit; Golonzhka, Olga; Hoch, Renee V; McKinsey, Gabriel L; Pattabiraman, Kartik; Silberberg, Shanni N; Blow, Matthew J; Hansen, David V; Nord, Alex S; Akiyama, Jennifer A; Holt, Amy; Hosseini, Roya; Phouanenavong, Sengthavy; Plajzer-Frick, Ingrid; Shoukry, Malak; Afzal, Veena; Kaplan, Tommy; Kriegstein, Arnold R; Rubin, Edward M; Ovcharenko, Ivan; Pennacchio, Len A; Rubenstein, John L R
2013-02-14
The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. Though many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here, we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified more than 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising more than 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders. Copyright © 2013 Elsevier Inc. All rights reserved.
Functional connectivity in the developing brain: A longitudinal study from 4 to 9 months of age
Damaraju, E.; Caprihan, A.; Lowe, J.R.; Allen, E.A.; Calhoun, V.D.; Phillips, J.P.
2013-01-01
We characterize the development of intrinsic connectivity networks (ICNs) from 4 to 9 months of age with resting state magnetic resonance imaging performed on sleeping infants without sedative medication. Data is analyzed with independent component analysis (ICA). Using both low (30 components) and high (100 components) ICA model order decompositions, we find that the functional network connectivity (FNC) map is largely similar at both 4 and 9 months. However at 9 months the connectivity strength decreases within local networks and increases between more distant networks. The connectivity within the default-mode network, which contains both local and more distant nodes, also increases in strength with age. The low frequency power spectrum increases with age only in the posterior cingulate cortex and posterior default mode network. These findings are consistent with a general developmental pattern of increasing longer distance functional connectivity over the first year of life and raise questions regarding the developmental importance of the posterior cingulate at this age. PMID:23994454
Functional connectivity in the developing brain: a longitudinal study from 4 to 9months of age.
Damaraju, E; Caprihan, A; Lowe, J R; Allen, E A; Calhoun, V D; Phillips, J P
2014-01-01
We characterize the development of intrinsic connectivity networks (ICNs) from 4 to 9months of age with resting state magnetic resonance imaging performed on sleeping infants without sedative medication. Data is analyzed with independent component analysis (ICA). Using both low (30 components) and high (100 components) ICA model order decompositions, we find that the functional network connectivity (FNC) map is largely similar at both 4 and 9months. However at 9months the connectivity strength decreases within local networks and increases between more distant networks. The connectivity within the default-mode network, which contains both local and more distant nodes, also increases in strength with age. The low frequency power spectrum increases with age only in the posterior cingulate cortex and posterior default mode network. These findings are consistent with a general developmental pattern of increasing longer distance functional connectivity over the first year of life and raise questions regarding the developmental importance of the posterior cingulate at this age. © 2013.
[Therapy of malignant melanoma at the stage of distant metastasis].
Garbe, C; Eigentler, T K
2004-02-01
Treatment of melanoma in the stage of distant metastasis aims on palliation and achievement of durable tumor remission with prolongation of survival. As long as metastasis is confined to one organ system and is removable, surgery remains the treatment of first choice. In limited metastasis radiotherapy may likewise be indicated, particularly in bone and brain metastasis. More extensive metastasis should be treated by chemotherapy or chemoimmunotherapy. Monochemotherapy with dacarbazine, temozolomide, fotemustine and vindesine or its combinations with interferon-alpha are currently preferred. Polychemotherapy or its combinations with interferon-alpha and interleukin-2 are suitable to produce higher response rates but failed to prolong survival. As these treatments are associated with substantially higher toxicity they have been widely abandoned. Combined treatment with dacarbazine and interferon-alpha obtain tumor responses or stable disease in 40-50% and objective tumor remissions in 15-20% of patients. Effective cancer vaccination strategies and blockade of melanoma specific target molecules are currently developed as new treatment options.
Lee, Sang-Hun; Dudok, Barna; Parihar, Vipan K; Jung, Kwang-Mook; Zöldi, Miklós; Kang, Young-Jin; Maroso, Mattia; Alexander, Allyson L; Nelson, Gregory A; Piomelli, Daniele; Katona, István; Limoli, Charles L; Soltesz, Ivan
2017-07-01
In the not too distant future, humankind will embark on one of its greatest adventures, the travel to distant planets. However, deep space travel is associated with an inevitable exposure to radiation fields. Space-relevant doses of protons elicit persistent disruptions in cognition and neuronal structure. However, whether space-relevant irradiation alters neurotransmission is unknown. Within the hippocampus, a brain region crucial for cognition, perisomatic inhibitory control of pyramidal cells (PCs) is supplied by two distinct cell types, the cannabinoid type 1 receptor (CB 1 )-expressing basket cells (CB 1 BCs) and parvalbumin (PV)-expressing interneurons (PVINs). Mice subjected to low-dose proton irradiation were analyzed using electrophysiological, biochemical and imaging techniques months after exposure. In irradiated mice, GABA release from CB 1 BCs onto PCs was dramatically increased. This effect was abolished by CB 1 blockade, indicating that irradiation decreased CB 1 -dependent tonic inhibition of GABA release. These alterations in GABA release were accompanied by decreased levels of the major CB 1 ligand 2-arachidonoylglycerol. In contrast, GABA release from PVINs was unchanged, and the excitatory connectivity from PCs to the interneurons also underwent cell type-specific alterations. These results demonstrate that energetic charged particles at space-relevant low doses elicit surprisingly selective long-term plasticity of synaptic microcircuits in the hippocampus. The magnitude and persistent nature of these alterations in synaptic function are consistent with the observed perturbations in cognitive performance after irradiation, while the high specificity of these changes indicates that it may be possible to develop targeted therapeutic interventions to decrease the risk of adverse events during interplanetary travel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubicek, Gregory J., E-mail: kubicek-gregory@cooperhealth.edu; Turtz, Alan; Xue, Jinyu
Purpose: Patients with poor performance status (PS), usually defined as a Karnofsky Performance Status of 60 or less, were not eligible for randomized stereotactic radiosurgery (SRS) studies, and many guidelines suggest that whole-brain radiation therapy (WBRT) is the most appropriate treatment for poor PS patients. Methods and Materials: In this retrospective review of our SRS database, we identified 36 patients with PS of 60 or less treated with SRS for central nervous system (CNS) metastatic disease. PS, as defined by the Karnofsky Performance Status, was 60 (27 patients), 50 (8 patients), or 40 (1 patient). The median number of CNSmore » lesions treated was 3. Results: Median overall survival (OS) was 7.2 months (range, 0.73-25.6 months). Fifteen patients (41%) were alive at 6 months, and 6 patients (16.6%) were alive at 1 year. There was no difference in OS in patients who underwent previous WBRT. There were no local failures or cases of radiation toxicity. Distant CNS failures were seen in 9 patients (25%). Conclusions: Our patients with poor PS had reasonable median OS and relatively low distant CNS failure rates. Patients in this patient population may be ideal candidates for SRS compared with WBRT given the low incidence of distant failure over their remaining lives and the favorable logistics of single-fraction treatment for these patients with debility and their caregivers.« less
Acute and chronic changes in brain activity with deep brain stimulation for refractory depression.
Conen, Silke; Matthews, Julian C; Patel, Nikunj K; Anton-Rodriguez, José; Talbot, Peter S
2018-04-01
Deep brain stimulation is a potential option for patients with treatment-refractory depression. Deep brain stimulation benefits have been reported when targeting either the subgenual cingulate or ventral anterior capsule/nucleus accumbens. However, not all patients respond and optimum stimulation-site is uncertain. We compared deep brain stimulation of the subgenual cingulate and ventral anterior capsule/nucleus accumbens separately and combined in the same seven treatment-refractory depression patients, and investigated regional cerebral blood flow changes associated with acute and chronic deep brain stimulation. Deep brain stimulation-response was defined as reduction in Montgomery-Asberg Depression Rating Scale score from baseline of ≥50%, and remission as a Montgomery-Asberg Depression Rating Scale score ≤8. Changes in regional cerebral blood flow were assessed using [ 15 O]water positron emission tomography. Remitters had higher relative regional cerebral blood flow in the prefrontal cortex at baseline and all subsequent time-points compared to non-remitters and non-responders, with prefrontal cortex regional cerebral blood flow generally increasing with chronic deep brain stimulation. These effects were consistent regardless of stimulation-site. Overall, no significant regional cerebral blood flow changes were apparent when deep brain stimulation was acutely interrupted. Deep brain stimulation improved treatment-refractory depression severity in the majority of patients, with consistent changes in local and distant brain regions regardless of target stimulation. Remission of depression was reached in patients with higher baseline prefrontal regional cerebral blood flow. Because of the small sample size these results are preliminary and further evaluation is necessary to determine whether prefrontal cortex regional cerebral blood flow could be a predictive biomarker of treatment response.
Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis
NASA Astrophysics Data System (ADS)
Datta, Abhishek; Elwassif, Maged; Battaglia, Fortunato; Bikson, Marom
2008-06-01
We calculated the electric fields induced in the brain during transcranial current stimulation (TCS) using a finite-element concentric spheres human head model. A range of disc electrode configurations were simulated: (1) distant-bipolar; (2) adjacent-bipolar; (3) tripolar; and three ring designs, (4) belt, (5) concentric ring, and (6) double concentric ring. We compared the focality of each configuration targeting cortical structures oriented normal to the surface ('surface-radial' and 'cross-section radial'), cortical structures oriented along the brain surface ('surface-tangential' and 'cross-section tangential') and non-oriented cortical surface structures ('surface-magnitude' and 'cross-section magnitude'). For surface-radial fields, we further considered the 'polarity' of modulation (e.g. superficial cortical neuron soma hyper/depolarizing). The distant-bipolar configuration, which is comparable with commonly used TCS protocols, resulted in diffuse (un-focal) modulation with bi-directional radial modulation under each electrode and tangential modulation between electrodes. Increasing the proximity of the two electrodes (adjacent-bipolar electrode configuration) increased focality, at the cost of more surface current. At similar electrode distances, the tripolar-electrodes configuration produced comparable peak focality, but reduced radial bi-directionality. The concentric-ring configuration resulted in the highest spatial focality and uni-directional radial modulation, at the expense of increased total surface current. Changing ring dimensions, or use of two concentric rings, allow titration of this balance. The concentric-ring design may thus provide an optimized configuration for targeted modulation of superficial cortical neurons.
Wang, Haiyong; Zhang, Chenyue; Zhang, Jingze; Kong, Li; Zhu, Hui; Yu, Jinming
2017-04-18
Studies on prognosis of different metastasis patterns in patients with different breast cancer subtypes (BCS) are limited. Therefore, we identified 7862 breast cancer patients with distant metastasis from 2010 to 2013 using Surveillance, Epidemiology, wand End Results (SEER) population-based data. The results showed that bone was the most common metastatic site and brain was the least common metastatic site, and the patients with HR+/HER2- occupied the highest metastasis proportion, the lowest metastasis proportion were found in HR-/HER2+ patients. Univariate and multivariate logistic regression analysis were used to analyze the association, and it was found that there were significant differences of distant metastasis patterns in patients with different BCS(different P value). Importantly, univariate and multivariate Cox regression analysis were used to analyze the prognosis. It was proven that only bone metastasis was not a prognostic factor in the HR+/HER2-, HR+/HER2+ and HR-/HER2+ subgroup (all, P > 0.05), and patients with brain metastasis had the worst cancer specific survival (CSS) in all the subgroups of BCS (all, P<0.01). Interestingly, for patients with two metastatic sites, those with bone and lung metastasis had best CSS in the HR+/HER2- (P<0.001) and HR+/HER2+ subgroups (P=0.009) However, for patients with three and four metastatic sites, there was no statistical difference in their CSS (all, P>0.05).
Wang, Haiyong; Zhang, Chenyue; Zhang, Jingze; Kong, Li; Zhu, Hui; Yu, Jinming
2017-01-01
Studies on prognosis of different metastasis patterns in patients with different breast cancer subtypes (BCS) are limited. Therefore, we identified 7862 breast cancer patients with distant metastasis from 2010 to 2013 using Surveillance, Epidemiology, wand End Results (SEER) population-based data. The results showed that bone was the most common metastatic site and brain was the least common metastatic site, and the patients with HR+/HER2− occupied the highest metastasis proportion, the lowest metastasis proportion were found in HR-/HER2+ patients. Univariate and multivariate logistic regression analysis were used to analyze the association, and it was found that there were significant differences of distant metastasis patterns in patients with different BCS(different P value). Importantly, univariate and multivariate Cox regression analysis were used to analyze the prognosis. It was proven that only bone metastasis was not a prognostic factor in the HR+/HER2-, HR+/HER2+ and HR-/HER2+ subgroup (all, P > 0.05), and patients with brain metastasis had the worst cancer specific survival (CSS) in all the subgroups of BCS (all, P<0.01). Interestingly, for patients with two metastatic sites, those with bone and lung metastasis had best CSS in the HR+/HER2- (P<0.001) and HR+/HER2+ subgroups (P=0.009) However, for patients with three and four metastatic sites, there was no statistical difference in their CSS (all, P>0.05). PMID:28038448
Olszewski, Maciej; Dolowa, Wioleta; Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark J
2013-12-01
Systemic administration of NMDA receptor antagonists, used to model schizophrenia, increase the power of high-frequency oscillations (130-180Hz, HFO) in a variety of neuroanatomical and functionally distinct brain regions. However, it is unclear whether HFO are independently and locally generated or instead spread from a distant source. To address this issue, we used local infusion of tetrodotoxin (TTX) to distinct brain areas to determine how accurately HFO recorded after injection of NMDAR antagonists reflect the activity actually generated at the electrode tip. Changes in power were evaluated in local field potentials (LFPs) recorded from the nucleus accumbens (NAc), prefrontal cortex and caudate and in electrocorticograms (ECoGs) from visual and frontal areas. HFO recorded in frontal and visual cortices (ECoGs) or in the prefrontal cortex, caudate (LFPs) co-varied in power and frequency with observed changes in the NAc. TTX infusion to the NAc immediately and profoundly reduced the power of accumbal HFO which correlated with changes in HFO recorded in distant cortical sites. In contrast, TTX infusion to the prefrontal cortex did not change HFO power recorded locally, although gamma power was reduced. A very similar result was found after TTX infusion to the caudate. These findings raise the possibility that the NAc is an important neural generator. Our data also support existing studies challenging the idea that high frequencies recorded in LFPs are necessarily generated at the recording site. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.
Cognitive control during audiovisual working memory engages frontotemporal theta-band interactions.
Daume, Jonathan; Graetz, Sebastian; Gruber, Thomas; Engel, Andreas K; Friese, Uwe
2017-10-03
Working memory (WM) maintenance of sensory information has been associated with enhanced cross-frequency coupling between the phase of low frequencies and the amplitude of high frequencies, particularly in medial temporal lobe (MTL) regions. It has been suggested that these WM maintenance processes are controlled by areas of the prefrontal cortex (PFC) via frontotemporal phase synchronisation in low frequency bands. Here, we investigated whether enhanced cognitive control during audiovisual WM as compared to visual WM alone is associated with increased low-frequency phase synchronisation between sensory areas maintaining WM content and areas from PFC. Using magnetoencephalography, we recorded neural oscillatory activity from healthy human participants engaged in an audiovisual delayed-match-to-sample task. We observed that regions from MTL, which showed enhanced theta-beta phase-amplitude coupling (PAC) during the WM delay window, exhibited stronger phase synchronisation within the theta-band (4-7 Hz) to areas from lateral PFC during audiovisual WM as compared to visual WM alone. Moreover, MTL areas also showed enhanced phase synchronisation to temporooccipital areas in the beta-band (20-32 Hz). Our results provide further evidence that a combination of long-range phase synchronisation and local PAC might constitute a mechanism for neuronal communication between distant brain regions and across frequencies during WM maintenance.
De Winter, François-Laurent; Van den Stock, Jan; de Gelder, Beatrice; Peeters, Ronald; Jastorff, Jan; Sunaert, Stefan; Vanduffel, Wim; Vandenberghe, Rik; Vandenbulcke, Mathieu
2016-09-01
In the healthy brain, modulatory influences from the amygdala commonly explain enhanced activation in face-responsive areas by emotional facial expressions relative to neutral expressions. In the behavioral variant frontotemporal dementia (bvFTD) facial emotion recognition is impaired and has been associated with atrophy of the amygdala. By combining structural and functional MRI in 19 patients with bvFTD and 20 controls we investigated the neural effects of emotion in face-responsive cortex and its relationship with amygdalar gray matter (GM) volume in neurodegeneration. Voxel-based morphometry revealed decreased GM volume in anterior medio-temporal regions including amygdala in patients compared to controls. During fMRI, we presented dynamic facial expressions (fear and chewing) and their spatiotemporally scrambled versions. We found enhanced activation for fearful compared to neutral faces in ventral temporal cortex and superior temporal sulcus in controls, but not in patients. In the bvFTD group left amygdalar GM volume correlated positively with emotion-related activity in left fusiform face area (FFA). This correlation was amygdala-specific and driven by GM in superficial and basolateral (BLA) subnuclei, consistent with reported amygdalar-cortical networks. The data suggests that anterior medio-temporal atrophy in bvFTD affects emotion processing in distant posterior areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kilburn, Jeremy M.; Lester, Scott C.; Lucas, John T.; Soike, Michael H.; Blackstock, A. William; Kearns, William T.; Hinson, William H.; Miller, Antonius A.; Petty, William J.; Munley, Michael T.; Urbanic, James J.
2014-01-01
Purpose/Objective(s) Regional failures occur in up to 15% of patients treated with stereotactic body radiotherapy (SBRT) for stage I/II lung cancer. This report focuses on the management of the unique scenario of isolated regional failures. Methods Patients treated initially with SBRT or accelerated hypo-fractionated radiotherapy were screened for curative intent treatment of isolated mediastinal failures (IMFs). Local control, regional control, progression-free survival, and distant control were estimated from the date of salvage treatment using the Kaplan–Meier method. Results Among 160 patients treated from 2002 to 2012, 12 suffered IMF and were amenable to salvage treatment. The median interval between treatments was 16 months (2–57 mo). Median salvage dose was 66 Gy (60–70 Gy). With a median follow-up of 10 months, the median overall survival was 15 months (95% confidence interval, 5.8–37 mo). When estimated from original treatment, the median overall survival was 38 months (95% confidence interval, 17–71 mo). No subsequent regional failures occurred. Distant failure was the predominant mode of relapse following salvage for IMF with a 2-year distant control rate of 38%. At the time of this analysis, three patients have died without recurrence while four are alive and no evidence of disease. High-grade toxicity was uncommon. Conclusions To our knowledge, this is first analysis of salvage mediastinal radiation after SBRT or accelerated hypofractionated radiotherapy in lung cancer. Outcomes appear similar to stage III disease at presentation. Distant failures were common, suggesting a role for concurrent or sequential chemotherapy. A standard full course of external beam radiotherapy is advisable in this unique clinical scenario. PMID:24736084
Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors
Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.
2006-01-01
Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another important aspect of implementing gene therapy in the clinical arena is to be able to image the targeting of the therapeutics to the tumors, treatment effectiveness and progression of disease. We have therefore reviewed the most exciting non-invasive, in vivo imaging techniques which can be used in combination with gene therapy to monitor therapeutic efficacy over time. PMID:16248789
Pollet, Thomas V; Roberts, Sam G B; Dunbar, Robin I M
2013-01-01
The theory of inclusive fitness has transformed our understanding of cooperation and altruism. However, the proximate psychological underpinnings of altruism are less well understood, and it has been argued that emotional closeness mediates the relationship between genetic relatedness and altruism. In this study, we use a real-life costly behaviour (travel time) to dissociate the effects of genetic relatedness from emotional closeness. Participants travelled further to see more closely related kin, as compared to more distantly related kin. For distantly related kin, the level of emotional closeness mediated this relationship--when emotional closeness was controlled for, there was no effect of genetic relatedness on travel time. However, participants were willing to travel further to visit parents, children and siblings as compared to more distantly related kin, even when emotional closeness was controlled for. This suggests that the mediating effect of emotional closeness on altruism varies with levels of genetic relatedness.
Hu, Dongzhi; Du, Changzheng; Xue, Weicheng; Dou, Fangyuan; Yao, Yunfeng; Gu, Jin
2013-08-01
The liver and lung are the organs most commonly affected by metastasis in colorectal cancer (CRC), and the interaction of chemokines and chemokine receptors (CKRs) plays an important role in the metastatic process. The aim of this study was to investigate the organ specificity of CKRs in CRC distant metastasis. Surgical specimens of primary tumours from 46 patients with metachronous distant metastases were retrieved retrospectively (20 lung metastases; 26 liver metastases). As a control, the records of 29 patients without distant metastases were randomly retrieved from our database, and their specimens were reassessed. The expression rates of CKRs, including CCR6, CXCR2, and CXCR4, were determined by immunohistochemistry, and were compared among the groups. The expression rates of CCR6 and CXCR2 were both significantly higher in the metastasis group than in the non-metastasis group (P < 0.05), but there was no statistical difference between the lung metastasis and liver metastasis subgroups. The expression of CXCR4 was not significantly different between the metastasis and non-metastasis groups. Multivariable analysis suggested that preoperative serum carcinoembryonic antigen level, CCR6 and CXCR2 were independent factors associated with distant metastasis. The expression of CCR6 and CXCR2 in CRC could predict metachronous distant metastasis, but they have no organ specificity for metastasis. © 2013 John Wiley & Sons Ltd.
Courret, Nathalie; Darche, Sylvie; Sonigo, Pierre; Milon, Geneviève; Buzoni-Gâtel, Dominique; Tardieux, Isabelle
2006-01-01
The protozoan parasite Toxoplasma gondii enters hosts through the intestinal mucosa and colonizes distant tissues such as the brain, where its progeny persists for a lifetime. We investigated the role of CD11c- and CD11b-expressing leukocytes in T gondii transport during the early step of parasitism from the mouse small intestine and during subsequent parasite localization in the brain. Following intragastric inoculation of cyst-containing parasites in mice, CD11c+ dendritic cells from the intestinal lamina propria, the Peyer patches, and the mesenteric lymph nodes were parasitized while in the blood, parasites were associated with the CD11c- CD11b+ monocytes. Using adoptive transfer experiments, we demonstrated that these parasitized cells triggered a parasitic process in the brain of naive recipient mice. Ex vivo analysis of parasitized leukocytes showed that single tachyzoites remained at the cell periphery, often surrounded by the host cell plasma membrane, but did not divide. Using either a dye that labels circulating leukocytes or an antibody known to prevent CD11b+ circulating leukocytes from leaving the microvascular bed lumen, and chimeric mice in which the hematopoietic cells expressed the green fluorescent protein, we established that T gondii zoites hijacked CD11b+ leukocytes to reach the brain extravascular space. PMID:16051744
Pepperell, Robert
2018-01-01
Recent years have seen a growing interest among neuroscientists and vision scientists in art and aesthetics, exemplifying a more general trend toward interdisciplinary integration in the arts, humanities, and sciences. However, true art-science integration remains a distant prospect due to fundamental differences in outlook and approach between disciplines. I consider two great challenges for any project designed to explain the role of the brain in art appreciation. First, scientists and artists need to identify common ground, common questions, and a shared motivation for inquiry. Second, the neuroscience of art must transcend its current goal of correlating brain functions to behavior and begin to explain the connection between activity in the brain and the phenomenology of art appreciation. I propose that both challenges can be tackled using an energy-based approach. The concept of "energy" is clearly of central importance to the physical sciences, and to neuroscience in particular. Meanwhile, energy is a concept that artists and art historians have consistently referred to when trying to articulate how artworks are made and appreciated. I survey the role of energy in art, philosophical and psychological aesthetics, and neuroscience, and suggest how this approach could help to further integrate art and neuroscience, and explain how brain activity contributes to aesthetic experience. © 2018 Elsevier B.V. All rights reserved.
The Social Brain Is Not Enough: On the Importance of the Ecological Brain for the Origin of Language
Ferretti, Francesco
2016-01-01
In this paper, I assume that the study of the origin of language is strictly connected to the analysis of the traits that distinguish human language from animal communication. Usually, human language is said to be unique in the animal kingdom because it enables and/or requires intentionality or mindreading. By emphasizing the importance of mindreading, the social brain hypothesis has provided major insights within the origin of language debate. However, as studies on non-human primates have demonstrated that intentional forms of communication are already present in these species to a greater or lesser extent, I maintain that the social brain is a necessary but not a sufficient condition to explain the uniqueness of language. In this paper, I suggest that the distinctive feature of human communication resides in the ability to tell stories, and that the origin of language should be traced with respect to the capacity to produce discourses, rather than phrases or words. As narrative requires the ability to link events distant from one another in space and time, my proposal is that in order to explain the origin of language, we need to appeal to both the social brain and the ecological brain – that is, the cognitive devices which allow us to mentally travel in space and time. PMID:27531987
Murphy, V A; Rapoport, S I
1988-06-28
Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation, 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected 45Ca and 36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.
Effects of Distant Reiki On Pain, Anxiety and Fatigue in Oncology Patients in Turkey: A Pilot Study.
Demir, Melike; Can, Gulbeyaz; Kelam, Ayhan; Aydıner, Aydın
2015-01-01
Fatigue, stress and pain are common symptoms among cancer patients, affecting the quality of life. The purpose of the present study was to determine the effect of distant Reiki on pain, anxiety and fatigue in oncology patients. Participants in the control group received usual medical and nursing care during their stay. The intervention group received usual care plus five distant Reiki sessions, one each night for 30 min. A face to face interview was performed and patient personal and illness related characteristics were evaluated using the Patient Characteristics form. Pain, stress and fatigue were evaluated according to a numeric rating scale. The experimental group was predominantly composed of women (71.4%), married individuals (40%), and primary school graduates (40%). The control group was predominantly male (72.7%), married (60%), and primary school graduates (60%). The control group demonstrated greater levels of pain (p=0.002), stress (p=0.001) and fatigue (p=0.001). The Reiki group pain score (p<0.0001), stress score (p<0.001) and fatigue score were also significantly lower. The results of this study indicate that Reiki may decreasepain, anxiety and fatigue in oncology patients.
Patel, Jayshil J; Rosenthal, Martin D; Miller, Keith R; Martindale, Robert G
2016-08-01
The purpose of this review is to describe established and emerging mechanisms of gut injury and dysfunction in trauma, describe emerging strategies to improve gut dysfunction, detail the effect of trauma on the gut microbiome, and describe the gut-brain connection in traumatic brain injury. Newer data suggest intraluminal contents, pancreatic enzymes, and hepatobiliary factors disrupt the intestinal mucosal layer. These mechanisms serve to perpetuate the inflammatory response leading to multiple organ dysfunction syndrome (MODS). To date, therapies to mitigate acute gut dysfunction have included enteral nutrition and immunonutrition; emerging therapies aimed to intestinal mucosal layer disruption, however, include protease inhibitors such as tranexamic acid, parenteral nutrition-supplemented bombesin, and hypothermia. Clinical trials to demonstrate benefit in humans are needed before widespread applications can be recommended. Despite resuscitation, gut dysfunction promotes distant organ injury. In addition, postresuscitation nosocomial and iatrogenic 'hits' exaggerate the immune response, contributing to MODS. This was a provocative concept, suggesting infectious and noninfectious causes of inflammation may trigger, heighten, and perpetuate an inflammatory response culminating in MODS and death. Emerging evidence suggests posttraumatic injury mechanisms, such as intestinal mucosal disruption and shifting of the gut microbiome to a pathobiome. In addition, traumatic brain injury activates the gut-brain axis and increases intestinal permeability.
Brain imaging in the study of Alzheimer's disease.
Reiman, Eric M; Jagust, William J
2012-06-01
Over the last 20 years, there has been extraordinary progress in brain imaging research and its application to the study of Alzheimer's disease (AD). Brain imaging researchers have contributed to the scientific understanding, early detection and tracking of AD. They have set the stage for imaging techniques to play growing roles in the clinical setting, the evaluation of disease-modifying treatments, and the identification of demonstrably effective prevention therapies. They have developed ground-breaking methods, including positron emission tomography (PET) ligands to measure fibrillar amyloid-β (Aβ) deposition, new magnetic resonance imaging (MRI) pulse sequences, and powerful image analysis techniques, to help in these endeavors. Additional work is needed to develop even more powerful imaging methods, to further clarify the relationship and time course of Aβ and other disease processes in the predisposition to AD, to establish the role of brain imaging methods in the clinical setting, and to provide the scientific means and regulatory approval pathway needed to evaluate the range of promising disease-modifying and prevention therapies as quickly as possible. Twenty years from now, AD may not yet be a distant memory, but the best is yet to come. Copyright © 2011 Elsevier Inc. All rights reserved.
BRAIN IMAGING IN THE STUDY OF ALZHEIMER'S DISEASE
Reiman, Eric M.; Jagust, William J.
2012-01-01
Over the last 20 years, there has been extraordinary progress in brain imaging research and its application to the study of Alzheimer's disease (AD). Brain imaging researchers have contributed to the scientific understanding, early detection and tracking of AD. They have set the stage for imaging techniques to play growing roles in the clinical setting, the evaluation of disease-modifying treatments, and the identification of demonstrably effective prevention therapies. They have developed ground-breaking methods, including positron emission tomography (PET) ligands to measure fibrillar amyloid-β (Aβ) deposition, new magnetic resonance imaging (MRI) pulse sequences, and powerful image analysis techniques, to help in these endeavors. Additional work is needed to develop even more powerful imaging methods, to further clarify the relationship and time course of Aβ and other disease processes in the predisposition to AD, to establish the role of brain imaging methods in the clinical setting, and to provide the scientific means and regulatory approval pathway needed to evaluate the range of promising disease-modifying and prevention therapies as quickly as possible. Twenty years from now, AD may not yet be a distant memory, but the best is yet to come. PMID:22173295
Zhang, W; Qi, X M; Chen, A X; Zhang, P; Cao, X C; Xiao, C H
2017-05-23
Objective: In this study, we evaluated the effect of supraclavicular lymph node dissection in breast cancer patients who presented with ipsilateral supraclavicular lymph node metastasis (ISLM) without distant metastasis. Methods: A total of 90 patients with synchronous ISLM without distant metastasis between 2000 and 2009 were retrospectively analyzed. Patients were retrospectively divided into two groups, namely supraclavicular lymph node dissection group(34 patients) and non-dissection group(56 patients), according to whether they underwentsupraclavicular lymph node dissection or not.The Kaplan-Meier method was applied to analyze the locoregional relapse free survival (LRFS) and overall survival(OS). Results: Median follow-upwas 85 months(range, 6 to 11 months). Local recurrence in 32 cases, 47 cases of distant metastasis, of which 25 patients were accompanied by both locoregional relapse and distant metastasis. Of the 32 patients with locoregional relapse, 11 patients were in the lymph node dissection group and 21 patients in the control group. Of the 47 patients with distant metastases, 17 were treated with lymph node dissection, 30 in the control group. Thirty-two patients died in the whole group and 16 patients underwentlymph node dissection and 16 patients didn't. There was no significant difference between the rate of 5-year LRFS and 5-year OS ( P =0.359, P =0.246). For patients of ER negative, the 5-year loco-regional relapse free survival rates were 63.7% and 43.3% in supraclavicular lymph node dissection group and control group, respectively. The 5-year overall survival rates were 52.1% and 52.3%, respectively, and there were no statistically significant differences ( P =0.118, P =0.951). For patients of PR negative, the 5-yearloco-regional relapse free rates were 59.8% and 46.2%, respectively, and the 5-year overall survival rates were 50.6% and 43.2%, respectively, and there was no significant difference between the two groups ( P =0.317, P =0.973). The 5-year recurrence-free survival rates of human epidermal growth factor receptor 2 (HER2)-positive patients were 61.2% and 48.0%( P =0.634), respectively, and the 5-year overall survival rates were 37.2% and 65.4%( P =0.032). Forty-seven patients suffered distant metastases and the 5-year metastases free survival rates were 37.3% and 38.5% in supraclavicular lymph node dissection group and control group, respectively. Conclusion: Supraclavicular lymph node dissection maybe an effective approach to improve the loco-regional control for the patients with ISLM, especially for ER negative and PR negative subtypes, but it might has adverseeffects for the patients with negative HER2 status.
Levens, Sara M; Armstrong, Laura Marie; Orejuela-Dávila, Ana I; Alverio, Tabitha
2017-09-01
Previous research suggests that adversity can have both adaptive and maladaptive effects, yet the emotional and working memory processes that contribute to more or less adaptive outcomes are unclear. The present study sought to investigate how updating emotional content differs in adolescents who have experienced past, recent, or no adversity. Participants who had experienced distant adversity (N = 53), no adversity (N = 58), or recent adversity only (N = 20) performed an emotion n-back task with emotional facial expressions. Results revealed that the distant adversity group exhibited significantly faster reaction times (RTs) than the no adversity and recent adversity only groups. In contrast, the recent adversity only group exhibited significantly slower RTs and more errors than the distant adversity and no adversity groups. These results suggest an emotion and executive control pathway by which both the benefits and negative effects of adversity may be conferred. Results also highlight the importance of time in assessing the impact of adversity.
Kalkanis, Steven N; Kondziolka, Douglas; Gaspar, Laurie E; Burri, Stuart H; Asher, Anthony L; Cobbs, Charles S; Ammirati, Mario; Robinson, Paula D; Andrews, David W; Loeffler, Jay S; McDermott, Michael; Mehta, Minesh P; Mikkelsen, Tom; Olson, Jeffrey J; Paleologos, Nina A; Patchell, Roy A; Ryken, Timothy C; Linskey, Mark E
2010-01-01
Should patients with newly-diagnosed metastatic brain tumors undergo open surgical resection versus whole brain radiation therapy (WBRT) and/or other treatment modalities such as radiosurgery, and in what clinical settings? Target population These recommendations apply to adults with a newly diagnosed single brain metastasis amenable to surgical resection. Recommendations Surgical resection plus WBRT versus surgical resection alone Level 1 Surgical resection followed by WBRT represents a superior treatment modality, in terms of improving tumor control at the original site of the metastasis and in the brain overall, when compared to surgical resection alone. Surgical resection plus WBRT versus SRS +/- WBRT Level 2 Surgical resection plus WBRT, versus stereotactic radiosurgery (SRS) plus WBRT, both represent effective treatment strategies, resulting in relatively equal survival rates. SRS has not been assessed from an evidence-based standpoint for larger lesions (>3 cm) or for those causing significant mass effect (>1 cm midline shift). Level 3 Underpowered class I evidence along with the preponderance of conflicting class II evidence suggests that SRS alone may provide equivalent functional and survival outcomes compared with resection + WBRT for patients with single brain metastases, so long as ready detection of distant site failure and salvage SRS are possible. Note The following question is fully addressed in the WBRT guideline paper within this series by Gaspar et al. Given that the recommendation resulting from the systematic review of the literature on this topic is also highly relevant to the discussion of the role of surgical resection in the management of brain metastases, this recommendation has been included below. Question Does surgical resection in addition to WBRT improve outcomes when compared with WBRT alone? Target population This recommendation applies to adults with a newly diagnosed single brain metastasis amenable to surgical resection; however, the recommendation does not apply to relatively radiosensitive tumors histologies (i.e., small cell lung cancer, leukemia, lymphoma, germ cell tumors and multiple myeloma). Recommendation Surgical resection plus WBRT versus WBRT alone Level 1 Class I evidence supports the use of surgical resection plus post-operative WBRT, as compared to WBRT alone, in patients with good performance status (functionally independent and spending less than 50% of time in bed) and limited extra-cranial disease. There is insufficient evidence to make a recommendation for patients with poor performance scores, advanced systemic disease, or multiple brain metastases.
A HEL Testbed for High Accuracy Beam Pointing and Control
2009-07-01
Control by Dojong Kim, Duane Frist, Jae Jun Kim, Brij Agrawal 01 July 2009 Approved for......distant targets immediately. The issues of the technology on the HEL system include various types of high energy laser devices, beam control systems
Jaiswal, Ritu; Johnson, Michael S; Pokharel, Deep; Krishnan, S Rajeev; Bebawy, Mary
2017-02-06
Breast cancer is the most frequently diagnosed cancer in women. Resident macrophages at distant sites provide a highly responsive and immunologically dynamic innate immune response against foreign infiltrates. Despite extensive characterization of the role of macrophages and other immune cells in malignant tissues, there is very little known about the mechanisms which facilitate metastatic breast cancer spread to distant sites of immunological integrity. The mechanisms by which a key healthy defense mechanism fails to protect distant sites from infiltration by metastatic cells in cancer patients remain undefined. Breast tumors, typical of many tumor types, shed membrane vesicles called microparticles (MPs), ranging in size from 0.1-1 μm in diameter. MPs serve as vectors in the intercellular transfer of functional proteins and nucleic acids and in drug sequestration. In addition, MPs are also emerging to be important players in the evasion of cancer cell immune surveillance. A comparative analysis of effects of MPs isolated from human breast cancer cells and non-malignant human brain endothelial cells were examined on THP-1 derived macrophages in vitro. MP-mediated effects on cell phenotype and functionality was assessed by cytokine analysis, cell chemotaxis and phagocytosis, immunolabelling, flow cytometry and confocal imaging. Student's t-test or a one-way analysis of variance (ANOVA) was used for comparison and statistical analysis. In this paper we report on the discovery of a new cellular basis for immune evasion, which is mediated by breast cancer derived MPs. MPs shed from multidrug resistant (MDR) cells were shown to selectively polarize macrophage cells to a functionally incapacitated state and facilitate their engulfment by foreign cells. We propose this mechanism may serve to physically disrupt the inherent immune response prior to cancer cell colonization whilst releasing mediators required for the recruitment of distant immune cells. These findings introduce a new paradigm in cancer cell biology with significant implications in understanding breast cancer colonization at distant sites. Most importantly, this is also the first demonstration that MPs serve as conduits in a parallel pathway supporting the cellular survival of MDR cancer cells through immune evasion.
Scorsetti, M.; Navarria, P.; Ascolese, A.; Clerici, E.; Mancosu, P.; Picozzi, P.; Pecchioli, G.; Franzese, C.; Reggiori, G.; Tomatis, S.
2017-01-01
Abstract Introduction: Radiosurgery is an emerging terapeutich approach for the treatment of brain metastases (BMs), considering the effective local control obtained without neurological impairment. Different technological modalities have been used: Gammaknife, Cybernife, or Linac with comparable results and different incidence of symptomatic radionecrosis. To date no comparative randomized studies have been published on this matter. We draw this randomized phase III trial with the aim to evaluate incidence of symptomatic radionecrosis using gamma knife radiosurgery versus linac based (EDGE) radiosurgery. Local control (LC) rate and patients overall survival (OS) were assessed as well. Materials: Patients with limited BMs (up to 4) from different solid tumors, except SCLC or hematologic malignancies, were enrolled. Inclusion criteria were a histopatological diagnosis of malignant primary tumor, a KPS ≥70, RPA class I-II, and BMs with maximum diameter ≤3 cm and/or with a total tumor volume <30 cm3. The total dose prescribed was 24 Gy for BMs ≤ 20 mm or 4.2 cm3, and 20 Gy for BMs 21–30 mm or volume <14.1 cm3 as suggested by RTOG guidelines. Clinical outcome was evaluated by neurological examination and MRI at 2 months after SRS and then every 3 months. The radionecrosis was considered the presence of central hypodensity and peripheral enhancement on T1-weighted post-contrast imaging, with edema on T2-weighted sequences and a clear lack of perfusion without any nodular highly vascularized area within the contrast enhanced lesion on perfusion MRI. Local progression was defined as radiographic increase of the enhancing abnormality in the irradiated volume on serial MR imaging, and distant failure by the presence of new brain metastases or leptomeningeal enhancement outside the irradiated volume. Results: From October 2014 to December 2015, 101 consecutives patients of the expected 250, for 167 BMs treated, were evaluated. The most common primary cancer was NSCLC (55.4%). The majority of patients have a KPS of 90–100 (53.5%) and were in RPA class II (85%). Symptomatic radionecrosis was observed in a total of 12 (11.9%) cases of the entire cohort evaluated. In the gammaknife ARM Grade II radionecrosis was recorded in 5 cases and Grade III in 2 cases. In the EDGE ARM only grade II radionecrosis occurred in 5 cases treated. No local progression in site of SRS occurred. At a median time of 11 months (range 9–12 months) 42 (41.5%) patients had new distant brain metastases, and 59 (58%) had extracranial progression at a median time of 8 months (range 7–11 months). The 6 months and 1 year OS were 81% and 70%, comparable in both arms. On univariate analysis the KPS was the only factor recorded as statistically impacting on OS. Conclusions: Gamma-knife and LINAC based SRS for BMs were comparable in terms of LC. In this evaluation the risk of symptomatic radionecrosis was greater in the gammaknife arm. This trial is supported by Varian.
Advanced fiber tracking in early acquired brain injury causing cerebral palsy.
Lennartsson, F; Holmström, L; Eliasson, A-C; Flodmark, O; Forssberg, H; Tournier, J-D; Vollmer, B
2015-01-01
Diffusion-weighted MR imaging and fiber tractography can be used to investigate alterations in white matter tracts in patients with early acquired brain lesions and cerebral palsy. Most existing studies have used diffusion tensor tractography, which is limited in areas of complex fiber structures or pathologic processes. We explored a combined normalization and probabilistic fiber-tracking method for more realistic fiber tractography in this patient group. This cross-sectional study included 17 children with unilateral cerebral palsy and 24 typically developing controls. DWI data were collected at 1.5T (45 directions, b=1000 s/mm(2)). Regions of interest were defined on a study-specific fractional anisotropy template and mapped onto subjects for fiber tracking. Probabilistic fiber tracking of the corticospinal tract and thalamic projections to the somatosensory cortex was performed by using constrained spherical deconvolution. Tracts were qualitatively assessed, and DTI parameters were extracted close to and distant from lesions and compared between groups. The corticospinal tract and thalamic projections to the somatosensory cortex were realistically reconstructed in both groups. Structural changes to tracts were seen in the cerebral palsy group and included splits, dislocations, compaction of the tracts, or failure to delineate the tract and were associated with underlying pathology seen on conventional MR imaging. Comparisons of DTI parameters indicated primary and secondary neurodegeneration along the corticospinal tract. Corticospinal tract and thalamic projections to the somatosensory cortex showed dissimilarities in both structural changes and DTI parameters. Our proposed method offers a sensitive means to explore alterations in WM tracts to further understand pathophysiologic changes following early acquired brain injury. © 2015 by American Journal of Neuroradiology.
Wu, Xin; Yang, Wenjing; Tong, Dandan; Sun, Jiangzhou; Chen, Qunlin; Wei, Dongtao; Zhang, Qinglin; Zhang, Meng; Qiu, Jiang
2015-07-01
In this study, an activation likelihood estimation (ALE) meta-analysis was used to conduct a quantitative investigation of neuroimaging studies on divergent thinking. Based on the ALE results, the functional magnetic resonance imaging (fMRI) studies showed that distributed brain regions were more active under divergent thinking tasks (DTTs) than those under control tasks, but a large portion of the brain regions were deactivated. The ALE results indicated that the brain networks of the creative idea generation in DTTs may be composed of the lateral prefrontal cortex, posterior parietal cortex [such as the inferior parietal lobule (BA 40) and precuneus (BA 7)], anterior cingulate cortex (ACC) (BA 32), and several regions in the temporal cortex [such as the left middle temporal gyrus (BA 39), and left fusiform gyrus (BA 37)]. The left dorsolateral prefrontal cortex (BA 46) was related to selecting the loosely and remotely associated concepts and organizing them into creative ideas, whereas the ACC (BA 32) was related to observing and forming distant semantic associations in performing DTTs. The posterior parietal cortex may be involved in the semantic information related to the retrieval and buffering of the formed creative ideas, and several regions in the temporal cortex may be related to the stored long-term memory. In addition, the ALE results of the structural studies showed that divergent thinking was related to the dopaminergic system (e.g., left caudate and claustrum). Based on the ALE results, both fMRI and structural MRI studies could uncover the neural basis of divergent thinking from different aspects (e.g., specific cognitive processing and stable individual difference of cognitive capability). © 2015 Wiley Periodicals, Inc.
Furet, Elise; El Bouchtaoui, Morad; Feugeas, Jean-Paul; Miquel, Catherine; Leboeuf, Christophe; Beytout, Clémentine; Bertheau, Philippe; Le Rhun, Emilie; Bonneterre, Jacques; Janin, Anne; Bousquet, Guilhem
2017-06-06
Metastatic breast cancer is a leading cause of mortality in women, partly on account of brain metastases. However, the mechanisms by which cancer cells cross the blood-brain barrier remain undeciphered. Most molecular studies predicting metastatic risk have been performed on primary breast cancer samples. Here we studied metastatic lymph-nodes from patients with breast cancers to identify markers associated with the occurrence of brain metastases. Transcriptomic analyses identified CDKN2A/p16 as a gene potentially associated with brain metastases. Fifty-two patients with HER2-overexpressing or triple-negative breast carcinoma with lymph nodes and distant metastases were included in this study. Transcriptomic analyses were performed on laser-microdissected tumor cells from 28 metastatic lymph-nodes. Supervised analyses compared the transcriptomic profiles of women who developed brain metastases and those who did not. As a validation series, we studied metastatic lymph-nodes from 24 other patients.Immunohistochemistry investigations showed that p16 mean scores were significantly higher in patients with brain metastases than in patients without (7.4 vs. 1.7 respectively, p < 0.01). This result was confirmed on the validation series. Multivariate analyses showed that the p16 score was the only variable positively associated with the risk of brain metastases (p = 0.01).With the same threshold of 5 for p16 scores using a Cox model, overall survival was shorter in women with a p16 score over 5 in both series. The risk of brain metastases in women with HER2-overexpressing or triple-negative breast cancer could be better assessed by studying p16 protein expression on surgically removed axillary lymph-nodes.
Zeng, Zhiqing; Liu, Hong; Jiang, Di
2015-04-01
To observe the expressions of neurotrophin receptor homolog 2 (NRH2), nerve growth factor precursor (proNGF), sortilin and neurotrophin receptor p75 (p75NTR) in cerebral tissues around hematomas in the different periods after intracerebral hemorrhage, and explore their relationships to cell apoptosis. The specimens of cerebral tissues around hematomas were collected from the patients undergoing hematoma removal operation after intracerebral hemorrhage. These specimens were divided into four groups, namely ≤ 6 hours, 6-24 hours(including 24 hours), 24-72 hours (including 72 hours) and over 72 hours according to the time from intracerebral hemorrhage to specimen collection. At the same time, 10 brain tissues distant to hemorrhage that dropped in the operative process were collected as a control group. Apoptosis index (AI) was examined in brain cells by terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labeling (TUNEL). The expressions of NRH2, proNGF, sortilin and p75NTR mRNAs and proteins in brain tissues were detected through real-time quantitative PCR and Western blotting, respectively. Also, the expressions of Bcl-2 and Bax in brain tissues were analyzed using Western blotting. In vitro cultured astrocytes of rat cortex were transfected by NRH2 siRNA or scramble siRNA. The expressions of proNGF, sortilin and p75NTR proteins were detected using Western blotting. AI was higher in all groups of hemorrhage for 6 hours or longer than that in control and ≤ 6 hours groups, and AI in the group of 24-72 hours after intracerebral hemorrhage was the highest. However, there was no significant difference in AI between ≤ 6 hours group and control group. With the extension of intracerebral hemorrhage time, the expression levels of proNGF and p75NTR mRNAs and proteins were gradually elevated, reached the peak in 24-72 hours, and maintained a higher level after 72 hours, whereas there were no significant differences in the above indicators between ≤ 6 hours group and control group. In comparison with control group and ≤ 6 hours group, the expression levels of NRH2 and sortilin mRNAs and proteins and Bax expression started to increase in 6-24 hours, reached the peak in 24-72 hours, and then stayed a higher level after 72 hours, whereas there were no significant differences in the above indicators between ≤ 6 hours group and control group. There was no obvious change in Bcl-2 expression level between ≤ 6 hours group and control group. The level of Bcl-2 decreased in all groups of intracerebral hemorrhage for over 6 hours, and reached the nadir in 24-72 hours. Astrocytes transfected with NRH2 siRNA displayed a significant decrease in proNGF, sortilin and p75NTR protein levels as compared with scramble siRNA or blank control groups. The expression of NRH2 would increase in the cerebral tissues around hematomas after intracerebral hemorrhage. NRH2 might enhance the ratio of Bax/Bcl-2 by promoting the expressions of proNGF, sortilin and p75NTR, thereby inducing brain cell apoptosis.
Advances in diagnosis and treatment of metastatic cervical cancer
2016-01-01
Cervical cancer is one of the most common cancers in women worldwide. The outcome of patients with metastatic cervical cancer is poor. We reviewed the relevant literature concerning the treatment and diagnosis of metastatic cervical cancer. There are two types of metastasis related to different treatments and survival rates: hematogenous metastasis and lymphatic metastasis. Patients with hematogenous metastasis have a higher risk of death than those with lymphatic metastasis. In terms of diagnosis, fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) and PET-computed tomography are effective tools for the evaluation of distant metastasis. Concurrent chemoradiotherapy and subsequent chemotherapy are well-tolerated and efficient for lymphatic metastasis. As for lung metastasis, chemotherapy and/or surgery are valuable treatments for resistant, recurrent metastatic cervical cancer and chemoradiotherapy may be the optimal choice for stage IVB cervical cancer. Chemotherapy and bone irradiation are promising for bone metastasis. A better survival is achieved with multimodal therapy. Craniotomy or stereotactic radiosurgery is an optimal choice combined with radiotherapy for solitary brain metastases. Chemotherapy and palliative brain radiation may be considered for multiple brain metastases and other organ metastases. PMID:27171673
Advances in diagnosis and treatment of metastatic cervical cancer.
Li, Haoran; Wu, Xiaohua; Cheng, Xi
2016-07-01
Cervical cancer is one of the most common cancers in women worldwide. The outcome of patients with metastatic cervical cancer is poor. We reviewed the relevant literature concerning the treatment and diagnosis of metastatic cervical cancer. There are two types of metastasis related to different treatments and survival rates: hematogenous metastasis and lymphatic metastasis. Patients with hematogenous metastasis have a higher risk of death than those with lymphatic metastasis. In terms of diagnosis, fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) and PET-computed tomography are effective tools for the evaluation of distant metastasis. Concurrent chemoradiotherapy and subsequent chemotherapy are well-tolerated and efficient for lymphatic metastasis. As for lung metastasis, chemotherapy and/or surgery are valuable treatments for resistant, recurrent metastatic cervical cancer and chemoradiotherapy may be the optimal choice for stage IVB cervical cancer. Chemotherapy and bone irradiation are promising for bone metastasis. A better survival is achieved with multimodal therapy. Craniotomy or stereotactic radiosurgery is an optimal choice combined with radiotherapy for solitary brain metastases. Chemotherapy and palliative brain radiation may be considered for multiple brain metastases and other organ metastases.
Barrett, Thomas F; Gill, Corey M; Miles, Brett A; Iloreta, Alfred M C; Bakst, Richard L; Fowkes, Mary; Brastianos, Priscilla K; Bederson, Joshua B; Shrivastava, Raj K
2018-06-01
Squamous cell carcinoma of the head and neck (HNSCC) affects nearly 500,000 individuals globally each year. With the rise of human papillomavirus (HPV) in the general population, clinicians are seeing a concomitant rise in HPV-related HNSCC. Notably, a hallmark of HPV-related HNSCC is a predilection for unique biological and clinical features, which portend a tendency for hematogenous metastasis to distant locations, such as the brain. Despite the classic belief that HNSCC is restricted to local spread via passive lymphatic drainage, brain metastases (BMs) are a rare complication that occurs in less than 1% of all HNSCC cases. Time between initial diagnosis of HNSCC and BM development can vary considerably. Some patients experience more than a decade of disease-free survival, whereas others present with definitive neurological symptoms that precede primary tumor detection. The authors systematically review the current literature on HNSCC BMs and discuss the current understanding of the effect of HPV status on the risk of developing BMs in the modern genomic era.
Xu, Zhiyun; Li, Encheng; Guo, Zhe; Yu, Ruofei; Hao, Hualong; Xu, Yitong; Sun, Zhao; Li, Xiancheng; Lyu, Jianxin; Wang, Qi
2016-10-05
Metastasis is a complex pathophysiological process. As the main cause of cancer mortality in humans it represents a serious challenge to both basic researchers and clinicians. Here we report the design and construction of a multi-organ microfluidic chip that closely mimics the in vivo microenvironment of lung cancer metastasis. This multi-organs-on-a-chip includes an upstream "lung" and three downstream "distant organs", with three polydimethylsiloxane (PDMS) layers and two thin PDMS microporous membranes bonded to form three parallel microchannels. Bronchial epithelial, lung cancer, microvascular endothelial, mononuclear, and fibroblast cells were grown separated by the biomembrane in upstream "lung", while astrocytes, osteocytes, and hepatocytes were grown in distant chambers, to mimic lung cancer cell metastasis to the brain, bone, and liver. After culture in this system, lung cancer cells formed a "tumor mass", showed epithelial-mesenchymal transition (with altered expression of E-cadherin, N-cadherin, Snail1, and Snail2) and invasive capacity. A549 cells co-cultured with astrocytes overexpressed CXCR4 protein, indicating damage of astrocytes after cancer cell metastasis to the brain. Osteocytes overexpressed RANKL protein indicates damage of osteocytes after cancer cell metastasis to the bone, and hepatocytes overexpressed AFP protein indicates damage to hepatocytes after cancer cell metastasis to the liver. Finally, in vivo imaging of cancer growth and metastasis in a nude mice model validated the performance of metastasis in the organs-on-chip system. This system provides a useful tool to mimic the in vivo microenvironment of cancer metastasis and to investigate cell-cell interactions during metastasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, W.N.; Schneider, P.A.; Tokars, R.P.
1987-11-01
Between May 1974 and March 1983, 44 children with histologically verified cerebellar medulloblastoma were seen for post-operative cranial-spinal irradiation following attempted total tumor removal. Six patients were excluded from review because they received all or part of their treatment at another institution (3 patients) or did not complete the planned course of irradiation (3 patients). All of the 38 remaining patients were treated by a previously described technique on a 4 MeV Linear Accelerator with 55 Gy delivered to the primary tumor site. Prior to December 1978, 19 consecutive children (Group A) had spinal prophylactic doses of 30-40 Gy andmore » brain prophylactic doses of 40-50 Gy. After the date, 25 Gy was given to the cranial-spinal axis of 19 consecutive children (Group B). This lower dose was arbitrarily selected with the hope of reducing morbidity in treated survivors and achieving the same tumor control. Risk factors that define good and poor prognosis were evaluated for each group, and there were no differences noted. Myelography and CSF cytology were not routinely performed. Follow-up for the 38 patients ranges from 20 months to 124 months. For the low risk patients, survival (12/15 or 80%) was independent of cranial-spinal radiation dose (Group A 6/8, Group B 6/7). For the high risk patients survival was poor (9/23 or 39%), not dependent on cranial-spinal radiation dose (Group A 5/11, Group B 4/12), and associated with failure at the primary site (10/14), often with CSF seeding (8/10). The other 4 failures include 2 who had moved outside the United States (details of failure are unknown), 1 with supratentorial, CSF seeding and distant metastases, and 1 with distant metastasis only.« less
Boorman, Erie D; Rajendran, Vani G; O'Reilly, Jill X; Behrens, Tim E
2016-03-16
Complex cognitive processes require sophisticated local processing but also interactions between distant brain regions. It is therefore critical to be able to study distant interactions between local computations and the neural representations they act on. Here we report two anatomically and computationally distinct learning signals in lateral orbitofrontal cortex (lOFC) and the dopaminergic ventral midbrain (VM) that predict trial-by-trial changes to a basic internal model in hippocampus. To measure local computations during learning and their interaction with neural representations, we coupled computational fMRI with trial-by-trial fMRI suppression. We find that suppression in a medial temporal lobe network changes trial-by-trial in proportion to stimulus-outcome associations. During interleaved choice trials, we identify learning signals that relate to outcome type in lOFC and to reward value in VM. These intervening choice feedback signals predicted the subsequent change to hippocampal suppression, suggesting a convergence of signals that update the flexible representation of stimulus-outcome associations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Shobharani, M; Viraktamath, C A; Webb, M D
2018-01-02
Species of the leafhopper genus Penthimia Germar known from the Indian subcontinent are reviewed based on the examination of type specimens. Seven new species of the genus, Penthimia curvata sp. nov. (Karnataka: Bandipur), P. meghalayensis sp. nov. (Meghalaya: Nangpoh), P. neoattenuata sp. nov. (India: Tamil Nadu), P. ribhoi sp. nov. (India: Meghalaya), P. sahyadrica sp. nov. (Karnataka: Dharmasthala, Agumbe; Kerala: Thekkady), P. spiculata sp. nov. (Karnataka: Nagarahole) and P. tumida sp. nov. (Tamil Nadu: Ootacamund; Kerala: Munnar) are described. The following nomenclatorial changes are proposed: Penthimia alba Zahniser, McKamey Dmitriev, 2012 (replacement name for P. thoracica Distant, 1918, nec Panzer, 1799), syn. nov. of P. quadrinotata Distant, 1918; Neodartus scutellatus Distant, 1908 syn. nov. of Penthimia ereba Distant 1908; P. nilgiriensis Distant, 1918 syn. nov. of P. montana Distant, 1918; P. scutellata (Distant) comb. nov. (from genus Neodartus); a lectotype is designated for P. maculosa Distant, stat. revived, thereby removing its synonymy with P. scapularis Distant. The following other lectotypes are designated: P. attenuata Distant, P. subniger Distant, P. scapularis Distant, P. distanti Baker, P. ereba Distant, N. scutellatus Distant, P. fraterna Distant, P. funebris Distant, P. juno Distant, P. maculosa Distant, P. montana Distant, P. noctua Distant, P. quadrinotata Distant, P. alba Zahniser, McKamey Dmitriev. Examination of types of Penthimia rufopunctata Motschulsky revealed that it belongs to Penthimia and hence it is transferred back to that genus from Neodartus, revised placement. The following species previously included in the genus Penthimia are transferred to the genera Tambila Distant and Vulturnus Kirkaldy: Tambila badia (Distant) comb. nov., T. majuscula (Distant) comb. nov., T. vittatifrons (Distant) comb. nov., T. variabilis (Distant) comb. nov. and Vulturnus flavocapitata (Distant) comb. nov. Three species are treated in a new Penthimia compacta Walker complex, i.e., Penthimia compacta Walker 1851, Penthimia subniger Distant 1908 and Penthimia scapularis Distant 1908. All taxa are described and a key to Penthimiini genera found in the subcontinent and also a key to species of Penthimia are included.
Kageyama, Ken; Yamamoto, Akira; Okuma, Tomohisa; Hamamoto, Shinichi; Takeshita, Toru; Sakai, Yukimasa; Nishida, Norifumi; Matsuoka, Toshiyuki; Miki, Yukio
2013-10-01
To evaluate survival and distant tumor growth after radiofrequency ablation (RFA) and local OK-432 injection at a single tumor site in a rabbit model with intra- and extrahepatic VX2 tumors and to examine the effect of this combination therapy, which we termed immuno-radiofrequency ablation (immunoRFA), on systemic antitumor immunity in a rechallenge test. Our institutional animal care committee approved all experiments. VX2 tumors were implanted to three sites: two in the liver and one in the left ear. Rabbits were randomized into four groups of seven to receive control, RFA alone, OK-432 alone, and immunoRFA treatments at a single liver tumor at 1 week after implantation. Untreated liver and ear tumor volumes were measured after the treatment. As the rechallenge test, tumors were reimplanted into the right ear of rabbits, which survived the 35 weeks and were followed up without additional treatment. Statistical significance was examined by log-rank test for survival and Student's t test for tumor volume. Survival was significantly prolonged in the immunoRFA group compared to the other three groups (P < 0.05). Untreated liver and ear tumor sizes became significantly smaller after immunoRFA compared to controls (P < 0.05). In the rechallenge test, the reimplanted tumors regressed without further therapy compared to the ear tumors of the control group (P < 0.05). ImmunoRFA led to improved survival and suppression of distant untreated tumor growth. Decreases in size of the distant untreated tumors and reimplanted tumors suggested that systemic antitumor immunity was enhanced by immunoRFA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kageyama, Ken, E-mail: kageyamaken0112@gmail.com; Yamamoto, Akira, E-mail: loveakirayamamoto@gmail.com; Okuma, Tomohisa, E-mail: o-kuma@msic.med.osaka-cu.ac.jp
Purpose: To evaluate survival and distant tumor growth after radiofrequency ablation (RFA) and local OK-432 injection at a single tumor site in a rabbit model with intra- and extrahepatic VX2 tumors and to examine the effect of this combination therapy, which we termed immuno-radiofrequency ablation (immunoRFA), on systemic antitumor immunity in a rechallenge test. Methods: Our institutional animal care committee approved all experiments. VX2 tumors were implanted to three sites: two in the liver and one in the left ear. Rabbits were randomized into four groups of seven to receive control, RFA alone, OK-432 alone, and immunoRFA treatments at amore » single liver tumor at 1 week after implantation. Untreated liver and ear tumor volumes were measured after the treatment. As the rechallenge test, tumors were reimplanted into the right ear of rabbits, which survived the 35 weeks and were followed up without additional treatment. Statistical significance was examined by log-rank test for survival and Student's t test for tumor volume. Results: Survival was significantly prolonged in the immunoRFA group compared to the other three groups (P < 0.05). Untreated liver and ear tumor sizes became significantly smaller after immunoRFA compared to controls (P < 0.05). In the rechallenge test, the reimplanted tumors regressed without further therapy compared to the ear tumors of the control group (P < 0.05). Conclusion: ImmunoRFA led to improved survival and suppression of distant untreated tumor growth. Decreases in size of the distant untreated tumors and reimplanted tumors suggested that systemic antitumor immunity was enhanced by immunoRFA.« less
Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions
Kobayashi, Kenta; Inoue, Ken-ichi; Tanabe, Soshi; Kato, Shigeki; Takada, Masahiko; Kobayashi, Kazuto
2017-01-01
Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1) with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G) and vesicular stomatitis virus glycoprotein (VSV-G) enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E), which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease. PMID:28824385
Locality preserving non-negative basis learning with graph embedding.
Ghanbari, Yasser; Herrington, John; Gur, Ruben C; Schultz, Robert T; Verma, Ragini
2013-01-01
The high dimensionality of connectivity networks necessitates the development of methods identifying the connectivity building blocks that not only characterize the patterns of brain pathology but also reveal representative population patterns. In this paper, we present a non-negative component analysis framework for learning localized and sparse sub-network patterns of connectivity matrices by decomposing them into two sets of discriminative and reconstructive bases. In order to obtain components that are designed towards extracting population differences, we exploit the geometry of the population by using a graphtheoretical scheme that imposes locality-preserving properties as well as maintaining the underlying distance between distant nodes in the original and the projected space. The effectiveness of the proposed framework is demonstrated by applying it to two clinical studies using connectivity matrices derived from DTI to study a population of subjects with ASD, as well as a developmental study of structural brain connectivity that extracts gender differences.
High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.
Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M
2016-09-07
Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits. Copyright © 2016 Elsevier Inc. All rights reserved.
What can fish brains tell us about visual perception?
Rosa Salva, Orsola; Sovrano, Valeria Anna; Vallortigara, Giorgio
2014-01-01
Fish are a complex taxonomic group, whose diversity and distance from other vertebrates well suits the comparative investigation of brain and behavior: in fish species we observe substantial differences with respect to the telencephalic organization of other vertebrates and an astonishing variety in the development and complexity of pallial structures. We will concentrate on the contribution of research on fish behavioral biology for the understanding of the evolution of the visual system. We shall review evidence concerning perceptual effects that reflect fundamental principles of the visual system functioning, highlighting the similarities and differences between distant fish groups and with other vertebrates. We will focus on perceptual effects reflecting some of the main tasks that the visual system must attain. In particular, we will deal with subjective contours and optical illusions, invariance effects, second order motion and biological motion and, finally, perceptual binding of object properties in a unified higher level representation. PMID:25324728
Liu, Yi; Du, Lian; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; Fu, Yixiao; Qiu, Haitang; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua
2015-01-01
Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately before and then following 8 ECT sessions (brief-pulse square-wave apparatus, bitemporal). They also computed voxel-wise amplitude of low-frequency fluctuation (ALFF) as a measure of regional brain activity and selected the left subgenual anterior cingulate cortex (sgACC) to evaluate functional connectivity between the sgACC and other brain regions. Increased regional brain activity measured by ALFF mainly in the left sgACC following ECT. Functional connectivity of the left sgACC increased in the ipsilateral parahippocampal gyrus, pregenual ACC, contralateral middle temporal pole, and orbitofrontal cortex. Importantly, reduction in depressive symptoms were negatively correlated with increased ALFF in the left sgACC and left hippocampus, and with distant functional connectivity between the left sgACC and contralateral middle temporal pole. That is, across subjects, as depression improved, regional brain activity in sgACC and its functional connectivity increased in the brain. Eight ECT sessions in MDD patients modulated activity in the sgACC and its networks. The antidepressant effects of ECT were negatively correlated with sgACC brain activity and connectivity. These findings suggest that sgACC-associated prefrontal-limbic structures are associated with the therapeutic effects of ECT in MDD. PMID:26559309
Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential
NASA Astrophysics Data System (ADS)
Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald
2014-02-01
Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to "true" neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TR< 0.5s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.
Integrin activation controls metastasis in human breast cancer
NASA Astrophysics Data System (ADS)
Felding-Habermann, Brunhilde; O'Toole, Timothy E.; Smith, Jeffrey W.; Fransvea, Emilia; Ruggeri, Zaverio M.; Ginsberg, Mark H.; Hughes, Paul E.; Pampori, Nisar; Shattil, Sanford J.; Saven, Alan; Mueller, Barbara M.
2001-02-01
Metastasis is the primary cause of death in human breast cancer. Metastasis to bone, lungs, liver, and brain involves dissemination of breast cancer cells via the bloodstream and requires adhesion within the vasculature. Blood cell adhesion within the vasculature depends on integrins, a family of transmembrane adhesion receptors, and is regulated by integrin activation. Here we show that integrin v3 supports breast cancer cell attachment under blood flow conditions in an activation-dependent manner. Integrin v3 was found in two distinct functional states in human breast cancer cells. The activated, but not the nonactivated, state supported tumor cell arrest during blood flow through interaction with platelets. Importantly, activated αvβ3 was expressed by freshly isolated metastatic human breast cancer cells and variants of the MDA-MB 435 human breast cancer cell line, derived from mammary fat pad tumors or distant metastases in severe combined immunodeficient mice. Expression of constitutively activated mutant αvβ3D723R, but not αvβ3WT, in MDA-MB 435 cells strongly promoted metastasis in the mouse model. Thus breast cancer cells can exhibit a platelet-interactive and metastatic phenotype that is controlled by the activation of integrin αvβ3. Consequently, alterations within tumors that lead to the aberrant control of integrin activation are expected to adversely affect the course of human breast cancer.
[Sleep, emotions and the visceral control].
Pigarev, I N; Pigareva, M L
2013-01-01
It is known that sleep is connected with sensory isolation of the brain, inactivation of the consciousness and reorganization of the electrical activity in all cerebral cortical areas. On the other hand, sleep deprivation leads to pathology in visceral organs and finally to the death of animals, while there are no obvious changes in the brain itself. It stays the opened question how the changes in the brain activity during sleep could be con- nected with the visceral health? We proposed that the same brain areas and the same neurons, which in wakefulness process the information coming from the distant and proprioreceptors, switch during sleep to the processing of the interoceptive information. Thus, central nervous system is involved into the regulation of the life support functions of the body during sleep. Results of our experiments supported this hypothesis, explained many observations obtained in somnology and offered the mechanisms of several pathological states connected with sleep. However, at the present level of the visceral sleep theory there were no understanding of the well known link between the emotional states of the organisms and transition from wakefulness to sleep, and sleep quality. In this study the attempt is undertaken to combine the visceral theory of sleep with the need- informational theory ofemotions, proposed by P. Simonov. The visceral theory of sleep proposes that in living organisms there is a constant monitoring of the correspondence of the visceral parameters to the genetically determined values. Mismatch signals evoke the feeling of tiredness and the need of sleep. This sleep need en- ters the competition with the other actual needs of the organism. In according with the theory of P. Simonov emotions connected with a particular need play important role in their ranking for satisfaction. We propose that emotional estimation of the sleep need, based on the visceral signals, is realized in the same brain structures which undertake this estimation for other behavioral needs in wakefulness. During sleep, the same brain structures, involved in estimation of emotions, continue to rank the visceral needs and to define their order for processing in the cortical areas and in the highest level of the visceral integration. In the context of the proposed hypothesis, we discuss the results of the studies devoted to investigation of the link between sleep and emotions.
Amorocho, Diego F; Abreu-Grobois, F Alberto; Dutton, Peter H; Reina, Richard D
2012-01-01
Mitochondrial DNA analyses have been useful for resolving maternal lineages and migratory behavior to foraging grounds (FG) in sea turtles. However, little is known about source rookeries and haplotype composition of foraging green turtle aggregations in the southeastern Pacific. We used mitochondrial DNA control region sequences to identify the haplotype composition of 55 green turtles, Chelonia mydas, captured in foraging grounds of Gorgona National Park in the Colombian Pacific. Amplified fragments of the control region (457 bp) revealed the presence of seven haplotypes, with haplotype (h) and nucleotide (π) diversities of h = 0.300±0.080 and π = 0.009±0.005 respectively. The most common haplotype was CMP4 observed in 83% of individuals, followed by CMP22 (5%). The genetic composition of the Gorgona foraging population primarily comprised haplotypes that have been found at eastern Pacific rookeries including Mexico and the Galapagos, as well as haplotypes of unknown stock origin that likely originated from more distant western Pacific rookeries. Mixed stock analysis suggests that the Gorgona FG population is comprised mostly of animals from the Galapagos rookery (80%). Lagrangian drifter data showed that movement of turtles along the eastern Pacific coast and eastward from distant western and central Pacific sites was possible through passive drift. Our results highlight the importance of this protected area for conservation management of green turtles recruited from distant sites along the eastern Pacific Ocean.
Amorocho, Diego F.; Abreu-Grobois, F. Alberto; Dutton, Peter H.; Reina, Richard D.
2012-01-01
Mitochondrial DNA analyses have been useful for resolving maternal lineages and migratory behavior to foraging grounds (FG) in sea turtles. However, little is known about source rookeries and haplotype composition of foraging green turtle aggregations in the southeastern Pacific. We used mitochondrial DNA control region sequences to identify the haplotype composition of 55 green turtles, Chelonia mydas, captured in foraging grounds of Gorgona National Park in the Colombian Pacific. Amplified fragments of the control region (457 bp) revealed the presence of seven haplotypes, with haplotype (h) and nucleotide (π) diversities of h = 0.300±0.080 and π = 0.009±0.005 respectively. The most common haplotype was CMP4 observed in 83% of individuals, followed by CMP22 (5%). The genetic composition of the Gorgona foraging population primarily comprised haplotypes that have been found at eastern Pacific rookeries including Mexico and the Galapagos, as well as haplotypes of unknown stock origin that likely originated from more distant western Pacific rookeries. Mixed stock analysis suggests that the Gorgona FG population is comprised mostly of animals from the Galapagos rookery (80%). Lagrangian drifter data showed that movement of turtles along the eastern Pacific coast and eastward from distant western and central Pacific sites was possible through passive drift. Our results highlight the importance of this protected area for conservation management of green turtles recruited from distant sites along the eastern Pacific Ocean. PMID:22319635
Kullander, K; Croll, S D; Zimmer, M; Pan, L; McClain, J; Hughes, V; Zabski, S; DeChiara, T M; Klein, R; Yancopoulos, G D; Gale, N W
2001-04-01
Growing axons follow highly stereotypical pathways, guided by a variety of attractive and repulsive cues, before establishing specific connections with distant targets. A particularly well-known example that illustrates the complexity of axonal migration pathways involves the axonal projections of motor neurons located in the motor cortex. These projections take a complex route during which they first cross the midline, then form the corticospinal tract, and ultimately connect with motor neurons in the contralateral side of the spinal cord. These obligatory contralateral connections account for why one side of the brain controls movement on the opposing side of the body. The netrins and slits provide well-known midline signals that regulate axonal crossings at the midline. Herein we report that a member of the ephrin family, ephrin-B3, also plays a key role at the midline to regulate axonal crossing. In particular, we show that ephrin-B3 acts as the midline barrier that prevents corticospinal tract projections from recrossing when they enter the spinal gray matter. We report that in ephrin-B3(-/-) mice, corticospinal tract projections freely recross in the spinal gray matter, such that the motor cortex on one side of the brain now provides bilateral input to the spinal cord. This neuroanatomical abnormality in ephrin-B3(-/-) mice correlates with loss of unilateral motor control, yielding mice that simultaneously move their right and left limbs and thus have a peculiar hopping gait quite unlike the alternate step gait displayed by normal mice. The corticospinal and walking defects in ephrin-B3(-/-) mice resemble those recently reported for mice lacking the EphA4 receptor, which binds ephrin-B3 as well as other ephrins, suggesting that the binding of EphA4-bearing axonal processes to ephrin-B3 at the midline provides the repulsive signal that prevents corticospinal tract projections from recrossing the midline in the developing spinal cord.
Lateralized theta wave connectivity and language performance in 2- to 5-year-old children.
Kikuchi, Mitsuru; Shitamichi, Kiyomi; Yoshimura, Yuko; Ueno, Sanae; Remijn, Gerard B; Hirosawa, Tetsu; Munesue, Toshio; Tsubokawa, Tsunehisa; Haruta, Yasuhiro; Oi, Manabu; Higashida, Haruhiro; Minabe, Yoshio
2011-10-19
Recent neuroimaging studies support the view that a left-lateralized brain network is crucial for language development in children. However, no previous studies have demonstrated a clear link between lateralized brain functional network and language performance in preschool children. Magnetoencephalography (MEG) is a noninvasive brain imaging technique and is a practical neuroimaging method for use in young children. MEG produces a reference-free signal, and is therefore an ideal tool to compute coherence between two distant cortical rhythms. In the present study, using a custom child-sized MEG system, we investigated brain networks while 78 right-handed preschool human children (32-64 months; 96% were 3-4 years old) listened to stories with moving images. The results indicated that left dominance of parietotemporal coherence in theta band activity (6-8 Hz) was specifically correlated with higher performance of language-related tasks, whereas this laterality was not correlated with nonverbal cognitive performance, chronological age, or head circumference. Power analyses did not reveal any specific frequencies that contributed to higher language performance. Our results suggest that it is not the left dominance in theta oscillation per se, but the left-dominant phase-locked connectivity via theta oscillation that contributes to the development of language ability in young children.
Alongi, Pierpaolo; Iaccarino, Leonardo; Losa, Marco; Del Vecchio, Antonella; Gerevini, Simonetta; Plebani, Valentina; Di Muzio, Nadia; Mortini, Pietro; Gianolli, Luigi; Perani, Daniela
2018-05-25
Even though the benefits of radiation therapy are well established, it is important to recognize the broad spectrum of radiation-induced changes, particularly in the central nervous system. The possible damage to the brain parenchyma may have clinical consequences and in particular cognitive impairment might be one of the major complication of radiotherapy. To date, no studies have investigated the effects of focal radiation therapy on brain structure and function together with the assessment of their clinical outcomes at a long follow-up. In this prospective study, we evaluated in six patients the possible brain late effects after radiation therapy, using a standardized neuropsychological battery, MRI and 18F-FDG PET using SPM and semi-quantitative methods, in patients affected by cranial base tumors who underwent gamma knife or tomotherapy. Neuropsychological examinations showed no cognitive impairment after the treatment. In all patients, both MRI assessment and 18F-FDG-PET did not reveal any local or distant anatomical and metabolic late effects. The present study support the safety of advanced radiation therapy techniques. 18F-FDG-PET, using SPM and semi-quantitative methods, might be a valuable tool to evaluate the cerebral radiotoxicity in patients treated for brain neoplasms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mitchell, Ann M; Sakraida, Teresa J; Kim, Yookyung; Bullian, Leann; Chiappetta, Laurel
2009-02-01
The study's purpose was to describe and compare depression, anxiety, and quality of life, by degree of relationship, between closely related and distantly related survivors (persons close to the suicide victim, or "suicide survivors"; N = 60) during the acute phase of bereavement (within 1 month of the death). The close relationship category included spouses, parents, children, and siblings, whereas the distant relationship category included in-laws, aunts/uncles, and nieces/nephews. Analysis of covariance examined differences between the two groups on the symptom measures. Results indicate that, after controlling for age and gender effects, closely related survivors had significantly higher mean levels of depression and anxiety and had lower levels of mental health quality of life. There were no statistically significant differences on the physical health quality of life subscale.
Remote Synchronization Reveals Network Symmetries and Functional Modules
NASA Astrophysics Data System (ADS)
Nicosia, Vincenzo; Valencia, Miguel; Chavez, Mario; Díaz-Guilera, Albert; Latora, Vito
2013-04-01
We study a Kuramoto model in which the oscillators are associated with the nodes of a complex network and the interactions include a phase frustration, thus preventing full synchronization. The system organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this result, and we show how the frustration parameter affects the distribution of phases. An application to brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining correlated functional modules across distant locations.
Modeling the relationship between the environment and human experiences.
Vink, P; Bazley, C; Jacobs, K
2016-08-12
Within this special issue, different aspects of the environment are studied: aspects that are distant from the human body, close to the body and touching the human body. Consequently, different human senses are involved in these studies as well as the different consequences and effects on the brain and human behaviour. This special issue also highlights many remaining questions about the effects and relationships between environments and human beings and the need for more studies and research. In particular, future studies are needed that address long-term effects and the effects of the combinations of elements which provide comfort or discomfort.
Zic-Proteins Are Repressors of Dopaminergic Forebrain Fate in Mice and C. elegans.
Tiveron, Marie-Catherine; Beclin, Christophe; Murgan, Sabrina; Wild, Stefan; Angelova, Alexandra; Marc, Julie; Coré, Nathalie; de Chevigny, Antoine; Herrera, Eloisa; Bosio, Andreas; Bertrand, Vincent; Cremer, Harold
2017-11-01
In the postnatal forebrain regionalized neural stem cells along the ventricular walls produce olfactory bulb (OB) interneurons with varying neurotransmitter phenotypes and positions. To understand the molecular basis of this region-specific variability we analyzed gene expression in the postnatal dorsal and lateral lineages in mice of both sexes from stem cells to neurons. We show that both lineages maintain transcription factor signatures of their embryonic site of origin, the pallium and subpallium. However, additional factors, including Zic1 and Zic2, are postnatally expressed in the dorsal stem cell compartment and maintained in the lineage that generates calretinin-positive GABAergic neurons for the OB. Functionally, we show that Zic1 and Zic2 induce the generation of calretinin-positive neurons while suppressing dopaminergic fate in the postnatal dorsal lineage. We investigated the evolutionary conservation of the dopaminergic repressor function of Zic proteins and show that it is already present in C. elegans SIGNIFICANCE STATEMENT The vertebrate brain generates thousands of different neuron types. In this work we investigate the molecular mechanisms underlying this variability. Using a genomics approach we identify the transcription factor signatures of defined neural stem cells and neuron populations. Based thereon we show that two related transcription factors, Zic1 and Zic2, are essential to control the balance between two defined neuron types in the postnatal brain. We show that this mechanism is conserved in evolutionary very distant species. Copyright © 2017 the authors 0270-6474/17/3710611-13$15.00/0.
Seong-Cheol, Park; Chong Sik, Lee; Seok Min, Kim; Eu Jene, Choi; Do Hee, Lee; Jung Kyo, Lee
2016-12-22
Recently, the use of magnetic dental implants has been re-popularized with the introduction of strong rare earth metal, for example, neodymium, magnets. Unrecognized magnetic dental implants can cause critical magnetic resonance image distortions. We report a case involving surgical failure caused by a magnetic dental implant. A 62-year-old man underwent deep brain stimulation for medically insufficiently controlled Parkinson's disease. Stereotactic magnetic resonance imaging performed for the first deep brain stimulation showed that the overdenture was removed. However, a dental implant remained and contained a neodymium magnet, which was unrecognized at the time of imaging; the magnet caused localized non-linear distortions that were the largest around the dental magnets. In the magnetic field, the subthalamic area was distorted by a 4.6 mm right shift and counter clockwise rotation. However, distortions were visually subtle in the operation field and small for distant stereotactic markers, with approximately 1-2 mm distortions. The surgeon considered the distortion to be normal asymmetry or variation. Stereotactic marker distortion was calculated to be in the acceptable range in the surgical planning software. Targeting errors, approximately 5 mm on the right side and 2 mm on the left side, occurred postoperatively. Both leads were revised after the removal of dental magnets. Dental magnets may cause surgical failures and should be checked and removed before stereotactic surgery. Our findings should be considered when reviewing surgical precautions and making distortion-detection algorithm improvements.
Frantzidis, Christos A; Ladas, Aristea-Kiriaki I; Vivas, Ana B; Tsolaki, Magda; Bamidis, Panagiotis D
2014-07-01
Recent neuroscientific research has demonstrated that both healthy and pathological aging induces alterations in the co-operative capacity of neuronal populations in the brain. Both compensatory and neurodegenerative mechanisms contribute to neurophysiological synchronization patterns, which provide a valuable marker for age-related cognitive decline. In this study, we propose that neuroplasticity-based training may facilitate coherent interaction of distant brain regions and consequently enhance cognitive performance in elderly people. If this is true, this would make neurophysiological synchronization a valid outcome measure to assess the efficacy of non-pharmacological interventions to prevent or delay age-related cognitive decline. The present study aims at providing an objective, synchronization-based tool to assess cognitive and/or physical interventions, adopting the notion of Relative Wavelet Entropy. This mathematical model employs a robust and parameter-free synchronization metric. By using data mining techniques, a distance value was computed for all participants so as to quantify the proximity of their individual profile to the mean group synchronization increase. In support of our hypothesis, results showed a significant increase in synchronization, for four electrode pairs, in the intervention group as compared to the active control group. It is concluded that the novel introduction of neurophysiological synchronization features could be used as a valid and reliable outcome measure; while the distance-based analysis could provide a reliable means of evaluating individual benefits. Copyright © 2014 Elsevier B.V. All rights reserved.
Gadducci, Angiolo; Cavazzana, Andrea; Cosio, Stefania; DI Cristofano, Claudio; Tana, Roberta; Fanucchi, Antonio; Teti, Giancarlo; Cristofani, Renza; Genazzani, Andrea Riccardo
2009-05-01
The aim of this retrospective study was to assess the predictive value of different clinicopathological variables (patient age, tumour size, FIGO grade, myometrial invasion, lymph-vascular space involvement [LVSI], invasion margins, peri-tumour phlogistic infiltrate and mitotic activity) for the risk of distant haematogenous recurrences in patients with endometrioid-type stage Ib-II endometrial cancer. Between August 1990 and April 2005, 259 patients had undergone laparotomy, peritoneal washing, total abdominal hysterectomy and bilateral salpingo-oophorectomy, with or without pelvic +/- para-aortic lymphadenectomy for endometrioid-type endometrial cancer. Thirty-six (13.9%) patients had developed recurrent disease after a median time of 17 months (range, 2-128 months). The relapse had been locoregional in 9, distant in 21 and both locoregional plus distant in 6 cases. This study assessed 12 patients with FIGO stage Ib-II disease who had developed distant haematogenous recurrences and 20 randomly chosen control patients with FIGO stage Ib-II disease who had remained recurrence-free after a median follow-up of 52 months (range, 37-66 months). Adjuvant therapy had been: no further treatment in 15 patients, external pelvic irradiation in 14 patients, adjuvant external pelvic irradiation plus brachytherapy in 2 patients and platinum-based chemotherapy followed by external pelvic irradiation in 1 patient. The site of distant failure had been the lung in 9 patients, liver in 2 patients and lung plus liver in 1 patient. A concomitant locoregional relapse (vagina or lymph nodes) had occurred in 3 patients. The median interval between surgery and the development of distant failure had been 16.5 months (range, 5-113 months). On univariate analysis, a higher incidence of FIGO grade 3 (50% versus 10%, p=0.0114), outer one-third myometrial invasion (91.7% versus 35.0%, p=0.0051) and LVSI (75.0.% versus 20.0%, p=0.0022) was found in the patients who had developed distant haematogeneous metastases compared to the recurrence-free women. Multivariate analysis showed that LVSI (p=0.0264) and deep myometrial invasion (p=0.0345) were independent predictive variables for the risk of distant haematogeneous failure. Patients with these pathological findings should be enrolled in randomised trials designed to assess the role of adjuvant chemotherapy alone or combined with sequential and/or concomitant external pelvic irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guadagnolo, B. Ashleigh; Zagars, Gunar K.; Ballo, Matthew T.
2008-03-01
Purpose: To evaluate the local control rates and patterns of metastatic relapse in patients with localized myxoid liposarcoma treated with conservation surgery and radiotherapy (RT). Patients and Methods: Between 1960 and 2003, 127 patients with non-metastatic myxoid liposarcoma were treated with conservation surgery and RT at our institution. The median patient age was 39 years (range, 14-79 years). Of the 127 patients, 46% underwent preoperative RT (median dose, 50 Gy) and 54% underwent postoperative RT (median dose, 60 Gy). Also, 28% received doxorubicin-based chemotherapy as a part of their treatment. Results: The median follow-up was 9.1 years. The overall survivalmore » rate at 5 and 10 years was 87% and 79%, respectively. The corresponding disease-free survival rates were 81% and 73%. The local control rate at {>=}5 years was 97%. The actuarial rate of distant metastases at 5 and 10 years was 15% and 24%, respectively. Of the 27 patients who developed distant metastases, 48% did so in the retroperitoneum, 22% in other extrapulmonary soft tissues, 22% in the lung, 15% in bone, and 4% in the liver. Conclusion: The results of our study have shown that RT and conservation surgery for localized myxoid liposarcoma provide excellent local control. Distant metastatic relapse tended to occur in the retroperitoneum and other nonpulmonary soft tissues. Therefore, staging and surveillance imaging should include the abdomen and pelvis, as well as the thorax, for patients with localized myxoid liposarcoma.« less
Le Mercier, Philippe; Jacob, Yves; Tanner, Kyle; Tordo, Noël
2002-01-01
By comparing three expression vectors for the rabies virus (Rv) minigenome, we show that the characteristic of the Rv RNA is important for efficient rescue despite its not being crucial for replication. Moreover, we show that the coexpression of the viral proteins from helper Rv and Mokola virus could rescue the Rv minigenome while Rv-related European bat lyssavirus 1 could not, suggesting that the signals controlling transcription and replication are conserved in the distantly related Rv and Mokola virus. PMID:11799201
Tumor Microenvironment of Metastasis and Risk of Distant Metastasis of Breast Cancer
Xue, Xiaonan; Lin, Hung-Mo; D’Alfonso, Timothy M.; Ginter, Paula S.; Oktay, Maja H.; Robinson, Brian D.; Ginsberg, Mindy; Gertler, Frank B.; Glass, Andrew G.; Sparano, Joseph A.; Condeelis, John S.; Jones, Joan G.
2014-01-01
Background Tumor microenvironment of metastasis (TMEM), consisting of direct contact between a macrophage, an endothelial cell, and a tumor cell, has been associated with metastasis in both rodent mammary tumors and human breast cancer. We prospectively examined the association between TMEM score and risk of distant metastasis and compared risk associated with TMEM score with that associated with IHC4. Methods We conducted a case–control study nested within a cohort of 3760 patients with invasive ductal breast carcinoma diagnosed between 1980 and 2000 and followed through 2010. Case patients were women who developed a subsequent distant metastasis; control subjects were matched (1:1) on age at and calendar year of primary diagnosis. TMEM was assessed by triple immunostain and IHC4 by standard methods; slides were read by pathologists blinded to outcome. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression, adjusted for clinical variables. A Receiver Operating Characteristic analysis was performed, and the area under the curve was estimated. All statistical tests were two-sided. Results TMEM score was associated with increased risk of distant metastasis in estrogen receptor (ER)+/human epidermal growth factor receptor (HER2)− tumors (multivariable OR high vs low tertile = 2.70; 95% CI = 1.39 to 5.26; P trend = .004), whereas IHC4 score had a borderline positive association (OR10 unit increase = 1.06; 95% CI = 1.00 to 1.13); the association for TMEM score persisted after adjustment for IHC4 score. The area under the curve for TMEM, adjusted for clinical variables, was 0.78. Neither TMEM score nor IHC4 score was independently associated with metastatic risk overall or in the triple negative or HER2+ subgroups. Conclusions TMEM score predicted risk of distant metastasis in ER+/HER2− breast cancer independently of IHC4 score and classical clinicopathologic features. PMID:24895374
Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer.
Rohan, Thomas E; Xue, Xiaonan; Lin, Hung-Mo; D'Alfonso, Timothy M; Ginter, Paula S; Oktay, Maja H; Robinson, Brian D; Ginsberg, Mindy; Gertler, Frank B; Glass, Andrew G; Sparano, Joseph A; Condeelis, John S; Jones, Joan G
2014-08-01
Tumor microenvironment of metastasis (TMEM), consisting of direct contact between a macrophage, an endothelial cell, and a tumor cell, has been associated with metastasis in both rodent mammary tumors and human breast cancer. We prospectively examined the association between TMEM score and risk of distant metastasis and compared risk associated with TMEM score with that associated with IHC4. We conducted a case-control study nested within a cohort of 3760 patients with invasive ductal breast carcinoma diagnosed between 1980 and 2000 and followed through 2010. Case patients were women who developed a subsequent distant metastasis; control subjects were matched (1:1) on age at and calendar year of primary diagnosis. TMEM was assessed by triple immunostain and IHC4 by standard methods; slides were read by pathologists blinded to outcome. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression, adjusted for clinical variables. A Receiver Operating Characteristic analysis was performed, and the area under the curve was estimated. All statistical tests were two-sided. TMEM score was associated with increased risk of distant metastasis in estrogen receptor (ER)(+)/human epidermal growth factor receptor (HER2)(-) tumors (multivariable OR high vs low tertile = 2.70; 95% CI = 1.39 to 5.26; P trend = .004), whereas IHC4 score had a borderline positive association (OR10 unit increase = 1.06; 95% CI = 1.00 to 1.13); the association for TMEM score persisted after adjustment for IHC4 score. The area under the curve for TMEM, adjusted for clinical variables, was 0.78. Neither TMEM score nor IHC4 score was independently associated with metastatic risk overall or in the triple negative or HER2(+) subgroups. TMEM score predicted risk of distant metastasis in ER(+)/HER2(-) breast cancer independently of IHC4 score and classical clinicopathologic features. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou
2014-10-01
The existing distributed quantum gates required physical particles to be transmitted between two distant nodes in the quantum network. We here demonstrate the possibility to implement distributed quantum computation without transmitting any particles. We propose a scheme for a distributed controlled-phase gate between two distant quantum-dot electron-spin qubits in optical microcavities. The two quantum-dot-microcavity systems are linked by a nested Michelson-type interferometer. A single photon acting as ancillary resource is sent in the interferometer to complete the distributed controlled-phase gate, but it never enters the transmission channel between the two nodes. Moreover, we numerically analyze the effect of experimental imperfections and show that the present scheme can be implemented with high fidelity in the ideal asymptotic limit. The scheme provides further evidence of quantum counterfactuality and opens promising possibilities for distributed quantum computation.
When do I wear me out? Mental simulation and the diminution of self-control.
Macrae, C Neil; Christian, Brittany M; Golubickis, Marius; Karanasiou, Magdalene; Troksiarova, Lenka; McNamara, Diana L; Miles, Lynden K
2014-08-01
Exerting self-control can diminish people's capacity to engage in subsequent acts of behavioral regulation, a phenomenon termed ego depletion. But what of imaginary regulatory experiences-does simulated restraint elicit comparable lapses in self-control? Here we demonstrate such effects under theoretically tractable imagery conditions. Across 3 experiments, temporal, structural, and spatial components of mental simulation were observed to drive the efficacy of imaginary self-control. In Experiment 1, lapses in restraint (i.e., financial impulsivity) were more pronounced when imaginary regulation (i.e., dietary restraint) focused on an event in the near versus distant future. In Experiment 2, comparable effects (i.e., increased stereotyping) emerged when simulated self-control (i.e., emotional suppression) was imagined from a first-person (cf. third-person) visual perspective. In Experiment 3, restraint was diminished (i.e., increased risk taking) when self-regulation (i.e., action control) centered on an event at a near versus distant location. These findings further delineate the conditions under which mental simulation impacts core aspects of social-cognitive functioning. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Freedman, Morris; Binns, Malcolm; Gao, Fuqiang; Holmes, Melissa; Roseborough, Austyn; Strother, Stephen; Vallesi, Antonino; Jeffers, Stanley; Alain, Claude; Whitehouse, Peter; Ryan, Jennifer D; Chen, Robert; Cusimano, Michael D; Black, Sandra E
Despite a large literature on psi, which encompasses a range of experiences including putative telepathy (mind-mind connections), clairvoyance (perceiving distant objects or events), precognition (perceiving future events), and mind-matter interactions, there has been insufficient focus on the brain in relation to this controversial phenomenon. In contrast, our research is based on a novel neurobiological model suggesting that frontal brain systems act as a filter to inhibit psi and that the inhibitory mechanisms may relate to self-awareness. To identify frontal brain regions that may inhibit psi. We used mind-matter interactions to study psi in two participants with frontal lobe damage. The experimental task was to influence numerical output of a Random Event Generator translated into movement of an arrow on a computer screen to the right or left. Brain MRI was analyzed to determine frontal volume loss. The primary area of lesion overlap between the participants was in the left medial middle frontal region, an area related to self-awareness, and involved Brodmann areas 9, 10, and 32. Both participants showed a significant effect in moving the arrow to the right, i.e., contralateral to the side of primary lesion overlap. Effect sizes were much larger compared to normal participants. The medial frontal lobes may act as a biological filter to inhibit psi through mechanisms related to self-awareness. Neurobiological studies with a focus on the brain may open new avenues of research on psi and may significantly advance the state of this poorly understood field. Copyright © 2018 Elsevier Inc. All rights reserved.
Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Yaroslav; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kolb, Bryan; Kovalchuk, Olga
2016-01-01
Irradiated cells can signal damage and distress to both close and distant neighbors that have not been directly exposed to the radiation (naïve bystanders). While studies have shown that such bystander effects occur in the shielded brain of animals upon body irradiation, their mechanism remains unexplored. Observed effects may be caused by some blood-borne factors; however they may also be explained, at least in part, by very small direct doses received by the brain that result from scatter or leakage. In order to establish the roles of low doses of scatter irradiation in the brain response, we developed a new model for scatter irradiation analysis whereby one rat was irradiated directly at the liver and the second rat was placed adjacent to the first and received a scatter dose to its body and brain. This work focuses specifically on the response of the latter rat brain to the low scatter irradiation dose. Here, we provide the first experimental evidence that very low, clinically relevant doses of scatter irradiation alter gene expression, induce changes in dendritic morphology, and lead to behavioral deficits in exposed animals. The results showed that exposure to radiation doses as low as 0.115 cGy caused changes in gene expression and reduced spine density, dendritic complexity, and dendritic length in the prefrontal cortex tissues of females, but not males. In the hippocampus, radiation altered neuroanatomical organization in males, but not in females. Moreover, low dose radiation caused behavioral deficits in the exposed animals. This is the first study to show that low dose scatter irradiation influences the brain and behavior in a sex-specific way. PMID:27375442
Dynamical Signatures of Structural Connectivity Damage to a Model of the Brain Posed at Criticality.
Haimovici, Ariel; Balenzuela, Pablo; Tagliazucchi, Enzo
2016-12-01
Synchronization of brain activity fluctuations is believed to represent communication between spatially distant neural processes. These interareal functional interactions develop in the background of a complex network of axonal connections linking cortical and subcortical neurons, termed the human "structural connectome." Theoretical considerations and experimental evidence support the view that the human brain can be modeled as a system operating at a critical point between ordered (subcritical) and disordered (supercritical) phases. Here, we explore the hypothesis that pathologies resulting from brain injury of different etiologies are related to this model of a critical brain. For this purpose, we investigate how damage to the integrity of the structural connectome impacts on the signatures of critical dynamics. Adopting a hybrid modeling approach combining an empirical weighted network of human structural connections with a conceptual model of critical dynamics, we show that lesions located at highly transited connections progressively displace the model toward the subcritical regime. The topological properties of the nodes and links are of less importance when considered independently of their weight in the network. We observe that damage to midline hubs such as the middle and posterior cingulate cortex is most crucial for the disruption of criticality in the model. However, a similar effect can be achieved by targeting less transited nodes and links whose connection weights add up to an equivalent amount. This implies that brain pathology does not necessarily arise due to insult targeted at well-connected areas and that intersubject variability could obscure lesions located at nonhub regions. Finally, we discuss the predictions of our model in the context of clinical studies of traumatic brain injury and neurodegenerative disorders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... button or radio control when such switch is protected by distant switch indicators, switch point... units are connected so that they may be operated from a single control stand. Locomotive means, for... one or more propelling motors designed for moving other equipment; (2) With one or more propelling...
From pulses to pain relief: an update on the mechanisms of rTMS-induced analgesic effects.
Moisset, X; de Andrade, D C; Bouhassira, D
2016-05-01
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique that allows cortical stimulation. Recent studies have shown that rTMS of the primary motor cortex or dorsolateral prefrontal cortex decreases pain in various pain conditions. The aim of this review was to summarize the main characteristics of rTMS-induced analgesic effects and to analyse the current data on its mechanisms of action. Medline, PubMed and Web of Science were searched for studies on the analgesic effects and mechanisms of rTMS-induced analgesic effects. Studies on epidural motor cortex stimulation (EMCS) were also included when required, as several mechanisms of action are probably shared between both techniques. Stimulation site and stimulation parameters have a major impact on rTMS-related analgesic effects. Local cortical stimulation is able to elicit changes in the functioning of distant brain areas. These modifications outlast the duration of the rTMS session and probably involve LTP-like mechanisms via its influence on glutamatergic networks. Analgesic effects seem to be correlated to restoration of normal cortical excitability in chronic pain patients and depend on pain modulatory systems, in particular endogenous opioids. Dopamine, serotonin, norepinephrine and GABAergic circuitry may also be involved in its effects, as well as rostrocaudal projections. rTMS activates brain areas distant from the stimulation site. LTP-like mechanisms, dependence on endogenous opioids and increase in concentration of neurotransmitters (monoamines, GABA) have all been implicated in its analgesic effects, although more studies are needed to fill in the still existing gaps in the understanding of its mechanisms of action. © 2015 European Pain Federation - EFIC®
NASA Astrophysics Data System (ADS)
Qin, Wei; Wang, Xin; Miranowicz, Adam; Zhong, Zhirong; Nori, Franco
2017-07-01
Heralded near-deterministic multiqubit controlled-phase gates with integrated error detection have recently been proposed by Borregaard et al. [Phys. Rev. Lett. 114, 110502 (2015), 10.1103/PhysRevLett.114.110502]. This protocol is based on a single four-level atom (a heralding quartit) and N three-level atoms (operational qutrits) coupled to a single-resonator mode acting as a cavity bus. Here we generalize this method for two distant resonators without the cavity bus between the heralding and operational atoms. Specifically, we analyze the two-qubit controlled-Z gate and its multiqubit-controlled generalization (i.e., a Toffoli-like gate) acting on the two-lowest levels of N qutrits inside one resonator, with their successful actions being heralded by an auxiliary microwave-driven quartit inside the other resonator. Moreover, we propose a circuit-quantum-electrodynamics realization of the protocol with flux and phase qudits in linearly coupled transmission-line resonators with dissipation. These methods offer a quadratic fidelity improvement compared to cavity-assisted deterministic gates.
Kasch, H; Stengaard-Pedersen, K; Arendt-Nielsen, L; Staehelin Jensen, T
2001-04-01
OBJECTIVE OF THE INVESTIGATION: In a 6-month prospective study of 141 consecutive acute whiplash-injured participants, and 40 acute, ankle-injured controls, pain and tenderness in the neck/head, and at a distant control site, were measured. Muscle palpation and pressure algometry in five head/neck muscle-pairs were performed after 1 week and 1, 3 and 6 months after injury. Algometry was performed at a distant control site. Whiplash-injured patients had lowered pressure-pain-detection thresholds and higher palpation-score initially in the neck/head, but the groups were similar after 6 months, and the control site was not sensitized. Focal, but not generalized, sensitization to musculoskeletal structure is present until 3 months, but not 6 months, after whiplash injury, and probably does not play a major role in the development of late whiplash syndrome. Pressure algometry and palpation are useful clinical tools in the evaluation of neck and jaw pain in acute whiplash injury.
Robust distant-entanglement generation using coherent multiphoton scattering
NASA Astrophysics Data System (ADS)
Chan, Ching-Kit; Sham, L. J.
2013-03-01
The generation and controllability of entanglement between distant quantum states have been the heart of quantum computation and quantum information processing. Existing schemes for solid state qubit entanglement are based on the single-photon spectroscopy that has the merit of a high fidelity entanglement creation, but with a very limited efficiency. This severely restricts the scalability for a qubit network system. Here, we describe a new distant entanglement protocol using coherent multiphoton scattering. The scheme makes use of the postselection of large and distinguishable photon signals, and has both a high success probability and a high entanglement fidelity. Our result shows that the entanglement generation is robust against photon fluctuations, and has an average entanglement duration within the decoherence time in various qubit systems, based on existing experimental parameters. This research was supported by the U.S. Army Research Office MURI award W911NF0910406 and by NSF grant PHY-1104446.
Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex.
Kajikawa, Yoshinao; Smiley, John F; Schroeder, Charles E
2017-10-18
Prior studies have reported "local" field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be "contaminated" by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such "far-field" activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed "local" (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers. Copyright © 2017 the authors 0270-6474/17/3710139-15$15.00/0.
Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex
Smiley, John F.; Schroeder, Charles E.
2017-01-01
Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed “local” (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers. PMID:28924008
Audiovisual Delay as a Novel Cue to Visual Distance.
Jaekl, Philip; Seidlitz, Jakob; Harris, Laurence R; Tadin, Duje
2015-01-01
For audiovisual sensory events, sound arrives with a delay relative to light that increases with event distance. It is unknown, however, whether humans can use these ubiquitous sound delays as an information source for distance computation. Here, we tested the hypothesis that audiovisual delays can both bias and improve human perceptual distance discrimination, such that visual stimuli paired with auditory delays are perceived as more distant and are thereby an ordinal distance cue. In two experiments, participants judged the relative distance of two repetitively displayed three-dimensional dot clusters, both presented with sounds of varying delays. In the first experiment, dot clusters presented with a sound delay were judged to be more distant than dot clusters paired with equivalent sound leads. In the second experiment, we confirmed that the presence of a sound delay was sufficient to cause stimuli to appear as more distant. Additionally, we found that ecologically congruent pairing of more distant events with a sound delay resulted in an increase in the precision of distance judgments. A control experiment determined that the sound delay duration influencing these distance judgments was not detectable, thereby eliminating decision-level influence. In sum, we present evidence that audiovisual delays can be an ordinal cue to visual distance.
Sensory system plasticity in a visually specialized, nocturnal spider.
Stafstrom, Jay A; Michalik, Peter; Hebets, Eileen A
2017-04-21
The interplay between an animal's environmental niche and its behavior can influence the evolutionary form and function of its sensory systems. While intraspecific variation in sensory systems has been documented across distant taxa, fewer studies have investigated how changes in behavior might relate to plasticity in sensory systems across developmental time. To investigate the relationships among behavior, peripheral sensory structures, and central processing regions in the brain, we take advantage of a dramatic within-species shift of behavior in a nocturnal, net-casting spider (Deinopis spinosa), where males cease visually-mediated foraging upon maturation. We compared eye diameters and brain region volumes across sex and life stage, the latter through micro-computed X-ray tomography. We show that mature males possess altered peripheral visual morphology when compared to their juvenile counterparts, as well as juvenile and mature females. Matching peripheral sensory structure modifications, we uncovered differences in relative investment in both lower-order and higher-order processing regions in the brain responsible for visual processing. Our study provides evidence for sensory system plasticity when individuals dramatically change behavior across life stages, uncovering new avenues of inquiry focusing on altered reliance of specific sensory information when entering a new behavioral niche.
A microinjection technique for targeting regions of embryonic and neonatal mouse brain in vivo
Davidson, Steve; Truong, Hai; Nakagawa, Yasushi; Giesler, Glenn J
2009-01-01
A simple pressure injection technique was developed to deliver substances into specific regions of the embryonic and neonatal mouse brain in vivo. The retrograde tracers Fluorogold and cholera toxin B subunit were used to test the validity of the technique. Injected animals survived the duration of transport (24–48 hrs) and then were sacrificed and perfused with fixative. Small injections (≤ 50 nL) were contained within targeted structures of the perinatal brain and labeled distant cells of origin in several model neural pathways. Traced neural pathways in the perinatal mouse were further examined with immunohistochemical methods to test the feasibility of double labeling experiments during development. Several experimental situations in which this technique would be useful are discussed, for example, to label projection neurons in slice or culture preparations of mouse embryos and neonates. The administration of pharmacological or genetic vectors directly into specific neural targets during development should also be feasible. An examination of the form of neural pathways during early stages of life may lead to insights regarding the functional changes that occur during critical periods of development and provide an anatomic basis for some neurodevelopmental disorders. PMID:19840780
Damaraju, E; Allen, E A; Belger, A; Ford, J M; McEwen, S; Mathalon, D H; Mueller, B A; Pearlson, G D; Potkin, S G; Preda, A; Turner, J A; Vaidya, J G; van Erp, T G; Calhoun, V D
2014-01-01
Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical-subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.
Damaraju, E.; Allen, E.A.; Belger, A.; Ford, J.M.; McEwen, S.; Mathalon, D.H.; Mueller, B.A.; Pearlson, G.D.; Potkin, S.G.; Preda, A.; Turner, J.A.; Vaidya, J.G.; van Erp, T.G.; Calhoun, V.D.
2014-01-01
Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences. PMID:25161896
Tao, Xiao-Yan; Zhao, Bai-Yiao; Han, Xiao; Dong, Xiao-Yu; Yan, An; Ren, Xu-Ru; Liu, Yan-Wen; Qu, Chang; Xia, Shu-Fen; Yang, Jia-Le
2014-05-01
To compare the differences in the efficacy on distant version of naked eye in the patients of juvenile myopia between rotating manipulation and lifting-thrusting manipulation of acupuncture. One hundred and twenty cases (240 eyes) were randomized into a rotating manipulation group and a lifting-thrusting manipulation group, 60 cases (120 eyes) in each group. Additionally, a corrective lenses group, 60 cases (120 eyes), was set up as the control. In both manipulation groups, Cuanzhu (BL 2),Yuyao (EX-HN 4), Sizhukong (TE 23), Taiyang (EX-HN 5), Fengchi (GB 20), Zusanli (ST 36), Guangming (GB 37) and Sanyinjiao (SP 6) were punctured, but stimulated with rotating manipulation and lifting-thrusting manipulation respectively three times per week, 10 times as a treatment session and totally one session was required. In the corrective lenses group, the glasses were applied at daytime. The clinical efficacy and the changes in distant vision of naked eye before and after treatment were compared among the three groups. The total effective rate was 87.5% (105/120) in the rotating manipulation group, which was better than 69.2% (83/120) in the lifting-thrusting manipulation group (P < 0.05). The distant vision of naked eye was improved apparently in the rotating manipulation group and the lifting-thrusting manipulation group after treatment (both P < 0.05). But it was not improved in the corrective lenses group (P > 0.05). The distant vision of naked eye was improved more apparently after treatment in the rotating manipulation group as compared with that in the lifting-thrusting manipulation group (0.75 +/- 0.23 vs 0.68 +/- 0.24, P < 0.05). For 96 cases (192 eyes) with acupuncture treatment, in 3-month follow-up, 87.0% (167/192) of the cases maintained the stable vision as the original level and 13.0% (25/192) of them were reduced in the vision In the acupuncture groups, it was found that the improvement of distant vision of naked eye was more obvious after treatment with younger age, better basic vision and shorter duration of sickness (all P < 0.05). Acupuncture achieves the positive and sustainable clinical effect on juvenile myopia, and the results of rotating manipulation are superior to that of lifting-thrusting manipulation. Age, basic vision and duration of sickness impact the clinical efficacy.
Nakajo, Masatoyo; Nakajo, Masayuki; Jinguji, Megumi; Tani, Atsushi; Kajiya, Yoriko; Tanabe, Hiroaki; Fukukura, Yoshihiko; Nakabeppu, Yoshiaki; Koriyama, Chihaya
2013-06-01
To compare positron emission tomography (PET)/computed tomography (CT) studies performed with the glucose analog fluorine 18 ((18)F) fluorodeoxyglucose (FDG) and the cell proliferation tracer (18)F fluorothymidine (FLT) in the diagnosis of metastases from postoperative differentiated thyroid cancer. The institutional ethics review board approved this prospective study. From March 2010 to February 2012, 20 patients (mean age, 53 years; age range, 22-79 years) with postoperative differentiated thyroid cancer underwent both FDG and FLT PET/CT as a staging work-up before radioiodine therapy. In each patient, 28 anatomic areas were set and analyzed for lymph node and distant metastases. The McNemar exact or χ(2) test was used to examine differences in diagnostic indexes in the detection of lymph node and distant metastases between both tracer PET/CT studies. There were 34 lymph node metastases and/or 73 distant metastases (70 metastases in lung and one each in bone, nasopharynx, and brain) in 13 patients. At patient-based analysis, the sensitivity, specificity, and accuracy were 92% (12 of 13 patients), 86% (six of seven patients), and 90% (18 of 20 patients), respectively, for FDG PET/CT and 69% (nine of 13 patients), 29% (two of seven patients), and 55% (11 of 20 patients) for FLT PET/CT. The accuracy of FDG PET/CT was significantly better than that of FLT PET/CT (P = .023). At lesion-based analysis, the sensitivity, specificity, and accuracy for diagnosing lymph node metastases were 85% (29 of 34 lesions), 99.6% (245 of 246 lesions), and 97.9% (274 of 280 lesions), respectively, for FDG PET/CT and 50% (17 of 34 lesions), 90.7% (223 of 246 lesions), and 85.7% (240 of 280 lesions) for FLT PET/CT. The sensitivity, specificity, and accuracy for diagnosing distant metastases were 45% (33 of 73 lesions), 100% (207 of 207 lesions), and 85.7% (240 of 280 lesions), respectively, for FDG PET/CT and 6.8% (five of 73 lesions), 100% (207 of 207 lesions), and 75.7% (212 of 280 lesions) for FLT PET/CT. The sensitivity (P = .002), specificity (P < .001), and accuracy (P < .001) of FDG PET/CT in the diagnosis of lymph node metastases were superior to those of FLT PET, as were the sensitivity (P < .001) and accuracy (P < .001) in the diagnosis of distant metastases. FDG PET/CT is superior to FLT PET/CT in the diagnosis of postoperative differentiated thyroid cancer lymph node and distant metastases. Thus, FDG PET/CT is more suitable than FLT PET/CT for examining recurrence of postoperative differentiated thyroid cancer.
Category Membership and Semantic Coding in the Cerebral Hemispheres.
Turner, Casey E; Kellogg, Ronald T
2016-01-01
Although a gradient of category membership seems to form the internal structure of semantic categories, it is unclear whether the 2 hemispheres of the brain differ in terms of this gradient. The 2 experiments reported here examined this empirical question and explored alternative theoretical interpretations. Participants viewed category names centrally and determined whether a closely related or distantly related word presented to either the left visual field/right hemisphere (LVF/RH) or the right visual field/left hemisphere (RVF/LH) was a member of the category. Distantly related words were categorized more slowly in the LVF/RH relative to the RVF/LH, with no difference for words close to the prototype. The finding resolved past mixed results showing an unambiguous typicality effect for both visual field presentations. Furthermore, we examined items near the fuzzy border that were sometimes rejected as nonmembers of the category and found both hemispheres use the same category boundary. In Experiment 2, we presented 2 target words to be categorized, with the expectation of augmenting the speed advantage for the RVF/LH if the 2 hemispheres differ structurally. Instead the results showed a weakening of the hemispheric difference, arguing against a structural in favor of a processing explanation.
Laimito, Katerin Rojas; Gámez-Pozo, Angelo; Sepúlveda, Juan; Manso, Luis; López-Vacas, Rocío; Pascual, Tomás; Fresno Vara, Juan A; Ciruelos, Eva
2016-01-01
Breast cancer (BC) is the most frequent tumour in women, representing 20-30% of all malignancies, and continues to be the leading cause of cancer deaths among European women. Triple-negative (TN) BC biological aggressiveness is associated with a higher dissemination rate, with central nervous system (CNS) metastases common. This study aims to elucidate the association between gene expression profiles of PTGS2, HBEGF and ST6GALNAC5 and the development of CNS metastases in TNBC. This is a case-controlled retrospective study comparing patients (pts) with CNS metastases versus patients without them after adjuvant treatment. The selection of the samples was performed including 30 samples in both case and control groups. Formalin-fixed, paraffin-embedded samples were retrieved from the Hospital 12 de Octubre Biobank. Five 10 µm sections from each FFPE sample were deparaffinised with xylene and washed with ethanol, and the RNA was then extracted with the RecoverAll Kit (Ambion). Gene expression was assessed using TaqMan assays. A total of 53 patients were included in the study. The average age was 55 years (range 25-85). About 47 patients (88.67%) had ductal histology and presented high grade (III) tumours (40 patients; 75.47%). Eight women in the case group presented first distant recurrence in the CNS (34.80%), local recurrence (three patients, 13.04%), lungs (two patients; 8.7%), bone (one patient; 4.34%) and other locations (seven patients; 30.38%). In the control group, first distant recurrence occurred locally (six patients; 46.1%), in bone (two patients; 15.4%), lungs (one patient; 7.7%) and other sites (four patients; 23.1%). RNA was successfully obtained from 53 out of 60 samples. PTGS2, HBEGF, and ST6GALNAC5 expression values were not related to metastasis location. TN tumours frequently metastasise to the visceral organs, particularly lungs and brain, and are less common in bone. The literature suggests that expression of the three genes of interest (PTGS2, HBEGF, and ST6GALNAC5) could be different in TNBC patients with CNS metastasis when compared to patients without it. We did not find a differential expression pattern in PTGS2, HBEGF, and ST6GALNAC5 genes in primary TNBC showing CNS metastases. Further studies are needed to clarify the role of these genes in CNS metastases in TNBC patients.
A Prospective Outcomes Study of Proton Therapy for Chordomas and Chondrosarcomas of the Spine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indelicato, Daniel J., E-mail: dindelicato@floridaproton.org; Rotondo, Ronny L.; Begosh-Mayne, Dustin
Purpose: To evaluate the effectiveness of definitive or adjuvant external beam proton therapy on survival in patients with chordomas and chondrosarcomas of the spine. Methods and Materials: Between March 2007 and May 2013, 51 patients with a median age of 58 years (range, 22-83 years) with chordoma (n=34) or chondrosarcomas (n=17) of the sacrum (n=21), the cervical spine (n=20), and the thoracolumbar spine (n=10) were treated with external beam proton therapy to a median dose of 70.2 Gy(RBE) [range, 64.2-75.6 Gy(RBE)] at our institution. Distant metastases, overall survival, cause-specific survival, local control, and disease-free survival were calculated. Results: The mean follow-up time was 3.7 yearsmore » (range, 0.3-7.7 years). Across all time points, 25 patients experienced disease recurrence: 18 local recurrences, 6 local and distant recurrences, and 1 distant metastasis. The 4-year rates of overall survival and cause-specific survival were 72%; disease-free survival was 57%, local control was 58%, and freedom from distant metastases was 86%. The median time to local progression was 1.7 years (range, 0.2-6.0 years), and the median time to distant progression was 1.6 years (range, 0.2-6.0 years). The risk factors for local recurrence were age ≤58 years (62% vs 26%; P=.04) and recurrence after prior surgery (29% vs 81%; P=.01). Secondary cancers developed in 2 patients: B-cell lymphoma 5.5 years after treatment and bladder cancer 2 years after treatment. We observed the following toxicities: sacral soft tissue necrosis requiring surgery (n=2), T1 vertebral fracture requiring fusion surgery (n=1), chronic urinary tract infections (n=1), surgery for necrotic bone cyst (n=1), and grade 2 bilateral radiation nephritis (n=1). Conclusion: High-dose proton therapy controls more than half of spinal chordomas and chondrosarcomas and compares favorably with historic photon data. Local progression is the dominant mode of treatment failure and may be reduced by treating patients at the time of initial diagnosis. The impact of age is a novel finding of this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferris, Matthew J., E-mail: mjferri@emory.edu; Winship Cancer Institute, Emory University, Atlanta, Georgia; Danish, Hasan
Purpose: To report the influence of radiation therapy (RT) dose and surgical pathology variables on disease control and overall survival (OS) in patients treated for high-risk neuroblastoma at a single institution. Methods and Materials: We conducted a retrospective study of 67 high-risk neuroblastoma patients who received RT as part of definitive management from January 2003 until May 2014. Results: At a median follow-up of 4.5 years, 26 patients (38.8%) failed distantly; 4 of these patients also failed locally. One patient progressed locally without distant failure. Local control was 92.5%, and total disease control was 59.5%. No benefit was demonstrated for RT doses over 21.6 Gymore » with respect to local relapse–free survival (P=.55), disease-free survival (P=.22), or OS (P=.72). With respect to local relapse–free survival, disease-free survival, and OS, no disadvantage was seen for positive lymph nodes on surgical pathology, positive surgical margins, or gross residual disease. Of the patients with gross residual disease, 75% (6 of 8) went on to have no evidence of disease at time of last follow-up, and the 2 patients who failed did so distantly. Conclusions: Patients with high-risk neuroblastoma in this series maintained excellent local control, with no benefit demonstrated for radiation doses over 21.6 Gy, and no disadvantage demonstrated for gross residual disease after surgery, positive surgical margins, or pathologic lymph node positivity. Though the limitations of a retrospective review for an uncommon disease must be kept in mind, with small numbers in some of the subgroups, it seems that dose escalation should be considered only in exceptional circumstances.« less
NASA Astrophysics Data System (ADS)
Zhuravleva, G. N.; Nagornova, I. V.; Kondratov, A. P.; Bablyuk, E. B.; Varepo, L. G.
2017-08-01
A research and modelling of weatherability and environmental durability of multilayer polymer insulation of both cable and pipelines with printed barcodes or color identification information were performed. It was proved that interlayer printing of identification codes in distribution pipelines insulation coatings provides high marking stability to light and atmospheric condensation. This allows to carry out their distant damage control. However, microbiological fouling of upper polymer layer hampers the distant damage pipelines identification. The color difference values and density changes of PE and PVC printed insolation due to weather and biological factors were defined.
Atom-atom entanglement by single-photon detection.
Slodička, L; Hétet, G; Röck, N; Schindler, P; Hennrich, M; Blatt, R
2013-02-22
A scheme for entangling distant atoms is realized, as proposed in the seminal paper by [C. Cabrillo et al., Phys. Rev. A 59, 1025 (1999)]. The protocol is based on quantum interference and detection of a single photon scattered from two effectively one meter distant laser cooled and trapped atomic ions. The detection of a single photon heralds entanglement of two internal states of the trapped ions with high rate and with a fidelity limited mostly by atomic motion. Control of the entangled state phase is demonstrated by changing the path length of the single-photon interferometer.
Tournier, J-N; Jouan, A; Mathieu, J; Drouet, E
2002-04-01
Several recent epidemiological studies have shown that vaccinations against biological warfare using pertussis as an adjuvant were associated with the Gulf war syndrome. If such epidemiological findings are confirmed, we propose that the use of pertussis as an adjuvant could trigger neurodegeneration through induction of interleukin-1beta secretion in the brain. In turn, neuronal lesions may be sustained by stress or neurotoxic chemical combinations. Particular susceptibility for IL-1beta secretion and potential distant neuronal damage could provide an explanation for the diversity of the symptoms observed on veterans. Copyright 2002 Elsevier Science Ltd. All rights reserved.
Borton, David A.; Song, Yoon-Kyu; Patterson, William R.; Bull, Christopher W.; Park, Sunmee; Laiwalla, Farah; Donoghue, John P.; Nurmikko, Arto V.
2013-01-01
A multitude of neuroengineering challenges exist today in creating practical, chronic multichannel neural recording systems for primate research and human clinical application. Specifically, a) the persistent wired connections limit patient mobility from the recording system, b) the transfer of high bandwidth signals to external (even distant) electronics normally forces premature data reduction, and c) the chronic susceptibility to infection due to the percutaneous nature of the implants all severely hinder the success of neural prosthetic systems. Here we detail one approach to overcome these limitations: an entirely implantable, wirelessly communicating, integrated neural recording microsystem, dubbed the Brain Implantable Chip (BIC). PMID:19964128
Impact of systemic targeted agents on the clinical outcomes of patients with brain metastases
Johnson, Adam G.; Ruiz, Jimmy; Hughes, Ryan; Page, Brandi R.; Isom, Scott; Lucas, John T.; McTyre, Emory R.; Houseknecht, Kristin W.; Ayala-Peacock, Diandra N.; Bourland, Daniel J.; Hinson, William H.; Laxton, Adrian W.; Tatter, Stephen B.; Debinski, Waldemar; Watabe, Kounosuke; Chan, Michael D.
2015-01-01
Background To determine the clinical benefits of systemic targeted agents across multiple histologies after stereotactic radiosurgery (SRS) for brain metastases. Methods Between 2000 and 2013, 737 patients underwent upfront SRS for brain metastases. Patients were stratified by whether or not they received targeted agents with SRS. 167 (23%) received targeted agents compared to 570 (77%) that received other available treatment options. Time to event data were summarized using Kaplan-Meier plots, and the log rank test was used to determine statistical differences between groups. Results Patients who received SRS with targeted agents vs those that did not had improved overall survival (65% vs. 30% at 12 months, p < 0.0001), improved freedom from local failure (94% vs 90% at 12 months, p = 0.06), improved distant failure-free survival (32% vs. 18% at 12 months, p = 0.0001) and improved freedom from whole brain radiation (88% vs. 77% at 12 months, p = 0.03). Improvement in freedom from local failure was driven by improvements seen in breast cancer (100% vs 92% at 12 months, p < 0.01), and renal cell cancer (100% vs 88%, p = 0.04). Multivariate analysis revealed that use of targeted agents improved all cause mortality (HR = 0.6, p < 0.0001). Conclusions Targeted agent use with SRS appears to improve survival and intracranial outcomes. PMID:26087184
Structure changes of human brain gray matter neurons and astrocytes in acute local ischemic injury.
Sergeeva, S P; Shishkina, L V; Litvitskiy, P F; Breslavich, I D; Vinogradov, E V
2016-01-01
The purpose to identify key morphological features of the Astrocytes and Neurons in the acute local cerebral ischemia human cortex. Left middle cerebral artery ischemic stroke died persons (n = 9) brain tissue samples from 3 zones: 1st - contiguous to the tissue necrotic damage site zone, 2nd - 5-10 cm distant from the previous one, 3rd - the damage site symmetrical zone of the contralateral hemisphere. For GFAP, MAP-2, NSE, p53 detection indirect immunoperoxidase immunohistochemical staining method has been used. Also, the samples were Nissl and Hematoxylin-Eosin stained. The most pronounced changes in the quantity and morphological structure of astrocytes and neurons are found in directly adjacent to the necrotic core region of theleft middle cerebral artery ischemic stroke brain. This indicates the prevalence of the inflammation processes around the area of nerve tissueischemic destruction. Morphological changes of neurons and astrocytes, apoptosis, enhanced neuron-astrocyte interaction found in the area bordering on necrotic core (5-10 cm from it), as well as ischemic hearth symmetrical sites of the contralateral hemisphere. This interaction is essential for the neuroplasticityrealization in the local ischemic brain injury. The results obtained were shown the nerve tissue morphological characteristics changes occur in local cerebral cortex ischemic injury not only in the lesion, but also in the contralateral hemisphere. These changes are probably related to the implementation of neuroplasticity.
Application of software for automated canal management (SacMan) to the WM lateral canal
USDA-ARS?s Scientific Manuscript database
Simulation studies have demonstrated that automatic control of canals is more effective when feedforward scheduling, or routing of know demand changes, is combined with centralized, automatic, distant, downstream-water-level control. In practice, few canals use this approach. To help further develop...
Altered Connectivity and Action Model Formation in Autism Is Autism
Mostofsky, Stewart H.; Ewen, Joshua B.
2014-01-01
Internal action models refer to sensory-motor programs that form the brain basis for a wide range of skilled behavior and for understanding others’ actions. Development of these action models, particularly those reliant on visual cues from the external world, depends on connectivity between distant brain regions. Studies of children with autism reveal anomalous patterns of motor learning and impaired execution of skilled motor gestures. These findings robustly correlate with measures of social and communicative function, suggesting that anomalous action model formation may contribute to impaired development of social and communicative (as well as motor) capacity in autism. Examination of the pattern of behavioral findings, as well as convergent data from neuroimaging techniques, further suggests that autism-associated action model formation may be related to abnormalities in neural connectivity, particularly decreased function of long-range connections. This line of study can lead to important advances in understanding the neural basis of autism and, more critically, can be used to guide effective therapies targeted at improving social, communicative, and motor function. PMID:21467306
Dynamics of myelin content decrease in the rat stroke model
NASA Astrophysics Data System (ADS)
Kisel, A.; Khodanovich, M.; Atochin, D.; Mustafina, L.; Yarnykh, V.
2017-08-01
The majority of studies were usually focused on neuronal death after brain ischemia; however, stroke affects all cell types including oligodendrocytes that form myelin sheath in the CNS. Our study is focused on the changes of myelin content in the ischemic core and neighbor structures in early terms (1, 3 and 10 days) after stroke. Stroke was modeled with middle cerebral artery occlusion (MCAo) in 15 male rats that were divided into three groups by time points after operation. Brain sections were histologically stained with Luxol Fast Blue (LFB) for myelin quantification. The significant demyelination was found in the ischemic core, corpus callosum, anterior commissure, whereas myelin content was increased in caudoputamen, internal capsule and piriform cortex compared with the contralateral hemisphere. The motor cortex showed a significant increase of myelin content on the 1st day and a significant decrease on the 3rd and 10th days after MCAo. These results suggest that stroke influences myelination not only in the ischemic core but also in distant structures.
Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task.
Tamura, Makoto; Spellman, Timothy J; Rosen, Andrew M; Gogos, Joseph A; Gordon, Joshua A
2017-12-19
Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta-slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta-gamma coupling during correct trials. Finally, epochs of high hippocampal theta-prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta-slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty.
Oral metastasis from primary transitional cell carcinoma of the renal pelvis: report of a case.
Zhang, Y; Gu, Z-Y; Tian, Z; Yang, C; Cai, X-Y
2010-07-01
Transitional cell carcinoma of the renal pelvis is initially a slow growing tumor arising from the transitional epithelium of the mucous membrane of the renal pelvis. Recurrences occur in two forms: superficial bladder cancer and distant metastases. The common metastasis is in the lung, liver, brain and bone. Oral metastasis is seldom reported. The authors report an unusual case of transitional cell carcinoma of the renal pelvis metastasized to the oral cavity and lung simultaneously in a 74-year-old man, which occurred 1 year after a left nephroureterectomy. The patient underwent six courses of chemotherapy (gemcitabine, oxaliplatin, fluorouracil and nedaplatin), and received radiotherapy for the oral lesion. The symptoms were alleviated, but the tumor recurred in the oral cavity 2 years later. Brain and liver metastases were confirmed by CT. Repeated radiotherapy for oral metastasis was performed, but the patient died 4 years after the initial nephroureterectomy due to multiple metastases. Copyright 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Testing the Glucose Hypothesis among Capuchin Monkeys: Does Glucose Boost Self-Control?
Parrish, Audrey E; Emerson, Ishara D; Rossettie, Mattea S; Beran, Michael J
2016-08-03
The ego-depletion hypothesis states that self-control diminishes over time and with exertion. Accordingly, the glucose hypothesis attributes this depletion of self-control resources to decreases in blood glucose levels. Research has led to mixed findings among humans and nonhuman animals, with limited evidence for such a link between glucose and self-control among closely-related nonhuman primate species, but some evidence from more distantly related species (e.g., honeybees and dogs). We tested this hypothesis in capuchin monkeys by manipulating the sugar content of a calorie-matched breakfast meal following a nocturnal fast, and then presenting each monkey with the accumulation self-control task. Monkeys were presented with food items one-by-one until the subject retrieved and ate the accumulating items, which required continual inhibition of food retrieval in the face of an increasingly desirable reward. Results indicated no relationship between self-control performance on the accumulation task and glucose ingestion levels following a fast. These results do not provide support for the glucose hypothesis of self-control among capuchin monkeys within the presented paradigm. Further research assessing self-control and its physiological correlates among closely- and distantly-related species is warranted to shed light on the mechanisms underlying self-control behavior.
Bisicchia, Elisa; Sasso, Valeria; Catanzaro, Giuseppina; Leuti, Alessandro; Besharat, Zein Mersini; Chiacchiarini, Martina; Molinari, Marco; Ferretti, Elisabetta; Viscomi, Maria Teresa; Chiurchiù, Valerio
2018-01-22
Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b- and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage.
Sheehan, Jason P.
2016-01-01
The management of patients presenting with a limited number of brain metastases (BM) (oligo-metastases, defined as less than 3 BM) has evolved from Whole-Brain Radiotherapy (WBRT) alone to more aggressive strategies adding surgical resection and Stereotactic Radiosurgery (SRS) to the armamentarium. In choosing treatment modalities, the relative importance of the patient’s age and clinical parameters, the number or volume of BM and the potential treatment related adverse-effects has been a matter of much debate. For patients with oligometastatic BM, local therapy using SRS in addition to WBRT was shown to improve time to neurologic deterioration, relapse rate and Overall Survival (OS). In patients who receive local therapy (SRS or surgery), adjuvant WBRT was shown to improve regional (brain) relapse rate. In the contemporary era, the beneficial effect of WBRT on lengthening the time of neurologic independence or OS when compared to no further treatment is unclear. One Meta-analysis pooling of information from several reports concluded that for younger patients (<50 years), SRS alone favored survival and that the initial omission of WBRT did not impact distant brain relapse rates. Other recent reports demonstrated on the contrary an OS benefit, more pronounced in good prognosis patients (diagnosis-specific Graded Prognostic Assessment 2.4–4.0) treated with SRS+WBRT compared to those who received SRS alone. As of today, there remains a role for both SRS and WBRT in the management of patients with oligo-metastatic BM but consensus about when to employ one or both is lacking. The exact patient selection criteria to benefit from either or both are still a matter of active research and heated debate. PMID:29296432
Functional Brain Connectivity as a New Feature for P300 Speller.
Kabbara, Aya; Khalil, Mohamad; El-Falou, Wassim; Eid, Hassan; Hassan, Mahmoud
2016-01-01
The brain is a large-scale complex network often referred to as the "connectome". Cognitive functions and information processing are mainly based on the interactions between distant brain regions. However, most of the 'feature extraction' methods used in the context of Brain Computer Interface (BCI) ignored the possible functional relationships between different signals recorded from distinct brain areas. In this paper, the functional connectivity quantified by the phase locking value (PLV) was introduced to characterize the evoked responses (ERPs) obtained in the case of target and non-targets visual stimuli. We also tested the possibility of using the functional connectivity in the context of 'P300 speller'. The proposed approach was compared to the well-known methods proposed in the state of the art of "P300 Speller", mainly the peak picking, the area, time/frequency based features, the xDAWN spatial filtering and the stepwise linear discriminant analysis (SWLDA). The electroencephalographic (EEG) signals recorded from ten subjects were analyzed offline. The results indicated that phase synchrony offers relevant information for the classification in a P300 speller. High synchronization between the brain regions was clearly observed during target trials, although no significant synchronization was detected for a non-target trial. The results showed also that phase synchrony provides higher performance than some existing methods for letter classification in a P300 speller principally when large number of trials is available. Finally, we tested the possible combination of both approaches (classical features and phase synchrony). Our findings showed an overall improvement of the performance of the P300-speller when using Peak picking, the area and frequency based features. Similar performances were obtained compared to xDAWN and SWLDA when using large number of trials.
Ayala-Peacock, Diandra N; Attia, Albert; Braunstein, Steve E; Ahluwalia, Manmeet S; Hepel, Jaroslaw; Chung, Caroline; Contessa, Joseph; McTyre, Emory; Peiffer, Ann M; Lucas, John T; Isom, Scott; Pajewski, Nicholas M; Kotecha, Rupesh; Stavas, Mark J; Page, Brandi R; Kleinberg, Lawrence; Shen, Colette; Taylor, Robert B; Onyeuku, Nasarachi E; Hyde, Andrew T; Gorovets, Daniel; Chao, Samuel T; Corso, Christopher; Ruiz, Jimmy; Watabe, Kounosuke; Tatter, Stephen B; Zadeh, Gelareh; Chiang, Veronica L S; Fiveash, John B; Chan, Michael D
2017-11-01
Stereotactic radiosurgery (SRS) without whole brain radiotherapy (WBRT) for brain metastases can avoid WBRT toxicities, but with risk of subsequent distant brain failure (DBF). Sole use of number of metastases to triage patients may be an unrefined method. Data on 1354 patients treated with SRS monotherapy from 2000 to 2013 for new brain metastases was collected across eight academic centers. The cohort was divided into training and validation datasets and a prognostic model was developed for time to DBF. We then evaluated the discrimination and calibration of the model within the validation dataset, and confirmed its performance with an independent contemporary cohort. Number of metastases (≥8, HR 3.53 p = 0.0001), minimum margin dose (HR 1.07 p = 0.0033), and melanoma histology (HR 1.45, p = 0.0187) were associated with DBF. A prognostic index derived from the training dataset exhibited ability to discriminate patients' DBF risk within the validation dataset (c-index = 0.631) and Heller's explained relative risk (HERR) = 0.173 (SE = 0.048). Absolute number of metastases was evaluated for its ability to predict DBF in the derivation and validation datasets, and was inferior to the nomogram. A nomogram high-risk threshold yielding a 2.1-fold increased need for early WBRT was identified. Nomogram values also correlated to number of brain metastases at time of failure (r = 0.38, p < 0.0001). We present a multi-institutionally validated prognostic model and nomogram to predict risk of DBF and guide risk-stratification of patients who are appropriate candidates for radiosurgery versus upfront WBRT.
Role of olfaction in Octopus vulgaris reproduction.
Polese, Gianluca; Bertapelle, Carla; Di Cosmo, Anna
2015-01-01
The olfactory system in any animal is the primary sensory system that responds to chemical stimuli emanating from a distant source. In aquatic animals "Odours" are molecules in solution that guide them to locate food, partners, nesting sites, and dangers to avoid. Fish, crustaceans and aquatic molluscs possess sensory systems that have anatomical similarities to the olfactory systems of land-based animals. Molluscs are a large group of aquatic and terrestrial animals that rely heavily on chemical communication with a generally dispersed sense of touch and chemical sensitivity. Cephalopods, the smallest class among extant marine molluscs, are predators with high visual capability and well developed vestibular, auditory, and tactile systems. Nevertheless they possess a well developed olfactory organ, but to date almost nothing is known about the mechanisms, functions and modulation of this chemosensory structure in octopods. Cephalopod brains are the largest of all invertebrate brains and across molluscs show the highest degree of centralization. The reproductive behaviour of Octopus vulgaris is under the control of a complex set of signal molecules such as neuropeptides, neurotransmitters and sex steroids that guide the behaviour from the level of individuals in evaluating mates, to stimulating or deterring copulation, to sperm-egg chemical signalling that promotes fertilization. These signals are intercepted by the olfactory organs and integrated in the olfactory lobes in the central nervous system. In this context we propose a model in which the olfactory organ and the olfactory lobe of O. vulgaris could represent the on-off switch between food intake and reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.
Review: Impact of Helicobacter pylori on Alzheimer's disease: What do we know so far?
Doulberis, Michael; Kotronis, Georgios; Thomann, Robert; Polyzos, Stergios A; Boziki, Marina; Gialamprinou, Dimitra; Deretzi, Georgia; Katsinelos, Panagiotis; Kountouras, Jannis
2018-02-01
Helicobacter pylori has changed radically gastroenterologic world, offering a new concept in patients' management. Over time, more medical data gave rise to diverse distant, extragastric manifestations and interactions of the "new" discovered bacterium. Special interest appeared within the field of neurodegenerative diseases and particularly Alzheimer's disease, as the latter and Helicobacter pylori infection are associated with a large public health burden and Alzheimer's disease ranks as the leading cause of disability. However, the relationship between Helicobacter pylori infection and Alzheimer's disease remains uncertain. We performed a narrative review regarding a possible connection between Helicobacter pylori and Alzheimer's disease. All accessible relevant (pre)clinical studies written in English were included. Both affected pathologies were briefly analyzed, and relevant studies are discussed, trying to focus on the possible pathogenetic role of this bacterium in Alzheimer's disease. Data stemming from both epidemiologic studies and animal experiments seem to be rather encouraging, tending to confirm the hypothesis that Helicobacter pylori infection might influence the course of Alzheimer's disease pleiotropically. Possible main mechanisms may include the bacterium's access to the brain via the oral-nasal-olfactory pathway or by circulating monocytes (infected with Helicobacter pylori due to defective autophagy) through disrupted blood-brain barrier, thereby possibly triggering neurodegeneration. Current data suggest that Helicobacter pylori infection might influence the pathophysiology of Alzheimer's disease. However, further large-scale randomized controlled trials are mandatory to clarify a possible favorable effect of Helicobacter pylori eradication on Alzheimer's disease pathophysiology, before the recommendation of short-term and cost-effective therapeutic regimens against Helicobacter pylori-related Alzheimer's disease. © 2017 John Wiley & Sons Ltd.
Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential
Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald
2017-01-01
Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by physiology related signals, e.g., head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to “true” neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA. Our preliminary results indicate that fast (TR <0.5 s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion toward a better understanding and a more quantitative use of fMRI. PMID:28164083
Nia, Emily S; Garland, Linda L; Eshghi, Naghmehossadat; Nia, Benjamin B; Avery, Ryan J; Kuo, Phillip H
2017-09-01
The brain is the most common site of distant metastasis from lung cancer. Thus, MRI of the brain at initial staging is routinely performed, but if this examination is negative a follow-up examination is often not performed. This study evaluates the incidence of asymptomatic brain metastases in non-small cell lung cancer patients detected on follow-up 18 F-FDG PET/CT scans. Methods: In this Institutional Review Board-approved retrospective review, all vertex to thigh 18 F-FDG PET/CT scans in patients with all subtypes of lung cancer from August 2014 to August 2016 were reviewed. A total of 1,175 18 F-FDG PET/CT examinations in 363 patients were reviewed. Exclusion criteria included brain metastases on initial staging, histologic subtype of small-cell lung cancer, and no follow-up 18 F-FDG PET/CT examinations. After our exclusion criteria were applied, a total of 809 follow-up 18 F-FDG PET/CT scans in 227 patients were included in the final analysis. The original report of each 18 F-FDG PET/CT study was reviewed for the finding of brain metastasis. The finding of a new brain metastasis prompted a brain MRI, which was reviewed to determine the accuracy of the 18 F-FDG PET/CT. Results: Five of 227 patients with 809 follow-up 18 F-FDG PET/CT scans reviewed were found to have incidental brain metastases. The mean age of the patients with incidental brain metastasis was 68 y (range, 60-77 y). The mean time from initial diagnosis to time of detection of incidental brain metastasis was 36 mo (range, 15-66 mo). When MRI was used as the gold standard, our false-positive rate was zero. Conclusion: By including the entire head during follow-up 18 F-FDG PET/CT scans of patients with non-small cell lung cancer, brain metastases can be detected earlier while still asymptomatic. But, given the additional scan time, radiation, and low incidence of new brain metastases in asymptomatic patients, the cost-to-benefit ratio should be weighed by each institution. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
A case of peritoneal metastasis during treatment for hypopharyngeal squamous cell carcinoma.
Wakasaki, Takahiro; Omori, Hirofumi; Sueyoshi, Shintaro; Rikimaru, Fumihide; Toh, Satoshi; Taguchi, Kenichi; Higaki, Yuichiro; Morita, Masaru; Masuda, Muneyuki
2016-10-18
Advanced head and neck squamous cell carcinomas frequently develop distant metastases to limited organs, including the lungs, bone, mediastinal lymph nodes, brain, and liver. Peritoneal carcinomatosis as an initial distant metastasis from hypopharyngeal squamous cell carcinoma is quite rare. A 75-year-old man diagnosed with hypopharyngeal squamous cell carcinoma and his clinical stage was determined as T2N2cM0. Notably, the right retropharyngeal lymph node surrounded more than half of the right internal carotid artery. Concomitant conformal radiation therapy was administered for the primary hypopharyngeal lesion, and the whole neck and tumor response was evaluated at this point according to our algorithm-based chemoradioselection protocol. As the tumor responses at both the primary and lymph nodes were poor, with the right retropharyngeal lymph node in particular demonstrating mild enlargement, we performed a radical surgery: pharyngolaryngectomy, bilateral neck dissection, and reconstruction of the cervical esophagus with a free jejunal flap. Then, postoperative CRT was performed. During these therapies, the patient developed a fever and mild abdominal pain, which was associated with an increased C-reactive protein level. Contrast-enhanced computed tomography from the neck to the pelvis demonstrated mild peritoneal hypertrophy and ascites with no evidence of recurrent and/or metastatic tumor formation. We initially diagnosed acute abdomen symptoms as postoperative ileus. However, cytological examination of the refractory ascites resulted in a diagnosis of peritoneal carcinomatosis. Owing to rapid disease progress, the patient died 1.5 months after abdominal symptom onset. The present case is the second reported case of head and neck squamous cell carcinoma with peritoneal carcinomatosis as an incipient distant metastasis. Therefore, peritoneal carcinomatosis should be considered a differential diagnosis when acute abdomen is noted during treatment for head and neck cancers.
Unravelling site-specific breast cancer metastasis: a microRNA expression profiling study
Schrijver, Willemijne A.M.E.; van Diest, Paul J.; Moelans, Cathy B
2017-01-01
Distant metastasis is still the main cause of death from breast cancer. MicroRNAs (miRs) are important regulators of many physiological and pathological processes, including metastasis. Molecular breast cancer subtypes are known to show a site-specific pattern of metastases formation. In this study, we set out to determine the underlying molecular mechanisms of site-specific breast cancer metastasis by microRNA expression profiling. To identify a miR signature for metastatic breast carcinoma that could predict metastatic localization, we compared global miR expression in 23 primary breast cancer specimens with their corresponding multiple distant metastases to ovary (n=9), skin (n=12), lung (n=10), brain (n=4) and gastrointestinal tract (n=10) by miRCURY microRNA expression arrays. For validation, we performed quantitative real-time (qRT) PCR on the discovery cohort and on an independent validation cohort of 29 primary breast cancer specimens and their matched metastases. miR expression was highly patient specific and miR signatures in the primary tumor were largely retained in the metastases, with the exception of several differentially expressed, location specific miRs. Validation with qPCR demonstrated that hsa-miR-106b-5p was predictive for the development of lung metastases. In time, the second metastasis often showed a miR upregulation compared to the first metastasis. This study discovered a metastatic site-specific miR and found miR expression to be highly patient specific. This may lead to novel biomarkers predicting site of distant metastases, and to adjuvant, personalized targeted therapy strategies that could prevent such metastases from becoming clinically manifest. PMID:27902972
Unravelling site-specific breast cancer metastasis: a microRNA expression profiling study.
Schrijver, Willemijne A M E; van Diest, Paul J; Moelans, Cathy B
2017-01-10
Distant metastasis is still the main cause of death from breast cancer. MicroRNAs (miRs) are important regulators of many physiological and pathological processes, including metastasis. Molecular breast cancer subtypes are known to show a site-specific pattern of metastases formation. In this study, we set out to determine the underlying molecular mechanisms of site-specific breast cancer metastasis by microRNA expression profiling.To identify a miR signature for metastatic breast carcinoma that could predict metastatic localization, we compared global miR expression in 23 primary breast cancer specimens with their corresponding multiple distant metastases to ovary (n=9), skin (n=12), lung (n=10), brain (n=4) and gastrointestinal tract (n=10) by miRCURY microRNA expression arrays. For validation, we performed quantitative real-time (qRT) PCR on the discovery cohort and on an independent validation cohort of 29 primary breast cancer specimens and their matched metastases.miR expression was highly patient specific and miR signatures in the primary tumor were largely retained in the metastases, with the exception of several differentially expressed, location specific miRs. Validation with qPCR demonstrated that hsa-miR-106b-5p was predictive for the development of lung metastases. In time, the second metastasis often showed a miR upregulation compared to the first metastasis.This study discovered a metastatic site-specific miR and found miR expression to be highly patient specific. This may lead to novel biomarkers predicting site of distant metastases, and to adjuvant, personalized targeted therapy strategies that could prevent such metastases from becoming clinically manifest.
Modulation by EEG features of BOLD responses to interictal epileptiform discharges
LeVan, Pierre; Tyvaert, Louise; Gotman, Jean
2013-01-01
Introduction EEG-fMRI of interictal epileptiform discharges (IEDs) usually assumes a fixed hemodynamic response function (HRF). This study investigates HRF variability with respect to IED amplitude fluctuations using independent component analysis (ICA), with the goal of improving the specificity of EEG-fMRI analyses. Methods We selected EEG-fMRI data from 10 focal epilepsy patients with a good quality EEG. IED amplitudes were calculated in an average reference montage. The fMRI data were decomposed by ICA and a deconvolution method identified IED-related components by detecting time courses with a significant HRF time-locked to the IEDs (F-test, p<0.05). Individual HRF amplitudes were then calculated for each IED. Components with a significant HRF/IED amplitude correlation (Spearman test, p< 0.05) were compared to the presumed epileptogenic focus and to results of a general linear model (GLM) analysis. Results In 7 patients, at least one IED-related component was concordant with the focus, but many IED-related components were at distant locations. When considering only components with a significant HRF/IED amplitude correlation, distant components could be discarded, significantly increasing the relative proportion of activated voxels in the focus (p=0.02). In the 3 patients without concordant IED-related components, no HRF/IED amplitude correlations were detected inside the brain. Integrating IED-related amplitudes in the GLM significantly improved fMRI signal modeling in the epileptogenic focus in 4 patients (p< 0.05). Conclusion Activations in the epileptogenic focus appear to show significant correlations between HRF and IED amplitudes, unlike distant responses. These correlations could be integrated in the analysis to increase the specificity of EEG-fMRI studies in epilepsy. PMID:20026222
Woodman, Natalie; Pinder, Sarah E; Tajadura, Virginia; Le Bourhis, Xuefen; Gillett, Cheryl; Delannoy, Philippe; Burchell, Joy M; Julien, Sylvain
2016-07-01
Distant metastases account for the majority of cancer-related deaths in breast cancer. The rate and site of metastasis differ between estrogen receptor (ER)-negative and ER-positive tumours, and metastatic fate can be very diverse even within the ER-negative group. Characterisation of new pro-metastatic markers may help to identify patients with higher risk and improve their care accordingly. Selectin ligands aberrantly expressed by cancer cells promote metastasis by enabling interaction between circulating tumour cells and endothelial cells in distant organs. These ligands consist in carbohydrate molecules, such as sialyl-Lewis x antigen (sLex), borne by glycoproteins or glycolipids on the cancer cell surface. We have previously demonstrated that the molecular scaffold presenting sLex to selectins (e.g. glycolipid vs. glycoproteins) was crucial for these interactions to occur. Moreover, we reported that detection of sLex alone in breast carcinomas was only of limited prognostic value. However, since sLex was found to be carried by several glycoproteins in cancer cells, we hypothesized that the combination of the carbohydrate with its carriers could be more relevant than each marker independently. In this study, we addressed this question by analysing sLex expression together with two glycoproteins (BST-2 and LGALS3BP), shown to interact with E-selectin in a carbohydrate-dependent manner, in a cohort of 249 invasive breast cancers. We found both glycoproteins to be associated with distant metastasis risk and poorer survival. Importantly, concomitant high expression of BST-2 with sLex defined a sub-group of patients with ER-negative tumours displaying higher risks of liver and brain metastasis and a 3-fold decreased survival rate.
[The development of a distribution system for medical lasers and its clinical application].
Okae, S; Ishiguchi, T; Ishigaki, T; Sakuma, S
1991-02-25
We developed a new laser beam generator system which can deliver laser beam to multiple terminals in distant clinical therapy rooms. The system possesses the distribution equipment by which Nd-YAG laser power is distributed to 8 output terminals under the computer control. Distributed laser beam is delivered to each distant terminal with clinical informations through the optical fiber. In the fundamental studies, possibility of distant transportation of laser beam (30 m) only with 10% loss of energy and without dangerous heating at the connection parts was shown. There seems to be no disadvantage associated with distribution laser beam. In the clinical study, the system was applied to five patients with the symptoms including hemosputum, esophageal stenosis, hemorrhage, lip ulcer and pain. Clinical usefulness of the system was proved. The advantages of the system are as follows: 1. Benefit of cost reduction due to multiple use of single laser source. 2. No necessity of transport of the equipment. 3. No requirement of a wide space to install the equipment in the distant room. 4. Efficient management and maintenance of the system by centralization. Further improvements, e.g., simultaneous use at multiple terminals and elongation of transportation up to 340 m, make the system more useful for clinical application.
Liu, K T; Wan, J F; Zhu, J; Li, G C; Sun, W J; Shen, L J; Cai, S J; Gu, W L; Lian, P; Zhang, Z
2016-12-01
To evaluate the efficacy and safety of pelvic irradiation combined systematic chemotherapy in patients with locally advanced (cT3-T4 and/or cN+) rectal cancer and synchronous unresectable distant metastases. A total of 76 eligible patients who received pelvic radiotherapy and concurrent capecitabine-based chemotherapy were retrospectively reviewed. Patients survival curves were constructed using the Kaplan-Meier method, and a multivariate analysis was performed to identify independent prognostic factors. Most of the adverse events were mild during the period of combined chemoradiotherapy. Twenty-two patients experienced resection of primary tumour and 16 patients underwent radical surgery of all lesions. Only five patients had pelvic progression during the follow-up period. The median progression-free survival and median overall survival were 13 and 30 months, respectively. Radical surgery of all lesions following chemoradiotherapy was found to be an independent prognostic factor according to multivariate analysis. Pelvic irradiation combined with systematic chemotherapy in patients with locally advanced rectal cancer and synchronous unresectable distant metastases is effective and tolerable, both for pelvic and distant control. A curative resection following chemoradiotherapy was associated with prolonged survival. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, Thomas J.; University of Florida Proton Therapy Institute, Jacksonville, FL; Indelicato, Daniel J., E-mail: dindelicato@floridaproton.org
Purpose: Second tumors are an uncommon complication of multimodality treatment of childhood cancer. The present analysis attempted to correlate the dose received as a component of primary treatment and the site of the eventual development of a second tumor. Methods and Materials: We retrospectively identified 16 patients who had received radiotherapy to sites in the craniospinal axis and subsequently developed a second tumor. We compared the historical fields and port films of the primary treatment with the modern imaging of the second tumor locations. We classified the location of the second tumors as follows: in the boost field; marginal tomore » the boost field, but in a whole-brain field; in a whole-brain field; marginal to the whole brain/primary treatment field; and distant to the field. We divided the dose received into 3 broad categories: high dose (>45 Gy), moderate dose (20-36 Gy), and low dose (<20 Gy). Results: The most common location of the second tumor was in the whole brain field (57%) and in the moderate-dose range (81%). Conclusions: Our data contradict previous publications that suggested that most second tumors develop in tissues that receive a low radiation dose. Almost all the second tumors in our series occurred in tissue within a target volume in the cranium that had received a moderate dose (20-36 Gy). These findings suggest that a major decrease in the brain volume that receives a moderate radiation dose is the only way to substantially decrease the second tumor rate after central nervous system radiotherapy.« less
Neuropathology of White Matter Lesions, Blood-Brain Barrier Dysfunction, and Dementia.
Hainsworth, Atticus H; Minett, Thais; Andoh, Joycelyn; Forster, Gillian; Bhide, Ishaan; Barrick, Thomas R; Elderfield, Kay; Jeevahan, Jamuna; Markus, Hugh S; Bridges, Leslie R
2017-10-01
We tested whether blood-brain barrier dysfunction in subcortical white matter is associated with white matter abnormalities or risk of clinical dementia in older people (n=126; mean age 86.4, SD: 7.7 years) in the MRC CFAS (Medical Research Council Cognitive Function and Ageing Study). Using digital pathology, we quantified blood-brain barrier dysfunction (defined by immunohistochemical labeling for the plasma marker fibrinogen). This was assessed within subcortical white matter tissue samples harvested from postmortem T 2 magnetic resonance imaging (MRI)-detected white matter hyperintensities, from normal-appearing white matter (distant from coexistent MRI-defined hyperintensities), and from equivalent areas in MRI normal brains. Histopathologic lesions were defined using a marker for phagocytic microglia (CD68, clone PGM1). Extent of fibrinogen labeling was not significantly associated with white matter abnormalities defined either by MRI (odds ratio, 0.90; 95% confidence interval, 0.79-1.03; P =0.130) or by histopathology (odds ratio, 0.93; 95% confidence interval, 0.77-1.12; P =0.452). Among participants with normal MRI (no detectable white matter hyperintensities), increased fibrinogen was significantly related to decreased risk of clinical dementia (odds ratio, 0.74; 95% confidence interval, 0.58-0.94; P =0.013). Among participants with histological lesions, increased fibrinogen was related to increased risk of dementia (odds ratio, 2.26; 95% confidence interval, 1.25-4.08; P =0.007). Our data suggest that some degree of blood-brain barrier dysfunction is common in older people and that this may be related to clinical dementia risk, additional to standard MRI biomarkers. © 2017 American Heart Association, Inc.
Teilmann, Anne Charlotte; Rozell, Björn; Kalliokoski, Otto; Hau, Jann; Abelson, Klas S P
2016-01-01
Automated blood sampling through a vascular catheter is a frequently utilized technique in laboratory mice. The potential immunological and physiological implications associated with this technique have, however, not been investigated in detail. The present study compared plasma levels of the cytokines IL-1β, IL-2, IL-6, IL-10, IL-17A, GM-CSF, IFN-γ and TNF-α in male NMRI mice that had been subjected to carotid artery catheterization and subsequent automated blood sampling with age-matched control mice. Body weight and histopathological changes in the surgical area, including the salivary glands, the heart, brain, spleen, liver, kidneys and lungs were compared. Catheterized mice had higher levels of IL-6 than did control mice, but other cytokine levels did not differ between the groups. No significant difference in body weight was found. The histology revealed inflammatory and regenerative (healing) changes at surgical sites of all catheterized mice, with mild inflammatory changes extending into the salivary glands. Several catheterized mice had multifocal degenerative to necrotic changes with inflammation in the heart, kidneys and livers, suggesting that thrombi had detached from the catheter tip and embolized to distant sites. Thus, catheterization and subsequent automated blood sampling may have physiological impact. Possible confounding effects of visceral damage should be assessed and considered, when using catheterized mouse models.
Using temporal distancing to regulate emotion in adolescence: modulation by reactive aggression.
Ahmed, S P; Somerville, L H; Sebastian, C L
2018-06-01
Adopting a temporally distant perspective on stressors reduces distress in adults. Here we investigate whether the extent to which individuals project themselves into the future influences distancing efficacy. We also examined modulating effects of age across adolescence and reactive aggression: factors associated with reduced future-thinking and poor emotion regulation. Participants (N = 83, aged 12-22) read scenarios and rated negative affect when adopting a distant-future perspective, near-future perspective, or when reacting naturally. Self-report data revealed significant downregulation of negative affect during the distant-future condition, with a similar though non-significant skin conductance pattern. Importantly, participants who projected further ahead showed the greatest distress reductions. While temporal distancing efficacy did not vary with age, participants reporting greater reactive aggression showed reduced distancing efficacy, and projected themselves less far into the future. Findings demonstrate the importance of temporal extent in effective temporal distancing; shedding light on a potential mechanism for poor emotional control associated with reactive aggression.
Do "Brain-Training" Programs Work?
Simons, Daniel J; Boot, Walter R; Charness, Neil; Gathercole, Susan E; Chabris, Christopher F; Hambrick, David Z; Stine-Morrow, Elizabeth A L
2016-10-01
In 2014, two groups of scientists published open letters on the efficacy of brain-training interventions, or "brain games," for improving cognition. The first letter, a consensus statement from an international group of more than 70 scientists, claimed that brain games do not provide a scientifically grounded way to improve cognitive functioning or to stave off cognitive decline. Several months later, an international group of 133 scientists and practitioners countered that the literature is replete with demonstrations of the benefits of brain training for a wide variety of cognitive and everyday activities. How could two teams of scientists examine the same literature and come to conflicting "consensus" views about the effectiveness of brain training?In part, the disagreement might result from different standards used when evaluating the evidence. To date, the field has lacked a comprehensive review of the brain-training literature, one that examines both the quantity and the quality of the evidence according to a well-defined set of best practices. This article provides such a review, focusing exclusively on the use of cognitive tasks or games as a means to enhance performance on other tasks. We specify and justify a set of best practices for such brain-training interventions and then use those standards to evaluate all of the published peer-reviewed intervention studies cited on the websites of leading brain-training companies listed on Cognitive Training Data (www.cognitivetrainingdata.org), the site hosting the open letter from brain-training proponents. These citations presumably represent the evidence that best supports the claims of effectiveness.Based on this examination, we find extensive evidence that brain-training interventions improve performance on the trained tasks, less evidence that such interventions improve performance on closely related tasks, and little evidence that training enhances performance on distantly related tasks or that training improves everyday cognitive performance. We also find that many of the published intervention studies had major shortcomings in design or analysis that preclude definitive conclusions about the efficacy of training, and that none of the cited studies conformed to all of the best practices we identify as essential to drawing clear conclusions about the benefits of brain training for everyday activities. We conclude with detailed recommendations for scientists, funding agencies, and policymakers that, if adopted, would lead to better evidence regarding the efficacy of brain-training interventions. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
Hisamoto, Chuck (Inventor); Arzoumanian, Zaven (Inventor); Sheikh, Suneel I. (Inventor)
2015-01-01
A method and system for spacecraft navigation using distant celestial gamma-ray bursts which offer detectable, bright, high-energy events that provide well-defined characteristics conducive to accurate time-alignment among spatially separated spacecraft. Utilizing assemblages of photons from distant gamma-ray bursts, relative range between two spacecraft can be accurately computed along the direction to each burst's source based upon the difference in arrival time of the burst emission at each spacecraft's location. Correlation methods used to time-align the high-energy burst profiles are provided. The spacecraft navigation may be carried out autonomously or in a central control mode of operation.
Thomas, Amanda L; Davis, Shaun M; Dierick, Herman A
2015-08-01
Aggressive behavior is widespread in the animal kingdom, but the degree of molecular conservation between distantly related species is still unclear. Recent reports suggest that at least some of the molecular mechanisms underlying this complex behavior in flies show remarkable similarities with such mechanisms in mice and even humans. Surprisingly, some aspects of neuronal control of aggression also show remarkable similarity between these distantly related species. We will review these recent findings, address the evolutionary implications, and discuss the potential impact for our understanding of human diseases characterized by excessive aggression.
Dierick, Herman A.
2015-01-01
Aggressive behavior is widespread in the animal kingdom, but the degree of molecular conservation between distantly related species is still unclear. Recent reports suggest that at least some of the molecular mechanisms underlying this complex behavior in flies show remarkable similarities with such mechanisms in mice and even humans. Surprisingly, some aspects of neuronal control of aggression also show remarkable similarity between these distantly related species. We will review these recent findings, address the evolutionary implications, and discuss the potential impact for our understanding of human diseases characterized by excessive aggression. PMID:26312756
Merkel Cell Carcinoma: 27-Year Experience at the Peter MacCallum Cancer Centre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, Andrew C., E-mail: achui@bigpond.net.au; Stillie, Alison L.; Seel, Matthew
2011-08-01
Purpose: To retrospectively evaluate the treatment outcome of patients with Merkel cell carcinoma after local and/or regional treatment. Methods and Materials: Patients presenting to our center between January 1980 and July 2006 with Merkel cell carcinoma and without distant metastases were reviewed. The primary endpoint was locoregional control. Secondary endpoints were distant recurrence, survival and treatment toxicity. Results: A total of 176 patients were identified. The median age was 79 years. The median follow-up was 2.2 years for all patients and 3.9 years for those alive at the last follow-up visit. The most common primary site was the head andmore » neck (56%), and 62 patients(35%) had regional disease at presentation. The initial surgery to the primary tumor involved (wide) local excision in 140 patients and biopsy only in 28 patients (8 patients had no identifiable primary tumor); 33 patients underwent nodal surgery. Of the 176 patients, 165 (94%) underwent radiotherapy (RT) and 29 of them also underwent concurrent chemotherapy. The median radiation dose was 50 Gy (range, 18-60). Locoregional recurrence developed in 33 patients(19%), with a median interval to recurrence of 8 months. Distant metastases developed in 43 patients(24%). Age, primary tumor size, and RT (no RT vs. <45 Gy vs. {>=}45 Gy) were predictive of locoregional control on univariate analysis. However, only RT remained significant on multivariate analysis. The estimated 5-year actuarial rate for locoregional control, progression-free survival, and overall survival was 76%, 60%, and 45%, respectively. Conclusion: The locoregional control rate for Merkel cell carcinoma in our study was comparable to those from other series using combined modality treatment with RT an integral part of treatment.« less
Integrated Attitude Control Strategy for the Asteroid Redirect Mission
NASA Technical Reports Server (NTRS)
Lopez, Pedro, Jr.; Price, Hoppy; San Martin, Miguel
2014-01-01
A deep-space mission has been proposed to redirect an asteroid to a distant retrograde orbit around the moon using a robotic vehicle, the Asteroid Redirect Vehicle (ARV). In this orbit, astronauts will rendezvous with the ARV using the Orion spacecraft. The integrated attitude control concept that Orion will use for approach and docking and for mated operations will be described. Details of the ARV's attitude control system and its associated constraints for redirecting the asteroid to the distant retrograde orbit around the moon will be provided. Once Orion is docked to the ARV, an overall description of the mated stack attitude during all phases of the mission will be presented using a coordinate system that was developed for this mission. Next, the thermal and power constraints of both the ARV and Orion will be discussed as well as how they are used to define the optimal integrated stack attitude. Lastly, the lighting and communications constraints necessary for the crew's extravehicular activity planned to retrieve samples from the asteroid will be examined. Similarly, the joint attitude control strategy that employs both the Orion and the ARV attitude control assets prior, during, and after each extravehicular activity will also be thoroughly discussed.
Warnings and caveats in brain controllability.
Tu, Chengyi; Rocha, Rodrigo P; Corbetta, Maurizio; Zampieri, Sandro; Zorzi, Marco; Suweis, S
2018-08-01
A recent article by Gu et al. (Nat. Commun. 6, 2015) proposed to characterize brain networks, quantified using anatomical diffusion imaging, in terms of their "controllability", drawing on concepts and methods of control theory. They reported that brain activity is controllable from a single node, and that the topology of brain networks provides an explanation for the types of control roles that different regions play in the brain. In this work, we first briefly review the framework of control theory applied to complex networks. We then show contrasting results on brain controllability through the analysis of five different datasets and numerical simulations. We find that brain networks are not controllable (in a statistical significant way) by one single region. Additionally, we show that random null models, with no biological resemblance to brain network architecture, produce the same type of relationship observed by Gu et al. between the average/modal controllability and weighted degree. Finally, we find that resting state networks defined with fMRI cannot be attributed specific control roles. In summary, our study highlights some warning and caveats in the brain controllability framework. Copyright © 2018 Elsevier Inc. All rights reserved.
Control-related systems in the human brain
Power, Jonathan D; Petersen, Steven E
2013-01-01
A fundamental question in cognitive neuroscience is how the human brain self-organizes to perform tasks. Multiple accounts of this self-organization are currently influential and in this article we survey one of these accounts. We begin by introducing a psychological model of task control and several neuroimaging signals it predicts. We then discuss where such signals are found across tasks with emphasis on brain regions where multiple control signals are present. We then present results derived from spontaneous task-free functional connectivity between control-related regions that dovetail with distinctions made by control signals present in these regions, leading to a proposal that there are at least two task control systems in the brain. This prompts consideration of whether and how such control systems distinguish themselves from other brain regions in a whole-brain context. We present evidence from whole-brain networks that such distinctions do occur and that control systems comprise some of the basic system-level organizational elements of the human brain. We close with observations from the whole-brain networks that may suggest parsimony between multiple accounts of cognitive control. PMID:23347645
Dechmann, Dina K. N.; LaPoint, Scott; Dullin, Christian; Hertel, Moritz; Taylor, Jan R. E.; Zub, Karol; Wikelski, Martin
2017-01-01
Ontogenetic changes in skull shape and size are ubiquitous in altricial vertebrates, but typically unidirectional and minimal in full-grown animals. Red-toothed shrews exhibit a rare exception, where the shape, mass and size of the skull, brain, and several major organs, show significant bidirectional seasonal changes. We now show a similar but male-biased shrinking (16%) and regrowth (8%) in the standardized braincase depth of least weasels (Mustela nivalis). Juvenile weasels also exhibit a growth overshoot, followed by a shrinkage period lasting until the end of their first winter. Only male weasels then regrow during their second summer. High-resolution CT scans suggest areas of the skull are affected differently during shrinking and regrowth in both species. This suggests multiple evolutionary drivers: while the shrinking likely facilitates survival during seasonal low resource availability in these high-metabolic mammals with year-round activity, the regrowth may be most strongly influenced by high investment into reproduction and territories, which is male-biased in the weasels. Our data provide evidence for convergent evolution of skull and thus brain shrinkage and regrowth, with important implications for understanding adaptations to changing environments and for applied research on the correlated changes in bone structure, brain size and the many other affected organs. PMID:28211896
Leininger, Elizabeth C.; Kelley, Darcy B.
2013-01-01
Independent or convergent evolution can underlie phenotypic similarity of derived behavioural characters. Determining the underlying neural and neuromuscular mechanisms sheds light on how these characters arose. One example of evolutionarily derived characters is a temporally simple advertisement call of male African clawed frogs (Xenopus) that arose at least twice independently from a more complex ancestral pattern. How did simplification occur in the vocal circuit? To distinguish shared from divergent mechanisms, we examined activity from the calling brain and vocal organ (larynx) in two species that independently evolved simplified calls. We find that each species uses distinct neural and neuromuscular strategies to produce the simplified calls. Isolated Xenopus borealis brains produce fictive vocal patterns that match temporal patterns of actual male calls; the larynx converts nerve activity faithfully into muscle contractions and single clicks. In contrast, fictive patterns from isolated Xenopus boumbaensis brains are short bursts of nerve activity; the isolated larynx requires stimulus bursts to produce a single click of sound. Thus, unlike X. borealis, the output of the X. boumbaensis hindbrain vocal pattern generator is an ancestral burst-type pattern, transformed by the larynx into single clicks. Temporally simple advertisement calls in genetically distant species of Xenopus have thus arisen independently via reconfigurations of central and peripheral vocal neuroeffectors. PMID:23407829
Hosain, M D Kamal; Kouzani, Abbas Z; Tye, Susannah J; Abulseoud, Osama A; Amiet, Andrew; Galehdar, Amir; Kaynak, Akif; Berk, Michael
2014-01-01
Design of a rectangular spiral planar inverted-F antenna (PIFA) at 915 MHz for wireless power transmission applications is proposed. The antenna and rectifying circuitry form a rectenna, which can produce dc power from a distant radio frequency energy transmitter. The generated dc power is used to operate a low-power deep brain stimulation pulse generator. The proposed antenna has the dimensions of 10 mm [Formula: see text]12.5 mm [Formula: see text]1.5 mm and resonance frequency of 915 MHz with a measured bandwidth of 15 MHz at return loss of [Formula: see text]. A dielectric substrate of FR-4 of [Formula: see text] and [Formula: see text] with thickness of 1.5 mm is used for both antenna and rectifier circuit simulation and fabrication because of its availability and low cost. An L-section impedance matching circuit is used between the PIFA and voltage doubler rectifier. The impedance matching circuit also works as a low-pass filter for elimination of higher order harmonics. Maximum dc voltage at the rectenna output is 7.5 V in free space and this rectenna can drive a deep brain stimulation pulse generator at a distance of 30 cm from a radio frequency energy transmitter, which transmits power of 26.77 dBm.
Neuroanatomy and neuropathology associated with Korsakoff's syndrome.
Kril, Jillian J; Harper, Clive G
2012-06-01
Although the neuropathology of Korsakoff's syndrome (KS) was first described well over a century ago and the characteristic brain pathology does not pose a diagnostic challenge to pathologists, there is still controversy over the neuroanatomical substrate of the distinctive memory impairment in these patients. Cohort studies of KS suggest a central role for the mammillary bodies and mediodorsal thalamus, and quantitative studies suggest additional damage to the anterior thalamus is required. Rare cases of KS caused by pathologies other than those of nutritional origin provide support for the role of the anterior thalamus and mammillary bodies. Taken together the evidence to date shows that damage to the thalamus and hypothalamus is required, in particular the anterior thalamic nucleus and the medial mammillary nucleus of the hypothalamus. As these nuclei form part of wider memory circuits, damage to the inter-connecting white matter tracts can also result in a similar deficit as direct damage to the nuclei. Although these nuclei and their connections appear to be the primary site of damage, input from other brain regions within the circuits, such as the frontal cortex and hippocampus, or more distant regions, including the cerebellum and amygdala, may have a modulatory role on memory function. Further studies to confirm the precise site(s) and extend of brain damage necessary for the memory impairment of KS are required.
Weiss, Sabine; Müller, Horst M.
2013-01-01
Current grounding theories propose that sensory-motor brain systems are not only modulated by the comprehension of concrete but also partly of abstract language. In order to investigate whether concrete or abstract language elicits similar or distinct brain activity, neuronal synchronization patterns were investigated by means of long-range EEG coherence analysis. Participants performed a semantic judgment task with concrete and abstract sentences. EEG coherence between distant electrodes was analyzed in various frequencies before and during sentence processing using a bivariate AR-model with time-varying parameters. The theta frequency band (3–7 Hz) reflected common and different synchronization networks related to working memory processes and memory-related lexico-semantic retrieval during processing of both sentence types. In contrast, the beta1 band (13–18 Hz) showed prominent differences between both sentence types, whereby concrete sentences were associated with higher coherence implicating a more widespread range and intensity of mental simulation processes. The gamma band (35–40 Hz) reflected the sentences' congruency and indicated the more difficult integration of incongruent final nouns into the sentence context. Most importantly, findings support the notion that different cognitive operations during sentence processing are associated with multiple brain oscillations. PMID:24027515
Liu, Quanying; Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante
2018-01-01
Resting state networks (RSNs) in the human brain were recently detected using high-density electroencephalography (hdEEG). This was done by using an advanced analysis workflow to estimate neural signals in the cortex and to assess functional connectivity (FC) between distant cortical regions. FC analyses were conducted either using temporal (tICA) or spatial independent component analysis (sICA). Notably, EEG-RSNs obtained with sICA were very similar to RSNs retrieved with sICA from functional magnetic resonance imaging data. It still remains to be clarified, however, what technological aspects of hdEEG acquisition and analysis primarily influence this correspondence. Here we examined to what extent the detection of EEG-RSN maps by sICA depends on the electrode density, the accuracy of the head model, and the source localization algorithm employed. Our analyses revealed that the collection of EEG data using a high-density montage is crucial for RSN detection by sICA, but also the use of appropriate methods for head modeling and source localization have a substantial effect on RSN reconstruction. Overall, our results confirm the potential of hdEEG for mapping the functional architecture of the human brain, and highlight at the same time the interplay between acquisition technology and innovative solutions in data analysis. PMID:29551969
Yokoyama, Kunio; Miyatake, Shin-Ichi; Kajimoto, Yoshinaga; Kawabata, Shinji; Doi, Atsushi; Yoshida, Toshiko; Okabe, Motonori; Kirihata, Mitsunori; Ono, Koji; Kuroiwa, Toshihiko
2007-01-01
The efficiency of boron neutron capture therapy (BNCT) for malignant gliomas depends on the selective and absolute accumulation of (10)B atoms in tumor tissues. Only two boron compounds, BPA and BSH, currently can be used clinically. However, the detailed distributions of these compounds have not been determined. Here we used secondary ion mass spectrometry (SIMS) to determine the histological distribution of (10)B atoms derived from the boron compounds BSH and BPA. C6 tumor-bearing rats were given 500 mg/kg of BPA or 100 mg/kg of BSH intraperitoneally; 2.5 h later, their brains were sectioned and subjected to SIMS. In the main tumor mass, BPA accumulated heterogeneously, while BSH accumulated homogeneously. In the peritumoral area, both BPA and BSH accumulated measurably. Interestingly, in this area, BSH accumulated distinctively in a diffuse manner even 800 microm distant from the interface between the main tumor and normal brain. In the contralateral brain, BPA accumulated measurably, while BSH did not. In conclusion, both BPA and BSH each have advantages and disadvantages. These compounds are considered to be essential as boron delivery agents independently for clinical BNCT. There is some rationale for the simultaneous use of both compounds in clinical BNCT for malignant gliomas.
Dechmann, Dina K N; LaPoint, Scott; Dullin, Christian; Hertel, Moritz; Taylor, Jan R E; Zub, Karol; Wikelski, Martin
2017-02-13
Ontogenetic changes in skull shape and size are ubiquitous in altricial vertebrates, but typically unidirectional and minimal in full-grown animals. Red-toothed shrews exhibit a rare exception, where the shape, mass and size of the skull, brain, and several major organs, show significant bidirectional seasonal changes. We now show a similar but male-biased shrinking (16%) and regrowth (8%) in the standardized braincase depth of least weasels (Mustela nivalis). Juvenile weasels also exhibit a growth overshoot, followed by a shrinkage period lasting until the end of their first winter. Only male weasels then regrow during their second summer. High-resolution CT scans suggest areas of the skull are affected differently during shrinking and regrowth in both species. This suggests multiple evolutionary drivers: while the shrinking likely facilitates survival during seasonal low resource availability in these high-metabolic mammals with year-round activity, the regrowth may be most strongly influenced by high investment into reproduction and territories, which is male-biased in the weasels. Our data provide evidence for convergent evolution of skull and thus brain shrinkage and regrowth, with important implications for understanding adaptations to changing environments and for applied research on the correlated changes in bone structure, brain size and the many other affected organs.
Leininger, Elizabeth C; Kelley, Darcy B
2013-04-07
Independent or convergent evolution can underlie phenotypic similarity of derived behavioural characters. Determining the underlying neural and neuromuscular mechanisms sheds light on how these characters arose. One example of evolutionarily derived characters is a temporally simple advertisement call of male African clawed frogs (Xenopus) that arose at least twice independently from a more complex ancestral pattern. How did simplification occur in the vocal circuit? To distinguish shared from divergent mechanisms, we examined activity from the calling brain and vocal organ (larynx) in two species that independently evolved simplified calls. We find that each species uses distinct neural and neuromuscular strategies to produce the simplified calls. Isolated Xenopus borealis brains produce fictive vocal patterns that match temporal patterns of actual male calls; the larynx converts nerve activity faithfully into muscle contractions and single clicks. In contrast, fictive patterns from isolated Xenopus boumbaensis brains are short bursts of nerve activity; the isolated larynx requires stimulus bursts to produce a single click of sound. Thus, unlike X. borealis, the output of the X. boumbaensis hindbrain vocal pattern generator is an ancestral burst-type pattern, transformed by the larynx into single clicks. Temporally simple advertisement calls in genetically distant species of Xenopus have thus arisen independently via reconfigurations of central and peripheral vocal neuroeffectors.
Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions.
Hyafil, Alexandre; Giraud, Anne-Lise; Fontolan, Lorenzo; Gutkin, Boris
2015-11-01
Neural oscillations are ubiquitously observed in the mammalian brain, but it has proven difficult to tie oscillatory patterns to specific cognitive operations. Notably, the coupling between neural oscillations at different timescales has recently received much attention, both from experimentalists and theoreticians. We review the mechanisms underlying various forms of this cross-frequency coupling. We show that different types of neural oscillators and cross-frequency interactions yield distinct signatures in neural dynamics. Finally, we associate these mechanisms with several putative functions of cross-frequency coupling, including neural representations of multiple environmental items, communication over distant areas, internal clocking of neural processes, and modulation of neural processing based on temporal predictions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Breast cancer lung metastasis: Molecular biology and therapeutic implications.
Jin, Liting; Han, Bingchen; Siegel, Emily; Cui, Yukun; Giuliano, Armando; Cui, Xiaojiang
2018-03-26
Distant metastasis accounts for the vast majority of deaths in patients with cancer. Breast cancer exhibits a distinct metastatic pattern commonly involving bone, liver, lung, and brain. Breast cancer can be divided into different subtypes based on gene expression profiles, and different breast cancer subtypes show preference to distinct organ sites of metastasis. Luminal breast tumors tend to metastasize to bone while basal-like breast cancer (BLBC) displays a lung tropism of metastasis. However, the mechanisms underlying this organ-specific pattern of metastasis still remain to be elucidated. In this review, we will summarize the recent advances regarding the molecular signaling pathways as well as the therapeutic strategies for treating breast cancer lung metastasis.
Distant stereoacuity in children with anisometropic amblyopia.
Chung, Yeon Woong; Park, Shin Hae; Shin, Sun Young
2017-09-01
To characterize changes in distant stereoacuity using Frisby-Davis Distance test (FD2) and Distant Randot test (DR) during treatment for anisometropic amblyopia, to determine factors that influence posttreatment stereoacuity and to compare the two distant stereotests. Fifty-eight anisometropic amblyopic patients with an interocular difference of ≥1.00 diopter who achieved the visual acuity 20/20 following amblyopia treatment were retrospectively included. Stereoacuity using FD2 and DR for distant and Titmus test for near measurement were assessed and compared at the initial, intermediate, and final visit. Multivariate regression models were used to identify factors associated with initial and final stereoacuity. The two distant stereotests revealed a significant improvement in distant stereoacuity after successful amblyopia treatment. Distant stereoacuity using FD2 showed the greatest improvement during the follow up period. The number of nil scores was higher in DR than FD2 at each period. In multivariate analysis, better final stereoacuity was associated with better initial amblyopic eye acuity in both distant stereotests, but not in the Titmus test. Comparing the two distant stereotests, final stereoacuity using FD2 was associated with initial stereoacuity and was moderately related with the Titmus test at each period, but final stereoacuity using DR was not. Distant stereoacuity measured with both FD2 and DR showed significant improvement when the visual acuity of the amblyopic eye achieved 20/20. Changes in distant stereoacuity by FD2 and DR during the amblyopia treatment were somewhat different.
Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida
2010-01-01
Background Paired mushroom bodies, an unpaired central complex, and bilaterally arranged clusters of olfactory glomeruli are among the most distinctive components of arthropod neuroarchitecture. Mushroom body neuropils, unpaired midline neuropils, and olfactory glomeruli also occur in the brains of some polychaete annelids, showing varying degrees of morphological similarity to their arthropod counterparts. Attempts to elucidate the evolutionary origin of these neuropils and to deduce an ancestral ground pattern of annelid cerebral complexity are impeded by the incomplete knowledge of annelid phylogeny and by a lack of comparative neuroanatomical data for this group. The present account aims to provide new morphological data for a broad range of annelid taxa in order to trace the occurrence and variability of higher brain centers in segmented worms. Results Immunohistochemically stained preparations provide comparative neuroanatomical data for representatives from 22 annelid species. The most prominent neuropil structures to be encountered in the annelid brain are the paired mushroom bodies that occur in a number of polychaete taxa. Mushroom bodies can in some cases be demonstrated to be closely associated with clusters of spheroid neuropils reminiscent of arthropod olfactory glomeruli. Less distinctive subcompartments of the annelid brain are unpaired midline neuropils that bear a remote resemblance to similar components in the arthropod brain. The occurrence of higher brain centers such as mushroom bodies, olfactory glomeruli, and unpaired midline neuropils seems to be restricted to errant polychaetes. Conclusions The implications of an assumed homology between annelid and arthropod mushroom bodies are discussed in light of the 'new animal phylogeny'. It is concluded that the apparent homology of mushroom bodies in distantly related groups has to be interpreted as a plesiomorphy, pointing towards a considerably complex neuroarchitecture inherited from the last common ancestor, Urbilateria. Within the annelid radiation, the lack of mushroom bodies in certain groups is explained by widespread secondary reductions owing to selective pressures unfavorable for the differentiation of elaborate brains. Evolutionary pathways of mushroom body neuropils in errant polychaetes remain enigmatic. PMID:20441583
Volume transmission-mediated encephalopathies: a possible new concept?
Hartung, Hans-Peter; Dihné, Marcel
2012-03-01
There is strong evidence that the composition of cerebrospinal fluid (CSF) influences brain development, neurogenesis, and behavior. The bidirectional exchange of CSF and interstitial fluid (ISF) across the ependymal and pia-glial membranes is required for these phenomena to occur. Because ISF surrounds the parenchymal compartment, neuroactive substances in the CSF and ISF can influence neuronal activity. Functionally important neuroactive substances are distributed to distant sites of the central nervous system by the convection and diffusion of CSF and ISF, a process known as volume transmission. It has recently been shown that pathologically altered CSF from patients with acute traumatic brain injury suppresses in vitro neuronal network activity (ivNNA) recorded by multielectrode arrays measuring synchronously bursting neural populations. Functionally relevant substances in pathologically altered CSF have been biochemically identified, and ivNNA has been partially recovered by pharmacologic intervention. It remains unclear whether the in vivo parenchymal compartment remains unaffected by pathologically altered CSF that significantly impairs ivNNA. We hypothesize that pathologic CSF alterations are not just passive indicators of brain diseases but that they actively and directly evoke functional disturbances in global brain activity through the distribution of neuroactive substances, for instance, secondary to focal neurologic disease. For this mechanism, we propose the new term volume transmission-mediated encephalopathies (VTE). Recording ivNNA in the presence of pure human CSF could help to identify and monitor functionally relevant CSF alterations that directly result in VTEs, and the collected data might point to therapeutic ways to antagonize these alterations.
Immunotherapy alleviates amyloid-associated synaptic pathology in an Alzheimer’s disease mouse model
Dorostkar, Mario M.; Burgold, Steffen; Filser, Severin; Barghorn, Stefan; Schmidt, Boris; Anumala, Upendra Rao; Hillen, Heinz; Klein, Corinna
2014-01-01
Cognitive decline in Alzheimer’s disease is attributed to loss of functional synapses, most likely caused by synaptotoxic, oligomeric forms of amyloid-β. Many treatment options aim at reducing amyloid-β levels in the brain, either by decreasing its production or by increasing its clearance. We quantified the effects of immunotherapy directed against oligomeric amyloid-β in Tg2576 mice, a mouse model of familial Alzheimer’s disease. Treatment of 12-month-old mice with oligomer-specific (A-887755) or conformation-unspecific (6G1) antibodies for 8 weeks did not affect fibrillar plaque density or growth. We also quantified densities of DLG4 (previously known as PSD95) expressing post-synapses and synapsin expressing presynapses immunohistochemically. We found that both pre- and post-synapses were strongly reduced in the vicinity of plaques, whereas distant from plaques, in the cortex and hippocampal CA1 field, only post-synapses were reduced. Immunotherapy alleviated this synapse loss. Synapse loss was completely abolished distant from plaques, whereas it was only attenuated in the vicinity of plaques. These results suggest that fibrillar plaques may act as reservoirs for synaptotoxic, oligomeric amyloid-β and that sequestering oligomers suffices to counteract synaptic pathology. Therefore, cognitive function may be improved by immunotherapy even when the load of fibrillar amyloid remains unchanged. PMID:25281869
Ray, Michael E; Bae, Kyounghwa; Hussain, Maha H A; Hanks, Gerald E; Shipley, William U; Sandler, Howard M
2009-02-18
The identification of surrogate endpoints for prostate cancer-specific survival may shorten the length of clinical trials for prostate cancer. We evaluated distant metastasis and general clinical treatment failure as potential surrogates for prostate cancer-specific survival by use of data from the Radiation Therapy and Oncology Group 92-02 randomized trial. Patients (n = 1554 randomly assigned and 1521 evaluable for this analysis) with locally advanced prostate cancer had been treated with 4 months of neoadjuvant and concurrent androgen deprivation therapy with external beam radiation therapy and then randomly assigned to no additional therapy (control arm) or 24 additional months of androgen deprivation therapy (experimental arm). Data from landmark analyses at 3 and 5 years for general clinical treatment failure (defined as documented local disease progression, regional or distant metastasis, initiation of androgen deprivation therapy, or a prostate-specific antigen level of 25 ng/mL or higher after radiation therapy) and/or distant metastasis were tested as surrogate endpoints for prostate cancer-specific survival at 10 years by use of Prentice's four criteria. All statistical tests were two-sided. At 3 years, 1364 patients were alive and contributed data for analysis. Both distant metastasis and general clinical treatment failure at 3 years were consistent with all four of Prentice's criteria for being surrogate endpoints for prostate cancer-specific survival at 10 years. At 5 years, 1178 patients were alive and contributed data for analysis. Although prostate cancer-specific survival was not statistically significantly different between treatment arms at 5 years (P = .08), both endpoints were consistent with Prentice's remaining criteria. Distant metastasis and general clinical treatment failure at 3 years may be candidate surrogate endpoints for prostate cancer-specific survival at 10 years. These endpoints, however, must be validated in other datasets.
Leadership Theory Taught in Air Force Distant Learning Programs
2013-03-01
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM...be considered critical components. Reward power comes from compliance based on the control of a precious commodity such as pay, promotion, and...managers monitor and staff its progress. Lastly, management controls and leadership motivates.22 Managers are there to ensure the goals are
Age-differences in the temporal properties of proactive interference in working memory.
Samrani, George; Bäckman, Lars; Persson, Jonas
2017-12-01
The inability to suppress irrelevant information has been suggested as a primary cause of proactive interference (PI), and this deficit may be enhanced in aging. The current study examines age differences and temporal boundaries of PI, by manipulating lure distances in a verbal 2-back working memory task. Both younger and older adults showed effects of interference for proximal 3- and 4-back lures, and this effect was greater for older adults. Whereas younger adults showed less interference during 4-back compared to 3-back lures, in both reaction times and accuracy, older adults improved only in accuracy. For distant lures, when the time between the 1st presentation of an item to its reappearance as a lure item was longer (e.g., 5- to 10-back lures), younger adults were no longer affected by PI. However, older adults were affected by PI throughout all distant lures, up to the most distant lure (9-/10-back). The results suggest that older adults were less successful in resolving interference from both proximal and distant familiar lures. Further, younger adults were able to overcome the effects of PI completely after a specific lure distance. The age differences in temporal properties of PI may therefore highlight a unique component linked to impaired interference control and aging. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Schurr, Paulus; Lentz, Edda; Block, Suzette; Kaifi, Jussuf; Kleinhans, Helge; Cataldegirmen, Guellue; Kutup, Asad; Schneider, Claus; Strate, Tim; Yekebas, Emre; Izbicki, Jakob
2008-07-01
To date, the survival benefit of redo surgery in locally recurrent rectal adenocarcinoma remains unclear. In an institutional study, operations for recurrence were retrospectively analyzed. Survival was calculated using the Kaplan-Meier plot and Cox regression analysis. A total of 72 patients with local recurrence were explored or resected. In 38 patients, there was synchronous distant organ recurrence. Forty-five of 72 were re-resected and in 37 of 45 cases, R0 situations were achieved. In 11 of 38 metastasized patients, both local and distant organ recurrence were successfully removed. For obtaining tumor control, resections of inner genitals, bladder, and sacral bone were necessary in 10, 4, and 11 patients, respectively. Survival was better for patients re-resected with a median overall survival of 54.9 months, as compared with 31.1 months among non-resected patients (p = 0.0047, log-rank test). Subgroup analysis revealed that a benefit of re-resection was observed to a lesser extent in synchronous local and in distant disease. Cox analysis showed that initial Dukes stage and complete resections of local recurrences were independently determining prognosis (relative risk 1.762 and 0.689, p = 0.008 and p = 0.002, respectively). Radical surgery for local recurrence can improve survival if complete tumor clearance is achieved, and concomitant distant tumor load should not principally preclude re-resection.
One shot, one kill: the forces delivered by archer fish shots to distant targets.
Burnette, Morgan F; Ashley-Ross, Miriam A
2015-10-01
Archer fishes are skillful hunters of terrestrial prey, firing jets of water that dislodge insects perched on overhead vegetation. In the current investigation, we sought an answer to the question: are distant targets impractical foraging choices? Targets far from the shooter might not be hit with sufficient force to cause them to fall. However, observations from other investigators show that archer fish fire streams of water that travel in a non-ballistic fashion, which is thought to keep on-target forces high, even to targets that are several body lengths distant from the fish. We presented targets at different distances and investigated three aspects of foraging behavior: (i) on-target forces, (ii) shot velocity, (iii) a two-target choice assay to determine if fish would show any preference for downing closer targets or more distant targets. In general, shots from our fish (Toxotes chatareus) showed a mild decrease (less than 15% on average) in on-target forces at our most distant target offered (5.8 body lengths) with respect to the closest target offered (2.3 body lengths). One individual in our investigation showed slightly, but significantly, greater on-target forces as target distance increased. Forces on the furthest targets offered were found to double that of attachment forces for 200mg insects, even for individuals whose on-target forces showed mild decreases with increases in target distance. High-speed video analysis of jet impact with the target revealed that the shot was traveling in a non-ballistic manner, even to our most distant target offered, corroborating previous suppositions that on-target forces should remain high. Fish were able to accomplish this without large changes to shot velocity, but we did find evidence that the water jets appeared to differ in the timing of their acceleration as target distance increased. Our two-target choice experiment revealed that fish show preference for downing the closer target first, even though impact forces on distant targets only showed mild decreases. Our overall findings (and the findings of others) suggest that archer fish modulate many aspects of their shooting behavior: from target selection to active control over the water jet that allows the fish to deliver reliably forceful impacts to prey over a wide range of distances. Copyright © 2015 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua
2015-09-15
An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.
Hargitai, Renáta; Pankovics, Péter; Kertész, Attila Mihály; Bíró, Hunor; Boros, Ákos; Phan, Tung Gia; Delwart, Eric; Reuter, Gábor
2016-04-01
In this study, a novel parvovirus (strain swine/Zsana3/2013/HUN, KT965075) was detected in domestic pigs and genetically characterized by viral metagenomics and PCR methods. The novel parvovirus was distantly related to the human bufaviruses and was detected in 19 (90.5 %) of the 21 and five (33.3 %) of the 15 faecal samples collected from animals with and without cases of posterior paraplegia of unknown etiology from five affected farms and one control farm in Hungary, respectively. Swine/Zsana3/2013/HUN is highly prevalent in domestic pigs and potentially represents a novel parvovirus species in the subfamily Parvovirinae.
A pilot study of sphincter-sparing management of adenocarcinoma of the rectum.
Steele, G; Busse, P; Huberman, M S; LeClair, J M; Falchuk, Z M; Mayer, R J; Bothe, A; Ravikumar, T S; Stone, M; Jessup, J M
1991-06-01
After analysis of 26 prospectively accrued patients with distal rectal adenocarcinomas who underwent sphincter preservation treatment, we have concluded that tumors that invade only the submucosa can safely be treated with surgery alone and that tumors that invade the muscularis or further can be safely treated with surgery combined with chemoradiotherapy. None of the patients had either local or distant recurrence, with a median follow-up of 21 months. All patients have been fully continent. The results, although preliminary, imply that resection of distal rectal adenocarcinoma with sphincter preservation, and adjuvant therapy when appropriate, have achieved local and distant control equal to the conventional Miles' abdominoperineal resection, but without the need for a permanent colostomy.
Brain-computer interfaces in neurological rehabilitation.
Daly, Janis J; Wolpaw, Jonathan R
2008-11-01
Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.
Yusuf, Mehran B; Amsbaugh, Mark J; Burton, Eric; Nelson, Megan; Williams, Brian; Koutourousiou, Maria; Nauta, Haring; Woo, Shiao
2018-02-01
We sought to determine the impact of time to initiation (TTI) of post-operative radiosurgery on clinical outcomes for patients with resected brain metastases and to identify predictors associated with TTI. All patients with resected brain metastases treated with postoperative SRS or fractionated stereotactic radiation therapy (fSRT) from 2012 to 2016 at a single institution were reviewed. TTI was defined as the interval from resection to first day of radiosurgery. Receiver operating characteristic (ROC) curves were used to identify an optimal threshold for TTI with respect to local failure (LF). Survival outcomes were estimated using the Kaplan-Meier method and analyzed using the log-rank test and Cox proportional hazards models. Logistic regression models were used to identify factors associated with ROC-determined TTI covariates. A total of 79 resected lesions from 73 patients were evaluated. An ROC curve of LF and TTI identified an optimal threshold for TTI of 30.5 days, with an area under the curve of 0.637. TTI > 30 days was associated with an increased hazard of LF (HR 4.525, CI 1.239-16.527) but was not significantly associated with survival (HR 1.002, CI 0.547-1.823) or distant brain failure (DBF, HR 1.943, CI 0.989-3.816). Fifteen patients (20.5%) required post-operative inpatient rehabilitation. Post-operative rehabilitation was associated with TTI > 30 days (OR 1.48, CI 1.142-1.922). In our study of resected brain metastases, longer time to initiation of post-operative radiosurgery was associated with increased local failure. Ideally, post-op SRS should be initiated within 30 days of resection if feasible.
Dandekar, Manoj P; Luse, Dustin; Hoffmann, Carson; Cotton, Patrick; Peery, Travis; Ruiz, Christian; Hussey, Caroline; Giridharan, Vijayasree V; Soares, Jair C; Quevedo, Joao; Fenoy, Albert J
2017-08-01
Among several potential neuroanatomical targets pursued for deep brain stimulation (DBS) for treating those with treatment-resistant depression (TRD), the superolateral-branch of the medial forebrain bundle (MFB) is emerging as a privileged location. We investigated the antidepressant-like phenotypic and chemical changes associated with reward-processing dopaminergic systems in rat brains after MFB-DBS. Male Wistar rats were divided into three groups: sham-operated, DBS-Off, and DBS-On. For DBS, a concentric bipolar electrode was stereotactically implanted into the right MFB. Exploratory activity and depression-like behavior were evaluated using the open-field and forced-swimming test (FST), respectively. MFB-DBS effects on the dopaminergic system were evaluated using immunoblotting for tyrosine hydroxylase (TH), dopamine transporter (DAT), and dopamine receptors (D1-D5), and high-performance liquid chromatography for quantifying dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in brain homogenates of prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens (NAc). Animals receiving MFB-DBS showed a significant increase in swimming time without alterations in locomotor activity, relative to the DBS-Off (p<0.039) and sham-operated groups (p<0.014), indicating an antidepressant-like response. MFB-DBS led to a striking increase in protein levels of dopamine D2 receptors and DAT in the PFC and hippocampus, respectively. However, we did not observe appreciable differences in the expression of other dopamine receptors, TH, or in the concentrations of dopamine, DOPAC, and HVA in PFC, hippocampus, amygdala, and NAc. This study was not performed on an animal model of TRD. MFB-DBS rescues the depression-like phenotypes and selectively activates expression of dopamine receptors in brain regions distant from the target area of stimulation. Copyright © 2017. Published by Elsevier B.V.
Supratentorial Ependymoma: Disease Control, Complications, and Functional Outcomes After Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landau, Efrat; Boop, Frederick A.; Conklin, Heather M.
Purpose: Ependymoma is less commonly found in the supratentorial brain and has known clinical and molecular features that are unique. Our single-institution series provides valuable information about disease control for supratentorial ependymoma and the complications of supratentorial irradiation in children. Methods and Materials: A total of 50 children with newly diagnosed supratentorial ependymoma were treated with adjuvant radiation therapy (RT); conformal methods were used in 36 after 1996. The median age at RT was 6.5 years (range, 1-18.9 years). The entire group was characterized according to sex (girls 27), race (white 43), extent of resection (gross-total 46), and tumor grademore » (anaplastic 28). The conformal RT group was prospectively evaluated for neurologic, endocrine, and cognitive effects. Results: With a median follow-up time of 9.1 years from the start of RT for survivors (range, 0.2-23.2 years), the 10-year progression-free and overall survival were 73% + 7% and 76% + 6%, respectively. None of the evaluated factors was prognostic for disease control. Local and distant failures were evenly divided among the 16 patients who experienced progression. Eleven patients died of disease, and 1 of central nervous system necrosis. Seizure disorders were present in 17 patients, and 4 were considered to be clinically disabled. Clinically significant cognitive effects were limited to children with difficult-to-control seizures. The average values for intelligence quotient and academic achievement (reading, spelling, and math) were within the range of normal through 10 years of follow-up. Central hypothyroidism was the most commonly treated endocrinopathy. Conclusion: RT may be administered with acceptable risks for complications in children with supratentorial ependymoma. These results suggest that outcomes for these children are improving and that complications may be limited by use of focal irradiation methods.« less
Deurvorst, S E; Hoekstra, O S; Castelijns, J A; Witte, B I; Leemans, C R; de Bree, R
2018-06-01
The detection of distant metastases is of major importance in management of head and neck squamous cell carcinoma patients. All patients underwent 18 FDG PET/CT for the detection of distant metastases. Retrospective single-centre study. Head and neck squamous cell carcinoma patients with high-risk factors for distant metastases. Accuracy of 18 FDG PET/CT for the detection of distant metastases using clinical development of distant metastases and a minimal follow-up of twelve months as reference standard. Comparison of overall survival between patients diagnosed with distant metastases during initial screening and patients diagnosed with distant metastases during follow-up. In 23 (12%) of the 190 patients, 18 FDG PET/CT detected distant metastases at screening. Sensitivity and negative predictive value were 46.2% (95% CI 32.6-59.7) and 82.6% (95% CI 76.8-88.5). No difference in median overall survival from the time of distant metastases detection was found between patients diagnosed with DM during work-up or during follow-up. In head and neck squamous cell carcinoma patients with high-risk factors, 18 FDG PET/CT has a high negative predictive value for the detection of distant metastases and should be used in daily clinical practice, although the sensitivity is limited when long-term follow-up is used as reference standard. © 2018 The Authors. Clinical Otolaryngology Published by John Wiley & Sons Ltd.
78. GENERAL VIEW OF SLC3W FUEL APRON FROM NORTH. HELIUM ...
78. GENERAL VIEW OF SLC-3W FUEL APRON FROM NORTH. HELIUM AND NITROGEN STORAGE TANKS AND CONTROL SKIDS IN LEFT CENTER. FUEL STORAGE TANK AND CONTROL SKID IN RIGHT BACKGROUND. SLC-3E MST IN DISTANT RIGHT BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Risks of carcinogenesis from electromagnetic radiation of mobile telephony devices.
Yakymenko, I; Sidorik, E
2010-07-01
Intensive implementation of mobile telephony technology in everyday human life during last two decades has given a possibility for epidemiological estimation of long-term effects of chronic exposure of human organism to low-intensive microwave (MW) radiation. Latest epidemiological data reveal a significant increase in risk of development of some types of tumors in chronic (over 10 years) users of mobile phone. It was detected a significant increase in incidence of brain tumors (glioma, acoustic neuroma, meningioma), parotid gland tumor, seminoma in long-term users of mobile phone, especially in cases of ipsilateral use (case-control odds ratios from 1.3 up to 6.1). Two epidemiological studies have indicated a significant increase of cancer incidence in people living close to the mobile telephony base station as compared with the population from distant area. These data raise a question of adequacy of modern safety limits of electromagnetic radiation (EMR) exposure for humans. For today the limits were based solely on the conception of thermal mechanism of biological effects of RF/MW radiation. Meantime the latest experimental data indicate the significant metabolic changes in living cell under the low-intensive (non-thermal) EMR exposure. Among reproducible biological effects of low-intensive MWs are reactive oxygen species overproduction, heat shock proteins expression, DNA damages, apoptosis. The lack of generally accepted mechanism of biological effects of low-intensive non-ionizing radiation doesn't permit to disregard the obvious epidemiological and experimental data of its biological activity. Practical steps must be done for reasonable limitation of excessive EMR exposure, along with the implementation of new safety limits of mobile telephony devices radiation, and new technological decisions, which would take out the source of radiation from human brain.
Bottlenose dolphins perceive object features through echolocation.
Harley, Heidi E; Putman, Erika A; Roitblat, Herbert L
2003-08-07
How organisms (including people) recognize distant objects is a fundamental question. The correspondence between object characteristics (distal stimuli), like visual shape, and sensory characteristics (proximal stimuli), like retinal projection, is ambiguous. The view that sensory systems are 'designed' to 'pick up' ecologically useful information is vague about how such mechanisms might work. In echolocating dolphins, which are studied as models for object recognition sonar systems, the correspondence between echo characteristics and object characteristics is less clear. Many cognitive scientists assume that object characteristics are extracted from proximal stimuli, but evidence for this remains ambiguous. For example, a dolphin may store 'sound templates' in its brain and identify whole objects by listening for a particular sound. Alternatively, a dolphin's brain may contain algorithms, derived through natural endowments or experience or both, which allow it to identify object characteristics based on sounds. The standard method used to address this question in many species is indirect and has led to equivocal results with dolphins. Here we outline an appropriate method and test it to show that dolphins extract object characteristics directly from echoes.
Reed, Nykolaus P.; Mortlock, Douglas P.
2011-01-01
Skeletal formation is an essential and intricately regulated part of vertebrate development. Humans and mice deficient in Growth and Differentiation Factor 6 (Gdf6) have numerous skeletal abnormalities including joint fusions and cartilage reductions. The expression of Gdf6 is dynamic and in part regulated by distant evolutionarily conserved cis-regulatory elements. radar/gdf6a is a zebrafish ortholog of Gdf6 and has an essential role in embryonic patterning. Here we show that radar is transcribed in the cells surrounding and between the developing cartilages of the ventral pharyngeal arches, similar to mouse Gdf6. A 312 bp evolutionarily conserved region (ECR5), 122 kilobases downstream, drives expression in a pharyngeal arch-specific manner similar to endogenous radar/gdf6a. Deletion analysis identified a 78 bp region within ECR5 that is essential for transgene activity. This work illustrates that radar is regulated in the pharyngeal arches by a distant conserved element and suggests radar has similar functions in skeletal development in fish and mammals. PMID:20201106
Quantum tagging for tags containing secret classical data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent, Adrian
Various authors have considered schemes for quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is potentially unbounded. All of the schemes proposed elsewhere in the literature assume that the adversary is able to inspect the interior of the tagging device. All of these schemes have been shown to be breakable if the adversary has unbounded predistributed entanglement. We consider here the case in which the tagging device contains a finitemore » key string shared with distant sites but kept secret from the adversary, and show this allows the location of the tagging device to be authenticated securely and indefinitely. Our protocol relies on quantum key distribution between the tagging device and at least one distant site, and demonstrates a new practical application of quantum key distribution. It also illustrates that the attainable security in position-based cryptography can depend crucially on apparently subtle details in the security scenario considered.« less
Laimito, Katerin Rojas; Gámez-Pozo, Angelo; Sepúlveda, Juan; Manso, Luis; López-Vacas, Rocío; Pascual, Tomás; Fresno Vara, Juan A; Ciruelos, Eva
2016-01-01
Aims Breast cancer (BC) is the most frequent tumour in women, representing 20–30% of all malignancies, and continues to be the leading cause of cancer deaths among European women. Triple-negative (TN) BC biological aggressiveness is associated with a higher dissemination rate, with central nervous system (CNS) metastases common. This study aims to elucidate the association between gene expression profiles of PTGS2, HBEGF and ST6GALNAC5 and the development of CNS metastases in TNBC. Methods This is a case-controlled retrospective study comparing patients (pts) with CNS metastases versus patients without them after adjuvant treatment. The selection of the samples was performed including 30 samples in both case and control groups. Formalin-fixed, paraffin-embedded samples were retrieved from the Hospital 12 de Octubre Biobank. Five 10 µm sections from each FFPE sample were deparaffinised with xylene and washed with ethanol, and the RNA was then extracted with the RecoverAll Kit (Ambion). Gene expression was assessed using TaqMan assays. Results A total of 53 patients were included in the study. The average age was 55 years (range 25–85). About 47 patients (88.67%) had ductal histology and presented high grade (III) tumours (40 patients; 75.47%). Eight women in the case group presented first distant recurrence in the CNS (34.80%), local recurrence (three patients, 13.04%), lungs (two patients; 8.7%), bone (one patient; 4.34%) and other locations (seven patients; 30.38%). In the control group, first distant recurrence occurred locally (six patients; 46.1%), in bone (two patients; 15.4%), lungs (one patient; 7.7%) and other sites (four patients; 23.1%). RNA was successfully obtained from 53 out of 60 samples. PTGS2, HBEGF, and ST6GALNAC5 expression values were not related to metastasis location. Conclusion TN tumours frequently metastasise to the visceral organs, particularly lungs and brain, and are less common in bone. The literature suggests that expression of the three genes of interest (PTGS2, HBEGF, and ST6GALNAC5) could be different in TNBC patients with CNS metastasis when compared to patients without it. We did not find a differential expression pattern in PTGS2, HBEGF, and ST6GALNAC5 genes in primary TNBC showing CNS metastases. Further studies are needed to clarify the role of these genes in CNS metastases in TNBC patients. PMID:27170832
Thavaneswaran, Subotheni; Kok, Peey Sei; Price, Timothy
2017-10-01
Multimodality treatment of patients with locally advanced rectal cancer (LARC) has significantly improved local disease control, however the unaltered overall survival (OS) implicates an inability to further control micrometastases, providing rationale for intensified systemic treatment. A systematic review was conducted to evaluate the efficacy and toxicity of adding oxaliplatin to a fluoropyrimidine (intervention) compared with fluoropyrimidine alone (control) in the treatment of LARC. We searched CENTRAL, Medline Ovid, PubMed and EMBASE databases. Randomised trials comparing the intervention and control delivered either pre- or post-operatively were included. Seven trials involving 4444 patients were identified; five studies evaluated the intervention vs control preoperatively; one study peri-operatively; and one, post-operatively. There was no significant difference in OS with oxaliplatin addition, HR 0.89, 95% CI, 0.75 to 1.06. There was however an improvement in disease free survival, 3-year local and distant recurrence rates (RR) favouring oxaliplatin. Preoperative oxaliplatin improved pathological complete response (pCR), but with a greater toxicity and reduced compliance with radiation. There is no OS benefit with oxaliplatin, despite improved pCR, local and distant RR. Before drawing definitive conclusions, longer follow-up in included trials and availability of published data from other eligible studies, including the induction setting, are needed.
Metastatic patterns and metastatic sites in mucosal melanoma: a retrospective study.
Grözinger, Gerd; Mann, Steven; Mehra, Tarun; Klumpp, Bernhard; Grosse, Ulrich; Nikolaou, Konstantin; Garbe, Claus; Clasen, Stephan
2016-06-01
Melanomas arising from mucosa are rare and associated with a poor prognosis. This study aims to provide an analysis of metastatic pathways, time intervals, factors influencing metastatic spread and organs for distant metastases. A total of 116 patients with mucosal melanomas of different sites were included. The mean follow-up interval was 47 ± 52 months. Patients were assigned to two different metastatic pathways, either presenting loco-regional lymph node metastases as first spread or direct distant metastases. The distribution of distant metastases was assessed. Twenty-six patients presented with a pre-existing metastatic spread and were not assigned to pathways. Of the included patients, 44 developed metastases after treatment of the primary tumour; 25 patients directly developed distant metastases; 16 patients developed regional lymph node metastases prior to distant metastases. Location of the primary tumour in the upper airway or GI tract and advanced T stage were significant risk factors of direct distant metastases. Distant metastases are mainly located in the lung, the liver and non-regional lymph nodes. Mucosal melanomas show a high rate of direct distant metastases rather than regional lymph node metastases. Thus the follow-up should always include a whole-body cross-sectional imaging in high-risk tumours. • Mucosal melanomas show a high rate of direct distant metastases. • T stage and primary location are predictors for direct distant metastases. • Distant metastases were mainly found in lung, liver and lymph nodes. • Follow-up of a high-risk mucosal melanoma should include whole-body imaging.
NASA Astrophysics Data System (ADS)
Matteson, Kathryn Alice
A theory relating to children's affective responses to education about large-scale, distant environmental issues has become fairly widely accepted among environmental educators. The theory is encapsulated in the term "ecophobia," coined by David Sobel in Beyond Ecophobia (1996). According to this notion, elementary school children may become fearful of, or dissociated from, nature as they receive little direct exposure to nature and as they learn about distant environmental issues such as rainforest depletion. However, this seems a conflation of two discrete factors (lack of exposure to nature and education about distant environmental issues) that should be examined separately. Although children's exposure to nature has been studied, there appears to be no scientific research that examines elementary school students' affective responses to nature following education about distant environmental issues. This study endeavors to fill the apparent gap by measuring 4th graders' affective responses to nature following a unit on tropical rainforests. Deforestation represents a "distant" environmental issue that is thought to cause fear of, or dissociation from, nature among elementary school students. This quasi-experimental study involved a pretest, a posttest, and 150 4th grade participants in 8 classes. Students in all eight classes were administered a pretest questionnaire, inquiring about their affective responses to nature. Four classes then underwent a week-long unit on rainforests while four control group classes did not. All eight classes were then administered a posttest questionnaire. The data did not support the hypotheses that participants would feel more appreciative of nature and more empowered to protect nature following the rainforest unit. However, the data do support the hypotheses that the unit would not cause participants to feel increased fear of or dissociation from, nature. The data also suggest that greater amounts of time spent in nature were associated with greater appreciation of nature and less fear of nature. This research represents an initial effort to understand the developmental appropriateness of educating elementary school students about distant environmental issues. Further research on this topic is needed.
Translocation and potential neurological effects of fine and ultrafine particles a critical update
Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger
2006-01-01
Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be detected under controlled experimental conditions. Transgenic mice (Apo E -/-), known to have high base line levels of oxidative stress, were exposed by inhalation to well characterized, concentrated ambient air pollution. Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration. Together, these data present evidence for potential translocation of ambient particles on organs distant from the lung and the neurodegenerative consequences of exposure to air pollutants. PMID:16961926
Translocation and potential neurological effects of fine and ultrafine particles a critical update.
Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger
2006-09-08
Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be detected under controlled experimental conditions. Transgenic mice (Apo E -/-), known to have high base line levels of oxidative stress, were exposed by inhalation to well characterized, concentrated ambient air pollution. Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration. Together, these data present evidence for potential translocation of ambient particles on organs distant from the lung and the neurodegenerative consequences of exposure to air pollutants.
Mason, Emily F; Hornick, Jason L
2016-12-01
Gastrointestinal stromal tumors (GISTs) that lack kinase mutations often show loss of function of the succinate dehydrogenase (SDH) complex, due to germline mutation or promoter hypermethylation. SDH-deficient GISTs are exclusive to the stomach and have a multinodular architecture. It has been suggested that conventional risk stratification criteria may not predict outcome for this group of tumors, although data are limited. Here, we report the clinical, histologic, and genetic findings from a large cohort of 76 SDH-deficient GISTs diagnosed from 2005 to 2015, identified on the basis of histologic features or family history (45 female/31 male; mean age at diagnosis 32 y; range 11 to 71 y; 10 patients 50 y of age or above). Immunohistochemistry for SDHB and SDHA showed loss of SDHB in all cases and loss of SDHA in 28 (37%) tumors. Tumor size ranged from 1.9 to 22.5 cm; the primary tumor was multifocal in 29%. Mitotic rate ranged from 1 to 80 per 5 mm (median 5.5). Lymph node metastases were found at primary resection in 14 (18%) patients. Twenty-four patients (32%) had distant metastases at presentation, and 52 of 70 patients (74%) with follow-up developed distant metastases, most often to the liver, but also bone, lungs, breast, and brain. Applying conventional criteria (size and mitotic rate), 60% to 82% of patients with tumors ranging from very low risk to high risk for progressive disease developed distant metastases, regardless of the category. Carney-Stratakis syndrome and Carney triad were diagnosed in 6 and 8 patients, respectively. Of 35 patients tested, 26 harbored SDH mutations (11 SDHA, 8 SDHB, 6 SDHC, 1 SDHD). Follow-up data available for 70 patients ranged from 1 month to 39.3 years: 20 patients had no evidence of disease (mean 6.1 y), 32 were alive with metastases (mean 10.9 y), and 18 died of disease (mean 7.0 y after diagnosis). In summary, SDH-deficient GISTs account for approximately 8% of gastric GISTs and are associated with a high rate of distant metastasis, regardless of conventional risk category. Many affected patients have germline SDH mutations (most often SDHA). Identification of SDH-deficient GISTs is critical for prognostication and genetic counseling.
Cross-entropy optimization for neuromodulation.
Brar, Harleen K; Yunpeng Pan; Mahmoudi, Babak; Theodorou, Evangelos A
2016-08-01
This study presents a reinforcement learning approach for the optimization of the proportional-integral gains of the feedback controller represented in a computational model of epilepsy. The chaotic oscillator model provides a feedback control systems view of the dynamics of an epileptic brain with an internal feedback controller representative of the natural seizure suppression mechanism within the brain circuitry. Normal and pathological brain activity is simulated in this model by adjusting the feedback gain values of the internal controller. With insufficient gains, the internal controller cannot provide enough feedback to the brain dynamics causing an increase in correlation between different brain sites. This increase in synchronization results in the destabilization of the brain dynamics, which is representative of an epileptic seizure. To provide compensation for an insufficient internal controller an external controller is designed using proportional-integral feedback control strategy. A cross-entropy optimization algorithm is applied to the chaotic oscillator network model to learn the optimal feedback gains for the external controller instead of hand-tuning the gains to provide sufficient control to the pathological brain and prevent seizure generation. The correlation between the dynamics of neural activity within different brain sites is calculated for experimental data to show similar dynamics of epileptic neural activity as simulated by the network of chaotic oscillators.
Modelling psychiatric and cultural possession phenomena with suggestion and fMRI.
Deeley, Quinton; Oakley, David A; Walsh, Eamonn; Bell, Vaughan; Mehta, Mitul A; Halligan, Peter W
2014-04-01
Involuntary movements occur in a variety of neuropsychiatric disorders and culturally influenced dissociative states (e.g., delusions of alien control and attributions of spirit possession). However, the underlying brain processes are poorly understood. We combined suggestion and fMRI in 15 highly hypnotically susceptible volunteers to investigate changes in brain activity accompanying different experiences of loss of self-control of movement. Suggestions of external personal control and internal personal control over involuntary movements modelled delusions of control and spirit possession respectively. A suggestion of impersonal control by a malfunctioning machine modelled technical delusions of control, where involuntary movements are attributed to the influence of machines. We found that (i) brain activity and/or connectivity significantly varied with different experiences and attributions of loss of agency; (ii) compared to the impersonal control condition, both external and internal personal alien control were associated with increased connectivity between primary motor cortex (M1) and brain regions involved in attribution of mental states and representing the self in relation to others; (iii) compared to both personal alien control conditions, impersonal control of movement was associated with increased activity in brain regions involved in error detection and object imagery; (iv) there were no significant differences in brain activity, and minor differences in M1 connectivity, between the external and internal personal alien control conditions. Brain networks supporting error detection and object imagery, together with representation of self and others, are differentially recruited to support experiences of impersonal and personal control of involuntary movements. However, similar brain systems underpin attributions and experiences of external and internal alien control of movement. Loss of self-agency for movement can therefore accompany different kinds of experience of alien control supported by distinct brain mechanisms. These findings caution against generalization about single cognitive processes or brain systems underpinning different experiences of loss of self-control of movement. Copyright © 2014 Elsevier Ltd. All rights reserved.
Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P
2012-04-01
Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDermed, Dhara M.; Miller, Luke L.; Peabody, Terrance D.
Purpose: Various neoadjuvant approaches have been evaluated for the treatment of locally advanced soft-tissue sarcomas. This retrospective study describes a uniquely modified version of the Eilber regimen developed at the University of Chicago. Methods and Materials: We treated 34 patients (28 Stage III and 6 Stage IV) with locally advanced soft-tissue sarcomas of an extremity between 1995 and 2008. All patients received preoperative therapy including ifosfamide (2.5 g/m2 per day for 5 days) with concurrent radiation (28 Gy in 3.5-Gy daily fractions), sandwiched between various chemotherapy regimens. Postoperatively, 47% received further adjuvant chemotherapy. Results: Most tumors (94%) were Grade 3,more » and all were T2b, with a median size of 10.3 cm. Wide excision was performed in 29 patients (85%), and 5 required amputation. Of the resected tumor specimens, 50% exhibited high (>=90%) treatment-induced necrosis and 11.8% had a complete pathologic response. Surgical margins were negative in all patients. The 5-year survival rate was 42.3% for all patients and 45.2% for Stage III patients. For limb-preservation patients, the 5-year local control rate was 89.0% and reoperation was required for wound complications in 17.2%. The 5-year freedom-from-distant metastasis rate was 53.4% (Stage IV patients excluded), and freedom from distant metastasis was superior if treatment-induced tumor necrosis was 90% or greater (84.6% vs. 19.9%, p = 0.02). Conclusions: This well-tolerated concurrent chemoradiotherapy approach yields excellent rates of limb preservation and local control. The resulting treatment-induced necrosis rates are predictive of subsequent metastatic risk, and this information may provide an opportunity to guide postoperative systemic therapies.« less
Lemierre's Syndrome – A rare cause of disseminated sepsis requiring multi-organ support
Misselbrook, Katie
2017-01-01
Lemierre's syndrome is a rare complication of acute pharyngitis characterised by septicaemia with infective thrombophlebitis of the internal jugular vein, most commonly due to Fusobacterium necrophorum. It characteristically affects healthy young adults causing persistent pyrexia and systemic sepsis presenting several days after an initial pharyngitis. Septic emboli seed via the bloodstream to distant sites including the lung, joints, skin, liver, spleen and brain. Prolonged antimicrobial therapy is required and admission to intensive care common. This once rare condition is increasing in incidence but awareness amongst clinicians is low. We present a classic case in a young man who developed multi-organ failure requiring intensive care support and describe the epidemiology, pathophysiology, microbiology, clinical features and management of the disease. PMID:29123565
Target detection in insects: optical, neural and behavioral optimizations.
Gonzalez-Bellido, Paloma T; Fabian, Samuel T; Nordström, Karin
2016-12-01
Motion vision provides important cues for many tasks. Flying insects, for example, may pursue small, fast moving targets for mating or feeding purposes, even when these are detected against self-generated optic flow. Since insects are small, with size-constrained eyes and brains, they have evolved to optimize their optical, neural and behavioral target visualization solutions. Indeed, even if evolutionarily distant insects display different pursuit strategies, target neuron physiology is strikingly similar. Furthermore, the coarse spatial resolution of the insect compound eye might actually be beneficial when it comes to detection of moving targets. In conclusion, tiny insects show higher than expected performance in target visualization tasks. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Shining light on neurons--elucidation of neuronal functions by photostimulation.
Eder, Matthias; Zieglgänsberger, Walter; Dodt, Hans-Ulrich
2004-01-01
Many neuronal functions can be elucidated by techniques that allow for a precise stimulation of defined regions of a neuron and its afferents. Photolytic release of neurotransmitters from 'caged' derivates in the vicinity of visualized neurons in living brain slices meets this request. This technique allows the study of the subcellular distribution and properties of functional native neurotransmitter receptors. These are prerequisites for a detailed analysis of the expression and spatial specificity of synaptic plasticity. Photostimulation can further be used to fast map the synaptic connectivity between nearby and, more importantly, distant cells in a neuronal network. Here we give a personal review of some of the technical aspects of photostimulation and recent findings, which illustrate the advantages of this technique.
Costa-Mallen, Paola; Gatenby, Christopher; Friend, Sally; Maravilla, Kenneth R; Hu, Shu-Ching; Cain, Kevin C; Agarwal, Pinky; Anzai, Yoshimi
2017-07-15
Brain iron has been previously found elevated in the substantia nigra pars compacta (SNpc), but not in other brain regions, of Parkinson's disease (PD) patients. However, iron in circulation has been recently observed to be lower than normal in PD patients. The regional selectivity of iron deposition in brain as well as the relationship between SNpc brain iron and serum iron within PD patients has not been completely elucidated. In this pilot study we measured brain iron in six regions of interest (ROIs) as well as serum iron and serum ferritin, in 24 PD patients and 27 age- gender-matched controls. Brain iron was measured on magnetic resonance imaging (MRI) with a T2 prime (T2') method. Difference in brain iron deposition between PD cases and controls for the six ROIs were calculated. SNpc/white matter brain iron ratios and SNpc/serum iron ratios were calculated for each study participant, and differences between PD patients and controls were tested. PD patients overall had higher brain iron than controls in the SNpc. PD patients had significantly higher SNpc/white matter brain iron ratios than controls, and significantly higher brain SNpc iron/serum iron ratios than controls. These results indicate that PD patients' iron metabolism is disrupted toward a higher partitioning of iron to the brain SNpc at the expenses of iron in the circulation. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atalar, Banu; Modlin, Leslie A.; Choi, Clara Y.H.
Purpose: We sought to determine the risk of leptomeningeal disease (LMD) in patients treated with stereotactic radiosurgery (SRS) targeting the postsurgical resection cavity of a brain metastasis, deferring whole-brain radiation therapy (WBRT) in all patients. Methods and Materials: We retrospectively reviewed 175 brain metastasis resection cavities in 165 patients treated from 1998 to 2011 with postoperative SRS. The cumulative incidence rates, with death as a competing risk, of LMD, local failure (LF), and distant brain parenchymal failure (DF) were estimated. Variables associated with LMD were evaluated, including LF, DF, posterior fossa location, resection type (en-bloc vs piecemeal or unknown), andmore » histology (lung, colon, breast, melanoma, gynecologic, other). Results: With a median follow-up of 12 months (range, 1-157 months), median overall survival was 17 months. Twenty-one of 165 patients (13%) developed LMD at a median of 5 months (range, 2-33 months) following SRS. The 1-year cumulative incidence rates, with death as a competing risk, were 10% (95% confidence interval [CI], 6%-15%) for developing LF, 54% (95% CI, 46%-61%) for DF, and 11% (95% CI, 7%-17%) for LMD. On univariate analysis, only breast cancer histology (hazard ratio, 2.96) was associated with an increased risk of LMD. The 1-year cumulative incidence of LMD was 24% (95% CI, 9%-41%) for breast cancer compared to 9% (95% CI, 5%-14%) for non-breast histology (P=.004). Conclusions: In patients treated with SRS targeting the postoperative cavity following resection, those with breast cancer histology were at higher risk of LMD. It is unknown whether the inclusion of whole-brain irradiation or novel strategies such as preresection SRS would improve this risk or if the rate of LMD is inherently higher with breast histology.« less
Rooprai, H K; Kandanearatchi, A; Maidment, S L; Christidou, M; Trillo-Pazos, G; Dexter, D T; Rucklidge, G J; Widmer, W; Pilkington, G J
2001-02-01
Although intrinsic tumours of the brain seldom metastasize to distant sites, their diffuse, infiltrative-invasive growth within the brain generally precludes successful surgical and adjuvant therapy. Hence, attention has now focused on novel therapeutic approaches to combat brain tumours that include the use of anti-invasive and anti-proliferative agents. The effect of four anti-invasive agents, swainsonine (a locoweed alkaloid), captopril (an anti-hypertensive drug), tangeretin and nobiletin (both citrus flavonoids), were investigated on various parameters of brain tumour invasion such as matrix metalloproteinase (MMP) secretion, migration, invasion and adhesion. A standard cytotoxicity assay was used to optimize working concentrations of the drugs on seven human brain tumour-derived cell lines of various histological type and grade of malignancy. A qualitative assessment by gelatin zymography revealed that the effect of these agents varied between the seven cell lines such that the low grade pilocytic astrocytoma was unaffected by three of the agents. In contrast, downregulation of the two gelatinases, MMP-2 and MMP-9 was seen in the grade 3 astrocytoma irrespective of which agent was used. Generally, swainsonine was the least effective whereas the citrus flavonoids, particularly nobiletin, showed the greatest downregulation of secretion of the MMPs. Furthermore, captopril and nobiletin were most efficient at inhibiting invasion, migration and adhesion in four representative cell lines (an ependymoma, a grade II oligoastrocytoma, an anaplastic astrocytoma and a glioblastoma multiforme). Yet again, the effects of the four agents varied between the four cell lines. Nobiletin was, nevertheless, the most effective agent used in these assays. In conclusion, the differential effects seen on the various parameters studied by these putative anti-invasive agents may be the result of interference with MMPs and other mechanisms underlying the invasive phenotype. From these pilot studies, it is possible that these agents, especially the citrus flavonoids, could be of future therapeutic value. However, further work is needed to validate this in a larger study.
ERIC Educational Resources Information Center
Honingh, Marlies; van Genugten, Marieke
2017-01-01
The inspectorate's judgements about a school's educational quality in the Netherlands are to a large extent based on sophisticated desk research, risk analyses and analyses of the school's self-evaluation reports. This relatively distant mode of inspecting schools relies on rational ideas about organizational management and control while aspects…
Suki, Dima; Khoury Abdulla, Rami; Ding, Minming; Khatua, Soumen; Sawaya, Raymond
2014-10-01
Metastasis to the brain is frequent in adult cancer patients but rare among children. Advances in primary tumor treatment and the associated prolonged survival are said to have increased the frequency of brain metastasis in children. The authors present a series of cases of brain metastases in children diagnosed with a solid primary cancer, evaluate brain metastasis trends, and describe tumor type, patterns of occurrence, and prognosis. Patients with brain metastases whose primary cancer was diagnosed during childhood were identified in the 1990-2012 Tumor Registry at The University of Texas M.D. Anderson Cancer Center. A review of their hospital records provided demographic data, history, and clinical data, including primary cancer sites, number and location of brain metastases, sites of extracranial metastases, treatments, and outcomes. Fifty-four pediatric patients (1.4%) had a brain metastasis from a solid primary tumor. Sarcomas were the most common (54%), followed by melanoma (15%). The patients' median ages at diagnosis of the primary cancer and the brain metastasis were 11.37 years and 15.03 years, respectively. The primary cancer was localized at diagnosis in 48% of patients and disseminated regionally in only 14%. The primary tumor and brain metastasis presented synchronously in 15% of patients, and other extracranial metastases were present when the primary cancer was diagnosed. The remaining patients were diagnosed with brain metastasis after initiation of primary cancer treatment, with a median presentation interval of 17 months after primary cancer diagnosis (range 2-77 months). At the time of diagnosis, the brain metastasis was the first site of systemic metastasis in only 4 (8%) of the 51 patients for whom data were available. Up to 70% of patients had lung metastases when brain metastases were found. Symptoms led to the brain metastasis diagnosis in 65% of cases. Brain metastases were single in 60% of cases and multiple in 35%; 6% had only leptomeningeal disease. The median Kaplan-Meier estimates of survival after diagnoses of primary cancer and brain metastasis were 29 months (95% CI 24-34 months) and 9 months (95% CI 6-11 months), respectively. Untreated patients survived for a median of 0.9 months after brain metastasis diagnosis (95% CI 0.3-1.5 months). Those receiving treatment survived for a median of 8 months after initiation of therapy (95% CI 6-11 months). The results of this study challenge the current notion of an increased incidence of brain metastases among children with a solid primary cancer. The earlier diagnosis of the primary cancer, prior to its dissemination to distant sites (especially the brain), and initiation of presumably more effective treatments may support such an observation. However, although the actual number of cases may not be increasing, the prognosis after the diagnosis of a brain metastasis remains poor regardless of the management strategy.
Evaluation of Distant Education Programs with Regards to Various Shareholder Opinions
ERIC Educational Resources Information Center
Tonbuloglu, Betül; Gürol, Aysun
2016-01-01
The strong demand and rapid increase in the number of programs concerning distant education programs has put the quality problem of distant education services into the agenda. It is crucial to determine the strengths and weaknesses of distant education programs, the problems encountered by these programs and making the required improvements. The…
Prell, Christina; Sun, Laixiang; Feng, Kuishuang; He, Jiaying; Hubacek, Klaus
2017-05-15
Land-use change is increasingly driven by global trade. The term "telecoupling" has been gaining ground as a means to describe how human actions in one part of the world can have spatially distant impacts on land and land-use in another. These interactions can, over time, create both direct and spatially distant feedback loops, in which human activity and land use mutually impact one another over great expanses. In this paper, we develop an analytical framework to clarify spatially distant feedbacks in the case of land use and global trade. We use an innovative mix of multi-regional input-output (MRIO) analysis and stochastic actor-oriented models (SAOMs) for analyzing the co-evolution of changes in trade network patterns with those of land use, as embodied in trade. Our results indicate that the formation of trade ties and changes in embodied land use mutually impact one another, and further, that these changes are linked to disparities in countries' wealth. Through identifying this feedback loop, our results support ongoing discussions about the unequal trade patterns between rich and poor countries that result in uneven distributions of negative environmental impacts. Finally, evidence for this feedback loop is present even when controlling for a number of underlying mechanisms, such as countries' land endowments, their geographical distance from one another, and a number of endogenous network tendencies. Copyright © 2017 Elsevier B.V. All rights reserved.
Tissue redox activity as a hallmark of carcinogenesis: from early to terminal stages of cancer.
Bakalova, Rumiana; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo
2013-05-01
The study aimed to clarify the dynamics of tissue redox activity (TRA) in cancer progression and assess the importance of this parameter for therapeutic strategies. The experiments were carried out on brain tissues of neuroblastoma-bearing, glioma-bearing, and healthy mice. TRA was visualized in vivo by nitroxide-enhanced MRI on anesthetized animals or in vitro by electron paramagnetic resonance spectroscopy on isolated tissue specimens. Two biochemical parameters were analyzed in parallel: tissue total antioxidant capacity (TTAC) and plasma levels of matrix metalloproteinases (MMP). In the early stage of cancer, the brain tissues were characterized by a shorter-lived MRI signal than that from healthy brains (indicating a higher reducing activity for the nitroxide radical), which was accompanied by an enhancement of TTAC and MMP9 plasma levels. In the terminal stage of cancer, tissues in both hemispheres were characterized by a longer-lived MRI signal than in healthy brains (indicating a high-oxidative activity) that was accompanied by a decrease in TTAC and an increase in the MMP2/MMP9 plasma levels. Cancer progression also affected the redox potential of tissues distant from the primary tumor locus (liver and lung). Their oxidative status increased in both stages of cancer. The study shows that tissue redox balance is very sensitive to the progression of cancer and can be used as a diagnostic marker of carcinogenesis. The study also suggests that the noncancerous tissues of a cancer-bearing organism are susceptible to oxidative damage and should be considered a therapeutic target. ©2013 AACR.
Eisele, Yvonne S; Duyckaerts, Charles
2016-01-01
In brains of patients with Alzheimer's disease (AD), Aβ peptides accumulate in parenchyma and, almost invariably, also in the vascular walls. Although Aβ aggregation is, by definition, present in AD, its impact is only incompletely understood. It occurs in a stereotypical spatiotemporal distribution within neuronal networks in the course of the disease. This suggests a role for synaptic connections in propagating Aβ pathology, and possibly of axonal transport in an antero- or retrograde way-although, there is also evidence for passive, extracellular diffusion. Striking, in AD, is the conjunction of tau and Aβ pathology. Tau pathology in the cell body of neurons precedes Aβ deposition in their synaptic endings in several circuits such as the entorhino-dentate, cortico-striatal or subiculo-mammillary connections. However, genetic evidence suggests that Aβ accumulation is the first step in AD pathogenesis. To model the complexity and consequences of Aβ aggregation in vivo, various transgenic (tg) rodents have been generated. In rodents tg for the human Aβ precursor protein, focal injections of preformed Aβ aggregates can induce Aβ deposits in the vicinity of the injection site, and over time in more distant regions of the brain. This suggests that Aβ shares with α-synuclein, tau and other proteins the property to misfold and aggregate homotypic molecules. We propose to group those proteins under the term "propagons". Propagons may lack the infectivity of prions. We review findings from neuropathological examinations of human brains in different stages of AD and from studies in rodent models of Aβ aggregation and discuss putative mechanisms underlying the initiation and spread of Aβ pathology.
Olivera-Pasilio, Valentina; Peterson, Daniel A.; Castelló, María E.
2014-01-01
Proliferation of stem/progenitor cells during development provides for the generation of mature cell types in the CNS. While adult brain proliferation is highly restricted in the mammals, it is widespread in teleosts. The extent of adult neural proliferation in the weakly electric fish, Gymnotus omarorum has not yet been described. To address this, we used double thymidine analog pulse-chase labeling of proliferating cells to identify brain proliferation zones, characterize their cellular composition, and analyze the fate of newborn cells in adult G. omarorum. Short thymidine analog chase periods revealed the ubiquitous distribution of adult brain proliferation, similar to other teleosts, particularly Apteronotus leptorhynchus. Proliferating cells were abundant at the ventricular-subventricular lining of the ventricular-cisternal system, adjacent to the telencephalic subpallium, the diencephalic preoptic region and hypothalamus, and the mesencephalic tectum opticum and torus semicircularis. Extraventricular proliferation zones, located distant from the ventricular-cisternal system surface, were found in all divisions of the rombencephalic cerebellum. We also report a new adult proliferation zone at the caudal-lateral border of the electrosensory lateral line lobe. All proliferation zones showed a heterogeneous cellular composition. The use of short (24 h) and long (30 day) chase periods revealed abundant fast cycling cells (potentially intermediate amplifiers), sparse slow cycling (potentially stem) cells, cells that appear to have entered a quiescent state, and cells that might correspond to migrating newborn neural cells. Their abundance and migration distance differed among proliferation zones: greater numbers and longer range and/or pace of migrating cells were associated with subpallial and cerebellar proliferation zones. PMID:25249943
Active Tobacco Smoking and Distant Metastasis in Patients With Oropharyngeal Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, Sean M.; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Ali, Nawal N.
Purpose: Distant metastasis is the site of first relapse in approximately one-third of patients with locally advanced oropharyngeal carcinoma, irrespective of human papillomavirus status. Yet the risk factors associated with distant metastasis are not well characterized. We sought to characterize the relationship between smoking status and distant metastasis. Methods and Materials: We evaluated the association between tobacco smoking status and distant metastasis in a retrospective cohort study of 132 patients who underwent definitive radiation therapy and chemotherapy for Stage III-IVA/B oropharyngeal cancer. Information on tobacco smoking was prospectively collected by patient questionnaires and physician notes at the time of diagnosis.more » Thirty-three percent of the patients were nonsmokers, 51% were former smokers, 16% were active smokers. The cumulative lifetime tobacco smoking in pack-years was 20 (range, 0-150). Results: With a median follow-up time of 52 months, the overall rate of distant metastasis at 4 years was 8%. Distant metastasis was the most common first site of relapse, occurring in 56% of the patients with recurrences. Active smokers had higher rates of distant metastasis than non-active smokers (including never- and former smokers; 31% vs. 4%, p < 0.001) and former smokers (31% vs. 3%, p < 0.001). There was no statistically significant difference in the risk of distant metastasis for patients with lifetime cumulative pack-years >20 and {<=}20 (10% vs. 4%, p = 0.19). In univariate analysis, active smoking (p = 0.0004) and N category (p = 0.009) were predictive of increased risk of distant metastasis. In multivariate analysis, active smoking was the most significant predictive factor for increased risk of distant metastasis (hazard ratio, 12.7, p < 0.0001). Conclusions: This study identified a strong association between active smoking and distant metastasis in patients with oropharyngeal cancer.« less
Negative and positive life events are associated with small but lasting change in neuroticism.
Jeronimus, B F; Ormel, J; Aleman, A; Penninx, B W J H; Riese, H
2013-11-01
High neuroticism is prospectively associated with psychopathology and physical health. However, within-subject changes in neuroticism due to life experiences (LEs) or state effects of current psychopathology are largely unexplored. In this 2-year follow-up study, four hypotheses were tested: (1) positive LEs (PLEs) decrease and negative LEs (NLEs) increase neuroticism; (2) LE-driven change in neuroticism is partly long-lasting; and (3) partly independent of LE-driven changes in anxiety/depression; and (4) childhood adversity (before age 16 years) moderates the influence of NLEs/PLEs on neuroticism scores in adult life. Data came from the Netherlands Study of Depression and Anxiety [NESDA, n = 2981, mean age 41.99 years (s.d. = 13.08), 66.6% women]. At follow-up (T₂) we assessed PLEs/NLEs with the List of Threatening Experiences (LTE) over the prior 24 months and categorized them over recent and distant PLE/NLE measures (1-3 and 4-24 months prior to T₂ respectively) to distinguish distant NLE/PLE-driven change in trait neuroticism (using the Dutch version of the Neuroticism-Extroversion-Openness Five Factor Inventory, NEO-FFI) from state deviations due to changes in symptoms of depression (self-rated version of the 30-item Inventory of Depressive Symptomatology, IDS-SR30) and anxiety (Beck Anxiety Inventory, BAI). Distant NLEs were associated with higher and distant PLEs with lower neuroticism scores. The effects of distant LEs were weak but long-lasting, especially for distant PLEs. Distant NLE-driven change in neuroticism was associated with change in symptoms of anxiety/depression whereas the effect of distant PLEs on neuroticism was independent of any such changes. Childhood adversity weakened the impact of distant NLEs but enhanced the impact of distant PLEs on neuroticism. Distant PLEs are associated with small but long-lasting decreases in neuroticism regardless of changes in symptom levels of anxiety/depression. Long-lasting increases in neuroticism associated with distant NLEs are mediated by anxiety/depression.
[Peritumoral hemorrhage immediately after radiosurgery for metastatic brain tumor].
Uchino, Masafumi; Kitajima, Satoru; Miyazaki, Chikao; Otsuka, Takashi; Seiki, Yoshikatsu; Shibata, Iekado
2003-08-01
We report a case of a 44-year-old woman with metastatic brain tumors who suffered peri-tumoral hemorrhage soon after stereotactic radiosurgery (SRS). She had been suffering from breast cancer with multiple systemic metastasis. She started to have headache, nausea, dizziness and speech disturbance 1 month before admission. There was no bleeding tendency in the hematological examination and the patient was normotensive. Neurological examination disclosed headache and slightly aphasia. Magnetic resonance imaging showed a large round mass lesion in the left temporal lobe. It was a well-demarcated, highly enhanced mass, 45 mm in diameter. SRS was performed on four lesions in a single session (Main mass: maximum dose was 30 Gy in the center and 20 Gy in the margin of the tumor. Others: maximum 25 Gy margin 20 Gy). After radiosurgery, she had severe headache, nausea and vomiting and showed progression of aphasia. CT scan revealed a peritumoral hemorrhage. Conservative therapy was undertaken and the patient's symptoms improved. After 7 days, she was discharged, able to walk. The patient died of extensive distant metastasis 5 months after SRS. Acute transient swelling following conventional radiotherapy is a well-documented phenomenon. However, the present case indicates that such an occurrence is also possible in SRS. We have hypothesized that acute reactions such as brain swelling occur due to breakdown of the fragile vessels of the tumor or surrounding tissue.
Individual differences in transcranial electrical stimulation current density
Russell, Michael J; Goodman, Theodore; Pierson, Ronald; Shepherd, Shane; Wang, Qiang; Groshong, Bennett; Wiley, David F
2013-01-01
Transcranial electrical stimulation (TCES) is effective in treating many conditions, but it has not been possible to accurately forecast current density within the complex anatomy of a given subject's head. We sought to predict and verify TCES current densities and determine the variability of these current distributions in patient-specific models based on magnetic resonance imaging (MRI) data. Two experiments were performed. The first experiment estimated conductivity from MRIs and compared the current density results against actual measurements from the scalp surface of 3 subjects. In the second experiment, virtual electrodes were placed on the scalps of 18 subjects to model simulated current densities with 2 mA of virtually applied stimulation. This procedure was repeated for 4 electrode locations. Current densities were then calculated for 75 brain regions. Comparison of modeled and measured external current in experiment 1 yielded a correlation of r = .93. In experiment 2, modeled individual differences were greatest near the electrodes (ten-fold differences were common), but simulated current was found in all regions of the brain. Sites that were distant from the electrodes (e.g. hypothalamus) typically showed two-fold individual differences. MRI-based modeling can effectively predict current densities in individual brains. Significant variation occurs between subjects with the same applied electrode configuration. Individualized MRI-based modeling should be considered in place of the 10-20 system when accurate TCES is needed. PMID:24285948
2010-01-01
Background Local control in adjuvant/definitive RT of adenoid cystic carcinoma (ACC) is largely dose-dependent. However, some clinical situations do not allow application of tumouricidal doses (i.e. re-irradiation) hence radiation sensitization by exploitation of high endothelial growth factor receptor (EGFR)-expression in ACC seems beneficial. This is a single-institution experience of combined radioimmunotherapy (RIT) with the EGFR-inhibitor cetuximab. Methods Between 2006 and 2010, 9 pts received RIT for advanced/recurrent ACC, 5/9 pts as re-irradiation. Baseline characteristics as well as treatment parameters were retrieved to evaluate efficacy and toxicity of the combination regimen were evaluated. Control rates (local/distant) and overall survival were calculated using Kaplan-Meier estimation. Results Median dose was 65 Gy, pts received a median of 6 cycles cetuximab. RIT was tolerated well with only one °III mucositis/dysphagia. Overall response/remission rates were high (77,8%); 2-year estimate of local control was 80% hence reaching local control levels comparable to high-dose RT. Progression-free survival (PFS) at 2 years and median overall survival were only 62,5% and 22,2 mo respectively. Conclusion While local control and treatment response in RIT seems promising, PFS and overall survival are still hampered by distant failure. The potential benefit of RIT with cetuximab warrants exploration in a prospective controlled clinical trial. PMID:21047402
37 CFR 256.2 - Royalty fee for compulsory license for secondary transmission by cable systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... receipts for the first distant signal equivalent; (3) .668 of 1 per centum of such gross receipts for each of the second, third and fourth distant signal equivalents; and (4) .314 of 1 per centum of such gross receipts for the fifth distant signal equivalent and each additional distant signal equivalent...
37 CFR 256.2 - Royalty fee for compulsory license for secondary transmission by cable systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... receipts for the first distant signal equivalent; (3) .668 of 1 per centum of such gross receipts for each of the second, third and fourth distant signal equivalents; and (4) .314 of 1 per centum of such gross receipts for the fifth distant signal equivalent and each additional distant signal equivalent...
37 CFR 256.2 - Royalty fee for compulsory license for secondary transmission by cable systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... receipts for the first distant signal equivalent; (3) .668 of 1 per centum of such gross receipts for each of the second, third and fourth distant signal equivalents; and (4) .314 of 1 per centum of such gross receipts for the fifth distant signal equivalent and each additional distant signal equivalent...
37 CFR 256.2 - Royalty fee for compulsory license for secondary transmission by cable systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... gross receipts for the first distant signal equivalent; (3) .668 of 1 per centum of such gross receipts for each of the second, third and fourth distant signal equivalents; and (4) .314 of 1 per centum of such gross receipts for the fifth distant signal equivalent and each additional distant signal...
37 CFR 256.2 - Royalty fee for compulsory license for secondary transmission by cable systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... receipts for the first distant signal equivalent; (3) .668 of 1 per centum of such gross receipts for each of the second, third and fourth distant signal equivalents; and (4) .314 of 1 per centum of such gross receipts for the fifth distant signal equivalent and each additional distant signal equivalent...
Schmidt, Gerwin P; Baur-Melnyk, Andrea; Haug, Alexander; Heinemann, Volker; Bauerfeind, Ingo; Reiser, Maximilian F; Schoenberg, Stefan O
2008-01-01
To compare the diagnostic accuracy for the detection of tumor recurrence in breast cancer patients using whole-body-MRI (WB-MRI) at 1.5 or 3T compared to FDG-PET-CT. Thirty-three female patients with breast cancer and suspicion of recurrence underwent FDG-PET-CT and WB-MRI. Coronal T1w-TSE- and STIR-sequences, HASTE-imaging of the lungs, contrast-enhanced T1w- and T2w-TSE-sequences of the liver, brain and abdomen were performed, using a WB-MRI-scanner at 1.5 (n=23) or 3T (n=10). Presence of local recurrence, lymph node involvement and distant metastatic disease was assessed using clinical and radiological follow-up as a standard of reference. Tumor recurrence was found in 20 of 33 patients. Overall 186 malignant foci were detected with WB-MRI and PET-CT. Both modalities revealed two recurrent tumors of the breast. PET-CT detected more lymph node metastases (n=21) than WB-MRI (n=16). WB-MRI was more precise in the detection of distant metastases (n=154 versus n=147). Sensitivity was 93% (172/186) and 91% (170/186) for WB-MRI and PET-CT, specificity was 86% (66/77) and 90% (69/77), respectively. Examination times for WB-MRI at 1.5 and 3T were 51 and 43 min, respectively, examination time for PET-CT was 103 min. WB-MRI and PET-CT are useful for the detection of tumor recurrence in the follow-up of breast cancer. WB-MRI is highly sensitive to distant metastatic disease. PET-CT is more sensitive in detecting lymph node involvement. Tumor screening with WB-MRI is feasible at 1.5 and 3T, scan time is further reduced at 3T with identical resolution.
Meningeal hemangiopericytoma with delayed multiple distant metastases.
Chang, Chiung-Chih; Chang, Yung-Yee; Lui, Chun-Chung; Huang, Chao-Cheng; Liu, Jia-Shou
2004-10-01
A 43-year-old housewife suffered from an occipital headache, and brain computed tomography (CT) showed an occipital meningeal tumor. She received a complete tumor excision and the tumor pathology was interpreted as atypical meningioma. Five years later, a subacute left neck pain with radiation to the left arm occurred. A tumor invading the second and third cervical vertebrae with compression on the dural sac was found. Angiography revealed hypervascular tumor staining supplied from the left vertebral artery. CT-guided biopsy was performed and nests of atypical spindle cells accompanied by staghorn vascular pattern were revealed histologically. Immunohistochemical studies showed positive vimentin staining but negative reactions to epithelial membrane antigen, cytokeratin low molecular weight, cytokeratin high molecular weight, CD34 and S-100 protein. Estimation of the Ki-67 proliferative (mitotic) index by using MIB-1 monoclonal antibody was 12%. Later on, a systemic survey revealed lesions in the left lung, liver and kidney. The diagnosis was revised to hemangiopericytoma. Distant metastasis is common in this tumor. However, the delayed multiple metastases without local recurrence were relatively rare. The clinical course in this patient also supported that a high mitotic activity may correlate with a poor prognosis even if the pathology is taken from the metastatic tissue, and that long-term follow-up is mandatory. Detailed immunohistochemical staining is helpful in avoiding misdiagnosis of meningioma.
Long-term remote organ consequences following acute kidney injury.
Shiao, Chih-Chung; Wu, Pei-Chen; Huang, Tao-Min; Lai, Tai-Shuan; Yang, Wei-Shun; Wu, Che-Hsiung; Lai, Chun-Fu; Wu, Vin-Cent; Chu, Tzong-Shinn; Wu, Kwan-Dun
2015-12-28
Acute kidney injury (AKI) has been a global health epidemic problem with soaring incidence, increased long-term risks for multiple comorbidities and mortality, as well as elevated medical costs. Despite the improvement of patient outcomes following the advancements in preventive and therapeutic strategies, the mortality rates among critically ill patients with AKI remain as high as 40-60 %. The distant organ injury, a direct consequence of deleterious systemic effects, following AKI is an important explanation for this phenomenon. To date, most evidence of remote organ injury in AKI is obtained from animal models. Whereas the observations in humans are from a limited number of participants in a relatively short follow-up period, or just focusing on the cytokine levels rather than clinical solid outcomes. The remote organ injury is caused with four underlying mechanisms: (1) "classical" pattern of acute uremic state; (2) inflammatory nature of the injured kidneys; (3) modulating effect of AKI of the underlying disease process; and (4) healthcare dilemma. While cytokines/chemokines, leukocyte extravasation, oxidative stress, and certain channel dysregulation are the pathways involving in the remote organ damage. In the current review, we summarized the data from experimental studies to clinical outcome studies in the field of organ crosstalk following AKI. Further, the long-term consequences of distant organ-system, including liver, heart, brain, lung, gut, bone, immune system, and malignancy following AKI with temporary dialysis were reviewed and discussed.
Realigning thunder and lightning: temporal adaptation to spatiotemporally distant events.
Navarra, Jordi; Fernández-Prieto, Irune; Garcia-Morera, Joel
2013-01-01
The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants' SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events).
Xi, Mian; Xu, Cai; Liao, Zhongxing; Hofstetter, Wayne L; Blum Murphy, Mariela; Maru, Dipen M; Bhutani, Manoop S; Lee, Jeffrey H; Weston, Brian; Komaki, Ritsuko; Lin, Steven H
2017-08-01
To assess the impact of histology on recurrence patterns and survival outcomes in patients with esophageal cancer (EC) treated with definitive chemoradiotherapy (CRT). We analyzed 590 consecutive EC patients who received definitive CRT from 1998 to 2014, including 182 patients (30.8%) with squamous cell carcinoma (SCC) and 408 (69.2%) with adenocarcinoma. Recurrence pattern and timing, survival, and potential prognostic factors were compared. After a median follow-up time of 58.0months, the SCC group demonstrated a comparable locoregional recurrence rate (42.9% vs. 38.0%, P=0.264) but a significantly lower distant failure rate (27.5% vs. 48.0%, P<0.001) than adenocarcinoma group. No significant difference was found in overall survival or locoregional failure-free survival between groups, whereas the SCC group was associated with significantly more favorable recurrence-free survival (P=0.009) and distant metastasis-free survival (P<0.001). The adenocarcinoma group had higher hematogenous metastasis rates of bone, brain, and liver, whereas the SCC group had a marginally higher regional recurrence rate. Among patients who received salvage surgery after locoregional recurrence, no significant difference in survival was found between groups (P=0.12). The patterns and sites of recurrence, survival outcomes, and prognostic factors were significantly different between esophageal SCC and adenocarcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.
Stroke treatment in rats with tail temperature increase by 40-min moxibustion.
Chen, Ri-Xin; Lv, Zhi-Mai; Chen, Ming-Ren; Yi, Fan; An, Xin; Xie, Ding-Yi
2011-10-03
The distant heat induced by suspended moxibustion (SM) for 40 min is confirmed to have a favorable effect in treating diseases such as ischemic brain injury in the clinical setting, but its precise mechanism remains to be explained. Since a similar reaction to the phenomenon of distant heat is found in some transient middle cerebral artery occlusion (tMCAO) rats treated by a 40-min SM session with tail temperature increase (TTI), we hereby study its mechanism by comparing the neuroprotective effect of 40 min's SM with TTI to those without. The experimental results show that 40 min's SM with TTI can significantly reduce the infarct volume and neurological deficit score in tMCAO rats. Western blot demonstrates that a reduction in the levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) expression in tMCAO rats with TTI is more striking than that of the rats without TTI. The expression of caspase-3 protein is inhibited in tMCAO rats with TTI. The results suggest that the efficacy of SM for 40 min with TTI is higher than that without. Although neuroprotective effects present in tMCAO rats with and without TTI, those with TTI revealed a higher level of anti-inflammation effect and exhibited an anti-apoptosis effect. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Discovery, Orbit and Orbital Evolution of the Distant Object (463368) 2012 VU85
NASA Astrophysics Data System (ADS)
Wlodarczyk, I.; Černis, K.; Boyle, R. P.
2017-03-01
We present the discovery and time evolution of orbital elements of the distant Centaur-type object (463368) 2012 VU85. From all 2135 distant objects listed in the Minor Planet Center we select all 347 numbered distant object and integrate their equations of motion in the 1 Gyr forward and backward integration. The asteroid (463368) 2012 VU85 lies on the border of the group of 347 distant objects, which have a semimajor axis about 44 a.u., eccentricity 0.1 and inclination between 0° and 30°. We show that after 1 Gyr of forward integration, about half of the objects are expelled from the Solar System, \\ie their median lifetime is about 1 Gyr. We note that the long-lived distant objects are mainly located between the regions where Neptune controls aphelia of asteroids and the asteroids are in the mean motion resonance 2/3 with Neptune. We find eight almost regular approaches of clones of the asteroid (463368) 2012 VU85 to Neptune and several generally shorter in time regular approaches to Uranus. For other outer planets we did not detect any approaches below 5 a.u. for a period of 15 000 yr in forward and backward integrations. In our calculations we find eight episodes, each lasting about 3000 yr when the value of inclination oscillates around its average. These changes look similar to the changes of semimajor axis during the occurrence of orbital mean motion resonance with a planet. We find that half of the clones of the asteroid (463368) 2012 VU85 remain in the Solar System for a forward integration of 44 Myr, and for a backward integration of 34 Myr. This is a significantly shorter escape time as compared to the group of distant objects. Almost all long-lived clones have value of Tisserand parameter with respect to Neptune smaller than 3 during the whole 1 Gyr forward and backward integrations. This implies that there are several clones of the asteroid (463368) 2012 VU85 that cross the orbits of Neptune and Uranus. We find many orbital mean motion resonances lasting up to several Myr in the motion of the asteroid (463368) 2012 VU85. According to our computations the presence of the Kozai resonance protects the asteroid from the close approaches with Uranus and Neptune. The Lyapunov time for the asteroid (463368) 2012 VU85 is equal to 4260 years.
Soler, V; Sourdet, S; Balardy, L; Abellan van Kan, G; Brechemier, D; Rougé-Bugat, M E; Tavassoli, N; Cassagne, M; Malecaze, F; Nourhashémi, F; Vellas, B
2016-01-01
To evaluate visual performance and factors associated with abnormal vision in patients screened for frailty at the Geriatric Frailty Clinic (GFC) for Assessment of Frailty and Prevention of Disability at Toulouse University Hospital. Retrospective, observational cross-sectional, single-centre study. Institutional practice. Patients were screened for frailty during a single-day hospital stay between October 2011 and October 2014 (n = 1648). Collected medical records included sociodemographic data (including living environment and educational level), anthropometric data, and clinical data. The general evaluation included the patient's functional status using the Activities of Daily Living (ADL) scale and the Instrumental Activity of Daily Living (IADL) scale, the Mini-Mental State Examination (MMSE) for cognition testing, and the Short Physical Performance Battery (SPPB) for physical performance. We also examined Body Mass Index (BMI), the Mini-Nutritional Assessment (MNA), and the Hearing Handicap Inventory for the Elderly Screening (HHIE-S) tool. The ophthalmologic evaluation included assessing visual acuity using the Snellen decimal chart for distant vision, and the Parinaud chart for near vision. Patients were divided into groups based on normal distant/near vision (NDV and NNV groups) and abnormal distant/near vision (ADV and ANV groups). Abnormal distant or near vision was defined as visual acuity inferior to 20/40 or superior to a Parinaud score of 2, in at least one eye. Associations with frailty-associated factors were evaluated in both groups. The mean age of the population was 82.6 ± 6.2 years. The gender distribution was 1,061 females (64.4%) and 587 males (35.6%). According to the Fried criteria, 619 patients (41.1%) were pre-frail and 771 (51.1%) were frail. Distant and near vision data were available for 1425 and 1426 patients, respectively. Distant vision was abnormal for 437 patients (30.7%). Near vision was abnormal for 199 patients (14%). Multiple regression analysis showed that abnormal distant vision as well as abnormal near vision were independently associated with greater age (P < 0.01), lower educational level (P < 0.05), lower performance on the MMSE (P < 0.001), and lower autonomy (P < 0.02), after controlling for age, gender, educational level, Fried criteria, and MMSE score. The high prevalence of visual disorders observed in the study population and their association with lower autonomy and cognitive impairment emphasises the need for systematic screening of visual impairments in the elderly. Frailty was not found to be independently associated with abnormal vision.
21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882... Infrared (NIR) Brain Hematoma Detector. (a) Identification. A Near Infrared (NIR) Brain Hematoma Detector... evaluate suspected brain hematomas. (b) Classification. Class II (special controls). The special controls...
21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882... Infrared (NIR) Brain Hematoma Detector. (a) Identification. A Near Infrared (NIR) Brain Hematoma Detector... evaluate suspected brain hematomas. (b) Classification. Class II (special controls). The special controls...
A Comparison of Oxidative Lactate Metabolism in Traumatically Injured Brain and Control Brain.
Jalloh, Ibrahim; Helmy, Adel; Howe, Duncan J; Shannon, Richard J; Grice, Peter; Mason, Andrew; Gallagher, Clare N; Murphy, Michael P; Pickard, John D; Menon, David K; Carpenter, T Adrian; Hutchinson, Peter J; Carpenter, Keri L H
2018-05-18
Metabolic abnormalities occur after traumatic brain injury (TBI). Glucose is conventionally regarded as the major energy substrate, although lactate can also be an energy source. We compared 3- 13 C lactate metabolism in TBI with "normal" control brain and muscle, measuring 13 C-glutamine enrichment to assess tricarboxylic acid (TCA) cycle metabolism. Microdialysis catheters in brains of nine patients with severe TBI, five non-TBI brain surgical patients, and five resting muscle (non-TBI) patients were perfused (24 h in brain, 8 h in muscle) with 8 mmol/L sodium 3- 13 C lactate. Microdialysate analysis employed ISCUS and nuclear magnetic resonance. In TBI, with 3- 13 C lactate perfusion, microdialysate glucose concentration increased nonsignificantly (mean +11.9%, p = 0.463), with significant increases (p = 0.028) for lactate (+174%), pyruvate (+35.8%), and lactate/pyruvate ratio (+101.8%). Microdialysate 13 C-glutamine fractional enrichments (median, interquartile range) were: for C4 5.1 (0-11.1) % in TBI and 5.7 (4.6-6.8) % in control brain, for C3 0 (0-5.0) % in TBI and 0 (0-0) % in control brain, and for C2 2.9 (0-5.7) % in TBI and 1.8 (0-3.4) % in control brain. 13 C-enrichments were not statistically different between TBI and control brain, showing both metabolize 3- 13 C lactate via TCA cycle, in contrast to muscle. Several patients with TBI exhibited 13 C-glutamine enrichment above the non-TBI control range, suggesting lactate oxidative metabolism as a TBI "emergency option."
Algorithm to find distant repeats in a single protein sequence
Banerjee, Nirjhar; Sarani, Rangarajan; Ranjani, Chellamuthu Vasuki; Sowmiya, Govindaraj; Michael, Daliah; Balakrishnan, Narayanasamy; Sekar, Kanagaraj
2008-01-01
Distant repeats in protein sequence play an important role in various aspects of protein analysis. A keen analysis of the distant repeats would enable to establish a firm relation of the repeats with respect to their function and three-dimensional structure during the evolutionary process. Further, it enlightens the diversity of duplication during the evolution. To this end, an algorithm has been developed to find all distant repeats in a protein sequence. The scores from Point Accepted Mutation (PAM) matrix has been deployed for the identification of amino acid substitutions while detecting the distant repeats. Due to the biological importance of distant repeats, the proposed algorithm will be of importance to structural biologists, molecular biologists, biochemists and researchers involved in phylogenetic and evolutionary studies. PMID:19052663
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spratt, Daniel E.; Beadle, Beth M.; Zumsteg, Zachary S., E-mail: zachary.zumsteg@cshs.org
Purpose: Local control in oropharyngeal cancer has improved to unprecedented rates with combined modality therapy; as a result, distant metastases are becoming a principal challenge. We aimed to determine the impact of diabetes mellitus and metformin use on clinical outcomes in a large population of oropharyngeal cancer patients treated in the modern era. Methods and Materials: We identified 1745 consecutive patients with oropharyngeal cancer treated at 2 large cancer centers with external beam radiation therapy from 1998 to 2011. A total of 184 patients had diabetes mellitus at the time of diagnosis, of whom 102 were taking metformin. The outcomesmore » assessed included local failure-free survival (LFFS), regional failure-free survival (RFFS), distant metastasis-free survival (DMFS), and overall survival (OS). Results: The median follow-up time was 4.3 years. The 5-year actuarial rates of DMFS were 89.6% for nondiabetic patients and 78.7% for diabetic nonmetformin users (P=.011) and of OS were 83.0% for nondiabetic patients and 70.7% for diabetic nonmetformin users (P=.048). Diabetic metformin users had 5-year DMFS (90.1%) and OS (89.6%) similar to those of nondiabetic patients. Multivariate analysis (diabetic nonmetformin users as reference) demonstrated improved DMFS for nondiabetic patients (adjusted hazard ratio 0.54; 95% confidence interval 0.32-0.93; P=.03) and a trend toward improved DMFS with metformin use (adjusted hazard ratio 0.46; 95% confidence interval 0.20-1.04; P=.06). LFFS and RFFS were high in all groups and were not significantly different by diabetic status or metformin use. Conclusions: Diabetic patients not using metformin independently have significantly higher rates of distant metastases than do nondiabetic patients, whereas metformin users have rates of distant metastases similar to those of nondiabetic patients. Further prospective investigation is warranted to validate the benefit of metformin in oropharyngeal cancer.« less
Bidirectional Controlled Quantum Teleportation in the Three-dimension System
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang
2018-04-01
We present a scheme for bidirectional controlled quantum teleportation (BCQT) via a five-qutrit entangled state as the quantum channel. In this scheme, two distant parties, Alice and Bob, are not only senders but also receivers, and Alice wants to teleport an unknown single-qutrit state to Bob, at the same time, Bob wishes to teleport another arbitrary single-qutrit state, respectively. It is shown that, only if the two senders and the controller collaborate with each other, the BCQT can be completed successfully.
Brain catechol synthesis - Control by brain tyrosine concentration
NASA Technical Reports Server (NTRS)
Wurtman, R. J.; Larin, F.; Mostafapour, S.; Fernstrom, J. D.
1974-01-01
Brain catechol synthesis was estimated by measuring the rate at which brain dopa levels rose following decarboxylase inhibition. Dopa accumulation was accelerated by tyrosine administration, and decreased by treatments that lowered brain tyrosine concentrations (for example, intraperitoneal tryptophan, leucine, or parachlorophenylalanine). A low dose of phenylalanine elevated brain tyrosine without accelerating dopa synthesis. Our findings raise the possibility that nutritional and endocrine factors might influence brain catecholamine synthesis by controlling the availability of tyrosine.
Bidirectional Controlled Joint Remote State Preparation via a Seven-Qubit Entangled State
NASA Astrophysics Data System (ADS)
Wang, Xiao-yu; Mo, Zhi-wen
2017-04-01
A new protocol for implementing five-party bidirectional controlled joint remote state preparation is proposed by using a seven-qubit entangled state as the quantum channel. It can be shown that two distant senders can simultaneously and deterministically exchange their states with the other senders under the control of the supervisor, and it cannot be succeed without permission of the controller. Only pauli operation and single-qubit measurement are used in our scheme, so the scheme with five-party is feasible within the reach of current technologies.
Post-operative radiation therapy for advanced-stage oropharyngeal cancer.
Hansen, Eric; Panwala, Kathryn; Holland, John
2002-11-01
Between 1985 and 1999, 43 patients with locally-advanced, resectable oropharyngeal cancer were treated with combined surgery and post-operative radiation therapy (RT) at Oregon Health and Science University. Five patients (12 per cent) had Stage III disease and 38 patients (88 per cent) had Stage IV disease. All patients had gross total resections of the primary tumour. Thirty-seven patients had neck dissections for regional disease. RT consisted of a mean tumour-bed dose of 63.0 Gy delivered in 1.8-2.0 Gy fractions over a mean of 49 days. At three- and five-years, the actuarial local control was 96 per cent and the actuarial local/regional control was 80 per cent. The three- and five-year actuarial rates of distant metastases were 41 per cent and 46 per cent, respectively. The actuarial overall survival at three- and five-years was 41 per cent and 34 per cent, respectively. The actuarial rates of progression-free survival were 49 per cent at three-years and 45 per cent at five years. Combined surgery and post-operative RT for advanced-stage oropharyngeal cancer results in excellent local/regional control. This particular group of patients experienced a high-rate of developing distant metastases.
Boubakour-Azzouz, Imenne; Ricchetti, Miria
2008-02-01
Efficient and faithful repair of DNA double-strand breaks (DSBs) is critical for genome stability. To understand whether cells carrying a functional repair apparatus are able to efficiently heal two distant chromosome ends and whether this DNA lesion might result in genome rearrangements, we induced DSBs in genetically modified mouse embryonic stem cells carrying two I-SceI sites in cis separated by a distance of 9 kbp. We show that in this context non-homologous end-joining (NHEJ) can repair using standard DNA pairing of the broken ends, but it also joins 3' non-complementary overhangs that require unusual joining intermediates. The repair efficiency of this lesion appears to be dramatically low and the extent of genome alterations was high in striking contrast with the spectra of repair events reported for two collinear DSBs in other experimental systems. The dramatic decline in accuracy suggests that significant constraints operate in the repair process of these distant DSBs, which may also control the low efficiency of this process. These findings provide important insights into the mechanism of repair by NHEJ and how this process may protect the genome from large rearrangements.
Parker, S; Harries, S
2001-01-01
Phyllodes tumours are rare fibroepithelial lesions that account for less than 1% of all breast neoplasms. With the non-operative management of fibroadenomas widely adopted, the importance of phyllodes tumours today lies in the need to differentiate them from other benign breast lesions. All breast lumps should be triple assessed and the diagnosis of a phyllodes tumour considered in women, particularly over the age of 35 years, who present with a rapidly growing "benign" breast lump. Treatment can be by either wide excision or mastectomy provided histologically clear specimen margins are ensured. Nodal metastases are rare and routine axillary dissection is not recommended. Few reliable clinical and histological prognostic factors have been identified. Local recurrence occurs in approximately 15% of patients and is more common after incomplete excision. It can usually be controlled by further surgery. Repeated local recurrence has been reported without the development of distant metastases or reduced survival. Approximately 20% of patients with malignant phyllodes tumours develop distant metastases. Long term survival with distant metastases is rare. The role of chemotherapy, radiotherapy, and hormonal manipulation in both the adjuvant and palliative settings remain to be defined. Keywords: benign breast disease; fibroadenoma; phyllodes tumour PMID:11423590
Mechanisms of Vowel Variation in African American English
ERIC Educational Resources Information Center
Holt, Yolanda Feimster
2018-01-01
Purpose: This research explored mechanisms of vowel variation in African American English by comparing 2 geographically distant groups of African American and White American English speakers for participation in the African American Shift and the Southern Vowel Shift. Method: Thirty-two male (African American: n = 16, White American controls: n =…
Speech Motor Development: Integrating Muscles, Movements, and Linguistic Units
ERIC Educational Resources Information Center
Smith, Anne
2006-01-01
A fundamental problem for those interested in human communication is to determine how ideas and the various units of language structure are communicated through speaking. The physiological concepts involved in the control of muscle contraction and movement are theoretically distant from the processing levels and units postulated to exist in…
ERIC Educational Resources Information Center
Merlino Perkins, Rose J.
2008-01-01
The Merlino-Perkins Father-Daughter Relationship Inventory, a self-report instrument, assesses women's childhood interactions with supportive, doting, distant, controlling, tyrannical, physically abusive, absent, and seductive fathers. Item and scale development, psychometric findings drawn from factor analyses, reliability assessments, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyfman, Shlomo A.; Tendulkar, Rahul D.; Chao, Samuel T.
Purpose: To assess the imaging and clinical outcomes of patients with single brainstem metastases treated with stereotactic radiosurgery (SRS). Materials and Methods: We retrospectively reviewed the data from patients with single brainstem metastases treated with SRS. Locoregional control and survival were calculated using the Kaplan-Meier method. Prognostic factors were assessed using a Cox proportional hazards model. Results: Between 1997 and 2007, 43 patients with single brainstem metastases were treated with SRS. The median age at treatment was 59 years, the median Karnofsky performance status was 80, and the median follow-up was 5.3 months. The median dose was 15 Gy (range,more » 9.6-24), and the median conformality and heterogeneity index was 1.7 and 1.9, respectively. The median survival was 5.8 months from the procedure date. Of the 33 patient with post-treatment imaging available, a complete radiographic response was achieved in 2 (4.7%), a partial response in 8 (18.6%), and stable disease in 23 (53.5%). The 1-year actuarial rate of local control, distant brain control, and overall survival was 85%, 38.3%, and 31.5%, respectively. Of the 43 patients, 8 (19%) died within 2 months of undergoing SRS, and 15 (36%) died within 3 months. On multivariate analysis, greater performance status (hazard ratio [HR], 0.95, p = .004), score index for radiosurgery (HR, 0.7; p = .004), graded prognostic assessment score (HR, 0.48; p = .003), and smaller tumor volume (HR, 1.23, p = .002) were associated with improved survival. No Grade 3 or 4 toxicities were observed. Conclusion: The results of our study have shown that SRS is a safe and effective local therapy for patients with brainstem metastases.« less
Judging near and distant virtue and vice ☆
Eyal, Tal; Liberman, Nira; Trope, Yaacov
2009-01-01
We propose that people judge immoral acts as more offensive and moral acts as more virtuous when the acts are psychologically distant than near. This is because people construe more distant situations in terms of moral principles, rather than attenuating situation-specific considerations. Results of four studies support these predictions. Study 1 shows that more temporally distant transgressions (e.g., eating one's dead dog) are construed in terms of moral principles rather than contextual information. Studies 2 and 3 further show that morally offensive actions are judged more severely when imagined from a more distant temporal (Study 2) or social (Study 3) perspective. Finally, Study 4 shows that moral acts (e.g., adopting a disabled child) are judged more positively from temporal distance. The findings suggest that people more readily apply their moral principles to distant rather than proximal behaviors. PMID:19554217
Nucleoli and stress granules: connecting distant relatives.
Mahboubi, Hicham; Stochaj, Ursula
2014-10-01
Nucleoli and cytoplasmic stress granules (SGs) are subcellular compartments that modulate the response to endogenous and environmental signals to control cell survival. In our opinion, nucleoli and SGs are functionally linked; they are distant relatives that combine forces when cellular homeostasis is threatened. Several lines of evidence support this idea; nucleoli and SGs share molecular building blocks, are regulated by common signaling pathways and communicate when vital cellular functions become compromised. Together, nucleoli and SGs orchestrate physiological responses that are directly relevant to stress and human health. As both compartments have established roles in neurodegenerative diseases, cancer and virus infections, we propose that these conditions will benefit from therapeutic interventions that target simultaneously nucleoli and SGs. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hu, Shi; Cui, Wen-Xue; Wang, Dong-Yang; Bai, Cheng-Hua; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou
2015-01-01
Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits. PMID:26225781
Hu, Shi; Cui, Wen-Xue; Wang, Dong-Yang; Bai, Cheng-Hua; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou
2015-07-30
Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits.
Interaction of Intense Short Laser Pulses with Air and Dielectric Materials
NASA Astrophysics Data System (ADS)
Eisenmann, S.; Katzir, Y.; Zigler, A.; Fibich, G.; Louzon, E.; Ehrlich, Y.; Henis, Z.; Pecker, S.; Fisher, D.; Fraenkel, M.
A study of the propagation of intense short laser pulses in air and the interaction of these pulses with distant targets is described. It is shown that the beam filamentation pattern can be controlled by introducing beam astigmatism. In addition, it is demonstrated that the collapse distance of intense femtosecond laser beams scales as P-1/2 for input powers that are moderately above the critical power for self focusing, and that at higher powers the collapse distance scales as P-1. Related to the interaction of intense short pulses with distant targets, it is measured that the threshold fluence for optical damage in wide gap materials is lower by up to 20% for negatively chirped pulses than for positively chirped, at pulse durations ranging from 60 fs to 1 ps.
Chandra Finds Most Distant X-ray Galaxy Cluster
NASA Astrophysics Data System (ADS)
2001-02-01
The most distant X-ray cluster of galaxies yet has been found by astronomers using NASA’s Chandra X-ray Observatory. Approximately 10 billion light years from Earth, the cluster 3C294 is 40 percent farther than the next most distant X-ray galaxy cluster. The existence of such a distant galaxy cluster is important for understanding how the universe evolved. "Distant objects like 3C294 provide snapshots to how these galaxy clusters looked billions of years ago," said Andrew Fabian of the Institute of Astronomy, Cambridge, England and lead author of the paper accepted for publication in the Monthly Notices of Britain’s Royal Astronomical Society. "These latest results help us better understand what the universe was like when it was only 20 percent of its current age." Chandra’s image reveals an hourglass-shaped region of X-ray emission centered on the previously known central radio source. This X-ray emission extends outward from the central galaxy for at least 300,000 light years and shows that the known radio source is in the central galaxy of a massive cluster. Scientists have long suspected that distant radio-emitting galaxies like 3C294 are part of larger groups of galaxies known as "clusters." However, radio data provides astronomers with only a partial picture of these distant objects. Confirmation of the existence of clusters at great distances - and, hence, at early stages of the universe - requires information from other wavelengths. Optical observations can be used to pinpoint individual galaxies, but X-ray data are needed to detect the hot gas that fills the space within the cluster. "Galaxy clusters are the largest gravitationally bound structures in the universe," said Fabian. "We do not expect to find many massive objects, such as the 3C294 cluster, in early times because structure is thought to grow from small scales to large scales." The vast clouds of hot gas that envelope galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until Chandra, X-ray telescopes have not had the needed sensitivity to identify and measure hot gas clouds in distant clusters. Carolin Crawford, Stefano Ettori and Jeremy Sanders of the Institute of Astronomy were also members of the team that observed 3C294 for 5.4 hours on October 29, 2000 with the Advanced CCD Imaging Spectrometer (ACIS). The ACIS X-ray camera was developed for NASA by Pennsylvania State University and Massachusetts Institute of Technology. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program for the Office of Space Science in Washington, DC. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control
NASA Astrophysics Data System (ADS)
Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.
2012-04-01
A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.
Self-Control and the Developing Brain
ERIC Educational Resources Information Center
Tarullo, Amanda R.; Obradovic, Jelena; Gunnar, Megan R.
2009-01-01
Self-control is a skill that children need to succeed academically, socially, and emotionally. Brain regions essential to self-control are immature at birth and develop slowly throughout childhood. From ages 3 to 6 years, as these brain regions become more mature, children show improved ability to control impulses, shift their attention flexibly,…
Diffuse alveolar hemorrhage due to metastatic angiosarcoma of the lung: A case report
PAN, ZHIJIE; AN, ZHOU; LI, YANYUAN; ZHOU, JIANYING
2015-01-01
Angiosarcoma is a rare, heterogeneous malignant tumor that derives from endothelial cells, and it has aggressive characteristics with a marked tendency for distant metastasis. Diffuse alveolar hemorrhage (DAH) is a catastrophic clinical syndrome, however, it is rare as the presentation of pulmonary angiosarcoma. To increase awareness with regard to angiosarcoma and DAH, the current study presents a case of angiosarcoma that originated from the subcutaneous soft tissue of the mastoid process, but was subject to a delayed diagnosis and rapid invasion into the brain and lung. The metastatic angiosarcoma of the lung presented with DAH as the initial manifestation. The pathological examination of a biopsy of the subcutaneous mass and pulmonary lesions confirmed the diagnosis of angiosarcoma. The patient succumbed to respiratory failure at 1 month post-diagnosis. PMID:26788222
An unusual subcutaneous breast cancer metastasis in a 86-year-old woman.
Metere, A; Di Cosimo, C; Chiesa, C; Esposito, A; Giacomelli, L; Redler, A
2012-04-01
The most common metastasis site of breast cancer are the local and distant lymph nodes, bone, lungs, liver and brain. We report a 86-year-old woman with an unusual abdominal subcutaneous metastasis of breast cancer. The patient was diagnosed with invasive lobular breast cancer and had been treated six months earlier with modified radical mastectomy. Later she presented a painless mass on the middle upper abdominal wall. She was subsequently admitted to the hospital to perform a whole body CT scan, confirming the presence of the abdominal mass in epigastric region, causing a partial compression of the stomach. Histopathological studies confirmed that the abdominal mass was a rare subcutaneous metastatic lesion of breast origin. The patient underwent a surgical intervention to remove the metastasis and she recovered fully.
Lecky, Fiona Elizabeth; Russell, Wanda; McClelland, Graham; Pennington, Elspeth; Fuller, Gordon; Goodacre, Steve; Han, Kyee; Curran, Andrew; Holliman, Damian; Chapman, Nathan; Freeman, Jennifer; Byers, Sonia; Mason, Suzanne; Potter, Hugh; Coats, Timothy; Mackway-Jones, Kevin; Peters, Mary; Shewan, Jane
2017-10-05
Reconfiguration of trauma services, with direct transport of patients with traumatic brain injury (TBI) to specialist neuroscience centres (SNCs)-bypassing non-specialist acute hospitals (NSAHs), could improve outcomes. However, delays in stabilisation of airway, breathing and circulation (ABC) may worsen outcomes when compared with selective secondary transfer from nearest NSAH to SNC. We conducted a pilot cluster randomised controlled trial to determine the feasibility and plausibility of bypassing suspected patients with TBI -directly into SNCs-producing a measurable effect. Two English Ambulance Services. 74 clusters (ambulance stations) were randomised within pairs after matching for important characteristics. Clusters enrolled head-injured adults-injured nearest to an NSAH-with internationally accepted TBI risk factors and stable ABC. We excluded participants attended by Helicopter Emergency Medical Services or who were injured more than 1 hour by road from nearest SNC. Intervention cluster participants were transported directly to an SNC bypassing nearest NSAH; control cluster participants were transported to nearest NSAH with selective secondary transfer to SNC. Trial recruitment rate (target n=700 per annum) and percentage with TBI on CT scan (target 80%) were the primary feasibility outcomes. 30-day mortality, 6-month Extended Glasgow Outcome Scale and quality of life were secondary outcomes. 56 ambulance station clusters recruited 293 patients in 12 months. The trial arms were similar in terms of age, conscious level and injury severity. Less than 25% of recruited patients had TBI on CT (n=70) with 7% (n=20) requiring neurosurgery. Complete case analysis showed similar 30-day mortality in the two trial arms (control=8.8 (2.7-14.0)% vs intervention=9.4(2.3-14.0)%). Bypassing patients with suspected TBI to SNCs gives an overtriage (false positive) ratio of 13:1 for neurosurgical intervention and 4:1 for TBI. A measurable effect from a full trial of early neuroscience care following bypass is therefore unlikely. ISRCTN68087745. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Differences in patterns of survival in metastatic adenoid cystic carcinoma of the head and neck.
van Weert, Stijn; Reinhard, Rinze; Bloemena, Elisabeth; Buter, Jan; Witte, Birgit I; Vergeer, Marije R; Leemans, C René
2017-03-01
We examined the assumption in conventional teaching about metastatic adenoid cystic carcinoma (ACC) being an indolent type of disease. A single center analysis of 105 cases of ACC was performed. Radiographs were reviewed and tumor response to chemotherapy was measured. Distant disease-free survival (DDFS) and time to death since distant metastases diagnosis were analyzed. Forty-two percent of the patients were diagnosed with distant metastases. DDFS showed significant negative associations with advanced T classification, N+ classification, solid type tumor, and positive surgical margins. Distant metastases (91%) developed in the first 5 years after presentation. Median distant metastatic survival was 13.8 months. The most frequent organ sited was the lung. Solid type ACC showed a preponderance for multiorgan metastases (17/28; 61%). Distant metastases seemed not to occur in case of clear surgical margins. Solid type ACC had a significant poorer survival after development of distant metastases. Metastatic ACC is not always an indolent disease. © 2016 Wiley Periodicals, Inc. Head Neck 39: 456-463, 2017. © 2016 Wiley Periodicals, Inc.
RULES OF COMPETITIVE STIMULUS SELECTION IN A CHOLINERGIC ISTHMIC NUCLEUS OF THE OWL MIDBRAIN
Asadollahi, Ali; Mysore, Shreesh P.; Knudsen, Eric I.
2011-01-01
In a natural scene, multiple stimuli compete for the control of gaze direction and attention. The nucleus isthmi pars parvocellularis (Ipc) is a cholinergic, midbrain nucleus that is reciprocally interconnected to the optic tectum, a structure known to be involved in the control of gaze and attention. Previous research has shown that the responses of many Ipc units to a visual stimulus presented inside the classical receptive field (RF) can be powerfully inhibited when the strength of a distant, competing stimulus becomes the stronger stimulus. This study investigated further the nature of competitive interactions in the Ipc of owls by employing two complementary protocols: in the first protocol, we measured the effects of a distant stimulus on responses to an RF stimulus located at different positions inside the RF; in the second protocol, we measured the effects of a distant stimulus on responses to RF stimuli of different strengths. The first protocol demonstrated that the effect of a competing stimulus is purely divisive: the competitor caused a proportional reduction in responses to the RF stimulus that did not alter either the location or sharpness of spatial tuning. The second protocol demonstrated that, for most units, the strength of this divisive inhibition is regulated powerfully by the relative strengths of the competing stimuli: inhibition was strong when the competitor was the stronger stimulus and weak when the competitor was the weaker stimulus. The data indicate that competitive interactions in the Ipc depend on feedback and a globally divisive inhibitory network. PMID:21508234
From Phineas Gage and Monsieur Leborgne to H.M.: Revisiting Disconnection Syndromes.
Thiebaut de Schotten, M; Dell'Acqua, F; Ratiu, P; Leslie, A; Howells, H; Cabanis, E; Iba-Zizen, M T; Plaisant, O; Simmons, A; Dronkers, N F; Corkin, S; Catani, M
2015-12-01
On the 50th anniversary of Norman Geschwind's seminal paper entitled 'Disconnexion syndrome in animal and man', we pay tribute to his ideas by applying contemporary tractography methods to understand white matter disconnection in 3 classic cases that made history in behavioral neurology. We first documented the locus and extent of the brain lesion from the computerized tomography of Phineas Gage's skull and the magnetic resonance images of Louis Victor Leborgne's brain, Broca's first patient, and Henry Gustave Molaison. We then applied the reconstructed lesions to an atlas of white matter connections obtained from diffusion tractography of 129 healthy adults. Our results showed that in all 3 patients, disruption extended to connections projecting to areas distant from the lesion. We confirmed that the damaged tracts link areas that in contemporary neuroscience are considered functionally engaged for tasks related to emotion and decision-making (Gage), language production (Leborgne), and declarative memory (Molaison). Our findings suggest that even historic cases should be reappraised within a disconnection framework whose principles were plainly established by the associationist schools in the last 2 centuries. © The Author 2015. Published by Oxford University Press.
Chéreau, Ronan; Saraceno, G Ezequiel; Angibaud, Julie; Cattaert, Daniel; Nägerl, U Valentin
2017-02-07
Axons convey information to nearby and distant cells, and the time it takes for action potentials (APs) to reach their targets governs the timing of information transfer in neural circuits. In the unmyelinated axons of hippocampus, the conduction speed of APs depends crucially on axon diameters, which vary widely. However, it is not known whether axon diameters are dynamic and regulated by activity-dependent mechanisms. Using time-lapse superresolution microscopy in brain slices, we report that axons grow wider after high-frequency AP firing: synaptic boutons undergo a rapid enlargement, which is mostly transient, whereas axon shafts show a more delayed and progressive increase in diameter. Simulations of AP propagation incorporating these morphological dynamics predicted bidirectional effects on AP conduction speed. The predictions were confirmed by electrophysiological experiments, revealing a phase of slowed down AP conduction, which is linked to the transient enlargement of the synaptic boutons, followed by a sustained increase in conduction speed that accompanies the axon shaft widening induced by high-frequency AP firing. Taken together, our study outlines a morphological plasticity mechanism for dynamically fine-tuning AP conduction velocity, which potentially has wide implications for the temporal transfer of information in the brain.
Remote acute demyelination after focal proton radiation therapy for optic nerve meningioma.
Redjal, Navid; Agarwalla, Pankaj K; Dietrich, Jorg; Dinevski, Nikolaj; Stemmer-Rachamimov, Anat; Nahed, Brian V; Loeffler, Jay S
2015-08-01
We present a unique patient with delayed onset, acute demyelination that occurred distant to the effective field of radiation after proton beam radiotherapy for an optic nerve sheath meningioma. The use of stereotactic radiotherapy as an effective treatment modality for some brain tumors is increasing, given technological advances which allow for improved targeting precision. Proton beam radiotherapy improves the precision further by reducing unnecessary radiation to surrounding tissues. A 42-year-old woman was diagnosed with an optic nerve sheath meningioma after initially presenting with vision loss. After biopsy of the lesion to establish diagnosis, the patient underwent stereotactic proton beam radiotherapy to a small area localized to the tumor. Subsequently, the patient developed a large enhancing mass-like lesion with edema in a region outside of the effective radiation field in the ipsilateral frontal lobe. Given imaging features suggestive of possible primary malignant brain tumor, biopsy of this new lesion was performed and revealed an acute demyelinating process. This patient illustrates the importance of considering delayed onset acute demyelination in the differential diagnosis of enhancing lesions in patients previously treated with radiation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bipolar Disorder: Role of Inflammation and the Development of Disease Biomarkers
2016-01-01
Bipolar disorder is a severe and enduring psychiatric condition which in many cases starts during early adulthood and follows a relapsing and remitting course throughout life. In many patients the disease follows a progressive path with brief periods of inter-episode recovery, sub-threshold symptoms, treatment resistance and increasing functional impairment in the biopsychosocial domains. Knowledge about the neurobiology of bipolar disorder is increasing steadily and evidence from several lines of research implicates immuno-inflammatory mechanisms in the brain and periphery in the etiopathogenesis of this illness and its comorbidities. The main findings are an increase in the levels of proinflammatory cytokines during acute episodes with a decrease in neurotrophic support. Related to these factors are glial cell dysfunction, neuro-endocrine abnormalities and neurotransmitter aberrations which together cause plastic changes in the mood regulating areas of the brain and neuroprogression of the bipolar diathesis. Research in the above mentioned areas is providing an opportunity to discover novel biomarkers for the disease and the field is reaching a point where major breakthroughs can be expected in the not too distant future. It is hoped that with new discoveries fresh avenues will be found to better treat an otherwise recalcitrant disease. PMID:26766943
Hemispheric processing of vocal emblem sounds.
Neumann-Werth, Yael; Levy, Erika S; Obler, Loraine K
2013-01-01
Vocal emblems, such as shh and brr, are speech sounds that have linguistic and nonlinguistic features; thus, it is unclear how they are processed in the brain. Five adult dextral individuals with left-brain damage and moderate-severe Wernicke's aphasia, five adult dextral individuals with right-brain damage, and five Controls participated in two tasks: (1) matching vocal emblems to photographs ('picture task') and (2) matching vocal emblems to verbal translations ('phrase task'). Cross-group statistical analyses on items on which the Controls performed at ceiling revealed lower accuracy by the group with left-brain damage (than by Controls) on both tasks, and lower accuracy by the group with right-brain damage (than by Controls) on the picture task. Additionally, the group with left-brain damage performed significantly less accurately than the group with right-brain damage on the phrase task only. Findings suggest that comprehension of vocal emblems recruits more left- than right-hemisphere processing.
Toward multi-area distributed network of implanted neural interrogators
NASA Astrophysics Data System (ADS)
Powell, Marc P.; Hou, Xiaoxiao; Galligan, Craig; Ashe, Jeffrey; Borton, David A.
2017-08-01
As we aim to improve our understanding of the brain, it is critical that researchers have simultaneous multi-area, large-scale access to the brain. Information processing in the brain occurs through close and distant coupling of functional sub-domains, as opposed to within isolated single neurons. However, commercially available neural interfaces capable of sensing electrophysiology of single neurons, currently allow access to only a small, mm3 volume of cortical cells, are not scalable to recording from orders of magnitude more neurons, and leverage bulky, skull mounted hardware and cabling sensitive to relative movements of the skull and brain. In this work, we propose a system capable of recording from many individual distributed neural interrogator nodes, untethered from any external electronics. Using an array of epidural inductive coils to wirelessly power the implanted electronics, the system is intended to be agnostic to the surgical placement of any individual node. Here, we demonstrate the ability to transmit nearly 15mW of power with greater than 50% power transfer efficiency, benchtop testing of individual subcircuit system components showing successful digitization of neural signals, and wireless transmission currently supporting a data rate of 3.84Mbps. We leverage a software defined radio based RF receiver to demodulate the data which can be stored in memory for later retrieval. Finally, we introduce a packaging technology capable of isolating active electronics from the surrounding tissue while providing capability for electrical feed-through assemblies for external neural interfacing. We expect, based on the presented preliminary findings, that the system can be integrated into a platform technology for the study of the intricate interactions between cortical domains.
A comparison of brain gene expression levels in domesticated and wild animals.
Albert, Frank W; Somel, Mehmet; Carneiro, Miguel; Aximu-Petri, Ayinuer; Halbwax, Michel; Thalmann, Olaf; Blanco-Aguiar, Jose A; Plyusnina, Irina Z; Trut, Lyudmila; Villafuerte, Rafael; Ferrand, Nuno; Kaiser, Sylvia; Jensen, Per; Pääbo, Svante
2012-09-01
Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea) as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30-75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.
Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease.
Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G; Grison, Alice; Gustincich, Stefano
2016-01-01
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells' own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.
Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease
Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano
2016-01-01
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain. PMID:27458372
A Comparison of Brain Gene Expression Levels in Domesticated and Wild Animals
Albert, Frank W.; Somel, Mehmet; Carneiro, Miguel; Aximu-Petri, Ayinuer; Halbwax, Michel; Thalmann, Olaf; Blanco-Aguiar, Jose A.; Trut, Lyudmila; Villafuerte, Rafael; Ferrand, Nuno; Kaiser, Sylvia; Jensen, Per; Pääbo, Svante
2012-01-01
Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea) as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30–75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different. PMID:23028369
Polanía, Rafael; Paulus, Walter; Antal, Andrea; Nitsche, Michael A
2011-02-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability and activity in a polarity-dependent way. Stimulation for a few minutes has been shown to induce plastic alterations of cortical excitability and to improve cognitive performance. These effects might be related to stimulation-induced alterations of functional cortical network connectivity. We aimed to investigate the impact of tDCS on cortical network function by functional connectivity and graph theoretical analysis of the BOLD fMRI spontaneous activity. fMRI resting-state datasets were acquired immediately before and after 10-min bipolar tDCS during rest, with the anode placed over the left primary motor cortex (M1) and the cathode over the contralateral frontopolar cortex. For each dataset, grey matter voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal connectivity degree and minimum path length maps were calculated and compared before and after tDCS. Nodal minimum path lengths significantly increased in the left somatomotor (SM1) cortex after anodal tDCS, which means that the number of direct functional connections from the left SM1 to topologically distant grey matter voxels significantly decreased. In contrast, functional coupling between premotor and superior parietal areas with the left SM1 significantly increased. Additionally, the nodal connectivity degree in the left posterior cingulate cortex (PCC) area as well as in the right dorsolateral prefrontal cortex (right DLPFC) significantly increased. In summary, we provide initial support that tDCS-induced neuroplastic alterations might be related to functional connectivity changes in the human brain. Additionally, we propose our approach as a powerful method to track for neuroplastic changes in the human brain. Copyright © 2010 Elsevier Inc. All rights reserved.
Gianakis, Anastasia; McNett, Molly; Belle, Josie; Moran, Cristina; Grimm, Dawn
2015-01-01
Ventilator-associated pneumonia (VAP) rates remain highest among trauma and brain injured patients; yet, no research compares VAP risk factors between the 2 groups. This retrospective, case-controlled study identified risk factors for VAP among critically ill trauma patients with and without brain injury. Data were abstracted on trauma patients with (cases) and without (controls) brain injury. Data gathered on n = 157 subjects. Trauma patients with brain injury had more emergent and field intubations. Age was strongest predictor of VAP in cases, and ventilator days predicted VAP in controls. Trauma patients with brain injury may be at higher risk for VAP.
The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...
Neuromodulation as a Robot Controller: A Brain Inspired Strategy for Controlling Autonomous Robots
2009-09-01
To Appear in IEEE Robotics and Automation Magazine PREPRINT 1 Neuromodulation as a Robot Controller: A Brain Inspired Strategy for Controlling...Introduction We present a strategy for controlling autonomous robots that is based on principles of neuromodulation in the mammalian brain...object, ignore irrelevant distractions, and respond quickly and appropriately to the event [1]. There are separate neuromodulators that alter responses to
Development of a cerebral circulation model for the automatic control of brain physiology.
Utsuki, T
2015-01-01
In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations.
Relative Positions of Distant Spacecraft
2011-04-29
This graphic shows the relative positions of NASA most distant spacecraft in early 2011, looking at the solar system from the side. Voyager 1 is the most distant spacecraft, 10.9 billion miles away from the sun at a northward angle.
Behind the Periscope: Leadership in China’s Navy
2013-12-01
Spring Festival Distant Sea Voyage: A Complete Account of the North Sea Fleet’s Distant Seas Training Vessel Formation” (zhongguo haijun de ‘chunjie...staff VADM Du Jingchen.596 During the expedition, Yin convened a political working group which created a musical piece called “Song of the Gulf of Aden...Spring Festival Distant Sea Voyage: A Complete Account of the North Sea Fleet’s Distant Seas Training Vessel Formation” (zhongguo haijun de ‘chunjie
Park, Chang-Hyun; Choi, Yun Seo; Jung, A-Reum; Chung, Hwa-Kyoung; Kim, Hyeon Jin; Yoo, Jeong Hyun; Lee, Hyang Woon
2017-01-01
Brain functional integration can be disrupted in patients with temporal lobe epilepsy (TLE), but the clinical relevance of this disruption is not completely understood. The authors hypothesized that disrupted functional integration over brain regions remote from, as well as adjacent to, the seizure focus could be related to clinical severity in terms of seizure control and memory impairment. Using resting-state functional MRI data acquired from 48 TLE patients and 45 healthy controls, the authors mapped functional brain networks and assessed changes in a network parameter of brain functional integration, efficiency, to examine the distribution of disrupted functional integration within and between brain regions. The authors assessed whether the extent of altered efficiency was influenced by seizure control status and whether the degree of altered efficiency was associated with the severity of memory impairment. Alterations in the efficiency were observed primarily near the subcortical region ipsilateral to the seizure focus in TLE patients. The extent of regional involvement was greater in patients with poor seizure control: it reached the frontal, temporal, occipital, and insular cortices in TLE patients with poor seizure control, whereas it was limited to the limbic and parietal cortices in TLE patients with good seizure control. Furthermore, TLE patients with poor seizure control experienced more severe memory impairment, and this was associated with lower efficiency in the brain regions with altered efficiency. These findings indicate that the distribution of disrupted brain functional integration is clinically relevant, as it is associated with seizure control status and comorbid memory impairment.
Multichannel activity propagation across an engineered axon network
NASA Astrophysics Data System (ADS)
Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.
2017-04-01
Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers. These results provide insight into how the brain potentially processes information and generates the neural code and could guide the development of clinical therapies based on multichannel brain stimulation.
USDA-ARS?s Scientific Manuscript database
Intermediate wheatgrass (Thinopyrum intermedium) is a cool-season perennial grass cultivated for seed used in forage production, conservation plantings, and consumable grain products such as flour. Intermediate wheatgrass (2n=6x=42) has a large, allohexploid genome (~13 GB) and is a distant relativ...
ERIC Educational Resources Information Center
Kuwabara, Ko; Willer, Robb; Macy, Michael W.; Mashima, Rie; Terai, Shigeru; Yamagishi, Toshio
2007-01-01
Cross-cultural trust and cooperation are important concerns for international markets, political cooperation, and cultural exchange. Until recently, this problem was difficult to study under controlled conditions due to the inability to conduct experiments involving interaction between participants located in physically distant locations. We…
Samstein, Robert M; Carvajal, Richard D; Postow, Michael A; Callahan, Margaret K; Shoushtari, Alexander N; Patel, Snehal G; Lee, Nancy Y; Barker, Christopher A
2016-09-01
Sinonasal mucosal melanoma is a rare neoplasm with a poor prognosis. Retrospective analysis was conducted on 78 patients with localized sinonasal mucosal melanoma treated at Memorial Sloan Kettering Cancer Center (MSKCC from 1998-2013). Demographic, tumor, imaging, and treatment factors were recorded and survival and disease-control outcomes were analyzed. Median overall survival (OS) and disease-specific survival (DSS) were 32 and 50 months, respectively. Median locoregional recurrence-free survival (LRFS) and distant recurrence-free survival (DRFS) were 43 and 12 months, respectively. Multivariate analysis demonstrated greater OS in nasal cavity tumors and earlier T classification. Radiotherapy (RT) was associated with significantly greater LRFS (5-years; 35% vs 59%; p = .01), but no difference in OS. Post-RT positron emission tomography (PET) response was associated with greater OS. Distant metastasis is the predominant mode of recurrence in sinonasal mucosal melanoma, but local recurrence remains common. RT is associated with improved local control, but no survival benefit. The prognostic value of post-RT PET imaging warrants further investigation. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1310-1317, 2016. © 2016 Wiley Periodicals, Inc.
Naccache, Lionel; Sportiche, Sarah; Strauss, Mélanie; El Karoui, Imen; Sitt, Jacobo; Cohen, Laurent
2014-01-01
During visual perception, automatic bottom-up and controlled top-down processes occur simultaneously and interact in a complex way, making them difficult to isolate and characterize. In rare neurological conditions, such a dissociation can be achieved more easily. In the present work, we studied a patient (AC) with a posterior lesion of the corpus callosum (CC), using a combination of behavioural, structural MRI and high-density scalp EEG measures. Given the complete disruption of the posterior half of the CC, we speculated that inter-hemispheric transfer of visual information was only possible through top-down mobilization across the preserved anterior segment of the CC. We designed a matching-to-sample visual task during which this patient was randomly presented with two successive numerical targets (T1 and T2) flashed with either a short or a long stimulus-onset asynchrony (SOA), each presented within one visual hemifield (HF). Intra-hemispheric processing of visual stimuli was essentially preserved. In sharp contrast, patient's performance was massively impaired during inter-HFs trials with a short-SOA, confirming the lack of fast inter-hemispheric transfer. Crucially, patient AC spontaneously improved his performance in inter-HFs trials with a long-SOA. This behavioral improvement was correlated with a mid-frontal ERP effect occurring during the T1-T2 interval, concomitant with an increase of functional connectivity of this region with distant areas including occipital regions. These results put to light a slow, non-automatic, and frontally mediated route of inter-hemispheric transfer dependent on top-down control. © 2013 Published by Elsevier Ltd.
Brain-controlled body movement assistance devices and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leuthardt, Eric C.; Love, Lonnie J.; Coker, Rob
Methods, devices, systems, and apparatus, including computer programs encoded on a computer storage medium, for brain-controlled body movement assistance devices. In one aspect, a device includes a brain-controlled body movement assistance device with a brain-computer interface (BCI) component adapted to be mounted to a user, a body movement assistance component operably connected to the BCI component and adapted to be worn by the user, and a feedback mechanism provided in connection with at least one of the BCI component and the body movement assistance component, the feedback mechanism being configured to output information relating to a usage session of themore » brain-controlled body movement assistance device.« less
Douglas-Stroebel, E.; Hoffman, D.J.; Brewer, G.L.; Sileo, L.
2004-01-01
Day-old mallard (Anas platyryhnchos) ducklings received either a clean sediment (24%) supplemented control diet, Coeur d'Alene River Basin, Idaho (CDARB) sediment (3449 I?g/g lead) supplemented diets at 12% or 24%, or a positive control diet (24% clean sediment with equivalent lead acetate to the 24% CDARB diet) for 6 weeks. The 12% CDARB diet resulted in a geometric mean concentration of 396 ppb (WW) brain lead with decreased brain protein and ATP concentrations but increased oxidized glutathione (GSSG) relative to the control diet. The 24% CDARB diet resulted in a concentration of 485 ppb brain lead with lower brain weight and ATP concentration than controls but higher concentrations of reduced glutathione (GSH) and calcium. Lead acetate accumulated twice as well as CDARB derived lead and resulted in histopathological lesions of the brain. With a combination of a suboptimal diet and 24% CDARB, brain lead concentration was higher (594 ppb) than with 24% CDARB in the standard diet, histopathological lesions became apparent and GSH was higher than suboptimal diet controls.
Douglas-Stroebel, E.; Hoffman, D.J.; Brewer, G.L.; Sileo, L.
2004-01-01
Day-old mallard (Anas platyryhnchos) ducklings received either a clean sediment (24%) supplemented control diet, Coeur d'Alene River Basin, Idaho (CDARB) sediment (3449 ug/g lead) supplemented diets at 12% or 24%, or a positive control diet (24% clean sediment with equivalent lead acetate to the 24% CDARB diet) for 6 weeks. The 12% CDARB diet resulted in a geometric mean concentration of 396 ppb (WW) brain lead with decreased brain protein and ATP concentrations but increased oxidized glutathione (GSSG) relative to the control diet. The 24% CDARB diet resulted in a concentration of 485 ppb brain lead with lower brain weight and ATP concentration than controls but higher concentrations of reduced glutathione (GSH) and calcium. Lead acetate accumulated twice as well as CDARB derived lead and resulted in histopathological lesions of the brain. With a combination of a suboptimal diet and 24% CDARB, brain lead concentration was higher (594 ppb) than with 24% CDARB in the standard diet, histopathological lesions became apparent and GSH was higher than suboptimal diet controls.
Method and apparatus for determining return stroke polarity of distant lightning
NASA Technical Reports Server (NTRS)
Blakeslee, Richard J. (Inventor); Brook, Marx (Inventor)
1992-01-01
A method is described for determining the return stroke polarity of distant lightning for distances beyond 600 km by detecting the electric field associated with a return stroke of distant lightning, and processing the electric field signal to determine the polarity of the slow tail of the VLF waveform signal associated with the detected electric field. The polarity of the return stroke of distant lightning is determined based upon the polarity of the slow tail portion of the waveform.
Method and apparatus for determining return stroke polarity of distant lightning
NASA Technical Reports Server (NTRS)
Blakeslee, Richard J. (Inventor); Brook, Marx (Inventor)
1990-01-01
A method is described for determining the return stroke polarity of distant lightning for distances beyond 600 km by detecting the electric field associated with a return stroke of distant lightning, and processing the electric field signal to determine the polarity of the slow tail of the VLF waveform signal associated with the detected electric field. The polarity of the return stroke of distant lightning is determined based upon the polarity of the slow tail portion of the waveform.
Milsch, Laura; Gesierich, Anja; Kreft, Sophia; Livingstone, Elisabeth; Zimmer, Lisa; Goebeler, Matthias; Schadendorf, Dirk; Schilling, Bastian
2018-06-12
Immune-checkpoint blockers (ICBs) significantly prolong overall survival (OS) in patients with advanced melanoma. Limited data are available on the efficacy and clinical benefit in patients with melanoma brain metastases (MBMs). The aim of this study was to determine whether ICB is active in an unselected cohort treated of patients with known brain metastases and if disease control correlates with the survival. A total of 385 patients with metastatic malignant melanoma treated with ICB as monotherapy between 2005 and 2017 in two tertiary referral centres were included. Patient records were searched for the development of brain metastases. Demographic and clinical data of all patients were collected retrospectively. We identified 177 patients with MBM who received ICBs (ipilimumab, nivolumab, pembrolizumab). Patients with and without brain metastases received similar ICB regimens. Prognosis was inferior in patients with brain metastases; patients with >1 brain metastasis showed even poorer survival. For extracranial (ec) metastases, disease control was associated with improved survival. However, when comparing patients with intracranial (ic) disease control during immunotherapy to patients with ic disease progression, no difference in OS could be observed. In our study, ec disease control was the dominant predictive factor for OS in both patients with or without melanoma brain metastases. These data indicate that clinical trials in melanoma patients with brain metastases should address end-points such as symptom control, quality of life or OS in addition to ic response rates. Copyright © 2018 Elsevier Ltd. All rights reserved.
An Intelligent Catheter System Robotic Controlled Catheter System
Negoro, M.; Tanimoto, M.; Arai, F.; Fukuda, T.; Fukasaku, K.; Takahashi, I.; Miyachi, S.
2001-01-01
Summary We have developed a novel catheter system, an intelligent catheter system, which is able to control a catheter by an externally-placed controller. This system has made from master-slave mechanism and has following three components; 1) a joy stick as a master (for operators) 2)a catheter controller as a slave (for a patient),3)a micro force sensor as a sensing device. This catheter tele-guiding system has abilities to perform intravascular procedures from the distant places. It may help to reduce the radiation exposures to the operators and also to help train young doctors. PMID:20663387
Huang, Xiongfeng; Wang, Jianmin; Chen, Qiao; Jiang, Jielin
2014-01-01
This systematic review and meta-analysis aimed to evaluate the overall survival, local recurrence, distant metastasis, and complications of mediastinal lymph node dissection (MLND) versus mediastinal lymph node sampling (MLNS) in stage I-IIIA non-small cell lung cancer (NSCLC) patients. A systematic search of published literature was conducted using the main databases (MEDLINE, PubMed, EMBASE, and Cochrane databases) to identify relevant randomized controlled trials that compared MLND vs. MLNS in NSCLC patients. Methodological quality of included randomized controlled trials was assessed according to the criteria from the Cochrane Handbook for Systematic Review of Interventions (Version 5.1.0). Meta-analysis was performed using The Cochrane Collaboration's Review Manager 5.3. The results of the meta-analysis were expressed as hazard ratio (HR) or risk ratio (RR), with their corresponding 95% confidence interval (CI). We included results reported from six randomized controlled trials, with a total of 1,791 patients included in the primary meta-analysis. Compared to MLNS in NSCLC patients, there was no statistically significant difference in MLND on overall survival (HR = 0.77, 95% CI 0.55 to 1.08; P = 0.13). In addition, the results indicated that local recurrence rate (RR = 0.93, 95% CI 0.68 to 1.28; P = 0.67), distant metastasis rate (RR = 0.88, 95% CI 0.74 to 1.04; P = 0.15), and total complications rate (RR = 1.10, 95% CI 0.67 to 1.79; P = 0.72) were similar, no significant difference found between the two groups. Results for overall survival, local recurrence rate, and distant metastasis rate were similar between MLND and MLNS in early stage NSCLC patients. There was no evidence that MLND increased complications compared with MLNS. Whether or not MLND is superior to MLNS for stage II-IIIA remains to be determined.
Renal surgery in the new millennium.
Delvecchio, F C; Preminger, G M
2000-11-01
In the not too distant future, the minimally invasive renal surgeon will be able to practice an operation on a difficult case on a three-dimensional virtual reality simulator, providing all attributes of the real procedure. The patient's imaging studies will be imported into the simulator to better mimic particular anatomy. When confident enough of his or her skills, the surgeon will start operating on the patient using the same virtual reality simulator/telepresence surgery console system, which will permit the live surgery to be conducted by robots hundreds of miles away. The robots will manipulate miniature endoscopes or control minimally or noninvasive ablative technologies. Endoscopic/laparoscopic footage of the surgical procedure will be stored digitally in optical disks to be used later in telementoring of a surgery resident. All this and more will be possible in the not so distant third millennium.
Chen, Hua-Wei; Chen, Xiu; Oh, Su-Wan; Marinissen, Maria J.; Gutkind, J. Silvio; Hou, Steven X.
2002-01-01
The JAK/STAT signal transduction pathway controls numerous events in Drosophila melanogaster development. Receptors for the pathway have yet to be identified. Here we have identified a Drosophila gene that shows embryonic mutant phenotypes identical to those in the hopscotch (hop)/JAK kinase and marelle (mrl)/Stat92e mutations. We named this gene master of marelle (mom). Genetic analyses place mom's function between upd (the ligand) and hop. We further show that cultured cells transfected with the mom gene bind UPD and activate the HOP/STAT92E signal transduction pathway. mom encodes a protein distantly related to the mammalian cytokine receptor family. These data show that mom functions as a receptor of the Drosophila JAK/STAT signal transduction pathway. PMID:11825879
Selective Listening Point Audio Based on Blind Signal Separation and Stereophonic Technology
NASA Astrophysics Data System (ADS)
Niwa, Kenta; Nishino, Takanori; Takeda, Kazuya
A sound field reproduction method is proposed that uses blind source separation and a head-related transfer function. In the proposed system, multichannel acoustic signals captured at distant microphones are decomposed to a set of location/signal pairs of virtual sound sources based on frequency-domain independent component analysis. After estimating the locations and the signals of the virtual sources by convolving the controlled acoustic transfer functions with each signal, the spatial sound is constructed at the selected point. In experiments, a sound field made by six sound sources is captured using 48 distant microphones and decomposed into sets of virtual sound sources. Since subjective evaluation shows no significant difference between natural and reconstructed sound when six virtual sources and are used, the effectiveness of the decomposing algorithm as well as the virtual source representation are confirmed.
Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System
NASA Technical Reports Server (NTRS)
Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jeannette
2016-01-01
This paper presents a study of transfers between distant retrograde orbits (DROs) and L2 halo orbits in the Earth-Moon system that could be flown by a spacecraft with solar electric propulsion (SEP). Two collocation-based optimal control methods are used to optimize these highly-nonlinear transfers: Legendre pseudospectral and Hermite-Simpson. Transfers between DROs and halo orbits using low-thrust propulsion have not been studied previously. This paper offers a study of several families of trajectories, parameterized by the number of orbital revolutions in a synodic frame. Even with a poor initial guess, a method is described to reliably generate families of solutions. The circular restricted 3-body problem (CRTBP) is used throughout the paper so that the results are autonomous and simpler to understand.
The gravitational field and brain function.
Mei, L; Zhou, C D; Lan, J Q; Wang, Z G; Wu, W C; Xue, X M
1983-01-01
The frontal cortex is recognized as the highest adaptive control center of the human brain. The principle of the "frontalization" of human brain function offers new possibilities for brain research in space. There is evolutionary and experimental evidence indicating the validity of the principle, including it's role in nervous response to gravitational stimulation. The gravitational field is considered here as one of the more constant and comprehensive factors acting on brain evolution, which has undergone some successive crucial steps: "encephalization", "corticalization", "lateralization" and "frontalization". The dominating effects of electrical responses from the frontal cortex have been discovered 1) in experiments under gravitational stimulus; and 2) in processes potentially relating to gravitational adaptation, such as memory and learning, sensory information processing, motor programing, and brain state control. A brain research experiment during space flight is suggested to test the role of the frontal cortex in space adaptation and it's potentiality in brain control.
Rödel, Franz; Steinhäuser, Kerstin; Kreis, Nina-Naomi; Friemel, Alexandra; Martin, Daniel; Wieland, Ulrike; Rave-Fränk, Margret; Balermpas, Panagiotis; Fokas, Emmanouil; Louwen, Frank; Rödel, Claus; Yuan, Juping
2018-02-01
RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signalling pathway and its deregulation is involved in the pathogenesis of several tumour entities. RITA's impact on the response of anal squamous cell carcinoma (SCC) to anticancer treatment, however, remains elusive. In our retrospective study immunohistochemical evaluation of RITA was performed on 140 pre-treatment specimens and was correlated with clinical and histopathologic characteristics and clinical endpoints cumulative incidence of local control (LC), distant recurrence (DC), disease-free survival (DFS) and overall survival (OS). We observed significant inverse correlations between RITA expression and tumour grading, the levels of HPV-16 virus DNA load, CD8 (+) tumour infiltrating lymphocytes and programmed death protein (PD-1) immunostaining. In univariate analyses, elevated levels of RITA expression were predictive for decreased local control (p = 0.001), decreased distant control (p = 0.040), decreased disease free survival (p = 0.001) and overall survival (p < 0.0001), whereas in multivariate analyses RITA expression remained significant for decreased local control (p = 0.009), disease free survival (p = 0.032) and overall survival (p = 0.012). These data indicate that elevated levels of pretreatment RITA expression are correlated with unfavourable clinical outcome in anal carcinoma treated with concomitant chemoradiotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
[Expression of c-jun protein after experimental rat brain concussion].
Wang, Feng; Li, Yong-hong
2010-02-01
To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.
Brain antibodies in the cortex and blood of people with schizophrenia and controls
Glass, L J; Sinclair, D; Boerrigter, D; Naude, K; Fung, S J; Brown, D; Catts, V S; Tooney, P; O'Donnell, M; Lenroot, R; Galletly, C; Liu, D; Weickert, T W; Shannon Weickert, C
2017-01-01
The immune system is implicated in the pathogenesis of schizophrenia, with elevated proinflammatory cytokine mRNAs found in the brains of ~40% of individuals with the disorder. However, it is not clear if antibodies (specifically immunoglobulin-γ (IgG)) can be found in the brain of people with schizophrenia and if their abundance relates to brain inflammatory cytokine mRNA levels. Therefore, we investigated the localization and abundance of IgG in the frontal cortex of people with schizophrenia and controls, and the impact of proinflammatory cytokine status on IgG abundance in these groups. Brain IgGs were detected surrounding blood vessels in the human and non-human primate frontal cortex by immunohistochemistry. IgG levels did not differ significantly between schizophrenia cases and controls, or between schizophrenia cases in ‘high’ and ‘low’ proinflammatory cytokine subgroups. Consistent with the existence of IgG in the parenchyma of human brain, mRNA and protein of the IgG transporter (FcGRT) were present in the brain, and did not differ according to diagnosis or inflammatory status. Finally, brain-reactive antibody presence and abundance was investigated in the blood of living people. The plasma of living schizophrenia patients and healthy controls contained antibodies that displayed positive binding to Rhesus macaque cerebellar tissue, and the abundance of these antibodies was significantly lower in patients than controls. These findings suggest that antibodies in the brain and brain-reactive antibodies in the blood are present under normal circumstances. PMID:28786974
Brain antibodies in the cortex and blood of people with schizophrenia and controls.
Glass, L J; Sinclair, D; Boerrigter, D; Naude, K; Fung, S J; Brown, D; Catts, V S; Tooney, P; O'Donnell, M; Lenroot, R; Galletly, C; Liu, D; Weickert, T W; Shannon Weickert, C
2017-08-08
The immune system is implicated in the pathogenesis of schizophrenia, with elevated proinflammatory cytokine mRNAs found in the brains of ~40% of individuals with the disorder. However, it is not clear if antibodies (specifically immunoglobulin-γ (IgG)) can be found in the brain of people with schizophrenia and if their abundance relates to brain inflammatory cytokine mRNA levels. Therefore, we investigated the localization and abundance of IgG in the frontal cortex of people with schizophrenia and controls, and the impact of proinflammatory cytokine status on IgG abundance in these groups. Brain IgGs were detected surrounding blood vessels in the human and non-human primate frontal cortex by immunohistochemistry. IgG levels did not differ significantly between schizophrenia cases and controls, or between schizophrenia cases in 'high' and 'low' proinflammatory cytokine subgroups. Consistent with the existence of IgG in the parenchyma of human brain, mRNA and protein of the IgG transporter (FcGRT) were present in the brain, and did not differ according to diagnosis or inflammatory status. Finally, brain-reactive antibody presence and abundance was investigated in the blood of living people. The plasma of living schizophrenia patients and healthy controls contained antibodies that displayed positive binding to Rhesus macaque cerebellar tissue, and the abundance of these antibodies was significantly lower in patients than controls. These findings suggest that antibodies in the brain and brain-reactive antibodies in the blood are present under normal circumstances.
Real-time visualization of early metastasis events in Danio rerio
NASA Astrophysics Data System (ADS)
Tanner, Kandice
Metastasis, the process by which cancer cells travel from a primary tumor to establish lesions in distant organs, is the cause of most cancer-related deaths. One critical process during metastasis is the transit of cells from a primary tumor and through the vasculature or lymphatic systems to a distant site prior to metastatic colonization. However, visualization of cellular behavior in the vasculature is difficult in most model systems, where final cell destination is not known beforehand. Here, we used bone- and brain-tropic subclones of MDA-MB-231 breast adenocarcinoma cells (231BO and 231BR, respectively) injected into the circulation of embryonic zebrafish as a model xenograft system of metastasis. The zebrafish vasculature contains vessels on the scale of human capillaries. Real-time intravital imaging revealed metastatic spread to be an inefficient process, with less than 20% of cells passing through a given organ remaining there following 14 h of imaging. Additionally, there was no significant difference in the organ-specific residence time or migration speed of single 231BO and 231BR cells in the organ vasculature. Instead, cell capture was dependent on vessel topography and the function of integrin β1. Interestingly, a fraction of cells extravasated from the vasculature and survived in a perivascular position in the head and caudal venous plexus for up to two weeks. In conclusion, use of the zebrafish vasculature as a model capillary bed has revealed critical steps in early metastasis that are difficult to capture in other systems.
Tuleasca, Constantin; Witjas, Tatiana; Najdenovska, Elena; Verger, Antoine; Girard, Nadine; Champoudry, Jerome; Thiran, Jean-Philippe; Van de Ville, Dimitri; Cuadra, Meritxell Bach; Levivier, Marc; Guedj, Eric; Régis, Jean
2017-11-01
Radiosurgery (RS) is an alternative to open standard stereotactic procedures (deep-brain stimulation or radiofrequency thalamotomy) for drug-resistant essential tremor (ET), aiming at the same target (ventro-intermediate nucleus, Vim). We investigated the Vim RS outcome using voxel-based morphometry by evaluating the interaction between clinical response and time. Thirty-eight patients with right-sided ET benefited from left unilateral Vim RS. Targeting was performed using 130 Gy and a single 4-mm collimator. Neurological and neuroimaging assessment was completed at baseline and 1 year. Clinical responders were considered those with at least 50% improvement in tremor score on the treated hand (TSTH). Interaction between clinical response and time showed the left temporal pole and occipital cortex (Brodmann area 19, including V4, V5 and the parahippocampal place area) as statistically significant. A decrease in gray matter density (GMD) 1 year after Vim RS correlated with higher TSTH improvement (Spearman = 0.01) for both anatomical areas. Higher baseline GMD within the left temporal pole correlated with better TSTH improvement (Spearman = 0.004). Statistically significant structural changes in the relationship to clinical response after Vim RS are present in remote areas, advocating a distant neurobiological effect. The former regions are mainly involved in locomotor monitoring toward the local and distant environment, suggesting the recruiting requirement in targeting of the specific visuomotor networks.
Realigning Thunder and Lightning: Temporal Adaptation to Spatiotemporally Distant Events
Navarra, Jordi; Fernández-Prieto, Irune; Garcia-Morera, Joel
2013-01-01
The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants’ SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events). PMID:24391928
Brain atrophy and cerebral small vessel disease: a prospective follow-up study.
Nitkunan, Arani; Lanfranconi, Silvia; Charlton, Rebecca A; Barrick, Thomas R; Markus, Hugh S
2011-01-01
cerebral small vessel disease (SVD) is the most common cause of vascular dementia. Interest in the use of surrogate markers is increasing. The aims of this study were to determine if brain volume was different between patients with SVD and control subjects, whether it correlated with cognition in SVD, and whether changes in brain volume could be detected during prospective follow-up. thirty-five patients (mean age, 68.8 years) who had a lacunar stroke and radiological evidence of confluent leukoaraiosis and 70 age- and gender-matched control subjects were recruited. Whole-brain T1-weighted imaging and neuropsychological testing were performed after 1 year on all patients and after 2 years for the control subjects. Fully automated software was used to determine brain volume and percentage brain volume change. An executive function score was derived. there was a significant difference in brain volume between the patients with SVD and control subjects (mean ± SD [mL] 1529 ± 84 versus 1573 ± 69, P=0.019). In the patients with SVD, there was a significant association between brain volume and executive function (r=0.501, P<0.05). The mean ± SD yearly brain atrophy rate for patients with SVD and control subjects was significantly different (-0.914% ± 0.8% versus -0.498% ± 0.4%, respectively, P=0.017). No change in executive function score was detected over this period. brain volume is reduced in SVD and a decline is detectable prospectively. The correlation with executive function at a cross-sectional level and the change in brain volume with time are both promising for the use of brain atrophy as a surrogate marker of SVD progression.
Rivastigmine is Associated with Restoration of Left Frontal Brain Activity in Parkinson’s Disease
Possin, Katherine L.; Kang, Gail A.; Guo, Christine; Fine, Eric M.; Trujillo, Andrew J.; Racine, Caroline A.; Wilheim, Reva; Johnson, Erica T.; Witt, Jennifer L.; Seeley, William W.; Miller, Bruce L.; Kramer, Joel H.
2013-01-01
Objective To investigate how acetylcholinesterase inhibitor (ChEI) treatment impacts brain function in Parkinson’s disease (PD). Methods Twelve patients with PD and either dementia or mild cognitive impairment underwent task-free functional magnetic resonance imaging before and after three months of ChEI treatment and were compared to 15 age and sex matched neurologically healthy controls. Regional spontaneous brain activity was measured using the fractional amplitude of low frequency fluctuations. Results At baseline, patients showed reduced spontaneous brain activity in regions important for motor control (e.g., caudate, supplementary motor area, precentral gyrus, thalamus), attention and executive functions (e.g., lateral prefrontal cortex), and episodic memory (e.g., precuneus, angular gyrus, hippocampus). After treatment, the patients showed a similar but less extensive pattern of reduced spontaneous brain activity relative to controls. Spontaneous brain activity deficits in the left premotor cortex, inferior frontal gyrus, and supplementary motor area were restored such that the activity was increased post-treatment compared to baseline and was no longer different from controls. Treatment-related increases in left premotor and inferior frontal cortex spontaneous brain activity correlated with parallel reaction time improvement on a test of controlled attention. Conclusions PD patients with cognitive impairment show numerous regions of decreased spontaneous brain function compared to controls, and rivastigmine is associated with performance-related normalization in left frontal cortex function. PMID:23847120
Sex dependence of brain size and shape in bipolar disorder: an exploratory study.
Mackay, Clare E; Roddick, Elina; Barrick, Thomas R; Lloyd, Adrian J; Roberts, Neil; Crow, Tim J; Young, Allan H; Ferrier, I Nicol
2010-05-01
Anomalies of asymmetry and sex differences in brain structure have frequently been described in schizophrenic illnesses but have seldom been explored in bipolar disorder. We measured volumes of the left and right frontal, temporal, parietal, and occipital lobes and computed the magnitude of brain torque (i.e., rightward frontal and leftward occipital asymmetry) for 49 patients with bipolar disorder and 47 healthy controls and performed an exploratory analysis of sex differences in patients and controls. Patients had significantly greater cerebrospinal fluid volume than controls, but no difference in total brain volume. There were no main effects of diagnosis in gray matter lobe volume or brain torque, but when analyses were performed separately for male and female subjects, significant sex-by-diagnosis interactions were found in the volume of the left frontal, left temporal, right parietal, and right occipital lobes, such that male patients with bipolar disorder tend toward larger, more symmetric brains than male controls, whereas female patients tend toward smaller, more asymmetric brains than female controls. The lateralised nature of these interactions was such that the normal sex difference in volume was significantly accentuated, whilst the normal sex difference in asymmetry tended to be diminished in patients with bipolar disorder. We conclude that bipolar disorder in part reflects an interaction between brain growth and sex along the anterior-posterior axis of the human brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuji, Hiroshi; Ishikawa, Hitoshi; Yanagi, Takeshi
2007-03-01
Purpose: To evaluate the applicability of carbon ion beams for the treatment of choroidal melanoma with regard to normal tissue morbidity and local tumor control. Methods and Materials: Between January 2001 and February 2006, 59 patients with locally advanced or unfavorably located choroidal melanoma were enrolled in a Phase I/II clinical trial of carbon-ion radiotherapy at the National Institute of Radiologic Sciences. The primary endpoint of this study was normal tissue morbidity, and secondary endpoints were local tumor control and patient survival. Of the 59 subjects enrolled, 57 were followed >6 months and analyzed. Results: Twenty-three patients (40%) developed neovascularmore » glaucoma, and three underwent enucleation for eye pain due to elevated intraocular pressure. Incidence of neovascular glaucoma was dependent on tumor size and site. Five patients had died at analysis, three of distant metastasis and two of concurrent disease. All but one patient, who developed marginal recurrence, were controlled locally. Six patients developed distant metastasis, five in the liver and one in the lung. Three-year overall survival, disease-free survival, and local control rates were 88.2%, 84.8%, and 97.4%, respectively. No apparent dose-response relationship was observed in either tumor control or normal tissue morbidity at the dose range applied. Conclusion: Carbon-ion radiotherapy can be applied to choroidal melanoma with an acceptable morbidity and sufficient antitumor effect, even with tumors of unfavorable size or site.« less
Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment
Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Louise Meyer, Rikke; Peter Revsbech, Niels; Schramm, Andreas; Peter Nielsen, Lars; Risgaard-Petersen, Nils
2014-01-01
Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4–6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed. PMID:24577351
Li, Duo-Jie; Li, Hong-Wei; He, Bin; Wang, Geng-Ming; Cai, Han-Fei; Duan, Shi-Miao; Liu, Jing-Jing; Zhang, Ya-Jun; Cui, Zhen; Jiang, Hao
2016-01-01
To retrospectively analyze the patterns of failure and the treatment effects of involved-field irradiation (IFI) on patients treated with locally advanced esophageal squamous cell carcinoma (ESCC) and to determine whether IFI is practicable in these patients. A total of 79 patients with locally advanced ESCC underwent three dimensional conformal (3D)CRT) or intensity modulated radiotherapy (IMRT) using IFI or elective nodal irradiation (ENI) according to the target volume. The patterns of failure were defined as local/regional, in-field, out)of)field regional lymph node (LN) and distant failure. With a median follow)up of 32.0 months, failures were observed in 66 (83.6%) patients. The cumulative incidence of local/regional failure (55.8 vs 52.8%) and in)field regional lymph node failure (25.6 vs 19.4%) showed no statistically significant difference between the IFI and the ENI group (p=0.526 and 0.215, respectively). Out)of)field nodal relapse rate of only 7.0% was seen in the IFI group. Three)year survival rates for the ENI and IFI group were 22.2 and 18.6%, respectively (p=0.240), and 3)year distant metastasis rates were 27.8 and 32.6%, respectively (p=0.180). The lung V10, V20, V30 and mean lung dose of the ENI group were greater than those of the IFI group, while the mean lung dose and V10 had statistically significant difference. The patterns of failure and survival rates in the IFI group were similar as in the ENI group; the regional recurrence and distant metastasis are the main cause of treatment failure. IFI is feasible for locally advanced ESCC. Further investigation is needed to increase local control and decrease distant metastasis in these patients.
Controllability of structural brain networks
NASA Astrophysics Data System (ADS)
Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.
2015-10-01
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.
A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke
Promjunyakul, Nutta-on; Schmit, Brian D.; Schindler-Ivens, Sheila M.
2015-01-01
The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was excluded from analysis due to an incidental finding. In the stroke group, one subject was unable to enter the gantry due to excess adiposity, and one stroke data set was excluded from analysis due to excessive head motion. Consequently, 81% of subjects (12/14 stroke, 9/12 control) completed all procedures and provided valid pedaling-related fMRI data. In these subjects, head motion was ≤3 mm. In both groups, brain activation localized to the medial aspect of M1, S1, and Brodmann’s area 6 (BA6) and to the cerebellum (vermis, lobules IV, V, VIII). The location of brain activation was consistent with leg areas. Pedaling-related brain activation was apparent on both sides of the brain, with values for laterality index (LI) of –0.06 (0.20) in the stroke cortex, 0.05 (±0.06) in the control cortex, 0.29 (0.33) in the stroke cerebellum, and 0.04 (0.15) in the control cerebellum. In the stroke group, activation in the cerebellum – but not cortex – was significantly lateralized toward the damaged side of the brain (p = 0.01). The volume of pedaling-related brain activation was smaller in stroke as compared to control subjects. Differences reached statistical significance when all active regions were examined together [p = 0.03; 27,694 (9,608) μL stroke; 37,819 (9,169) μL control]. When individual regions were examined separately, reduced brain activation volume reached statistical significance in BA6 [p = 0.04; 4,350 (2,347) μL stroke; 6,938 (3,134) μL control] and cerebellum [p = 0.001; 4,591 (1,757) μL stroke; 8,381 (2,835) μL control]. Regardless of whether activated regions were examined together or separately, there were no significant between-group differences in brain activation intensity [p = 0.17; 1.30 (0.25)% stroke; 1.16 (0.20)% control]. Reduced volume in the stroke group was not observed during lower limb tapping and could not be fully attributed to differences in head motion or movement rate. There was a tendency for pedaling-related brain activation volume to increase with increasing work performed by the paretic limb during pedaling (p = 0.08, r = 0.525). Hence, the results of this study provide two original and important contributions. First, we demonstrated that pedaling can be used with fMRI to examine brain activation associated with lower limb movement in people with stroke. Unlike previous lower limb movements examined with fMRI, pedaling involves continuous, reciprocal, multijoint movement of both limbs. In this respect, pedaling has many characteristics of functional lower limb movements, such as walking. Thus, the importance of our contribution lies in the establishment of a novel paradigm that can be used to understand how the brain adapts to stroke to produce functional lower limb movements. Second, preliminary observations suggest that brain activation volume is reduced during pedaling post-stroke. Reduced brain activation volume may be due to anatomic, physiology, and/or behavioral differences between groups, but methodological issues cannot be excluded. Importantly, brain action volume post-stroke was both task-dependent and mutable, which suggests that it could be modified through rehabilitation. Future work will explore these possibilities. PMID:26089789
Science, Medicine, and Intercessory Prayer
Sloan, Richard P.; Ramakrishnan, Rajasekhar
2012-01-01
Among the many recent attempts to demonstrate the medical benefits of religious activity, the methodologically strongest seem to be studies of the effects of distant intercessory prayer (IP). In these studies, patients are randomly assigned to receive standard care or standard care plus the prayers or “healing intentions” of distant intercessors. Most of the scientific community has dismissed such research, but cavalier rejection of studies of IP is unwise, because IP studies appear to conform to the standards of randomized controlled trials (RCTs) and, as such, would have a significant advantage over observational investigations of associations between religious variables and health outcomes. As we demonstrate, however, studies of IP fail to meet the standards of RCTs in several critical respects. They fail to adequately measure and control exposure to prayer from others, which is likely to exceed IP and to vary widely from subject to subject, and whose magnitude is unknown. This supplemental prayer so greatly attenuates the differences between the treatment and control groups that sample sizes are too large to justify studies of IP. Further, IP studies generally do not specify the outcome variables, raising problems of multiple comparisons and Type 1 errors. Finally, these studies claim findings incompatible with current views of the physical universe and consciousness. Unless these problems are solved, studies of IP should not be conducted. PMID:17146135
Patterns of inpatient care for immigrants in Switzerland: a case control study.
Lay, Barbara; Lauber, Christoph; Nordt, Carlos; Rössler, Wulf
2006-03-01
Migration has become a major political and social concern in West European societies. A case-control method was used to analyse the utilisation of inpatient mental health services by immigrants from a catchment area in Switzerland over a 7-year period. Compared to natives, immigrants had fewer psychiatric hospitalisations, but more emergency and compulsory admissions. During inpatient treatment, they received less psycho-, ergo- and physiotherapy. Other therapies as well as compulsory measures were at comparable rates, as was the frequency of irregular discharge. They spent shorter periods as inpatients and the rate of psychiatric readmissions was significantly lower. Comparison of different countries of origin revealed that only patients from West and North Europe were comparable to natives regarding type of referral, inpatient treatment, and longitudinal measures of service utilisation. Even after accounting for effects of social class, immigrants from South Europe, former Yugoslavia, Turkey, East Europe and more distant countries spent significantly shorter time in inpatient treatment, compared to Swiss control patients. Results of this study clearly point to an underutilisation of inpatient facilities among immigrants with mental disorders, and to disadvantages in psychiatric inpatient care. This, however, does not pertain to all foreign patients to the same extent: inequalities of mental health service use are particularly pronounced in immigrants from more distant countries.
Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot.
Jia, Wenchuan; Huang, Dandan; Luo, Xin; Pu, Huayan; Chen, Xuedong; Bai, Ou
2012-01-01
Artificial intelligence and bionic control have been applied in electroencephalography (EEG)-based robot system, to execute complex brain-control task. Nevertheless, due to technical limitations of the EEG decoding, the brain-computer interface (BCI) protocol is often complex, and the mapping between the EEG signal and the practical instructions lack of logic associated, which restrict the user's actual use. This paper presents a strategy that can be used to control a quadruped locomotion robot by user's instinctive action, based on five kinds of movement related neurophysiological signal. In actual use, the user drives or imagines the limbs/wrists action to generate EEG signal to adjust the real movement of the robot according to his/her own motor reflex of the robot locomotion. This method is easy for real use, as the user generates the brain-control signal through the instinctive reaction. By adopting the behavioral control of learning and evolution based on the proposed strategy, complex movement task may be realized by instinctive brain-control.
Rodríguez-Pujadas, Aina; Sanjuán, Ana; Ventura-Campos, Noelia; Román, Patricia; Martin, Clara; Barceló, Francisco; Costa, Albert; Ávila, César
2013-01-01
We tested the hypothesis that early bilinguals use language-control brain areas more than monolinguals when performing non-linguistic executive control tasks. We do so by exploring the brain activity of early bilinguals and monolinguals in a task-switching paradigm using an embedded critical trial design. Crucially, the task was designed such that the behavioural performance of the two groups was comparable, allowing then to have a safer comparison between the corresponding brain activity in the two groups. Despite the lack of behavioural differences between both groups, early bilinguals used language-control areas – such as left caudate, and left inferior and middle frontal gyri – more than monolinguals, when performing the switching task. Results offer direct support for the notion that, early bilingualism exerts an effect in the neural circuitry responsible for executive control. This effect partially involves the recruitment of brain areas involved in language control when performing domain-general executive control tasks, highlighting the cross-talk between these two domains. PMID:24058456
Chesnokov, Yuriy V
2008-06-01
Paroxysmal atrial fibrillation (PAF) is a serious arrhythmia associated with morbidity and mortality. We explore the possibility of distant prediction of PAF by analyzing changes in heart rate variability (HRV) dynamics of non-PAF rhythms immediately before PAF event. We use that model for distant prognosis of PAF onset with artificial intelligence methods. We analyzed 30-min non-PAF HRV records from 51 subjects immediately before PAF onset and at least 45min distant from any PAF event. We used spectral and complexity analysis with sample (SmEn) and approximate (ApEn) entropies and their multiscale versions on extracted HRV data. We used that features to train the artificial neural networks (ANNs) and support vector machine (SVM) classifiers to differentiate the subjects. The trained classifiers were further tested for distant PAF event prognosis on 16 subjects from independent database on non-PAF rhythm lasting from 60 to 320 min before PAF onset classifying the 30-min segments as distant or leading to PAF. We found statistically significant increase in 30-min non-PAF HRV recordings from 51 subjects in the VLF, LF, HF bands and total power (p<0.0001) before PAF event compared to PAF distant ones. The SmEn and ApEn analysis provided significant decrease in complexity (p<0.0001 and p<0.001) before PAF onset. For training ANN and SVM classifiers the data from 51 subjects were randomly split to training, validation and testing. ANN provided better results in terms of sensitivity (Se), specificity (Sp) and positive predictivity (Pp) compared to SVM which became biased towards positive case. The validation results of the ANN classifier we achieved: Se 76%, Sp 93%, Pp 94%. Testing ANN and SVM classifiers on 16 subjects with non-PAF HRV data preceding PAF events we obtained distant prediction of PAF onset with SVM classifier in 10 subjects (58+/-18 min in advance). ANN classifier provided distant prediction of PAF event in 13 subjects (62+/-21 min in advance). From the results of distant PAF prediction we conclude that ANN and SVM classifiers learned the changes in the HRV dynamics immediately before PAF event and successfully identified them during distant PAF prognosis on independent database. This confirms the reported in the literature results that corresponding changes in the HRV data occur about 60 min before PAF onset and proves the possibility of distant PAF prediction with ANN and SVM methods.
Brain volume and fatigue in patients with postpoliomyelitis syndrome.
Trojan, Daria A; Narayanan, Sridar; Francis, Simon J; Caramanos, Zografos; Robinson, Ann; Cardoso, Mauro; Arnold, Douglas L
2014-03-01
Acute paralytic poliomyelitis is associated with encephalitis. Early brain inflammation may produce permanent neuronal injury with brain atrophy, which may result in symptoms such as fatigue. Brain volume has not been assessed in postpoliomyelitis syndrome (PPS). To determine whether brain volume is decreased compared with that in normal controls, and whether brain volume is associated with fatigue in patients with PPS. A cross-sectional study. Tertiary university-affiliated hospital postpolio and multiple sclerosis (MS) clinics. Forty-nine ambulatory patients with PPS, 28 normal controls, and 53 ambulatory patients with MS. We studied the brains of all study subjects with magnetic resonance imaging by using a 1.5 T Siemens Sonata machine. The subjects completed the Fatigue Severity Scale. Multivariable linear regression models were computed to evaluate the contribution of PPS and MS compared with controls to explain brain volume. Normalized brain volume (NBV) was assessed with the automated program Structured Image Evaluation, using Normalization, of Atrophy method from the acquired magnetic resonance images. This method may miss brainstem atrophy. Technically adequate NBV measurements were available for 42 patients with PPS, 27 controls, and 49 patients with MS. The mean (standard deviation) age was 60.9 ± 7.6 years for patients with PPS, 47.0 ± 14.6 years for controls, and 46.2 ± 9.4 years for patients with MS. In a multivariable model adjusted for age and gender, NBV was not significantly different in patients with PPS compared with that in controls (P = .28). As expected, when using a similar model for patients with MS, NBV was significantly decreased compared with that in controls (P = .006). There was no significant association between NBV and fatigue in subjects with PPS (Spearman ρ = 0.23; P = .19). No significant whole-brain atrophy was found, and no association of brain volume with fatigue in PPS. Brain atrophy was confirmed in MS. It is possible that brainstem atrophy was not recognized by this study. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
The relationship between brain volumes and intelligence in bipolar disorder.
Vreeker, Annabel; Abramovic, Lucija; Boks, Marco P M; Verkooijen, Sanne; van Bergen, Annet H; Ophoff, Roel A; Kahn, René S; van Haren, Neeltje E M
2017-12-01
Bipolar disorder type-I (BD-I) patients show a lower Intelligence Quotient (IQ) and smaller brain volumes as compared with healthy controls. Considering that in healthy individuals lower IQ is related to smaller total brain volume, it is of interest to investigate whether IQ deficits in BD-I patients are related to smaller brain volumes and to what extent smaller brain volumes can explain differences between premorbid IQ estimates and IQ after a diagnosis of BD-I. Magnetic resonance imaging brain scans, IQ and premorbid IQ scores were obtained from 195 BDI patients and 160 controls. We studied the relationship of (global, cortical and subcortical) brain volumes with IQ and IQ change. Additionally, we investigated the relationship between childhood trauma, lithium- and antipsychotic use and IQ. Total brain volume and IQ were positively correlated in the entire sample. This correlation did not differ between patients and controls. Although brain volumes mediated the relationship between BD-I and IQ in part, the direct relationship between the diagnosis and IQ remained significant. Childhood trauma and use of lithium and antipsychotic medication did not affect the relationship between brain volumes and IQ. However, current lithium use was related to lower IQ in patients. Our data suggest a similar relationship between brain volume and IQ in BD-I patients and controls. Smaller brain volumes only partially explain IQ deficits in patients. Therefore, our findings indicate that in addition to brain volumes and lithium use other disease factors play a role in IQ deficits in BD-I patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Distant and Distributed Learners Are Two Sides of the Same Coin.
ERIC Educational Resources Information Center
Barron, Brette Barclay
2002-01-01
An academic librarian at the University of South Carolina, faced with providing online resources for distant and distributed learners, examines whether there is any difference between distant and distributed learners. Illustrates changes brought on by implementation of information technologies. Discusses seeking a new definition, meeting…
Akoum, Riad; Abdalla, Eddie K; Saade, Michel; Awdeh, Adnan; Abi-Aad, Fouad; Bejjani, Noha; Ghossain, Antoine; Brihi, Emile; Audi, Akram
2015-01-01
Inflammatory local recurrence (ILR) after breast-conserving surgery for noninflammatory breast cancer (BC) is associated with dismal prognosis. Risk factors for ILR are not well defined. Between 2001 and 2010, twelve patients at our hospital developed ILR after breast-conserving surgery, adjuvant chemotherapy, and radiotherapy for BC. We compared their clinico-pathological characteristics to those of 24 patients with noninflammatory local recurrence (non-ILR), 24 patients with distant metastases, and 48 disease-free controls, matched for age and observation period. The median time to ILR was 10 months. In univariate analysis, extent of lymph node involvement (p < 0.05), multifocality (p < 0.05), c-erbB2 overexpression (p < 0.05), and lymphovascular invasion (LVI) (p < 0.001) affected the risk of ILR. Conditional logistic regression analysis showed a significant association between ILR and combined LVI and high histopathological grade. The odds ratio (OR) for ILR versus non-ILR was 6.14 (95% confidence interval [CI] 1.48-25.38) and for ILR versus distant metastases it was 3.05 (95% CI 0.09-97.83) when both LVI and high histopathological grade were present. Patients with family history of BC were more likely to present with ILR than non-ILR (OR 5.47; 95% CI 1.55-19.31) or distant relapse (OR 5.62; 95% CI 0.26-119.95). Pre- and postmenopausal women with high-grade BC and LVI are at increased risk to develop ILR, especially in the presence of family history of BC. Identification of risk factors for this lethal form of recurrent BC may lead to more effective preventive treatment strategies in properly selected patients.
NASA Astrophysics Data System (ADS)
Chen, Haichao; Meng, Xiaobo; Niu, Fenglin; Tang, Youcai; Yin, Chen; Wu, Furong
2018-02-01
Microseismic monitoring is crucial to improving stimulation efficiency of hydraulic fracturing treatment, as well as to mitigating potential induced seismic hazard. We applied an improved matching and locating technique to the downhole microseismic data set during one treatment stage along a horizontal well within the Weiyuan shale gas play inside Sichuan Basin in SW China, resulting in 3,052 well-located microseismic events. We employed this expanded catalog to investigate the spatiotemporal evolution of the microseismicity in order to constrain migration of the injected fluids and the associated dynamic processes. The microseismicity is generally characterized by two distinctly different clusters, both of which are highly correlated with the injection activity spatially and temporarily. The distant and well-confined cluster (cluster A) is featured by relatively large-magnitude events, with 40 events of M -1 or greater, whereas the cluster in the immediate vicinity of the wellbore (cluster B) includes two apparent lineations of seismicity with a NE-SW trending, consistent with the predominant orientation of natural fractures. We calculated the b-value and D-value, an index of fracture complexity, and found significant differences between the two seismicity clusters. Particularly, the distant cluster showed an extremely low b-value ( 0.47) and D-value ( 1.35). We speculate that the distant cluster is triggered by reactivation of a preexisting critically stressed fault, whereas the two lineations are induced by shear failures of optimally oriented natural fractures associated with fluid diffusion. In both cases, the spatially clustered microseismicity related to hydraulic stimulation is strongly controlled by the preexisting faults and fractures.
Palacios Ceña, María; Castaldo, Matteo; Kelun Wang; Torelli, Paola; Pillastrini, Paolo; Fernández-de-Las-Peñas, César; Arendt-Nielsen, Lars
2017-02-01
To investigate differences in widespread pressure pain hyperalgesia in the trigemino-cervical and extra-trigeminal (distant pain-free) regions in women with frequent episodic (FETTH) and chronic (CTTH) tension-type headache. It seems that people with tension-type headache exhibit central sensitization. No study has investigated differences between FETTH and CTTH in terms of widespread pressure pain hypersensitivity. Forty-three women with FETTH, 42 with CTTH, and 45 women without headache diagnosis were recruited. Pressure pain thresholds (PPTs) were bilaterally assessed over trigeminal area (ie, temporalis muscle), extra-trigeminal (ie, C5/C6 zygapophyseal joint), and two distant points (ie, second metacarpal and tibialis anterior muscle) by a blinded assessor. Clinical features of the headache were collected with a 4-week headache diary. Anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). The ANCOVA revealed that PPTs were significantly decreased bilaterally over trigeminal (mean differences ranging from 97.5 to 101.5 kPa), extra-trigeminal (from 94.3 to 114.5 kPa), and distant points (from 99.4 to 208.6 kPa) in both FETTH and CTTH groups compared with controls (all, P < .001). No differences between FETTH and CTTH were observed (all points, P > .217). Anxiety (all, P > .803) or depression (P > .206) did not influence pressure pain hyperalgesia. No associations between widespread pressure hypersensitivity and headache features were observed (all, P > .110). Current results suggest the presence of similar local and widespread pressure hyperalgesia, not associated with anxiety or depression, in women with FETTH and CTTH supporting that localized and central manifestations are involved in both the episodic and chronic forms of tension-type headache. © 2016 American Headache Society.
Zhao, Kuai-le; Ma, Jin-bo; Liu, Guang; Wu, Kai-liang; Shi, Xue-hui; Jiang, Guo-liang
2010-02-01
To evaluate the local control, survival, and toxicity associated with three-dimensional conformal radiotherapy (3D-CRT) for squamous cell carcinoma (SCC) of the esophagus, to determine the appropriate target volumes, and to determine whether elective nodal irradiation is necessary in these patients. A prospective study of 3D-CRT was undertaken in patients with esophageal SCC without distant metastases. Patients received 68.4 Gy in 41 fractions over 44 days using late-course accelerated hyperfractionated 3D-CRT. Only the primary tumor and positive lymph nodes were irradiated. Isolated out-of-field regional nodal recurrence was defined as a recurrence in an initially uninvolved regional lymph node. All 53 patients who made up the study population tolerated the irradiation well. No acute or late Grade 4 or 5 toxicity was observed. The median survival time was 30 months (95% confidence interval, 17.7-41.8). The overall survival rate at 1, 2, and 3 years was 77%, 56%, and 41%, respectively. The local control rate at 1, 2, and 3 years was 83%, 74%, and 62%, respectively. Thirty-nine of the 53 patients (74%) showed treatment failure. Seventeen of the 39 (44%) developed an in-field recurrence, 18 (46%) distant metastasis with or without regional failure, and 3 (8%) an isolated out-of-field nodal recurrence only. One patient died of disease in an unknown location. In patients treated with 3D-CRT for esophageal SCC, the omission of elective nodal irradiation was not associated with a significant amount of failure in lymph node regions not included in the planning target volume. Local failure and distant metastases remained the predominant problems. Copyright 2010 Elsevier Inc. All rights reserved.
Pizzoni, S; Sabattini, S; Stefanello, D; Dentini, A; Ferrari, R; Dacasto, M; Giantin, M; Laganga, P; Amati, M; Tortorella, G; Marconato, L
2018-03-01
Distant metastases in dogs with cutaneous mast cell tumors (cMCT) are rare and incurable. The aims of this prospective study were to clarify the clinico-pathological features of stage IV cMCTs and to identify possible prognostic factors for progression-free interval (PFI) and survival time (ST). Dogs were eligible for recruitment if they had a previously untreated, histologically confirmed cMCT and if they underwent complete staging demonstrating stage IV disease. Dogs were uniformly followed-up, whereas treatment was not standardized and included no therapy, surgery, radiation therapy, chemotherapy, tyrosine-kinase inhibitors or a combination of these. 45 dogs with stage IV cMCT were enrolled. All dogs had distant metastatic disease, and 41 (91.1%) dogs had also metastasis in the regional lymph node. Histopathological grade and mutational status greatly varied among dogs. Median ST was 110 days. Notably, PFI and ST were independent of well-known prognostic factors, including anatomic site, histological grade, and mutational status. Conversely, tumor diameter >3 cm, more than 2 metastatic sites, bone marrow infiltration, and lack of tumor control at the primary site were confirmed to be negative prognostic factors by multivariate analysis. Currently, there is no satisfactory treatment for stage IV cMCT. Asymptomatic dogs with tumor diameter <3 cm and a low tumor burden, without bone marrow infiltration may be candidates for multimodal treatment. Stage IV dogs without lymph node metastasis may enjoy a surprisingly prolonged survival. The achievement of local tumor control seems to predict a better outcome in dogs with stage IV cMCT. © 2017 John Wiley & Sons Ltd.
Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: Phase I study
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGarry, Ronald C.; Papiez, Lech; Williams, Mark
Purpose: A Phase I dose escalation study of stereotactic body radiation therapy to assess toxicity and local control rates for patients with medically inoperable Stage I lung cancer. Methods and Materials: All patients had non-small-cell lung carcinoma, Stage T1a or T1b N0, M0. Patients were immobilized in a stereotactic body frame and treated in escalating doses of radiotherapy beginning at 24 Gy total (3 x 8 Gy fractions) using 7-10 beams. Cohorts were dose escalated by 6.0 Gy total with appropriate observation periods. Results: The maximum tolerated dose was not achieved in the T1 stratum (maximum dose = 60 Gy),more » but within the T2 stratum, the maximum tolerated dose was realized at 72 Gy for tumors larger than 5 cm. Dose-limiting toxicity included predominantly bronchitis, pericardial effusion, hypoxia, and pneumonitis. Local failure occurred in 4/19 T1 and 6/28 T2 patients. Nine local failures occurred at doses {<=}16 Gy and only 1 at higher doses. Local failures occurred between 3 and 31 months from treatment. Within the T1 group, 5 patients had distant or regional recurrence as an isolated event, whereas 3 patients had both distant and regional recurrence. Within the T2 group, 2 patients had solitary regional recurrences, and the 4 patients who failed distantly also failed regionally. Conclusions: Stereotactic body radiation therapy seems to be a safe, effective means of treating early-stage lung cancer in medically inoperable patients. Excellent local control was achieved at higher dose cohorts with apparent dose-limiting toxicities in patients with larger tumors.« less
Remote Photoregulated Ring Gliding in a [2]Rotaxane via a Molecular Effector.
Tron, Arnaud; Pianet, Isabelle; Martinez-Cuezva, Alberto; Tucker, James H R; Pisciottani, Luca; Alajarin, Mateo; Berna, Jose; McClenaghan, Nathan D
2017-01-06
A molecular barbiturate messenger, which is reversibly released/captured by a photoswitchable artificial molecular receptor, is shown to act as an effector to control ring gliding on a distant hydrogen-bonding [2]rotaxane. Thus, light-driven chemical communication governing the operation of a remote molecular machine is demonstrated using an information-rich neutral molecule.
Tsetsarkin, Konstantin A; Liu, Guangping; Kenney, Heather; Hermance, Meghan; Thangamani, Saravanan; Pletnev, Alexander G
2016-09-13
Tick-borne viruses include medically important zoonotic pathogens that can cause life-threatening diseases. Unlike mosquito-borne viruses, whose impact can be restrained via mosquito population control programs, for tick-borne viruses only vaccination remains the reliable means of disease prevention. For live vaccine viruses a concern exists, that spillovers from viremic vaccinees could result in introduction of genetically modified viruses into sustainable tick-vertebrate host transmission cycle in nature. To restrict tick-borne flavivirus (Langat virus, LGTV) vector tropism, we inserted target sequences for tick-specific microRNAs (mir-1, mir-275 and mir-279) individually or in combination into several distant regions of LGTV genome. This caused selective attenuation of viral replication in tick-derived cells. LGTV expressing combinations of target sequences for tick- and vertebrate CNS-specific miRNAs were developed. The resulting viruses replicated efficiently and remained stable in simian Vero cells, which do not express these miRNAs, however were severely restricted to replicate in tick-derived cells. In addition, simultaneous dual miRNA targeting led to silencing of virus replication in live Ixodes ricinus ticks and abolished virus neurotropism in highly permissive newborn mice. The concurrent restriction of adverse replication events in vertebrate and invertebrate hosts will, therefore, ensure the environmental safety of live tick-borne virus vaccine candidates.
Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant.
van Roosmalen, Wies; Le Dévédec, Sylvia E; Golani, Ofra; Smid, Marcel; Pulyakhina, Irina; Timmermans, Annemieke M; Look, Maxime P; Zi, Di; Pont, Chantal; de Graauw, Marjo; Naffar-Abu-Amara, Suha; Kirsanova, Catherine; Rustici, Gabriella; Hoen, Peter A C 't; Martens, John W M; Foekens, John A; Geiger, Benjamin; van de Water, Bob
2015-04-01
Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin β3-binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis.
Bralten, Janita; Greven, Corina U; Franke, Barbara; Mennes, Maarten; Zwiers, Marcel P; Rommelse, Nanda N J; Hartman, Catharina; van der Meer, Dennis; O'Dwyer, Laurence; Oosterlaan, Jaap; Hoekstra, Pieter J; Heslenfeld, Dirk; Arias-Vasquez, Alejandro; Buitelaar, Jan K
2016-06-01
Data on structural brain alterations in patients with attention-deficit/hyperactivity disorder (ADHD) have been inconsistent. Both ADHD and brain volumes have a strong genetic loading, but whether brain alterations in patients with ADHD are familial has been underexplored. We aimed to detect structural brain alterations in adolescents and young adults with ADHD compared with healthy controls. We examined whether these alterations were also found in their unaffected siblings, using a uniquely large sample. We performed voxel-based morphometry analyses on MRI scans of patients with ADHD, their unaffected siblings and typically developing controls. We identified brain areas that differed between participants with ADHD and controls and investigated whether these areas were different in unaffected siblings. Influences of medication use, age, sex and IQ were considered. Our sample included 307 patients with ADHD, 169 unaffected siblings and 196 typically developing controls (mean age 17.2 [range 8-30] yr). Compared with controls, participants with ADHD had significantly smaller grey matter volume in 5 clusters located in the precentral gyrus, medial and orbitofrontal cortex, and (para)cingulate cortices. Unaffected siblings showed intermediate volumes significantly different from controls in 4 of these clusters (all except the precentral gyrus). Medication use, age, sex and IQ did not have an undue influence on the results. Our sample was heterogeneous, most participants with ADHD were taking medication, and the comparison was cross-sectional. Brain areas involved in decision making, motivation, cognitive control and motor functioning were smaller in participants with ADHD than in controls. Investigation of unaffected siblings indicated familiality of 4 of the structural brain differences, supporting their potential in molecular genetic analyses in ADHD research.
Bralten, Janita; Greven, Corina U.; Franke, Barbara; Mennes, Maarten; Zwiers, Marcel P.; Rommelse, Nanda N.J.; Hartman, Catharina; van der Meer, Dennis; O’Dwyer, Laurence; Oosterlaan, Jaap; Hoekstra, Pieter J.; Heslenfeld, Dirk; Arias-Vasquez, Alejandro; Buitelaar, Jan K.
2016-01-01
Background Data on structural brain alterations in patients with attention-deficit/hyperactivity disorder (ADHD) have been inconsistent. Both ADHD and brain volumes have a strong genetic loading, but whether brain alterations in patients with ADHD are familial has been underexplored. We aimed to detect structural brain alterations in adolescents and young adults with ADHD compared with healthy controls. We examined whether these alterations were also found in their unaffected siblings, using a uniquely large sample. Methods We performed voxel-based morphometry analyses on MRI scans of patients with ADHD, their unaffected siblings and typically developing controls. We identified brain areas that differed between participants with ADHD and controls and investigated whether these areas were different in unaffected siblings. Influences of medication use, age, sex and IQ were considered. Results Our sample included 307 patients with ADHD, 169 unaffected siblings and 196 typically developing controls (mean age 17.2 [range 8–30] yr). Compared with controls, participants with ADHD had significantly smaller grey matter volume in 5 clusters located in the precentral gyrus, medial and orbitofrontal cortex, and (para)cingulate cortices. Unaffected siblings showed intermediate volumes significantly different from controls in 4 of these clusters (all except the precentral gyrus). Medication use, age, sex and IQ did not have an undue influence on the results. Limitations Our sample was heterogeneous, most participants with ADHD were taking medication, and the comparison was cross-sectional. Conclusion Brain areas involved in decision making, motivation, cognitive control and motor functioning were smaller in participants with ADHD than in controls. Investigation of unaffected siblings indicated familiality of 4 of the structural brain differences, supporting their potential in molecular genetic analyses in ADHD research. PMID:26679925
Chaddock-Heyman, Laura; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F
2014-12-01
In this chapter, we review literature that examines the association among physical activity, aerobic fitness, cognition, and the brain in elementary school children (ages 7-10 years). Specifically, physical activity and higher levels of aerobic fitness in children have been found to benefit brain structure, brain function, cognition, and school achievement. For example, higher fit children have larger brain volumes in the basal ganglia and hippocampus, which relate to superior performance on tasks of cognitive control and memory, respectively, when compared to their lower fit peers. Higher fit children also show superior brain function during tasks of cognitive control, better scores on tests of academic achievement, and higher performance on a real-world street crossing task, compared to lower fit and less active children. The cross-sectional findings are strengthened by a few randomized, controlled trials, which demonstrate that children randomly assigned to a physical activity intervention group show greater brain and cognitive benefits compared to a control group. Because these findings suggest that the developing brain is plastic and sensitive to lifestyle factors, we also discuss typical structural and functional brain maturation in children to provide context in which to interpret the effects of physical activity and aerobic fitness on the developing brain. This research is important because children are becoming increasingly sedentary, physically inactive, and unfit. An important goal of this review is to emphasize the importance of physical activity and aerobic fitness for the cognitive and brain health of today's youth. © 2014 The Society for Research in Child Development, Inc.
Control channels in the brain and their influence on brain executive functions
NASA Astrophysics Data System (ADS)
Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad
2014-05-01
In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.
Optimal trajectories of brain state transitions
Gu, Shi; Betzel, Richard F.; Mattar, Marcelo G.; Cieslak, Matthew; Delio, Philip R.; Grafton, Scott T.; Pasqualetti, Fabio; Bassett, Danielle S.
2017-01-01
The complexity of neural dynamics stems in part from the complexity of the underlying anatomy. Yet how white matter structure constrains how the brain transitions from one cognitive state to another remains unknown. Here we address this question by drawing on recent advances in network control theory to model the underlying mechanisms of brain state transitions as elicited by the collective control of region sets. We find that previously identified attention and executive control systems are poised to affect a broad array of state transitions that cannot easily be classified by traditional engineering-based notions of control. This theoretical versatility comes with a vulnerability to injury. In patients with mild traumatic brain injury, we observe a loss of specificity in putative control processes, suggesting greater susceptibility to neurophysiological noise. These results offer fundamental insights into the mechanisms driving brain state transitions in healthy cognition and their alteration following injury. PMID:28088484
Context-Based Filtering for Assisted Brain-Actuated Wheelchair Driving
Vanacker, Gerolf; Millán, José del R.; Lew, Eileen; Ferrez, Pierre W.; Moles, Ferran Galán; Philips, Johan; Van Brussel, Hendrik; Nuttin, Marnix
2007-01-01
Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair. PMID:18354739
Oxytocin enhances inter-brain synchrony during social coordination in male adults
Mu, Yan; Guo, Chunyan
2016-01-01
Recent brain imaging research has revealed oxytocin (OT) effects on an individual's brain activity during social interaction but tells little about whether and how OT modulates the coherence of inter-brain activity related to two individuals' coordination behavior. We developed a new real-time coordination game that required two individuals of a dyad to synchronize with a partner (coordination task) or with a computer (control task) by counting in mind rhythmically. Electroencephalography (EEG) was recorded simultaneously from a dyad to examine OT effects on inter-brain synchrony of neural activity during interpersonal coordination. Experiment 1 found that dyads showed smaller interpersonal time lags of counting and greater inter-brain synchrony of alpha-band neural oscillations during the coordination (vs control) task and these effects were reliably observed in female but not male dyads. Moreover, the increased alpha-band inter-brain synchrony predicted better interpersonal behavioral synchrony across all participants. Experiment 2, using a double blind, placebo-controlled between-subjects design, revealed that intranasal OT vs placebo administration in male dyads improved interpersonal behavioral synchrony in both the coordination and control tasks but specifically enhanced alpha-band inter-brain neural oscillations during the coordination task. Our findings provide first evidence that OT enhances inter-brain synchrony in male adults to facilitate social coordination. PMID:27510498
Pappas, Eleftherios P; Alshanqity, Mukhtar; Moutsatsos, Argyris; Lababidi, Hani; Alsafi, Khalid; Georgiou, Konstantinos; Karaiskos, Pantelis; Georgiou, Evangelos
2017-12-01
In view of their superior soft tissue contrast compared to computed tomography, magnetic resonance images are commonly involved in stereotactic radiosurgery/radiotherapy applications for target delineation purposes. It is known, however, that magnetic resonance images are geometrically distorted, thus deteriorating dose delivery accuracy. The present work focuses on the assessment of geometric distortion inherent in magnetic resonance images used in stereotactic radiosurgery/radiotherapy treatment planning and attempts to quantitively evaluate the consequent impact on dose delivery. The geometric distortions for 3 clinical magnetic resonance protocols (at both 1.5 and 3.0 T) used for stereotactic radiosurgery/radiotherapy treatment planning were evaluated using a recently proposed phantom and methodology. Areas of increased distortion were identified at the edges of the imaged volume which was comparable to a brain scan. Although mean absolute distortion did not exceed 0.5 mm on any spatial axis, maximum detected control point disposition reached 2 mm. In an effort to establish what could be considered as acceptable geometric uncertainty, highly conformal plans were utilized to irradiate targets of different diameters (5-50 mm). The targets were mispositioned by 0.5 up to 3 mm, and dose-volume histograms and plan quality indices clinically used for plan evaluation and acceptance were derived and used to investigate the effect of geometrical uncertainty (distortion) on dose delivery accuracy and plan quality. The latter was found to be strongly dependent on target size. For targets less than 20 mm in diameter, a spatial disposition of the order of 1 mm could significantly affect (>5%) plan acceptance/quality indices. For targets with diameter greater than 2 cm, the corresponding disposition was found greater than 1.5 mm. Overall results of this work suggest that efficacy of stereotactic radiosurgery/radiotherapy applications could be compromised in case of very small targets lying distant from the scanner's isocenter (eg, the periphery of the brain).
Hazlett, Heather Cody; Poe, Michele D.; Lightbody, Amy A.; Styner, Martin; MacFall, James R.; Reiss, Allan L.; Piven, Joseph
2012-01-01
Objective To examine patterns of early brain growth in young children with fragile X syndrome (FXS) compared to a comparison group (controls) and a group with idiopathic autism. Method The study included 53 boys between 18–42 months of age with FXS, 68 boys with idiopathic autism (ASD), and a comparison group of 50 typically-developing and developmentally-delayed controls. We examined structural brain volumes using magnetic resonance imaging (MRI) across two timepoints between ages 2–3 and 4–5 years and examined total brain volumes and regional (lobar) tissue volumes. Additionally, we studied a selected group of subcortical structures implicated in the behavioral features of FXS (e.g., basal ganglia, hippocampus, amygdala). Results Children with FXS had greater global brain volumes compared to controls, but were not different than children with idiopathic autism, and the rate of brain growth between ages 2 and 5 paralleled that seen in controls. In contrast to the children with idiopathic autism who had generalized cortical lobe enlargement, the children with FXS showed a specific enlargement in temporal lobe white matter, cerebellar gray matter, and caudate nucleus, but significantly smaller amygdala. Conclusions This structural longitudinal MRI study of preschoolers with FXS observed generalized brain overgrowth in FXS compared to controls, evident at age 2 and maintained across ages 4–5. We also find different patterns of brain growth that distinguishes boys with FXS from children with idiopathic autism. PMID:22917205
Ozgen Saydam, Basak; Has, Arzu Ceylan; Bozdag, Gurkan; Oguz, Kader Karli; Yildiz, Bulent Okan
2017-07-01
To detect differences in global brain volumes and identify relations between brain volume and appetite-related hormones in women with polycystic ovary syndrome (PCOS) compared to body mass index-matched controls. Forty subjects participated in this study. Cranial magnetic resonance imaging and measurements of fasting ghrelin, leptin and glucagon-like peptide 1 (GLP-1), as well as GLP-1 levels during mixed-meal tolerance test (MTT), were performed. Total brain volume and total gray matter volume (GMV) were decreased in obese PCOS compared to obese controls (p < 0.05 for both) whereas lean PCOS and controls did not show a significant difference. Secondary analyses of regional brain volumes showed decreases in GMV of the caudate nucleus, ventral diencephalon and hippocampus in obese PCOS compared to obese controls (p < 0.05 for all), whereas lean patients with PCOS had lower GMV in the amygdala than lean controls (p < 0.05). No significant relations were detected between structural differences and measured hormone levels at baseline or during MTT. This study, investigating structural brain alterations in PCOS, suggests volumetric reductions in global brain areas in obese women with PCOS. Functional studies with larger sample size are needed to determine physiopathological roles of these changes and potential effects of long-term medical management on brain structure of PCOS.
Increased resting-state brain entropy in Alzheimer's disease.
Xue, Shao-Wei; Guo, Yonghu
2018-03-07
Entropy analysis of resting-state functional MRI (R-fMRI) is a novel approach to characterize brain temporal dynamics and facilitates the identification of abnormal brain activity caused by several disease conditions. However, Alzheimer's disease (AD)-related brain entropy mapping based on R-fMRI has not been assessed. Here, we measured the sample entropy and voxel-wise connectivity of the network degree centrality (DC) of the intrinsic brain activity acquired by R-fMRI in 26 patients with AD and 26 healthy controls. Compared with the controls, AD patients showed increased entropy in the middle temporal gyrus and the precentral gyrus and also showed decreased DC in the precuneus. Moreover, the magnitude of the negative correlation between local brain activity (entropy) and network connectivity (DC) was increased in AD patients in comparison with healthy controls. These findings provide new evidence on AD-related brain entropy alterations.
Brain glucose sensing, glucokinase and neural control of metabolism and islet function.
Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L
2014-09-01
It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel--emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. © 2014 John Wiley & Sons Ltd.
Brain glucose sensing, glucokinase and neural control of metabolism and islet function
Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L
2014-01-01
It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel – emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. PMID:25200293
Liu, Hesheng; Stufflebeam, Steven M; Sepulcre, Jorge; Hedden, Trey; Buckner, Randy L
2009-12-01
Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic activity to measure asymmetry in 300 adults, we mapped the most strongly lateralized brain regions. Both men and women showed strong asymmetries with a significant, but small, group difference. Factor analysis on the asymmetric regions revealed 4 separate factors that each accounted for significant variation across subjects. The factors were associated with brain systems involved in vision, internal thought (the default network), attention, and language. An independent sample of right- and left-handed individuals showed that hand dominance affects brain asymmetry but differentially across the 4 factors supporting their independence. These findings show the feasibility of measuring brain asymmetry using intrinsic activity fluctuations and suggest that multiple genetic or environmental mechanisms control cerebral lateralization.