Cosmic Blasts Much More Common, Astronomers Discover
NASA Astrophysics Data System (ADS)
2006-08-01
A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. Illustration of a Magnetar Illustration of a Magnetar The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova explosions is that the blasts that produce gamma rays and X-rays have disks of material rotating rapidly about the central object," Soderberg said. The powerful gamma ray bursts tap the tremendous gravitational energy of their black hole to produce strong beams of energetic radiation, while less-energetic X-ray bursts like the Feburary event tap energy from the strong magnetic field of the magnetar, the scientists speculated. "This discovery means that the 'zoo' of cosmic explosions has just gotten more numerous and more diverse. It also means that our understanding of how the cores of massive stars collapse to produce this variety of explosions is less complete than we had thought," Frail added. Multiwavelength follow-up observations were required by the team to measure the total energy release of the explosion. In particular, Soderberg adds that "Radio observations with the Very Large Array were additionally required to determine the geometry of the ejecta. We find that unlike typical GRBs which produce pencil-beam jets, this object more resembles a spherical explosion." In addition to Soderberg and Frail, the research team includes Shri Kulkarni. Ehud Nakar, Edo Berger, Brian Cameron, Avishay Gal-Yam, Re'em Sari, Mansi Kasiwal, Eran Ofek, Arne Rau, Brad Cenko, Eric Persson and Dae-Sik Moon of Caltech, Derrick Fox and Dave Burrows of Pennsylvania State University, Roger Chevalier of the University of Virginia, Tsvi Piran of the Hebrew University, Paul Price of the University of Hawaii, Brian Schmidt of Mount Stromlo Observatory in Australia, Guy Pooley of the Mullard Radio Astronomy Observatory in the UK, Bryan Penprase of Pomona College, and Neil Gehrels of the NASA Goddard Space Flight Center. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. http://www.nrao.edu/
Cosmic Blasts Much More Common, Astronomers Discover
NASA Astrophysics Data System (ADS)
2006-08-01
A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova explosions is that the blasts that produce gamma rays and X-rays have disks of material rotating rapidly about the central object," Soderberg said. The powerful gamma ray bursts tap the tremendous gravitational energy of their black hole to produce strong beams of energetic radiation, while less-energetic X-ray bursts like the Feburary event tap energy from the strong magnetic field of the magnetar, the scientists speculated. "This discovery means that the 'zoo' of cosmic explosions has just gotten more numerous and more diverse. It also means that our understanding of how the cores of massive stars collapse to produce this variety of explosions is less complete than we had thought," Frail added. Multiwavelength follow-up observations were required by the team to measure the total energy release of the explosion. In particular, Soderberg adds that "Radio observations with the Very Large Array were additionally required to determine the geometry of the ejecta. We find that unlike typical GRBs which produce pencil-beam jets, this object more resembles a spherical explosion." In addition to Soderberg and Frail, the research team includes Shri Kulkarni. Ehud Nakar, Edo Berger, Brian Cameron, Avishay Gal-Yam, Re'em Sari, Mansi Kasiwal, Eran Ofek, Arne Rau, Brad Cenko, Eric Persson and Dae-Sik Moon of Caltech, Derrick Fox and Dave Burrows of Pennsylvania State University, Roger Chevalier of the University of Virginia, Tsvi Piran of the Hebrew University, Paul Price of the University of Hawaii, Brian Schmidt of Mount Stromlo Observatory in Australia, Guy Pooley of the Mullard Radio Astronomy Observatory in the UK, Bryan Penprase of Pomona College, and Neil Gehrels of the NASA Goddard Space Flight Center. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
The Swift satellite lives up to its name, revealing cosmic explosions as they happen.
Starling, Rhaana L C
2008-12-13
Gamma-ray bursts are the most powerful objects in the Universe. Discovered in the 1960s as brief flashes of gamma radiation, we now know that they emit across the entire electromagnetic spectrum, are located in distant galaxies and comprise two distinct populations, one of which may originate in the deaths of massive stars. The launch of the Swift satellite in 2004 brought a flurry of new discoveries, advancing our understanding of these sources and the galaxies that host them. I highlight a number of important results from the Swift era thus far.
Consistency of cosmic-ray source abudances with explosive nucleosynthesis
NASA Technical Reports Server (NTRS)
Kozlovsky, B.; Ramaty, R.
1973-01-01
A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.
Nuclear explosions and distant earthquakes: A search for correlations
Healy, J.H.; Marshall, P.A.
1970-01-01
An apparent correlation between nuclear explosions and earthquakes has been reported for the events between September 1961 and September 1966. When data from the events between September 1966 and December 1968 are examined, this correlation disappears. No relationship between the size of the nuclear explosions and the number of distant earthquakes is apparent in the data.
PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei.
Kalashev, Oleg E; Kusenko, Alexander; Essey, Warren
2013-07-26
The observed very high energy spectra of distant blazars are well described by secondary gamma rays produced in line-of-sight interactions of cosmic rays with background photons. In the absence of the cosmic-ray contribution, one would not expect to observe very hard spectra from distant sources, but the cosmic ray interactions generate very high energy gamma rays relatively close to the observer, and they are not attenuated significantly. The same interactions of cosmic rays are expected to produce a flux of neutrinos with energies peaked around 1 PeV. We show that the diffuse isotropic neutrino background from many distant sources can be consistent with the neutrino events recently detected by the IceCube experiment. We also find that the flux from any individual nearby source is insufficient to account for these events. The narrow spectrum around 1 PeV implies that some active galactic nuclei can accelerate protons to EeV energies.
Blast from the Past Gives Clues About Early Universe
NASA Astrophysics Data System (ADS)
2009-10-01
Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have gained tantalizing insights into the nature of the most distant object ever observed in the Universe -- a gigantic stellar explosion known as a Gamma Ray Burst (GRB). The explosion was detected on April 23 by NASA's Swift satellite, and scientists soon realized that it was more than 13 billion light-years from Earth. It represents an event that occurred 630 million years after the Big Bang, when the Universe was only four percent of its current age of 13.7 billion years. This explosion provides an unprecedented look at an era when the Universe was very young and also was undergoing drastic changes. The primal cosmic darkness was being pierced by the light of the first stars and the first galaxies were beginning to form. The star that exploded in this event was a member of one of these earliest generations of stars," said Dale Frail of the National Radio Astronomy Observatory. Astronomers turned telescopes from around the world to study the blast, dubbed GRB 090423. The VLA first looked for the object the day after the discovery, detected the first radio waves from the blast a week later, then recorded changes in the object until it faded from view more than two months later. "It's important to study these explosions with many kinds of telescopes. Our research team combined data from the VLA with data from X-ray and infrared telescopes to piece together some of the physical conditions of the blast," said Derek Fox of Pennsylvania State University. "The result is a unique look into the very early Universe that we couldn't have gotten any other way," he added. The scientists concluded that the explosion was more energetic than most GRBs, was a nearly-spherical blast, and that it expanded into a tenuous and relatively uniform gaseous medium surrounding the star. Astronomers suspect that the very first stars in the Universe were very different -- brighter, hotter, and more massive -- from those that formed later. They hope to find evidence for these giants by observing objects as distant as GRB 090423 or more distant. "The best way to distinguish these distant, early-generation stars is by studying their explosive deaths, as supernovae or Gamma Ray Bursts," said Poonam Chandra, of the Royal Military College of Canada, and leader of the research team. While the data on GRB 090423 don't indicate that it resulted from the death of such a monster star, new astronomical tools are coming that may reveal them. "The Atacama Large Millimeter/submillimeter Array (ALMA), will allow us to pick out these very-distant GRBs more easily so we can target them for intense followup observations. The Expanded Very Large Array, with much greater sensitivity than the current VLA, will let us follow these blasts much longer and learn much more about their energies and environments. We'll be able to look back even further in time," Frail said. Both ALMA and the EVLA are scheduled for completion in 2012. Chandra, Frail and Fox worked with Shrinivas Kulkarni of Caltech, Edo Berger of Harvard University, S. Bradley Cenko of the University of California at Berkeley, Douglas C.-J. Bock of the Combined Array for Research in Millimeter-wave Astronomy in California, and Fiona Harrison and Mansi Kasliwal of Caltech. The scientists described their research in a paper submitted to the Astrophysical Journal Letters.
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Click on image for audio animation This animation illustrates how a light echo works, and how an optical illusion of material moving outward is created. A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The animation starts by showing the explosion of a star, which results in a flash of light that moves outward in all directions. The direction of our line of sight from Earth is indicated by the blue arrow. When the light flash reaches surrounding dust, shown here as three dark clouds, the dust is heated up, creating infrared light that begins to travel toward Earth (indicated by the red arrows). Dust closest to the explosion lights up first, while the explosion's shock wave takes longer to reach more distant material. This results in light from different parts of the cloud reaching Earth at different times, creating the illusion of motion over time. As the animation shows, the inclination of the cloud toward our line of sight can result in the material seeming to move both away from and toward the central star.Application of NASTRAN/COSMIC in the analysis of ship structures to underwater explosion shock
NASA Technical Reports Server (NTRS)
Fallon, D. J.; Costanzo, F. A.; Handleton, R. T.; Camp, G. C.; Smith, D. C.
1987-01-01
The application of NASTRAN/COSMIC in predicting the transient motion of ship structures to underwater, non-contact explosions is discussed. Examples illustrate the finite element models, mathematical formulations of loading functions and, where available, comparisons between analytical and experimental results.
Our cosmic future : humanity's fate in the universe
NASA Astrophysics Data System (ADS)
Prantzos, Nikos
2000-04-01
What is humankind's ultimate fate and destiny in the Universe? Can human life and intelligence go on forever? This captivating and unparalleled book explores the future of the human race in the Universe, for centuries, millennia, and eons to come. Nikos Prantzos, distinguished astrophysicist and popular science writer, focuses not on what will be done, but on what could be done in light of our current knowledge and the speculations of eminent scientists. While he employs many concepts from physics, Prantzos also provides historical accounts of such ideas as terraforming, asteroid mining, interstellar travel, astroengineering, and eschatology, discussing their philosophical and social implications. Moreover, he uses the work of well known science and science-fiction writers--including Verne, Wells, Clarke, Tsiolkovsky, and Dyson--to illustrate many possibilities and concepts. Our Cosmic Future offers compelling answers to such intriguing questions as: Should we return to the Moon and eventually colonize Mars and other planets in our solar system? Why haven't we encountered an extraterrestrial civilization up to this time in our history? How can we avoid various cosmic threats, such as asteroid collisions and supernova explosions? Could we escape the remote, yet certain, death of the Sun? What will eventually happen to stars, our Galaxy, distant galaxies, and the Universe itself? With its artful blend of historical, scientific accounts and themes from classic works of science fiction, Our Cosmic Future is a spellbinding work that will enchant all readers interested in space travel and colonization, cosmology, and humankind's future prospects in the Cosmos.
A new supernova light curve modeling program
NASA Astrophysics Data System (ADS)
Jäger, Zoltán; Nagy, Andrea P.; Biro, Barna I.; Vinkó, József
2017-12-01
Supernovae are extremely energetic explosions that highlight the violent deaths of various types of stars. Studying such cosmic explosions may be important because of several reasons. Supernovae play a key role in cosmic nucleosynthesis processes, and they are also the anchors of methods of measuring extragalactic distances. Several exotic physical processes take place in the expanding ejecta produced by the explosion. We have developed a fast and simple semi-analytical code to model the the light curve of core collapse supernovae. This allows the determination of their most important basic physical parameters, like the the radius of the progenitor star, the mass of the ejected envelope, the mass of the radioactive nickel synthesized during the explosion, among others.
NASA Technical Reports Server (NTRS)
Camp, George H.; Fallon, Dennis J.
1987-01-01
The Underwater Explosions Research Division (UERD) of the David Taylor Naval Ship Research and Development Center makes extensive use of NASTRAN/COSMIC on a CDC 176 to evaluate the structural response of ship structures subjected to underwater explosion shock loadings in the time domain. As relatively new users, UERD engineers have experienced difficulties with the checkpoint/restart feature because of the vague instructions in the user manual. Working procedures for the application of the checkpoint/restart feature to the transient analysis using NASTRAN/COSMIC are illustrated.
CANDELS: A Cosmic Quest for Distant Galaxies Offering Live Views of Galaxy Evolution
NASA Astrophysics Data System (ADS)
Koo, David C.; CANDELS
2017-06-01
For decades, the study of distant galaxies has been pushing the frontiers of extra-galactic research, with observations from the best suite of telescopes and instruments and with theory from the most advanced computer simulations. This talk will focus on observations taken within the CANDELS fields to reveal the richness and complexity of this still-growing field. CANDELS (Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey) itself is the largest project ever taken by Hubble and is composed of optical and near-infrared images of five tiny regions of sky containing over 200,000 distant galaxies. All these regions, two of which are GOODS North and South, were already outstanding in possessing years of prior surveys taken by many teams worldwide and have continued to attract more and better spectra and panchromatic images from Keck, Hubble, Chandra, Spitzer, and other telescopes ranging from X-ray to radio. Combined together, the rich data within the CANDELS fields offer live views of galaxy evolution from “Cosmic Dawn” when the first infant galaxies and cosmic black holes were born, through “Cosmic Noon” during the peak of galaxy and black hole growth, and then to “Cosmic Afternoon” when star formation and black hole activities, morphologies, motions, and contents settled to those of our Milky Way and its zoo of cousins today. The talk will highlight some interesting discoveries from the last two periods and close with new mysteries challenging our field in the 21st century and future prospects for solving them.
UH cosmic rays and solar system material - The elements just beyond iron
NASA Technical Reports Server (NTRS)
Wefel, J. P.; Schramm, D. N.; Blake, J. B.
1977-01-01
The nucleosynthesis of cosmic-ray elements between the iron peak and the rare-earth region is examined, and compositional changes introduced by propagation in interstellar space are calculated. Theories on the origin of elements heavier than iron are reviewed, a supernova model of explosive nucleosynthesis is adopted for the ultraheavy (UH) cosmic rays, and computational results for different source distributions are compared with experimental data. It is shown that both the cosmic-ray data and the nucleosynthesis calculations are not yet of sufficient precision to pinpoint the processes occurring in cosmic-ray source regions, that the available data do provide boundary conditions for cosmic-ray nucleosynthesis, and that these limits may apply to the origin of elements in the solar system. Specifically, it is concluded that solar-system abundances appear to be consistent with a superposition of the massive-star core-helium-burning s-process plus explosive-carbon-burning synthesis for the elements from Cu to As and are explained adequately by the s- and r-processes for heavier elements.
The origins of cosmic rays and quantum effects on gravity
NASA Technical Reports Server (NTRS)
Tomozawa, Y.
1985-01-01
The energy spectrum of primary cosmic rays is explained by particles emitted during a thermal expansion of explosive objects inside and near the galaxy, remnants of which may be supernova and/or active talaxies, or even stars or galaxies that disappeared from our sight after the explosion. A power law energy spectrum for cosmic rays, E to the (-alpha -1, is obtained from an expansion rate T is proportional to R to the alpha. Using the solution of the Einstein equation, we obtain a spectrum which agrees very well with experimental data. The implication of an inflationary early universe on the cosmic ray spectrum is also discussed. It is also suggested that the conflict between this model and the singularity theorem in classical general relativity may be eliminated by quantum effects.
Outskirts of Distant Galaxies in Absorption
NASA Astrophysics Data System (ADS)
Chen, Hsiao-Wen
QSO absorption spectroscopy provides a sensitive probe of both the neutral medium and diffuse ionized gas in the distant Universe. It extends 21 cm maps of gaseous structures around low-redshift galaxies both to lower gas column densities and to higher redshifts. Combining galaxy surveys with absorption-line observations of gas around galaxies enables comprehensive studies of baryon cycles in galaxy outskirts over cosmic time. This chapter presents a review of the empirical understanding of the cosmic neutral gas reservoir from studies of damped Lyα absorbers (DLAs). It describes the constraints on the star formation relation and chemical enrichment history in the outskirts of distant galaxies from DLA studies. A brief discussion of available constraints on the ionized circumgalactic gas from studies of lower column density Lyα absorbers and associated ionic absorption transitions is presented at the end.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prosekin, Anton; Aharonian, Felix; Essey, Warren
2012-10-01
Blazars are expected to produce both gamma rays and cosmic rays. Therefore, observed high-energy gamma rays from distant blazars may contain a significant contribution from secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. Unlike the standard models of blazars that consider only the primary photons emitted at the source, models that include the cosmic-ray contribution predict that even {approx}10 TeV photons should be detectable from distant objects with redshifts as high as z {>=} 0.1. Secondary photons contribute to signals of point sources only if the intergalactic magnetic fields aremore » very small, B {approx}< 10{sup -14} G, and their detection can be used to set upper bounds on magnetic fields along the line of sight. Secondary gamma rays have distinct spectral and temporal features. We explore the temporal properties of such signals using a semi-analytical formalism and detailed numerical simulations, which account for all the relevant processes, including magnetic deflections. In particular, we elucidate the interplay of time delays coming from the proton deflections and from the electromagnetic cascade, and we find that, at multi-TeV energies, secondary gamma rays can show variability on timescales of years for B {approx} 10{sup -15} G.« less
Cosmic Explosions, Life in the Universe, and the Cosmological Constant.
Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia
2016-02-26
Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.
Cosmic Explosions, Life in the Universe, and the Cosmological Constant
NASA Astrophysics Data System (ADS)
Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J.; Simpson, Fergus; Verde, Licia
2016-02-01
Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N -body simulations to determine at what time and for what value of the cosmological constant (Λ ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.
Selections from 2017: Hubble Survey Explores Distant Galaxies
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.CANDELS Multi-Wavelength Catalogs: Source Identification and Photometry in the CANDELS COSMOSSurvey FieldPublished January2017Main takeaway:A publication led byHooshang Nayyeri(UC Irvine and UC Riverside) early this year details acatalog of sources built using the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey(CANDELS), a survey carried out by cameras on board the Hubble Space Telescope. The catalogliststhe properties of 38,000 distant galaxies visiblewithin the COSMOS field, a two-square-degree equatorial field explored in depthto answer cosmological questions.Why its interesting:Illustration showing the three-dimensional map of the dark matter distribution in theCOSMOS field. [Adapted from NASA/ESA/R. Massey(California Institute of Technology)]The depth and resolution of the CANDELS observations areuseful for addressingseveral major science goals, including the following:Studying the most distant objects in the universe at the epoch of reionization in the cosmic dawn.Understanding galaxy formation and evolution during the peak epoch of star formation in the cosmic high noon.Studying star formation from deep ultravioletobservations and studying cosmology from supernova observations.Why CANDELS is a major endeavor:CANDELS isthe largest multi-cycle treasury program ever approved on the Hubble Space Telescope using over 900 orbits between 2010 and 2013 withtwo cameras on board the spacecraftto study galaxy formation and evolution throughout cosmic time. The CANDELS images are all publicly available, and the new catalogrepresents an enormous source of information about distant objectsin our universe.CitationH. Nayyeri et al 2017 ApJS 228 7. doi:10.3847/1538-4365/228/1/7
Cosmic Ray Transport in the Distant Heliosheath
NASA Technical Reports Server (NTRS)
Florinski, V.; Adams, James H.; Washimi, H.
2011-01-01
The character of energetic particle transport in the distant heliosheath and especially in the vicinity of the heliopause could be quite distinct from the other regions of the heliosphere. The magnetic field structure is dominated by a tightly wrapped oscillating heliospheric current sheet which is transported to higher latitudes by the nonradial heliosheath flows. Both Voyagers have, or are expected to enter a region dominated by the sectored field formed during the preceding solar maximum. As the plasma flow slows down on approach to the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of an energetic ion, such as a galactic cosmic ray. Then, a charged particle can effectively drift across a stack of magnetic sectors with a speed comparable with the particle s velocity. Cosmic rays should also be able to efficiently diffuse across the mean magnetic field if the distance between sector boundaries varies. The region of the heliopause could thus be much more permeable to cosmic rays than was previously thought. This new transport proposed mechanism could explain the very high intensities (approaching the model interstellar values) of galactic cosmic rays measured by Voyager 1 during 2010-2011.
Study of cosmic rays reveals secrets of solar-terrestrial science
NASA Astrophysics Data System (ADS)
Jokipii, J. R.
For many years cosmic rays provided the most important source of energetic particles for studies of subatomic physics. Today, cosmic rays are being studied as a natural phenomenon that can tell us much about both the Earth's environment in space and distant astrophysical processes. Cosmic rays are naturally occurring energetic particles—mainly ions—with kinetic energies extending from just above thermal energies to more than 1020 electron volts (eV). They constantly bombard the Earth from all directions, with more than 1018 particles having energies >1 MeV striking the top of the Earth's atmosphere each second. Figure 1 illustrates the continuous cosmic ray energy spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xiangyu; Liu Ruoyu; Aharonian, Felix
Ultrahigh cosmic rays (UHECRs) with energies {approx}> 10{sup 19} eV emitted at cosmological distances will be attenuated by cosmic microwave and infrared background radiation through photohadronic processes. Lower energy extragalactic cosmic rays ({approx}10{sup 18}-10{sup 19} eV) can only travel a linear distance smaller than {approx}Gpc in a Hubble time due to the diffusion if the extragalactic magnetic fields are as strong as nano-Gauss. These prevent us from directly observing most of the UHECRs in the universe, and thus the observed UHECR intensity reflects only the emissivity in the nearby universe within hundreds of Mpc. However, UHECRs in the distant universe,more » through interactions with the cosmic background photons, produce UHE electrons and gamma rays that in turn initiate electromagnetic cascades on cosmic background photons. This secondary cascade radiation forms part of the extragalactic diffuse GeV-TeV gamma-ray radiation and, unlike the original UHECRs, is observable. Motivated by new measurements of extragalactic diffuse gamma-ray background radiation by Fermi/Large Area Telescope, we obtained upper limit placed on the UHECR emissivity in the distant universe by requiring that the cascade radiation they produce not exceed the observed levels. By comparison with the gamma-ray emissivity of candidate UHECR sources (such as gamma-ray bursts (GRBs) and active galactic nuclei) at high redshifts, we find that the obtained upper limit for a flat proton spectrum is {approx_equal} 10{sup 1.5} times larger than the gamma-ray emissivity in GRBs and {approx_equal} 10 times smaller than the gamma-ray emissivity in BL Lac objects. In the case of iron nuclei composition, the derived upper limit of UHECR emissivity is a factor of 3-5 times higher. Robust upper limit on the cosmogenic neutrino flux is further obtained, which is marginally reachable by the Icecube detector and the next-generation detector JEM-EUSO.« less
First spectroscopy of a short-hard GRB: the environment of a compact object merger
NASA Astrophysics Data System (ADS)
de Ugarte Postigo, Antonio; Thöne, Christina C.; Rowllinson, Antonia; Benito, Rubén García; Levan, Andrew J.; Gorosabel, Javier; Goldoni, Paolo; Schulze, Steve
2015-03-01
Short gamma-ray bursts (GRBs) are an extremely elusive family of cosmic explosions. They are thought to be related to the violent merger of compact objects (such as a neutron stars or black holes). Their optical counterparts were not discovered until 2005, and since then, there had been no successful spectroscopic observations. Here we present the first spectra of a short GRB, which we use to study the environment and derive implications on the progenitors of these cosmic explosions. This poster is based on the work by de Ugarte Postigo et al. (2014).
Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr
NASA Astrophysics Data System (ADS)
Chiang, Yi-Kuan; Overzier, Roderik A.; Gebhardt, Karl; Henriques, Bruno
2017-08-01
Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological context using a set of N-body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z = 0 to z = 7. We show that (proto)cluster galaxies are an important and even dominant population at high redshift, as their expected contribution to the cosmic star formation rate density rises (from 1% at z = 0) to 20% at z = 2 and 50% at z = 10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z ˜ 10-5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the universe; at z ˜ 5-1.5, rapid star formation occurred within the entire 10-20 Mpc structures, forming most of their present-day stellar mass; at z ≲ 1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during cosmic noon, and their connection to reionization during cosmic dawn.
Relationship between the Neoproterozoic snowball Earth and Cambrian explosion
NASA Astrophysics Data System (ADS)
Maruyama, S.; Yoshihara, A.; Isozaki, Y.
2007-12-01
Origin of snowball Earth has been debated in terms of greenhouse gas (e.g., Hoffman and Schrag), obliqueness of Earth's rotation axis (Williams, 1975), true polar wander (Evans, 2003), Galactic cosmic ray radiation (Shaviv and Veizer, 2003; Svensmark, 2006), or weakened geomagnetism (Maruyama and Yoshihara, 2003). A major difficulty for the greenhouse gas hypothesis is the on-off switch causing decrease and increase of appropriate amounts of CO2 by plume- and plate tectonics, and also in available amount of CO2 in atmosphere to be consistent with the observations. In contrast, the cosmic ray radiation models due to the star burst peaked at 2.5- 2.1 Ga and 1.4-0.8 Ga can explain on-off switch more easily than the greenhouse gas model. Cosmic ray radiations, however, must be modified by the geomagnetic intensity, fluctuating 150"% to < 10"% of the present-day level through geologic time. Our compilation suggests the idea of extensive glaciation appeared when the intensity decreased below 50% of the present-day value, as typically seen in the Neoproterozoic time. This proposes the idea of extensive cloudiness by increased cosmic rays in the Neoproterozoic to cause the snowball Earth. Time difference between the Neoproterozoic snowball Earth and Cambrian explosion is as large as 250 millions years, and this refuses their direct close-relationship. Role of frequent mass extinctions, i.e., 8 times during 100 m.y. from 585 Ma to 488 Ma, during the Ediacaran and Cambrian, has been proposed (Zhu et al., 2007). This frequency is one order of magnitude higher compared to that in the post-Ordovician time. Yet, the Cambrian explosion cannot be explained by mass extinction which replaced the vacant niches shortly after the mass extinction and never created a new animal with a new body plan. A new model proposed herein is derived from weakened geomagnetism and resultant extensive cosmic radiation to alter gene and genome for a long period over advancement of low magnetic intensity and cosmic radiations (Svensmark, 2006) from 1.2-0.8Ga. As to the new body plans of animals, it took an appreciably long time to prepare all 34 genometypes before the apparent Cambrian explosion. Geochemically extreme conditions and widened shallow marine environment on continental shelf by the return-flow of sweater into mantle in the Late Neoptroterozoic were the associated critical conditions to alter genomes during 1.2-0.52 Ga appreciably before the final consequence called the Cambrian explosion.
Afterglows from the largest explosions in the universe
Hartmann, Dieter H.
1999-01-01
The distinction of “largest explosions in the universe” has been bestowed on cosmic gamma-ray bursts. Their afterglows are brighter than supernovae and therefore are called hypernovae. Photometry and spectroscopy of these afterglows have provided major breakthroughs in our understanding of this mysterious phenomenon. PMID:10220364
LADUMA: Looking At the Distant Universe with the MeerKAT Array
NASA Astrophysics Data System (ADS)
Baker, Andrew J.; Blyth, Sarah; Holwerda, Benne W.; LADUMA team
2018-01-01
The cosmic evolution of galaxies' neutral atomic gas content is a major science driver for the Square Kilometre Array (SKA), as well as for its Australian (ASKAP) and South African (MeerKAT) precursors. Among the HI surveys planned for ASKAP and MeerKAT, the deepest and narrowest tier of the "wedding cake" will be defined by the approved 3424-hour Looking At the Distant Universe with the MeerKAT Array (LADUMA) survey, which will probe HI in emission within a single "cosmic vuvuzela" that extends to z = 1.4, when the universe was only a third of its present age. Through a combination of individual and stacked detections (the latter relying on extensive multiwavelength studies of the survey's target field), LADUMA will study the redshift evolution of the baryonic Tully-Fisher relation and the cosmic HI density, the variation of the HI mass function with redshift and environment, and the connection between HI content and the properties of galaxies' stars (mass, age, etc.). The survey will also build a sample of OH megamaser detections that can be used to trace the cosmic merger history. This talk will introduce the science potential of LADUMA and plans for its execution starting in 2018.
Finneran, J J; Schlundt, C E; Carder, D A; Clark, J A; Young, J A; Gaspin, J B; Ridgway, S H
2000-07-01
A behavioral response paradigm was used to measure masked underwater hearing thresholds in two bottlenose dolphins and one beluga whale before and after exposure to impulsive underwater sounds with waveforms resembling distant signatures of underwater explosions. An array of piezoelectric transducers was used to generate impulsive sounds with waveforms approximating those predicted from 5 or 500 kg HBX-1 charges at ranges from 1.5 to 55.6 km. At the conclusion of the study, no temporary shifts in masked-hearing thresholds (MTTSs), defined as a 6-dB or larger increase in threshold over pre-exposure levels, had been observed at the highest impulse level generated (500 kg at 1.7 km, peak pressure 70 kPa); however, disruptions of the animals' trained behaviors began to occur at exposures corresponding to 5 kg at 9.3 km and 5 kg at 1.5 km for the dolphins and 500 kg at 1.9 km for the beluga whale. These data are the first direct information regarding the effects of distant underwater explosion signatures on the hearing abilities of odontocetes.
Gamma-ray astronomy and the origin of cosmic rays
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
New surveys of galactic gamma ray emission together with millimeter wave radio surveys indicated that cosmic rays were produced as the result of supernova explosions in our galaxy with the most intense production occurring in a Great Galactic Ring about 35,000 light years in diameter where supernova remnants and pulsars were concentrated.
Cosmic Background Explorer (COBE) press kit
NASA Technical Reports Server (NTRS)
1989-01-01
COBE, the Cosmic Background Explorer spacecraft, and its mission are described. COBE was designed to study the origin and dynamics of the universe including the theory that the universe began with a cataclysmic explosion referred to as the Big Bang. To this end, earth's cosmic background - the infrared radiation that bombards earth from every direction - will be measured by three sophisticated instruments: the Differential Microwave Radiometer (DMR), the Far Infrared Absolute Spectrophotometer (FIRAS), and the Diffuse Infrared Background Experiment (DIRBE).
Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yi-Kuan; Overzier, Roderik A.; Gebhardt, Karl
Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological context using a set of N -body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z = 0 to z = 7. We show that (proto)cluster galaxies are an important and even dominant population at high redshift, as their expected contribution to the cosmic star formation rate density rises (from 1% at zmore » = 0) to 20% at z = 2 and 50% at z = 10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z ∼ 10–5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the universe; at z ∼ 5–1.5, rapid star formation occurred within the entire 10–20 Mpc structures, forming most of their present-day stellar mass; at z ≲ 1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during cosmic noon, and their connection to reionization during cosmic dawn.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krakau, S.; Schlickeiser, R., E-mail: steffen.krakau@rub.de, E-mail: rsch@tp4.rub.de
2016-02-20
The linear instability of an ultrarelativistic hadron beam in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of parallel electrostatic and electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays from their distant sources to Earth. As opposed to the previous paper, we calculate the minimum instability growth time for Lorentz-distributed cosmic rays which traverse the hot IGM. The growth times are orders of magnitude higher than the cosmic-ray propagation time in the IGM. Since the backreaction of the generated plasma fluctuations (plateauing) lasts longer than the propagation time, the cosmic-raymore » hadron beam can propagate to the Earth without losing a significant amount of energy to electrostatic turbulence.« less
A Treatise on the Measurement of Radioactive Argon in the Atmosphere.
1984-03-01
and 39Ar are produced continuously by cosmic - *" ray interactions with the atmosphere. The half-lives of these isotopes (35.02 days and 269 years...spectively) are long enough so that the specific activity pro- duced by cosmic - rays is at a steady-state level in the atmos- phere. These levels have been...In addition to the natural cosmic - ray production, 3 7Ar and 39Ar can also be produced artificially in nuclear reactors and nuclear explosions
Wittman; Tyson; Kirkman; Dell'Antonio; Bernstein
2000-05-11
Most of the matter in the Universe is not luminous, and can be observed only through its gravitational influence on the appearance of luminous matter. Weak gravitational lensing is a technique that uses the distortions of the images of distant galaxies as a tracer of dark matter: such distortions are induced as the light passes through large-scale distributions of dark matter in the foreground. The patterns of the induced distortions reflect the density of mass along the line of sight and its distribution, and the resulting 'cosmic shear' can be used to distinguish between alternative cosmologies. But previous attempts to measure this effect have been inconclusive. Here we report the detection of cosmic shear on angular scales of up to half a degree using 145,000 galaxies and along three separate lines of sight. We find that the dark matter is distributed in a manner consistent with either an open universe, or a flat universe that is dominated by a cosmological constant. Our results are inconsistent with the standard cold-dark-matter model.
NASA Astrophysics Data System (ADS)
Di Stefano, Rosanne
2018-04-01
Gravitational lensing is becoming increasingly important to the study of distant galaxies and dark matter. Two groups have recently detected transient events emanating from far-away lensed galaxies, apparently due to extreme magnification of individual stars.
Explosive desorption of icy grain mantles in dense clouds
NASA Technical Reports Server (NTRS)
Schutte, W. A.; Greenberg, J. M.
1991-01-01
The cycling of the condensible material in dense clouds between the gas phase and the icy grain mantles is investigated. In the model studied, desorption of the ice occurs due to grain mantle explosions when photochemically stored energy is released after transient heating by a cosmic ray particle. It is shown that, depending on the grain size distribution in dense clouds, explosive desorption can maintain up to about eight percent of the carbon in the form of CO in the gas phase at typical cloud densities.
Cosmic strings in the real sky
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1987-01-01
Observational strategies for finding effects associated with the gravitational lensing of distant objects by strings are discussed. In particular, a proposed search program at Steward Observatory to find chains of Galaxy image pairs is described.
Long-term prospects: Mitigation of supernova and gamma-ray burst threat to intelligent beings
NASA Astrophysics Data System (ADS)
Ćirković, Milan M.; Vukotić, Branislav
2016-12-01
We consider global catastrophic risks due to cosmic explosions (supernovae, magnetars and gamma-ray bursts) and possible mitigation strategies by humans and other hypothetical intelligent beings. While by their very nature these events are so huge to daunt conventional thinking on mitigation and response, we wish to argue that advanced technological civilizations would be able to develop efficient responses in the domain of astroengineering within their home planetary systems. In particular, we suggest that construction of shielding swarms of small objects/particles confined by electromagnetic fields could be one way of mitigating the risk of cosmic explosions and corresponding ionizing radiation surges. Such feats of astroengineering could, in principle, be detectable from afar by advanced Dysonian SETI searches.
ASTROPHYSICS: Astronomers Spot Their First Carbon Bomb.
Irion, R
2000-11-17
Carbon on the surface of an ultradense star detonated in a 3-hour thermonuclear explosion, according to a report at a meeting here last week of the American Astronomical Society's High Energy Astrophysics Division. If confirmed, the burst would be the first known cosmic explosion fueled solely by carbon rather than hydrogen or helium and could verify or revise models of carbon combustion.
Cosmic Ray Effects on Microelectronics. Part 3. Propagation of Cosmic Rays in the Atmosphere
1984-08-09
report although they are a potential source of upsets (Peterson, 1981). Leptons and mesons created in the collisions are also not considered. Distant...procedures discussed in Silberberg and Tsao (1977b). The scale factor is roughly 2 with additional enhancement for light products. The total cross...1983a) has been used. Significant unknowns in the cross section data base are cross sections for production of light products (A < 6). These cross
The cosmic MeV neutrino background as a laboratory for black hole formation
NASA Astrophysics Data System (ADS)
Yüksel, Hasan; Kistler, Matthew D.
2015-12-01
Calculations of the cosmic rate of core collapses, and the associated neutrino flux, commonly assume that a fixed fraction of massive stars collapse to black holes. We argue that recent results suggest that this fraction instead increases with redshift. With relatively more stars vanishing as ;unnovae; in the distant universe, the detectability of the cosmic MeV neutrino background is improved due to their hotter neutrino spectrum, and expectations for supernova surveys are reduced. We conclude that neutrino detectors, after the flux from normal SNe is isolated via either improved modeling or the next Galactic SN, can probe the conditions and history of black hole formation.
NASA Astrophysics Data System (ADS)
Heymans, Catherine
2014-07-01
Light from distant galaxies is distorted on its journey to us via a vast network of dark matter. By observing this phenomenon, known as gravitational lensing, physicists are able to map the structure of this dark cosmic web, as Catherine Heymans explains.
Cosmic Rays Variation Before Changes in Sun-Earth Environment
NASA Astrophysics Data System (ADS)
Mukherjee, S.
2011-12-01
Influence of cosmic rays variations on the Sun-Earth Environment has been observed before the changes in the atmospheric temperature, outbreak of influenza, cyclone, earthquake and tsunami. It has been recorded by Sun Observatory Heleospheric Observatory (SOHO) satellite data. Before the earthquake and tsunami the planetary indices (Kp) and Electron flux (E-flux) shows sudden changes followed by the atmospheric perturbations including very high temperature rise to sudden fall resulting snowfall in high altitude and rainfall in tropical areas. The active fault zones shows sudden faulting after the sudden drop in cosmic ray intensity and rise in Kp and E-flux. Besides the geo-environment the extraterrestrial influence on outbreak of H1N1 influenza has also been recorded based on the Mexico Cosmic ray data and its correlation with SOHO records. Distant stars have the potential to influence the heliophysical parameters by showering cosmic rays.
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1971-01-01
The recent history of theoretical investigations of the supernova mechanism is considered, giving attention also to a number of nuclear physical problems which have yet to be solved in connection with the thermonuclear detonation. A variety of different processes of nucleo-synthesis are expected to occur in association with the supernova explosions. Aspects of the chemical evolution of the galaxy are discussed including the cosmic ray production of lithium, beryllium, and boron in the interstellar medium. Various hypotheses to account for the very large amount of light that comes from a supernova explosion are also examined.
Nuclear Explosion Monitoring Research and Development Roadmaps
2010-09-01
environment, a radionuclide event is the release of radioactive atoms. Radionuclide sources include nuclear explosions, normal or anomalous reactor ...isotopes (e.g., potassium, uranium, and thorium and their decay products) and isotopes produced from the interactions of cosmic rays with the...and reactor emissions. For example, the IMS detected a pair of xenon isotopes at a Japanese station shortly after the 2009 DPRK event. The ratio of
Astronomers Use Moon in Effort to Corral Elusive Cosmic Particles
NASA Astrophysics Data System (ADS)
2010-11-01
Seeking to detect mysterious, ultra-high-energy neutrinos from distant regions of space, a team of astronomers used the Moon as part of an innovative telescope system for the search. Their work gave new insight on the possible origin of the elusive subatomic particles and points the way to opening a new view of the Universe in the future. The team used special-purpose electronic equipment brought to the National Science Foundation's Very Large Array (VLA) radio telescope, and took advantage of new, more-sensitive radio receivers installed as part of the Expanded VLA (EVLA) project. Prior to their observations, they tested their system by flying a small, specialized transmitter over the VLA in a helium balloon. In 200 hours of observations, Ted Jaeger of the University of Iowa and the Naval Research Laboratory, and Robert Mutel and Kenneth Gayley of the University of Iowa did not detect any of the ultra-high-energy neutrinos they sought. This lack of detection placed a new limit on the amount of such particles arriving from space, and cast doubt on some theoretical models for how those neutrinos are produced. Neutrinos are fast-moving subatomic particles with no electrical charge that readily pass unimpeded through ordinary matter. Though plentiful in the Universe, they are notoriously difficult to detect. Experiments to detect neutrinos from the Sun and supernova explosions have used large volumes of material such as water or chlorine to capture the rare interactions of the particles with ordinary matter. The ultra-high-energy neutrinos the astronomers sought are postulated to be produced by the energetic, black-hole-powered cores of distant galaxies; massive stellar explosions; annihilation of dark matter; cosmic-ray particles interacting with photons of the Cosmic Microwave Background; tears in the fabric of space-time; and collisions of the ultra-high-energy neutrinos with lower-energy neutrinos left over from the Big Bang. Radio telescopes can't detect neutrinos, but the scientists pointed sets of VLA antennas around the edge of the Moon in hopes of seeing brief bursts of radio waves emitted when the neutrinos they sought passed through the Moon and interacted with lunar material. Such interactions, they calculated, should send the radio bursts toward Earth. This technique was first used in 1995 and has been used several times since then, with no detections recorded. The latest VLA observations have been the most sensitive yet done. "Our observations have set a new upper limit -- the lowest yet -- for the amount of the type of neutrinos we sought," Mutel said. "This limit eliminates some models that proposed bursts of these neutrinos coming from the halo of the Milky Way Galaxy," he added. To test other models, the scientists said, will require observations with more sensitivity. "Some of the techniques we developed for these observations can be adapted to the next generation of radio telescopes and assist in more-sensitive searches later," Mutel said. "When we develop the ability to detect these particles, we will open a new window for observing the Universe and advancing our understanding of basic astrophysics," he said. The scientists reported their work in the December edition of the journal Astroparticle Physics.
Milky Way's Super-efficient Particle Accelerators Caught in The Act
NASA Astrophysics Data System (ADS)
2009-06-01
Thanks to a unique "ballistic study" that combines data from ESO's Very Large Telescope and NASA's Chandra X-ray Observatory, astronomers have now solved a long-standing mystery of the Milky Way's particle accelerators. They show in a paper published today on Science Express that cosmic rays from our galaxy are very efficiently accelerated in the remnants of exploded stars. During the Apollo flights astronauts reported seeing odd flashes of light, visible even with their eyes closed. We have since learnt that the cause was cosmic rays - extremely energetic particles from outside the Solar System arriving at the Earth, and constantly bombarding its atmosphere. Once they reach Earth, they still have sufficient energy to cause glitches in electronic components. Galactic cosmic rays come from sources inside our home galaxy, the Milky Way, and consist mostly of protons moving at close to the speed of light, the "ultimate speed limit" in the Universe. These protons have been accelerated to energies exceeding by far the energies that even CERN's Large Hadron Collider will be able to achieve. "It has long been thought that the super-accelerators that produce these cosmic rays in the Milky Way are the expanding envelopes created by exploded stars, but our observations reveal the smoking gun that proves it", says Eveline Helder from the Astronomical Institute Utrecht of Utrecht University in the Netherlands, the first author of the new study. "You could even say that we have now confirmed the calibre of the gun used to accelerate cosmic rays to their tremendous energies", adds collaborator Jacco Vink, also from the Astronomical Institute Utrecht. For the first time Helder, Vink and colleagues have come up with a measurement that solves the long-standing astronomical quandary of whether or not stellar explosions produce enough accelerated particles to explain the number of cosmic rays that hit the Earth's atmosphere. The team's study indicates that they indeed do and it directly tells us how much energy is removed from the shocked gas in the stellar explosion and used to accelerate particles. "When a star explodes in what we call a supernova a large part of the explosion energy is used for accelerating some particles up to extremely high energies", says Helder. "The energy that is used for particle acceleration is at the expense of heating the gas, which is therefore much colder than theory predicts". People Who Read This Also Read... NASA Announces 2009 Astronomy and Astrophysics Fellows Cosmic Heavyweights in Free-for-all Galaxies Coming of Age in Cosmic Blobs Oldest Known Objects Are Surprisingly Immature The researchers looked at the remnant of a star that exploded in AD 185, as recorded by Chinese astronomers. The remnant, called RCW 86, is located about 8200 light-years away towards the constellation of Circinus (the Drawing Compass). It is probably the oldest record of the explosion of a star. Using ESO's Very Large Telescope, the team measured the temperature of the gas right behind the shock wave created by the stellar explosion. They measured the speed of the shock wave as well, using images taken with NASA's X-ray Observatory Chandra three years apart. They found it to be moving at between 10 and 30 million km/h, between 1 and 3 percent the speed of light. The temperature of the gas turned out to be 30 million degrees Celsius. This is quite hot compared to everyday standards, but much lower than expected, given the measured shock wave's velocity. This should have heated the gas up to at least half a billion degrees. "The missing energy is what drives the cosmic rays", concludes Vink.
Cosmic gamma-ray bursts from primordial stars: A new renaissance in astrophysics?
NASA Astrophysics Data System (ADS)
Chardonnet, Pascal; Filina, Anastasia; Chechetkin, Valery; Popov, Mikhail; Baranov, Andrey
2015-10-01
The cosmic gamma-ray bursts are certainly an enigma in astrophysics. The “standard fireball” scenario developed during many years has provided a possible explanation of this phenomena. The aim of this work is simply to explore a new possible interpretation by developing a coherent scenario inside the global picture of stellar evolution. At the basis of our scenario, is the fact that maybe we have not fully understood how the core of a pair instability supernova explodes. In such way, we have proposed a new paradigm assuming that the core of such massive star, instead of doing a symmetrical explosion, is completely fragmented in hot spots of burning nuclear matter. We have tested our scenario with observational data like GRB spectra, lightcurves, Amati relation and GRB-SN connection, and for each set of data we have proposed a possible physical interpretation. We have also suggested some possible test of this scenario by measurement at high redshifts. If this scenario is correct, it tells us simply that the cosmic gamma-ray bursts are a missing link in stellar evolution, related to an unusual explosion.
Acceleration of cosmic rays in supernova-remnants
NASA Technical Reports Server (NTRS)
Dorfi, E. A.; Drury, L. O.
1985-01-01
It is commonly accepted that supernova-explosions are the dominant source of cosmic rays up to an energy of 10 to the 14th power eV/nucleon. Moreover, these high energy particles provide a major contribution to the energy density of the interstellar medium (ISM) and should therefore be included in calculations of interstellar dynamic phenomena. For the following the first order Fermi mechanism in shock waves are considered to be the main acceleration mechanism. The influence of this process is twofold; first, if the process is efficient (and in fact this is the cas) it will modify the dynamics and evolution of a supernova-remnant (SNR), and secondly, the existence of a significant high energy component changes the overall picture of the ISM. The complexity of the underlying physics prevented detailed investigations of the full non-linear selfconsistent problem. For example, in the context of the energy balance of the ISM it has not been investigated how much energy of a SN-explosion can be transfered to cosmic rays in a time-dependent selfconsistent model. Nevertheless, a lot of progress was made on many aspects of the acceleration mechanism.
NASA Astrophysics Data System (ADS)
Silk, Joseph
Our universe was born billions of years ago in a hot, violent explosion of elementary particles and radiation - the big bang. What do we know about this ultimate moment of creation, and how do we know it? Drawing upon the latest theories and technology, this new edition of The big bang, is a sweeping, lucid account of the event that set the universe in motion. Joseph Silk begins his story with the first microseconds of the big bang, on through the evolution of stars, galaxies, clusters of galaxies, quasars, and into the distant future of our universe. He also explores the fascinating evidence for the big bang model and recounts the history of cosmological speculation. Revised and updated, this new edition features all the most recent astronomical advances, including: Photos and measurements from the Hubble Space Telescope, Cosmic Background Explorer Satellite (COBE), and Infrared Space Observatory; the latest estimates of the age of the universe; new ideas in string and superstring theory; recent experiments on neutrino detection; new theories about the presence of dark matter in galaxies; new developments in the theory of the formation and evolution of galaxies; the latest ideas about black holes, worm holes, quantum foam, and multiple universes.
Finding the first cosmic explosions. IV. 90–140 $$\\;{{M}_{\\odot }}$$ pair-stability supernovae
Smidt, Joseph; Whalen, Daniel J.; Chatzopoulos, E.; ...
2015-05-19
Population III stars that die as pair-instability supernovae are usually thought to fall in the mass range of 140 - 260 M ⊙. However, several lines of work have now shown that rotation can build up the He cores needed to encounter the pair instability at stellar masses as low as 90 M ⊙. Depending on the slope of the initial mass function of Population III stars, there could be 4 - 5 times as many stars from 90 - 140 M ⊙ in the primordial universe than in the usually accepted range. We present numerical simulations of the pair-instabilitymore » explosions of such stars performed with the MESA, FLASH and RAGE codes. We find that they will be visible to supernova factories such as Pan-STARRS and LSST in the optical out to z ~ 1-2 and JWST and the 30 m-class telescopes in the NIR out to z ~ 7-10. Such explosions will thus probe the stellar populations of the first galaxies and cosmic star formation rates in the era of cosmological reionization. These supernovae are also easily distinguished from more massive pair-instability explosions, underscoring the fact that there is far greater variety to the light curves of these events than previously understood.« less
Controlled by Distant Explosions
NASA Astrophysics Data System (ADS)
2007-03-01
VLT Automatically Takes Detailed Spectra of Gamma-Ray Burst Afterglows Only Minutes After Discovery A time-series of high-resolution spectra in the optical and ultraviolet has twice been obtained just a few minutes after the detection of a gamma-ray bust explosion in a distant galaxy. The international team of astronomers responsible for these observations derived new conclusive evidence about the nature of the surroundings of these powerful explosions linked to the death of massive stars. At 11:08 pm on 17 April 2006, an alarm rang in the Control Room of ESO's Very Large Telescope on Paranal, Chile. Fortunately, it did not announce any catastrophe on the mountain, nor with one of the world's largest telescopes. Instead, it signalled the doom of a massive star, 9.3 billion light-years away, whose final scream of agony - a powerful burst of gamma rays - had been recorded by the Swift satellite only two minutes earlier. The alarm was triggered by the activation of the VLT Rapid Response Mode, a novel system that allows for robotic observations without any human intervention, except for the alignment of the spectrograph slit. ESO PR Photo 17a/07 ESO PR Photo 17a/07 Triggered by an Explosion Starting less than 10 minutes after the Swift detection, a series of spectra of increasing integration times (3, 5, 10, 20, 40 and 80 minutes) were taken with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted on Kueyen, the second Unit Telescope of the VLT. "With the Rapid Response Mode, the VLT is directly controlled by a distant explosion," said ESO astronomer Paul Vreeswijk, who requested the observations and is lead-author of the paper reporting the results. "All I really had to do, once I was informed of the gamma-ray burst detection, was to phone the staff astronomers at the Paranal Observatory, Stefano Bagnulo and Stan Stefl, to check that everything was fine." The first spectrum of this time series was the quickest ever taken of a gamma-ray burst afterglow, let alone with an instrument such as UVES, which is capable of splitting the afterglow light with uttermost precision. What is more, this amazing record was broken less than two months later by the same team. On 7 June 2006, the Rapid-Response Mode triggered UVES observations of the afterglow of an even more distant gamma-ray source a mere 7.5 minutes after its detection by the Swift satellite. Gamma-ray bursts are the most intense explosions in the Universe. They are also very brief. They randomly occur in galaxies in the distant Universe and, after the energetic gamma-ray emission has ceased, they radiate an afterglow flux at longer wavelengths (i.e. lower energies). They are classified as long and short bursts according to their duration and burst energetics, but hybrid bursts have also been discovered (see ESO PR 49/06). The scientific community agrees that gamma-ray bursts are associated with the formation of black holes, but the exact nature of the bursts remains enigmatic. ESO PR Photo 17b/07 ESO PR Photo 17b/07 Kueyen at Night Because a gamma-ray burst typically occurs at very large distances, its optical afterglow is faint. In addition, it fades very rapidly: in only a few hours the optical afterglow brightness can fade by as much as a factor of 500. This makes detailed spectral analysis possible only for a few hours after the gamma-ray detection, even with large telescopes. During the first minutes and hours after the explosion, there is also the important opportunity to observe time-dependent phenomena related to the influence of the explosion on its surroundings. The technical challenge therefore consists of obtaining high-resolution spectroscopy with 8-10 m class telescopes as quickly as possible. "The afterglow spectra provide a wealth of information about the composition of the interstellar medium of the galaxy in which the star exploded. Some of us even hoped to characterize the gas in the vicinity of the explosion," said team member Cédric Ledoux (ESO). ESO PR Photo 17c/07 ESO PR Photo 17c/07 The Kueyen Control Room The Rapid Response Mode UVES observations of 17 April 2006 allowed the astronomers to discover variable spectral features associated with a huge gas cloud in the host galaxy of the gamma-ray burst. The cloud was found to be neutral but excited by the radiation from the UV afterglow light. From detailed modelling of these observations, the astronomers were able - for the first time - to not only pinpoint the physical mechanism responsible for the excitation of the atoms, but also determine the distance of the cloud to the GRB. This distance was found to be 5,500 light-years, which is much further out than was previously thought. Either this is a special case, or the common picture that the features seen in optical spectra originate very close to the explosion has to be revised. As a comparison, this distance of 5,500 light-years is more than one fifth of that between the Sun and the centre of our Galaxy. "All the material in this region of space must have been ionised, that is, the atoms have been stripped of most if not all of their electrons," said co-author Alain Smette (ESO). "Were there any life in this region of the Universe, it would most probably have been eradicated." "With the Rapid-Response Mode of the VLT, we are really looking at gamma-ray bursts as quickly as possible," said team member Andreas Jaunsen from the University of Oslo (Norway). "This is crucial if we are to unravel the mysteries of these gigantic explosions and their links with black holes!" More Information The two gamma-ray bursts were discovered with the NASA/ASI/PPARC Swift satellite, which is dedicated to the discovery of these powerful cosmic explosions. Preliminary reports on these observations have been presented in GCN GRB Observation Reports 4974 and 5237. A paper is also in press in the journal Astronomy & Astrophysics ("Rapid-Response Mode VLT/UVES spectroscopy of GRB 060418 - Conclusive evidence for UV pumping from the time evolution of Fe II and Ni II excited- and metastable-level populations" by P. M. Vreeswijk et al.). DOI: 10.1051/0004-6361:20066780 The team is composed of Paul Vreeswijk, Cédric Ledoux, Alain Smette, Andreas Kaufer and Palle Møller (ESO), Sara Ellison (University of Victoria, Canada), Andreas Jaunsen (University of Oslo, Norway), Morten Andersen (AIP, Potsdam, Germany), Andrew Fruchter (STScI, Baltimore, USA), Johan Fynbo and Jens Hjorth (Dark Cosmology Centre, Copenhagen, Denmark), Patrick Petitjean (IAP, Paris, France), Sandra Savaglio (MPE, Garching, Germany), and Ralph Wijers (Astronomical Institute, University of Amsterdam, The Netherlands). Paul Vreeswijk was at the time of this study also associated with the Universidad de Chile, Santiago.
The Progenitor Systems and Explosion Mechanisms of Supernovae
NASA Astrophysics Data System (ADS)
Milisavljevic, D.
2013-10-01
Supernovae are among the most powerful explosions in the universe. They affect the energy balance, global structure, and chemical make-up of galaxies, they produce neutron stars, black holes, and some gamma-ray bursts, and they have been used as cosmological yardsticks to detect the accelerating expansion of the universe. Fundamental properties of these cosmic engines, however, remain uncertain. In this review we discuss the progress made over the last two decades in understanding supernova progenitor systems and explosion mechanisms. We also comment on anticipated future directions of research and highlight alternative methods of investigation using young supernova remnants.
Shock waves raised by explosions in space as sources of ultra-high-energy cosmic rays
NASA Astrophysics Data System (ADS)
Kichigin, Gennadiy
2015-03-01
The paper discusses the possibility of particle acceleration up to ultrahigh energies in the relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in these waves can be made are studied thoroughly. Ultra-high-energy CRs (up to 10^20 eV) are shown to be obtained due to the surfing in the relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).
Finding the First Cosmic Explosions: Hypernovae and Pair-Instability Supernovae
NASA Astrophysics Data System (ADS)
Wiggins, Brandon; Whalen, D. J.; Migenes, V.; Astrophysics Research Group at Los Alamos National Laboratory
2014-01-01
The cosmic Dark Ages ended with the formation of the first stars at z ~ 20, or ~ 200 Myr after the Big Bang. Because they literally lie at the edge of the observable universe Pop III stars will be beyond the reach of even next generation observatories like JWST and the Thirty-Meter Telescope. But primordial supernovae could soon directly probe the properties of the first stars because they can be observed at high redshifts and their masses can be inferred from their light curves. I will present numerical simulations of Pop III hypernovae and pair-instability supernovae and their light curves done with the Los Alamos RAGE and SPECTRUM codes. We find that these two types of explosions will be visible at z ~ 10 - 15, revealing the positions of ancient dim galaxies on the sky and tracing their star formation rates.
NASA Technical Reports Server (NTRS)
Wanjek, Christopher
2003-01-01
Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe. Yet they still harbor central, supermassive black holes, which could generate energetic particles if they are spinning.
Stirring of a planetesimal swarm - The role of distant encounters
NASA Technical Reports Server (NTRS)
Weidenschilling, Stuart J.
1989-01-01
The viscous stirring algorithm developed by Stewart and Wetherill (1988) to treat the random velocities induced in planetesimals by their mutual gravitational perturbations encompasses only the scattering of bodies in crossing orbits by close encounters. Expressions are presently derived for the stirring rate due to distant encounters on the basis of three-body formalism, using a stirring rate that has the same mass-dependence as that for close encounters. The relative importance of both the close encounter and distant encounter mechanisms depends on the Safronov number. Perturbations by a planetary embryo in scenarios that involve explosive growth are found capable of affecting planetesimal evolution in noncrossing orbits.
NASA Astrophysics Data System (ADS)
Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek
2014-12-01
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.
Enhancements of energetic particles near the heliospheric termination shock.
McDonald, Frank B; Stone, Edward C; Cummings, Alan C; Heikkila, Bryant; Lal, Nand; Webber, William R
2003-11-06
The spacecraft Voyager 1 is at a distance greater than 85 au from the Sun, in the vicinity of the termination shock that marks the abrupt slowing of the supersonic solar wind and the beginning of the extended and unexplored distant heliosphere. This shock is expected to accelerate 'anomalous cosmic rays', as well as to re-accelerate Galactic cosmic rays and low-energy particles from the inner Solar System. Here we report a significant increase in the numbers of energetic ions and electrons that persisted for seven months beginning in mid-2002. This increase differs from any previously observed in that there was a simultaneous increase in Galactic cosmic ray ions and electrons, anomalous cosmic rays and low-energy ions. The low-intensity level and spectral energy distribution of the anomalous cosmic rays, however, indicates that Voyager 1 still has not reached the termination shock. Rather, the observed increase is an expected precursor event. We argue that the radial anisotropy of the cosmic rays is expected to be small in the foreshock region, as is observed.
The Evolving Universe: Structure and Evolution of the Universe Roadmap 2000-2020
NASA Technical Reports Server (NTRS)
1997-01-01
The Roadmap for the Structure and Evolution of the Universe (SEU) theme embraces three fundamental, scientific quests: (1) To explain structure in the Universe and forecast our cosmic destiny. (2) To explore the cycles of matter and energy in the evolving Universe. (3) To examine the ultimate limits of gravity and energy in the Universe. These quests are developed into six, focused research campaigns addressing the objectives of one or more quests: Identify dark matter and learn how it shapes galaxies and systems of galaxies; Find out where and when the chemical elements were made; Understand the cycles in which matter, energy, and magnetic field are exchanged between stars and the gas between stars; Discover how gas flows in disks and how cosmic jets are formed; Identify the sources of gamma-ray bursts and high-energy cosmic rays; and Measure how strong gravity operates near black holes and how it affects the early Universe. These campaigns lead to a portfolio of future major missions of strong scientific and popular appeal, strongly endorsed by the scientific community and which has undergone significant initial study. Some of these missions are in a state of readiness that makes ideal candidates for the present Office of Space Science Strategic Plan; others may well feature in the next Strategic Plan. Each provides a golden scientific opportunity to advance our understanding of the Universe. Our highest priority science objectives are addressed by five Observatory Class Missions, unranked by science, but in approximate order of readiness: A high-energy gamma-ray facility that will observe relativistic jets and study the sources of cosmic gamma ray bursts; An ultra-sensitive X-ray telescope, optimized for spectroscopy, to examine the hot gas linked with clusters of galaxies, the disks around black holes, and supernova explosions; A large, radio telescope in deep space to map central regions of distant quasars and perform astrometric investigations; An orbiting gravitational coalescing, massive black holes and test how gravity waves distort spacetime; A pair of Earth-orbiting, optical telescopes that will detect flashes of light produced when ultra high-energy cosmic rays impact the upper atmosphere so as to determine their arrival directions and energies. A new program for supporting pertinent international collaboration is strongly endorsed and maintaining a strong Explorer program is important. The flexibility to exploit exceptional opportunities, such as attaching payloads to space station, should also be acquired. A strong technology development program must be initiated now to enable this mission set.
Cosmology with cosmic shear observations: a review.
Kilbinger, Martin
2015-07-01
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.
Contribution from individual nearby sources to the spectrum of high-energy cosmic-ray electrons
NASA Astrophysics Data System (ADS)
Sedrati, R.; Attallah, R.
2014-04-01
In the last few years, very important data on high-energy cosmic-ray electrons and positrons from high-precision space-born and ground-based experiments have attracted a great deal of interest. These particles represent a unique probe for studying local comic-ray accelerators because they lose energy very rapidly. These energy losses reduce the lifetime so drastically that high-energy cosmic-ray electrons can attain the Earth only from rather local astrophysical sources. This work aims at calculating, by means of Monte Carlo simulation, the contribution from some known nearby astrophysical sources to the cosmic-ray electron/positron spectra at high energy (≥ 10 GeV). The background to the electron energy spectrum from distant sources is determined with the help of the GALPROP code. The obtained numerical results are compared with a set of experimental data.
REVIEWS OF TOPICAL PROBLEMS: Cosmic vacuum
NASA Astrophysics Data System (ADS)
Chernin, Artur D.
2001-11-01
Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered.
Relative likelihood for life as a function of cosmic time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loeb, Abraham; Batista, Rafael A.; Sloan, David, E-mail: aloeb@cfa.harvard.edu, E-mail: rafael.alvesbatista@physics.ox.ac.uk, E-mail: david.sloan@physics.ox.ac.uk
2016-08-01
Is life most likely to emerge at the present cosmic time near a star like the Sun? We address this question by calculating the relative formation probability per unit time of habitable Earth-like planets within a fixed comoving volume of the Universe, dP ( t )/ dt , starting from the first stars and continuing to the distant cosmic future. We conservatively restrict our attention to the context of ''life as we know it'' and the standard cosmological model, ΛCDM . We find that unless habitability around low mass stars is suppressed, life is most likely to exist near ∼more » 0.1 M {sub ⊙} stars ten trillion years from now. Spectroscopic searches for biosignatures in the atmospheres of transiting Earth-mass planets around low mass stars will determine whether present-day life is indeed premature or typical from a cosmic perspective.« less
Searching for TeV cosmic electrons with the CREST experiment
NASA Astrophysics Data System (ADS)
Coutu, S.; Anderson, T.; Bower, C.; Gennaro, J.; Geske, M.; Müller, D.; Musser, J.; Nutter, S.; Park, N. H.; Schubnell, M.; Tarlé, G.; Wakely, S.; Yagi, A.
2011-06-01
The Cosmic Ray Electron Synchrotron Telescope (CREST) high-altitude balloon experiment is a pathfinding effort to detect for the first time multi-TeV cosmic-ray electrons. Such would be the markers of nearby cosmic accelerators, as energetic electrons from distant Galactic sources are expected to be depleted by radiative losses during interstellar transport. Electrons will be detected indirectly by the characteristic signature of their geomagnetic synchrotron losses, in the form of a burst of coaligned x-ray photons intersecting the plane of the instrument. Since the primary electron itself need not traverse the payload, an effective detection area is achieved that is several times the nominal 6.4 m2 instrument. The payload is composed of an array of 1024 BaF2 crystals surrounded by a set of veto scintillator detectors. A long-duration balloon flight in Antarctica is planned for the 2011-12 season.
Weak cosmic censorship: as strong as ever.
Hod, Shahar
2008-03-28
Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments.
An explosion model for the formation of the radio halo of NGC 891
NASA Astrophysics Data System (ADS)
You, Jun-han; Allen, R. J.; Hu, Fu-xing
1987-06-01
The explosion model for the formation of the radio halo of NGC 891 proposed here are mainly based on two physical assumptions: a) the relativistic electrons belong to two families, a halo family and a disk family: the disk family originating in supernova events throughout the disk and the halo family, in a violent explosion of the galactic nucleus in the distant past. b) Energy equipartition, that is, the magnetic energy density be proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.
An explosion model for the formation of the radio halo of NGC 891
NASA Astrophysics Data System (ADS)
You, Jun-Han; Allen, R. J.; Hu, Fu-Xing
1986-06-01
The explosion model for the formation of the radio halo of NGC 891 proposed here is mainly based on two physical assumptions: (1) the relativistic electrons belong to two families, a halo family and a disk family, the disk family originating in supernova events throughout the disk, and the halo family in a violent explosion of the galactic nucleus in the distant past; and (2) energy equipartition, where the magnetic energy density is proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.
Detectability of the first cosmic explosions
NASA Astrophysics Data System (ADS)
de Souza, R. S.; Ishida, E. E. O.; Johnson, J. L.; Whalen, D. J.; Mesinger, A.
2013-12-01
We present a fully self-consistent simulation of a synthetic survey of the furthermost cosmic explosions. The appearance of the first generation of stars (Population III) in the Universe represents a critical point during cosmic evolution, signalling the end of the dark ages, a period of absence of light sources. Despite their importance, there is no confirmed detection of Population III stars so far. A fraction of these primordial stars are expected to die as pair-instability supernovae (PISNe), and should be bright enough to be observed up to a few hundred million years after the big bang. While the quest for Population III stars continues, detailed theoretical models and computer simulations serve as a testbed for their observability. With the upcoming near-infrared missions, estimates of the feasibility of detecting PISNe are not only timely but imperative. To address this problem, we combine state-of-the-art cosmological and radiative simulations into a complete and self-consistent framework, which includes detailed features of the observational process. We show that a dedicated observational strategy using ≲ 8 per cent of the total allocation time of the James Webb Space Telescope mission can provide us with up to ˜9-15 detectable PISNe per year.
Nuclear Physics in Space: What We Can Learn From Cosmic Rays
NASA Technical Reports Server (NTRS)
Moskalenko, Igor V.
2004-01-01
Studies and discoveries in cosmic-ray physics and generally in Astrophysics provide a fertile ground for research in many areas of Particle Physics and Cosmology, such as the search for dark matter, antimatter, new particles, and exotic physics, studies of the nucleosynthesis, origin of Galactic and extragalactic gamma-ray diffuse emission, formation of the large scale structure of the universe etc. In several years new missions are planned for cosmic-ray experiments, which will tremendously increase the quality and accuracy of cosmic-ray data. On the other hand, direct measurements of cosmic rays are possible in only one location on the outskirts of the Milky Way galaxy and present only a snapshot of very dynamic processes. It has been recently realized that direct information about the fluxes and spectra of cosmic rays in distant locations is provided by the Galactic diffuse gamma-rays, therefore, complementing the local cosmic-ray studies. A wealth of information is also contained in the isotopic abundances of cosmic rays, therefore, accurate evaluation of the isotopic production cross sections is of primary importance for Astrophysics of cosmic rays, studies of the galactic chemical evolution, and Cosmology. In this talk, I will show new results obtained with GALPROP, the most advanced numerical model for cosmic-ray propagation, which includes in a self-consistent way all cosmic-ray species (stable and long-lived radioactive isotopes from H to Ni, antiprotons, positrons and electrons, gamma rays and synchrotron radiation), and all relevant processes and reactions.
Solar flare activity in 2006 - 2016 according to PAMELA and ARINA spectrometers
NASA Astrophysics Data System (ADS)
Rodenko, S. A.; Borkut, I. K.; Mayorov, A. G.; Malakhov, V. V.; PAMELA Collaboration
2018-01-01
From 2006 to 2016 years on the board of RESURS-DK1 satellite PAMELA and ARINA cosmic rays experiments was carried out. The main goal of experiments is measurement of galactic component of cosmic rays; it also registers solar particles accelerated in powerful explosive processes on the sun (solar flares) in wide energy range. The article includes the list of solar events when PAMELA or ARINA spectrometers have registered increasing of proton flux intensities for energies more than 4 MeV.
Cosmic Ray research in Armenia
NASA Astrophysics Data System (ADS)
Chilingarian, A.; Mirzoyan, R.; Zazyan, M.
2009-11-01
Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East-West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.
Cosmic ray electrons and positrons from supernova explosions of massive stars.
Biermann, P L; Becker, J K; Meli, A; Rhode, W; Seo, E S; Stanev, T
2009-08-07
We attribute the recently discovered cosmic ray electron and cosmic ray positron excess components and their cutoffs to the acceleration in the supernova shock in the polar cap of exploding Wolf-Rayet and red supergiant stars. Considering a spherical surface at some radius around such a star, the magnetic field is radial in the polar cap as opposed to most of 4pi (the full solid angle), where the magnetic field is nearly tangential. This difference yields a flatter spectrum, and also an enhanced positron injection for the cosmic rays accelerated in the polar cap. This reasoning naturally explains the observations. Precise spectral measurements will be the test, as this predicts a simple E;{-2} spectrum for the new components in the source, steepened to E;{-3} in observations with an E;{-4} cutoff.
NASA Astrophysics Data System (ADS)
Hoffman, Y.; Hogan, C.
The author discusses observational strategies for finding effects associated with the gravitational lensing of distant objects by strings. In particular, the requirements of a survey to find chains of galaxy image pairs or single galaxies with sharp edges are studied in some detail, and a proposed search program at Steward Observatory is described.
COBE looks back to the Big Bang
NASA Technical Reports Server (NTRS)
Mather, John C.
1993-01-01
An overview is presented of NASA-Goddard's Cosmic Background Explorer (COBE), the first NASA satellite designed to observe the primeval explosion of the universe. The spacecraft carries three extremely sensitive IR and microwave instruments designed to measure the faint residual radiation from the Big Bang and to search for the formation of the first galaxies. COBE's far IR absolute spectrophotometer has shown that the Big Bang radiation has a blackbody spectrum, proving that there was no large energy release after the explosion.
Quasi-stellar objects in the intergalactic medium: Source for the cosmic X-ray background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, R.D.
1980-06-15
QSOs are regarded as sources of both electromagnetic radiation and ejected matter that heat and ionize a dense intergalactic medium (IGM). Using current estimates of QSO luminosity, number density, evolution, and spectral index, we study three viable models: the diffuse cosmic X-ray background is (1) due entirely to thermal Bremsstrahlung of the IGM, (2) completely supplied by QSO X-radiation, (3) or a combination of both. The upper limits on an IGM fractional density with respect to closure are ..cap omega..=0.26, 0.24, and 0.21 for pure collisional, photo/collisional mixture, and pure photoionization, respectively. These calculations give emission spectra, Compton distortion ofmore » the cosmic microwave background, and optical depths to distant OSOs for comparison with relevant data.« less
Exploding Stars and the Accelerating Universe
NASA Astrophysics Data System (ADS)
Kirshner, Robert P.
2012-01-01
Supernovae are exceptionally interesting astronomical objects: they punctuate the end of stellar evolution, create the heavy elements, and blast the interstellar gas with energetic shock waves. By studying supernovae, we can learn how these important aspects of cosmic evolution take place. Over the decades, we have learned that some supernovae are produced by gravitational collapse, and others by thermonuclear explosions. By understanding what supernovae are, or at least learning how they behave, supernovae explosions have been harnessed for the problem of measuring cosmic distances with some astonishing results. Carefully calibrated supernovae provide the best extragalactic distance indicators to probe the distances to galaxies and to measure the Hubble constant. Even more interesting is the evidence from supernovae that cosmic expansion has been speeding up over the last 5 billion years. We attribute this acceleration to a mysterious dark energy whose effects are clear, but whose nature is obscure. Combining the cosmic expansion history traced by supernovae with clues from galaxy clustering and cosmic geometry from the microwave background has produced today's standard, but peculiar, picture of a universe that is mostly dark energy, braked (with diminishing effect) by dark matter, and illuminated by a pinch of luminous baryons. In this talk, I will show how the attempt to understand supernovae, facilitated by ever-improving instruments, has led to the ability to measure the properties of dark energy. Looking ahead, the properties of supernovae as measured at infrared wavelengths seem to hold the best promise for more precise and accurate distances to help us understand the puzzle of dark energy. My own contribution to this work has been carried out in joyful collaboration with many excellent students, postdocs, and colleagues and with generous support from the places I have worked, the National Science Foundation, and from NASA.
Takami, Hajime; Murase, Kohta; Dermer, Charles D.
2013-06-26
We show that recent data from the Fermi Large Area Telescope have revealed about a dozen distant hard-spectrum blazars that have very-high-energy (VHE; ≳ 100 eV) photons associated with them, but most of them have not yet been detected by imaging atmospheric Cherenkov Telescopes. Most of these high-energy gamma-ray spectra, like those of other extreme high-frequency peaked BL Lac objects, can be well explained either by gamma rays emitted at the source or by cascades induced by ultra-high-energy cosmic rays, as we show specifically for KUV 00311–1938. We consider the prospects for detection of the VHE sources by the plannedmore » Cherenkov Telescope Array (CTA) and show how it can distinguish the two scenarios by measuring the integrated flux above ~500 GeV (depending on source redshift) for several luminous sources with z ≲ 1 in the sample. Strong evidence for the origin of ultra-high-energy cosmic rays could be obtained from VHE observations with CTA. Depending on redshift, if the often quoted redshift of KUV 00311–1938 (z = 0.61) is believed, then preliminary H.E.S.S. data favor cascades induced by ultra-high-energy cosmic rays. Lastly, accurate redshift measurements of hard-spectrum blazars are essential for this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% atmore » redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.« less
Galactic Cosmic-Ray Anistropy During the Forbush Decrease Starting 2013 April 13
NASA Astrophysics Data System (ADS)
Tortermpun, U.; Ruffolo, D.; Bieber, J. W.
2018-01-01
The flux of Galactic cosmic rays (GCRs) can undergo a Forbush decrease (FD) during the passage of a shock, sheath region, or magnetic flux rope associated with a coronal mass ejection (CME). Cosmic-ray observations during FDs can provide information complementary to in situ observations of the local plasma and magnetic field, because cosmic-ray distributions allow remote sensing of distant conditions. Here we develop techniques to determine the GCR anisotropy before and during an FD using data from the worldwide network of neutron monitors, for a case study of the FD starting on 2013 April 13. We find that at times with strong magnetic fluctuations and strong cosmic-ray scattering, there were spikes of high perpendicular anisotropy and weak parallel anisotropy. In contrast, within the CME flux rope there was a strong parallel anisotropy in the direction predicted from a theory of drift motions into one leg of the magnetic flux rope and out the other, confirming that the anisotropy can remotely sense a large-scale flow of GCRs through a magnetic flux structure.
Application of cosmic-ray shock theories to the Cygnus Loop - an alternative model
NASA Astrophysics Data System (ADS)
Boulares, Ahmed; Cox, Donald P.
1988-10-01
Steady state cosmic-ray shock models are investigated in light of observations of the Cygnus Loop supernova remnant. In this work the authors find that the model of Völk, Drury, and McKenzie, in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of Cygnus Loop shocks. The waves heat the gas substantially in the cosmic-ray precursor, in addition to the usual heating in the (possibly weak) gas shock. The model is used to deduce upstream densities and shock velocities using known quantities for Cygnus Loop shocks. Compared to the usual pure gas shock interpretation, it is found that lower densities and approximately 3 times higher velocities are required. If the cosmic-ray models are valid, this could significantly alter our understanding of the Cygnus Loop's distance and age and of the energy released during the initial explosion.
Rare Isotopes in Cosmic Explosions and Accelerators on Earth
Schatz, Hendrick
2017-12-28
Rare isotopes are natureâs stepping stones to produce the heavy elements, and they are produced in large quantities in stellar explosions. Despite their fleeting existence, they shape the composition of the universe and the observable features of stellar explosions. The challenge for nuclear science is to produce and study the very same rare isotopes so as to understand the origin of the elements and a range of astronomical observations. I will review the progress that has been made to date in astronomy and nuclear physics, and the prospects of finally addressing many of the outstanding issues with the future Facility for Rare Isotope Beams (FRIB), which DOE will build at Michigan State University.
Discovery of very-high-energy gamma-rays from the Galactic Centre ridge.
Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J
2006-02-09
The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.
EBL Inhomogeneity and Hard-Spectrum Gamma-Ray Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdalla, Hassan; Böttcher, Markus
2017-02-01
The unexpectedly hard very-high-energy (VHE; E > 100 GeV) γ -ray spectra of a few distant blazars have been interpreted as evidence of a reduction of the γγ opacity of the universe due to the interaction of VHE γ -rays with the extragalactic background light (EBL) compared to the expectation from current knowledge of the density and cosmological evolution of the EBL. One of the suggested solutions to this problem involves the inhomogeneity of the EBL. In this paper, we study the effects of such inhomogeneity on the energy density of the EBL (which then also becomes anisotropic) and themore » resulting γγ opacity. Specifically, we investigate the effects of cosmic voids along the line of sight to a distant blazar. We find that the effect of such voids on the γγ opacity, for any realistic void size, is only of the order of ≲1% and much smaller than expected from a simple linear scaling of the γγ opacity with the line-of-sight galaxy underdensity due to a cosmic void.« less
Approximate supernova remnant dynamics with cosmic ray production
NASA Technical Reports Server (NTRS)
Voelk, H. J.; Drury, L. O.; Dorfi, E. A.
1985-01-01
Supernova explosions are the most violent and energetic events in the galaxy and have long been considered probably sources of Cosmic Rays. Recent shock acceleration models treating the Cosmic Rays (CR's) as test particles nb a prescribed Supernova Remnant (SNR) evolution, indeed indicate an approximate power law momentum distribution f sub source (p) approximation p(-a) for the particles ultimately injected into the Interstellar Medium (ISM). This spectrum extends almost to the momentum p = 1 million GeV/c, where the break in the observed spectrum occurs. The calculated power law index approximately less than 4.2 agrees with that inferred for the galactic CR sources. The absolute CR intensity can however not be well determined in such a test particle approximation.
University of Arizona High Energy Physics Program at the Cosmic Frontier 2014-2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
abate, alex; cheu, elliott
This is the final technical report from the University of Arizona High Energy Physics program at the Cosmic Frontier covering the period 2014-2016. The work aims to advance the understanding of dark energy using the Large Synoptic Survey Telescope (LSST). Progress on the engineering design of the power supplies for the LSST camera is discussed. A variety of contributions to photometric redshift measurement uncertainties were studied. The effect of the intergalactic medium on the photometric redshift of very distant galaxies was evaluated. Computer code was developed realizing the full chain of calculations needed to accurately and efficiently run large-scale simulations.
Polarization of the Cosmic Microwave Background: Are These Guys Serious?
NASA Technical Reports Server (NTRS)
Kogut, Alan
2007-01-01
The polarization of the cosmic microwave background (CMB) could contain the oldest information in the universe, dating from an inflationary epoch just after the Big Bang. Detecting this signal presents an experimental challenge, as it is both faint and hidden behind complicated foregrounds. The rewards, however, are great, as a positive detection would not only establish inflation as a physical reality but also provide a model-independent measurement of the relevant energy scale. I will present the scientific motivation behind measurements of the CMB polarization and discuss how recent experimental progress could lead to a detection in the not-very-distant future.
Scientists Celebrate VLBA's First Decade As Astronomy's Sharpest "Eye" on the Universe
NASA Astrophysics Data System (ADS)
2003-06-01
Scientists from around the globe are gathered in Socorro, New Mexico, to mark the tenth anniversary of the National Science Foundation's Very Long Baseline Array (VLBA) , a continent-wide radio telescope that produces the most detailed images of any instrument available to the world's astronomers. The VLBA The VLBA CREDIT: NRAO/AUI/NSF Nearly 200 scientists are presenting 160 research papers on topics including geophysics, star and planet formation, supernova explosions, galaxies, supermassive black holes, and future directions of research and instrumentation in astronomy. The meeting is sponsored by the National Radio Astronomy Observatory (NRAO) and the New Mexico Institute of Mining and Technology (NM Tech). The meeting is being held on the NM Tech campus in Socorro. "In ten years of operation, the VLBA has made landmark contributions to astronomy. In this scientific meeting, we are acknowledging those contributions and looking forward to an even more exciting future of frontier research," said James Ulvestad, director of VLA/VLBA operations for the NRAO. "The presentations at this meeting show that the VLBA is being used to study a much broader range of astronomical objects than was anticipated by its designers," said Prof. Roger Blandford of Caltech, who delivered the meeting's opening Keynote Address. Dedicated in 1993, the $85-million VLBA includes ten, 240-ton radio-telescope antennas, ranging from Hawaii in the west to the U.S. Virgin Islands in the east. Two are in New Mexico, one near Pie Town in Catron County and the other at Los Alamos. The VLBA is operated from the NRAO's Array Operations Center in Socorro. Acting like a giant eye 5,000 miles wide, the VLBA can produce the sharpest images of any telescope on Earth or in space. Its ability to see fine detail, called resolving power, is equivalent to being able to stand in New York and read a newspaper in Los Angeles. The VLBA's scientific achievements include making the most accurate distance measurement ever made of an object beyond the Milky Way Galaxy; the first mapping of the magnetic field of a star other than the Sun; "movies" of motions in powerful cosmic jets and of distant supernova explosions; the first measurement of the propagation speed of gravity; and long-term measurements that have improved the reference frame used to map the Universe and detect tectonic motions of Earth's continents. In coming years, scientists plan to use the VLBA, along with other radio-telescope facilities, to gain important new insights on astronomical bodies ranging from nearby stars to the most distant galaxies, seen as they were billions of years ago. The VLBA also will help improve the celestial coordinate system used for spacecraft navigation and other purposes. Blandford outlined a number of future research challenges, including understanding how pulsars produce their powerful beams of light and radio waves, learning how supermassive black holes and their nearby environments produce superfast cosmic jets, trying to understand solar bursts, using gravitational lenses to study the distant Universe, and understanding the mechanisms of gamma ray bursts and their "afterglows." "I am heartened to see the number of young astronomers at this meeting who are using the VLBA and will use it to help answer these important scientific questions," Blandford added. Closer to home, the VLBA can be "turned around" to produce extremely precise measurements on the Earth. This capability allows scientists to study the motion of Earth's tectonic plates, to track "wobbles" in our planet's rotation, and to measure subtle changes attributed to atmospheric motions and climate change. The meeting in Socorro began June 8 and runs through June 12. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Cosmic-ray effects in the Gum nebula
NASA Technical Reports Server (NTRS)
Ramaty, R.; Boldt, E. A.
1971-01-01
The effects of low energy heavy nuclei from the supernova explosion on nearby interstellar space were investigated. In addition to the ionization and heating of the Gum nebula, these particles may produce detectable fluxes of X-rays and gamma rays, both as continuum radiation and line emission.
time. It is usually measured in radians per second. Anisotropy- Physical property values that vary when negative charge. When an antimatter particle collides with its normal-matter counterpart, both particles neutrons. Big Bang- The violent cosmic explosion of an incredibly small amount of matter at high
Contact in an Expanding Universe: An Instructive Exercise in Dynamic Geometry
ERIC Educational Resources Information Center
Zimmerman, Seth
2010-01-01
The particular problem solved in this paper is that of calculating the time required to overtake a distant object receding under cosmic expansion, and the speed at which that object is passed. This is a rarely investigated problem leading to some interesting apparent paradoxes. We employ the problem to promote a deeper understanding of the dynamic…
Xenia: A Probe of Cosmic Chemical Evolution
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa; Piro, L.
2008-01-01
Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.
Xenia: A Probe of Cosmic Chemical Evolution
NASA Astrophysics Data System (ADS)
Kouveliotou, Chryssa; Piro, L.; Xenia Collaboration
2008-03-01
Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and γ-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.
Ultrahigh-energy cosmic rays from tidally-ignited white dwarfs
NASA Astrophysics Data System (ADS)
Alves Batista, Rafael; Silk, Joseph
2017-11-01
Ultrahigh-energy cosmic rays (UHECRs) can be accelerated by tidal disruption events of stars by black holes. We suggest a novel mechanism for UHECR acceleration wherein white dwarfs (WDs) are tidally compressed by intermediate-mass black holes (IMBHs), leading to their ignition and subsequent explosion as a supernova. Cosmic rays accelerated by the supernova may receive an energy boost when crossing the accretion-powered jet. The rate of encounters between WDs and IMBHs can be relatively high, as the number of IMBHs may be substantially augmented once account is taken of their likely presence in dwarf galaxies. Here we show that this kind of tidal disruption event naturally provides an intermediate composition for the observed UHECRs, and suggest that dwarf galaxies and globular clusters are suitable sites for particle acceleration to ultrahigh energies.
REVIEWS OF TOPICAL PROBLEMS: Acceleration of cosmic rays by shock waves
NASA Astrophysics Data System (ADS)
Berezhko, E. G.; Krymskiĭ, G. F.
1988-01-01
Theoretical work on various processes by which shock waves accelerate cosmic rays is reviewed. The most efficient of these processes, Fermi acceleration, is singled out for special attention. A linear theory for this process is presented. The results found on the basis of nonlinear models of Fermi acceleration, which incorporate the modification of the structure caused by the accelerated particles, are reported. There is a discussion of various possibilities for explaining the generation of high-energy particles observed in interplanetary and interstellar space on the basis of a Fermi acceleration mechanism. The acceleration by shock waves from supernova explosions is discussed as a possible source of galactic cosmic rays. The most important unresolved questions in the theory of acceleration of charged particles by shock waves are pointed out.
The Universe's First Fireworks
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster VersionFigure 1Figure 2 This is an image from NASA's Spitzer Space Telescope of stars and galaxies in the Ursa Major constellation. This infrared image covers a region of space so large that light would take up to 100 million years to travel across it. Figure 1 is the same image after stars, galaxies and other sources were masked out. The remaining background light is from a period of time when the universe was less than one billion years old, and most likely originated from the universe's very first groups of objects -- either huge stars or voracious black holes. Darker shades in the image on the left correspond to dimmer parts of the background glow, while yellow and white show the brightest light. Brief History of the Universe In figure 2, the artist's timeline chronicles the history of the universe, from its explosive beginning to its mature, present-day state. Our universe began in a tremendous explosion known as the Big Bang about 13.7 billion years ago (left side of strip). Observations by NASA's Cosmic Background Explorer and Wilkinson Anisotropy Microwave Probe revealed microwave light from this very early epoch, about 400,000 years after the Big Bang, providing strong evidence that our universe did blast into existence. Results from the Cosmic Background Explorer were honored with the 2006 Nobel Prize for Physics. A period of darkness ensued, until about a few hundred million years later, when the first objects flooded the universe with light. This first light is believed to have been captured in data from NASA's Spitzer Space Telescope. The light detected by Spitzer would have originated as visible and ultraviolet light, then stretched, or redshifted, to lower-energy infrared wavelengths during its long voyage to reach us across expanding space. The light detected by the Cosmic Background Explorer and the Wilkinson Anisotropy Microwave Probe from our very young universe traveled farther to reach us, and stretched to even lower-energy microwave wavelengths. Astronomers do not know if the very first objects were either stars or quasars. The first stars, called Population III stars (our star is a Population I star), were much bigger and brighter than any in our nearby universe, with masses about 1,000 times that of our sun. These stars first grouped together into mini-galaxies. By about a few billion years after the Big Bang, the mini-galaxies had merged to form mature galaxies, including spiral galaxies like our own Milky Way. The first quasars ultimately became the centers of powerful galaxies that are more common in the distant universe. NASA's Hubble Space Telescope has captured stunning pictures of earlier galaxies, as far back as ten billion light-years away.THE CENTAURUS A ULTRAHIGH-ENERGY COSMIC-RAY EXCESS AND THE LOCAL EXTRAGALACTIC MAGNETIC FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yueksel, Hasan; Kronberg, Philipp P.; Stanev, Todor
2012-10-10
The ultrahigh-energy cosmic-ray (UHECR) anisotropies discovered by the Pierre Auger Observatory provide the potential to finally address both the particle origins and properties of the nearby extragalactic magnetic field (EGMF). We examine the implications of the excess of {approx}10{sup 20} eV events around the nearby radio galaxy Centaurus A. We find that, if Cen A is the source of these cosmic rays, the angular distribution of events constrains the EGMF strength within several Mpc of the Milky Way to {approx}> 20 nG for an assumed primary proton composition. Our conclusions suggest that either the observed excess is a statistical anomalymore » or the local EGMF is stronger than conventionally thought. We discuss several implications, including UHECR scattering from more distant sources, time delays from transient sources, and the possibility of using magnetic lensing signatures to attain tighter constraints.« less
Measurement of Cosmic-Ray TeV Electrons
NASA Astrophysics Data System (ADS)
Schubnell, Michael; Anderson, T.; Bower, C.; Coutu, S.; Gennaro, J.; Geske, M.; Mueller, D.; Musser, J.; Nutter, S.; Park, N.; Tarle, G.; Wakely, S.
2011-09-01
The Cosmic Ray Electron Synchrotron Telescope (CREST) high-altitude balloon experiment is a pathfinding effort to detect for the first time multi-TeV cosmic-ray electrons. At these energies distant sources will not contribute to the local electron spectrum due to the strong energy losses of the electrons and thus TeV observations will reflect the distribution and abundance of nearby acceleration sites. CREST will detect electrons indirectly by measuring the characteristic synchrotron photons generated in the Earth's magnetic field. The instrument consist of an array of 1024 BaF2 crystals viewed by photomultiplier tubes surrounded by a hermetic scintillator shield. Since the primary electron itself need not traverse the payload, an effective detection area is achieved that is several times the nominal 6.4 m2 instrument. CREST is scheduled to fly in a long duration circumpolar orbit over Antarctica during the 2011-12 season.
Cosmic Radiation Detection and Observations
NASA Astrophysics Data System (ADS)
Ramirez Chavez, Juan; Troncoso, Maria
Cosmic rays consist of high-energy particles accelerated from remote supernova remnant explosions and travel vast distances throughout the universe. Upon arriving at earth, the majority of these particles ionize gases in the upper atmosphere, while others interact with gas molecules in the troposphere and producing secondary cosmic rays, which are the main focus of this research. To observe these secondary cosmic rays, a detector telescope was designed and equipped with two silicon photomultipliers (SiPMs). Each SiPM is coupled to a bundle of 4 wavelength shifting optical fibers that are embedded inside a plastic scintillator sheet. The SiPM signals were amplified using a fast preamplifier with coincidence between detectors established using a binary logic gate. The coincidence events were recorded with two devices; a digital counter and an Arduino micro-controller. For detailed analysis of the SiPM waveforms, a DRS4 sensory digitizer captured the waveforms for offline analysis with the CERN software package Physics Analysis Workstation in a Linux environment. Results from our experiments would be presented. Hartnell College STEM Internship Program.
NASA Astrophysics Data System (ADS)
Prohira, Steven; TARA Collaboration; Telescope Array Collaboration
2016-03-01
The TARA (Telescope Array Radar) cosmic ray detector has been in operation since May 2013. It is the most ambitious effort to date to test an idea that originated in the 1940's: that ionization produced by cosmic ray extensive air showers should reflect electromagnetic radiation. The observation of this effect would open the possibility that remote-sensing radar technology could be used to detect and reconstruct extensive air showers, thus increasing the aperture available for the study of the highest-energy cosmic rays. TARA employs a bi-static radar configuration, consisting of a 25 kW, 5 MW ERP transmitter at 54.1 MHz broadcasting across the Telescope Array surface detector. 40 km distant, a set of log-periodic receiver antennas are read out by two independent data acquisition systems employing different techniques to select signals of the form expected for radar targets moving at close to the speed of light. In this talk, we describe the TARA detector and present the first quantitative limits on the radar cross-section of extensive air showers.
The cosmic matrix in the 50th anniversary of relativistic astrophysics
NASA Astrophysics Data System (ADS)
Ruffini, R.; Aimuratov, Y.; Becerra, L.; Bianco, C. L.; Karlica, M.; Kovacevic, M.; Melon Fuksman, J. D.; Moradi, R.; Muccino, M.; Penacchioni, A. V.; Pisani, G. B.; Primorac, D.; Rueda, J. A.; Shakeri, S.; Vereshchagin, G. V.; Wang, Y.; Xue, S.-S.
Our concept of induced gravitational collapse (IGC paradigm) starting from a supernova occurring with a companion neutron star, has unlocked the understanding of seven different families of gamma ray bursts (GRBs), indicating a path for the formation of black holes in the universe. An authentic laboratory of relativistic astrophysics has been unveiled in which new paradigms have been introduced in order to advance knowledge of the most energetic, distant and complex systems in our universe. A novel cosmic matrix paradigm has been introduced at a relativistic cosmic level, which parallels the concept of an S-matrix introduced by Feynmann, Wheeler and Heisenberg in the quantum world of microphysics. Here the “in” states are represented by a neutron star and a supernova, while the “out” states, generated within less than a second, are a new neutron star and a black hole. This novel field of research needs very powerful technological observations in all wavelengths ranging from radio through optical, X-ray and gamma ray radiation all the way up to ultra-high-energy cosmic rays.
Three Decades of Explosive High Energy Transients
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa
2013-01-01
Gamma-Ray Bursts are the most brilliant explosions in space. The first GRB was discovered on 1967, just 40 years ago. It took several years and multiple generations of space and ground instruments to unravel some of the mysteries of this phenomenon. However, many questions remain open today. I will discuss the history, evolution and current status of the GRB field and its contributions in our understanding of the transient high energy sky. Finally, I will describe how GRBs can be utilized in future missions as tools, to probe the cosmic chemical evolution of the Universe and the star formation rates.
Solving the Mystery of Short Gamma Ray Bursts
NASA Technical Reports Server (NTRS)
Gehrels, Neil
2006-01-01
Gamma-ray bursts are among the most fascinating occurrences in the cosmos. Until this year, the origin of short gamma-ray bursts was a complete mystery. A new NASA satellite named Swift has now captured the first images of these events and found that they are caused by tremendous explosions in the distant universe.
[Alteration of textilfibres by explosion gases expelled distant from the muzzle (author's transl)].
Bonte, W; Kijewski, H
1976-03-24
This paper presents the reconstruction of an unusual case of suicide. After raiding a branch-bank a robber fled shooting with his Sauer-Western revolver caliber .44 magnum at the pursuing policemen and succeeded in wrestling a pistol Walther caliber 7,65 mm from them. Under the fire of sub-machine guns he destroyed himself by a shot to the neck. Our investigations concerned a textile damage at the front of the sweater of the deceased surrounded by primer residue, showing characteristics of a close-up shot. The damage was identified as effect of explosion gases exhausting far-off the muzzle. The distance between this injury and the bullet hole corresponded with the length of the barrel of the Sauer-Western revolver and could be used for identification; it confirmed the diagnosis of a close-up shot at the neck, too. Collateral experiments with shots from distant ranges developed spadiceous melt figures of textile fibers around the bullet hole, the appearance of which is considered proof for a close-up shot commonly.
Types of hydrogeological response to large-scale explosions and earthquakes
NASA Astrophysics Data System (ADS)
Gorbunova, Ella; Vinogradov, Evgeny; Besedina, Alina; Martynov, Vasilii
2017-04-01
Hydrogeological response to anthropogenic and natural impact indicates massif properties and mode of deformation. We studied uneven-aged aquifers that had been unsealed at the Semipalatinsk testing area (Kazakhstan) and geophysical observatory "Mikhnevo" at the Moscow region (Russia). Data was collected during long-term underground water monitoring that was carried out in 1983-1989 when large-scale underground nuclear explosions were realized. Precise observations of underground water response to distant earthquakes waves passage at GPO "Mikhnevo" have been conducted since 2008. One of the goals of the study was to mark out main types of either dynamic or irreversible spatial-temporal underground water response to large-scale explosions and to compare them with those of earthquakes impact as it had been presented in different papers. As far as nobody really knows hydrogeological processes that occur at the earthquake source it's especially important to analyze experimental data of groundwater level variations that was carried close to epicenter first minutes to hours after explosions. We found that hydrogeodynamic reaction strongly depends on initial geological and hydrogeological conditions as far as on seismic impact parameters. In the near area post-dynamic variations can lead to either excess pressure dome or depression cone forming that results of aquifer drainage due to rock massif fracturing. In the far area explosion effect is comparable with the one of distant earthquake and provides dynamic water level oscillations. Precise monitoring at the "Mikhnevo" area was conducted in the platform conditions far from active faults thus we consider it as a purely calm area far from earthquake sources. Both dynamic and irreversible water level change seem to form power dependence on vertical peak ground displacement velocity due to wave passage. Further research will be aimed at transition close-to-far area to identify a criterion that determines either irreversible or elastic behavior of hydrogeological response. This work was supported by the Russian Science Foundation (project no. 16-17-00095).
NASA Astrophysics Data System (ADS)
Pasyanos, Michael E.; Ford, Sean R.; Walter, William R.
2014-03-01
We test the performance of high-frequency regional P/S discriminants to differentiate between earthquakes and explosions at test sites and over broad regions using a historical dataset of explosions recorded at the Borovoye Observatory in Kazakhstan. We compare these explosions to modern recordings of earthquakes at the same location. We then evaluate the separation of the two types of events using the raw measurements and those where the amplitudes are corrected for 1-D and 2-D attenuation structure. We find that high-frequency P/S amplitudes can reliably identify earthquakes and explosions, and that the discriminant is applicable over broad regions as long as propagation effects are properly accounted for. Lateral attenuation corrections provide the largest improvement in the 2-4 Hz band, the use of which may successfully enable the identification of smaller, distant events that have lower signal-to-noise at higher frequencies. We also find variations in P/S ratios among the three main nuclear testing locations within the Semipalatinsk Test Site which, due to their nearly identical paths to BRVK, must be a function of differing geology and emplacement conditions.
Despite Appearances, Cosmic Explosions Have Common Origin, Astronomers Discover
NASA Astrophysics Data System (ADS)
2003-11-01
A Fourth of July fireworks display features bright explosions that light the sky with different colors, yet all have the same cause. They just put their explosive energy into different colors of light. Similarly, astronomers have discovered, a variety of bright cosmic explosions all have the same origin and the same amount of total energy. This is the conclusion of an international team of astronomers that used the National Science Foundation's Very Large Array (VLA) radio telescope to study the closest known gamma-ray burst earlier this year. Artist's conception of burst Artist's Conception of Twin Jets in Energetic Cosmic Explosion CREDIT: Dana Berry, SkyWorks Digital (Click on Image for Larger Version) "For some reason we don't yet understand, these explosions put greatly varying percentages of their explosive energy into the gamma-ray portion of their output," said Dale Frail, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. That means, he said, that both strong and weak gamma-ray bursts, along with X-ray flashes, which emit almost no gamma rays, are just different forms of the same cosmic beast. The research team reported their results in the November 13 issue of the scientific journal Nature. The scientists trained the VLA on a gamma-ray burst discovered using NASA's HETE-2 satellite last March 29. This burst, dubbed GRB 030329, was the closest such burst yet seen, about 2.6 billion light-years from Earth. Because of this relative proximity, the burst was bright, with visible light from its explosion reaching a level that could be seen in amateur telescopes. As the burst faded, astronomers noted an underlying distinctive signature of a supernova explosion, confirming that the event was associated with the death of a massive star. Since 1999, astronomers have known that the strong outbursts of gamma rays, X-rays, visible light and radio waves from these bursts form beams, like those from a flashlight, rather than spreading in all directions, like light from a bare bulb. The surprising result from the VLA studies of GRB 030329 is that there are two beams, not one. The scientists found that the gamma rays and the early visible-light and X-ray emission were coming from a narrow beam, while the radio waves and later visible-light emission came from another, wider beam. "The strange thing is that some explosions seem to put most of their energy into the narrow beam, while others put most or nearly all their energy into the wider beam," Frail said. "This is telling us something very fundamental about the inner workings that drive these explosions," Frail added. The mechanism producing these explosions is what scientists call a collapsar, which occurs when a giant star collapses of its own weight at the end of its normal, nuclear fusion-powered lifetime. In an ordinary supernova, such a collapse produces a neutron star. A collapsar, however, marks the death of a more-massive star and results in a black hole, a concentration of mass so dense that not even light can escape it. After the black hole forms, its powerful gravitational pull sucks the star's remaining material toward it. This material forms a spinning disk around the black hole that lasts only a few seconds. During that time, the disk ejects material outward from its poles. A jet of material moving at nearly the speed of light emits gamma rays; slower material emits radio waves and visible light. "Despite the differences in how much energy comes out in gamma rays, all these things seem to be caused by the same basic mechanism," said Edo Berger, a graduate student at Caltech and lead author of the Nature paper. "Our observations now give the data that will help us understand what causes the differences," he added. "It was astounding to suddenly realize that these apparently very different cosmic beasts all are really the same thing," said Berger. The next job, Frail said, is to learn if there are, in fact, two jets, or a single jet in which the central part encounters less resistance and thus can move outward at greater speeds. Frail pointed out that the radio observations alone had the ability to show the total energy output of the burst, thus providing the breakthrough in understanding the common thread among the different types of explosions. "The key fact is that the optical, X-Ray and gamma-ray telescopes missed 90 percent of the energy put out by this burst," Frail added. "As the VLA Expansion Project progresses and the sensitivity of the VLA improves in the coming years, it will become an even more important tool in unravelling this mystery," Frail said. "The exciting part of this new discovery is that explosions that we once thought were quite different now appear to all have a common origin," Frail concluded. "That insight, of course, gives us the new challenge of explaining how a single mechanism can make itself look so different," he added. In addition to Berger and Frail, the other authors of the paper are Professor Shri Kulkarni of Caltech; Guy Pooley of Cambridge University's Mullard Radio Astronomy Observatory; Vince McIntyre and Robin Wark, both of the Australia Telescope National Facility; Re'em Sari, associate professor of astrophysics and planetary science at Caltech; Derek Fox, a postdoctoral scholar in astronomy at Caltech; Alicia Soderberg, a graduate student in astrophysics at Caltech; Sarah Yost, a graduate student in physics at Caltech; and Paul Price, a postdoctoral scholar at the University of Hawaii's Institute for Astronomy. Berger and Soderberg earlier worked on gamma-ray-burst studies as summer students at NRAO. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
X-ray studies of supernova remnants: A different view of supernova explosions
Badenes, Carles
2010-01-01
The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research. PMID:20404206
Measurements of Amplified Magnetic Field and Cosmic-Ray Content in Supernova Remnants
NASA Astrophysics Data System (ADS)
Uchiyama, Yasunobu
Supernova explosions drive collisionless shocks in the interstellar (or circumstellar) medium. Such shocks are mediated by plasma waves, resulting in the shock transition on a scale much smaller than the collisional mean free path. Galactic cosmic rays are widely considered to be accelerated at collisionless shocks in supernova remnants via diffusive shock acceleration. New high-energy data coming from the X-ray and gamma-ray satellites and from imaging air Cerenkov telescopes are making possible to study physics of particle acceleration at supernova shocks, such as magnetic field amplification which is considered to be realized as part of shock acceleration process and the energy content of cosmic-ray particles in the supernova shell. In particular, GeV observations with the Fermi Gamma-ray Space Telescope offer the prime means to establish the origin of the gamma-rays, and to measure the cosmic-ray content. Moreover they provide a new opportunity to learn about how particle acceleration responds to environ-mental effects. I will present recent observational results from the Chandra and Suzaku X-ray satellites and new results from the LAT onboard Fermi, and discuss their implications to the origin of galactic cosmic rays.
NASA Astrophysics Data System (ADS)
Shuvalov, V. V.; Khazins, V. M.
2018-03-01
Numerical simulation of atmospheric disturbances during the first hours after the Chelyabinsk and Tunguska space body impacts has been carried out. The results of detailed calculations, including the stages of destruction, evaporation and deceleration of the cosmic body, the generation of atmospheric disturbances and their propagation over distances of thousands of kilometers, have been compared with the results of spherical explosions with energy equal to the kinetic energy of meteoroids. It has been shown that in the case of the Chelyabinsk meteorite, an explosive analogy provides acceptable dimensions of the perturbed region and the perturbation amplitude. With a more powerful Tunguska fall, the resulting atmospheric flow is very different from the explosive one; an atmospheric plume emerges that releases matter from the meteoric trace to an altitude of the order of a thousand kilometers.
US Geological Survey begins seismic ground response experiments in Washington State
Tarr, A.C.; King, K.W.
1988-01-01
This article briefly describes the experimental monitoring of minor seismic features caused by distant nuclear explosions, mining blasts and rhythmic human pushing against wooden homes. Some means of response prediction are outlined in Washington State and some effects of seismic amplification by weak clayey sediments are described. The results of several experiments are described. -A.Scarth
Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles
NASA Technical Reports Server (NTRS)
Barghouty, Nasser F.
2014-01-01
High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.
Life Modeling for Nickel-Hydrogen Batteries in Geosynchronous Satellite Operation
2005-03-25
aerothermodynamics; chemical and electric propulsion; environmental chemistry; combustion processes; space environment effects on materials, hardening and...intelligent microinstruments for monitoring space and launch system environments . Space Science Applications Laboratory: Magnetospheric, auroral and cosmic-ray...hyperspectral imagery to defense, civil space, commercial, and environmental missions; effects of solar activity, magnetic storms and nuclear explosions on the
Hubble and Keck team up to find farthest known galaxy in the Universe
NASA Astrophysics Data System (ADS)
2004-02-01
Galaxy cluster Abell 2218 hi-res Size hi-res: 5212 Kb Credits: European Space Agency, NASA, J.-P. Kneib (Observatoire Midi-Pyrénées) and R. Ellis (Caltech) Close-up of the large galaxy cluster Abell 2218 This close-up of the large galaxy cluster Abell 2218 shows how this cluster acts as one of nature’s most powerful ‘gravitational telescopes’ and amplifies and stretches all galaxies lying behind the cluster core (seen as red, orange and blue arcs). Such natural gravitational ‘telescopes’ allow astronomers to see extremely distant and faint objects that could otherwise not be seen. A new galaxy (split into two ‘images’ marked with an ellipse and a circle) was detected in this image taken with the Advanced Camera for Surveys on board the NASA/ESA Hubble Space Telescope. The extremely faint galaxy is so far away that its visible light has been stretched into infrared wavelengths, making the observations particularly difficult. The galaxy may have set a new record in being the most distant known galaxy in the Universe. Located an estimated 13 billion light-years away (z~7), the object is being viewed at a time only 750 million years after the big bang, when the Universe was barely 5 percent of its current age. In the image the distant galaxy appears as multiple ‘images’, an arc (left) and a dot (right), as its light is forced along different paths through the cluster’s complex clumps of mass (the yellow galaxies) where the magnification is quite large. The colour of the different lensed galaxies in the image is a function of their distances and galaxy types. The orange arc is for instance an elliptical galaxy at moderate redshift (z=0.7) and the blue arcs are star forming galaxies at intermediate redshift (z between 1 and 2.5). An image of Abell 2218 hi-res Size hi-res: 29 563 Kb Credits: European Space Agency, NASA, J.-P. Kneib (Observatoire Midi-Pyrénées) and R. Ellis (Caltech) A ground-based wide-angle image of Abell 2218 This wide-angle image spans 0.4 by 0.4 degrees and was taken by the 12k camera on Canada-France-Hawaii Telescope on Mauna Kea, Hawaii, United States. The image is composited by three exposures through blue (B), red (R), and infrared (I) filters. The primeval galaxy was identified by combining the power of the NASA/ESA Hubble Space Telescope and CARA's W. M. Keck Telescopes on Mauna Kea in Hawaii. These great observatories got a boost from the added magnification of a natural ‘cosmic gravitational lens’ in space that further amplifies the brightness of the distant object. The newly discovered galaxy is likely to be a young galaxy shining during the end of the so-called "Dark Ages" - the period in cosmic history which ended with the first galaxies and quasars transforming opaque, molecular hydrogen into the transparent, ionized Universe we see today. The new galaxy was detected in a long exposure of the nearby cluster of galaxies Abell 2218, taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. This cluster is so massive that the light of distant objects passing through the cluster actually bends and is amplified, much as a magnifying glass bends and magnifies objects seen through it. Such natural gravitational ‘telescopes’ allow astronomers to see extremely distant and faint objects that could otherwise not be seen. The extremely faint galaxy is so far away its visible light has been stretched into infrared wavelengths, making the observations particularly difficult. "As we were searching for distant galaxies magnified by Abell 2218, we detected a pair of strikingly similar images whose arrangement and colour indicate a very distant object," said astronomer Jean-Paul Kneib (Observatoire Midi-Pyrénées and California Institute of Technology), who is lead author reporting the discovery in a forthcoming article in the Astrophysical Journal. Analysis of a sequence of Hubble images indicate the object lies between a redshift of 6.6 and 7.1, making it the most distant source currently known. However, long exposures in the optical and infrared taken with spectrographs on the 10-meter Keck telescopes suggests that the object has a redshift towards the upper end of this range, around redshift 7. Redshift is a measure of how much the wavelengths of light are shifted to longer wavelengths. The greater the shift in wavelength toward the redder regions of the spectrum, the more distant the object is. "The galaxy we have discovered is extremely faint, and verifying its distance has been an extraordinarily challenging adventure," said Dr. Kneib. "Without the 25 x magnification afforded by the foreground cluster, this early object could simply not have been identified or studied in any detail at all with the present telescopes available. Even with aid of the cosmic lens, the discovery has only been possible by pushing our current observatories to the limits of their capabilities!" Using the combination of the high resolution of Hubble and the large magnification of the cosmic lens, the astronomers estimate that this object, although very small - only 2,000 light-years across - is forming stars extremely actively. However, two intriguing properties of the new source are the apparent lack of the typically bright hydrogen emission line and its intense ultraviolet light which is much stronger than that seen in star-forming galaxies closer by. "The properties of this distant source are very exciting because, if verified by further study, they could represent the hallmark of a truly young stellar system that ended the Dark Ages" added Dr. Richard Ellis, Steele Professor of Astronomy at Caltech, and a co-author in the article. The team is encouraged by the success of their technique and plans to continue the search for more examples by looking through other cosmic lenses in the sky. Hubble's exceptional resolution makes it ideally suited for such searches. "Estimating the abundance and characteristic properties of sources at early times is particularly important in understanding how the Universe reionized itself, thus ending the Dark Ages," said Mike Santos, a former Caltech graduate student, now a postdoctoral researcher at the Institute of Astronomy, Cambridge, UK. "The cosmic lens has given us a first glimpse into this important epoch. We are now eager to learn more by finding further examples, although it will no doubt be challenging." "We are looking at the first evidence of our ancestors on the evolutionary tree of the entire Universe," said Dr. Frederic Chaffee, director of the W. M. Keck Observatory, home to the twin 10-meter Keck telescopes that confirmed the discovery. "Telescopes are virtual time machines, allowing our astronomers to look back to the early history of the cosmos, and these marvellous observations are of the earliest time yet."
Universal upper limit on inflation energy scale from cosmic magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, Tomohiro; Mukohyama, Shinji, E-mail: tomohiro.fujita@ipmu.jp, E-mail: shinji.mukohyama@ipmu.jp
2012-10-01
Recently observational lower bounds on the strength of cosmic magnetic fields were reported, based on γ-ray flux from distant blazars. If inflation is responsible for the generation of such magnetic fields then the inflation energy scale is bounded from above as ρ{sub inf}{sup 1/4} < 2.5 × 10{sup −7}M{sub Pl} × (B{sub obs}/10{sup −15}G){sup −2} in a wide class of inflationary magnetogenesis models, where B{sub obs} is the observed strength of cosmic magnetic fields. The tensor-to-scalar ratio is correspondingly constrained as r < 10{sup −19} × (B{sub obs}/10{sup −15}G){sup −8}. Therefore, if the reported strength B{sub obs} ≥ 10{sup −15}Gmore » is confirmed and if any signatures of gravitational waves from inflation are detected in the near future, then our result indicates some tensions between inflationary magnetogenesis and observations.« less
Scientific Assessment Group for Experiments in Non-Accelerator Physics (SAGENAP)
1997-03-01
sources cannot be distant cosmological sources because of the energy loss resulting from interactions with the cosmic microwave background radiation...least as importantly, it appears necessary for the development of a consistent picture of cosmology e.g. primordial nucleosynthesis) that there is a...Goldstone boson associated with this symmetry breaking is called the axion. This process is analogous to the mechanism leading to the Higgs particle
Cosmic ray signatures of a 2-3 Myr old local supernova
NASA Astrophysics Data System (ADS)
Kachelrieß, M.; Neronov, A.; Semikoz, D. V.
2018-03-01
The supernova explosion which deposited
High-z Universe with Gamma Ray Bursts
NASA Technical Reports Server (NTRS)
Kouveliotou, C.
2011-01-01
Gamma-Ray Bursts (GRBs) are the most luminous explosions in space and trace the cosmic star formation history back to the first generations of stars. Their bright afterglows allow us to trace the abundances of heavy elements to large distances, thereby measuring cosmic chemical evolution. To date GRBs have been detected up to distances of z=8.23 and possibly even beyond z9. This makes GRBs a unique and powerful tool to probe the high-z Universe up to the re-ionization era. We discuss the current status of the field, place it in context with other probes, and also discuss new mission concepts that have been planned to utilize GRBs as probes.
NASA Technical Reports Server (NTRS)
Borden, David; Ostriker, Jeremiah P.; Weinberg, David H.
1989-01-01
If galaxies form on shells, then clusters of galaxies should form at the vertices where three shells intersect. Weinberg, Ostriker, and Dekel (WOD, 1989) studied this picture quantitatively and found that an intersecting spherical shell model reproduces many of the properties of the observed distribution of galaxy clusters, but that too much superclustering is produced. In this paper, the WOD analysis is repeated with prolate spheroids that could be created by superconducting cosmic strings. It is found that most of the attractive features of the WOD model are maintained in the more general case and there is slight improvement in some aspects, but that the overall problem of excessive superclustering is not really alleviated.
Mass content of ultrahigh-energy cosmic rays within different time periods
NASA Astrophysics Data System (ADS)
Glushkov, A. V.
2014-03-01
Estimates obtained for the average atomic number
Pfefferbaum, B; Seale, T W; McDonald, N B; Brandt, E N; Rainwater, S M; Maynard, B T; Meierhoefer, B; Miller, P D
2000-01-01
This article describes Posttraumatic Stress Disorder (PTSD) symptomatology in 69 sixth-grade youths who resided within 100 miles of Oklahoma City at the time of the 1995 bombing of the Alfred P. Murrah Federal Building. These youths neither had any direct physical exposure nor personally knew anyone killed or injured in the explosion. A survey conducted two years after the bombing assessed exposure, PTSD symptoms, and functioning. PTSD symptom frequency was measured with the Impact of Event Scale--Revised. Our BCD criteria for defining PTSD caseness was modeled after DSM-IV B, C, and D criteria requiring one reexperiencing, three avoidance/numbing, and two arousal symptoms for diagnosis. Those who met our BCD criteria had significantly higher PTSD symptom scores than those who did not. Both increased mean PTSD symptom score and meeting our caseness definition were associated with increased functioning difficulties. Media exposure and indirect interpersonal exposure (having a friend who knew someone killed or injured) were significant predictors of symptomatology. These findings suggest that children geographically distant from disaster who have not directly experienced an interpersonal loss report PTSD symptoms and functional impairment associated with increased media exposure and indirect loss.
Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013).
Tajitsu, Akito; Sadakane, Kozo; Naito, Hiroyuki; Arai, Akira; Aoki, Wako
2015-02-19
The origin of lithium (Li) and its production process have long been uncertain. Li could be produced by Big Bang nucleosynthesis, interactions of energetic cosmic rays with interstellar matter, evolved low-mass stars, novae, and supernova explosions. Chemical evolution models and observed stellar Li abundances suggest that at least half the Li may have been produced in red giants, asymptotic giant branch (AGB) stars, and novae. No direct evidence, however, for the supply of Li from evolved stellar objects to the Galactic medium has hitherto been found. Here we report the detection of highly blue-shifted resonance lines of the singly ionized radioactive isotope of beryllium, (7)Be, in the near-ultraviolet spectra of the classical nova V339 Del (Nova Delphini 2013) 38 to 48 days after the explosion. (7)Be decays to form (7)Li within a short time (half-life of 53.22 days). The (7)Be was created during the nova explosion via the alpha-capture reaction (3)He(α,γ)(7)Be (ref. 5). This result supports the theoretical prediction that a significant amount of (7)Li is produced in classical nova explosions.
NASA Technical Reports Server (NTRS)
Cline, Thomas L.
1987-01-01
The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.
The sub-energetic gamma-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425.
Soderberg, A M; Kulkarni, S R; Berger, E; Fox, D W; Sako, M; Frail, D A; Gal-Yam, A; Moon, D S; Cenko, S B; Yost, S A; Phillips, M M; Persson, S E; Freedman, W L; Wyatt, P; Jayawardhana, R; Paulson, D
2004-08-05
Over the six years since the discovery of the gamma-ray burst GRB 980425, which was associated with the nearby (distance approximately 40 Mpc) supernova 1998bw, astronomers have debated fiercely the nature of this event. Relative to bursts located at cosmological distance (redshift z approximately 1), GRB 980425 was under-luminous in gamma-rays by three orders of magnitude. Radio calorimetry showed that the explosion was sub-energetic by a factor of 10. Here we report observations of the radio and X-ray afterglow of the recent GRB 031203 (refs 5-7), which has a redshift of z = 0.105. We demonstrate that it too is sub-energetic which, when taken together with the low gamma-ray luminosity, suggests that GRB 031203 is the first cosmic analogue to GRB 980425. We find no evidence that this event was a highly collimated explosion viewed off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows. We expect intensive follow-up of faint bursts with smooth gamma-ray light curves (common to both GRB 031203 and 980425) to reveal a large population of such events.
Hand-Held Devices Detect Explosives and Chemical Agents
NASA Technical Reports Server (NTRS)
2010-01-01
Ion Applications Inc., of West Palm Beach, Florida, partnered with Ames Research Center through Small Business Innovation Research (SBIR) agreements to develop a miniature version ion mobility spectrometer (IMS). While NASA was interested in the instrument for detecting chemicals during exploration of distant planets, moons, and comets, the company has incorporated the technology into a commercial hand-held IMS device for use by the military and other public safety organizations. Capable of detecting and identifying molecules with part-per-billion sensitivity, the technology now provides soldiers with portable explosives and chemical warfare agent detection. The device is also being adapted for detecting drugs and is employed in industrial processes such as semiconductor manufacturing.
Relic neutrinos, monopoles, and cosmic rays above ~1020 eV
NASA Astrophysics Data System (ADS)
Weiler, Thomas J.
1998-06-01
The observation of cosmic ray events above the Greisen-Kuzmin-Zatsepin (GZK) cut-off of 5×1019 eV offers an enormous opportunity for the discovery of new physics. We explore two possible origins for these super-GZK events. The first example uses Standard Model (SM) physics augmented only by <~ eV neutrino masses as suggested by solar, atmospheric, and terrestrial neutrino detection, and by the cosmological need for a hot dark matter component. In this example, cosmic ray neutrinos from distant, highest energy sources annihilate relatively nearby on the relic neutrino background to produce ``Z-bursts,'' highly collimated, highly boosted (γZ~1011) hadronic jets. The SM and hot Big Bang cosmology give the probability for each neutrino flavor at its resonant energy to annihilate within the halo of our galactic supercluster as likely within an order of magnitude of 1%. The kinematics are completely determined by the neutrino masses and the properties of the Z boson. The burst energy is ER=4 (eV/mν)×1021 eV, and the burst content includes, on average, thirty photons and 2.7 nucleons with super-GZK energies. The second example goes beyond SM physics to invoke relativistic magnetic monopoles as the cosmic ray primaries. Motivations for this hypothesis are twofold: (i) conventional primaries are problematic, while monopoles are naturally accelerated to E~1020 eV by galactic magnetic fields; (ii) the observed highest energy cosmic ray flux is just a few orders of magnitude below the Parker flux limit for monopoles. By matching the cosmic monopole production mechanism to the observed highest energy cosmic ray flux we estimate the monopole mass to be <~1010 GeV. Several tests of the neutrino annihilation and monopole hypotheses are indicated.
Cosmic rays and terrestrial life: A brief review
NASA Astrophysics Data System (ADS)
Atri, Dimitra; Melott, Adrian L.
2014-01-01
“The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.
Cosmology: A research briefing
NASA Technical Reports Server (NTRS)
1995-01-01
As part of its effort to update topics dealt with in the 1986 decadal physics survey, the Board on Physics and Astronomy of the National Research Council (NRC) formed a Panel on Cosmology. The Panel produced this report, intended to be accessible to science policymakers and nonscientists. The chapters include an overview ('What Is Cosmology?'), a discussion of cosmic microwave background radiation, the large-scale structure of the universe, the distant universe, and physics of the early universe.
NASA Technical Reports Server (NTRS)
Brownlee, Donald E.; Sandford, Scott A.
1992-01-01
Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.
NASA Astrophysics Data System (ADS)
Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth
2015-06-01
Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the "stopping power" of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.
Pixel CdTe semiconductor module to implement a sub-MeV imaging detector for astrophysics
NASA Astrophysics Data System (ADS)
Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Pellegrini, G.; Lozano, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.
2017-03-01
Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of nova and supernova explosions in X and gamma rays, with the use of space missions such as INTEGRAL, XMM-Newton and Swift. We have been also involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes, such as GRI, DUAL and e-ASTROGAM. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs). In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm, with a pixel pitch of 1mm x 1mm. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. An ohmic CdTe pixel detector has been characterised by means of 57Co, 133Ba and 22Na sources. Based on this, its spectroscopic performance and the influence of charge sharing is reported here. The pixel study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the pixel size selection.
Giant Primeval Magnetic Dipoles
NASA Astrophysics Data System (ADS)
Thompson, Christopher
2017-07-01
Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.
Probabilistic Cross-identification of Cosmic Events
NASA Astrophysics Data System (ADS)
Budavári, Tamás
2011-08-01
I discuss a novel approach to identifying cosmic events in separate and independent observations. The focus is on the true events, such as supernova explosions, that happen once and, hence, whose measurements are not repeatable. Their classification and analysis must make the best use of all available data. Bayesian hypothesis testing is used to associate streams of events in space and time. Probabilities are assigned to the matches by studying their rates of occurrence. A case study of Type Ia supernovae illustrates how to use light curves in the cross-identification process. Constraints from realistic light curves happen to be well approximated by Gaussians in time, which makes the matching process very efficient. Model-dependent associations are computationally more demanding but can further boost one's confidence.
Interpretation of the COBE FIRAS CMBR spectrum
NASA Technical Reports Server (NTRS)
Wright, E. L.; Mather, J. C.; Fixsen, D. J.; Kogut, A.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Silverberg, R. F.; Smoot, G. F.
1994-01-01
The cosmic microwave background radiation (CMBR) spectrum measured by the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on NASA's Cosmic Background Explorer (COBE) is indistinguishable from a blackbody, implying stringent limits on energy release in the early universe later than the time t = 1 yr after the big bang. We compare the FIRAS data to previous precise measurements of the cosmic microwave background spectrum and find a reasonable agreement. We discuss the implications of the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) 95% confidence limits found by Mather et al. (1994) on many processes occurring after t = 1 yr, such as explosive structure formation, reionization, and dissipation of small-scale density perturbations. We place limits on models with dust plus Population III stars, or evolving populations of IR galaxies, by directly comparing the Mather et al. spectrum to the model predictions.
Cosmic ray injection spectrum at the galactic sources
NASA Astrophysics Data System (ADS)
Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay
The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.
Fading Supernova Creates Spectacular Light Show
NASA Technical Reports Server (NTRS)
2003-01-01
This image of SN 1987A, taken November 28, 2003 by the Advanced Camera for Surveys aboard NASA's Hubble Space Telescope (HST), shows many bright spots along a ring of gas, like pearls on a necklace. These cosmic pearls are being produced as superior shock waves unleashed during an explosion slam into the ring at more than a million miles per hour. The collision is heating the gas ring, causing its irnermost regions to glow. Astronomers detected the first of these hot spots in 1996, but now they see dozens of them all around the ring. With temperatures surging from a few thousand degrees to a million degrees, the flares are increasing in number. In the next few years, the entire ring will be ablaze as it absorbs the full force of the crash and is expected to become bright enough to illuminate the star's surroundings. Astronomers will then be able to obtain information on how the star ejected material before the explosion. The elongated and expanding object in the center of the ring is debris form the supernova blast which is being heated by radioactive elements, principally titanium 44, that were created in the explosion. This explosion was first observed by astronomers seventeen years ago in 1987, although the explosion took place about 160,000 years ago.
History of Hubble Space Telescope (HST)
2003-11-28
This image of SN 1987A, taken November 28, 2003 by the Advanced Camera for Surveys aboard NASA's Hubble Space Telescope (HST), shows many bright spots along a ring of gas, like pearls on a necklace. These cosmic pearls are being produced as superior shock waves unleashed during an explosion slam into the ring at more than a million miles per hour. The collision is heating the gas ring, causing its irnermost regions to glow. Astronomers detected the first of these hot spots in 1996, but now they see dozens of them all around the ring. With temperatures surging from a few thousand degrees to a million degrees, the flares are increasing in number. In the next few years, the entire ring will be ablaze as it absorbs the full force of the crash and is expected to become bright enough to illuminate the star's surroundings. Astronomers will then be able to obtain information on how the star ejected material before the explosion. The elongated and expanding object in the center of the ring is debris form the supernova blast which is being heated by radioactive elements, principally titanium 44, that were created in the explosion. This explosion was first observed by astronomers seventeen years ago in 1987, although the explosion took place about 160,000 years ago.
NASA Astrophysics Data System (ADS)
Lucena, P.; Gaona, I.; Moros, J.; Laserna, J. J.
2013-07-01
Detection of explosive-contaminated human fingerprints constitutes an analytical challenge of high significance in security issues and in forensic sciences. The use of a laser-induced breakdown spectroscopy (LIBS) sensor working at 31 m distance to the target, fitted with 2D scanning capabilities and designed for capturing spectral information from laser-induced plasmas of fingerprints is presented. Distribution chemical maps based on Na and CN emissions are used to locate and detect chloratite, DNT, TNT, RDX and PETN residues that have been deposited on the surface of aluminum and glass substrates. An effectiveness of 100% on fingerprints detection, regardless the substrate scanned, is reached. Environmental factors that affect the prevalence of the fingerprint LIBS response are discussed.
NASA Technical Reports Server (NTRS)
Binns, W. Robert
2004-01-01
Among the most fundamental astrophysical problems is understanding the mechanism by which particles are accelerated to the enormous energies observed in the cosmic rays. That problem can be conveniently divided into two questions: (1) What is the source of the energy and the mechanism for converting the energy of that source into the energy of individual cosmic-ray nuclei, and (2) what is the source of the material that is accelerated and the mechanism for injecting that material into the cosmic-ray accelerator? There is a general consensus that the answer to the first of these questions, for nuclei with energy eV, is that the source of their energy is almost certainly from supernova explosions (e.g., Ginzburg & Syrovatskii, 1964). The answer to the second question is still uncertain, although evidence in favor of a superbubble origin of cosmic rays is becoming quite significant (Higdon et al, 2203 and Binns, 2005 (Submitted to ApJ). There are several ways of interpreting available data that lead to quite different models for the source of the material and its injection mechanism. With the The Trans-Iron Galactic Element Recorder Experiment (TIGER) instrument we have obtained data that will help to distinguish among these possible models. In the report, the TIGER flights, the instrument itself, results, and a publication list as a result of the work are presented.
Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Leiph
Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti)more » by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.« less
The Contribution of Stellar Winds to Cosmic Ray Production
NASA Astrophysics Data System (ADS)
Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu
2018-04-01
Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.
NASA Astrophysics Data System (ADS)
Soderberg, Alicia M.
2014-01-01
For decades, the study of stellar explosions -- supernovae -- have focused almost exclusively on the strong optical emission that dominates the bolometric luminosity in the days following the ultimate demise of the star. Yet many of the leading breakthroughs in our understanding of stellar death have been enabled by obtaining data at other wavelengths. For example, I have shown that 1% of all supernovae give rise to powerful relativistic jets, representing the biggest bangs in the Universe since the Big Bang. My recent serendipitous X-ray discovery of a supernova in the act of exploding (“in flagrante delicto”) revealed a novel technique to discover new events and provide clues on the shock physics at the heart of the explosion. With the advent of sensitive new radio telescopes, my research group combines clues from across the electromagnetic spectrum (radio to gamma-ray), leading us to a holistic study of stellar death, the physics of the explosions, and their role in fertilizing the Universe with new elements, by providing the community with cosmic autopsy reports.
Core-collapse SNe of type IIP and their progenitors: The case study of PNV J01315945+3328458
NASA Astrophysics Data System (ADS)
Dastidar, Raya; Kumar, Brijesh; Sahu, Devendra Kumar; Misra, Kuntal; Singh, Mridweeka; Gangopadhyay, Anjasha; Anapuma, Gadiyara Chakrapani; Pandey, Shashi Bhushan
2018-04-01
The type II supernovae (SNe) are hydrogen-rich cosmic explosions resulting from the collapse of massive stars. The impetus of studying individual events arises from its cosmological importance and the diverse understanding of the evolution and explosion mechanism of such events. In this work, we present the preliminary photometric and spectroscopic analysis of a recent type IIP explosion, PNV J01315945+3328458 in the galaxy NGC 582. While the initial phases of these energetic events are bright enough to be observed with the 1-2m class telescopes, the supernovae fade below the detection limit of these telescopes in the nebular phase. In addition, the class of sub-luminous events with Mv ˜ -15 or the events occurring at higher redshift, fade below the detection limit of these telescopes very early in their evolution. Large aperture telescopes like the newly installed 3.6m Devasthal Optical Telescope (DOT) will ensure a longer coverage of such events and also to probe deeper into the Universe. With the 3.6m telescope installed in Devasthal (DOT), we plan to study the progenitor environment of CCSNe to infer the metallicity at the explosion site.
Electric currents in cosmic plasmas
NASA Technical Reports Server (NTRS)
Alfven, H.
1977-01-01
It is suggested that dualism is essential for the physics of cosmic plasmas, that is, that some phenomena should be described by a magnetic field formalism, and others by an electric current formalism. While in earlier work the magnetic field aspect has dominated, at present there is a systematic exploration of the particle (or current) aspect. A number of phenomena which can be understood only from the particle aspect are surveyed. Topics include the formation of electric double layers, the origin of 'explosive' events like magnetic substorms and solar flares, and the transfer of energy from one region to another. A method for exploring many of these phenomena is to draw the electric circuit in which the current flows and then study its properties. A number of simple circuits are analyzed in this way.
Big Explosions, Strong Gravity: Making Girl Scouts ACEs of Space through Chandra Outreach
NASA Astrophysics Data System (ADS)
Hornschemeier, A. E.; Lochner, J. C.; Ganguly, R.; Feaga, L. M.; Ford, K. E. S.
2005-12-01
Thanks to two years of Chandra E/PO funding we have carried out a number of successful activities with the Girl Scouts of Central Maryland, focusing on girls in the 11-17 year age range. Our reasons for targeting this age range include the general decline in interest in math and science that occurs at or after children reach this critical age (meaning that we reach them early enough to have a positive effect). We initially target girls due to their underrepresentation in science, but the actitivities are all gender-neutral and highly adaptable to other groups. The program includes two components, in collaboration with Girl Scouts of Central Maryland. The first component is a well-established one-day Girl Scout patch activity entitled Big Explosions and Strong Gravity (BESG) where the girls earn a patch for their badge sash. The four BESG activities, mostly adapted from existing E/PO material, are available on the World Wide Web for use by others. The activities cover the electromagnetic spectrum as a tool for astronomy, the cosmic abundance of the elements and the supernova origin of many of the elements, black holes and their detection, and supernova explosions/stellar evolution. Thus far approximately 200 girls and their parents have participated in BESG and it has now become part of the council culture. The second activity is new and is part of the relatively new Girl Scout Studio 2B program, which is a girl-led program for the 11-17 year age range. Based on several meetings with small groups of girls and adults, we have formed a Studio 2B "club" called the ACE of Space Club (Astronomical Cosmic Exploration). We'll describe our experiences interacting with the Girl Scouts in this girl-led program.
AMEGO as a supernova alarm: alert, probe and diagnosis of Type Ia explosions
NASA Astrophysics Data System (ADS)
McEnery, Julie E.; Wang, Xilu
2017-08-01
A Type Ia supernova (SNIa) could go entirely unnoticed in the Milky Way and nearby starburst galaxies, due to the large optical and near-IR extinction in the dusty environment, low radio and X-ray luminosities, and a weak neutrino signal. But the recent SN2014J confirms that Type Ia supernovae emit γ-ray lines from 56Ni → 56Co → 56Fe radioactive decay, spanning 158 keV to 2.6 MeV. The Galaxy and nearby starbursts are optically thin to γ-rays, so the supernova line flux will suffer negligible extinction. The All-Sky Medium Energy Gamma-ray Observatory (AMEGO) will monitor the entire sky every 3 hours from ~200 keV to >10 GeV. Most of the SNIa gamma-ray lines are squarely within the AMEGO energy range. Thus AMEGO will be an ideal SNIa monitor and early warning system. We will show that the supernova signal is expected to emerge as distinct from the AMEGO background within days after the explosion in the SN2014J shell model. The early stage observations of SNIa will allow us to explore the progenitor types and the nucleosynthesis of SNIa. Moreover, with the excellent line sensitivity, AMEGO will be able to detect the SNIa at a rate of a few events per year and will obtain enough gamma-ray observations over the mission lifetimes (~10 SNIa) to sample the SNIa. The high SNIa detection rate will also enable the precise measurement of the 56Ni mass generated during the Type Ia explosion, which will help us test the cosmic distance calibration and probe the cosmic acceleration.
IMPULSIVE SPOT HEATING AND THERMAL EXPLOSION OF INTERSTELLAR GRAINS REVISITED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivlev, A. V.; Röcker, T. B.; Vasyunin, A.
The problem of the impulsive heating of dust grains in cold, dense interstellar clouds is revisited theoretically with the aim of better understanding the leading mechanisms of the explosive desorption of icy mantles. We rigorously show that if the heating of a reactive medium occurs within a sufficiently localized spot (e.g., the heating of mantles by cosmic rays (CRs)), then the subsequent thermal evolution is characterized by a single dimensionless number λ. This number identifies a bifurcation between two distinct regimes: when λ exceeds a critical value (threshold), the heat equation exhibits the explosive solution, i.e., the thermal (chemical) explosionmore » is triggered. Otherwise, thermal diffusion causes the deposited heat to spread over the entire grain—this regime is commonly known as whole-grain heating. The theory allows us to find a critical combination of physical parameters that govern the explosion of icy mantles due to impulsive spot heating. In particular, our calculations suggest that heavy CR species (e.g., iron ions) colliding with dust are able to trigger the explosion. Based on recently calculated local CR spectra, we estimate the expected rate of explosive desorption. The efficiency of the desorption, which in principle affects all solid species independent of their binding energy, is shown to be comparable to other CR desorption mechanisms typically considered in the literature. Also, the theory allows us to estimate the maximum abundances of reactive species that may be stored in the mantles, which provides important constraints on the available astrochemical models.« less
Bousso, Raphael
2014-01-31
If information escapes from an evaporating black hole, then field modes just outside the horizon must be thermally entangled with distant Hawking radiation. But for an infalling observer to find empty space at the horizon, the same modes would have to be entangled with the black hole interior. Thus, unitarity appears to require a "firewall" at the horizon. Identifying the interior with the distant radiation promises to resolve the entanglement conflict and restore the vacuum. But the map must adjust for any interactions, or else the firewall will reappear if the Hawking radiation scatters off the cosmic microwave background. Such a map produces a "frozen vacuum," a phenomenon that is arguably worse than a firewall. An infalling observer is unable to excite the vacuum near the horizon. This allows the horizon to be locally detected and so violates the equivalence principle.
Star Formation in Distant Red Galaxies: Spitzer Observations in the Hubble Deep Field-South
NASA Astrophysics Data System (ADS)
Webb, Tracy M. A.; van Dokkum, Pieter; Egami, Eiichi; Fazio, Giovanni; Franx, Marijn; Gawiser, Eric; Herrera, David; Huang, Jiasheng; Labbé, Ivo; Lira, Paulina; Marchesini, Danilo; Maza, José; Quadri, Ryan; Rudnick, Gregory; van der Werf, Paul
2006-01-01
We present Spitzer 24 μm imaging of 1.5
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Bradley, Larry; Huang, Kuang-Han; Ryan, Russell; Dawson, Will; Zitrin, Adi; Hoag, Austin; Jones, Christine; Czakon, Nicole; Sharon, Keren; Trenti, Michele; Stark, Daniel; Bouwens, Rychard
2015-10-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). Furthermore, it is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z>7-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind 41 powerful cosmic telescopes selected using Planck data from the RELICS program (Reionization Lensing Cluster Survey; 190 HST orbits). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to detect early galaxies with Spitzer and directly study stellar properties of a large number, ~20 galaxies (10 at z~7, 7 at z~8, 3 at z~9, and 1 at z~10). Spitzer data will much improve photometric redshifts of the earliest galaxies and will be crucial to ascertain the nature of any z>~10 candidate galaxies uncovered in the HST data. Spitzer also allows for an efficient selection of likely line emitters (as demonstrated by our recent spectroscopic confirmation of the most distant galaxy to date at z=8.68). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z~9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.
Constraining the Epoch of Reionization from the Observed Properties of the High-z Universe
NASA Astrophysics Data System (ADS)
Salvador-Solé, Eduard; Manrique, Alberto; Guzman, Rafael; Rodríguez Espinosa, José Miguel; Gallego, Jesús; Herrero, Artemio; Mas-Hesse, J. Miguel; Marín Franch, Antonio
2017-01-01
We combine observational data on a dozen independent cosmic properties at high-z with the information on reionization drawn from the spectra of distant luminous sources and the cosmic microwave background (CMB) to constrain the interconnected evolution of galaxies and the intergalactic medium since the dark ages. The only acceptable solutions are concentrated in two narrow sets. In one of them reionization proceeds in two phases: a first one driven by Population III stars, completed at z˜ 10, and after a short recombination period a second one driven by normal galaxies, completed at z˜ 6. In the other set both kinds of sources work in parallel until full reionization at z˜ 6. The best solution with double reionization gives excellent fits to all the observed cosmic histories, but the CMB optical depth is 3σ larger than the recent estimate from the Planck data. Alternatively, the best solution with single reionization gives less good fits to the observed star formation rate density and cold gas mass density histories, but the CMB optical depth is consistent with that estimate. We make several predictions, testable with future observations, that should discriminate between the two reionization scenarios. As a byproduct our models provide a natural explanation to some characteristic features of the cosmic properties at high-z, as well as to the origin of globular clusters.
The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust
NASA Astrophysics Data System (ADS)
Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel
2018-06-01
Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat Λ cold dark matter (ΛCDM) cosmological model based on baryon acoustic oscillations and cosmic microwave background measurements, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03 ± 0.01 {({stat})} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z < 0.05. While there are known systematic uncertainties that combined could explain the observed offset, here we entertain the possibility that the discrepancy may instead be explained by scattering of supernova light in the intergalactic medium (IGM). We focus on two effects: Compton scattering by free electrons and extinction by dust in the IGM. We find that if the discrepancy is entirely due to dimming by dust, the measurements can be modelled with a cosmic dust density Ω _IGM^dust = 8 × 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 × 10-5 mag Mpc-1 in V band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.
An intensity map of hydrogen 21-cm emission at redshift z approximately 0.8.
Chang, Tzu-Ching; Pen, Ue-Li; Bandura, Kevin; Peterson, Jeffrey B
2010-07-22
Observations of 21-cm radio emission by neutral hydrogen at redshifts z approximately 0.5 to approximately 2.5 are expected to provide a sensitive probe of cosmic dark energy. This is particularly true around the onset of acceleration at z approximately 1, where traditional optical cosmology becomes very difficult because of the infrared opacity of the atmosphere. Hitherto, 21-cm emission has been detected only to z = 0.24. More distant galaxies generally are too faint for individual detections but it is possible to measure the aggregate emission from many unresolved galaxies in the 'cosmic web'. Here we report a three-dimensional 21-cm intensity field at z = 0.53 to 1.12. We then co-add neutral-hydrogen (H i) emission from the volumes surrounding about 10,000 galaxies (from the DEEP2 optical galaxy redshift survey). We detect the aggregate 21-cm glow at a significance of approximately 4sigma.
The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes
NASA Technical Reports Server (NTRS)
Thompson, David J.
2010-01-01
Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.
Co/Ni Ratio Between Is Approximately 0.35 - 8.0 GeV/nucleon from the TIGER-2001 Flight
NASA Technical Reports Server (NTRS)
deNolfo, G. A.; Barbier, L. M.; Binns, W. R.; Cummings, J. R.; Geier, S.; Israel, M. N.; Link, J. T.; Mewaldt, R. A.; Mitchell, J. W.; Rauch, B. F.;
2007-01-01
The Trans-Iron Galactic Element Recorder (TIGER) was launched in December 2001 and 2003 from McMurdo, Antarctica and was designed to observe elements ranging from 14 < Z < 40 over an extended energy range. Observations of radioactive isotopes produced during explosive nucleosynthesis such as Ni-59 that decay only through electron capture provide important constraints on the delay between nucleosynthesis and the acceleration of galactic cosmic rays (GCRs). The isotopes of Co and Ni at low energies, in particular, the observations of the Ni-59 and Co-59 from the Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer, indicate a significant time delay (greater than 7.6 x 10^4 yr) between GCR nucleosynthesis and acceleration. While TIGER is not able to resolve isotopes, observations of the elemental abundances of Co and Ni at high energies further constrain models for the acceleration and propagation of GCRs. The 2001 & 2003 flights of TIGER lasted a total of approx. 50 days and collected sufficient statistics to study the Co/Ni elemental ratio over a wide range in energies. We present the elemental ratio of Co/Ni in galactic cosmic rays between approx. 0.8- 5.0 GeV/nucleon and compare these results with previous measurements and models for cosmic-ray propagation.
How to See a Recently Discovered Supernova
Nugent, Peter
2017-12-12
Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth â approximately 21 million light-years away â than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The finding of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many telescopes as possible, including the Hubble Space Telescope. More info on how to see it: http://newscenter.lbl.gov/feature-stories/2011/08/31/glimpse-cosmic-explosion/ News release: http://newscenter.lbl.gov/feature-stories/2011/08/25/supernova/
How to See a Recently Discovered Supernova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugent, Peter
2011-08-31
Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth — approximately 21 million light-years away — than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The finding of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many telescopes as possible, including the Hubble Space Telescope. More info on how to see it: http://newscenter.lbl.gov/feature-stories/2011/08/31/glimpse-cosmic-explosion/ News release:more » http://newscenter.lbl.gov/feature-stories/2011/08/25/supernova/« less
Space Weather: Linking Stellar Explosions to the Human Endeavor
NASA Astrophysics Data System (ADS)
Knipp, Delores
2017-06-01
Arguably humans have flourished as a result of stellar explosions; we are, after all, stardust. Nonetheless, rapid technology advances of the last 200 years sometimes put society and individuals on a collision course with the natural variability of stellar and solar atmospheres. Human space exploration, routine satellite navigation system applications, aviation safety, and electric power grids are examples of such vulnerable endeavors. In this presentation I will outline how global society relies on ‘normal’ solar and stellar emissions, yet becomes susceptible to extremes of these emissions. The imprints of these astronomical-terrestrial interactions abound. In particular, I will highlight ways in which stellar/solar bursts link with our space-atmosphere-interaction region, producing multi-year patterns in cosmic ray detection, gorgeous aurora, and deep concern for good order and function of global community.
Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources
NASA Astrophysics Data System (ADS)
D'Angelo, Marta; Morlino, Giovanni; Amato, Elena; Blasi, Pasquale
2018-02-01
The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfvén waves excited through streaming instability near the sources. Depending on the amount of neutral hydrogen present in the regions around the sites of supernova explosions, cosmic rays may accumulate an appreciable grammage in the same regions and get self-confined for non-negligible times, which in turn results in an enhanced rate of production of secondaries. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended haloes as due to pion production induced by self-confined cosmic rays. We find that if the density of neutrals is low, the haloes can account for a substantial fraction of the diffuse emission observed by Fermi-Large Area Telescope (LAT), depending on the orientation of the line of sight with respect to the direction of the Galactic Centre.
Milky Way's super-efficient particle accelerators caught in the act
NASA Astrophysics Data System (ADS)
2009-06-01
Thanks to a unique "ballistic study" that combines data from ESO's Very Large Telescope and NASA's Chandra X-ray Observatory, astronomers have now solved a long-standing mystery of the Milky Way's particle accelerators. They show in a paper published today on Science Express that cosmic rays from our galaxy are very efficiently accelerated in the remnants of exploded stars. ESO PR Photo 23a/09 The rim of RCW 86 ESO PR Photo 23b/09 DSS + insert, annotated ESO PR Photo 23c/09 DSS image ESO PR Video 23a/09 Zoom-in RCW 86 During the Apollo flights astronauts reported seeing odd flashes of light, visible even with their eyes closed. We have since learnt that the cause was cosmic rays -- extremely energetic particles from outside the Solar System arriving at the Earth, and constantly bombarding its atmosphere. Once they reach Earth, they still have sufficient energy to cause glitches in electronic components. Galactic cosmic rays come from sources inside our home galaxy, the Milky Way, and consist mostly of protons moving at close to the speed of light, the "ultimate speed limit" in the Universe. These protons have been accelerated to energies exceeding by far the energies that even CERN's Large Hadron Collider will be able to achieve. "It has long been thought that the super-accelerators that produce these cosmic rays in the Milky Way are the expanding envelopes created by exploded stars, but our observations reveal the smoking gun that proves it", says Eveline Helder from the Astronomical Institute Utrecht of Utrecht University in the Netherlands, the first author of the new study. "You could even say that we have now confirmed the calibre of the gun used to accelerate cosmic rays to their tremendous energies", adds collaborator Jacco Vink, also from the Astronomical Institute Utrecht. For the first time Helder, Vink and colleagues have come up with a measurement that solves the long-standing astronomical quandary of whether or not stellar explosions produce enough accelerated particles to explain the number of cosmic rays that hit the Earth's atmosphere. The team's study indicates that they indeed do and it directly tells us how much energy is removed from the shocked gas in the stellar explosion and used to accelerate particles. "When a star explodes in what we call a supernova a large part of the explosion energy is used for accelerating some particles up to extremely high energies", says Helder. "The energy that is used for particle acceleration is at the expense of heating the gas, which is therefore much colder than theory predicts". The researchers looked at the remnant of a star that exploded in AD 185, as recorded by Chinese astronomers. The remnant, called RCW 86, is located about 8200 light-years away towards the constellation of Circinus (the Drawing Compass). It is probably the oldest record of the explosion of a star. Using ESO's Very Large Telescope, the team measured the temperature of the gas right behind the shock wave created by the stellar explosion. They measured the speed of the shock wave as well, using images taken with NASA's X-ray Observatory Chandra three years apart. They found it to be moving at between 10 and 30 million km/h, between 1 and 3 percent the speed of light. The temperature of the gas turned out to be 30 million degrees Celsius. This is quite hot compared to everyday standards, but much lower than expected, given the measured shock wave's velocity. This should have heated the gas up to at least half a billion degrees. "The missing energy is what drives the cosmic rays", concludes Vink. More Information This research was presented in a paper to appear in Science: Measuring the cosmic ray acceleration efficiency of a supernova remnant, by E. A. Helder et al. The team is composed of E.A. Helder, J. Vink and F. Verbunt (Astronomical Institute Utrecht, Utrecht University, The Netherlands), C.G. Bassa and J.A.M. Bleeker (SRON, Netherlands Institute for Space Research, The Netherlands), A. Bamba (ISAS/JAXA Department of High Energy Astrophysics, Kanagawa, Japan), S. Funk (Kavli Institute for Particle Astrophysics and Cosmology, Stanford, USA), P. Ghavamian (Space Telescope Science Institute, Baltimore, USA), K. J. van der Heyden (University of Cape Town, South Africa), and R. Yamazaki (Department of Physical Science, Hiroshima University, Japan). C.G. Bassa is also affiliated with the Radboud University Nijmegen, the Netherlands. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Fast radio bursts as a cosmic probe?
NASA Astrophysics Data System (ADS)
Zhou, Bei; Li, Xiang; Wang, Tao; Fan, Yi-Zhong; Wei, Da-Ming
2014-05-01
We discuss the possibility of using fast radio bursts (FRBs)—if cosmological—as a viable cosmic probe. We find that the contribution of the host galaxies to the detected dispersion measures can be inapparent for the FRBs that are not from galaxy centers or star-forming regions. The inhomogeneity of the intergalactic medium (IGM), however, causes significant deviation of the dispersion measure from that predicted in the simplified homogeneous IGM model for an individual event. Fortunately, with sufficient FRBs along different sightlines but within a very narrow redshift interval (e.g., Δz ˜0.05), the mean obtained from averaging observed dispersion measures does not suffer such a problem and hence may be used as a cosmic probe. We show that in the optimistic case (e.g., about 20 FRBs in each Δz have been measured; the most distant FRBs were at redshift ≥3; the host galaxies and the FRB sources contribute little to the detected dispersion measures) and with all the uncertainties (i.e., the inhomogeneity of the IGM, the contribution and uncertainty of host galaxies, and the evolution and error of fIGM) considered, FRBs could help constrain the equation of state of dark energy.
The Origin Of Cosmic Rays And The Stars Of Berkeley 87
NASA Astrophysics Data System (ADS)
Turner, David G.; Majaess, D. J.; Lane, D. J.; Balam, D. D.
2010-01-01
Spectroscopic observations and the results of photometric monitoring are presented for members of the heavily-reddened, young, 1.2 kpc-distant, open cluster Berkeley 87, which is spatially coincident with the strongest source of cosmic rays in the northern sky. Many cluster members exhibit evidence for extreme loss of mass over their lifetimes: the M3 Ia supergiant BC Cyg has an evolutionary mass half that of stars at the main-sequence turnoff, the B2 Iabe emission-line supergiant HDE 229059 also has an evolutionary mass smaller than that of the main-sequence turnoff, the WO2 star WR 142, the only example of an oxygen sequence Wolf-Rayet star in an open cluster, displays evidence for variable, high velocity winds in its spectrum, the curious object V439 Cyg (B0: Vnne) appears to be an example of a recent binary merger, and Vatican Emission Star VES 203 (B0.5 Ve) displays a strong P Cygni signature in its Balmer line emission. It appears that heavy mass loss is a common factor associated with cluster stars. Could that be associated with the location of a cosmic ray production factory from the vicinity of Berkeley 87?
Cosmic rays from 1017eV to beyond 1020eV: evidence from the fly's eye experiment and ground arrays.
NASA Astrophysics Data System (ADS)
Sokolsky, P.
The study of cosmic rays with energies well above the knee (1015eV) of the spectrum has a long history. Beginning with the pioneering work of Linsley and the Volcano Ranch array, followed by the SUGAR, Haverah Park, Yakutsk, Akeno and AGASA array and the Fly's Eye detector, evidence has been steadily accumulating that the spectrum exhibits a change in slope near 10×1018eV. This flattening may indicate that the spectrum in this region is largely extragalactic in origin. If the sources of this spectrum are sufficiently distant, a cut-off due to the interaction of near 1020eV protons with black body photons should be observed. Recent data from the AGASA and Fly's Eye detectors have brought to bear information of spectral shape, composition and anisotropy to this study. In addition to clarifying the nature of the spectral structure, these new results lead to the surprising conclusion that nearby cosmic ray sources must exist that produce particles with energies well in excess of 1020eV. New experiments are being designed which will have the enormous apertures necessary for detecting these very rare events.
NASA Astrophysics Data System (ADS)
Sorokin, A. G.; Lobycheva, I. Yu.
2011-08-01
This paper presents data on the recording of infrasound from distant nuclear explosions set off in former soviet test site Semipalatinsk and recorded by infrasonic station Irkutsk-Badary of the Institute of Solar-Terrestrial Physics SB RAS in the Tunkinsky region in the Buryat Republic. We assess the state of the atmospheric acoustic channel (AAC) along the propagation path. Results of the AAC modeling are compared with experimental data.
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Mackinnon, I. D. R.; Mckay, D. S.
1984-01-01
As the Earth travels about the Sun it continuously sweeps up material laying in its path. The material includes dust-sized fragments of the meteors, comets and asteroids that have passed by as well as much older particles from out between the stars. These grains first become caught in the mesosphere and then slowly pass down through the stratosphere and the troposphere, finally raining down upon the Earth's surface. In the stratosphere the cosmic dust particles encounter increasing amounts of contaminants from the Earth. At the highest reaches of Earth's atmosphere these contaminants consists mainly of dust from the most explosive volcanoes, rocket exhaust, and other manmade space debris. In the troposphere windborne particles and pollen become an increasingly larger fraction of the atmospheric dust load. An increased knowledge of the nature of cosmic particles is suggested.
A Nine-Year Hunt for Neutrinos
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-02-01
How do we hunt for elusive neutrinos emitted by distant astrophysical sources? Submerge a huge observatory under ice or water and then wait patiently.Sneaky MessengersNeutrinos tiny, nearly massless particles that only weakly interact with other matter are thought to be produced as a constant background originating from throughout our universe. In contrast to known point sources of neutrinos (for instance, nearby supernovae), the diffuse flux of cosmic neutrinos could be emitted from unresolved astrophysical sources too faint to be individually detected, or from the interactions of high-energy cosmic rays propagating across the universe.Observations of this diffuse flux of cosmic neutrinos would be a huge step toward understanding cosmic-ray production, acceleration, and interaction properties. Unfortunately, these observations arent easy to make!Diagram showing the path of a neutrino from a distant astrophysical source (accelerator) through the Earth. It is eventually converted into an upward-traveling muon that registers in the ANTARES detector under the sea. [ANTARES]Looking for What Doesnt Want to Be FoundBecause neutrinos so rarely interact with matter, most pass right through us, eluding detection. The most common means of spotting the rare interacting neutrino is to look for Cherenkov radiation in a medium like ice or water, produced when a neutrino has interacted with matterto produce a charged particle (for instance, a muon) moving faster than the speed of light in the medium.Muons produced in our atmosphere can also register in such detectors, however, so we need a way of filtering out these non-cosmic background events. The solution is a clever trick: search for particles traveling upward, not downward. Atmospheric muons will come only from above, whereas muons produced by neutrinos should travel through the detectors in all directions, since cosmic neutrinos arrive from all directions including from below, after passing through the Earth.Observatories on the HuntNeutrino observatories are often built to take advantage of pre-existing deep bodies of ice or water for their detectors. One of the most well-known neutrino observatories is IceCube, an array of detectors located far beneath the Antarctic ice. A few years ago, IceCube announced the observation of an excess of events over the expected atmospheric background the first detection of a diffuse flux of cosmic neutrinos. The next step:confirmation from another observatory.ANTARES detections across different energy bins, for both track-like (top) and shower-like (bottom) events. Plot includes data (black), model for atmospheric events (blue), and two different models for cosmic events (red). Above an energy cutoff of 20 TeV (grey line), nine excess neutrinos are detected relative to the atmospheric model. [Albert et al. 2018]Enter ANTARES, short for Astronomy with a Neutrino Telescope and Abyss Environmental Research. Completed in 2008, this neutrino telescope was built 1.5 miles beneath the surface of the Mediterranean Sea. Now the collaboration is presenting the results of their nine-year search for a diffuse cosmic neutrino flux.A Mild ExcessThe outcome? Success! sort of.The very nature of neutrinos elusiveness means that we have to draw conclusions with very small numbers of detections. Over nine years, ANTARES detected a total of 33 events above an energy cutoff of 20 TeV, whereas models predict it should have seen only 24 such events due to atmospheric particles. This detection of nine extra neutrinos may sound insubstantial but statistically, it allows the team to reject the hypothesis that there is no diffuse cosmic flux at an 85% confidence level.The mild excess of neutrinos detected by ANTARES is by no means a smoking gun, but the properties of this cosmic neutrino flux are consistent with those detected by IceCube, which is a very promising outcome. At the moment, it would seem that a diffuse flux of cosmic neutrinos is present and the next generation of neutrino observatories may be what we need to properly characterize it.CitationA. Albert et al 2018 ApJL 853 L7. doi:10.3847/2041-8213/aaa4f6
De Angelis, Slivio; Fee, David; Haney, Matthew; Schneider, David
2012-01-01
In Alaska, where many active volcanoes exist without ground-based instrumentation, the use of techniques suitable for distant monitoring is pivotal. In this study we report regional-scale seismic and infrasound observations of volcanic activity at Mt. Cleveland between December 2011 and August 2012. During this period, twenty explosions were detected by infrasound sensors as far away as 1827 km from the active vent, and ground-coupled acoustic waves were recorded at seismic stations across the Aleutian Arc. Several events resulting from the explosive disruption of small lava domes within the summit crater were confirmed by analysis of satellite remote sensing data. However, many explosions eluded initial, automated, analyses of satellite data due to poor weather conditions. Infrasound and seismic monitoring provided effective means for detecting these hidden events. We present results from the implementation of automatic infrasound and seismo-acoustic eruption detection algorithms, and review the challenges of real-time volcano monitoring operations in remote regions. We also model acoustic propagation in the Northern Pacific, showing how tropospheric ducting effects allow infrasound to travel long distances across the Aleutian Arc. The successful results of our investigation provide motivation for expanded efforts in infrasound monitoring across the Aleutians and contributes to our knowledge of the number and style of vulcanian eruptions at Mt. Cleveland.
Media exposure in children one hundred miles from a terrorist bombing.
Pfefferbaum, Betty; Seale, Thomas W; Brandt, Edward N; Pfefferbaum, Rose L; Doughty, Debby E; Rainwater, Scott M
2003-03-01
This study assessed indirect interpersonal exposure to the 1995 Oklahoma City bombing, broadcast and print media exposure in the aftermath of the explosion, emotional reactions to media coverage, and posttraumatic stress reactions in children distant from the explosion. A survey was administered to 88 sixth-grade students in the public middle school in a community 100 miles from Oklahoma City 2 years after the bombing. Many children reported indirect interpersonal exposure and most reported bomb-related media exposure. Print media exposure was more strongly associated with enduring posttraumatic stress than broadcast exposure. Indirect interpersonal exposure and the interaction of media exposure with emotional reaction to media coverage in the aftermath of the explosion each predicted ongoing posttraumatic stress. The results suggest that children may have lingering reactions to highly publicized terrorist incidents. Concern about the influence of television viewing has long been proclaimed. This study implicates print media exposure as well. Media exposure to terrorist incidents, therefore, should be monitored and those working with children should assess exposure and stress even in children not directly impacted.
HUBBLE VIEWS DISTANT GALAXIES THROUGH A COSMIC LENS
NASA Technical Reports Server (NTRS)
2002-01-01
Near-infrared image of Jupiter taken in a 2.22 micron filter from the Apache Point Observatory 3.5-meter telescope at 05:35 UT July 19. The G and D impact sites appear in this spectral region of strong methane absorption as image as a single white cloud over 14,000 km in diameter. At higher contrast, the impact regions can be resolved into an intensely bright core about 4,000 km diameter embedded within the larger cloud. Mark Marley and Nancy Chanover, Department of Astronomy, New Mexico State University
1977-04-26
less energy than in tha case of a takeoff from the surface of the Sarth. during such a takeoff from the earth the rocket motor ought to accomplish a...the energy point of view to set the roc- ket in motion* at the point closest to the *arth, the perigee, or at the most distant from it,—the apogee...than 1/33 parts of tbat energy that is necjfjessary during initial braking at the nearest-to-the»eaa?tfl ’:■’■- :,’-::::-:’.. :’.-:--:’.--£. ■■K
Webb Space Telescope Update on This Week @NASA – January 12, 2018
2018-01-12
The James Webb Space Telescope’s cryogenic vacuum testing at our Johnson Space Center verified it’s ready for the cold, harsh environment of space, and its mission to uncover a part of the universe we have not seen. From distant worlds orbiting other stars, to mysterious cosmic structures, Webb could help answer questions about our universe and our place in it. Launch of Webb is set for 2019. Also, Flight through Orion Nebula, 360 Degree View from the Center of the Galaxy, and Raging Water on Launch Pad!
NASA Technical Reports Server (NTRS)
Jackman, C. H.; Frederick, J. E.; Stolarski, R. S.
1980-01-01
Galactic cosmic rays (GCRs), nuclear explosions, lightning, solar proton events (SPEs), relativistic electron precipitation, and meteors are related to the oxidation of nitrous oxide by comparing several sources of odd nitrogen (ON) in the stratosphere and mesosphere. Published O3 and N2O data show that ON produced by the reaction of O(1D) with N2O peaks between 25 and 35 km; the GCRs add approximately the same amount of ON as N2O oxidation at the solar minimum for geographic latitudes over 50 deg. Nuclear explosions in 1961-1962 added 1.1 and 2.2 x 10 to the 34th NO molecules each, and SPEs produced greater amounts of ON above 50 deg than N2O oxidation during 1958 through 1960, and in 1972.
Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications
DOE R&D Accomplishments Database
Perlmutter, S.; Aldering, G.; Della Valle, M.; Deustua, S.; Ellis, R. S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I. M.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lidman, C.; McMahon, R. G.; Nugent, P.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.
1997-12-16
The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby Type la supernovae (SNe la) have shown that their intrinsic luminosities can be accurately determined; (2) New research techniques have made it possible to schedule the discovery and follow-up observations of distant supernovae, producing well over 50 very distant (z = 0.3-0.7) SNe Ia to date. These distant supernovae provide a record of changes in the expansion rate over the past several billion years. By making precise measurements of supernovae at still greater distances, and thus extending this expansion history back far enough in time, we can even distinguish the slowing caused by the gravitational attraction of the universe's mass density {Omega}{sub M} from the effect of a possibly inflationary pressure caused by a cosmological constant {Lambda}. We report here the first such measurements, with our discovery of a Type Ia supernova (SN 1997ap) at z = 0.83. Measurements at the Keck II 10-m telescope make this the most distant spectroscopically confirmed supernova. Over two months of photometry of SN 1997ap with the Hubble Space Telescope and ground-based telescopes, when combined with previous measurements of nearer SNe la, suggests that we may live in a low mass-density universe. Further supernovae at comparable distances are currently scheduled for ground and space-based observations.
Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ke; Miller, M. Coleman; Kotera, Kumiko
2016-12-01
The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expectedmore » to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ∼10{sup −6} Mpc{sup −3}. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a ∼>5σ detection of UHE neutrino sources with a uniform density, n {sub s} {sub ∼}10{sup −7}−10{sup −5} Mpc{sup −3}, at least ∼100−1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.« less
Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors
NASA Astrophysics Data System (ADS)
Fang, Ke; Kotera, Kumiko; Miller, M. Coleman; Murase, Kohta; Oikonomou, Foteini
2016-12-01
The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expected to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ~10-6 Mpc-3. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a gtrsim5σ detection of UHE neutrino sources with a uniform density, ns~10-7-10-5 Mpc-3, at least ~100-1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.
2011-04-01
fractional anisotropymeasures of axonal tracts derived from diffusion tensor imaging ( DTI ). Nine soldiers who incurred a blast-related mTBI during...nauseous for 24 to 36 h, blurred vision, tingling in legs , poor coordination for 3 h. Yes, for unknown period None 5 Subject was a gunner in a Humvee...pairs of distant electrodes in all frequency bands. DTI acquisition and processing Diffusionweighted images were acquired on a 1.5T Philips Achieva
U. S. Geological Survey begins seismic ground response experiments in Washington State
Tarr, A.C.; King, K.W.
1987-01-01
The men were Denver-based U.S Geological Survey (USGS) geophysicists working on the Urban Hazards Field Investigations project. On the previous day they had recorded two events on their seismographs-a distant nuclear explosion in Nevada and a blast at amine near Centralia, Washington. On another day, they used seismic refraction equipment to locate the depth of bedrock and seismic velocity to it at several locations in West Seattle and in the Seward Park-Brighton district of southeast Seattle.
NASA Astrophysics Data System (ADS)
Che, Il-Young; Jeon, Jeong-Soo
2010-05-01
Korea Institute of Geoscience and Mineral Resources (KIGAM) operates an infrasound network consisting of seven seismo-acoustic arrays in South Korea. Development of the arrays began in 1999, partially in collaboration with Southern Methodist University, with the goal of detecting distant infrasound signals from natural and anthropogenic phenomena in and around the Korean Peninsula. The main operational purpose of this network is to discriminate man-made seismic events from seismicity including thousands of seismic events per year in the region. The man-made seismic events are major cause of error in estimating the natural seismicity, especially where the seismic activity is weak or moderate such as in the Korean Peninsula. In order to discriminate the man-made explosions from earthquakes, we have applied the seismo-acoustic analysis associating seismic and infrasonic signals generated from surface explosion. The observations of infrasound at multiple arrays made it possible to discriminate surface explosion, because small or moderate size earthquake is not sufficient to generate infrasound. Till now we have annually discriminated hundreds of seismic events in seismological catalog as surface explosions by the seismo-acoustic analysis. Besides of the surface explosions, the network also detected infrasound signals from other sources, such as bolide, typhoons, rocket launches, and underground nuclear test occurred in and around the Korean Peninsula. In this study, ten years of seismo-acoustic data are reviewed with recent infrasonic detection algorithm and association method that finally linked to the seismic monitoring system of the KIGAM to increase the detection rate of surface explosions. We present the long-term results of seismo-acoustic analysis, the detection capability of the multiple arrays, and implications for seismic source location. Since the seismo-acoustic analysis is proved as a definite method to discriminate surface explosion, the analysis will be continuously used for estimating natural seismicity and understanding infrasonic sources.
Cosmic microwave background theory
Bond, J. Richard
1998-01-01
A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321
Magnetic field evolution in dwarf and Magellanic-type galaxies
NASA Astrophysics Data System (ADS)
Siejkowski, H.; Soida, M.; Chyży, K. T.
2018-03-01
Aims: Low-mass galaxies radio observations show in many cases surprisingly high levels of magnetic field. The mass and kinematics of such objects do not favour the development of effective large-scale dynamo action. We attempted to check if the cosmic-ray-driven dynamo can be responsible for measured magnetization in this class of poorly investigated objects. We investigated how starburst events on the whole, as well as when part of the galactic disk, influence the magnetic field evolution. Methods: We created a model of a dwarf/Magellanic-type galaxy described by gravitational potential constituted from two components: the stars and the dark-matter halo. The model is evolved by solving a three-dimensional (3D) magnetohydrodynamic equation with an additional cosmic-ray component, which is approximated as a fluid. The turbulence is generated in the system via supernova explosions manifested by the injection of cosmic-rays. Results: The cosmic-ray-driven dynamo works efficiently enough to amplify the magnetic field even in low-mass dwarf/Magellanic-type galaxies. The e-folding times of magnetic energy growth are 0.50 and 0.25 Gyr for the slow (50 km s-1) and fast (100 km s-1) rotators, respectively. The amplification is being suppressed as the system reaches the equipartition level between kinetic, magnetic, and cosmic-ray energies. An episode of star formation burst amplifies the magnetic field but only for a short time while increased star formation activity holds. We find that a substantial amount of gas is expelled from the galactic disk, and that the starburst events increase the efficiency of this process.
Monte Carlo study of neutrino acceleration in supernova shocks
NASA Technical Reports Server (NTRS)
Kazanas, D.; Ellison, D. C.
1981-01-01
The first order Fermi acceleration mechanism of cosmic rays in shocks may be at work for neutrinos in supernova shocks when the latter are at densities greater than 10 to the 13th g/cu cm, at which the core material is opaque to neutrinos. A Monte Carlo approach to study this effect is employed, and the emerging neutrino power law spectra are presented. The increased energy acquired by the neutrinos may facilitate their detection in supernova explosions and provide information about the physics of collapse.
The Gum Nebula and Related Problems
NASA Technical Reports Server (NTRS)
1973-01-01
Proceedings of a symposium concerning the Gum Nebula (GN) and related topics are reported. Papers presented include: Colin Gum and the discovery of the GN; identification of the GN as the fossil Stromgren sphere of Vela X Supernova; size and shape of GN; formation of giant H-2 regions following supernova explosions; radio astronomy Explorer 1 observations of GN; cosmic ray effects in the GN; low intensity H beta emission from the interstellar medium; and how to recognize and analyze GN. Astronomical charts and diagrams are included.
Most Distant X-Ray Jet Yet Discovered Provides Clues To Big Bang
NASA Astrophysics Data System (ADS)
2003-11-01
The most distant jet ever observed was discovered in an image of a quasar made by NASA's Chandra X-ray Observatory. Extending more than 100,000 light years from the supermassive black hole powering the quasar, the jet of high-energy particles provides astronomers with information about the intensity of the cosmic microwave background radiation 12 billion years ago. The discovery of this jet was a surprise to the astronomers, according to team members. Astronomers had previously known the distant quasar GB1508+5714 to be a powerful X-ray source, but there had been no indication of any complex structure or a jet. "This jet is especially significant because it allows us to probe the cosmic background radiation 1.4 billion years after the Big Bang," said Aneta Siemiginowska of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., lead author of a report on this research in the November 20th Astrophysical Journal Letters. Prior to this discovery, the most distant confirmed X-ray jet corresponded to a time about 3 billion years after the Big Bang. Quasars are thought to be galaxies that harbor an active central supermassive black hole fueled by infalling gas and stars. This accretion process is often observed to be accompanied by the generation of powerful high-energy jets. Radio image of GB1508 Radio Image of GB1508 As the electrons in the jet fly away from the quasar at near the speed of light, they move through the sea of cosmic background radiation left over from the hot early phase of the universe. When a fast-moving electron collides with one of these background photons, it can boost the photon's energy up into the X-ray band. The X-ray brightness of the jet depends on the power in the electron beam and the intensity of the background radiation. "Everyone assumes that the background radiation will change in a predictable way with time, but it is important to have this check on the predictions," said Siemiginowska. "This jet is hopefully just the first in a large sample of these distant objects that can be used to tell us how the intensity of the cosmic microwave background changed over time." "In fact, if this interpretation is correct, then discovery of this jet is consistent with our previous prediction that X-ray jets can be detected at arbitrarily large distances!" said team member Dan Schwartz, also of the Harvard-Smithsonian Center for Astrophysics. Chandra originally observed GB1508+5714 with the purpose of studying the X-ray emission from the dust located between the Earth and the far-flung quasar. The jet was found by Siemiginowska and her colleagues when they examined the data once it became available publicly in the Chandra archive. This led another astronomer to then carefully look at radio observations of the object. Indeed, archived Very Large Array data confirmed the existence of the jet associated with the quasar GB1508+5714. A paper on the radio observations of GB1508+5714 has been accepted by Astrophysical Journal Letters from Teddy Cheung of Brandeis University in Waltham, Mass. Another group of astronomers led by Weimin Yuan of the University of Cambridge, UK independently reported the discovery of the extended emission in GB1508+5714 in X-rays. In a paper to be published in an upcoming issue of the Monthly Notices of the Royal Astronomical Society, the authors note that significant energy is being deposited in the outer regions of the host galaxy at a very early stage. This energy input could have a profound effect on the evolution of the galaxy by triggering the formation of stars, or inhibiting the growth of the galaxy through accretion of matter from intergalactic space. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
Found: A Galaxy's Missing Gamma Rays
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-04-01
Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016]Peng and collaborators argue that this emission is due solely to cosmic-ray interactions with interstellar gas. This picture is supported by the lack of variability in the emission, and the fact that Arp 220s gamma-ray luminosity is consistent with the scaling relation between gamma-ray and infrared luminosity for star-forming galaxies. The authors also argue that, due to Arp 220s high gas density, all cosmic rays will interact with the gas before escaping.Under these two assumptions, Peng and collaborators use the gamma-ray luminosity and the known supernova rate in Arp 220 to estimate how efficiently cosmic rays are acceleratedby supernova remnants in the galaxy. They determine that 4.2 2.6% of the supernova remnants kinetic energy is used to accelerate cosmic rays above 1 GeV.This is the first time such a rate has been measured directly from gamma-ray emission, but its consistent with estimates of 3-10% efficiency in the Milky Way. Future analysis of other ultraluminous infrared galaxies like Arp 220 with Fermi (and Pass 8!) will hopefully reveal more about these recent-merger, starburst environments.CitationFang-Kun Peng et al 2016 ApJ 821 L20. doi:10.3847/2041-8205/821/2/L20
Radiation Hazard from Galactic Cosmic Rays
NASA Astrophysics Data System (ADS)
Farahat, Ashraf
2006-03-01
Space radiation is a major hazard to astronauts in long-duration human space explosion. Astronauts are exposed to an enormous amount of radiation during their missions away from the Earth in outer space. Deep space is a rich environment of protons, gamma rays and cosmic rays. A healthy 40 years old man staying on Earth away from large doses of radiation stands a 20% chance of dying from cancer. If the same person travels into a 3- year Mars mission, the added risk should increase by 19%. This indicates that there is 39% chance of having cancer after he comes back to Earth. Female astronaut chances to get cancer is even almost double the above percentage. The greatest threat to astronauts en route to the red planet is galactic cosmic rays (GCR). GCRs penetrate through the skin of spaceships and people like tiny firearm bullets, breaking the strands of DNA molecules, damaging genes, and killing cells. Understanding the nature of the GCRs, their effect on biological cells, and their interactions with different shielding materials is the key point to shield against them in long space missions. In this paper we will present a model to evaluate the biological effects of GCRs and suggestion different ways to shield against them.
ZEUS-2: a second generation submillimeter grating spectrometer for exploring distant galaxies
NASA Astrophysics Data System (ADS)
Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Irwin, Kent D.; Cho, Hsiao-Mei; Halpern, Mark
2010-07-01
ZEUS-2, the second generation (z)Redshift and Early Universe Spectrometer, like its predecessor is a moderate resolution (R~1000) long-slit, echelle grating spectrometer optimized for the detection of faint, broad lines from distant galaxies. It is designed for studying star-formation across cosmic time. ZEUS-2 employs three TES bolometer arrays (555 pixels total) to deliver simultaneous, multi-beam spectra in up to 4 submillimeter windows. The NIST Boulder-built arrays operate at ~100mK and are readout via SQUID multiplexers and the Multi-Channel Electronics from the University of British Columbia. The instrument is cooled via a pulse-tube cooler and two-stage ADR. Various filter configurations give ZEUS-2 access to 7 different telluric windows from 200 to 850 micron enabling the simultaneous mapping of lines from extended sources or the simultaneous detection of the 158 micron [CII] line and the [NII] 122 or 205 micron lines from z = 1-2 galaxies. ZEUS-2 is designed for use on the CSO, APEX and possibly JCMT.
Evidence for Secondary Emission as the Origin of Hard Spectra in TeV Blazars
NASA Astrophysics Data System (ADS)
Zheng, Y. G.; Kang, T.
2013-02-01
We develop a model for the possible origin of hard, very high energy (VHE) spectra from a distant blazar. In the model, both the primary photons produced in the source and secondary photons produced outside it contribute to the observed high-energy γ-ray emission. That is, the primary photons are produced through the synchrotron self-Compton process, and the secondary photons are produced through high-energy proton interactions with background photons along the line of sight. We apply the model to a characteristic case of VHE γ-ray emission in the distant blazar 1ES 1101-232. Assuming suitable electron and proton spectra, we obtain excellent fits to the observed spectra of this blazar. This indicated that the surprisingly low attenuation of the high-energy γ-rays, especially the shape of the VHE γ-ray tail of the observed spectra, can be explained by secondary γ-rays produced in interactions of cosmic-ray protons with background photons in intergalactic space.
NASA Astrophysics Data System (ADS)
Abraham, Roberto G.
In keeping with the spirit of a meeting on ‘masks,' this talk presents two short stories on the theme of dust. In the first, dust plays the familiar role of the evil obscurer, the enemy to bedefeated by the cunning observer in order to allow a key future technology (adaptive optics) to be exploited fully by heroic astronomers. In the second story, dust itself emerges as the improbable hero, in the form of a circumstellar debris disks. I will present evidence of a puzzling near-infrared excess in the continuum of high-redshift galaxies and will argue that the seemingly improbable origin of this IR excess is a population of young circumstellar disks formed around high-mass stars in distant galaxies. Assuming circumstellar disks extend down to lower masses,as they do in our own Galaxy, the excess emission presents us with an exciting opportunity to measure the formation rate of planetary systems in distant galaxies at cosmic epochs before our own solar system formed.
A geometric measure of dark energy with pairs of galaxies.
Marinoni, Christian; Buzzi, Adeline
2010-11-25
Observations indicate that the expansion of the Universe is accelerating, which is attributed to a ‘dark energy’ component that opposes gravity. There is a purely geometric test of the expansion of the Universe (the Alcock–Paczynski test), which would provide an independent way of investigating the abundance (Ω(X)) and equation of state (W(X)) of dark energy. It is based on an analysis of the geometrical distortions expected from comparing the real-space and redshift-space shape of distant cosmic structures, but it has proved difficult to implement. Here we report an analysis of the symmetry properties of distant pairs of galaxies from archival data. This allows us to determine that the Universe is flat. By alternately fixing its spatial geometry at Ω(k)≡0 and the dark energy equation-of-state parameter at W(X)≡-1, and using the results of baryon acoustic oscillations, we can establish at the 68.3% confidence level that and -0.85>W(X)>-1.12 and 0.60<Ω(X)<0.80.
Simulations of extragalactic magnetic fields and of their observables
NASA Astrophysics Data System (ADS)
Vazza, F.; Brüggen, M.; Gheller, C.; Hackstein, S.; Wittor, D.; Hinz, P. M.
2017-12-01
The origin of extragalactic magnetic fields is still poorly understood. Based on a dedicated suite of cosmological magneto-hydrodynamical simulations with the ENZO code we have performed a survey of different models that may have caused present-day magnetic fields in galaxies and galaxy clusters. The outcomes of these models differ in cluster outskirts, filaments, sheets and voids and we use these simulations to find observational signatures of magnetogenesis. With these simulations, we predict the signal of extragalactic magnetic fields in radio observations of synchrotron emission from the cosmic web, in Faraday rotation, in the propagation of ultra high energy cosmic rays, in the polarized signal from fast radio bursts at cosmological distance and in spectra of distant blazars. In general, primordial scenarios in which present-day magnetic fields originate from the amplification of weak (⩽nG ) uniform seed fields result in more homogeneous and relatively easier to observe magnetic fields than astrophysical scenarios, in which present-day fields are the product of feedback processes triggered by stars and active galaxies. In the near future the best evidence for the origin of cosmic magnetic fields will most likely come from a combination of synchrotron emission and Faraday rotation observed at the periphery of large-scale structures.
Margutti, R.; Milisavljevic, D.; Soderberg, A. M.; ...
2013-12-10
The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution. We present a comprehensive study of SN 2009ip during its remarkable rebrightenings. High-cadence photometric and spectroscopic observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the Very Large Array, Swift, Fermi, Hubble Space Telescope, and XMM) constrain SN 2009ip to be a low energy (E ~ 10 50 erg for an ejecta mass ~0.5 M⊙) and asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitormore » star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at ~5 × 10 14 cm with M ~ 0.1 M⊙, ejected by the precursor outburst ~40 days before the major explosion. Here, we interpret the NIR excess of emission as signature of material located further out, the origin of which has to be connected with documented mass-loss episodes in the previous years. This modeling predicts bright neutrino emission associated with the shock break-out if the cosmic-ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, which later interacted with material deposited in the surroundings by previous eruptions. In future observations will reveal if the massive luminous progenitor star survived. Irrespective of whether the explosion was terminal, SN 2009ip brought to light the existence of new channels for sustained episodic mass loss, the physical origin of which has yet to be identified.« less
New results and techniques in space radio astronomy.
NASA Technical Reports Server (NTRS)
Alexander, J. K.
1971-01-01
The methods and results of early space radioastronomy experiments are reviewed, with emphasis on the RAE 1 spacecraft which was designed specifically and exclusively for radio astronomical studies. The RAE 1 carries two gravity-gradient-stabilized 229-m traveling-wave V-antennas, a 37-m dipole antenna, and a number of radiometer systems to provide measurements over the 0.2 to 9.2 MHz frequency range with a time resolution of 0.5 sec and an absolute accuracy of plus or minus 25%. Observations of solar bursts at frequencies down to 0.2 MHz provide new information on the density, plasma velocity, and dynamics of coronal streamers out to distances greater than 50 solar radii. New information on the distribution of the ionized component of the interstellar medium is being obtained from galactic continuum background maps at frequencies around 4 MHz. Cosmic noise background spectra measured down to 0.5 MHz produce new estimates on the interstellar flux of cosmic rays, on magnetic fields in the galactic halo, and on distant extragalactic radio sources.
A correlation between the cosmic microwave background and large-scale structure in the Universe.
Boughn, Stephen; Crittenden, Robert
2004-01-01
Observations of distant supernovae and the fluctuations in the cosmic microwave background (CMB) indicate that the expansion of the Universe may be accelerating under the action of a 'cosmological constant' or some other form of 'dark energy'. This dark energy now appears to dominate the Universe and not only alters its expansion rate, but also affects the evolution of fluctuations in the density of matter, slowing down the gravitational collapse of material (into, for example, clusters of galaxies) in recent times. Additional fluctuations in the temperature of CMB photons are induced as they pass through large-scale structures and these fluctuations are necessarily correlated with the distribution of relatively nearby matter. Here we report the detection of correlations between recent CMB data and two probes of large-scale structure: the X-ray background and the distribution of radio galaxies. These correlations are consistent with those predicted by dark energy, indicating that we are seeing the imprint of dark energy on the growth of structure in the Universe.
Seismological analysis of the fourth North Korean nuclear test
NASA Astrophysics Data System (ADS)
Hartmann, Gernot; Gestermann, Nicolai; Ceranna, Lars
2016-04-01
The Democratic People's Republic of Korea has conducted its fourth underground nuclear explosions on 06.01.2016 at 01:30 (UTC). The explosion was clearly detected and located by the seismic network of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Additional seismic stations of international earthquake monitoring networks at regional distances, which are not part of the IMS, are used to precisely estimate the epicenter of the event in the North Hamgyong province (41.38°N / 129.05°E). It is located in the area of the North Korean Punggye-ri nuclear test site, where the verified nuclear tests from 2006, 2009, and 2013 were conducted as well. The analysis of the recorded seismic signals provides the evidence, that the event was originated by an explosive source. The amplitudes as well as the spectral characteristics of the signals were examined. Furthermore, the similarity of the signals with those from the three former nuclear tests suggests very similar source type. The seismograms at the 8,200 km distant IMS station GERES in Germany, for example, show the same P phase signal for all four explosions, differing in the amplitude only. The comparison of the measured amplitudes results in the increasing magnitude with the chronology of the explosions from 2006 (mb 4.2), 2009 (mb 4.8) until 2013 (mb 5.1), whereas the explosion in 2016 had approximately the same magnitude as that one three years before. Derived from the magnitude, a yield of 14 kt TNT equivalents was estimated for both explosions in 2013 and 2016; in 2006 and 2009 yields were 0.7 kt and 5.4 kt, respectively. However, a large inherent uncertainty for these values has to be taken into account. The estimation of the absolute yield of the explosions depends very much on the local geological situation and the degree of decoupling of the explosive from the surrounding rock. Due to the missing corresponding information, reliable magnitude-yield estimation for the North Korean test site is proved to be difficult. The direct evidence for the nuclear character of the explosion can only be found, if radioactive fission products of the explosion get released into the atmosphere and detected. The corresponding analysis by Atmospheric Transport Modelling is presented on the poster by O. Ross and L. Ceranna assessing the detection chances of IMS radionuclide stations.
Cosmic rays from supernovae and comments on the Vela X pre-supernova
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1971-01-01
A possible history of the production of elements in the galaxy is presented, based on assumptions about the end points of stellar evolution and of the general evolution of the galaxy. A wide range of quantities involving the relative abundances of nucleosynthesis products observed in the solar system, and various galactic quantities such as the current rate of supernova production and the present gas content of the galaxy, were considered. These assumptions were utilized in a computer program in which the gas content of the galaxy is gradually turned into stars. The stars are continually enriched in the products of nucleosynthesis as they approach the ends of their evolutionary lifetimes. It is suggested that supernova explosions are associated with the mass range of about 4-8 solar masses. Possible theories on the type of stellar explosive event represented by the Vela supernova are discussed.
Supernova Explosions, Nucleosynthesis, and Cosmic Chemical Evolution
NASA Astrophysics Data System (ADS)
Truran, James W.
2006-08-01
The Universe emerged from its first three minutes with a composition consisting of hydrogen, deuterium, 3He, 4He, and 7Li. These isotopes constitute the primordial compositions of galaxies. Within galaxies, the synthesis of heavier elements from carbon through uranium is understood to occur during the normal evolution of stars and in supernova explosions of Types I and II. This history is written in the compositions of the stars and gas in our Milky Way Galaxy and other galaxies. The contributions both from massive stars (M>10 Msolar) and associated Type II supernovae and from Type Ia (thermonuclear) supernovae are particularly noteworthy. We review both the nuclear processes by which this occurs and the compositions of the stellar components of our Galaxy as a function of time which reflect these nucleosynthesis processes. We then discuss how such observations inform us of the nature of the earliest stellar populations and of the abundance history of the Cosmos.
A Shifting Shield Provides Protection Against Cosmic Rays
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
The Sun plays an important role in protecting us from cosmic rays, energetic particles that pelt us from outside our solar system. But can we predict when and how it will provide the most protection, and use this to minimize the damage to both pilotedand roboticspace missions?The Challenge of Cosmic RaysSpacecraft outside of Earths atmosphere and magnetic field are at risk of damage from cosmic rays. [ESA]Galactic cosmic rays are high-energy, charged particles that originate from astrophysical processes like supernovae or even distant active galactic nuclei outside of our solar system.One reason to care about the cosmic rays arriving near Earth is because these particles can provide a significant challenge for space missions traveling above Earths protective atmosphere and magnetic field. Since impacts from cosmic rays can damage human DNA, this risk poses a major barrier to plans for interplanetary travel by crewed spacecraft. And roboticmissions arent safe either: cosmic rays can flip bits, wreaking havoc on spacecraft electronics as well.The magnetic field carried by the solar wind provides a protective shield, deflecting galactic cosmic rays from our solar system. [Walt Feimer/NASA GSFCs Conceptual Image Lab]Shielded by the SunConveniently, we do have some broader protection against galactic cosmic rays: a built-in shield provided by the Sun. The interplanetary magnetic field, which is embedded in the solar wind, deflects low-energy cosmic rays from us at the outer reaches of our solar system, decreasing the flux of these cosmic rays that reach us at Earth.This shield, however, isnt stationary; instead, it moves and changes as the strength and direction of the solar wind moves and changes. This results in a much lower cosmic-ray flux at Earth when solar activity is high i.e., at the peak of the 11-year solar cycle than when solar activity is low. This visible change in local cosmic-ray flux with solar activity is known as solar modulation of the cosmic ray flux at Earth.In a new study, a team of scientists led by Nicola Tomassetti (University of Perugia, Italy) has modeled this solar modulation to better understand the process by which the Suns changing activity influences the cosmic ray flux that reaches us at Earth.Modeling a LagTomassetti and collaborators model uses two solar-activity observables as inputs: the number of sunspots and the tilt angle of the heliospheric current sheet. By modeling basic transport processes in the heliosphere, the authors then track the impact that the changing solar properties have on incoming galactic cosmic rays. In particular, the team explores the time lag between when solar activity changes and when we see the responding change in the cosmic-ray flux.Cosmic-ray flux observations are best fit by the authors model when an 8-month lag is included (red bold line). A comparison model with no lag (black dashed line) is included. [Tomassetti et al. 2017]By comparing their model outputs to the large collection of time-dependent observations of cosmic-ray fluxes, Tomassetti and collaborators show that the best fit to data occurs with an 8-month lag between changing solar activity and local cosmic-ray flux modulation.This is an important outcome for studying the processes that affect the cosmic-ray flux that reaches Earth. But theres an additional intriguing consequence of this result: knowledge of the current solar activity could allow us to predict the modulation that will occur for cosmic rays near Earth an entire 8 months from now! If this model is correct, it brings us one step closer to being able to plan safer space missions for the future.CitationNicola Tomassetti et al 2017 ApJL 849 L32. doi:10.3847/2041-8213/aa9373
NASA Astrophysics Data System (ADS)
Wunderer, Cornelia B.; GRI Collaboration
2006-09-01
Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.
GRI: the gamma-ray imager mission
NASA Astrophysics Data System (ADS)
Knödlseder, Jürgen
2006-06-01
Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques hav paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.
Short-Period Surface Wave Based Seismic Event Relocation
NASA Astrophysics Data System (ADS)
White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.
2017-12-01
Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.
No ``explosion'' in Big Bang cosmology: teaching kids the truth of what cosmologists really know
NASA Astrophysics Data System (ADS)
Gangui, Alejandro
2011-06-01
Common wisdom says that cosmologists are smart: they have developed a theory that can explain the ``origin of the universe''. Every time an astro-related, heavily funded ``big-science'' project comes to the media, naturally the question arises: will science -through this or that experiment- explain the origin of the cosmos? Can this be done with the LHC, for example? Will this dream machine create other universes? Of course, the very words we employ in cosmology reinforce this misconception: so Big Bang must be associated with an ``explosion'', even if a ``peculiar'' one, as it took place nowhere (there was presumably no space before the beginning) and happened virtually in no time (supposedly, space-time was created on this peculiar -singular- event). Right, the issue sounds confusing. Let us imagine what kids may get out of all this. We have recently presented a series of brief astronomy and cosmology books aimed at helping both kids and their teachers in these and other arcane subjects, all introduced with carefully chosen words and images that young children can understand. In particular, Volume Four deals with the Big Bang and emphasizes the notion of ``evolution'' as opposed to the -wrong- notion of ``origin'' behind the scientific model. We then explain some of the pillars of Big Bang cosmology: the expansion of space that drags away distant galaxies, as seen in the redshift of their emitted light; the build-up of light elements in a cooling bath of radiation, as explained by primordial nucleosynthesis; and the existence and main features of the ubiquitous cosmic microwave background radiation, where theory and observations agree to a highly satisfactory degree. Of course, one cannot attempt to answer the ``origins'' question when it is well known that all theories so far break down close to this origin (if there was actually an origin). It is through observations, analyses, lively discussions and recognition of the basic limitations of current theories and ideas, that we are led to try and reconstruct the past and predict the future evolution of our universe. Just that. Sound science turns out to be much more attractive when we tell the truth of what we really know.
Jerominek, Markus; Claßen-Bockhoff, Regine
2015-01-01
The explosive pollination mechanism of the prayer plants (Marantaceae) is unique among plants. After a tactile stimulus by a pollinator, the style curls up rapidly and mediates pollen exchange. It is still under discussion whether this explosive movement is released electrophysiologically, i.e. by a change in the membrane potential (as in Venus flytrap), or purely mechanically. In the present study, electrophysiological experiments are conducted to clarify the mechanism. Artificial release experiments (chemical and electrical) and electrophysiological measurements were conducted with two phylogenetically distant species, Goeppertia bachemiana (E. Morren) Borchs. & S. Suárez and Donax canniformis (G. Forst.) K. Schum. Electric responses recorded after style release by extracellular measurements are characterised as variation potentials due to their long repolarization phase and lack of self-perpetuation. In both species, chemical and electric stimulations do not release the style movement. It is concluded that the style movement in Marantaceae is released mechanically by relieving the tissue pressure. Accordingly, the variation potential is an effect of the movement and not its cause. The study exemplarily shows that fast movements in plants are not necessarily initiated by electric changes of the membrane as known from the Venus flytrap. PMID:25997015
Jerominek, Markus; Claßen-Bockhoff, Regine
2015-01-01
The explosive pollination mechanism of the prayer plants (Marantaceae) is unique among plants. After a tactile stimulus by a pollinator, the style curls up rapidly and mediates pollen exchange. It is still under discussion whether this explosive movement is released electrophysiologically, i.e. by a change in the membrane potential (as in Venus flytrap), or purely mechanically. In the present study, electrophysiological experiments are conducted to clarify the mechanism. Artificial release experiments (chemical and electrical) and electrophysiological measurements were conducted with two phylogenetically distant species, Goeppertia bachemiana (E. Morren) Borchs. & S. Suárez and Donax canniformis (G. Forst.) K. Schum. Electric responses recorded after style release by extracellular measurements are characterised as variation potentials due to their long repolarization phase and lack of self-perpetuation. In both species, chemical and electric stimulations do not release the style movement. It is concluded that the style movement in Marantaceae is released mechanically by relieving the tissue pressure. Accordingly, the variation potential is an effect of the movement and not its cause. The study exemplarily shows that fast movements in plants are not necessarily initiated by electric changes of the membrane as known from the Venus flytrap.
Core-collapse supernova simulations
NASA Astrophysics Data System (ADS)
Mueller, Bernhard
2017-01-01
Core-collapse supernovae, the deaths of massive stars, are among the most spectacular phenomena in astrophysics: Not only can supernovae outshine their host galaxy for weeks; they are also laboratories for the behavior of matter at supranuclear densities, and one of the few environments where collective neutrino effects can become important. Moreover, supernovae play a central role in the cosmic matter cycle, e.g., as the dominant producers of oxygen in the Universe. Yet the mechanism by which massive stars explode has eluded us for decades, partly because classical astronomical observations across the electromagnetic spectrum cannot directly probe the supernovae ``engine''. Numerical simulations are thus our primary tool for understanding the explosion mechanism(s) of massive stars. Rigorous modeling needs to take a host of important physical ingredients into account, such as the emission and partial reabsorption of neutrinos from the young proto-neutron star, multi-dimensional fluid motions, general relativistic gravity, the equation of state of nuclear matter, and magnetic fields. This is a challenging multi-physics problem that has not been fully solved yet. Nonetheless, as I shall argue in this talk, recent first-principle 3D simulations have gone a long way towards demonstrating the viability of the most popular explosion scenario, the ``neutrino-driven mechanism''. Focusing on successful explosion models of the MPA-QUB-Monash collaboration, I will discuss possible requirements for robust explosions across a wide range of progenitors, such as accurate neutrino opacities, stellar rotation, and seed asymmetries from convective shell burning. With the advent of successful explosion models, supernova theory can also be confronted with astronomical observations. I will show that recent 3D models come closer to matching observed explosion parameters (explosion energies, neutron star kicks) than older 2D models, although there are still discrepancies. This work has been supported by the ARC (grant DE150101145), NSF (PHY-1430152, JINA-CEE) and the supercomputing centers/initiatives NCI, Pawsey, and DiRAC.
Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-12-03
Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.
Acoustic and tephra records of explosive eruptions at West Mata submarine volcano, NE Lau Basin
NASA Astrophysics Data System (ADS)
Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Mack, C. J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T. A.
2013-12-01
West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were directly observed in May 2009. Here we present long-term acoustic and tephra records of West Mata explosion activity from three deployments of hydrophone and particle sensor moorings beginning on 8 January 2009. These records provide insights into the character of explosive magma degassing occurring at the volcano's summit vent until the decline and eventual cessation of the eruption during late 2010 and early 2011. The detailed acoustic records show three types of volcanic signals, 1) discrete explosions, 2) diffuse explosions, and 3) volcanic tremor. Discrete explosions are short duration, high amplitude broad-band signals caused by rapid gas bubble release. Diffuse signals are likely a result of 'trap-door' explosions where a quench cap of cooled lava forms over the magmatic vent but gas pressure builds underneath the cap. This pressure eventually causes the cap to breach and gas is explosively released until pressure reduces and the cap once again forms. Volcanic tremor is typified by narrow-band, long-duration signals with overtones, as well as narrow-band tones that vary frequency over time between 60-100 Hz. The harmonic tremor is thought to be caused by modulation of rapid, short duration gas explosion pulses and not a magma resonance phenomenon. The variable frequency tones may be caused by focused degassing or hydrothermal fluid flow from a narrow volcanic vent or conduit. High frequency (>30 Hz) tremor-like bands of energy are a result of interference caused by multipath wide-band signals, including sea-surface reflected acoustic phases, that arrive at the hydrophone with small time delays. Acoustic data suggest that eruption velocities for a single explosion range from 4-50 m s-1, although synchronous arrival of explosion signals has complicated our efforts to estimate long-term gas flux. Single explosions exhibit ~4-40 m3 s-1 of total volume flux (gas and rock) but with durations of only 20-30 ms. Interestingly, explosion activity increased at West Mata for several months, observed at more distant hydrophone stations, following the September 2009 8.1 Mw Samoan earthquake. The tephra and hydrophone data were only synchronously recorded from January to May 2010, but these data indicate a repeated record of summit explosions followed by down flank debris flows, an important process in the construction of the volcanic edifice. Bathymetric differencing between 2010 and 2011 shows two large negative anomalies at the summit and a broad positive anomaly on the east flank, interpreted as a major slump that removed part of the summit during the final magma withdrawal related to formation of the summit pit crater.
Could a nearby supernova explosion have caused a mass extinction?
Ellis, J; Schramm, D N
1995-01-01
We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by paleontologists. We discuss the possible rate of such events in the light of the recent suggested identification of Geminga as a supernova remnant less than 100 parsec (pc) away and the discovery of a millisecond pulsar about 150 pc away and observations of SN 1987A. The fluxes of gamma-radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth's ozone layer are discussed. A supernova explosion of the order of 10 pc away could be expected as often as every few hundred million years and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs at the "KT boundary." The recent argument that the KT event was exceedingly large and thus quite rare supports the need for other catastrophic events. PMID:11607506
Could a nearby supernova explosion have caused a mass extinction?
Ellis, J; Schramm, D N
1995-01-03
We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by paleontologists. We discuss the possible rate of such events in the light of the recent suggested identification of Geminga as a supernova remnant less than 100 parsec (pc) away and the discovery of a millisecond pulsar about 150 pc away and observations of SN 1987A. The fluxes of gamma-radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth's ozone layer are discussed. A supernova explosion of the order of 10 pc away could be expected as often as every few hundred million years and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs at the "KT boundary." The recent argument that the KT event was exceedingly large and thus quite rare supports the need for other catastrophic events.
The locations of cosmic explosions
NASA Technical Reports Server (NTRS)
Fruchter, A. S.; Levan, A. J.; Strolger, L.; Vreeswijk, P. M.; Bersier, D.; Burud, I.; Castro-Ceron, J. M.; Consclice, C.; Dahlen, T.; Strolger, L.
2005-01-01
When massive stars exhaust their fuel they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. Recently, it has become apparent that stellar collapse can power the even more brilliant relativistic explosions known as long-duration gamma-ray bursts. In some cases, a gamma-ray burst and a supernova have been observed from the same event. One would thus expect that gamma-ray bursts and supernovae should be found in similar environments. Here we show that this expectation is wrong. Using Hubble Space Telescope imaging of the host galaxies of long-duration gamma-ray bursts and core-collapse supernovae, we demonstrate that while the distribution of the supernovae in their hosts traces the blue light of young stars, the gamma-ray bursts are much more concentrated on the very brightest regions of their hosts. Furthermore, the host galaxies of the gamma-ray bursts are significantly fainter and more irregular than the hosts of the supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the very most massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long-duration gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.
Shocked molecular gas and the origin of cosmic rays
NASA Astrophysics Data System (ADS)
Reach, William; Gusdorf, Antoine; Richter, Matthew
2018-06-01
When massive stars reach the end of their ability to remain stable with core nuclear fusion, they explode in supernovae that drive powerful shocks into their surroundings. Because massive stars form in and remain close to molecular clouds they often drive shocks into dense gas, which is now believed to be the origin of a significant fraction of galactic cosmic rays. The nature of the supernova-molecular cloud interaction is not well understood, though observations are gradually elucidating their nature. The range of interstellar densities, and the inclusion of circumstellar matter from the late-phase mass-loss of the stars before their explosions, leads to a wide range of possible appearances and outcomes. In particular, it is not even clear what speed or physical type of shocks are present: are they dense, magnetically-mediated shocks where H2 is not dissociated, or are they faster shocks that dissociate molecules and destroy some of the grains? SOFIA is observing some of the most significant (in terms of cosmic ray production potential and infrared energy output) supernova-molecular cloud interactions for measurement of the line widths of key molecular shocks tracers: H2, [OI], and CO. The presence of gas at speeds 100 km/s or greater would indicate dissociative shocks, while speeds 30 km/s and slower retain most molecules. The shock velocity is a key ingredient in modeling the interaction between supernovae and molecular clouds including the potential for formation of cosmic rays.
Gamma Ray Bursts in the Swift-Fermi Era
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Razzaque, Soebur
2013-01-01
Gamma-ray bursts (GRBs) are among the most violent occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole birth. They are highly luminous events and provide excellent probes of the distant universe. GRB research has greatly advanced over the past 10 years with the results from Swift, Fermi and an active follow-up community. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.
Large-scale galaxy flow from a non-gravitational impulse
NASA Technical Reports Server (NTRS)
Hogan, Craig J.; Kaiser, Nick
1989-01-01
A theory is presented describing linear perturbations of an expanding universe containing multiple, independently perturbed, collisionless, gravitationally coupled constituents. Solutions are found in the limit where one initially unperturbed component dominates the total density. The theory is applied to perturbations generated by a nongravitational process in one or more of the light components, as would occur in explosive or radiation-pressure-instability theories of galaxy formation. The apparent dynamical density parameter and correlations between density and velocity amplitude for various populations, are evaluated as a function of cosmic scale factor.
2008-03-21
CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, the mechanism on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, solar arrays has been released. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, one of twin solar arrays is positioned on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
NASA Astrophysics Data System (ADS)
Abbrescia, M.; An, S.; Antolini, R.; Badala, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Chiri, C.; Cifarelli, L.; Cindolo, F.; Coccia, E.; de Pasquale, S.; di Giovanni, A.; d'Incecco, M.; Fabbri, F.L.; Frolov, V.; Garbini, M.; Gustavino, C.; Hatzifotiadou, D.; Imponente, G.; Kim, J.; La Rocca, P.; Librizzi, F.; Maggiora, A.; Menghetti, H.; Miozzi, S.; Moro, R.; Panareo, M.; Pappalardo, G.S.; Piragino, G.; Riggi, F.; Romano, F.; Sartorelli, G.; Sbarra, C.; Selvi, M.; Serci, S.; WIlliams, C.; Zichichi, A.; Zuyenski, R.
The EEE (/Extreme Energy Event/) Project is an experiment for the study of very high-energy extensive air showers, actually starting in Italy. It is based on the detection of the shower muon component by means of a network of tracking detectors, installed in Italian High Schools. The Project, supported by the Ministero dell’Università e della Ricerca (MIUR), Istituto Nazionale di Fisica Nucleare (INFN), European Organization for Nuclear Research (CERN) and Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi” has been conceived by its leader Professor Antonino Zichichi. In its first phase the detector telescopes will be installed in 21 High Schools in 7 piloting cities all over Italy. The network will soon be heavily upgraded by increasing the number of High Schools and cities. The single tracking telescope is composed by 3 large (~ 2 m2 ) Multi-gap Resistive Plate Chambers (MRPC), realized with float glass electrodes. The use of particle detectors based on such MRPCs will allow to determine with a very high accuracy the direction of the axis of cosmic ray showers initiated by primaries of ultra-high energy, together with a high temporal resolution. The first MRPC telescope, installed in the Liceo Scientifico “B.Touschek” in Grottaferrata near the LNF-INFN site (nearby Rome), is successfully running. By the end of year 2007, the installation of the other telescopes will open the way for the first search of high-energy cosmic rays distant coincidences. In the future, serving many High Schools scattered all over the Italian territory, the EEE Project will also allow to investigate coincidences between multiple primaries producing distant showers. Here we present the experimental apparatus and its tasks.
NASA Scientists Witness a Supernova Cosmic Rite of Passage
NASA Astrophysics Data System (ADS)
2005-11-01
Scientists using NASA's Chandra X-ray Observatory have witnessed a cosmic rite of passage, the transition from a supernova to a supernova remnant, a process that has never been seen in much detail until now, leaving it poorly defined. A supernova is a massive star explosion; the remnant is the beautiful glowing shell that evolves afterwards. When does a supernova become supernova remnant? When does the shell appear and what powers its radiant glow? A science team led by Dr. Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., has taken a fresh look at a supernova that exploded in 1970, called SN 1970G, just off the handle of the Big Dipper. This is the oldest supernova ever seen by X-ray telescopes. Chandra X-ray Image of SN 1970G Chandra X-ray Image of SN 1970G "Some astronomers have thought there's a moment when the supernova remnant magically turns on years after the supernova itself has faded away, when the shock wave of the explosion finally hits and lights up the interstellar medium," said Immler. "By contrast, our results show that a new supernova quickly and seamlessly evolves into a supernova remnant. The star's own debris, and not the interstellar medium gas, fuels the remnant." These results appear in The Astrophysical Journal, co-authored by Dr. Kip Kuntz, also of Goddard. They support previous Chandra observations of SN 1987A by Dr. Sangwook Park of Penn State. Using new data from Chandra and archived data from the European-led ROSAT and XMM-Newton observatories, Immler and Kuntz pieced together how SN 1970G evolved over the years. They found telltale signs of a supernova remnant - bright X-ray light - yet no evidence of interstellar gas, even across a distance around the site of the explosion 35 times larger than our solar system. Instead, the material that is heated by the supernova shock to glow in X-ray light, what we call the remnant, is from the stellar wind of the star itself and not distant gas in the interstellar medium. This wind, comprising energetic ions, was shed by the progenitor star thousands to million of years before the explosion. If this were from the interstellar medium, it would be much denser than this stellar wind. NOAO Optical Image of SN 1970G NOAO Optical Image of SN 1970G Immler and Kuntz next studied the density profiles of all other supernovae that have been detected over the past two decades. Sure enough, the low-density circumstellar matter from the stellar wind was the source of X-rays, not the interstellar medium. Immler said that historical supernova remnants such as Cassiopeia A, which exploded some 320 years ago, also show no signs of activity from the interstellar medium. This is more than just a name game, more than hypothetically changing SN 1970G to SNR 1970G. "We have to rethink this notion that a shock wave from the supernova crashes into the interstellar medium to create a supernova remnant," said Immler. "The luminous supernova remnants that we see can be created without the need of a dense interstellar medium. In fact, our study showed that all supernovae detected in X-rays over the past 25 years live in a low-density environment." SN 1970G is located in the galaxy M101, also called the Pinwheel Galaxy, a stunning spiral galaxy about 22 million light years away in the constellation Ursa Major, home of the Big Dipper. Although the galaxy itself is visible from dark skies with binoculars, telescopes cannot resolve much structure in SN 1970G, unlike for supernova remnants in our Milky Way galaxy. Discovered with an optical telescope in 1970, SN 1970G was not seen with X-ray telescopes until the 1990s. Immler's work at NASA Goddard is supported through the Universities Space Research Association. Kuntz is supported through University of Maryland, Baltimore County. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for the Agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Chandra Images Provide New Vision of Cosmic Explosions
NASA Astrophysics Data System (ADS)
1999-09-01
Images from NASA's Chandra X-ray Observatory released today reveal previously unobserved features in the remnants of three different supernova explosions. Two of the remnants G21.5-0.9 and PSR 0540-69 show dramatic details of the prodigious production of energetic particles by a rapidly rotating, highly magnetized neutron star, as well as the enormous shell structures produced by the explosions. The image of the third remnant, E0102-72, reveals puzzling spoke-like structures in its interior. G21.5-0.9, in the constellation of Scutum, is about 16,000 light years (1 light year = 6 trillion miles) from Earth. Chandra's image shows a bright nebula surrounded by a much larger diffuse cloud. Inside the inner nebula is a bright central source that is thought to be a rapidly rotating highly magnetized neutron star. A rotating neutron star acts like a powerful generator, creating intense electric voltages that accelerate electrons to speeds close to the speed of light. The total output of this generator is greater than a thousand suns. The fluffy appearance of the central nebula is thought to be due to magnetic field lines which constrain the motions of the high-energy electrons. "It's a remarkable image," said Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics. "Neither the inner core nor the outer shell has ever been seen before." "It is as though we have a set of Russian dolls, with structures embedded within structures," said Professor Gordon Garmire of Penn State University, and principal investigator of the Advanced CCD Imaging Spectrometer, the X-ray camera that was used to make two of the images. NASA's project scientist, Dr. Martin Weisskopf of the Marshall Space Flight Center said, "Chandra's capability to provide surprises and insights continues." PSR 0540-69 PSR 0540-69 The existence of a rotating neutron star, or pulsar, in the center of G21.5-0.9 is inferred from the appearance of the nebula and the energy distribution of X-rays and radio waves from the nebula. This distribution, called non-thermal radiation is characteristic of radiation produced by high-energy electrons in a magnetic field. A previously known pulsar is observed directly in the Chandra image of PSR 0540-69. This pulsar, located in a satellite galaxy to the Milky Way that is 180,000 light years distant, emits pulses of radio, optical, and X radiation at a rate of 50 per sec. These pulses which come from a neutron star rotating at this incredible rate, comprise only a few percent of the total energy output of the neutron star powerhouse. "The Chandra image gives us a much better idea of how this energy source works," said Dr. Stephen Murray, principal investigator for the High Resolution Camera, the X-ray camera used to make PSR 0540-69 image. "You can see X-ray jets blasting out from the pulsar in both directions." The third Chandra supernova image is E0102-72. Located in the Small Magellanic Cloud, another satellite galaxy of the Milky Way, E0102-72 is 190,000 light years from Earth. This object, like G21.5-0.9 and PSR 0540-69, is believed to have resulted from the explosion of a massive star several thousand years ago. Stretching across 40 light years of space, the multi-million degree source resembles a flaming cosmic wheel. "Chandra's gallery of supernova remnants is giving us a lot to think about," said Dr. Fred Seward, of Harvard-Smithsonian, who with his colleagues discovered E0102-72 and PSR 0540-69 with the Einstein Observatory over a decade ago. "We're seeing many things we thought should be there, and many others that we never expected. It's great!" To follow Chandra's progress, visit the Chandra News Web site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra X-ray Observatory for NASA's Office of Space Science, NASA Headquarters, Washington, D.C. The Smithsonian Astrophysical Observatory's Chandra X-ray Center in Cambridge, Mass., manages the Chandra science program and controls the observatory for NASA. TRW Space and Electronics Group of Redondo Beach, Calif., leads the contractor team that built Chandra. High resolution digital versions of the X-ray image (300 dpi JPG, TIFF) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu/photo/snrg/index.html or via links in: http://chandra.harvard.edu An animation of a supernova explosion and the formation of a supernova remnant can be found at: http://chandra.harvard.edu/resources/animations/pulsar.html
The Era of Kilometer-Scale Neutrino Detectors
Halzen, Francis; Katz, Uli
2013-01-01
Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. KM3NeT, an instrument that aims to exploit several cubic kilometers of the deep Mediterranean sea as its detector medium, is in its final design stages. The scientific missions of these instruments include searching for sources of cosmic rays and for dark matter, observing Galactic supernova explosions, and studying the neutrinos themselves. Identifying the accelerators that produce Galacticmore » and extragalactic cosmic rays has been a priority mission of several generations of high-energy gamma-ray and neutrino telescopes; success has been elusive so far. Detecting the gamma-ray and neutrino fluxes associated with cosmic rays reaches a new watershed with the completion of IceCube, the first neutrino detector with sensitivity to the anticipated fluxes. In this paper, we will first revisit the rationale for constructing kilometer-scale neutrino detectors. We will subsequently recall the methods for determining the arrival direction, energy and flavor of neutrinos, and will subsequently describe the architecture of the IceCube and KM3NeT detectors.« less
Black Hole Spin Evolution and Cosmic Censorship
NASA Astrophysics Data System (ADS)
Chen, W.; Cui, W.; Zhang, S. N.
1999-04-01
We show that the accretion process in X-ray binaries is not likely to spin up or spin down the accreting black holes due to the short lifetime of the system or the lack of sufficient mass supply from the donor star. Therefore, the black hole mass and spin distribution we observe today also reflects that at birth and places interesting constraints on the supernova explosion models across the mass spectrum. On the other hand, it has long been puzzled that accretion from a Keplerian accretion disk with large enough mass supply might spin up the black hole to extremity, thus violate Penrose's cosmic censorship conjecture and the third law of black hole dynamics. This prompted Thorne to propose an astrophysical solution which caps the maximum attainable black hole spin to a value slightly below unity. We show that the black hole will never reach extreme Kerr state under any circumstances by accreting Keplerian angular momentum from the last stable orbit and the cosmic censorship will always be upheld. The maximum black hole spin which can be reached for a fixed, astrophysically meaningful accretion rate is, however, very close to unity, thus the peak spin rate of black holes one can hope to observe from Nature is still 0.998, the Thorne limit.
The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust
NASA Astrophysics Data System (ADS)
Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel
2018-04-01
Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat ΛCDM cosmological model based on BAO and CMB results, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03± 0.01 {(stat)} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z < 0.05. While there are known systematic uncertainties that combined could explain the observed offset, here we entertain the possibility that the discrepancy may instead be explained by scattering of supernova light in the intergalactic medium (IGM). We focus on two effects: Compton scattering by free electrons and extinction by dust in the IGM. We find that if the discrepancy is due entirely to dimming by dust, the measurements can be modeled with a cosmic dust density Ω _IGM^dust = 8 \\cdot 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 . 10-5 mag Mpc-1 in V-band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.
Radio emission from supernovae and gamma-ray bursters and the need for the SKA
NASA Astrophysics Data System (ADS)
Weiler, Kurt W.; Van Dyk, Schuyler D.; Sramek, Richard A.; Panagia, Nino
2004-12-01
Study of radio supernovae (SNe) over the past 25 years includes two dozen detected objects and more than 100 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the stellar system, and to show clumpiness of the circumstellar material. Since 1997 the afterglow of γ-ray bursting sources (GRBs) has occasionally been detected in the radio, as well in other wavelength bands. In particular, the interesting and unusual γ-ray burst GRB 980425, almost certainly related to the radio supernova SN 1998bw, and the more recent SN 2003dh/GRB 030329 are links between the two classes of objects. Analyzing the extensive radio emission data available for SN 1998bw, one can describe its time evolution within the well established framework available for the analysis of radio emission from supernovae. This then allows relatively detailed description of a number of physical properties of the object. The radio emission can best be explained as the interaction of a mildly relativistic ( Γ ˜ 1.6) shock with a dense pre-explosion stellar wind-established circumstellar medium that is highly structured both azimuthally, in clumps or filaments, and radially, with observed density enhancements. From this we can support the conclusion that at least some members of the slow-soft class of GRBs are related to type Ib/c SNe and can be attributed to the explosion of a massive star in a dense, highly structured CSM that was presumably established by the pre-explosion stellar system. However, due to the lack of sensitivity of current radio telescopes, most supernovae cannot be studied if they are more distant than the Virgo Cluster (˜20 Mpc) or, for exceptionally luminous Type IIn supernovae, beyond ˜100 Mpc. While the GRBs are up to 4 orders-of-magnitude more radio luminous, they are also generally much more distant because of their small probability of detection in smaller volumes of space and most are at z ˜ 1. Those which are radio detected rarely exceed peak flux densities of ˜100 - 300 μJy. Such low flux densities mean that detailed study of their radio "light curves" and, derived from those light curves, the energetics and dynamics of the explosions and the properties of their progenitors and the circumburst medium is very difficult and severely limited in scope. The increased capability of the SKA to attack these problems will significantly advance the field.
Galactic-cosmic-ray-produced 3He in a ferromanganese crust: any supernova 60Fe excess on earth?
Basu, S; Stuart, F M; Schnabel, C; Klemm, V
2007-04-06
An excess of 60Fe in 2.4-3.2 x 10(6) year old ferromanganese crust (237 KD) from the deep Pacific Ocean has been considered as evidence for the delivery of debris from a nearby supernova explosion to Earth. Extremely high ;{3}He/;{4}He (up to 6.12 x 10(-3)) and 3He concentrations (up to 8 x 10(9) atoms/g) measured in 237 KD cannot be supernova-derived. The helium is produced by galactic cosmic rays (GCR) and delivered in micrometeorites that have survived atmospheric entry to be trapped by the crust. 60Fe is produced by GCR reactions on Ni in extraterrestrial material. The maximum (3)He/(60)Fe of 237 KD (80-850) is comparable to the GCR (3)He/(60)Fe production ratio (400-500) predicted for Ni-bearing minerals in iron meteorites. The excess 60Fe can be plausibly explained by the presence of micrometeorites trapped by the crust, rather than injection from a supernova source.
The Role of Cosmic-Ray Pressure in Accelerating Galactic Outflows
NASA Astrophysics Data System (ADS)
Simpson, Christine M.; Pakmor, Rüdiger; Marinacci, Federico; Pfrommer, Christoph; Springel, Volker; Glover, Simon C. O.; Clark, Paul C.; Smith, Rowan J.
2016-08-01
We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.
THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph
We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overallmore » clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.« less
The area of isodensity contours in cosmological models and galaxy surveys
NASA Technical Reports Server (NTRS)
Ryden, Barbara S.; Melott, Adrian L.; Craig, David A.; Gott, J. Richard, III; Weinberg, David H.
1989-01-01
The contour crossing statistic, defined as the mean number of times per unit length that a straight line drawn through the field crosses a given contour, is applied to model density fields and to smoothed samples of galaxies. Models in which the matter is in a bubble structure, in a filamentary net, or in clusters can be distinguished from Gaussian density distributions. The shape of the contour crossing curve in the initially Gaussian fields considered remains Gaussian after gravitational evolution and biasing, as long as the smoothing length is longer than the mass correlation length. With a smoothing length of 5/h Mpc, models containing cosmic strings are indistinguishable from Gaussian distributions. Cosmic explosion models are significantly non-Gaussian, having a bubbly structure. Samples from the CfA survey and the Haynes and Giovanelli (1986) survey are more strongly non-Gaussian at a smoothing length of 6/h Mpc than any of the models examined. At a smoothing length of 12/h Mpc, the Haynes and Giovanelli sample appears Gaussian.
2015-08-17
Here we see the spectacular cosmic pairing of the star Hen 2-427 — more commonly known as WR 124 — and the nebula M1-67 which surrounds it. Both objects, captured here by the NASA/ESA Hubble Space Telescope are found in the constellation of Sagittarius and lie 15 000 light-years away. The star Hen 2-427 shines brightly at the very centre of this explosive image and around the hot clumps of gas are ejected into space at over 150 000 kilometres per hour. Hen 2-427 is a Wolf–Rayet star, named after the astronomers Charles Wolf and Georges Rayet. Wolf–Rayet are super-hot stars characterised by a fierce ejection of mass. The nebula M1-67 is estimated to be no more than 10 000 years old — just a baby in astronomical terms — but what a beautiful and magnificent sight it makes. A version of this image was released in 1998, but has now been re-reduced with the latest software.
NASA Astrophysics Data System (ADS)
Wunderer, Cornelia B.; GRI Collaboration
2008-03-01
Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.
The Distant Type Ia Supernova Rate
DOE R&D Accomplishments Database
Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.
2002-05-28
We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.
The Spitzer/Swift Gamma-Ray Burst Host Galaxy Extended Legacy Survey
NASA Astrophysics Data System (ADS)
Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna
2014-12-01
Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample and provide the definitive resource with which to examine all aspects of the GRB/galaxy connection for years and possibly decades to come.
NASA Technical Reports Server (NTRS)
Kashlinsky, A.
2005-01-01
We discuss the contribution of Population III stars to the near-IR (NIR) cosmic infrared background (CIB) and its effect on spectra of high-z, high-energy gamma-ray bursts (GRBs) and other sources. It is shown that if Population III is composed of massive stars, the claimed NIR CIB excess will be reproduced if only approx. 4% plus or minus 2% of all baryons went through these stars. Regardless of the precise amount of the NIR CIB due to them, they likely left enough photons to provide a large optical depth for high-energy photons from distant GRBs. Observations of such GRBs are expected following the planned launch of NASA's GLAST mission. Detecting such damping in the spectra of high-z GRBs will then provide important information on the emissions from the Population III epoch, and the location of this cutoff may serve as an indicator of the GRBs' redshifts. We also point out the difficulty of unambiguously detecting the CIB part originating from Population III in spectra of low-z blazars.
Origins Space Telescope: Galaxy and Black Hole Evolution over Cosmic Time
NASA Astrophysics Data System (ADS)
Pope, Alexandra; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the science case related to galaxy formation and evolution. Origins will investigate the connection between black hole growth and star formation, understand the role of feedback from supernovae and active galactic nuclei, probe the multiphase interstellar medium, and chart the rise of metals over cosmic time.
Electrons in a closed galaxy model of cosmic rays
NASA Technical Reports Server (NTRS)
Ramaty, R.; Westergaard, N. J.
1976-01-01
The consistency of positrons and electrons was studied using a propagation model in which the cosmic rays are stopped by nuclear collisions or energy losses before they can escape from the galaxy (the closed-galaxy model). The fact that no inconsistency was found between the predictions and the data implies that the protons which produce the positrons by nuclear reactions could have their origin in a large number of distant sources, as opposed to the heavier nuclei which in this model come from a more limited set of sources. The closed-galaxy model predicts steep electron and positron spectra at high energies. None of these are inconsistent with present measurements; but future measurements of the spectrum of high-energy positrons could provide a definite test for the model. The closed-galaxy model also predicts that the interstellar electron intensity below a few GeV is larger than that implied by other models. The consequence of this result is that electron bremsstrahlung is responsible for about 50% of the galactic gamma-ray emission at photon energies greater than 100 MeV.
Characterizing the Young Galaxies at Cosmic Dawn
NASA Astrophysics Data System (ADS)
Zheng, Wei
2013-10-01
We propose to analyze the data of the Hubble Frontier Fields, in order to discover and study galaxies at the highest redshifts and to an unprecedented depth. The redshift range of z 10-12 marks the beginning of the IGM reionization and remains as HST's last frontier. In the framework of the CLASH and related projects, our team has succeeded in finding the most distant galaxies. We will carry out a systematic search for galaxy candidates at z 10-12 in the proposed deep observations. At this redshift range, most of the spectral features are shifted longward of the WFC3/IR bands, and additional data are therefore needed in order to secure the candidates and study their intrinsic properties. We will {1} obtain deep photometry in complementary ground-based K-band observations; {2} estimate the global star-formation rate density; {3} measure the sources' UV continuum slope and {4} carry out ALMA observations to study the dust content. Finally, we will estimate the effect of these young galaxies in ionizing the IGM. Our study will serve as an ideal bridge between HST and JWST in exploring the cosmic dawn.
RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES: NLTE EFFECTS IN J-BAND IRON AND TITANIUM LINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergemann, Maria; Kudritzki, Rolf-Peter; Lind, Karin
2012-06-01
Detailed non-LTE (NLTE) calculations for red supergiant (RSG) stars are presented to investigate the influence of NLTE on the formation of atomic iron and titanium lines in the J band. With their enormous brightness at J band RSG stars are ideal probes of cosmic abundances. Recent LTE studies have found that metallicities accurate to 0.15 dex can be determined from medium-resolution spectroscopy of individual RSGs in galaxies as distant as 10 Mpc. The NLTE results obtained in this investigation support these findings. NLTE abundance corrections for iron are smaller than 0.05 dex for effective temperatures between 3400 K and 4200more » K and 0.1 dex at 4400 K. For titanium the NLTE abundance corrections vary smoothly between -0.4 dex and +0.2 dex as a function of effective temperature. For both elements, the corrections also depend on stellar gravity and metallicity. The physical reasons behind the NLTE corrections and the consequences for extragalactic J-band abundance studies are discussed.« less
Shedding Light on the Cosmic Skeleton
NASA Astrophysics Data System (ADS)
2009-11-01
Astronomers have tracked down a gigantic, previously unknown assembly of galaxies located almost seven billion light-years away from us. The discovery, made possible by combining two of the most powerful ground-based telescopes in the world, is the first observation of such a prominent galaxy structure in the distant Universe, providing further insight into the cosmic web and how it formed. "Matter is not distributed uniformly in the Universe," says Masayuki Tanaka from ESO, who led the new study. "In our cosmic vicinity, stars form in galaxies and galaxies usually form groups and clusters of galaxies. The most widely accepted cosmological theories predict that matter also clumps on a larger scale in the so-called 'cosmic web', in which galaxies, embedded in filaments stretching between voids, create a gigantic wispy structure." These filaments are millions of light years long and constitute the skeleton of the Universe: galaxies gather around them, and immense galaxy clusters form at their intersections, lurking like giant spiders waiting for more matter to digest. Scientists are struggling to determine how they swirl into existence. Although massive filamentary structures have been often observed at relatively small distances from us, solid proof of their existence in the more distant Universe has been lacking until now. The team led by Tanaka discovered a large structure around a distant cluster of galaxies in images they obtained earlier. They have now used two major ground-based telescopes to study this structure in greater detail, measuring the distances from Earth of over 150 galaxies, and, hence, obtaining a three-dimensional view of the structure. The spectroscopic observations were performed using the VIMOS instrument on ESO's Very Large Telescope and FOCAS on the Subaru Telescope, operated by the National Astronomical Observatory of Japan. Thanks to these and other observations, the astronomers were able to make a real demographic study of this structure, and have identified several groups of galaxies surrounding the main galaxy cluster. They could distinguish tens of such clumps, each typically ten times as massive as our own Milky Way galaxy - and some as much as a thousand times more massive - while they estimate that the mass of the cluster amounts to at least ten thousand times the mass of the Milky Way. Some of the clumps are feeling the fatal gravitational pull of the cluster, and will eventually fall into it. "This is the first time that we have observed such a rich and prominent structure in the distant Universe," says Tanaka. "We can now move from demography to sociology and study how the properties of galaxies depend on their environment, at a time when the Universe was only two thirds of its present age." The filament is located about 6.7 billion light-years away from us and extends over at least 60 million light-years. The newly uncovered structure does probably extend further, beyond the field probed by the team, and hence future observations have already been planned to obtain a definite measure of its size. More information This research was presented in a paper published as a letter in the Astronomy & Astrophysics Journal: The spectroscopically confirmed huge cosmic structure at z = 0.55, by Tanaka et al. The team is composed of Masayuki Tanaka (ESO), Alexis Finoguenov (Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany and University of Maryland, Baltimore, USA), Tadayuki Kodama (National Astronomical Observatory of Japan, Tokyo, Japan), Yusei Koyama (Department of Astronomy, University of Tokyo, Japan), Ben Maughan (H.H. Wills Physics Laboratory, University of Bristol, UK) and Fumiaki Nakata (Subaru Telescope, National Astronomical Observatory of Japan). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Preliminary SPE Phase II Far Field Ground Motion Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steedman, David W.
2014-03-06
Phase II of the Source Physics Experiment (SPE) program will be conducted in alluvium. Several candidate sites were identified. These include existing large diameter borehole U1e. One criterion for acceptance is expected far field ground motion. In June 2013 we were requested to estimate peak response 2 km from the borehole due to the largest planned SPE Phase II experiment: a contained 50- Ton event. The cube-root scaled range for this event is 5423 m/KT 1/3. The generally accepted first order estimate of ground motions from an explosive event is to refer to the standard data base for explosive eventsmore » (Perrett and Bass, 1975). This reference is a compilation and analysis of ground motion data from numerous nuclear and chemical explosive events from Nevada National Security Site (formerly the Nevada Test Site, or NTS) and other locations. The data were compiled and analyzed for various geologic settings including dry alluvium, which we believe is an accurate descriptor for the SPE Phase II setting. The Perrett and Bass plots of peak velocity and peak yield-scaled displacement, both vs. yield-scaled range, are provided here. Their analysis of both variables resulted in bi-linear fits: a close-in non-linear regime and a more distant linear regime.« less
A galactic cloak for an exploding star
2015-02-23
The galaxy pictured here is NGC 4424, located in the constellation of Virgo. It is not visible with the naked eye but has been captured here with the NASA/ESA Hubble Space Telescope. Although it may not be obvious from this image, NGC 4424 is in fact a spiral galaxy. In this image it is seen more or less edge on, but from above you would be able to see the arms of the galaxy wrapping around its centre to give the characteristic spiral form . In 2012 astronomers observed a supernova in NGC 4424 — a violent explosion marking the end of a star’s life. During a supernova explosion, a single star can often outshine an entire galaxy. However, the supernova in NGC 4424, dubbed SN 2012cg, cannot be seen here as the image was taken ten years prior to the explosion. Along the central region of the galaxy, clouds of dust block the light from distant stars and create dark patches. To the left of NGC 4424 there are two bright objects in the frame. The brightest is another, smaller galaxy known as LEDA 213994 and the object closer to NGC 4424 is an anonymous star in our Milky Way. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Gilles Chapdelaine.
Khan, M Sarwar; Kirkland, P M; Kumar, R
2002-02-01
Firework injuries can manifest themselves in many different ways; usually as an explosive or burn injury. This case describes an unusual presentation of a firework penetrating injury resulting in a sharp coiled metal foreign body travelling through a small entry wound in the neck and subsequently lodging itself in the tracheobronchial tree. A foreign body such as this can potentially travel a considerable distance through the soft tissues and end up in an unsuspecting distant site. There must, therefore, be a high index of suspicion with the appropriate radiological investigations for appropriate management of such cases.
Ancho Canyon RF Collect, March 2, 2017: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junor, William; Layne, John Preston; Gamble, Thomas Kirk
2017-09-21
We report the results from the March 2, 2017, Ancho Canyon RF collection. While bright electromagnetic signals were seen nearby the firing point, there were no detections of signals from the explosively-fired fuse at a collection point about 570m distant on the East Mesa. However, "liveness" tests of the East Mesa data acquisition system and checks of the timing both suggest that the collection system was working correctly. We examine possible reasons for the lack of detection. Principal among these is that the impulsive signal may be small compared to the radio frequency background on the East Mesa.
Fermi Large Area Telescope Detection of Gamma-Ray Emission from the Direction of Supernova iPTF14hls
NASA Astrophysics Data System (ADS)
Yuan, Qiang; Liao, Neng-Hui; Xin, Yu-Liang; Li, Ye; Fan, Yi-Zhong; Zhang, Bing; Hu, Hong-Bo; Bi, Xiao-Jun
2018-02-01
The remnant of a supernova explosion is widely believed to be the acceleration site of high-energy cosmic-ray particles. The acceleration timescale is, however, typically very long. Here, we report the detection of a variable γ-ray source with the Fermi Large Area Telescope, which is positionally and temporally consistent with a peculiar supernova, iPTF14hls. A quasi-stellar object SDSS J092054.04+504251.5, which is probably a blazar candidate according to the infrared data, is found in the error circle of the γ-ray source. More data about the γ-ray source and SDSS J092054.04+504251.5 are needed to confirm their association. On the other hand, if the association between the γ-ray source and the supernova is confirmed, this would be the first time detecting high-energy γ-ray emission from a supernova, suggesting very fast particle acceleration by supernova explosions.
Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei
NASA Astrophysics Data System (ADS)
Wiescher, Michael
2018-06-01
Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.
Mass Extinctions and Supernova Explosions
NASA Astrophysics Data System (ADS)
Korschinek, Gunther
A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation or the direct exposure of lethal X-rays. Another indirect effect is cloud formation, induced by cosmic rays in the atmosphere which result in a drop in the Earth's temperature, causing major glaciations of the Earth. The discovery of highly intensive gamma-ray bursts (GRBs), which could be connected to SNe, initiated further discussions on possible life-threatening events in the Earth's history. The probability that GRBs hit the Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or SNe cannot be excluded and might even have been responsible for past extinction events.
NASA Astrophysics Data System (ADS)
Jones, K. R.; Aster, R. C.; Johnson, J. B.; Kyle, P. R.; McIntosh, W. C.
2007-05-01
Infrasound monitoring at Erebus volcano has enabled us to quantify eruption energetics and precisely determine the source location of Strombolian eruptions. Since January 2006 we have operated a three-element network of identical infrasound pressure transducers, to track explosive eruptions, triangulate source locations of the eruptions, and distinguish activity from several vents with diverse activities. In December 2006 the network was expanded to six identical pressure transducers with improved azimuthal distribution sited ~300 m to 700 m from the erupting vents. These sensors have a dynamic range of +/-125 Pa and are able to record non-distorted waveforms for almost all eruptive events. Since January 2006, eruptions have been identified from locations within the ~40 m diameter phonolitic lava lake, an adjacent smaller "active vent", and a vent ~80 m distant from the lava lake known as "Werner's". Since late 2005 until the end of 2006, activity was considerably elevated at the "lava lake", from which frequent (up to six per day) explosions were noted. These events entailed gas bubble bursts, some of which were capable of ejecting bombs more than 1 km distant and producing infrasonic transients in excess of 100 Pa at a distance of 700 m. Activity from "Werner's" vent was much more subdued in terms of eruptive frequency and the radiated acoustic energy, with all signals less than about 5 Pa at 700 m. Activity from the "active vent" was also observed, though notably, these acoustic transients were extended in duration in terms of time (> 5 s to more than 30 s), which reflects extended duration ash-venting source mechanisms, corroborated by video records. The updated infrasound network has operated through a relative lull in eruptive intensity (November - December 2006 - January 2007). Since January 2007 more frequent and larger explosions from the lava lake have been observed and recorded with infrasound and video. We quantify this recent upsurge in lava lake activity and present speculative mechanisms to account for the variable eruptive behavior of Erebus lava lake.
New Suspect Identified in Supernova Explosion
2014-06-04
Supernovas are often thought of as the tremendous explosions that mark the ends of massive stars' lives. While this is true, not all supernovas occur in this fashion. A common supernova class, called Type Ia, involves the detonation of white dwarfs -- small, dense stars that are already dead. New results from NASA's Spitzer Space Telescope have revealed a rare example of Type Ia explosion, in which a dead star "fed" off an aging star like a cosmic zombie, triggering a blast. The results help researchers piece together how these powerful and diverse events occur. "It's kind of like being a detective," said Brian Williams of NASA's Goddard Space Flight Center in Greenbelt, Maryland, lead author of a study submitted to the Astrophysical Journal. "We look for clues in the remains to try to figure out what happened, even though we weren't there to see it." Read more: 1.usa.gov/1i0PAaa NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Could a nearby supernova explosion have caused a mass extinction?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, J.; Schramm, D.N.
1995-01-03
We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by paleontologists. We discuss the possible rate of such events in the light of the recent suggested identification of Geminga as a supernova remnant less than 100 parsec (pc) away and the discovery of a millisecond pulsar about 150 pc away and observations of SN 1987A. The fluxes of {gamma}-radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth`s ozone layer are discussed. A supernova explosion of the order of 10 pc away couldmore » be expected as often as every few hundred million years and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs at the {open_quotes}KT boundary.{close_quotes} The recent argument that the KT event was exceedingly large and thus quite rare supports the need for other catastrophic events. 24 refs.« less
HUBBLE OPENS ITS EYE ON THE UNIVERSE AND CAPTURES A COSMIC MAGNIFYING GLASS
NASA Technical Reports Server (NTRS)
2002-01-01
Scanning the heavens for the first time since the successful December 1999 servicing mission, NASA's Hubble Space Telescope has imaged a giant, cosmic magnifying glass, a massive cluster of galaxies called Abell 2218. This 'hefty' cluster resides in the constellation Draco, some 2 billion light-years from Earth. The cluster is so massive that its enormous gravitational field deflects light rays passing through it, much as an optical lens bends light to form an image. This phenomenon, called gravitational lensing, magnifies, brightens, and distorts images from faraway objects. The cluster's magnifying powers provides a powerful 'zoom lens' for viewing distant galaxies that could not normally be observed with the largest telescopes. This useful phenomenon has produced the arc-shaped patterns found throughout the Hubble picture. These 'arcs' are the distorted images of very distant galaxies, which lie 5 to 10 times farther than the lensing cluster. This distant population existed when the universe was just a quarter of its present age. Through gravitational lensing these remote objects are magnified, enabling scientists to study them in more detail. This analysis provides a direct glimpse of how star-forming regions are distributed in remote galaxies and yields other clues to the early evolution of galaxies. The picture is dominated by spiral and elliptical galaxies. Resembling a string of tree lights, the biggest and brightest galaxies are members of the foreground cluster. Researchers are intrigued by a tiny red dot just left of top center. This dot may be an extremely remote object made visible by the cluster's magnifying powers. Further investigation is needed to confirm the object's identity. The Hubble telescope first viewed this cluster in 1994, producing one of the most spectacular demonstrations of gravitational lensing up to that time. Scientists who analyzed that black-and-white picture discovered more than 50 remote, young galaxies. Hubble's latest multicolor image of the cluster will allow astronomers to probe in greater detail the internal structure of these early galaxies. The color picture already reveals several arc-shaped features that are embedded in the cluster and cannot be easily seen in the black-and-white image. The colors in this picture yield clues to the ages, distances, and temperatures of stars, the stuff of galaxies. Blue pinpoints hot young stars. The yellow-white color of several of the galaxies represents the combined light of many stars. Red identifies cool stars, old stars, and the glow of stars in distant galaxies. This view is only possible by combining Hubble's unique image quality with the rare lensing effect provided by the magnifying cluster. The picture was taken Jan. 11 to 13, 2000, with the Wide Field and Planetary Camera 2. Credits: NASA, Andrew Fruchter (STScI), and the ERO team (STScI, ST-ECF)
Composition analyzer for microparticles using a spark ion source
NASA Technical Reports Server (NTRS)
Auer, S.; Berg, O. E.
1975-01-01
Iron microparticles were fired onto a capacitor-type microparticle detector which responded to an impact with a spark discharge. Ion currents were extracted from the spark and analyzed in a time-of-flight mass spectrometer. The mass spectra showed the elements of both detector and particle materials. The total extracted ion current was typically 10 A within a period of 100 nsec, indicating very efficient vaporization of the particle and ionization of the vapor. Potential applications include research on cosmic dust, atmospheric aerosols and cloud droplets, particles ejected by rocket or jet engines, by machining processes or by nuclear bomb explosions.
Evaluating managed care's special telecommunications needs.
Harrison, P; Schenk, D
1993-11-01
Right now, managed care is a vast cosmic soup. But whether its ultimate form is the result of a bureaucratic big bang or a series of small industry explosions, one thing seems clear: telecommunications is the framework upon which managed care will be built. Managed care's primary players--purchasers, providers and payors--have already discovered the unifying power of telecommunications within their respective worlds. However, as the three worlds collide, an entirely new set of special telecommunications needs arises. And most of these needs can be distilled into three basic requirements: bigger networks, faster networks and smarter networks.
2008-03-04
KENNEDY SPACE CENTER, FLA. -- The shipping container holding NASA's Gamma-Ray Large Area Space Telescope, or GLAST, is moved into the Astrotech payload processing facility near the Kennedy Space Center to begin prelaunch activities. The GLAST will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians guide one of twin solar arrays toward NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-21
CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, a General Dynamics technician prepares to test the deployment mechanism on the solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann
2008-03-04
KENNEDY SPACE CENTER, FLA. -- NASA's Gamma-Ray Large Area Space Telescope, or GLAST, arrives at Kennedy Space Center in a shipping container aboard a truck to begin final preparations for launch. The GLAST will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-04
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility near the Kennedy Space Center, workers maneuver the shipping container holding NASA's Gamma-Ray Large Area Space Telescope, or GLAST, into place. The GLAST will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-21
CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, completes the test of the deployment mechanism on its solar arrays. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, a General Dynamics technician studies one of twin solar arrays that will be installed on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians prepare to install the twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians install the second of twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians lift one of twin solar arrays that will be installed on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-21
CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, a General Dynamics technician prepares to test the deployment mechanism of the solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann
2008-03-20
CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, a General Dynamics technician finishes the installation of the second of twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians move the second of twin solar arrays toward NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians install one of twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2004-03-08
This image from NASA Spitzer Space Telescope, shows the wispy filamentary structure of Henize 206, is a four-color composite mosaic created by combining data from an infrared array camera IRAC. The LMC is a small satellite galaxy gravitationally bound to our own Milky Way. Yet the gravitational effects are tearing the companion to shreds in a long-playing drama of 'intergalactic cannibalism.' These disruptions lead to a recurring cycle of star birth and star death. Astronomers are particularly interested in the LMC because its fractional content of heavy metals is two to five times lower than is seen in our solar neighborhood. [In this context, 'heavy elements' refer to those elements not present in the primordial universe. Such elements as carbon, oxygen and others are produced by nucleosynthesis and are ejected into the interstellar medium via mass loss by stars, including supernova explosions.] As such, the LMC provides a nearby cosmic laboratory that may resemble the distant universe in its chemical composition. The primary Spitzer image, showing the wispy filamentary structure of Henize 206, is a four-color composite mosaic created by combining data from an infrared array camera (IRAC) at near-infrared wavelengths and the mid-infrared data from a multiband imaging photometer (MIPS). Blue represents invisible infrared light at wavelengths of 3.6 and 4.5 microns. Note that most of the stars in the field of view radiate primarily at these short infrared wavelengths. Cyan denotes emission at 5.8 microns, green depicts the 8.0 micron light, and red is used to trace the thermal emission from dust at 24 microns. The separate instrument images are included as insets to the main composite. An inclined ring of emission dominates the central and upper regions of the image. This delineates a bubble of hot, x-ray emitting gas that was blown into space when a massive star died in a supernova explosion millions of years ago. The shock waves from that explosion impacted a cloud of nearby hydrogen gas, compressed it, and started a new generation of star formation. The death of one star led to the birth of many new stars. This is particularly evident in the MIPS inset, where the 24-micron emission peaks correspond to newly formed stars. The ultraviolet and visible-light photons from the new stars are absorbed by surrounding dust and re-radiated at longer infrared wavelengths, where it is detected by Spitzer. This emission nebula was cataloged by Karl Henize (HEN-eyes) while spending 1948-1951 in South Africa doing research for his Ph.D. dissertation at the University of Michigan. Henize later became a NASA astronaut and, at age 59, became the oldest rookie to fly on the Space Shuttle during an eight-day flight of the Challenger in 1985. He died just short of his 67th birthday in 1993 while attempting to climb the north face of Mount Everest, the world's highest peak. http://photojournal.jpl.nasa.gov/catalog/PIA05517
The Search for Lensed Supernovae
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-01-01
Type Ia supernovae that have multiple images due to gravitational lensing can provide us with a wealth of information both about the supernovae themselves and about our surrounding universe. But how can we find these rare explosions?Clues from Multiple ImagesWhen light from a distant object passes by a massive foreground galaxy, the galaxys strong gravitational pull can bend the light, distorting our view of the backgroundobject. In severe cases, this process can cause multiple images of the distant object to appear in the foreground lensing galaxy.An illustration of gravitational lensing. Light from the distant supernova is bent as it passes through a giant elliptical galaxy in the foreground, causing multiple images of the supernova to appear to be hosted by the elliptical galaxy. [Adapted from image by NASA/ESA/A. Feild (STScI)]Observations of multiply-imaged Type Ia supernovae (explosions that occur when white dwarfs in binary systems exceed their maximum allowed mass) could answer a number of astronomical questions. Because Type Ia supernovae are standard candles, distant, lensed Type Ia supernovae can be used to extend the Hubble diagram to high redshifts. Furthermore, the lensing time delays from the multiply-imaged explosion can provide high-precision constraints on cosmological parameters.The catch? So far, weve only found one multiply-imaged Type Ia supernova: iPTF16geu, discovered late last year. Were going to need a lot more of them to develop a useful sample! So how do we identify themutiply-imaged Type Ias among the many billions of fleeting events discovered in current and future surveys of transients?Searching for AnomaliesAbsolute magnitudes for Type Ia supernovae in elliptical galaxies. None are expected to be above -20 in the B band, so if we calculate a magnitude for a Type Ia supernova thats larger than this, its probably not hosted by the galaxy we think it is! [Goldstein Nugent 2017]Two scientists from University of California, Berkeley and Lawrence Berkeley National Laboratory have a plan. In a recent publication, Daniel Goldstein and Peter Nugent propose the following clever procedure to apply to data from transient surveys:From the data, select only the supernova candidates that appear to be hosted by quiescent elliptical galaxies.Use the host galaxies photometric redshifts to calculate absolute magnitudes for the supernovae in this sample.Select from this only the supernovae above the maximum absolute magnitude expected for Type Ia supernovae.Supernovae selected in this way are likely tricking us: their apparent hosts are probably not their hosts at all! Instead, the supernova is likely behind the galaxy, and the galaxy is just lensing its light. Using this strategy therefore allows us to select supernova candidates that are most likely to be distant, gravitationally lensed Type Ia supernovae.Redshift distribution of the multiply-imaged Type Ia supernovae the authors estimate will be detectable by ZTF and LSST in their respective 3- and 10-year survey durations. [Goldstein Nugent 2017]A convenient aspect of Goldstein and Nugents technique is that we dont need to be able to resolve the lensed multiple images for discovery. This is useful, because ground-based optical surveys dont have the resolution to see the separate images yet theyll still be useful for discovering multiply-imaged supernovae.Future ProspectsHow useful? Goldstein and Nugent use Monte Carlo simulations to estimate how many multiply-imaged Type Ia supernovae will be discoverable with future survey projects. They find that theZwicky Transient Facility (ZTF), which will begin operating this year, should be able to find up to 10 using this technique in a 3-year search. The Large Synoptic Survey Telescope (LSST), which should start operating in 2022, will be able to find around 500 multiply-imaged Type Ia supernovae in a 10-year survey.CitationDaniel A. Goldstein and Peter E. Nugent 2017 ApJL 834 L5. doi:10.3847/2041-8213/834/1/L5
High molecular gas fractions in normal massive star-forming galaxies in the young Universe.
Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B
2010-02-11
Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts
TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star Formation
NASA Astrophysics Data System (ADS)
Rigby, Jane; Vieira, Joaquin; Bayliss, M.; Fischer, T.; Florian, M.; Gladders, M.; Gonzalez, A.; Law, D.; Marrone, D.; Phadke, K.; Sharon, K.; Spilker, J.
2017-11-01
We propose high signal-to-noise NIRSpec and MIRI IFU spectroscopy, with accompanying imaging, for 4 gravitationally lensed galaxies at 1
NASA Rocket Experiment Finds the Universe Brighter Than We Thought
2017-12-08
A NASA sounding rocket experiment has detected a surprising surplus of infrared light in the dark space between galaxies, a diffuse cosmic glow as bright as all known galaxies combined. The glow is thought to be from orphaned stars flung out of galaxies. The findings redefine what scientists think of as galaxies. Galaxies may not have a set boundary of stars, but instead stretch out to great distances, forming a vast, interconnected sea of stars. Observations from the Cosmic Infrared Background Experiment, or CIBER, are helping settle a debate on whether this background infrared light in the universe, previously detected by NASA’s Spitzer Space Telescope, comes from these streams of stripped stars too distant to be seen individually, or alternatively from the first galaxies to form in the universe. This is a time-lapse photograph of the Cosmic Infrared Background Experiment (CIBER) rocket launch, taken from NASA's Wallops Flight Facility in Virginia in 2013. The image is from the last of four launches. Read more: www.nasa.gov/press/2014/november/nasa-rocket-experiment-f... Image Credit: T. Arai/University of Tokyo NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Gitterman, Y.
2012-04-01
A series of experimental on-surface shots was designed and conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR) in Negev desert, including two large calibration explosions: about 82 tons of strong IMI explosives in August 2009, and about 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources in different weather/wind conditions, for calibration of IMS infrasound stations in Europe, Middle East and Asia. Strong boosters and the upward charge detonation scheme were applied to provide a reduced energy release to the ground and an enlarged energy radiation to the atmosphere, producing enhanced infrasound signals, for better observation at far-regional stations. The following observations and results indicate on the required explosives energy partition for this charge design: 1) crater size and local seismic (duration) magnitudes were found smaller than expected for these large surface explosions; 2) small test shots of the same charge (1 ton) conducted at SMR with different detonation directions showed clearly lower seismic amplitudes/energy and smaller crater size for the upward detonation; 3) many infrasound stations at local and regional distances showed higher than expected peak amplitudes, even after application of a wind-correction procedure. For the large-scale explosions, high-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. Empirical relations for air-blast parameters - peak pressure, impulse and the Secondary Shock (SS) time delay - depending on distance, were developed and analyzed. The parameters, scaled by the cubic root of estimated TNT equivalent charges, were found consistent for all analyzed explosions, except of SS time delays clearly separated for the shot of IMI explosives (characterized by much higher detonation velocity than ANFO). Additionally acoustic records at close distances from WSMR explosions Distant Image (2440 tons of ANFO) and Minor Uncle (2725 tons of ANFO) were used to extend the charge and distance range for the SS delay scaled relationship, that showed consistency with SMR ANFO shots. The developed specific charge design contributed to the success of this unique dual Sayarim explosion experiment, providing the strongest GT0 sources since the establishment of the IMS network, that demonstrated clearly the most favorable westward/ eastward infrasound propagation up to 3400/6250 km according to appropriate summer/winter weather pattern and stratospheric wind directions, respectively, and thus verified empirically common models of infrasound propagation in the atmosphere. The research was supported by the CTBTO, Vienna, and the Israel Ministry of Immigrant Absorption.
Spallation reactions in shock waves at supernova explosions and related problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ustinova, G. K., E-mail: ustinova@dubna.net.ru
2013-05-15
The isotopic anomalies of some extinct radionuclides testify to the outburst of a nearby supernova just before the collapse of the protosolar nebula, and to the fact that the supernova was Sn Ia, i.e. the carbon-detonation supernova. A key role of spallation reactions in the formation of isotopic anomalies in the primordial matter of the Solar System is revealed. It is conditioned by the diffusive acceleration of particles in the explosive shock waves, which leads to the amplification of rigidity of the energy spectrum of particles and its enrichment with heavier ions. The quantitative calculations of such isotopic anomalies ofmore » many elements are presented. It is well-grounded that the anomalous Xe-HL in meteoritic nanodiamonds was formed simultaneously with nanodiamonds themselves during the shock wave propagation at the Sn Ia explosion. The possible effects of shock wave fractionation of noble gases in the atmosphere of planets are considered. The origin of light elements Li, Be and B in spallation reactions, predicted by Fowler in the middle of the last century, is argued. All the investigated isotopic anomalies give the evidence for the extremely high magnetohydrodynamics (MHD) conditions at the initial stage of free expansion of the explosive shock wave from Sn Ia, which can be essential in solution of the problem of origin of cosmic rays. The specific iron-enriched matter of Sn Ia and its MHD-separation in turbulent processes must be taking into account in the models of origin of the Solar System.« less
Modeling the processing of interstellar ices by energetic particles
NASA Astrophysics Data System (ADS)
Kalvāns, J.; Shmeld, I.
2013-06-01
Context. Interstellar ice is the main form of metal species in dark molecular clouds. Experiments and observations have shown that the ice is significantly processed after the freeze-out of molecules onto grains. The processing is caused by cosmic-ray particles and cosmic-ray-induced UV photons. These transformations are included in current astrochemical models only to a very limited degree. Aims: We aim to establish a model of the "cold" chemistry in interstellar ices and to evaluate its general impact on the composition of interstellar ices. Methods: The ice was treated as consisting of two layers - the surface and the mantle (or subsurface) layer. Subsurface chemical processes are described with photodissociation of ice species and binary reactions on the surfaces of cavities inside the mantle. Hydrogen atoms and molecules can diffuse between the layers. We also included deuterium chemistry. Results: The modeling results show that the content of chemically bound H is reduced in subsurface molecules by about 30% on average. This promotes the formation of more hydrogen-poor species in the ice. The enrichment of ice molecules with deuterium is significantly reduced by the subsurface processes. On average, it follows the gas-phase atomic D/H abundance ratio, with a delay. The delay produced by the model is on the order of several Myr. Conclusions: The processing of ice may place new constraints on the production of deuterated species on grains. In a mantle with a two-layer structure the upper layer (CO) should be processed substantially more intensively than the lower layer (H2O). Chemical explosions in interstellar ice might not be an important process. They destroy the structure of the mantle, which forms over long timescales. Besides, ices may lack the high radical content needed for the explosions.
Cause of Cambrian Explosion - Terrestrial or Cosmic?
Steele, Edward J; Al-Mufti, Shirwan; Augustyn, Kenneth A; Chandrajith, Rohana; Coghlan, John P; Coulson, S G; Ghosh, Sudipto; Gillman, Mark; Gorczynski, Reginald M; Klyce, Brig; Louis, Godfrey; Mahanama, Kithsiri; Oliver, Keith R; Padron, Julio; Qu, Jiangwen; Schuster, John A; Smith, W E; Snyder, Duane P; Steele, Julian A; Stewart, Brent J; Temple, Robert; Tokoro, Gensuke; Tout, Christopher A; Unzicker, Alexander; Wainwright, Milton; Wallis, Jamie; Wallis, Daryl H; Wallis, Max K; Wetherall, John; Wickramasinghe, D T; Wickramasinghe, J T; Wickramasinghe, N Chandra; Liu, Yongsheng
2018-08-01
We review the salient evidence consistent with or predicted by the Hoyle-Wickramasinghe (H-W) thesis of Cometary (Cosmic) Biology. Much of this physical and biological evidence is multifactorial. One particular focus are the recent studies which date the emergence of the complex retroviruses of vertebrate lines at or just before the Cambrian Explosion of ∼500 Ma. Such viruses are known to be plausibly associated with major evolutionary genomic processes. We believe this coincidence is not fortuitous but is consistent with a key prediction of H-W theory whereby major extinction-diversification evolutionary boundaries coincide with virus-bearing cometary-bolide bombardment events. A second focus is the remarkable evolution of intelligent complexity (Cephalopods) culminating in the emergence of the Octopus. A third focus concerns the micro-organism fossil evidence contained within meteorites as well as the detection in the upper atmosphere of apparent incoming life-bearing particles from space. In our view the totality of the multifactorial data and critical analyses assembled by Fred Hoyle, Chandra Wickramasinghe and their many colleagues since the 1960s leads to a very plausible conclusion - life may have been seeded here on Earth by life-bearing comets as soon as conditions on Earth allowed it to flourish (about or just before 4.1 Billion years ago); and living organisms such as space-resistant and space-hardy bacteria, viruses, more complex eukaryotic cells, fertilised ova and seeds have been continuously delivered ever since to Earth so being one important driver of further terrestrial evolution which has resulted in considerable genetic diversity and which has led to the emergence of mankind. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Search for the Tunguska event in the Antarctic snow
NASA Technical Reports Server (NTRS)
Rocchia, R.; Deangelis, M.; Doclet, D.; Bonte, PH.; Jehanno, C.; Robin, E.
1988-01-01
The Tunguska explosion in 1908 is supposed to have been produced by the impact of a small celestial body. The absence of any identifiable crater together with the huge energy released by the event suggest that the impactor exploded in midair and that its material was widely spread over the Earth. The short term contribution of such exceptional events to the total accretion rate of extraterrestrial material by the Earth could be significant. Samples were chosen in a core electromechanically drilled in 1984 near South Pole Station. There, the low temperatures, preventing melting all year long, and the nearly regular snow fall rate provide good conditions for a reliable continuous record of any infalling material. In many samples Ir was below the detection limit of the instrumentation. The iridium infall averaged over 45 samples is given. In a few samples the iridium content is significantly higher than the average: the frequency and amplitude of such fluctuations can be explained by the presence on some filters of finite size cosmic particles. No significant systematic increase above the average level is observed in the part of the core corresponding to the Tunguska event. The two major results of this study are: (1) The presence of Tunguska explosion debris in the Antarctic snow is not confirmed; and (2) The estimate of the average iridium infall, is an order of magnitude lower than the Ganapathy's background but is close to the values measured in Antarctic snow and atmospheric samples by Takahashi et al. The results are also consistent with the flux of micrometeoroids deduced from optical and radar observations or derived from the study of Greenland cosmic dust collection but are lower than the flux at mid-latitude measured in paleocene-oligocene sediments from the central part of the Pacific Ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Batishchev, P. A.; Bolshakov, V. V.
The results of work on choosing and substantiating promising lines of research in the realms of laboratory astrophysics with the aid of powerful lasers are presented. These lines of research are determined by the possibility of simulating, under laboratory conditions, problematic processes of presentday astrophysics, such as (i) the generation and evolution of electromagnetic fields in cosmic space and the role of magnetic fields there at various spatial scales; (ii) the mechanisms of formation and evolution of cosmic gamma-ray bursts and relativistic jets; (iii) plasma instabilities in cosmic space and astrophysical objects, plasma jets, and shock waves; (iv) supernova explosionsmore » and mechanisms of the explosion of supernovae featuring a collapsing core; (v) nuclear processes in astrophysical objects; (vi) cosmic rays and mechanisms of their production and acceleration to high energies; and (vii) astrophysical sources of x-ray radiation. It is shown that the use of existing powerful lasers characterized by an intensity in the range of 10{sup 18}-10{sup 22} W/cm{sup 2} and a pulse duration of 0.1 to 1 ps and high-energy lasers characterized by an energy in excess of 1 kJ and a pulse duration of 1 to 10 ns makes it possible to perform investigations in laboratory astrophysics along all of the chosen promising lines. The results obtained by experimentally investigating laser plasma with the aid of the laser facility created at Central Research Institute of Machine Building (TsNIIMash) and characterized by a power level of 10 TW demonstrate the potential of such facilities for performing a number of experiments in the realms of laboratory astrophysics.« less
NASA's Chandra Reveals Origin of Key Cosmic Explosions
NASA Astrophysics Data System (ADS)
2010-02-01
WASHINGTON -- New findings from NASA's Chandra X-ray Observatory have provided a major advance in understanding a type of supernova critical for studying the dark energy that astronomers think pervades the universe. The results show mergers of two dense stellar remnants are the likely cause of many of the supernovae that have been used to measure the accelerated expansion of the universe. These supernovae, called Type Ia, serve as cosmic mile markers to measure expansion of the universe because they can be seen at large distances, and they follow a reliable pattern of brightness. However, until now, scientists have been unsure what actually causes the explosions. "These are such critical objects in understanding the universe," said Marat Gilfanov of the Max Planck Institute for Astrophysics in Germany and lead author of the study that appears in the Feb. 18 edition of the journal Nature. "It was a major embarrassment that we did not know how they worked. Now we are beginning to understand what lights the fuse of these explosions." Most scientists agree a Type Ia supernova occurs when a white dwarf star -- a collapsed remnant of an elderly star -- exceeds its weight limit, becomes unstable and explodes. Scientists have identified two main possibilities for pushing the white dwarf over the edge: two white dwarfs merging or accretion, a process in which the white dwarf pulls material from a sun-like companion star until it exceeds its weight limit. "Our results suggest the supernovae in the galaxies we studied almost all come from two white dwarfs merging," said co-author Akos Bogdan, also of Max Planck. "This is probably not what many astronomers would expect." The difference between these two scenarios may have implications for how these supernovae can be used as "standard candles" -- objects of a known brightness -- to track vast cosmic distances. Because white dwarfs can come in a range of masses, the merger of two could result in explosions that vary somewhat in brightness. Because these two scenarios would generate different amounts of X-ray emission, Gilfanov and Bogdan used Chandra to observe five nearby elliptical galaxies and the central region of the Andromeda galaxy. A Type 1a supernova caused by accreting material produces significant X- ray emission prior to the explosion. A supernova from a merger of two white dwarfs, on the other hand, would create significantly less X-ray emission than the accretion scenario. The scientists found the observed X-ray emission was a factor of 30 to 50 times smaller than expected from the accretion scenario, effectively ruling it out. This implies that white dwarf mergers dominate in these galaxies. An open question remains whether these white dwarf mergers are the primary catalyst for Type Ia supernovae in spiral galaxies. Further studies are required to know if supernovae in spiral galaxies are caused by mergers or a mixture of the two processes. Another intriguing consequence of this result is that a pair of white dwarfs is relatively hard to spot, even with the best telescopes. "To many astrophysicists, the merger scenario seemed to be less likely because too few double-white-dwarf systems appeared to exist," said Gilfanov. "Now this path to supernovae will have to be investigated in more detail." In addition to the X-rays observed with Chandra, other data critical for this result came from NASA's Spitzer Space Telescope and the ground-based, infrared Two Micron All Sky Survey. The infrared brightness of the galaxies allowed the team to estimate how many supernovae should occur. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov
Gamma-ray bursts appear simpler than expected?
NASA Astrophysics Data System (ADS)
Chardonnet, P.; Filina, A. A.; Popov, M. V.; Chechetkin, V. M.; Baranov, A. A.
The cosmic gamma-ray bursts are certainly an enigma in astrophysics. The "standard fireball" scenario developed during many years has provided a possible explanation of this phenomenon. The aim of this work is simply to explore a new possible interpretation by developing a coherent scenario inside the global picture of stellar evolution. At the basis of our scenario is the fact that maybe we have not fully understood how the core of a pair instability supernovae explode. In such a way, we have proposed a new paradigm assuming that the core of such massive star, instead of doing a symmetrical explosion, is completely fragmented in hot spots of burning nuclear matter. We have tested our scenario using some observational data like GRB spectrum, light curves, Amati relation and GRB-SN connection, and for each set of data we have proposed a possible physical interpretation. We have also suggested some possible tests of this scenario by measurement at high redshift. If this scenario is correct, it tells us simply that cosmic gamma-ray bursts are simply a missing link in stellar evolution.
New prospects for detecting high-energy neutrinos from nearby supernovae
NASA Astrophysics Data System (ADS)
Murase, Kohta
2018-04-01
Neutrinos from supernovae (SNe) are crucial probes of explosive phenomena at the deaths of massive stars and neutrino physics. High-energy neutrinos are produced through hadronic processes by cosmic rays, which are accelerated during interaction between the supernova (SN) ejecta and circumstellar material (CSM). Recent observations of extragalactic SNe have revealed that a dense CSM is commonly expelled by the progenitor star. We provide new quantitative predictions of time-dependent high-energy neutrino emission from diverse types of SNe. We show that IceCube and KM3Net can detect ˜103 events from a SN II-P (and ˜3 ×105 events from a SN IIn) at a distance of 10 kpc. The new model also enables us to critically optimize the time window for dedicated searches for nearby SNe. A successful detection will give us a multienergy neutrino view of SN physics and new opportunities to study neutrino properties, as well as clues to the cosmic-ray origin. GeV-TeV neutrinos may also be seen by KM3Net, Hyper-Kamiokande, and PINGU.
[The characteristics of mine-blast wounds in shoals].
Rukhliada, N V; Minnullin, I P; Chernysh, A V; Kuz'min, V P; Khomchuk, I A
1998-01-01
The data obtained in experiments on shoal using plastic charges of 100-50-25 g of equivalent power of antipersonnel mines showed that injuring action on shoal was four times greater than that on land and resulted in considerably graver skeletal traumas and distant injuries. Of special significance in pathogenesis of mine-explosive wounds on shoal is pneumonia followed by arterial air embolism and encephalopathy. Although the undermining on land and on shoal have many common etiopathogenetic features, there are substantial differences first of all due to different mechanisms of their appearance. It must be taken into account while performing evacuatory, diagnostic and medical measures in such patients.
Naked-eye optical flash from gamma-ray burst 080319B: Tracing the decaying neutrons in the outflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan Yizhong; Zhang Bing; Wei Daming
For an unsteady baryonic gamma-ray burst (GRB) outflow, the fast and slow proton shells collide with each other and produce energetic soft gamma-ray emission. If the outflow has a significant neutron component, the ultrarelativistic neutrons initially expand freely until decaying at a larger radius. The late-time proton shells ejected from the GRB central engine, after powering the regular internal shocks, will sweep these {beta}-decay products and give rise to very bright UV/optical emission. The naked-eye optical flash from GRB 080319B, an energetic explosion in the distant Universe, can be well explained in this way.
NASA Astrophysics Data System (ADS)
Kulkarni, S. R.
2012-04-01
One of the principal motivations of wide-field and synoptic surveys is the search for, and study of, transients. By transients I mean those sources that arise from the background, are detectable for some time, and then fade away to oblivion. Transients in distant galaxies need to be sufficiently bright as to be detectable, and in almost all cases those transients are catastrophic events, marking the deaths of stars. Exemplars include supernovæ and gamma-ray bursts. In our own Galaxy, the transients are strongly variable stars, and in almost all cases are at best cataclysmic rather than catastrophic. Exemplars include flares from M dwarfs, novæ of all sorts (dwarf novæ, recurrent novæ, classical novæ, X-ray novæ) and instabilities in the surface layers of stars such as S Dor or η Carina. In the nearby Universe (say out to the Virgo cluster) we have sufficient sensitivity to see novæ. In 1 I review the history of transients (which is intimately related to the advent of wide-field telescopic imaging). In 2 I summarize wide-field imaging projects, and I then review the motivations that led to the design of the Palomar Transient Factory (PTF). Next comes a summary of the astronomical returns from PTF (3), and that is followed by lessons that I have learnt from PTF (4). I conclude that, during this decade, the study of optical transients will continue to flourish (and may even accelerate as surveys at other wavelengths-notably radio, UV and X-ray-come on-line). Furthermore, it is highly likely that there will be a proliferation of highly-specialized searches for transients. Those searches may well remain active even in the era of LSST (5). I end the article by discussing the importance of follow-up telescopes for transient object studies-a topical issue, given the Portfolio Review that is being undertaken in the US.
Galaxies 800 million years after the Big Bang seen with the Atacama Large Millimetre Array
NASA Astrophysics Data System (ADS)
Smit, Renske
2018-01-01
The identification of galaxies in the first billion years after the Big Bang presents a challenge for even the largest optical telescopes. When the Atacama Large Millimetre Array (ALMA) started science operations in 2011 it presented a tantalising opportunity to identify and characterise these first sources of light in a new window of the electromagnetic spectrum. I will present new sources successfully identified at z=6.8 using ALMA; the first spectroscopic confirmations of typical star-forming galaxies during the Epoch or Reionization using a sub-millimetre telescope. Moreover, these observations reveal the gas kinematics of such distant sources for the first time. The velocity gradient in these galaxies indicate that these galaxies likely have similar dynamical properties as the turbulent, yet rotation-dominated disks that have been observed for Hα emitting galaxies 2 billion years later at cosmic noon. This novel approach for confirming galaxies during Reionization paves the way for larger studies of distant galaxies with spectroscopic redshifts. Particularly important, this opens up opportunities for the measurement of high angular-resolution dynamics in galaxies less than one billion years after the Big Bang.
The distant type Ia supernova rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pain, R.; Fabbro, S.; Sullivan, M.
2002-05-20
We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample,which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1more » supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.« less
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians use a socket wrench equipped with a torque meter to tighten the bolts holding one of twin solar arrays to NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-05
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility, General Dynamics technicians secure NASA's Gamma-Ray Large Area Space Telescope, or GLAST, onto a work stand. There GLAST will undergo a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-04
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility near the Kennedy Space Center, the shipping container covering NASA's Gamma-Ray Large Area Space Telescope, or GLAST, is lifted. Workers will prepare for a complete checkout of the telescope's scientific instruments. The GLAST will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-05
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, sits uncovered before its move to a work stand in the facility for a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-04
KENNEDY SPACE CENTER, FLA. -- The shipping container holding NASA's Gamma-Ray Large Area Space Telescope, or GLAST, is removed from the truck at the Astrotech payload processing facility near the Kennedy Space Center to begin prelaunch activities. The GLAST will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-04
KENNEDY SPACE CENTER, FLA. -- The shipping container holding NASA's Gamma-Ray Large Area Space Telescope, or GLAST, is removed from the truck at the Astrotech payload processing facility near the Kennedy Space Center to begin prelaunch activities. The GLAST will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, one of twin solar arrays awaits processing as General Dynamics technicians install the other of the pair on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
NASA Technical Reports Server (NTRS)
Auer, S. O.; Berg, O. E.
1975-01-01
Iron microparticles were fired onto a capacitor-type microparticle detector which responded to an impact with a spark discharge. Ion currents were extracted from the spark and analyzed in a time-of-flight mass spectrometer. The mass spectra showed the element of both detector and particle materials. The total extracted ion currents was typically 10A within a period of 100ns, indicating very efficient vaporization of the particle and ionization of the vapor. Potential applications include research on cosmic dust, atmospheric aerosols and cloud droplets, particles ejected by rocket or jet engines, by machining processes, or by nuclear bomb explosions.
A Proposal to Investigate Outstanding Problems in Astronomy
NASA Technical Reports Server (NTRS)
Ford, Holland
2003-01-01
During the past year the ACS science team has concentrated on analyzing ACS observations, writing papers, and disseminating our results to the astronomy community at conferences and workshops around the world. We also have put considerable effort in getting our results to the public via public lectures and through press releases. Taking a very broad view of our program, we are investigating the evolution of galaxies and clusters of galaxies from their birth, approximately one billion years after the beginning of the Universe, to the present. We have found and characterized a population of galaxies that are no more than 1.4 billion years old. These may well be the Universe s first generation of infant galaxies. Looking at the Universe 500,000 years later, we see what appears to be a cluster of galaxies just beginning to form (a proto-cluster) around a luminous radio galaxy. Moving forward in time and closer to the present, we are studying clusters of galaxies that are less than half the age of the Universe. Our observations and analysis lead us to the important conclusion that the elliptical galaxies in these clusters must have had their last significant star formation some three billion years earlier, which is about the time when the proto-cluster was forming. Coming still closer to home, we are observing nearby massive clusters of galaxies that are approximately 12 billion years old. The gravity from these large aggregates of dark and luminous matter is so strong it warps space-time itself, and makes the cluster act as a cosmic telescope that magnifies the distant galaxies behind the cluster. We used the magnified (or lensed) galaxies to map the distribution of the dominant matter within the clusters, which is the so-called dark matter (the matter is invisible, and its nature is unknown). We also are using these cosmic telescopes to study the distant lensed galaxies that would otherwise be too small and too faint to be seen even by Hubble and the ACS.
NASA Astrophysics Data System (ADS)
Yamada, Tomoaki; Zampolli, Mario; Haralabus, Georgios; Heaney, Kevin; Prior, Mark; Isse, Takeshi
2016-04-01
Controlled impulsive scientific underwater sound sources in the Northwestern Pacific were observed at two IMS hydroacoustic stations in the Pacific Ocean. Although these experiments were conducted with the aim of studying the physical properties of the plate boundaries inside the Earth, they are also suitable for the investigation of long range underwater acoustic detections. In spite of the fact that the energy of these controlled impulsive scientific sources is significantly smaller than that of nuclear explosions, the signals were obtained by IMS hydrophone stations thousands of kilometres away and also by distant ocean bottom instruments operated by various Institutes, such as the Earthquake Research Institute, University of Tokyo. These experiments provide calibrated (yield, time, location) long-range acoustic transmissions, which enable one to examine the physics of long-range acoustic propagation and to verify the capabilities of the CTBTO IMS network to detect even small explosions.The two IMS stations used are H03 (Juan Fernandez Island, Chile) off the coast of Chile in the Southeastern Pacific and H11 (Wake Island, USA) in the Western Pacific. Both stations consist of two triplets of hydrophones in the SOFAR channel, which monitor the oceans for signs of nuclear explosions. H03 detected low-yield explosions above flat terrain at distances of 15,000 km across the Pacific as well as explosions above the landward slope off the coast of Japan at distances above 16,000 km across the Pacific. These records showed that source signatures, such as short duration and bubble pulses, were preserved over the long propagation distances. It was found that the observed maximum amplitudes from each source exhibit order of magnitude variations even when the yield and detonation depth are the same. The experimental data and transmission loss simulations suggest that bathymetric features around the sources and between the sources and the receivers are the main causes for these variations.
NASA Astrophysics Data System (ADS)
Nomoto, Ken&'Ichi; Tolstov, Alexey; Sorokina, Elena; Blinnikov, Sergei; Bersten, Melina; Suzuki, Tomoharu
2017-11-01
The physical origin of Type-I (hydrogen-less) superluminous supernovae (SLSNe-I), whose luminosities are 10 to 500 times higher than normal core-collapse supernovae, remains still unknown. Thanks to their brightness, SLSNe-I would be useful probes of distant Universe. For the power source of the light curves of SLSNe-I, radioactive-decays, magnetars, and circumstellar interactions have been proposed, although no definitive conclusions have been reached yet. Since most of light curve studies have been based on simplified semi-analytic models, we have constructed multi-color light curve models by means of detailed radiation hydrodynamical calculations for various mass of stars including very massive ones and large amount of mass loss. We compare the rising time, peak luminosity, width, and decline rate of the model light curves with observations of SLSNe-I and obtain constraints on their progenitors and explosion mechanisms. We particularly pay attention to the recently reported double peaks of the light curves. We discuss how to discriminate three models, relevant models parameters, their evolutionary origins, and implications for the early evolution of the Universe.
The Basic Theoretical Framework
NASA Astrophysics Data System (ADS)
Loeb, Abraham
Cosmology is by now a mature experimental science. We are privileged to live at a time when the story of genesis (how the Universe started and developed) can be critically explored by direct observations. Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 m in diameter, and NASA's successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe. These arrays are aiming to detect the long-wavelength (redshifted 21-cm) radio emission from hydrogen atoms. The images from these antenna arrays will reveal how the non-uniform distribution of neutral hydrogen evolved with cosmic time and eventually was extinguished by the ultra-violet radiation from the first galaxies. Theoretical research has focused in recent years on predicting the expected signals for the above instruments and motivating these ambitious observational projects.
NASA Astrophysics Data System (ADS)
Kouznetsov, A.; Cully, C. M.; Knudsen, D. J.
2016-12-01
Changes in D-Region ionization caused by energetic particle precipitation are monitored by the Array for Broadband Observations of VLF/ELF Emissions (ABOVE) - a network of receivers deployed across Western Canada. The observed amplitudes and phases of subionospheric-propagating VLF signals from distant artificial transmitters depend sensitively on the free electron population created by precipitation of energetic charged particles. Those include both primary (electrons, protons and heavier ions) and secondary (cascades of ionized particles and electromagnetic radiation) components. We have designed and implemented a full-scale model to predict the received VLF signals based on first-principle charged particle transport calculations coupled to the Long Wavelength Propagation Capability (LWPC) software. Calculations of ionization rates and free electron densities are based on MCNP-6 (a general-purpose Monte Carlo N- Particle) software taking advantage of its capability of coupled neutron/photon/electron transport and novel library of cross-sections for low-energetic electron and photon interactions with matter. Cosmic ray calculations of background ionization are based on source spectra obtained both from PAMELA direct Cosmic Rays spectra measurements and based on the recently-implemented MCNP 6 galactic cosmic-ray source, scaled using our (Calgary) neutron monitor measurement results. Conversion from calculated fluxes (MCNP F4 tallies) to ionization rates for low-energy electrons are based on the total ionization cross-sections for oxygen and nitrogen molecules from the National Institute of Standard and Technology. We use our model to explore the complexity of the physical processes affecting VLF propagation.
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trentu, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Patricia Carasco Nunez, Daniela; Paterno-Mahler, Rachel; Strait, Victoria
2017-10-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind the most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 550 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 20 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal is a unique opportunity to establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed, this result will require a paradigm shift in our understanding of the earliest star formation.
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Carrasco Nunez, Daniela Patricia
2017-04-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind 3 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 390 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 30 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.
NASA Technical Reports Server (NTRS)
Muller, R. A.
1979-01-01
This experiment detected and mapped large-angular-scale anisotropies in the 3 K primordial black-body radiation with a sensitivity of 2x.0001k and an angular resolution of about 10 degs. It measured the motion of the Earth with respect to the distant matter of the Universe (Aether Drift), and probed the homogeneity and isotropy of the Universe (the Cosmological Principle). The experiment used two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth Survey Aircraft (U-2), and operated successfully in a series of flights.
ΛCDM Cosmology for Astronomers
NASA Astrophysics Data System (ADS)
Condon, J. J.; Matthews, A. M.
2018-07-01
The homogeneous, isotropic, and flat ΛCDM universe favored by observations of the cosmic microwave background can be described using only Euclidean geometry, locally correct Newtonian mechanics, and the basic postulates of special and general relativity. We present simple derivations of the most useful equations connecting astronomical observables (redshift, flux density, angular diameter, brightness, local space density, ...) with the corresponding intrinsic properties of distant sources (lookback time, distance, spectral luminosity, linear size, specific intensity, source counts, ...). We also present an analytic equation for lookback time that is accurate within 0.1% for all redshifts z. The exact equation for comoving distance is an elliptic integral that must be evaluated numerically, but we found a simple approximation with errors <0.2% for all redshifts up to z ≈ 50.
More MAGiX in the Chandra Archive
NASA Astrophysics Data System (ADS)
Townsley, Leisa
2017-09-01
Massive star-forming regions (MSFRs) are engines of change across the Galaxy, providing its ionization, fueling the hot ISM, and seeding spiral arms with tens of thousands of new stars. Resolvable MSFRs are microscopes for understanding their more distant extragalactic counterparts, which provide the basis for star formation rate calibrations and form the building blocks of starburst galaxies. This archive program will extend Chandra's lexicon of MSFRs with in-depth analysis of 16 complexes, studying star formation and evolution on scales of tenths to tens of parsecs, distances <1 to >50 kpc, and ages <1 to 25 Myr. It fuses a "Physics of the Cosmos" mission with "Cosmic Origins" science, bringing new insight into star formation and feedback through Chandra's unique X-ray perspective.
Deep Extragalactic X-Ray Surveys
NASA Astrophysics Data System (ADS)
Brandt, W. N.; Hasinger, G.
2005-09-01
Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from deep surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for deep extragalactic X-ray surveys.
A wide-field survey for high-redshift quasars
NASA Astrophysics Data System (ADS)
Kakazu, Yuko K. M.
2008-02-01
The present thesis reports the results from the Hawaii Quasar and T dwarf survey (HQT survey), which is a wide-field optical imaging survey conducted with Subaru/Suprime-Cam. The HQT survey was designed to search for low- luminosity quasars ( M 1450 < -22.5) at high-redshift ( z > 5.7) as well as T dwarfs, both of which are selected by their very red optical I -- z ' colors. We developed a new color selection technique using a narrowband NB 816 filter in order to break a well-known color degeneracy between quasars and foreground M and L dwarfs. The follow-up Keck/DEIMOS spectroscopy and near-IR imaging with various instruments on Mauna Kea have demonstrated the effectiveness of our technique, and have successfully revealed six faint T dwarfs ( J < 20). These dwarfs are among the most distant spectroscopically known (60 - 170 pc) and they provide an indirect support for the high binary fraction at L/ T transition. The non-detection of z > 5.7 quasars in our survey is consistent with the present picture of the cosmic reionization in which quasars are negligible contributor to the cosmic reionization. With our survey area coverage (9.3 deg 2 ) and depths ( Z AB < 23.3), we were able to set strong constraints on the faint-end slope of the quasar luminosity function. Majority of our candidate quasars turned out to be strong emission line galaxies at z < 1, whose large equivalent widths and low metal contents suggest they are very young systems which have just undergone starbursts within a few Myrs. In order to systematically search for these Ultra-Strong Emission Line galaxies (USELs), we used narrowband selected samples from Hu's ultra-deep multiwavelength data. The followup Keck/DEIMOS spectra have revealed their high star formation density (5-10% of UV measurements at z = 0-1), which is a significant contribution at a epoch when cosmic star formation is in its peak. Many of the USELs show [OIII]l4363 auroral lines and about a dozen satisfy the criteria for eXtremely Metal Poor Galaxies (XMPGs). Our XMPGs are the most distant known today. Our high yield rate of XMPGs suggests that narrowband method is powerful in finding such populations. Strikingly, a few of our XMPGs have metallities close to the most metal-poor galaxy. Our discovery indicates that galaxies are still forming in relatively chemically pristine sites at z ~ 1
The VLT Measures the Shape of a Type Ia Supernova
NASA Astrophysics Data System (ADS)
2003-08-01
First Polarimetric Detection of Explosion Asymmetry has Cosmological Implications Summary An international team of astronomers [2] has performed new and very detailed observations of a supernova in a distant galaxy with the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). They show for the first time that a particular type of supernova, caused by the explosion of a "white dwarf", a dense star with a mass around that of the Sun, is asymmetric during the initial phases of expansion . The significance of this observation is much larger than may seem at a first glance . This particular kind of supernova, designated "Type Ia", plays a very important role in the current attempts to map the Universe. It has for long been assumed that Type Ia supernovae all have the same intrinsic brightness , earning them a nickname as "standard candles". If so, differences in the observed brightness between individual supernovae of this type simply reflect their different distances. This, and the fact that the peak brightness of these supernovae rivals that of their parent galaxy, has allowed to measure distances of even very remote galaxies . Some apparent discrepancies that were recently found have led to the discovery of cosmic acceleration . However, this first clearcut observation of explosion asymmetry in a Type Ia supernova means that the exact brightness of such an object will depend on the angle from which it is seen. Since this angle is unknown for any particular supernova, this obviously introduces an amount of uncertainty into this kind of basic distance measurements in the Universe which must be taken into account in the future. Fortunately, the VLT data also show that if you wait a little - which in observational terms makes it possible to look deeper into the expanding fireball - then it becomes more spherical. Distance determinations of supernovae that are performed at this later stage will therefore be more accurate. PR Photo 24a/03 : Spiral galaxy NGC 1448 and SN 2001el (DSS and NTT/EMMI). PR Photo 24b/03 : Optical spectrum of SN 2001el and fractional polarisation (VLT/FORS) Supernova explosions and cosmic distances During Type Ia supernova events, remnants of stars with an initial mass of up to a few times that of the Sun (so-called "white dwarf stars") explode, leaving nothing behind but a rapidly expanding cloud of "stardust". Type Ia supernovae are apparently quite similar to one another. This provides them a very useful role as "standard candles" that can be used to measure cosmic distances. Their peak brightness rivals that of their parent galaxy, hence qualifying them as prime cosmic yardsticks. Astronomers have exploited this fortunate circumstance to study the expansion history of our Universe. They recently arrived at the fundamental conclusion that the Universe is expanding at an accelerating rate, cf. ESO PR 21/98, December 1998 (see also the Supernova Acceleration Probe web page). The explosion of a white dwarf star In the most widely accepted models of Type Ia supernovae the pre-explosion white dwarf star orbits a solar-like companion star, completing a revolution every few hours. Due to the close interaction, the companion star continuously loses mass, part of which is picked up (in astronomical terminology: "accreted") by the white dwarf. A white dwarf represents the penultimate stage of a solar-type star. The nuclear reactor in its core has run out of fuel a long time ago and is now inactive. However, at some point the mounting weight of the accumulating material will have increased the pressure inside the white dwarf so much that the nuclear ashes in there will ignite and start burning into even heavier elements. This process very quickly becomes uncontrolled and the entire star is blown to pieces in a dramatic event. An extremely hot fireball is seen that often outshines the host galaxy. The shape of the explosion Although all supernovae of Type Ia have quite similar properties, it has never been clear until now how similar such an event would appear to observers who view it from different directions. All eggs look similar and indistinguishable from each other when viewed from the same angle, but the side view (oval) is obviously different from the end view (round). And indeed, if Type Ia supernova explosions were asymmetric, they would shine with different brightness in different directions. Observations of different supernovae - seen under different angles - could therefore not be directly compared. Not knowing these angles, however, the astronomers would then infer incorrect distances and the precision of this fundamental method for gauging the structure of the Universe would be in question. Polarimetry to the rescue A simple calculation shows that even to the eagle eyes of the VLT Interferometer (VLTI), all supernovae at cosmological distances will appear as unresolved points of light; they are simply too far. But there is another way to determine the angle at which a particular supernova is viewed: polarimetry is the name of the trick! Polarimetry works as follows: light is composed of electromagnetic waves (or photons) which oscillate in certain directions (planes). Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflecting off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation . If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. " Even for quite noticable asymmetries, however, the polarisation is very small and barely exceeds the level of one percent ", says Dietrich Baade, ESO astronomer and a member of the team that performed the observations. " Measuring them requires an instrument that is very sensitive and very stable . " The VLT observation of SN 2001el in NGC 1448 ESO PR Photo 24a/03 ESO PR Photo 24a/03 [Preview - JPEG: 620 x 400 pix - 156k [Normal - JPEG: 1240 x 800 pix - 396k] ESO PR Photo 24b/03 ESO PR Photo 24b/03 [Preview - JPEG: 400 x 524 pix - 104k [Normal - JPEG: 800 x 1047 pix - 240k] Captions : PR Photo 24a/03 shows the spiral galaxy NGC 1448, as seen in an archive image from the Digital Sky Survey (Courtesy of STScI) and as seen close to the brightness maximum of the supernova using EMMI on the NTT. SN 2001el is marked by the arrow. The field measures 4.5 x 4.5 arcmin 2 ; North is up and east is right. PR Photo 24b/03 illustrates the optical spectrum of SN 2001el in NGC 1448 (upper panel). The middle and lower panels show the corresponding fractional polarisations. They measure the different numbers of photons oscillating in perpendicular directions; they are directly related to the geometry of the supernova. The shaded area indicates the spectral signatures of high-velocity matter in the expanding envelope. The measurement in faint and distant light sources of differences at a level of less than one percent is a considerable observational challenge. "However, the ESO Very Large Telescope (VLT) offers the precision, the light collecting power, as well as the specialized instrumentation required for such a demanding polarimetric observation" , explains Dietrich Baade . "But this project would not have been possible without the VLT being operated in service mode. It is indeed impossible to predict when a supernova will explode and we need to be ready all the time. Only service mode allows observations at short notice. Some years ago, it was a farsighted and courageous decision by ESO's directorate to put so much emphasis on Service Mode. And it was the team of competent and devoted ESO astronomers on Paranal who made this concept a practical success" , he adds. The astronomers [1] used the VLT multi-mode FORS1 instrument to observe SN 2001el , a Type Ia supernova that was discovered in September 2001 in the galaxy NGC 1448, cf. PR Photo 24a/03 at a distance of 60 million light-years. Observations obtained about a week before this supernova reached maximum brightness around October 2 revealed polarisation at levels of 0.2-0.3% ( PR Photo 24b/03 ). Near maximum light and up to two weeks thereafter, the polarisation was still measurable. Six weeks after maximum, the polarisation had dropped below detectability. This is the first time ever that a normal Type Ia supernova has been found to exhibit such clear-cut evidence of asymmetry . Looking deeper into the supernova Immediately following the supernova explosion, most of the expelled matter moves at velocities around 10,000 km/sec. During this expansion, the outermost layers become progressively more transparent. With time one can thus look deeper and deeper into the supernova. The polarisation measured in SN 2001el therefore provides evidence that the outermost parts of the supernova (which are first seen) are significantly asymmetric . Later, when the VLT observations "penetrate" deeper towards the heart of the supernova, the explosion geometry is increasingly more symmetric. If modeled in terms of a flattened spheroidal shape, the measured polarisation in SN 2001el implies a minor-to-major axis ratio of around 0.9 before maximum brightness is reached and a spherically symmetric geometry from about one week after this maximum and onward. Cosmological implications One of the key parameters on which Type Ia distance estimates are based is the optical brightness at maximum. The measured asphericity at this moment would introduce an absolute brightness uncertainty (dispersion) of about 10% if no correction were made for the viewing angle (which is not known). While Type Ia supernovae are by far the best standard candles for measuring cosmological distances, and hence for investigating the so-called dark energy, a small measurement uncertainty persists. " The asymmetry we have measured in SN 2001el is large enough to explain a large part of this intrinsic uncertainty ", says Lifan Wang, the leader of the team. " If all Type Ia supernovae are like this, it would account for a lot of the dispersion in brightness measurements. They may be even more uniform than we thought ." Reducing the dispersion in brightness measurements could of course also be attained by increasing significantly the number of supernovae we observe, but given that these measurements demand the largest and most expensive telescopes in the world, like the VLT, this is not the most efficient method. Thus, if the brightness measured a week or two after maximum was used instead, the sphericity would then have been restored and there would be no systematic errors from the unknown viewing angle. By this slight change in observational procedure, Type Ia supernovae could become even more reliable cosmic yardsticks. Theoretical implications The present detection of polarised spectral features strongly suggests that, to understand the underlying physics, the theoretical modelling of Type Ia supernovae events will have to be done in all three dimensions with more accuracy than is presently done. In fact, the available, highly complex hydrodynamic calculations have so far not been able to reproduce the structures exposed by SN 2001el. More information The results presented in this press release have been been described in a research paper in "Astrophysical Journal" ("Spectropolarimetry of SN 2001el in NGC 1448: Asphericity of a Normal Type Ia Supernova" by Lifan Wang and co-authors, Volume 591, p. 1110).
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] IRA-MIPS Composite [figure removed for brevity, see original site] Visible [figure removed for brevity, see original site] IRAC [figure removed for brevity, see original site] MIPS The LMC is a small satellite galaxy gravitationally bound to our own Milky Way. Yet the gravitational effects are tearing the companion to shreds in a long-playing drama of 'intergalactic cannibalism.' These disruptions lead to a recurring cycle of star birth and star death. Astronomers are particularly interested in the LMC because its fractional content of heavy metals is two to five times lower than is seen in our solar neighborhood. [In this context, 'heavy elements' refer to those elements not present in the primordial universe. Such elements as carbon, oxygen and others are produced by nucleosynthesis and are ejected into the interstellar medium via mass loss by stars, including supernova explosions.] As such, the LMC provides a nearby cosmic laboratory that may resemble the distant universe in its chemical composition. The primary Spitzer image, showing the wispy filamentary structure of Henize 206, is a four-color composite mosaic created by combining data from an infrared array camera (IRAC) at near-infrared wavelengths and the mid-infrared data from a multiband imaging photometer (MIPS). Blue represents invisible infrared light at wavelengths of 3.6 and 4.5 microns. Note that most of the stars in the field of view radiate primarily at these short infrared wavelengths. Cyan denotes emission at 5.8 microns, green depicts the 8.0 micron light, and red is used to trace the thermal emission from dust at 24 microns. The separate instrument images are included as insets to the main composite. An inclined ring of emission dominates the central and upper regions of the image. This delineates a bubble of hot, x-ray emitting gas that was blown into space when a massive star died in a supernova explosion millions of years ago. The shock waves from that explosion impacted a cloud of nearby hydrogen gas, compressed it, and started a new generation of star formation. The death of one star led to the birth of many new stars. This is particularly evident in the MIPS inset, where the 24-micron emission peaks correspond to newly formed stars. The ultraviolet and visible-light photons from the new stars are absorbed by surrounding dust and re-radiated at longer infrared wavelengths, where it is detected by Spitzer. This emission nebula was cataloged by Karl Henize (HEN-eyes) while spending 1948-1951 in South Africa doing research for his Ph.D. dissertation at the University of Michigan. Henize later became a NASA astronaut and, at age 59, became the oldest rookie to fly on the Space Shuttle during an eight-day flight of the Challenger in 1985. He died just short of his 67th birthday in 1993 while attempting to climb the north face of Mount Everest, the world's highest peak.Chandra Provides New View of Biggest Construction Sites in Universe
NASA Astrophysics Data System (ADS)
2003-05-01
Images made by NASA's Chandra X-ray Observatory have revealed two distant cosmic construction sites buzzing with activity. This discovery shows how super massive black holes control the growth of massive galaxies in the distant universe. X-rays were detected from vast clouds of high-energy particles around the galaxies 3C294 and 4C41.17, which are 10 and 12 billion light years from Earth, respectively. The energetic particles were left over from past explosive events that can be traced through the X-ray and radio jets back to the super massive black holes located in the centers of the galaxies. "These galaxies are revealing an energetic phase in which a super massive black hole transfers considerable energy into the gas surrounding the galaxies," said Andrew Fabian of England's Cambridge University, lead author of a paper on 3C294 to appear in an upcoming issue of the Monthly Notices of the Royal Astronomical Society. "This appears to be crucial in explaining the puzzling properties of present-day galaxies, especially those that group together in large clusters," he said. The picture that is emerging is of a grand cosmic cycle. A dense region of intergalactic gas cools to form several smaller galaxies, which merge to form a larger galaxy with a super massive black hole. The galaxy and its central black hole continue to grow until the energy generated by jets from the vicinity of the voracious black hole stops the fall of matter into the black hole. Millions of years after the jet activity subsides, matter will resume falling into the black hole and the cycle begins anew. 4C41.17 and 3C294 4C41.17 Both 3C294 and 4C41.17 reside in regions of space containing unusually high numbers of galaxies. The gas and galaxies surrounding these galaxies will eventually collapse to form galaxy clusters, some of the most massive objects in the universe. Although 3C294 and 4C41.17 will grow to gargantuan sizes, through the accumulation of surrounding matter that forms hundreds of billions of stars, their growth does not go unchecked. "It's as if nature tries to impose a weight limit on the size of the most massive galaxies," said Caleb Scharf of Columbia University, N.Y., and lead author of a paper on 4C41.17 to be published in The Astrophysical Journal. "The Chandra observations have given us an important clue as to how this occurs. The high energy jets give the super massive black holes an extended reach to regulate the growth of these galaxies," he said. In 3C294 and 4C41.17, the hot swirling infernos around their super massive black holes have launched magnetized jets of high energy particles first identified by radio telescopes. These jets, which were also detected by Chandra, have swept up clouds of dust and gas and have helped trigger the formation of billions of new stars. The dusty, star-forming clouds of 4C41.17, the most powerful source of infrared radiation ever observed, are embedded in even larger clouds of gas. Astronomers recently used the Keck Observatory to observe these larger clouds, which have a temperature of 10,000 degree Celsius gas. These clouds are leftover material from the galaxy's formation and should have cooled rapidly by radiation in the absence of a heat source. Animation of How Supermassive Black Holes Affect the Formation of Massive Galaxies Animation of How Supermassive Black Holes Affect the Formation of Massive Galaxies "Significantly, the warm gas clouds coincide closely with the largest extent of the X-ray emission," said Michiel Reuland of Lawrence Livermore National Laboratory, Livermore, Calif., a coauthor on the 4C41.17 paper and a paper describing Keck Observatory work. "The Chandra results show that high energy particles or radiation can supply the necessary energy to light up these clouds," he said. Most of the X-rays from 4C41.17 and 3C294 are due to collisions of energetic electrons with the cosmic background of photons produced in the hot early universe. Because these galaxies are far away, their observed radiation originated when the universe was younger and the background was more intense. This effect enhances the X-radiation and helps astronomers to study extremely distant galaxies. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass., for the Office of Space Science, NASA Headquarters, Washington. Images and additional information about this result are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
2008-03-04
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility near the Kennedy Space Center, workers check NASA's Gamma-Ray Large Area Space Telescope, or GLAST, after removal of the shipping container. The workers will prepare for a complete checkout of the telescope's scientific instruments. The GLAST will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
Energy release estimation for fragmenting meteoroid
NASA Astrophysics Data System (ADS)
Egorova, L. A.; Lokhin, V. V.
2018-05-01
It is known that for the adequate interpretation of fireball observations it is necessary to take into account its fragmentation in the Earth's atmosphere. Various models for large cosmic body destruction in the atmosphere are known. Presented work continues our previous research on the fragmentation of fireballs. Proposing a model for the destruction of a fireball we also submit a model for the transition of its kinetic energy to thermal one. The meteoroid destruction under consideration is similar to the destruction of a solid body during an explosion. The kinetic energy of the moving particles of the crashing meteoric body transform into the thermal energy of the gas volume in which their motion occurs.
Etched tracks and serendipitous dosimetry.
Fleischer, Robert L; Chang, Sekyung; Farrell, Jeremy; Herrmann, Rachel C; MacDonald, Jonathan; Zalesky, Marek; Doremus, Robert H
2006-01-01
Nuclear tracks in detectors that just happened to be there can be found in unexpected places. Eyeglasses, household glass, minerals, objects that were exposed to nuclear explosions, and space equipment on the moon are examples. Such materials allow us to measure doses of past radon exposures, cosmic-ray fluences, fission rates and neutrons. Incidental results include measuring mountain-building rates and deciding where finding oil is likely (or unlikely); in another case erosion rates of surface materials in space are found. New results that assess the effects of hydration layers on the leaching out from glass surfaces of imbedded alpha-recoil nuclei imply that long-term, retrospective radon measurements can be made more reliable by selecting only glass with compact hydration layers.
Final Report: SciDAC Computational Astrophysics Consortium (at Princeton University)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrows, Adam
Supernova explosions are the central events in astrophysics. They are the major agencies of change in the interstellar medium, driving star formation and the evolution of galaxies. Their gas remnants are the birthplaces of the cosmic rays. Such is their brightness that they can be used as standard candles to measure the size and geometry of the universe and their investigation draws on particle and nuclear physics, radiative transfer, kinetic theory, gravitational physics, thermodynamics, and the numerical arts. Hence, supernovae are unrivaled astrophysical laboratories. We will develop new state-of-the-art multi-dimensional radiation hydrodynamic codes to address this and other related astrophysicalmore » phenomena.« less
Charges on Strange Quark Nuggets in Space
NASA Technical Reports Server (NTRS)
Abers, E. S.; Bhatia, A. K.; Dicus, D. A.; Repko, W. W.; Rosenbaum, D. C.; Teplitz, V. L.
2007-01-01
Since Witten's seminal 1984 paper on the subject, searches for evidence of strange quark nuggets (SQNs) have proven unsuccessful. In the absence of experimental evidence ruling out SQNs, the validity of theories introducing mechanisms that increase their stability should continue to be tested. To stimulate electromagnetic SQN searches, particularly space searches, we estimate the net charge that would develop on an SQN in space exposed to various radiation baths (and showers) capable of liberating their less strongly bound electrons, taking into account recombination with ambient electrons. We consider, in particular, the cosmic background radiation, radiation from the sun, and diffuse galactic and extragalactic gamma-ray backgrounds. A possible dramatic signal of SQNs in explosive astrophysical events is noted.
2008-03-05
KENNEDY SPACE CENTER, FLA. -- General Dynamics technicians in the Astrotech payload processing facility remove the protective cover over NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The space telescope will be moved to a work stand in the facility for a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-05
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility, General Dynamics technicians secure NASA's Gamma-Ray Large Area Space Telescope, or GLAST, on a work stand as the overhead crane is lifted away. GLAST will undergo a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-05
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility, General Dynamics technicians keep watch as NASA's Gamma-Ray Large Area Space Telescope, or GLAST, is lifted and begins moving toward the work stand in the foreground. There GLAST will undergo a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
Seismic envelope-based detection and location of ground-coupled airwaves from volcanoes in Alaska
Fee, David; Haney, Matt; Matoza, Robin S.; Szuberla, Curt A.L.; Lyons, John; Waythomas, Christopher F.
2016-01-01
Volcanic explosions and other infrasonic sources frequently produce acoustic waves that are recorded by seismometers. Here we explore multiple techniques to detect, locate, and characterize ground‐coupled airwaves (GCA) on volcano seismic networks in Alaska. GCA waveforms are typically incoherent between stations, thus we use envelope‐based techniques in our analyses. For distant sources and planar waves, we use f‐k beamforming to estimate back azimuth and trace velocity parameters. For spherical waves originating within the network, we use two related time difference of arrival (TDOA) methods to detect and localize the source. We investigate a modified envelope function to enhance the signal‐to‐noise ratio and emphasize both high energies and energy contrasts within a spectrogram. We apply these methods to recent eruptions from Cleveland, Veniaminof, and Pavlof Volcanoes, Alaska. Array processing of GCA from Cleveland Volcano on 4 May 2013 produces robust detection and wave characterization. Our modified envelopes substantially improve the short‐term average/long‐term average ratios, enhancing explosion detection. We detect GCA within both the Veniaminof and Pavlof networks from the 2007 and 2013–2014 activity, indicating repeated volcanic explosions. Event clustering and forward modeling suggests that high‐resolution localization is possible for GCA on typical volcano seismic networks. These results indicate that GCA can be used to help detect, locate, characterize, and monitor volcanic eruptions, particularly in difficult‐to‐monitor regions. We have implemented these GCA detection algorithms into our operational volcano‐monitoring algorithms at the Alaska Volcano Observatory.
GRBs: The Most Distant Signposts in our Universe
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa
2007-01-01
Gamma-Ray Bursts (GRBs) are the most powerful photon sources in the Universe, rivaled only by supernovae in the magnitude of their energy release. In 1997 GRB were found to originate in host galaxies at cosmological distances, revealing the total energy of their explosions to be an astounding approx.10(exp 52) - 10(exp 53)ergs. GRB durations span over five orders of magnitude, ranging from milliseconds to thousands of seconds. The underlying sources of the energy release remain, however, unknown. Leading candidates are mergers, either of two neutron stars or of a black hole and a neutron star, and core collapses of very massive stars, called "collapsars". To date the furthest GRB galaxy has been found at a cosmological redshift of 6.29, very close to the most distant quasar (at z=6.4). Since the Swift satellite continues to observe these phenomena at a rate of approx.120 per year, and with the upcoming launch of GLAST with two burst instruments on board, we will be able to use GRBs as beacons to probe very high redshifts. Thus bursts found at 6
Multidimensional pair-instability supernova simulations and their multi-messenger signals
NASA Astrophysics Data System (ADS)
Gilmer, Matthew; Kozyreva, Alexandra; Hirschi, Raphael; Fröhlich, Carla; Wright, Warren; Kneller, James P.; Yusof, Norhasliza
2018-01-01
Pair-Instability supernovae (PISNe) are an exotic class of supernovae which, in addition to being fascinating in its own right (its very existence is a topic of debate), may be important for many areas of astrophysics (early stellar populations, galaxy/chemical evolution, cosmic reionization, etc.). At present, PISNe are one of the three proposed mechanisms for explaining superluminous supernovae, though one major drawback is that PISN models predict longer rise times to peak luminosity than seen in observations of superluminous supernovae. Model rise times can be reduced by having shallower progenitor envelopes and/or outward mixing of radioactive material during the explosions. Here, we present explosions and light curves for four progenitor models, with relatively shallow envelopes, that span the PISN mass range. Our light curves exhibit significantly shorter rise times than other PISNe light curves. In addition, we investigate the effects of a multidimensional treatment during the explosive burning phase of PISNe, including the first such treatment in 3D. We find a small amount of outward mixing of radioactive Ni-56 that increases with the number of dimensions, however this mixing is insufficient to significantly alter the light curve rise time. We find significant mixing between the silicon and oxygen rich layers, especially in 3D, that may affect model spectra and should be investigated in the future. Finally, we present the neutrino signals expected from our most massive and least massive PISN models. Accounting for neutrino oscillations, we compute the expected event rates for current and future neutrino detectors.
THE ABSENCE OF EX-COMPANIONS IN TYPE Ia SUPERNOVA REMNANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Stefano, R.; Kilic, Mukremin, E-mail: rd@cfa.harvard.edu, E-mail: kilic@ou.edu
Type Ia supernovae (SNe Ia) play important roles in our study of the expansion and acceleration of the universe, but because we do not know the exact nature or natures of the progenitors, there is a systematic uncertainty that must be resolved if SNe Ia are to become more precise cosmic probes. No progenitor system has ever been identified either in the pre- or post-explosion images of a Ia event. There have been recent claims for and against the detection of ex-companion stars in several SNe Ia remnants. These studies, however, usually ignore the angular momentum gain of the progenitormore » white dwarf (WD), which leads to a spin-up phase and a subsequent spin-down phase before explosion. For spin-down timescales greater than 10{sup 5} years, the donor star could be too dim to detect by the time of explosion. Here we revisit the current limits on ex-companion stars to SNR 0509-67.5, a 400-year-old remnant in the Large Magellanic Cloud. If the effects of possible angular momentum gain on the WD are included, a wide range of single-degenerate progenitor models are allowed for this remnant. We demonstrate that the current absence of evidence for ex-companion stars in this remnant, as well as other SNe Ia remnants, does not necessarily provide the evidence of absence for ex-companions. We discuss potential ways to identify such ex-companion stars through deep imaging observations.« less
Montero-Dorta, Antonio D.; Bolton, Adam S.; Shu, Yiping
2017-02-24
When two galaxies that are distant from one another (and also distant from Earth) happen to lie along a single line of sight in the sky, the resulting phenomenon is known as a “gravitational lens.” The gravity of the more nearby galaxy warps the image of the more distant galaxy into multiple images or complete rings (know as “Einstein rings” since the quantitative description of the gravitational lensing effect relies on Einstein’s theory of gravity.) Strong gravitational lens systems have multiple scientific applications. If the more distant galaxy happens to contain a time-varying quasar (bright emission powered by a supermassivemore » black hole at the galaxy’s center) or supernova explosion, the time delay between multiple images can be used as a probe of the expansion rate of the universe (and other cosmological parameters.) Forecasting the incidence of gravitational lenses in future large-scale sky surveys relies on quantifying the population of potential lens galaxies in the universe in terms of their abundance and their lensing efficiency. The lensing efficiency is most directly correlated with the galaxy’s “velocity dispersion:” the characteristic speed with which stars in the galaxy are orbiting under the influence of the galaxy’s overall gravitational field. This paper uses previous results quantifying the combined demographics of galaxies in brightness and velocity dispersion to compute the demographics of massive “elliptical” galaxies in velocity dispersion alone, thereby providing the essential ingredient for forecasting the expected incidence of strong gravitational lensing by these types of galaxies in future sky surveys such as DESI and LSST. These results are also applicable to the association of massive galaxies with their associated dark-matter “halos,” which is an essential ingredient for the most accurate and informative extraction of cosmological parameters from the data sets produced by large-scale surveys of the universe.« less
Light echoes whisper the distance to a star
NASA Astrophysics Data System (ADS)
2008-02-01
Astronomers have used ESO's Very Large Telescope to measure the distribution and motions of thousands of galaxies in the distant Universe. This opens fascinating perspectives to better understand what drives the acceleration of the cosmic expansion and sheds new light on the mysterious dark energy that is thought to permeate the Universe. ESO PR Photo 04a/08 ESO PR Photo 04a/08 Large-scale structures (Computer Simulation) "Explaining why the expansion of the Universe is currently accelerating is certainly the most fascinating question in modern cosmology," says Luigi Guzzo, lead author of a paper in this week's issue of Nature, in which the new results are presented. "We have been able to show that large surveys that measure the positions and velocities of distant galaxies provide us with a new powerful way to solve this mystery." Ten years ago, astronomers made the stunning discovery that the Universe is expanding at a faster pace today than it did in the past. "This implies that one of two very different possibilities must hold true," explains Enzo Branchini, member of the team. "Either the Universe is filled with a mysterious dark energy which produces a repulsive force that fights the gravitational brake from all the matter present in the Universe, or, our current theory of gravitation is not correct and needs to be modified, for example by adding extra dimensions to space." Current observations of the expansion rate of the Universe cannot distinguish between these two options, but the international team of 51 scientists from 24 institutions found a way that could help in tackling this problem. The technique is based on a well-known phenomenon, namely the fact that the apparent motion of distant galaxies results from two effects: the global expansion of the Universe that pushes the galaxies away from each other and the gravitational attraction of matter present in the galaxies' neighbourhood that pulls them together, creating the cosmic web of large-scale structures. ESO PR Photo 04b/08 ESO PR Photo 04b/08 A Cone in the Universe "By measuring the apparent velocities of large samples of galaxies over the last thirty years, astronomers have been able to reconstruct a three-dimensional map of the distribution of galaxies over large volumes of the Universe. This map revealed large-scale structures such as clusters of galaxies and filamentary superclusters," says Olivier Le Fèvre, member of the team. "But the measured velocities also contain information about the local motions of galaxies; these introduce small but significant distortions in the reconstructed maps of the Universe. We have shown that measuring this distortion at different epochs of the Universe's history is a way to test the nature of dark energy." Guzzo and his collaborators have been able to measure this effect by using the VIMOS spectrograph on Melipal, one of the four 8.2-m telescopes that is part of ESO's VLT. As part of the VIMOS-VLT Deep Survey (VVDS), of which Le Fèvre is the Principal Investigator, spectra of several thousands of galaxies in a 4-square-degree field (or 20 times the size of the full Moon) at epochs corresponding to about half the current age of the Universe (about 7 billion years ago) were obtained and analysed. ESO PR Video 04/08 ESO PR Video 04/08 Journey through galaxies "This is the largest field ever covered homogeneously by means of spectroscopy to this depth," declares Le Fèvre. "We have now collected more than 13,000 spectra in this field and the total volume sampled by the survey is more than 25 million cubic light-years." The astronomers compared their result with that of the 2dFGRS survey that probed the local Universe, i.e. measures the distortion at the present time. Within current uncertainties, the measurement of this effect provides an independent indication of the need for an unknown extra energy ingredient in the 'cosmic soup', supporting the simplest form of dark energy, the so-called cosmological constant, introduced originally by Albert Einstein. The large uncertainties do not yet exclude the other scenarios, though. "We have also shown that by extending our measurements over volumes about ten times larger than the VVDS, this technique should be able to tell us whether cosmic acceleration originates from a dark energy component of exotic origin or requires a modification of the laws of gravity," explains Guzzo. "VIMOS on the VLT would certainly be a wonderful tool to perform this future survey and help us answer this fundamental question. This strongly encourages scientists to proceed with even more ambitious surveys of the distant Universe," concludes Le Fèvre.
VLBI2020: From Reality to Vision
NASA Technical Reports Server (NTRS)
Titov, Oleg
2010-01-01
The individual apparent motions of distant radio sources are believed to be caused by the effect of intrinsic structure variations of the active galactic nuclei (AGN). However, some cosmological models of the expanded Universe predict that systematic astrometric proper motions of distant quasars do not vanish as the radial distance from the observer to the quasar grows. These systematic effects can even increase with the distance, making it possible to measure them with high-precision astrometric techniques like VLBI. The Galactocentric acceleration of the Solar System barycenter may cause a secular aberration drift with a magnitude of 4 uas/yr. The Solar System motion relative to the cosmic microwave background produces an additional dipole effect, proportional to red shift. We analyzed geodetic VLBI data spanning from 1979 until 2009 to estimate the vector spherical harmonics in the expansion of the vector field of the proper motion of 687 radio sources. The dipole and quadrupole vector spherical harmonics were estimated with an accuracy of 1-5 as/yr. We have shown that over the next decade the geodetic VLBI may approach the level of accuracy on which the cosmological models of the Universe could be tested. Hence, it is important to organize a dedicated observational program to increase the number of measured proper motions to 3000.
NASA Astrophysics Data System (ADS)
Spinoglio, L.; Alonso-Herrero, A.; Armus, L.; Baes, M.; Bernard-Salas, J.; Bianchi, S.; Bocchio, M.; Bolatto, A.; Bradford, C.; Braine, J.; Carrera, F. J.; Ciesla, L.; Clements, D. L.; Dannerbauer, H.; Doi, Y.; Efstathiou, A.; Egami, E.; Fernández-Ontiveros, J. A.; Ferrara, A.; Fischer, J.; Franceschini, A.; Gallerani, S.; Giard, M.; González-Alfonso, E.; Gruppioni, C.; Guillard, P.; Hatziminaoglou, E.; Imanishi, M.; Ishihara, D.; Isobe, N.; Kaneda, H.; Kawada, M.; Kohno, K.; Kwon, J.; Madden, S.; Malkan, M. A.; Marassi, S.; Matsuhara, H.; Matsuura, M.; Miniutti, G.; Nagamine, K.; Nagao, T.; Najarro, F.; Nakagawa, T.; Onaka, T.; Oyabu, S.; Pallottini, A.; Piro, L.; Pozzi, F.; Rodighiero, G.; Roelfsema, P.; Sakon, I.; Santini, P.; Schaerer, D.; Schneider, R.; Scott, D.; Serjeant, S.; Shibai, H.; Smith, J.-D. T.; Sobacchi, E.; Sturm, E.; Suzuki, T.; Vallini, L.; van der Tak, F.; Vignali, C.; Yamada, T.; Wada, T.; Wang, L.
2017-11-01
IR spectroscopy in the range 12-230 μm with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA's large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z 6.
Probing Cosmic Dust of the Early Universe through High-Redshift Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Liang, S. L.; Li, Aigen
2009-01-01
We explore the extinction properties of the dust in the distant universe through the afterglows of high-redshifted gamma-ray bursts (GRBs) based on the "Drude" model which, unlike previous studies, does not require a prior assumption of template extinction laws. We select GRB 070802 at z ≈ 2.45 (which shows clear evidence for the 2175 Å extinction bump) and GRB 050904 at z ≈ 6.29, the second most distant GRB observed to date. We fit their afterglow spectra to determine the extinction of their host galaxies. We find that (1) their extinction curves differ substantially from that of the Milky Way and the Small and Large Magellanic Clouds (which were widely adopted as template extinction laws in the literature); (2) the 2175 Å extinction feature appears to be also present in GRB 050904 at z ≈ 6.29; and (3) there does not appear to be strong evidence for the dependence of dust extinction on redshifts. The inferred extinction curves are closely reproduced in terms of a mixture of amorphous silicate and graphite, both of which are expected supernova condensates and have been identified in primitive meteorites as presolar grains originating from supernovae (which are considered as the main source of dust at high-z).
Observations of the Large Magellanic Cloud with Fermi
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-03-18
Context. The Large Magellanic Cloud (LMC) is to date the only normal external galaxy that has been detected in high-energy gamma rays. High-energy gamma rays trace particle acceleration processes and gamma-ray observations allow the nature and sites of acceleration to be studied. Aims. We characterise the distribution and sources of cosmic rays in the LMC from analysis of gamma-ray observations. Methods. We analyse 11 months of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope and compare it to tracers of the interstellar medium and models of the gamma-ray sources in the LMC. Results.more » The LMC is detected at 33σ significance. The integrated >100 MeV photon flux of the LMC amounts to (2.6 ± 0.2) × 10 -7 ph cm -2 s -1 which corresponds to an energy flux of (1.6 ± 0.1) × 10 -10 erg cm -2 s -1, with additional systematic uncertainties of 16%. The analysis reveals the massive star forming region 30 Doradus as a bright source of gamma-ray emission in the LMC in addition to fainter emission regions found in the northern part of the galaxy. The gamma-ray emission from the LMC shows very little correlation with gas density and is rather correlated to tracers of massive star forming regions. The close confinement of gamma-ray emission to star forming regions suggests a relatively short GeV cosmic-ray proton diffusion length. In conclusion, the close correlation between cosmic-ray density and massive star tracers supports the idea that cosmic rays are accelerated in massive star forming regions as a result of the large amounts of kinetic energy that are input by the stellar winds and supernova explosions of massive stars into the interstellar medium.« less
Obituary: Maurice M. Shapiro, 1915-2008
NASA Astrophysics Data System (ADS)
Yodh, Gaurang B.
2009-01-01
Maurice Shapiro was an outstanding scientist and educator whose contributions spanned a range of fields: He was the leader of the "Water Effects" group (study of underwater explosions) within the Los Alamos Ordnance Division in the Manhattan project during World War II; he witnessed the Trinity test and there "shared a blanket with Hans Bethe." Shapiro understood the nature of the new weapons and helped to form the Association of Los Alamos Scientists [ALAS] to lobby for a civilian atomic-energy commission. (He was chair of ALAS in 1946.) He also worked at Oak Ridge on design of a power reactor just after the war (similar to those used in naval vessels). In 1949 Shapiro joined the Naval Research Laboratory's nuclear physics division, where he started a new program in high-energy physics and cosmic rays, his primary interest throughout his life. In 1977, he founded the International School of Cosmic-Ray Astrophysics in Erice, Italy, where many outstanding scientists in the field were students at early stages of their career. He served as director of this school until his death. Shapiro was interested in understanding the origin, acceleration, and propagation of cosmic rays and the role of high energy neutrinos and their detection. He played a major role in starting the field of high-energy neutrino astronomy. Maury, so of J. Simon Werner and Miriam Rivka, was born in Jerusalem on 13 November 1915. His father never returned home from World War I, and his mother married Rabbi Osher Shapiro two years later. The family migrated to Chicago, Illinois, during the early 1920s. Maury's given name was Moishe Mendel Werner. The only father he knew was Rabbi Shapiro, hence the origin of the name we know him by. His parents had planned a theological career for him; however, Maury opted for the study of Physics at the University of Chicago. He did his Ph.D. with Arthur Compton (1942) using early emulsions exposed at Mount Evans--both emulsions on glass plates and stripped emulsions--to study cosmic-ray induced stars. Maury wrote definitive reviews on the emulsion technique (use of high-density visual detectors) in 1941 in Reviews of Modern Physics and then an article entitled "Nuclear Emulsions" in the Handbuch der Physik of 1958. He did many experimental investigations related to cosmic rays and particle properties after the war when he joined NRL. Using emulsion-chamber techniques and high-altitude exposures, Maury measured and verified saturation of relativistic rise in ionization, a measurement of helium and proton flux at high rigidity, and accurate measurements of secondary-to-primary ratio (Li, Be, B/CNO); with his colleagues he did one of the best measurements of neutral pion life time. He also did important measurements of properties of heavy baryons. My association with Maury started when I joined University of Maryland's High Energy group in 1961, a time when Maury had a very active group working in particle physics and cosmic rays using nuclear emulsions and was starting a bubble-chamber group. (Some of the members were Bernard Hildebrand, Bert Stiller, Rein Silberberg, C. H. Tsao, and Robert Glasser.) There was active interaction between George Snow (University of Maryland) and the NRL group, both studying properties of high-energy particles with nuclear emulsions and bubble chambers. I was a consultant with the NRL group for some ten years. In 1960s, Maury investigated the ramifications and limitations of supernova theories for the origin of cosmic rays and discussed the production of high-energy neutrinos and gamma rays from these sources. He was one of the active members of the DUMAND project to study high-energy neutrinos. With Rein Silberberg he explored the capabilities of such a project. Maury's group made seminal contributions on quantitatively exploring isotope ratios (using isotopes to determine the time lag between explosion and acceleration in supernova sources--to suggest the importance of FIP in injection), the detailed analysis of the so- called Slab-model, and re-acceleration of cosmic rays (Shapiro, Silberberg, and Tsao in Cosmology, Fusion and other Matters, edited by Fred Reines, 1972). When he became emeritus, Maury was still very active both in research and in running the Erice School of Cosmic Ray Astrophysics (after 1982). He was interested in having a base of operations for the school. He approached me asking whether Maryland would be a possibility. I was delighted and suggested a Visiting professorship to be able to continue his work (without having to move out of the Washington, DC, area). Thus started Maury's association with Maryland which continued until his death. Maury was not only an outstanding scientist, but he was a true gentleman and a good friend. He was an ambassador for the field of Cosmic Rays. His friendly personality, always warm and kind to students and colleagues, was quite infectious. Maury contributed to both experimental and theoretical investigations of cosmic rays and their central role in connecting many diverse disciplines in particle physics, astrophysics, geophysics, acoustical physics. He was outstanding scientist and was greatly concerned about world peace and human affairs. Maury passed away on 27 February 2008, at the age of 92, in Alexandria, Virginia. Four years prior to his death he was still swimming in the Mediterranean during the Cosmic Ray School sessions at Erice. He is survived by his wife, Ruth Auslander, and children Joel N. Shapiro, Elana Ashley, Raquel T. Kislinger, Mark and Bonnie Auslander, Beth Kessler, Lionel Ames, and Naomi Mirvis and grand children.
NASA Astrophysics Data System (ADS)
Fargion, Daniele; Oliva, Pietro; De Sanctis Lucentini, Pier Giorgio
The most distant Active Galactic Nuclei (AGN), within the allowed Greisen-Zatsepin-Kuzmin (GZK) cut-off radius ( ≲ 100 Mpc), have been recently candidate by many authors as the best location for the observed Ultra High Energy Cosmic Rays (UHECR) origination. Indeed, the apparent homogeneity and isotropy of recent UHECR signals seems to require a far cosmic isotropic and homogeneous scenario, involving a proton UHECR courier: our galaxy or nearest local group or super galactic plane (ruled by the Virgo cluster) are too near and apparently too anisotropic to be in agreement with the (Pierre Auger Observatory (PAO) and Telescope Array (TA) almost-homogeneous data sample. However, the few and mild UHECR observed clustering, the so called North and South Hot Spots, are smeared in wide (±18°) solid angles. Their consequent random walk flight from most far GZK UHECR sources, nearly at 100 Mpc, must be delayed — withrespect to a straight AGN photon gamma flaring arrival trajectory — at least by a million years. During this time, the AGN jet blazing signal, its probable axis deflection (such as the helical jet in Mrk 501), its miss alignment or even its almost certain exhaust activity, may lead to a complete misleading correlation between present UHECR events and a much earlier active AGN ejection. UHECR maps may be anyway related to galactic or nearest (Cen A, M82) AGN extragalactic UHECR sources shining in twin Hot Spot. Therefore we defend our (quite different) scenario where UHECR are mostly made by lightest UHECR nuclei originated by nearby AGN sources, or few galactic sources, whose delayed signals are reaching us within few thousand years in the observed smeared sky areas.
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Strait, Victoria; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Oesch, Pascal; Lam, Danel; Carrasco Nunez, Daniela Patricia; Paterno-Mahler, Rachel; Frye, Brenda
2018-05-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose to complete deep Spitzer imaging of the fields behind the 10 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 440 Spitzer hours). 6 clusters out of 10 are still lacking deep data. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 60 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.
CANDELS: The Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey
NASA Technical Reports Server (NTRS)
Grogin, Norman A.; Koekemoer, anton M.; Faber, S. M.; Ferguson, Henry C.; Kocevski, Dale D.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.;
2011-01-01
The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, from z approx. 8 - 1.5. It will image > 250,000 distant galaxies using three separate cameras on the Hubble Space Tele8cope, from the mid-UV to near-IR, and will find and measure Type Ia supernovae beyond z > 1.5 to test their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10(exp 9) solar mass to z approx. 2, reaching the knee of the UV luminosity function of galaxies to z approx. 8. The survey covers approximately 800 square arc minutes and is divided into two parts. The CANDELS/Deep survey (5(sigma) point-source limit H =27.7mag) covers approx. 125 square arcminutes within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 50(sigma) point-source limit of H ? or approx. = 27.0 mag. Together with the Hubble Ultradeep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are non-proprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design.
Dios: The Dark Baryon Exploring Mission
NASA Technical Reports Server (NTRS)
T.Ohashi; Ishisaki, Y.; Yamada, S.; Kuromaru, G.; Suzuki, S.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Mitsuda, K.; Yamasaki, N. Y.;
2016-01-01
DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2022 with JAXA's Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a wide field of view (30 diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earths magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. Employing an enlarged X-ray telescope with a focal length of 1.2 m and fast repointing capability, DIOS can observe absorption features from X-ray afterglows of distant gamma-ray bursts.
Aether drift and the isotropy of the universe
NASA Technical Reports Server (NTRS)
Muller, R. A.
1976-01-01
An experiment is proposed which will detect and map the large-angular-scale anisotropies in the 3 deg K primordial black-body radiation with a sensitivity of .0002 deg K and an angular resolution of about 10 deg . It will detect the motion of the earth with respect to the distant matter of the Universe ("Aether Drift"), and will probe the homogeneity and isotropy of the Universe (the "Cosmological Principle"). The experiment will use two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. An upper hatch for the NASA-AMES Earth Survey Aircraft (U-2) is being modified to accept the dual-radiometer system. A few hours of observation should be sufficient to detect an anisotropy.
Solar wind stream interaction regions throughout the heliosphere
NASA Astrophysics Data System (ADS)
Richardson, Ian G.
2018-01-01
This paper focuses on the interactions between the fast solar wind from coronal holes and the intervening slower solar wind, leading to the creation of stream interaction regions that corotate with the Sun and may persist for many solar rotations. Stream interaction regions have been observed near 1 AU, in the inner heliosphere (at ˜ 0.3-1 AU) by the Helios spacecraft, in the outer and distant heliosphere by the Pioneer 10 and 11 and Voyager 1 and 2 spacecraft, and out of the ecliptic by Ulysses, and these observations are reviewed. Stream interaction regions accelerate energetic particles, modulate the intensity of Galactic cosmic rays and generate enhanced geomagnetic activity. The remote detection of interaction regions using interplanetary scintillation and white-light imaging, and MHD modeling of interaction regions will also be discussed.
PE-46 The Design of the Lynx X-Ray Microcalorimeter
NASA Technical Reports Server (NTRS)
Bandler, Simon; Dipirro, Michael; Eckart, Megan; Sakai, Kazuhiro; Smith, Stephen; Yoon, Wonsik; Bennett, Douglas; Kotsubo, Vincent; Mates, Benjamin; Swetz, Daneil;
2017-01-01
Lynx is an x-ray telescope, one of four large satellite mission concepts currently being studied by NASA to be the next astrophysics flagship mission after WFIRST. One of Lynx's three instruments is an imaging spectrometer consisting of an x-ray microcalorimeter behind an X-ray optic with an angular resolution of 0.5 arc-seconds and approximately 3 sq m of area at 1 keV. This instrument will provide unparalleled diagnostics of distant extended structures and in particular will allow the detailed study of the role of cosmic feedback in the evolution of the Universe. We discuss the design and read-out of the of the array configuration including a number of sub-array options for increasing the capabilities to maximize the scientific return of the Lynx observatory.
Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth
Ehrenfreund, Pascale; Cami, Jan
2010-01-01
Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed. PMID:20554702
FUV Reflectance of Recently Prepared Al Protected with AlF3: COR Program Technology Development
NASA Technical Reports Server (NTRS)
Quijada, Manuel
2016-01-01
Astronomical observations in the Far Ultraviolet (FUV) spectral region are some of the more challenging due to the very distant and faint objects that are typically searched for in cosmic origin studies such as origin of large scale structure, the formation, evolution, and age of galaxies and the origin of stellar and planetary systems. These challenges are driving the need to improve the performance of optical coatings over a wide spectral range that would increase reflectance in mirrors and reduced absorption in dielectric filters used in optical telescope for FUV observations. This paper will present recent advances in reflectance performance for Al+AlF3 mirrors optimized for Lyman-alpha wavelength by performing the deposition of the AlF3 overcoat at elevated substrate temperatures.
Luminous Blue Compact Galaxies: Probes of galaxy assembly
NASA Astrophysics Data System (ADS)
Newton, Cassidy Louann
The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.
NASA Technical Reports Server (NTRS)
Rodney, Steven A.; Riess, Adam G.; Strogler, Louis-Gregory; Dahlen, Tomas; Graur, Or; Casertano, Stefano; Dickinson, Mark E.; Ferguson, Henry C.; Garnavich, Peter; Cenko, Stephen Bradley
2014-01-01
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope(HST) that surveyed a total area of approx. 0.25 deg(sup 2) with approx.900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z approx. 2.5. We classify approx. 24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only approx. 3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction isfP0.530.09stat0.100.10sys0.26, consistent with a delay time distribution that follows a simplet1power law for all timest40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20 of all SN Ia explosions though further analysis and larger samples will be needed to examine that suggestion.
Observation of 23 supernovae that exploded <300 pc from Earth during the past 300 kyr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, R. B., E-mail: rbfirestone@lbl.gov
2014-07-01
Four supernovae (SNe), exploding ≤300 pc from Earth, were recorded 44, 37, 32, and 22 kyr ago in the radiocarbon ({sup 14}C) record during the past 50 kyr. Each SN left a nearly identical signature in the record, beginning with an initial sudden increase in atmospheric radiocarbon, when the SN exploded, followed by a hiatus of 1500 yr, and concluding with a sustained 2000 yr increase in global radiocarbon due to γ-rays produced by diffusive shock in the SN remnant (SNR). For the past 18 kyr excess radiocarbon has decayed with the {sup 14}C half-life. SN22kyrBP, is identified as themore » Vela SN that exploded 250 ± 30 pc from Earth. These SN are confirmed in the {sup 10}Be, {sup 26}Al, {sup 36}Cl, and NO{sub 3}{sup −} geologic records. The rate of near-Earth SNe is consistent with the observed rate of historical SNe giving a galactic rate of 14 ± 3 kyr{sup –1} assuming the Chandra Galactic Catalog SNR distribution. The Earth has been used as a calorimeter to determine that ≈2 × 10{sup 49} erg were released as γ-rays at the time of each SN explosion and ≈10{sup 50} erg in γ-rays following each SN. The background rate of {sup 14}C production by cosmic rays has been determined as 1.61 atoms cm{sup –2} s{sup –1}. Approximately 1/3 of the cosmic ray energy produced by diffusive shock in the SNR was observed to be emitted as high-energy γ-rays. Analysis of the {sup 10}Be/{sup 9}Be ratio in marine sediment identified 19 additional near-Earth SNe that exploded 50-300 kyr ago. Comparison of the radiocarbon record with global temperature variations indicated that each SN explosion is correlated with a concurrent global warming of ≈3°C-4°C.« less
Shocked quartz and more: Impact signatures in K-T boundary clays and claystones
NASA Technical Reports Server (NTRS)
Bohor, Bruce F.
1988-01-01
Quartz grains displaying multiple sets of planar features are described from numerous Cretaceous-Tertiary (K-T) boundary clays and claystones at both marine and nonmarine depositional sites around the world. All these sites also show anomalously high amounts of iridium and enrichments of other siderophile elements in cosmic ratios within these boundary units. This combination of mineralogical and geochemical features are used in support of an impact hypothesis for the end-Cretaceous event. Recently, it was suggested that some combination of explosive and nonexplosive volcanism associated with the formation of the Deccan traps in India could be responsible for the mineralogy and geochemistry seen in the K-T boundary units. Besides the obvious contradition of simultaneous explosive and nonexplosive volcanism from one locality during an instant of geologic time, there remains the difficulty of spreading both iridium (and trace elements in cosmic proportions) and quartz grains around the world by volcanic (atmospheric) transport. In addition, the ability of volcanism to produce the type of shock metamorphism seen in minerals at the K-T boundary was not demonstrated. Multiple sets of shock lamellae in quartz are considered characteristic of shock metamorphism in rocks at the sites of known impact craters and are the type of deformation seen in quartz from K-T boundary clays and claystones. Single sets of poorly defined lamellae described from rare quartz grains in certain volcanic deposits are characteristic of tectonic deformation and do not correspond to the shock lamellae in quartz from K-T sediments and impact structures. So-called shock mosaicism in quartz and feldspar grains described from volcanic deposits can result from many processes other than shock metamorphism, and therefore is not considered to be an effect characteristic solely of shock. The mineralogy of shock-metamorphosed grains at the K-T boundary also argues against a volcanic origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radousky, H B
This months issue has the following articles: (1) Innovative Solutions Reap Rewards--Commentary by George H. Miller; (2) Surveillance on the Fly--An airborne surveillance system can track up to 8,000 moving objects in an area the size of a small city; (3) A Detector Radioactive Particles Can't Evade--An ultrahigh-resolution spectrometer can detect the minute thermal energy deposited by a single gamma ray or neutron; (4) Babel Speeds Communication among Programming Languages--The Babel program allows software applications in different programming languages to communicate quickly; (5) A Gem of a Software Tool--The data-mining software Sapphire allows scientists to analyze enormous data sets generatedmore » by diverse applications; (6) Interferometer Improves the Search for Planets--With externally dispersed interferometry, astronomers can use an inexpensive, compact instrument to search for distant planets; (7) Efficiently Changing the Color of Laser Light--Yttrium-calcium-oxyborate crystals provide an efficient, compact approach to wavelength conversion for high-average-power lasers; (8) Pocket-Sized Test Detects Trace Explosives--A detection kit sensitive to more than 30 explosives provides an inexpensive, easy-to-use tool for security forces everywhere; (9) Tailor-Made Microdevices Serve Big Needs--The Center for Micro- and Nanotechnology develops tiny devices for national security.« less
Long-Duration Gamma-Ray Burst Host Galaxies in Emission and Absorption
NASA Astrophysics Data System (ADS)
Perley, Daniel A.; Niino, Yuu; Tanvir, Nial R.; Vergani, Susanna D.; Fynbo, Johan P. U.
2016-12-01
The galaxy population hosting long-duration GRBs provides a means to constrain the progenitor and an opportunity to use these violent explosions to characterize the nature of the high-redshift universe. Studies of GRB host galaxies in emission reveal a population of star-forming galaxies with great diversity, spanning a wide range of masses, metallicities, and redshifts. However, as a population GRB hosts are significantly less massive and poorer in metals than the hosts of other core-collapse transients, suggesting that GRB production is only efficient at metallicities significantly below Solar. GRBs may also prefer compact galaxies, and dense and/or central regions of galaxies, more than other types of core-collapse explosion. Meanwhile, studies of hosts in absorption against the luminous GRB optical afterglow provide a unique means of unveiling properties of the ISM in even the faintest and most distant galaxies; these observations are helping to constrain the chemical evolution of galaxies and the properties of interstellar dust out to very high redshifts. New ground- and space-based instrumentation, and the accumulation of larger and more carefully-selected samples, are continually enhancing our view of the GRB host population.
GRB 080319B: A Naked-Eye Stellar Blast from the Distant Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racusin, J. L.; Burrows, D. N.
On behalf of a large international collaboration [1], we present the unprecedented broadband observations of GRB 080319B, whose prompt optical emission peaked at a visual magnitude of 5.3, making it briefly visible with the naked eye. GRB 080319B was discovered by Swift and captured in exquisite detail by ground based wide-field telescopes, imaging the burst location from before the time of the explosion. The combination of these unique optical data with simultaneous {gamma}-ray observations provides powerful diagnostics of the detailed physics of this explosion within seconds of its formation. We show that the prompt optical and {gamma}-ray emissions from thismore » event arise from different spectral components within the same physical region located at a large distance from the source, implying an extremely relativistic outflow. Our observations also provide good evidence for a bright reverse shock component. The chromatic behavior of the broadband afterglow is consistent with viewing the GRB down the very narrow inner core of a two-component jet that is expanding into a wind-like environment consistent with the massive star origin of long GRBs.« less
KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose
NASA Astrophysics Data System (ADS)
Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.
2014-12-01
Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.
Hyper-Eddington accretion in GRB
NASA Astrophysics Data System (ADS)
Janiuk, A.; Czerny, B.; Perna, R.; Di Matteo, T.
2005-05-01
Popular models of the GRB origin associate this event with a cosmic explosion, birth of a stellar mass black hole and jet ejection. Due to the shock collisions that happen in the jet, the gamma rays are produced and we detect a burst of duration up to several tens of seconds. This burst duration is determined by the lifetime of the central engine, which may be different in various scenarios. Characteristically, the observed bursts have a bimodal distribution and constitute the two classes: short (t < 2s) and long bursts. Theoretical models invoke the mergers of two neutron stars or a neutron star with a black hole, or, on the other hand, a massive star explosion (collapsar). In any of these models we have a phase of disc accretion onto a newly born black hole: the disc is formed from the disrupted neutron star or fed by the material fallback from the ejected collapsar envelope. The disc is extremely hot and dense, and the accretion rate is orders of magnitude higher than the Eddington rate. In such physical conditions the main cooling mechanism is neutrino emission, and one of possible ways of energy extraction from the accretion disc is the neutrino-antineutrino annihilation.
SciDAC Computational Astrophysics Consortium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrows, Adam
Supernova explosions are the central events in nuclear astrophysics. The core-collapse variety is a major source for the universe's heavy elements. The neutron stars, pulsars, and stellar-mass black holes of high-energy astrophysics are their products. Given their prodigious explosion energies, they are the major agencies of change in the interstellar medium, driving star formation and the evolution of galaxies. Their gas remnants are the birthplaces of the cosmic rays. Such is their brightness that they can be used as standard candles to measure the size and geometry of the universe. Recently, there is evidence that gamma-ray bursts (GRBs) originate inmore » a small fraction of core collapses, thereby connecting two of the most energetic phenomena in the universe. However, the mechanism by which core-collapse supernovae explode has not yet been unambiguously determined. Arguably, this is one of the great unsolved problems in modern astrophysics and its investigation draws on nuclear physics, particle physics, radiative transfer, kinetic theory, gravitational physics, thermodynamics, and the numerical arts. Hence, supernovae are unrivaled astrophysical laboratories. It is the quest for the mechanism and new insights our team has recently had that motivate this proposal.« less
Chandra Discovers Cosmic Cannonball
NASA Astrophysics Data System (ADS)
2007-11-01
One of the fastest moving stars ever seen has been discovered with NASA's Chandra X-ray Observatory. This cosmic cannonball is challenging theories to explain its blistering speed. Astronomers used Chandra to observe a neutron star, known as RX J0822-4300, over a period of about five years. During that span, three Chandra observations clearly show the neutron star moving away from the center of the Puppis A supernova remnant. This remnant is the stellar debris field created during the same explosion in which the neutron star was created about 3700 years ago. Chandra X-ray Image of RX J0822-4300 in Puppis A Chandra X-ray Image of RX J0822-4300 in Puppis A By combining how far it has moved across the sky with its distance from Earth, astronomers determined the neutron star is moving at over 3 million miles per hour. At this rate, RX J0822-4300 is destined to escape from the Milky Way after millions of years, even though it has only traveled about 20 light years so far. "This star is moving at 3 million miles an hour, but it's so far away that the apparent motion we see in five years is less than the height of the numerals in the date on a penny, seen from the length of a football field," said Frank Winkler of Middlebury College in Vermont. "It's remarkable, and a real testament to the power of Chandra, that such a tiny motion can be measured." Labeled Image of RX J0822-4300 in Puppis A Labeled Image of RX J0822-4300 in Puppis A "Just after it was born, this neutron star got a one-way ticket out of the Galaxy," said co-author Robert Petre of NASA's Goddard Space Flight Center in Greenbelt, Md. "Astronomers have seen other stars being flung out of the Milky Way, but few as fast as this." So-called hypervelocity stars have been previously discovered shooting out of the Milky Way with speeds around one million miles per hour. One key difference between RX J0822-4300 and these other reported galactic escapees is the source of their speed. The hypervelocity stars are thought to have been ejected by interactions with the supermassive black hole in the Galaxy's center. CTIO Optical Images of Puppis A CTIO Optical Images of Puppis A This neutron star, by contrast, was flung into motion by the supernova that created Puppis A. The data suggest the explosion was lop-sided, kicking the neutron star in one direction and the debris from the explosion in the other. The supernova was precipitated when the core of a massive star imploded to form a neutron star. Computer simulations show that the infall of the outer layers of the star onto a neutron star releases an enormous amount of energy. As this energy propagates outward, it can reverse the infall and eject the outer layers of the star at speeds of millions of miles per hour. Due to the complexity of the flow, the ejection is not symmetric, leading to a rocket effect that propels the neutron star in the opposite direction. ROSAT X-ray ROSAT X-ray The breakneck speed of the Puppis A neutron star, plus an apparent lack of pulsations from it, is not easily explained by even the most sophisticated supernova explosion models. "The problem with discovering this cosmic cannonball is we aren't sure how to make the cannon powerful enough." said Winkler. "The high speed might be explained by an unusually energetic explosion, but the models are complicated and hard to apply to real explosions." Other recent work on RX J0822-4300 was published by C.Y. Hui and Wolfgang Becker, both from the Max Planck Institute for Extraterrestrial Physics in Munich, in the journal Astronomy and Astrophysics in late 2006. Using two of the three Chandra observations reported in the Winkler paper and a different analysis technique, the Hui group found a speed for RX J0822-4300 that is about two-thirds as fast, but with larger reported margins of error. The research by Winkler and Petre was published in the November 20 issue of The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
The Air Blast Wave from a Nuclear Explosion
NASA Astrophysics Data System (ADS)
Reines, Frederick
The sudden, large scale release of energy in the explosion of a nuclear bomb in air gives rise, in addition to nuclear emanations such as neutrons and gamma rays, to an extremely hot, rapidly expanding mass of air.** The rapidly expanding air mass has an initial temperature in the vicinity of a few hundred thousand degrees and for this reason it glows in its early stages with an intensity of many suns. It is important that the energy density in this initial "ball of fire" is of the order of 3 × 103 times that found in a detonating piece of TNT and hence that the initial stages of the large scale air motion produced by a nuclear explosion has no counterpart in an ordinary. H. E. explosion. Further, the relatively low temperatures ˜2,000°C associated with the initial stages of an H. E. detonation implies that the thermal radiation which it emits is a relatively insignificant fraction of the total energy involves. This point is made more striking when it is remembered that the thermal energy emitted by a hot object varies directly with the temperature in the Rayleigh Jeans region appropriate to the present discussion. The expansion of the air mass heated by the nuclear reaction produces, in qualitatively the same manner as in an H.E. explosion or the bursting of a high pressure balloon, an intense sharp pressure pulse, a shock wave, in the atmosphere. As the pressure pulse spreads outward it weakens due to the combined effects of divergence and the thermodynamically irreversible nature of the shock wave. The air comprising such a pressure pulse or blast wave moves first radially outward and then back towards the center as the blast wave passes. Since a permanent outward displacement of an infinite mass of air would require unlimited energy, the net outward displacement of the air distant from an explosion must approach zero with increasing distance. As the distance from the explosion is diminished the net outward displacement due to irreversible shock heating of the air increases and in the limit of small distances and increasingly strong shocks the net outward displacement of the shocked air is equal to the maximum outward displacement. These statements are applicable for short times of the order of seconds following the explosion since the heated air l behind by the shock wave will rise. The pressures and air mass motions associated with the rise of the atomic cloud are relatively unimportant in the free air pressure ranges from 2-15 psi for bomb yields under 100 kilotons (KT)…
Cassiopeia A Comes Alive Across Time and Space
NASA Astrophysics Data System (ADS)
2009-01-01
Two new efforts have taken a famous supernova remnant from the static to the dynamic. A new movie of data from NASA's Chandra X-ray Observatory shows changes in time never seen before in this type of object. And, an unprecedented and dramatic three-dimensional visualization of the same remnant by a separate team is being released. Nearly ten years ago, Chandra's "First Light" image of Cassiopeia A (Cas A) revealed previously unseen structures and detail. Now, after eight years of observation, scientists have been able to construct a movie that tracks the remnant's expansion and changes over time. "With Chandra, we have watched Cas A over a relatively small amount of its life, but so far the show has been amazing," said Daniel Patnaude of the Smithsonian Astrophysical Observatory in Cambridge, Mass. "And, we can use this to learn more about the aftermath of the star's explosion." A separate, but equally fascinating visualization featuring Cas A was presented, along with the Patnaude team's results, at a press conference at the American Astronomical Society meeting in Long Beach, Calif. Based on data from Chandra, NASA's Spitzer Space Telescope, and ground-based optical telescopes, Tracey Delaney and her colleagues have created the first threedimensional fly-through of a supernova remnant. Cas A animation Brief Time-lapse Movie of Cassiopeia A "We have always wanted to know how the pieces we see in two dimensions fit together with each other in real life," said Delaney of the Massachusetts Institute of Technology. "Now we can see for ourselves with this 'hologram' of supernova debris." This ground-breaking visualization of Cas A was made possible through a collaboration with the Astronomical Medicine project based at Harvard. The goal of this project is to bring together the best techniques from two very different fields, astronomy and medical imaging. "Right now, we are focusing on improving three-dimensional visualization in both astronomy and medicine,"said Harvard's Alyssa Goodman who heads the Astronomical Medicine project. "This project with Cas A is exactly what we have hoped would come out of it." People Who Read This Also Read... Ghost Remains After Black Hole Eruption Galaxies Coming of Age in Cosmic Blobs A New Way To Weigh Giant Black Holes NASA Announces 2009 Astronomy and Astrophysics Fellows While these are stunning visuals, both the data movie from Patnaude and the 3-D model from Delaney are, more importantly, rich resources for science. The two teams are trying to get a much more complete understanding of how this famous supernova explosion and its remnant work. Patnaude and his team have measured the expansion velocity of features in Cas A from motions in the movie, and find it is slower than expected based on current theoretical models. Patnaude thinks the explanation for this mysterious loss of energy is cosmic ray acceleration. Using estimates of the properties of the supernova explosion, including its energy and dynamics, Patnaude's group show that about 30% of the energy in this supernova has gone into accelerating cosmic rays, energetic particles that are generated, in part, by supernova remnants and constantly bombard the Earth's atmosphere. The flickering in the movie provides valuable new information about where the acceleration of these particles occurs. Likewise, the new 3-D model of Cas A provides researchers with unique ability to study this remnant. With this new tool, Delaney and colleagues found two components to the explosion, a spherical component from the outer layers of the star and a flattened component from the inner layers of the star. Cas A animation 3-D Visualization of Cassiopeia A Notable features of the model are high-velocity plumes from this internal material that are shooting out from the explosion. Plumes, or jets, of silicon appear in the northeast and southwest, while plumes of iron are seen in the southeast and north. Astronomers had known about the plumes and jets before, but did not know that they all came out in a broad, disk-like structure. The implication of this work is that astronomers who build models of supernova explosions must now consider that the outer layers of the star come off spherically, but the inner layers come out more disk like with high-velocity jets in multiple directions. Cassiopeia A is the remains of a star thought to have exploded about 330 years ago, and is one of the youngest remnants in the Milky Way galaxy. The study of Cas A and remnants like it help astronomers better understand how the explosions that generate them seed interstellar gas with heavy elements, heat it with the energy of their radiation, and trigger blast waves from which new stars form. Larry Rudnick, from the University of Minnesota, led the Spitzer part of the Delaney study. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
Gamma-ray burst theory: Back to the drawing board
NASA Technical Reports Server (NTRS)
Harding, Alice K.
1994-01-01
Gamma-ray bursts have always been intriguing sources to study in terms of particle acceleration, but not since their discovery two decades ago has the theory of these objects been in such turmoil. Prior to the launch of Compton Gamma-Ray Observatory and observations by Burst and Transient Source Experiment (BATSE), there was strong evidence pointing to magnetized Galactic neutron stars as the sources of gamma-ray bursts. However, since BATSE the observational picture has changed dramatically, requiring much more distant and possibly cosmological sources. I review the history of gamma-ray burst theory from the era of growing consensus for nearby neutron stars to the recent explosion of halo and cosmological models and the impact of the present confusion on the particle acceleration problem.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-A, Cape Canaveral Air Force Station, Boeing technicians help guide the Swift spacecraft as it is lowered toward the Boeing Delta II launch vehicle for mating. Swift is scheduled to launch Nov. 17. The liftoff aboard a Boeing Delta II rocket is targeted at the opening of a one-hour launch window beginning at 12:09 p.m. EST. A first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science, Swifts three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Gamma-ray bursts are distant, yet fleeting explosions that appear to signal the births of black holes.
Fermi observations of high-energy gamma-ray emission from GRB 080916C.
Abdo, A A; Ackermann, M; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, G; Baring, M G; Bastieri, D; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, E D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, T H; Burrows, D; Busetto, G; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, A; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; Deklotz, M; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, J; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hernando Morat, J A; Hoover, A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S-H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Meegan, C; Mészáros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, V; Pinchera, M; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Reyes, L C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Segal, K N; Sgrò, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, J-L; Stecker, F W; Steinle, H; Stephens, T E; Strickman, M S; Suson, D J; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M
2009-03-27
Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.
Rotation in [C II]-emitting gas in two galaxies at a redshift of 6.8
NASA Astrophysics Data System (ADS)
Smit, Renske; Bouwens, Rychard J.; Carniani, Stefano; Oesch, Pascal A.; Labbé, Ivo; Illingworth, Garth D.; van der Werf, Paul; Bradley, Larry D.; Gonzalez, Valentino; Hodge, Jacqueline A.; Holwerda, Benne W.; Maiolino, Roberto; Zheng, Wei
2018-01-01
The earliest galaxies are thought to have emerged during the first billion years of cosmic history, initiating the ionization of the neutral hydrogen that pervaded the Universe at this time. Studying this ‘epoch of reionization’ involves looking for the spectral signatures of ancient galaxies that are, owing to the expansion of the Universe, now very distant from Earth and therefore exhibit large redshifts. However, finding these spectral fingerprints is challenging. One spectral characteristic of ancient and distant galaxies is strong hydrogen-emission lines (known as Lyman-α lines), but the neutral intergalactic medium that was present early in the epoch of reionization scatters such Lyman-α photons. Another potential spectral identifier is the line at wavelength 157.4 micrometres of the singly ionized state of carbon (the [C II] λ = 157.74 μm line), which signifies cooling gas and is expected to have been bright in the early Universe. However, so far Lyman-α-emitting galaxies from the epoch of reionization have demonstrated much fainter [C II] luminosities than would be expected from local scaling relations, and searches for the [C II] line in sources without Lyman-α emission but with photometric redshifts greater than 6 (corresponding to the first billion years of the Universe) have been unsuccessful. Here we identify [C II] λ = 157.74 μm emission from two sources that we selected as high-redshift candidates on the basis of near-infrared photometry; we confirm that these sources are two galaxies at redshifts of z = 6.8540 ± 0.0003 and z = 6.8076 ± 0.0002. Notably, the luminosity of the [C II] line from these galaxies is higher than that found previously in star-forming galaxies with redshifts greater than 6.5. The luminous and extended [C II] lines reveal clear velocity gradients that, if interpreted as rotation, would indicate that these galaxies have similar dynamic properties to the turbulent yet rotation-dominated disks that have been observed in Hα-emitting galaxies two billion years later, at ‘cosmic noon’.
Rotation in [C ii]-emitting gas in two galaxies at a redshift of 6.8.
Smit, Renske; Bouwens, Rychard J; Carniani, Stefano; Oesch, Pascal A; Labbé, Ivo; Illingworth, Garth D; van der Werf, Paul; Bradley, Larry D; Gonzalez, Valentino; Hodge, Jacqueline A; Holwerda, Benne W; Maiolino, Roberto; Zheng, Wei
2018-01-10
The earliest galaxies are thought to have emerged during the first billion years of cosmic history, initiating the ionization of the neutral hydrogen that pervaded the Universe at this time. Studying this 'epoch of reionization' involves looking for the spectral signatures of ancient galaxies that are, owing to the expansion of the Universe, now very distant from Earth and therefore exhibit large redshifts. However, finding these spectral fingerprints is challenging. One spectral characteristic of ancient and distant galaxies is strong hydrogen-emission lines (known as Lyman-α lines), but the neutral intergalactic medium that was present early in the epoch of reionization scatters such Lyman-α photons. Another potential spectral identifier is the line at wavelength 157.4 micrometres of the singly ionized state of carbon (the [C ii] λ = 157.74 μm line), which signifies cooling gas and is expected to have been bright in the early Universe. However, so far Lyman-α-emitting galaxies from the epoch of reionization have demonstrated much fainter [C ii] luminosities than would be expected from local scaling relations, and searches for the [C ii] line in sources without Lyman-α emission but with photometric redshifts greater than 6 (corresponding to the first billion years of the Universe) have been unsuccessful. Here we identify [C ii] λ = 157.74 μm emission from two sources that we selected as high-redshift candidates on the basis of near-infrared photometry; we confirm that these sources are two galaxies at redshifts of z = 6.8540 ± 0.0003 and z = 6.8076 ± 0.0002. Notably, the luminosity of the [C ii] line from these galaxies is higher than that found previously in star-forming galaxies with redshifts greater than 6.5. The luminous and extended [C ii] lines reveal clear velocity gradients that, if interpreted as rotation, would indicate that these galaxies have similar dynamic properties to the turbulent yet rotation-dominated disks that have been observed in Hα-emitting galaxies two billion years later, at 'cosmic noon'.
44Ti Nucleosynthesis Lines and Hard X-ray Continuum in Young SNRs: from INTEGRAL to Simbol-X
NASA Astrophysics Data System (ADS)
Renaud, M.; Terrier, R.; Trap, G.; Lebrun, F.; Decourchelle, A.; Vink, J.
2009-05-01
Supemovae and their remnants are the main Galactic nucleosynthesis sites and the privileged sources of Galactic cosmic rays. The youngest of such remnants can be studied through two distinct observational features: 44Ti γ-ray lines and the hard X-ray nonthermal continuum emission. The former gives unique information on the nucleosynthesis conditions occuring during the first stages of the explosion, while the latter provides clues on acceleration processes at supernova remnant shocks. In this contribution, we present new INTEGRAL results on Tycho, the remnant of a historical supernova, and on G1.9+0.3, which has been recently unveiled as the youngest Galactic supernova remnant. Expectations with Simbol-X are also addressed.
2008-03-05
KENNEDY SPACE CENTER, FLA. -- A General Dynamics technician in the Astrotech payload processing facility releases a corner of the protective cover over NASA's Gamma-Ray Large Area Space Telescope, or GLAST, after its arrival. GLAST will be moved to a work stand in the facility for a complete checkout of the telescope's scientific instruments. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
2005-09-01
Large Population of Galaxies Found in the Young Universe with ESO's VLT The Universe was a more fertile place soon after it was formed than has previously been suspected. A team of French and Italian astronomers [1] made indeed the surprising discovery of a large and unknown population of distant galaxies observed when the Universe was only 10 to 30% its present age. ESO PR Photo 29a/05 ESO PR Photo 29a/05 New Population of Distant Galaxies [Preview - JPEG: 400 x 424 pix - 191k] [Normal - JPEG: 800 x 847 pix - 449k] [HiRes - JPEG: 2269 x 2402 pix - 2.0M] ESO PR Photo 29b/05 ESO PR Photo 29b/05 Average Spectra of Distant Galaxies [Preview - JPEG: 400 x 506 pix - 141k] [Normal - JPEG: 800 x 1012 pix - 320k] This breakthrough is based on observations made with the Visible Multi-Object Spectrograph (VIMOS) as part of the VIMOS VLT Deep Survey (VVDS). The VVDS started early 2002 on Melipal, one of the 8.2-m telescopes of ESO's Very Large Telescope Array [2]. In a total sample of about 8,000 galaxies selected only on the basis of their observed brightness in red light, almost 1,000 bright and vigorously star forming galaxies were discovered that were formed between 9 and 12 billion years ago (i.e. about 1,500 to 4,500 million years after the Big Bang). "To our surprise, says Olivier Le Fèvre, from the Laboratoire d'Astrophysique de Marseille (France) and co-leader of the VVDS project, "this is two to six times higher than had been found previously. These galaxies had been missed because previous surveys had selected objects in a much more restrictive manner than we did. And they did so to accommodate the much lower efficiency of the previous generation of instruments." While observations and models have consistently indicated that the Universe had not yet formed many stars in the first billion years of cosmic time, the discovery announced today by scientists calls for a significant change in this picture. The astronomers indeed find that stars formed two to three times faster than previously estimated. "These observations will demand a profound reassessment of our theories of the formation and evolution of galaxies in a changing Universe", says Gianpaolo Vettolani, the other co-leader of the VVDS project, working at INAF-IRA in Bologna (Italy). These results are reported in the September 22 issue of the journal Nature (Le Fèvre et al., "A large population of galaxies 9 to 12 billion years back in the life of the Universe").
The physics and early history of the intergalactic medium
NASA Astrophysics Data System (ADS)
Barkana, Rennan; Loeb, Abraham
2007-04-01
The intergalactic medium—the cosmic gas that fills the great spaces between the galaxies—is affected by processes ranging from quantum fluctuations in the very early Universe to radiative emission from newly formed stars. This gives the intergalactic medium a dual role as a powerful probe both of fundamental physics and of astrophysics. The heading of fundamental physics includes conditions in the very early Universe and cosmological parameters that determine the age of the Universe and its matter content. The astrophysics refers to chapters of the long cosmic history of stars and galaxies that are being revealed through the effects of stellar feedback on the cosmic gas. This review describes the physics of the intergalactic medium, focusing on recent theoretical and observational developments in understanding early cosmic history. In particular, the earliest generation of stars is thought to have transformed the Universe from darkness to light and to have had an enormous impact on the intergalactic medium. Half a million years after the Big Bang the Universe was filled with atomic hydrogen. As gravity pulled gas clouds together, the first stars ignited and their radiation turned the surrounding atoms back into free electrons and ions. From the observed spectral absorption signatures of the gas between us and distant sources, we know that the process of reionization pervaded most of space a billion years after the Big Bang, so that only a small fraction of the primordial hydrogen atoms remained between galaxies. Knowing exactly when and how the reionization process happened is a primary goal of cosmologists, because this would tell us when the early stars and black holes formed and in what kinds of galaxies. The distribution and clustering of these galaxies is particularly interesting since it is driven by primordial density fluctuations in the dark matter. Cosmic reionization is beginning to be understood with the help of theoretical models and computer simulations. Numerical simulations of reionization are computationally challenging, as they require radiative transfer across large cosmological volumes as well as sufficiently high resolution to identify the sources of the ionizing radiation in the infant Universe. Rapid progress in our understanding is expected with additional observational input. A wide variety of instruments currently under design—including large-aperture infrared telescopes on the ground or in space (JWST), and low-frequency radio telescope arrays for the detection of redshifted 21 cm radiation—will probe the first sources of light during an epoch in cosmic history that has been largely unexplored so far. The new observations and the challenges for theoretical models and numerical simulations will motivate intense work in this field over the coming decade.
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Filippenko, Alex
2013-10-01
Preface; About the authors; 1. A grand tour of the heavens; 2. Light, matter and energy: powering the Universe; 3. Light and telescopes: extending our senses; 4. Observing the stars and planets: clockwork of the Universe; 5. Gravitation and motion: the early history of astronomy; 6. The terrestrial planets: Earth, Moon, and their relatives; 7. The Jovian planets: windswept giants; 8. Pluto, comets, and space debris; 9. Our Solar System and others; 10. Our star: the Sun; 11. Stars: distant suns; 12. How the stars shine: cosmic furnaces; 13. The death of stars: recycling; 14. Black holes: the end of space and time; 15. The Milky Way: our home in the Universe; 16. A Universe of galaxies; 17. Quasars and active galaxies; 18. Cosmology: the birth and life of the cosmos; 19. In the beginning; 20. Life in the Universe; Epilogue; Appendices; Selected readings; Glossary; Index.
Ten billion years of brightest cluster galaxy alignments
NASA Astrophysics Data System (ADS)
West, Michael J.; de Propris, Roberto; Bremer, Malcolm N.; Phillipps, Steven
2017-07-01
A galaxy's orientation is one of its most basic observable properties. Astronomers once assumed that galaxies are randomly oriented in space; however, it is now clear that some have preferred orientations with respect to their surroundings. Chief among these are giant elliptical galaxies found in the centres of rich galaxy clusters. Numerous studies have shown that the major axes of these galaxies often share the same orientation as the surrounding matter distribution on larger scales1,2,3,4,5,6. Using Hubble Space Telescope observations of 65 distant galaxy clusters, we show that similar alignments are seen at earlier epochs when the Universe was only one-third of its current age. These results suggest that the brightest galaxies in clusters are the product of a special formation history, one influenced by development of the cosmic web over billions of years.
Contact in an expanding universe: an instructive exercise in dynamic geometry
NASA Astrophysics Data System (ADS)
Zimmerman, Seth
2010-11-01
The particular problem solved in this paper is that of calculating the time required to overtake a distant object receding under cosmic expansion, and the speed at which that object is passed. This is a rarely investigated problem leading to some interesting apparent paradoxes. We employ the problem to promote a deeper understanding of the dynamic geometry behind the expansion of space in three eras, especially for physics undergraduates. We do not utilize the standard cosmological formulae, but deliberately take a simpler approach, comprehensible to any student comfortable with differentials. This should offer an intuitive preparation for later courses in general relativity. The paper can be read straight through, or offered to a class in segments as problems to investigate. The overall intention is to leave students with a more tangible grasp of expanding space.
PHYSICS OF OUR DAYS: Dark energy and universal antigravitation
NASA Astrophysics Data System (ADS)
Chernin, A. D.
2008-03-01
Universal antigravitation, a new physical phenomenon discovered astronomically at distances of 5 to 8 billion light years, manifests itself as cosmic repulsion that acts between distant galaxies and overcomes their gravitational attraction, resulting in the accelerating expansion of the Universe. The source of the antigravitation is not galaxies or any other bodies of nature but a previously unknown form of mass/energy that has been termed dark energy. Dark energy accounts for 70 to 80% of the total mass and energy of the Universe and, in macroscopic terms, is a kind of continuous medium that fills the entire space of the Universe and is characterized by positive density and negative pressure. With its physical nature and microscopic structure unknown, dark energy is among the most critical challenges fundamental science faces in the twenty-first century.
Cosmic Explosions in Three Dimensions
NASA Astrophysics Data System (ADS)
Höflich, Peter; Kumar, Pawan; Wheeler, J. Craig
2011-08-01
Introduction: 3-D Explosions: a meditation on rotation (and magnetic fields) J. C. Wheeler; Part I. Supernovae: Observations Today: 1. Supernova explosions: lessons from spectropolarimetry L. Wang; 2. Spectropolarimetric observations of Supernovae A. Filippenko and D. C. Leonard; 3. Observed and physical properties of type II plateau supernovae M. Hamuy; 4. SN1997B and the different types of Type Ic Supernovae A. Clocchiatti, B. Leibundgut, J. Spyromilio, S. Benetti, E. Cappelaro, M. Turatto and M. Phillips; 5. Near-infrared spectroscopy of stripped-envelope Supernovae C. L. Gerardy, R. A. Fesen, G. H. Marion, P. Hoeflich and J. C. Wheeler; 6. Morphology of Supernovae remnants R. Fesen; 7. The evolution of Supernova remnants in the winds of massive stars V. Dwarkadas; 8. Types for the galactic Supernovae B. E. Schaefer; Part II. Theory of Thermonuclear Supernovae: 9. Semi-steady burning evolutionary sequences for CAL 83 and CAL 87: supersoft X-ray binaries are Supernovae Ia progenitors S. Starrfield, F. X. Timmes, W. R. Hix, E. M. Sion, W. M. Sparks and S. Dwyer; 10. Type Ia Supernovae progenitors: effects of the spin-up of the white dwarfs S.-C. Yoon and N. Langer; 11. Terrestrial combustion: feedback to the stars E. S. Oran; 12. Non-spherical delayed detonations E. Livne; 13. Numerical simulations of Type Ia Supernovae: deflagrations and detonations V. N. Gamezo, A. M. Khokhlov and E. S. Oran; 14. Type Ia Supernovae: spectroscopic surprises D. Branch; 15. Aspherity effects in Supernovae P. Hoeflich, C. Gerardy and R. Quimby; 16. Broad light curve SneIa: asphericity or something else? A. Howell and P. Nugent; 17. Synthetic spectrum methods for 3-D SN models R. Thomas; 18. A hole in Ia' spectroscopic and polarimetric signatures of SN Ia asymmetry due to a companion star D. Kasen; 19. Hunting for the signatures of 3-D explosions with 1-D synthetic spectra E. Lentz, E. Baron and P. H. Hauschildt; 20. On the variation of the peak luminosity of Type Ia J. W. Truran, E. X. Timmes and E. F. Brown; Part III. Theory of Core Collapse Supernovae: 21. Rotation of core collapse progenitors: single and binary stars N. Langer; 22. Large scale convection and the convective Supernova mechanism S. Colgate and M. E. Herant; 23. Topics in core-collapse Supernova A. Burrows, C. D. Ott and C. Meakin; 24. MHD Supernova jets: the missing link D. Meier and M. Nakamura; 25. Effects of super strong magnetic fields in core collapse Supernovae I. S. Akiyama; 26. Non radial instability of stalled accretion shocks advective-acoustic cycle T. Foglizzo and P. Galletti; 27. Asymmetry effects in Hypernovae K. Maeda, K. Nomoto, J. Deng and P.A. Mazzali; 28. Turbulent MHD jet collimation and thermal driving P. T. Williams; Part IV. Magnetars, N-Stars, Pulsars: 29. Supernova remnants and pulsar wind nebulae R. Chevalier; 30. X-Ray signatures of Supernovae D. Swartz; 31. Asymmetric Supernovae and Neutron Star Kicks D. Lai and D. Q. Lamb; 32. Triggers of magnetar outbursts R. Duncan; 33. Turbulent MHD Jet Collimation and Thermal Driving P. Williams; 34. The interplay between nuclear electron capture and fluid dynamics in core collapse Supernovae W. R. Hix, O. E. B. Messer and A. Mezzacappa; Part V. Gamma-Ray Bursts: 35. GRB 021004 and Gamma-ray burst distances B. E. Schaefer; 36. Gamma-ray bursts as a laboratory for the study of Type Ic Supernovae D. Q. Lamb, T. Q. Donaghy and C. Graziani; 37. The diversity of cosmic explosions: Gamma-ray bursts and Type Ib/c Supernovae E. Berger; 38. A GRB simulation using 3D relativistic hydrodynamics J. Cannizo, N. Gehrels and E. T. Vishniac; 39. The first direct link in the Supernova/GRB connection: GRB 030329 and SN 2003dh T. Matheson; Part VI. Summary: 40. Three-dimensional explosions C. Wheeler.
Formation of the first galaxies under Population III stellar feedback
NASA Astrophysics Data System (ADS)
Jeon, Myoungwon
2015-01-01
The first galaxies, which formed a few hundred million years after the big bang, are related to important cosmological questions. Given thatthey are thought to be the basic building blocks of large galaxies seen today, understanding their formation and properties is essentialto studying galaxy formation as a whole. In this dissertation talk, I will present the results of our highly-resolved cosmological ab-initio simulations to understand the assembly process of first galaxies under the feedback from the preceding generations of first stars, the so-called Population III (Pop III). The first stars formed at z≲30 in dark matter (DM) minihalos with M_{vir}=10^5-10^6Msun, predominately via molecular hydrogen (H_2) cooling. Radiation from Pop III stars dramatically altered the gas within their host minihalos, through photoionization, photoheating, and photoevaporation. Once a Pop III star explodes as a supernova (SN), heavy elements are dispersed, enriching the interstellar (ISM) and intergalactic medium (IGM), thus initiating the process of chemical evolution. I will begin by presenting how the SN explosion of the first stars influences early cosmic history, specifically assessing the time delay in further star formation and tracing the evolution of metal-enriched gas until the second episode star formation happens. These results will show the role of Pop III supernovae on the star formation transition from Pop III to Population II. Additionally, the more distant, diffuse IGM was heated by X-rays emitted by accreting black holes (BHs), or high-mass X-ray binaries (HMXBs), both remnants of Pop III stars. I will present results of a series of simulations where we study the impact of X-ray feedback from BHs and HMXBs on the star formation history in the early universe, and discuss the resulting implications on reionization. I will also present the role of X-rays on the early BH growth, providing constraints on models for supermassive black hole formation. Finally, I will discuss key physical quantities of the first galaxies derived from our simulations, such as their stellar population mix, star formation rates, metallicities, and resulting broad-band color and recombination spectra.
SU(2) x U(1) vacuum and the Centauro events
NASA Technical Reports Server (NTRS)
Kazanas, D.; Balasubrahmanyan, V. K.; Streitmatter, R. E.
1984-01-01
It is proposed that the fireballs invoked to explain the Centauro events are bubbles of a metastable superdense state of nuclear matter, created in high energy (E is approximately 10 to the 15th power eV) cosmic ray collisions at the top of the atmosphere. If these bubbles are created with a Lorentz factor gamma approximately = 10 at their CM frame, the objections against the origin of these events in cosmic ray interactions are overcome. Assuming further, that the Centauro events are to the explosive decay of these metastable bubbles, a relationship between their lifetime, tau, and the threshold energy for bubble formation, E sub th, is derived. The minimum lifetime consistent with such an interpretation in tau is approximately 10 to the -8th power sec, while the E sub th appears to be insensitive to the value of tau and always close to E sub th is approximately 10 to the 15th power eV. Finally it is speculated that if the available CM energy is thermalized in such collisions, these bubbles might be manifestations of excitations of the SU(2) x U(1) false vacuum. The absence of neutral pions in the Centauro events is then explained by the decay of these excitations.
Interstellar Lithium and Rubidium in the Diffuse Gas Near IC 443
NASA Astrophysics Data System (ADS)
Ritchey, Adam M.; Taylor, C. J.; Federman, S. R.; Lambert, D. L.
2011-01-01
We present an analysis of interstellar lithium and rubidium from observations made with the Hobby-Eberly Telescope at McDonald Observatory of the Li I λ6707 and Rb I λ7800 absorption lines along four lines of sight through the supernova remnant IC 443. The observations probe interstellar material polluted by the ejecta of a core-collapse (Type II) supernova and can thus be used to constrain the contribution from massive stars to the synthesis of lithium and rubidium. Production of 7Li is expected to occur through neutrino spallation in the helium and carbon shells of the progenitor star during the terminal supernova explosion, while both 6Li and 7Li are synthesized via spallation and fusion reactions involving cosmic rays accelerated by the remnant. Gamma-ray emission from IC 443 provides strong evidence for the interaction of accelerated cosmic rays with the ambient atomic and molecular gas. Rubidium is also produced by massive stars through the weak s-process in the He- and C-burning shells and the r-process during core collapse. We examine interstellar 7Li/6Li isotope ratios as well as Li/K and Rb/K ratios along each line of sight, and discuss the implications of our results in the context of nucleosynthesis associated with Type II supernovae.
High-energy particle acceleration in the shell of a supernova remnant.
Aharonian, F A; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Bolz, O; Boisson, C; Borgmeier, C; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chitnis, V R; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Guy, J; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; De Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemoine, M; Lemière, A; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pohl, M; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rivoal, M; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Théoret, C G; Tluczykont, M; Van Der Walt, D J; Vasileiadis, G; Vincent, P; Visser, B; Völk, H J; Wagner, S J
2004-11-04
A significant fraction of the energy density of the interstellar medium is in the form of high-energy charged particles (cosmic rays). The origin of these particles remains uncertain. Although it is generally accepted that the only sources capable of supplying the energy required to accelerate the bulk of Galactic cosmic rays are supernova explosions, and even though the mechanism of particle acceleration in expanding supernova remnant (SNR) shocks is thought to be well understood theoretically, unequivocal evidence for the production of high-energy particles in supernova shells has proven remarkably hard to find. Here we report on observations of the SNR RX J1713.7 - 3946 (G347.3 - 0.5), which was discovered by ROSAT in the X-ray spectrum and later claimed as a source of high-energy gamma-rays of TeV energies (1 TeV = 10(12) eV). We present a TeV gamma-ray image of the SNR: the spatially resolved remnant has a shell morphology similar to that seen in X-rays, which demonstrates that very-high-energy particles are accelerated there. The energy spectrum indicates efficient acceleration of charged particles to energies beyond 100 TeV, consistent with current ideas of particle acceleration in young SNR shocks.
2017-12-08
Here we see the spectacular cosmic pairing of the star Hen 2-427 — more commonly known as WR 124 — and the nebula M1-67 which surrounds it. Both objects, captured here by the NASA/ESA Hubble Space Telescope are found in the constellation of Sagittarius and lie 15,000 light-years away. The star Hen 2-427 shines brightly at the very center of this explosive image and around the hot clumps of surrounding gas that are being ejected into space at over 93,210 miles (150,000 km) per hour. Hen 2-427 is a Wolf–Rayet star, named after the astronomers Charles Wolf and Georges Rayet. Wolf–Rayet are super-hot stars characterized by a fierce ejection of mass. The nebula M1-67 is estimated to be no more than 10,000 years old — just a baby in astronomical terms — but what a beautiful and magnificent sight it makes. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Obituary: Kenneth Ingvard Greisen, 1918-2007
NASA Astrophysics Data System (ADS)
Greisen, Eric W.
2007-12-01
Cornell University Emeritus Professor of Physics, Kenneth I. Greisen, died on March 17, 2007 of cancer at the Hospicare residence in Ithaca, New York. He was 89 years old. Prof. Greisen was well-known for his participation in the Manhattan Project at Los Alamos and for his many contributions to the study of cosmic ray physics. More quietly, Prof. Greisen also made significant contributions to the teaching of Physics at the high school and university levels. He was of service to the Cornell and Ithaca communities in many ways both during his university career and after his retirement. Kenneth Ingvard Greisen was born in Perth Amboy, New Jersey, on January 24, 1918, to Signa and Ingvard Greisen. Ken attended Wagner College 1934-1935 and then Franklin and Marshall College, where he ran on the track team and graduated summa cum laude with the prestigious Henry S. Williamson Medalist award in 1938. Ken then entered graduate school in physics at Cornell University, where he became the first American student of the eminent Italian physicist Bruno B. Rossi. Together they carried out a study that yielded quantitative verification of the relativistic dilation of time intervals and an improved estimate of the mean life of mesotrons at rest. Their review article on ``Cosmic Ray Theory'' in 1941 was a standard for many years. Ken's Ph.D. thesis entitled ``Intensity of Cosmic Rays at Low Altitude and the Origin of the Soft Component,'' along with related articles, appeared in 1942 and 1943. During this very productive period, Ken also married Betty Chase, a Cornell biology graduate student. Upon graduation, Ken joined the Manhattan Project in Los Alamos, New Mexico. He was among the leaders of the group that designed and built the explosive charge that initiated the nuclear reaction in the first atomic bomb. Witnessing the July 16, 1945 Trinity explosion, he provided an eyewitness account that has become an important historical record. After the explosion, in a remark typical of him, he is widely quoted as saying ``My God, it worked!'' Following the war, Ken, along with Hans Bethe and other scientists, sent a letter to the President strongly advocating only non-military use of nuclear research. Ken and family returned to Cornell University and Ithaca, where he remained, except for sabbatical periods, for the rest of his life. He spent the next years studying cosmic rays and the showers of particles produced by them in the atmosphere and various absorbers. An array of scintillators atop Cornell buildings allowed both the direction and intensity of air showers to be determined. Detectors 600m underground, in a salt mine near Ithaca, detected only mesons with sufficient energy to penetrate so much material. In summers, detectors at a range of altitudes from the bottom to the top of Mount Evans (Colorado) provided altitudinal studies of cosmic-ray air showers and attracted an article in Life magazine. In early 1966, Ken realized that cosmic ray protons at energies above 6 x 1019 eV will interact significantly with the extremely low energy photons of the Cosmic Microwave Background, which had recently been discovered. If the sources of such extremely high-energy cosmic rays are at cosmological distances, this interaction should cause a sharp cutoff in the cosmic ray spectrum. The effect has been named the GZK cutoff after Greisen's paper and an independent, slightly later paper by Georgi Zatsepin and Vadim Kuzmin. Ken's paper also predicted a small dip in the cosmic-ray spectrum at energies of 1018-1020 eV, due to pair production by the thermal photons. Cosmic rays of such high energies cause the Earth's atmosphere to fluoresce, making the Earth itself into a detector. Beginning in the early 1960s, Ken and his group developed instruments to measure this fluorescence and implemented them, in a "fly's eye" configuration, in the hills surrounding Ithaca. The concept was taken around 1970 to the clearer skies of Utah, where a University of Utah group has extended and improved on the Cornell ideas to create the High Resolution (HiRes) Fly's Eye detector. Two weeks before Ken's death, the Utah collaboration reported observations of the high-energy cosmic ray spectrum clearly showing the GZK cutoff as well as the predicted dip at lower energies. The Pierre Auger Observatory, currently nearing completion in Argentina, will also use fluorescence detectors as one of two methods of studying the high-energy end of the cosmic-ray spectrum. In the late 1960s, Ken's research interests extended to the field of gamma-ray astronomy. These led to a number of high-altitude balloon flights carrying large-area gamma-ray telescopes. One such flight found pulsed emission synchronous with the Crab Nebula NP0532, providing the first observation of high-energy gamma rays from a pulsar. As his studies became more astronomical in nature, Ken joined the AAS in 1966, and, in 1968, Ken was named to the AAS organizing committee that established the High Energy Astrophysics Division (HEAD) of the AAS. Ken was selected as HEAD's first Chair for 1970 and 1971. Ken was also on the organizing committee that helped establish IAU Commission 48 on High Energy Astrophysics, also in 1970. He was subsequently elected to the National Academy of Sciences in 1974. Ken devoted much of his efforts to teaching. In the late 1950s, he contributed to the work of the Physical Sciences Study Committee at MIT, which was the source of the PSSC high-school physics curriculum. At Cornell, Ken developed and taught for many years a course fundamental to the preparation of students to be professional physicists. Beginning in 1969, he presided over a team from the Physics and Science Education Departments to completely redesign the teaching of introductory physics, producing an innovative, self-paced, auto-tutorial course that retains that format today. Ken regularly concerned himself with the overall structure of physics courses at Cornell, assigned himself early hours for his courses so that his students could take popular courses in other departments, and heavily supported the careers of those faculty members who distinguished themselves as teachers. Ken served on many national committees, was university Ombudsman 1975-1977, was Chairman of the Astronomy Department 1976-1979, and was Dean of the Faculty 1978-1983. He was granted an Emeritus professorship in 1984 and retired in 1986. The affection his colleagues felt for Ken was perhaps best illustrated when a Japanese Post-Doc and life-long friend named his first child Kenichi. Comments received at his death emphasized his ``great competence'' as a scientist; his kindness, generosity, and concern for his students; and his ``thoughtful human values'' and ``great integrity'' as a ``man of character.'' Ken loved music, attending many concerts, playing flute and recorder, and singing in church and senior choirs. He greatly enjoyed hiking, boating, golf, and other outdoor activities, including, in his retirement years, the bicycle and month-long vacations in Kauai and Florida. Ken viewed retirement as a reason to leave university life behind, but not to cease providing service to those about him who needed help. In retirement, Ken volunteered in a variety of activities to assist those less fortunate than himself. In his later years, he engaged in a nearly daily ``hobby'' of writing checks to numerous charities. Ken was preceded in death by his parents, younger brother Sigurd Greisen, older sister Agnita Dupree, first wife of 34 years Elizabeth Chase Greisen, second wife of 20 years Helen Wiltberger Greisen, and stepson Bruce Wiltberger. He is survived by his long-time companion Tommie Bryant of Ithaca; daughter Kathryn Greisen of Columbus, Ohio; son Eric Greisen of Socorro, New Mexico; step children Heather Wiltberger of Marshall, Virginia, Paul Wiltberger of Arlington, Washington, and Lois Wiltberger of Arlington, Massachusetts; and several step-grandchildren.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Thomas; Girichidis, Philipp; Gatto, Andrea
2015-11-10
The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less
Zhang, Zhi-Yu; Papadopoulos, Padelis P; Ivison, R J; Galametz, Maud; Smith, M W L; Xilouris, Emmanuel M
2016-06-01
Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh-Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB.
Observational Searches for Star-Forming Galaxies at z > 6
NASA Astrophysics Data System (ADS)
Finkelstein, Steven L.
2016-08-01
Although the universe at redshifts greater than six represents only the first one billion years (< 10%) of cosmic time, the dense nature of the early universe led to vigorous galaxy formation and evolution activity which we are only now starting to piece together. Technological improvements have, over only the past decade, allowed large samples of galaxies at such high redshifts to be collected, providing a glimpse into the epoch of formation of the first stars and galaxies. A wide variety of observational techniques have led to the discovery of thousands of galaxy candidates at z > 6, with spectroscopically confirmed galaxies out to nearly z = 9. Using these large samples, we have begun to gain a physical insight into the processes inherent in galaxy evolution at early times. In this review, I will discuss (i) the selection techniques for finding distant galaxies, including a summary of previous and ongoing ground and space-based searches, and spectroscopic follow-up efforts, (ii) insights into galaxy evolution gleaned from measures such as the rest-frame ultraviolet luminosity function, the stellar mass function, and galaxy star-formation rates, and (iii) the effect of galaxies on their surrounding environment, including the chemical enrichment of the universe, and the reionisation of the intergalactic medium. Finally, I conclude with prospects for future observational study of the distant universe, using a bevy of new state-of-the-art facilities coming online over the next decade and beyond.
Spectroscopic confirmation of a galaxy at redshift z = 8.6.
Lehnert, M D; Nesvadba, N P H; Cuby, J-G; Swinbank, A M; Morris, S; Clément, B; Evans, C J; Bremer, M N; Basa, S
2010-10-21
Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sightlines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the cosmic microwave background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionized through a complex process that was completed about a billion years after the Big Bang, by redshift z ≈ 6. Detecting ionizing Lyman-α photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionization. Here we report the detection of Lyα photons emitted less than 600 million years after the Big Bang. UDFy-38135539 (ref. 5) is at a redshift of z = 8.5549 ± 0.0002, which is greater than those of the previously known most distant objects, at z = 8.2 (refs 6 and 7) and z = 6.96 (ref. 8). We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.
Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T
2017-07-10
We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r <100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z ∼ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.
Cosmic Bell Test: Measurement Settings from Milky Way Stars
NASA Astrophysics Data System (ADS)
Handsteiner, Johannes; Friedman, Andrew S.; Rauch, Dominik; Gallicchio, Jason; Liu, Bo; Hosp, Hannes; Kofler, Johannes; Bricher, David; Fink, Matthias; Leung, Calvin; Mark, Anthony; Nguyen, Hien T.; Sanders, Isabella; Steinlechner, Fabian; Ursin, Rupert; Wengerowsky, Sören; Guth, Alan H.; Kaiser, David I.; Scheidl, Thomas; Zeilinger, Anton
2017-02-01
Bell's theorem states that some predictions of quantum mechanics cannot be reproduced by a local-realist theory. That conflict is expressed by Bell's inequality, which is usually derived under the assumption that there are no statistical correlations between the choices of measurement settings and anything else that can causally affect the measurement outcomes. In previous experiments, this "freedom of choice" was addressed by ensuring that selection of measurement settings via conventional "quantum random number generators" was spacelike separated from the entangled particle creation. This, however, left open the possibility that an unknown cause affected both the setting choices and measurement outcomes as recently as mere microseconds before each experimental trial. Here we report on a new experimental test of Bell's inequality that, for the first time, uses distant astronomical sources as "cosmic setting generators." In our tests with polarization-entangled photons, measurement settings were chosen using real-time observations of Milky Way stars while simultaneously ensuring locality. Assuming fair sampling for all detected photons, and that each stellar photon's color was set at emission, we observe statistically significant ≳7.31 σ and ≳11.93 σ violations of Bell's inequality with estimated p values of ≲1.8 ×10-13 and ≲4.0 ×10-33, respectively, thereby pushing back by ˜600 years the most recent time by which any local-realist influences could have engineered the observed Bell violation.
Cosmic Bell Test: Measurement Settings from Milky Way Stars.
Handsteiner, Johannes; Friedman, Andrew S; Rauch, Dominik; Gallicchio, Jason; Liu, Bo; Hosp, Hannes; Kofler, Johannes; Bricher, David; Fink, Matthias; Leung, Calvin; Mark, Anthony; Nguyen, Hien T; Sanders, Isabella; Steinlechner, Fabian; Ursin, Rupert; Wengerowsky, Sören; Guth, Alan H; Kaiser, David I; Scheidl, Thomas; Zeilinger, Anton
2017-02-10
Bell's theorem states that some predictions of quantum mechanics cannot be reproduced by a local-realist theory. That conflict is expressed by Bell's inequality, which is usually derived under the assumption that there are no statistical correlations between the choices of measurement settings and anything else that can causally affect the measurement outcomes. In previous experiments, this "freedom of choice" was addressed by ensuring that selection of measurement settings via conventional "quantum random number generators" was spacelike separated from the entangled particle creation. This, however, left open the possibility that an unknown cause affected both the setting choices and measurement outcomes as recently as mere microseconds before each experimental trial. Here we report on a new experimental test of Bell's inequality that, for the first time, uses distant astronomical sources as "cosmic setting generators." In our tests with polarization-entangled photons, measurement settings were chosen using real-time observations of Milky Way stars while simultaneously ensuring locality. Assuming fair sampling for all detected photons, and that each stellar photon's color was set at emission, we observe statistically significant ≳7.31σ and ≳11.93σ violations of Bell's inequality with estimated p values of ≲1.8×10^{-13} and ≲4.0×10^{-33}, respectively, thereby pushing back by ∼600 years the most recent time by which any local-realist influences could have engineered the observed Bell violation.
The baryon content of the Cosmic Web
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-01-01
Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589
Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula
NASA Astrophysics Data System (ADS)
1999-09-01
After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, is the remnant of a star that was observed to explode in 1054 A.D. Chinese astronomers in that year reported a "guest star" that appeared suddenly and remained visible for weeks, even during daytime. From gamma-ray telescopes to radio telescopes, the Crab has been observed using virtually every astronomical instrument that could see that part of the sky. Unraveling the mysteries of the Crab has proven to be the door to insight after insight into the workings of the universe. The Crab convincingly tied the origin of enigmatic "pulsars" to the stellar cataclysms known as supernovas. Observations of the expanding cloud of filaments in the Crab were instrumental in confirming the cosmic origin of the chemical elements from which planets (and people) are made. The nebula is located 6,000 light years from Earth in the constellation Taurus. The Crab pulsar, which was discovered by radio astronomers in 1968, is a neutron star rotating 30 times per second. Neutron stars are formed in the seconds before a supernova explosion when gravity crushes the central core of the star to densities 50 trillion times that of lead and a diameter of only 12 miles. Another consequence of the dramatic collapse is that neutron stars are rapidly rotating and highly magnetized. Like a gigantic cosmic generator, the rotating magnet generates 10 quadrillion volts of electricity, 30 million times that of a typical lightning bolt. "It is an incredibly efficient generator," Ruderman explained. "More than ninety-five percent efficient. There's nothing like it on Earth." Press: Fact Sheet To follow Chandra's progress, visit the Chandra News Web site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. High resolution digital versions of the X-ray image (300 dpi JPG, TIFF) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu/photo/0052/index.html or via links in: http://chandra.harvard.edu An animation of a supernova explosion and the formation of a supernova remnant can be found at: http://chandra.harvard.edu/resources/animations/pulsar.html
Distant retrograde orbits for the Moon's exploration
NASA Astrophysics Data System (ADS)
Sidorenko, Vladislav
We discuss the properties of the distant retrograde orbits (which are called quasi-satellite orbits also) around Moon. For the first time the distant retrograde orbits were described by J.Jackson in studies on restricted three body problem at the beginning of 20th century [1]. In the synodic (rotating) reference frame distant retrograde orbit looks like an ellipse whose center is slowly drifting in the vicinity of minor primary body while in the inertial reference frame the third body is orbiting the major primary body. Although being away the Hill sphere the third body permanently stays close enough to the minor primary. Due to this reason the distant retrograde orbits are called “quasi-satellite” orbits (QS-orbits) too. Several asteroids in solar system are in a QS-orbit with respect to one of the planet. As an example we can mention the asteroid 2002VE68 which circumnavigates Venus [2]. Attention of specialists in space flight mechanics was attracted to QS-orbits after the publications of NASA technical reports devoted to periodic moon orbits [3,4]. Moving in QS-orbit the SC remains permanently (or at least for long enough time) in the vicinity of small celestial body even in the case when the Hill sphere lies beneath the surface of the body. The properties of the QS-orbit can be studied using the averaging of the motion equations [5,6,7]. From the theoretical point of view it is a specific case of 1:1 mean motion resonance. The integrals of the averaged equations become the parameters defining the secular evolution of the QS-orbit. If the trajectory is robust enough to small perturbations in the simplified problem (i.e., restricted three body problem) it may correspond to long-term stability of the real-world orbit. Our investigations demonstrate that under the proper choice of the initial conditions the QS-orbits don’t escape from Moon or don’t impact Moon for long enough time. These orbits can be recommended as a convenient technique for the large scale browsing of the Moon’s environment. [1] Jackson, J. (1913) MNRAS, 74, 62-82. [2] Mikkola, S., Brasser, R., Wiegert, P., Innanen, K. (2004) MNRAS, 351, L63-L65. [3] Broucke, R.A. (1968) NASA Technical Report 32-1168, JPL. [4] Broucke, R.A. (1969) NASA Technical Report 32-1360, JPL. [5] Kogan, A.I. (1989) Cosmic Research, 26, 705-710. [6] Namouni, F. (1999) Icarus, 6, 293-314. [7] Sidorenko, V.V., Neishtadt, A.I., Artemyev, A.V., Zelenyi, L.M. (2013) Doklady Physics, 58, 207-211.
Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C
Abdo, A. A.; Ackermann, M.; Arimoto, M.; ...
2009-02-19
Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. Finally, the known distance of the burstmore » enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.« less
Europe's latest space telescope is off to a good start
NASA Astrophysics Data System (ADS)
1999-12-01
The world's most powerful observatory for X-ray astronomy, the European Space Agency's XMM satellite, set off into space from Kourou, French Guiana, at 15:32 Paris time on 10 December. The mighty Ariane 5 launcher, making its very first commercial launch, hurled the 3.9-tonne spacecraft into a far-ranging orbit. Within one hour of lift-off the European Space Operations Centre at Darmstadt, Germany, confirmed XMM was under control with electrical power available from the solar arrays. "XMM is the biggest and most innovative scientific spacecraft developed by ESA so far," said Roger Bonnet, ESA's Director of Science. "The world's space agencies now want the new technology that ESA and Europe's industries have put into XMM's amazingly sensitive X-ray telescopes. And the world's astronomers are queuing up to use XMM to explore the hottest places in the universe. We must ask them to be patient while we get XMM fully commissioned." XMM's initial orbit carries it far into space, to 114,000 kilometres from the Earth at its most distant point. On its return the satellite's closest approach, or perigee, will be at 850 kilometres. The next phase of the operation, expected to take about a week, will raise that perigee to 7000 kilometres by repeated firing of XMM's own thrusters. The spacecraft will then be on its intended path, spending 40 hours out of every 48-hour orbit clear of the radiation belts which spoil the view of the X-ray universe. Technical commissioning and verification of the performance of the telescopes and scientific instruments will then follow. XMM should be fully operational for astronomy in the spring of 2000. All of ESA's science missions present fresh technological challenges to Europe's aerospace industries. In building XMM, the prime contractor Dornier Satellitensysteme in Friedrichshafen in Germany (part of DaimlerChrysler Aerospace) has led an industrial consortium involving 46 companies from 14 European countries and one in the United States. XMM stands for X-ray Multi-Mirror Mission. Its main telescopes will gather X-rays from the cosmos with 120 square metres of gold-coated surfaces, in 174 mirrors fashioned, smoothed and nested together with high precision by contractors in Germany and Italy. With XMM, Europe has taken the lead in X-ray missions and X-ray detectors: the most sensitive and largest ever made. The four complex scientific instruments on XMM have been developed and led by European scientists with participation from institutes worldwide. Compared with NASA's Chandra X-ray telescope launched earlier this year, XMM is at least 5 times more sensitive. The gain in sensitivity is 15-fold, at high X-ray energies. But Chandra has a sharper view, so the two missions are complementary and there is close transatlantic collaboration among the scientists involved. Prime scientific objectives for XMM are to find out exactly what goes on in the vicinity of black holes, and to help to clear up the mystery of the stupendous explosions called gamma-ray bursts. Other hot topics for investigation include cannibalism among the stars, the release of newly made chemical elements from stellar explosions, and the origin of the cosmic rays that rain on the Earth. XMM is one of a carefully-planned series of scientific satellites built in Europe by which ESA has established a pioneering role in space astronomy. Recently completed missions include the very successful star-mapping satellite Hipparcos, and the Infrared Space Observatory which revolutionized astronomers' knowledge of the cool parts of the universe. Coming along after XMM are Integral for gamma-ray astronomy, FIRST for the far-infrared, and Planck for examining the entire cosmic microwave background far more accurately than ever before.
The Multi-Universe Cosmos. The Origin and Fate of our Universe
NASA Astrophysics Data System (ADS)
Velan, Karel
18 billion yers ago our Universe, one of many in the Cosmos, emerged from a hot, dense fireball of matter and energy created in the 4-dimensional cosmic space-time from virtual particles receiving their rest mass from a powerful primordial radiation field, the missing link to any viable theory of creation. The cloud of elementary particles and radiation collapsed by gravity into a fireball until its trappped thermal radiation caused a titanic explosion that initiated the expansion and evolution of ours universe. As the universe expanded and cooled it spawned galaxies, stars, planets and life. Proven laws of physics, observationsl data and mathematical computations support the new cosmological model which proposes a large number of universes in the cosmos in varying stages of evolution
NASA Technical Reports Server (NTRS)
Deehr, C. S.; Wescott, E. M.; Stenbaek-Nielsen, H.; Romick, G. J.; Hallinan, T. J.; Foeppl, H.
1982-01-01
A disk of barium and strontium vapor traveling radially outward, perpendicular to the geomagnetic field lines, may be created by the detonation of a high-explosive, radially shaped charge with a liner composed of the two metals in the upper atmosphere. Because of solar radiation resonance, both the barium and the strontium may be optically tracked. Observations indicate the early formation of the metal ions thus evolved into a disk-shaped, stellate structure with a dark hole at the center of a radial structure. The results of these experiments indicate that the process could occur on a cosmic scale, and that unconfirmed aspects of the theory relating to this process could be determined through variation of the parameters in future radial rocket experiments.
On the Origin of Solar and Stellar Flares
NASA Astrophysics Data System (ADS)
Ibadov, Subhon
2015-08-01
Physical processes connected with falls of comets and evaporating bodies, FEBs, onto stars with cosmic velocities, around 600 km/s, are considered. The processes include aerodynamic crushing of comet nucleus and transversal expansion of crushed mass within the solar chromosphere as well as sharp deceleration of the flattening structure in a relatively very thin layer near the solar/stellar photosphere. Fast thermalization of the body's kinetic energy will be accompanied by impulse generation of a high temperature plasma in the thin layer, i.e., "explosion" and strong "blast" shock wave as well as eruption of the layer ionized material into space above the chromosphere. Impact mechanism is capable to lead to generation of solar/stellar super-flares. Some similarities of this phenomenon with flare activity by magnetic reconnection are also revealed.
NASA Astrophysics Data System (ADS)
Modjaz, Maryam; Gal-Yam, Avishay; Arcavi, Iair
2012-02-01
Stripped core-collapse supernovae (Stripped SNe) are powerful cosmic engines that energize and enrich the ISM and that sometimes accompany GRBs, but the exact mass and metallicity range of their massive progenitors is not known, nor the detailed physics of the explosion. We propose to continue conducting the first uniform and statistically significant study of host galaxies of 60 stripped SNe from the same innovative, homogeneous and galaxy-unbiased survey Palomar Transient Factory in order to determine the environmental conditions that influence the various kinds of massive stellar deaths. By obtaining spectra of the immediate host environments of our sample of stripped SN, we will (1) measure local abundances in order to differentiate between the two progenitor scenarios for stripped SN and (2) derive stellar population ages, masses and star formation histories via detailed stellar population synthesis models. Moreover, we will test if natal chemical abundance has effects on basic SN characteristics, such as peak luminosity. Any observed trends will have ramifications on SN and GRB explosion models and imply important demographic SN considerations. Our dataset will provide a crucial complimentary set to host galaxy studies of long-duration GRBs and pave the way for host studies of transients and SN found via upcoming surveys such as LSST.
NASA Astrophysics Data System (ADS)
Modjaz, Maryam; Gal-Yam, Avishay; Arcavi, Iair
2011-02-01
Stripped core-collapse supernovae (Stripped SN) are powerful cosmic engines that energize and enrich the ISM and that sometimes accompany GRBs, but the exact mass and metallicity range of their massive progenitors is not known, nor the detailed physics of the explosion. With the harvest of 50 stripped SN from the innovative survey Palomar Transient Factory, we propose to conduct the first uniform and statistically significant study with SN from the same homogeneous and galaxy-unbiased survey in order to determine the environmental conditions that influence the various kinds of massive stellar deaths. By obtaining spectra of the immediate host environments of our sample of stripped SN, we will (1) measure local abundances in order to differentiate between the two progenitor scenarios for stripped SN and (2) derive stellar population ages, masses and star formation histories via detailed stellar population synthesis models. Moreover, we will test if natal chemical abundance has effects on basic SN characteristics, such as peak luminosity. Any observed trends will have ramifications on SN and GRB explosion models and imply important demographic SN considerations. Our dataset will provide a crucial complimentary set to host galaxy studies of long-duration GRBs and pave the way for host studies of transients and SN found via upcoming surveys such as LSST.
Short Gamma-Ray Bursts from the Merger of Two Black Holes
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Lazzati, Davide; Giacomazzo, Bruno
2016-04-01
Short gamma-ray bursts (GRBs) are explosions of cosmic origins believed to be associated with the merger of two compact objects, either two neutron stars or a neutron star and a black hole (BH). The presence of at least one neutron star has long been thought to be an essential element of the model: its tidal disruption provides the needed baryonic material whose rapid accretion onto the post-merger BH powers the burst. The recent tentative detection by the Fermi satellite of a short GRB in association with the gravitational wave signal GW150914 produced by the merger of two BHs has challenged this standard paradigm. Here, we show that the evolution of two high-mass, low-metallicity stars with main-sequence rotational speeds a few tens of percent of the critical speed eventually undergoing a weak supernova explosion can produce a short GRB. The outer layers of the envelope of the last exploding star remain bound and circularize at large radii. With time, the disk cools and becomes neutral, suppressing the magnetorotational instability, and hence the viscosity. The disk remains “long-lived dead” until tidal torques and shocks during the pre-merger phase heat it up and re-ignite accretion, rapidly consuming the disk and powering the short GRB.
`The Wildest Speculation of All': Lemaître and the Primeval-Atom Universe
NASA Astrophysics Data System (ADS)
Kragh, Helge
Although there is no logical connection between the expanding universe and the idea of a big bang, from a historical perspective the two concepts were intimately connected. Four years after his pioneering work on the expanding universe, Lemaître suggested that the entire universe had originated in a kind of explosive act from what he called a primeval atom and which he likened to a huge atomic nucleus. His theory of 1931 was the first realistic finite-age model based upon relativistic cosmology, but it presupposed a material proto-universe and thus avoided an initial singularity. What were the sources of Lemaître's daring proposal? Well aware that his new cosmological model needed to have testable consequences, he argued that the cosmic rays were fossils of the original radioactive explosion. However, this hypothesis turned out to be untenable. The first big-bang model ever was received with a mixture of indifference and hostility. Why? The answer is not that contemporary cosmologists failed to recognize Lemaître's genius, but rather that his model was scientifically unconvincing. Although Lemaître was indeed the father of big-bang cosmology, his brilliant idea was only turned into a viable cosmological theory by later physicists.
Introduction to High-Energy Astrophysics
NASA Astrophysics Data System (ADS)
Rosswog, Stephan; Bruggen, Marcus
2003-04-01
High-energy astrophysics covers cosmic phenomena that occur under the most extreme physical conditions. It explores the most violent events in the Universe: the explosion of stars, matter falling into black holes, and gamma-ray bursts - the most luminous explosions since the Big Bang. Driven by a wealth of new observations, the last decade has seen a large leap forward in our understanding of these phenomena. Exploring modern topics of high-energy astrophysics, such as supernovae, neutron stars, compact binary systems, gamma-ray bursts, and active galactic nuclei, this textbook is ideal for undergraduate students in high-energy astrophysics. It is a self-supporting, timely overview of this exciting field of research. Assuming a familiarity with basic physics, it introduces all other concepts, such as gas dynamics or radiation processes, in an instructive way. An extended appendix gives an overview of some of the most important high-energy astrophysics instruments, and each chapter ends with exercises.• New, up-to-date, introductory textbook providing a broad overview of high-energy phenomena and the many advances in our knowledge gained over the last decade • Written especially for undergraduate teaching use, it introduces the necessary physics and includes many exercises • This book fills a valuable niche at the advanced undergraduate level, providing professors with a new modern introduction to the subject
NASA Technical Reports Server (NTRS)
Smoot, G. F.
1981-01-01
Large-angular-scale anisotropies in the 3 K primordial black-body radiation were detected and mapped with a sensitivity of 2 x to the minus 4 power K and an angular resolution of about 10 deg. The motion of the Earth with respect to the distant matter of the Universe ("Aether Drift") was measured and the homogeneity and isotropy of the Universe (the "Cosmological Principle") was probed. The experiment uses two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth survey aircraft (U-2), and operated successfully in a series of flights in both the Northern and Southern Hemispheres. Data taking and analysis to measure the anisotropy were successful.
The First Stars in the Universe and Cosmic Reionization
NASA Astrophysics Data System (ADS)
Barkana, Rennan
2006-08-01
The earliest generation of stars, far from being a mere novelty, transformed the universe from darkness to light. The first atoms to form after the Big Bang filled the universe with atomic hydrogen and a few light elements. As gravity pulled gas clouds together, the first stars ignited and their radiation turned the surrounding atoms into ions. By looking at gas between us and distant galaxies, we know that this ionization eventually pervaded all space, so that few hydrogen atoms remain today between galaxies. Knowing exactly when and how it did so is a primary goal of cosmologists, because this would tell us when the early stars formed and in what kinds of galaxies. Although this ionization is beginning to be understood by using theoretical models and computer simulations, a new generation of telescopes is being built that will map atomic hydrogen throughout the universe.
A new detection of an UFO in the X-ray spectrum of a lensed QSO
NASA Astrophysics Data System (ADS)
Dadina, M.
2017-10-01
The discovery of the "M_{SMBH}-σ relation" indicated that a connection between the central black-hole and the hosting galaxies acted during the cosmic time. With the discovery in X-rays of the ultra-fast outflows in nearby AGN, we have most probably probed one of the ingredients that are needed to build-up this mechanism. At high-z, however, such measurements were possible only in an handful of objects and this was possible mainly for the presence of gravitational lenses that magnified otherwise X-ray weak QSO. Following this, we proposed a program to use XMM-Newton and gravitational lenses as telescopes to point bright, lensed and distant QSO to characterize in detail their X-ray spectrum and to detect blushifted absorption lines at E˜7-10 keV (rest frame). Here we present the preliminary results obtained for the z=2.64 QSO MG J0414+0534.
NASA Technical Reports Server (NTRS)
Jewitt, D. C.; Soifer, B. T.; Neugebauer, G.; Matthews, K.; Danielson, G. E.
1982-01-01
The paper reports combined visual imagery and spectroscopy, near-infrared spectroscopy, and broadband infrared photometry of comets P/Stephan-Oterma (1980g), Bowell (1980b), and Panther (1980u) at intermediate heliocentric distances. The visual data indicate the existence of solid grains in extended halos around the nuclei of the three comets. Broadband near-infrared and thermal infrared measurements of Comet Panther suggest the presence of 2-4-micron-radius particles in the coma which most likely contain molecules incorporating the N-H bond, but which are more complex and less volatile than NH3. Such molecules can be produced in the grains by cosmic-ray reprocessing. Near infrared spectral features identical to those seen in comet Panther similary suggest the presence of a molecule incorporating the N-H bond in comet Bowell.
NASA Astrophysics Data System (ADS)
Jewitt, D. C.; Soifer, B. T.; Neugebauer, G.; Matthews, K.; Danielson, G. E.
1982-12-01
The paper reports combined visual imagery and spectroscopy, near-infrared spectroscopy, and broadband infrared photometry of comets P/Stephan-Oterma (1980g), Bowell (1980b), and Panther (1980u) at intermediate heliocentric distances. The visual data indicate the existence of solid grains in extended halos around the nuclei of the three comets. Broadband near-infrared and thermal infrared measurements of Comet Panther suggest the presence of 2-4-micron-radius particles in the coma which most likely contain molecules incorporating the N-H bond, but which are more complex and less volatile than NH3. Such molecules can be produced in the grains by cosmic-ray reprocessing. Near infrared spectral features identical to those seen in comet Panther similary suggest the presence of a molecule incorporating the N-H bond in comet Bowell.
Project Ozma: The Birth of Observational SETI
NASA Astrophysics Data System (ADS)
Shuch, H. Paul
It was an idea whose time had come, but nobody dared admit that out loud. Frank Drake, in particular, was keeping silent. Like many of his generation, he had long speculated about the existence of extraterrestrial life, and pondered how we humans might probe for direct evidence of our cosmic companions. Now, in 1959, the young astronomer was finally in a position to do more than ponder. At 29, he had just completed graduate school, the ink on his Harvard diploma as wet as he was behind the ears. As the new kid on the block at the National Radio Astronomy Observatory, he had access to the tools necessary to mount a credible search for radio evidence of distant technological civilizations. Drake knew enough to tread lightly; a publicly announced hunt for Little Green Men would be tantamount to professional suicide, so he approached his superior with understandable trepidation.
TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation
NASA Astrophysics Data System (ADS)
Spilker, Justin; Rigby, Jane R.; Vieira, Joaquin D.; TEMPLATES Team
2018-06-01
TEMPLATES is a JWST Early Release Science program designed to produce high signal-to-noise imaging and IFU spectroscopic data cubes for four gravitationally lensed galaxies at high redshift. The program will spatially resolve the star formation in galaxies across the peak of cosmic star formation in an extinction-robust manner. Lensing magnification pushes JWST to the highest spatial resolutions possible at these redshifts, to map the key spectral diagnostics of star formation and dust extinction: H-alpha, Pa-alpha, and 3.3um PAH emission within individual distant galaxies. Our targets are among the brightest, best-characterized lensed systems known, and include both UV-bright 'normal' galaxies and heavily dust-obscured submillimeter galaxies, at a range of stellar masses and luminosities. I will describe the scientific motivation for this program, detail the targeted galaxies, and describe the planned data products to be delivered to the community in advance of JWST Cycle 2.
Copernicus observations of distant unreddened stars. II - Line of sight to HD 50896
NASA Technical Reports Server (NTRS)
Shull, J. M.
1977-01-01
Copernicus UV data on interstellar lines toward HD 50896, a Wolf-Rayet star, are analyzed to study abundances and physical conditions in the line of sight. About 20% of the low-velocity neutral gas is contained in a dense cloud with 10% to 50% of its hydrogen in molecular form; the atomic abundances show typical interstellar depletions. The low-velocity H II gas may be associated with the high ionizing flux of the Wolf-Rayet star or with H II regions along the line of sight. Si III exhibits strong absorption shortward of the low-velocity H II gas, characteristic of a collisionally ionized component at 30,000 to 80,000 K; the possible connections with an unobserved supernova remnant or stellar mass loss are discussed. High-velocity features at 78 and -96 km/sec, in which Fe and Si are near their cosmic abundances, are also indicative of strong shocks.
NASA Astrophysics Data System (ADS)
Hsu, Leonardo; Hsu, Jong-Ping
2018-01-01
Based on the limiting continuation of Lorentz-Poincaré invariance, we propose an alternative formulation of the generalized Planck distribution for inertial and noninertial frames. The Lorentz invariant Planck distribution law leads to a new physical interpretation of the dipole anisotropy of the Cosmic Microwave Background. The Big Jets model predicts a distant `antimatter blackbody,' whose radiations could make 50% of the sky very slightly warmer than the isotropic CMB temperature TCMB with a cosine function. The other 50% of the sky has the same isotropic temperature TCMB. Thus, we could have a pseudo-dipole anisotropy because the microwaves emitted from the antimatter blackbody are totally absorbed by our matter blackbody. We suggest that accurate data of satellite experiments might be used to search for the pseudo-dipole anisotropy and the missing half of the antimatter universe.
NASA Technical Reports Server (NTRS)
Ramaty, R.; Lingenfelter, R. E.
1982-01-01
Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.
The X-rays of a bright QSO well within the epoch of reionization at z=7.54
NASA Astrophysics Data System (ADS)
Banados, Eduardo
2016-09-01
After almost a decade of intense search, our team has finally discovered a bright QSO well within the epoch of reionization, at z=7.54. This is by far the most distant QSO known (previous record: 7.08), at a cosmic age of 690 Myr, i.e., only 5% of our universe's current age. This is the first QSO whose spectrum shows clear evidence of an intergalactic medium that is >20% neutral and that reionization is underway. We propose Chandra observations of this unique object to (i) probe evolution of the X-ray-to-optical luminosity ratio (alpha-ox) to the highest accessible redshift; (ii) provide a more reliable estimate of the QSO's bolometric luminosity, and (iii) assess the feasibility of deeper Chandra and XMM observations for the upcoming cycles, which would allow us to test whether the first black holes are accreting at super-Eddington rates.
Space Infrared Astronomy in the 21st Century
NASA Technical Reports Server (NTRS)
Mather, John C.; Fisher, Richard (Technical Monitor)
2000-01-01
New technology and design approaches have enabled revolutionary improvements in astronomical observations from space. Worldwide plans and dreams include orders of magnitude growth in sensitivity and resolution for all wavelength ranges, and would give the ability to learn our history, from the Big Bang to the conditions for life on Earth. The Next Generation Space Telescope, for example, will be able to see the most distant galaxies as they were being assembled from tiny fragments. It will be 1/4 as massive as the Hubble, with a mirror 3 times as large, cooled to about 30 Kelvin to image infrared radiation. I will discuss plans for NGST and hopes for future large space telescopes, ranging from the Space UV Optical (SUVO) telescope to the Filled Aperture Infrared (FAIR) Telescope, the Space Infrared Interferometric Telescope (SPIRIT), and the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS).
High-Redshift Astrophysics Using Every Photon
NASA Astrophysics Data System (ADS)
Breysse, Patrick; Kovetz, Ely; Rahman, Mubdi; Kamionkowski, Marc
2017-01-01
Large galaxy surveys have dramatically improved our understanding of the complex processes which govern gas dynamics and star formation in the nearby universe. However, we know far less about the most distant galaxies, as existing high-redshift observations can only detect the very brightest sources. Intensity mapping surveys provide a promising tool to access this poorly-studied population. By observing emission lines with low angular resolution, these surveys can make use of every photon in a target line to study faint emitters which are inaccessible using traditional techniques. With upcoming carbon monoxide experiments in mind, I will demonstrate how an intensity map can be used to measure the luminosity function of a galaxy population, and in turn how these measurements will allow us to place robust constraints on the cosmic star formation history. I will then show how cross-correlating CO isotopologue lines will make it possible to study gas dynamics within the earliest galaxies in unprecedented detail.
Cannibal Stars Cause Giant Explosions in Fornax Cluster Galaxy
NASA Astrophysics Data System (ADS)
2000-07-01
The VLT Observes Most Remote Novae Ever Seen About 70 million years ago, when dinosaurs were still walking on the Earth, a series of violent thermo-nuclear explosions took place in a distant galaxy. After a very long travel across vast reaches of virtually empty space (70 million light-years, or ~ 7 x 10 20 km), dim light carrying the message about these events has finally reached us. It was recorded by the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile) during an observing programme by a group of Italian astronomers [1]. The subsequent analysis has shown that the observers witnessed the most distant nova outbursts ever seen . They were caused by "stellar cannibalism" in binary systems in which one relatively cool star loses matter to its smaller and hotter companion. An instability results that leads to the ignition of a "hydrogen bomb" on the surface of the receiving star. The "Stella Nova" Phenomenon A stellar outburst of the type now observed with the VLT is referred to as a "Stella Nova" ("new star" in Latin), or just "Nova" . Novae caused by explosions in binary stars in our home galaxy, the Milky Way system, are relatively frequent and about every second or third year one of them is bright enough to be easily visible with the naked eye. For our ancestors, who had no means to see the faint binary star before the explosion, it looked as if a new star had been born in the sky, hence the name. The most common nova explosion occurs in a binary stellar system in which a white dwarf (a very dense and hot, compact star with a mass comparable to that of the Sun and a size like the Earth) accretes hydrogen from a cooler and larger red dwarf star [2]. As the hydrogen collects on the surface of the white dwarf star, it becomes progressively hotter until a thermonuclear explosion is ignited at the bottom of the collected gas. A huge amount of energy is released and causes a million-fold increase in the brightness of the binary system within a few hours. After reaching maximum light within some days or weeks, it begins to fade as the hydrogen supply is exhausted and blown into space. The processed material is ejected at high speeds, up to ~1000 km/sec, and may later be visible as an expanding shell of emitting gas. Altogether, the tremendous flash of light involves the release of about 10 45 ergs in a few weeks, or about as much energy as our Sun produces in 10,000 years. Supernovae explosions that completely destroy heavier stars at the end of their lives are even more powerful. However, in contrast to supernovae and despite the colossal energy production, the progenitor of a nova is not destroyed during the explosion. Some time after an outburst, transfer of hydrogen from the companion star begins anew, and the process repeats itself with explosions taking place about once every 100,000 years. The nova star will finally die of "old age" when the cool companion has been completely cannibalized. Novae as Distance Indicators Due to their exceptional luminosity, novae can be used as powerful beacons that allow relative distances to different types of galaxies to be measured. The measurement is based on the assumption that novae of the same type are intrinsically equally bright, together with the physical law that states that an object's observed brightness decreases with the square of the distance to the observer. Thus, if we observe that a nova in a certain galaxy is one million times fainter than a nearby one, we know that it must be one thousand times more distant. In addition, observations of novae in other galaxies shed light on the history of formation of their stars. Despite their scientific importance, surveys of novae in distant, rich clusters of galaxies have not been very popular among astronomers. Major reasons are probably the inherent observational difficulties and the comparatively low rates of discovery. In the past, with 4-m class telescopes, tens of hours of monitoring of several galaxies have indeed been necessary to detect a few distant novae [3]. VLT observations of NGC 1316 in the Fornax Cluster ESO PR Photo 18a/00 ESO PR Photo 18a/00 [Preview - JPEG: 400 x 448 pix - 28k] [Normal - JPEG: 800 x 895 pix - 136k] [Full-Res - JPEG: 1941 x 2172 pix - 904k] Caption : Colour composite photo of the central area of NGC 1316 , a giant elliptical galaxy in the Fornax cluster of galaxies. Many dark dust clouds and lanes are visible. Some of the star-like objects in the field are globular clusters of stars that belong to the galaxy. It is based on CCD exposures, obtained with the 8.2-m VLT/ANTU telescope and the FORS-1 multi-mode instrument through B (blue), V (green-yellow) and I (here rendered as red) filters, respectively. The "pyramids" above and below the bright centre of the galaxy and the vertical lines at some of the brighter stars are caused by overexposure ("CCD bleeding"). The field measures 6.8 x 6.8 arcmin 2 , with 0.2 arcsec/pixel. The image quality of this composite is about 0.9 arcsec. North is up and East is left. NGC 1316 is a giant "dusty" galaxy ( PR Photo 18a/00 ), located in the Fornax cluster seen in the southern constellation of that name ("The Oven"). This galaxy is of special interest in connection with current attempts to establish an accurate distance scale in the Universe. In 1980 and 1981, NGC 1316 was the host of two supernovae of type Ia , a class of object that is widely used as a "cosmological standard candle" to determine the distance to very distant galaxies, cf. ESO PR 21/98. A precise measurement of the distance to NGC 1316 may therefore provide an independent calibration of the intrinsic brightness of these supernovae. The new observations were performed during 8 nights distributed over the period from January 9 to 19, 2000. They were made in service mode at the 8.2-m VLT/ANTU telescope with the FORS-1 multi-mode instrument, using a 2k x 2k CCD camera with 0.2 arcsec pixels and a field of 6.8 x 6.8 arcmin 2. The exposures lasted 20 min and were carried out with three optical filters (B, V and I). The most distant Novae observed so far ESO PR Photo 18b/00 ESO PR Photo 18b/00 [Preview - JPEG: 400 x 452 pix - 83k] [Normal - JPEG: 800 x 904 pix - 224k] ESO PR Photo 18c/00 ESO PR Photo 18c/00 [Preview - JPEG: 400 x 458 pix - 54k] [Normal - JPEG: 800 x 916 pix - 272k] Caption : Images of two of the novae in NGC 1316 that were discovered during the observational programme described in this Press Release. Both composites show the blue images (B-filter) obtained on January 9 (upper left), 12 (upper right), 15 (lower left) and 19 (lower right), 2000, respectively. The decline of the brightness of the objects is obvious. An analysis of the images that were obtained in blue light (B-filter) resulted in the detection of four novae. They were identified because of the typical change of brightness over the observation period, cf. PR Photos 18b-c/00 , as well as their measured colours. Although the time-consuming reduction of the data and the subsequent astrophysical interpretation is still in progress, the astronomers are already now very satisfied with the outcome. In particular, no less than four novae were detected in a single giant galaxy within only 11 days . This implies a rate of approximately 100 novae/year in NGC 1316, or about 3 times larger than the rate estimated for the Milky Way galaxy. This may (at least partly) be due to the fact that NGC 1316 is of a different type and contains more stars than our own galaxy. The novae in NGC 1316 are quite faint, of about magnitude 24 and decreasing towards 25-26 during the period of observation. This corresponds to nearly 100 million times fainter than what can be seen with the naked eye. The corresponding distance to NGC 1316 is found to be about 70 million light-years . Moreover, the discovery of four novae in one galaxy in the Fornax cluster was possible with only 3 hours of observing time per filter. This clearly shows that the new generation of 8-m class telescopes like the VLT, equipped with the new and large detectors, is able to greatly improve the efficiency of this type of astronomical investigations (by a factor of 10 or more) , as compared to previous searches with 4-m telescopes. The road is now open for exhaustive searches for novae in remote galaxies, with all the resulting benefits, also for the accurate determination of the extragalactic distance scale. Notes [1]: The group consists of Massimo Della Valle (Osservatorio Astrofisico di Arcetri, Firenze, Italy), Roberto Gilmozzi and Rodolfo Viezzer (both ESO). [2]: A graphical illustration of the nova phenomenon can be found at this website. [3]: For example, in 1987, Canadian astronomers Christopher Pritchet and Sidney van den Bergh , in an heroic tour de force with the 4-m Canada-France-Hawaii telescope, found 9 novae after 56 hours of monitoring of 3 giant elliptical galaxies in the Virgo cluster of galaxies.
Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F.
2018-06-01
All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.
Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations
NASA Astrophysics Data System (ADS)
Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason; Team 1: University of Vienna, InstituteQuantum Optics and Quantum Information; Team 2: UC San Diego Cosmology Group; Team 3: NASA/JPL/Caltech
2016-06-01
We report on an in progress "Cosmic Bell" experiment that will leverage cosmology to test quantum mechanics and Bell's inequality using astronomical observations. Different iterations of our experiment will send polarization-entangled photons through the open air to detectors ~1-100 kilometers apart, whose settings would be rapidly chosen using real-time telescopic observations of Milky Way stars, and eventually distant, causally disconnected, cosmological sources - such as pairs of quasars or patches of the cosmic microwave background - all while the entangled pair is still in flight. This would, for the first time, attempt to fully close the so-called "setting independence" or "free will" loophole in experimental tests of Bell's inequality, whereby an alternative theory could mimic the quantum predictions if the experimental settings choices shared even a small correlation with unknown, local, causal influences a mere few milliseconds prior to the experiment. A full Cosmic Bell test would push any such influence all the way back to the hot big bang, since the end of any period of inflation, 13.8 billion years ago, an improvement of 20 orders of magnitude compared to the best previous experiments. Redshift z > 3.65 quasars observed at optical wavelengths are the optimal candidate source pairs using present technology. Our experiment is partially funded by the NSF INSPIRE program, in collaboration with MIT, UC San Diego, Harvey Mudd College, NASA/JPL/Caltech, and the University of Vienna. Such an experiment has implications for our understanding of nature at the deepest level. By testing quantum mechanics in a regime never before explored, we would at the very least extend our confidence in quantum theory, while at the same time severely constraining large classes of alternative theories. If the experiment were to uncover discrepancies from the quantum predictions, there could be crucial implications for early-universe cosmology, the security of quantum encryption, and even new theoretical physics, including quantum gravity.
The cosmic evolution of dust-corrected metallicity in the neutral gas
NASA Astrophysics Data System (ADS)
De Cia, Annalisa; Ledoux, Cédric; Petitjean, Patrick; Savaglio, Sandra
2018-04-01
Interpreting abundances of damped Ly-α absorbers (DLAs) from absorption-line spectroscopy has typically been a challenge because of the presence of dust. Nevertheless, because DLAs trace distant gas-rich galaxies regardless of their luminosity, they provide an attractive way of measuring the evolution of the metallicity of the neutral gas with cosmic time. This has been done extensively so far, but typically not taking proper dust corrections into account. The aims of this paper are to: (i) provide a simplified way of calculating dust corrections, based on a single observed [X/Fe], (ii) assess the importance of dust corrections for DLA metallicities and their evolution, and (iii) investigate the cosmic evolution of iron for a large DLA sample. We have derived dust corrections based on the observed [Zn/Fe], [Si/Fe], or [S/Fe], and confirmed their robustness. We present dust-corrected metallicities in a scale of [Fe/H]tot for 236 DLAs over a broad range of z, and assess the extent of dust corrections for different metals at different metallicities. Dust corrections in DLAs are important even for Zn (typically of 0.1-0.2, and up to 0.5 dex), which is often neglected. Finally, we study the evolution of the dust-corrected metallicity with z. The DLA metallicities decrease with redshift, by a factor of 50-100 from today to 12.6 billion years ago (z = 5). When including dust corrections, the average DLA metallicities are 0.4-0.5 dex higher than without corrections. The upper envelope of the relation between metallicity and z reaches solar metallicity at z ≲ 0.5, although some systems can have solar metallicity already out to z 3. Based on observations carried out at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 065.P-0038, 065.O-0063, 066.A-0624, 067.A-0078, and 068.A-0600.
Galaxy growth in a massive halo in the first billion years of cosmic history
NASA Astrophysics Data System (ADS)
Marrone, D. P.; Spilker, J. S.; Hayward, C. C.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Bayliss, M. B.; Béthermin, M.; Brodwin, M.; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Chen, Chian-Chou; Crawford, T. M.; Cunningham, D. J. M.; De Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y. D.; Lacaille, K.; Litke, K. C.; Lower, S.; Ma, J.; Malkan, M.; Miller, T. B.; Morningstar, W. R.; Murphy, E. J.; Narayanan, D.; Phadke, K. A.; Rotermund, K. M.; Sreevani, J.; Stalder, B.; Stark, A. A.; Strandet, M. L.; Tang, M.; Weiß, A.
2018-01-01
According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density field. Observing these structures during their period of active growth and assembly—the first few hundred million years of the Universe—is challenging because it requires surveys that are sensitive enough to detect the distant galaxies that act as signposts for these structures and wide enough to capture the rarest objects. As a result, very few such objects have been detected so far. Here we report observations of a far-infrared-luminous object at redshift 6.900 (less than 800 million years after the Big Bang) that was discovered in a wide-field survey. High-resolution imaging shows it to be a pair of extremely massive star-forming galaxies. The larger is forming stars at a rate of 2,900 solar masses per year, contains 270 billion solar masses of gas and 2.5 billion solar masses of dust, and is more massive than any other known object at a redshift of more than 6. Its rapid star formation is probably triggered by its companion galaxy at a projected separation of 8 kiloparsecs. This merging companion hosts 35 billion solar masses of stars and has a star-formation rate of 540 solar masses per year, but has an order of magnitude less gas and dust than its neighbour and physical conditions akin to those observed in lower-metallicity galaxies in the nearby Universe. These objects suggest the presence of a dark-matter halo with a mass of more than 100 billion solar masses, making it among the rarest dark-matter haloes that should exist in the Universe at this epoch.
Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.
Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F
2018-06-01
All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.
Galaxy growth in a massive halo in the first billion years of cosmic history.
Marrone, D P; Spilker, J S; Hayward, C C; Vieira, J D; Aravena, M; Ashby, M L N; Bayliss, M B; Béthermin, M; Brodwin, M; Bothwell, M S; Carlstrom, J E; Chapman, S C; Chen, Chian-Chou; Crawford, T M; Cunningham, D J M; De Breuck, C; Fassnacht, C D; Gonzalez, A H; Greve, T R; Hezaveh, Y D; Lacaille, K; Litke, K C; Lower, S; Ma, J; Malkan, M; Miller, T B; Morningstar, W R; Murphy, E J; Narayanan, D; Phadke, K A; Rotermund, K M; Sreevani, J; Stalder, B; Stark, A A; Strandet, M L; Tang, M; Weiß, A
2018-01-04
According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density field. Observing these structures during their period of active growth and assembly-the first few hundred million years of the Universe-is challenging because it requires surveys that are sensitive enough to detect the distant galaxies that act as signposts for these structures and wide enough to capture the rarest objects. As a result, very few such objects have been detected so far. Here we report observations of a far-infrared-luminous object at redshift 6.900 (less than 800 million years after the Big Bang) that was discovered in a wide-field survey. High-resolution imaging shows it to be a pair of extremely massive star-forming galaxies. The larger is forming stars at a rate of 2,900 solar masses per year, contains 270 billion solar masses of gas and 2.5 billion solar masses of dust, and is more massive than any other known object at a redshift of more than 6. Its rapid star formation is probably triggered by its companion galaxy at a projected separation of 8 kiloparsecs. This merging companion hosts 35 billion solar masses of stars and has a star-formation rate of 540 solar masses per year, but has an order of magnitude less gas and dust than its neighbour and physical conditions akin to those observed in lower-metallicity galaxies in the nearby Universe. These objects suggest the presence of a dark-matter halo with a mass of more than 100 billion solar masses, making it among the rarest dark-matter haloes that should exist in the Universe at this epoch.
NASA Technical Reports Server (NTRS)
Maynard, N. C.; Burke, W. J.; Erickson, G. M.; Nakamura, M.; Mukai, T.; Kokubun, S.; Yamamoto, T.; Jacobsen, B.; Egeland, A.; Samson, J. C.;
1997-01-01
Geotail plasma and field measurements at -95 R(sub E) are compared with extensive ground-based, near-Earth, and geosynchronous measurements to study relationships between auroral activity and magnetotail dynamics during the expansion phases of two substorms. The studied intervals are representative of intermittent, moderate activity. The behavior of the aurora and the observed effects at Geotail for both events are harmonized by the concept of the activation of near-Earth X lines (NEXL) after substorm onsets, with subsequent discharges of one or more plasmoids down the magnetotail. The plasmoids must be viewed as three-dimensional structures which are spatially limited in the dawn-dusk direction. Also, reconnection at the NEXL must proceed at variable rates on closed magnetic field lines for significant times before beginning to reconnect lobe flux. This implies that the plasma sheet in the near-Earth magnetotail is relatively thick in comparison with an embedded current sheet and that both the NEXL and distant X line can be active simultaneously. Until reconnection at the NEXL engages lobe flux, the distant X line maintains control of the poleward auroral boundary. If the NEXL remains active after reaching the lobe, the auroral boundary can move poleward explosively. The dynamics of high-latitude aurora in the midnight region thus provides a means for monitoring these processes and indicating when significant lobe flux reconnects at the NEXL.
June 2017 Ancho Canyon RF Collects: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junor, William; Layne, John Preston; Goglio, Joshua Henry
2017-09-21
We report the results from the June 8, 2017, Ancho Canyon RF collection. While bright, electromagnetic signals were seen close to the firing point, there were no detections of signals from the explosively-fired fuse (EFF) at a collection point about 600m distant on the East Mesa. The East Mesa site was unable to collect data because the uninterruptible power supply (UPS) was exhausted by the time of the shot. We did see signals from the EFF at the Bunker 57 antennas, about 123m distant from the Point 88 firing point. The strength of these signals is consistent with our limitedmore » knowledge of the collection antenna performance and the use of the standard model to predict the electric field strength. From our knowledge of the geometry of the EFF loop and the current in the loop in this test, and from measurements at the Bunker 57 site, we predict that we would have seen signals of about 50mV at 3.67MHz in a 100 kHz channel on the Rohde & Schwarz HE010 antennas at the East Mesa location. The noise oor there is about 0.113mV (based on the March 2017 collects). Thus we would have had an SNR of 53 dB from the collect, had the data collection system been running.« less
On the cosmic ray spectrum from type II supernovae expanding in their red giant presupernova wind
NASA Astrophysics Data System (ADS)
Cardillo, Martina; Amato, Elena; Blasi, Pasquale
2015-09-01
While from the energetic point of view supernova remnants are viable sources of Galactic cosmic rays (CRs), the issue of whether they can accelerate protons up to a few PeV remains unsolved. Here we discuss particle acceleration at the forward shock of supernovae, and discuss the possibility that the current of escaping particles may excite a non-resonant instability that in turn leads to the formation of resonant modes that confine particles close to the shock, thereby increasing the maximum energy. This mechanism is at work throughout the expansion of the supernova explosion, from the ejecta dominated (ED) phase to the Sedov-Taylor (ST) phase. The transition from one stage to the other reflects in a break in the spectrum of injected particles. Because of their higher explosion rate, we focus our work on type II SNe expanding in the slow, dense wind, produced by the red super-giant progenitor stars. When the explosion occurs in such winds, the transition between the ED and the ST phase is likely to take place within a few tens of years. The highest energies are reached at even earlier times, when, however, a small fraction of the mass of ejecta has been processed. As a result, the spectrum of accelerated particles shows a break in the slope, at an energy that is the maximum energy (EM) achieved at the beginning of the ST phase. Above this characteristic energy, the spectrum becomes steeper but remains a power law rather than developing an exponential cutoff. An exponential cut is eventually present at much higher energies but it does not have a phenomenological relevance. We show that for parameters typical of type II supernovae, EM for protons can easily reach values in the PeV range, confirming that type II SNRs are the best candidate sources for CRs at the knee. From the point of view of implications of this scenario on the measured particle spectra, we have tried to fit KASCADE-Grande, ARGO -YBJ and YAC1-Tibet Array data with our model but we could not find any combination of the parameters that could explain all data sets. Indeed the recent measurement of the proton and helium spectra in the knee region, with the ARGO-YBJ and YAC1-Tibet Array, has made the situation very confused. These measurements suggest that the knee in the light component is at ∼ 650 TeV, appreciably below the knee in the overall spectrum. On one hand this finding would resolve the problem of reaching very high energies in supernovae, but on the other it would open a critical issue in the transition region between Galactic and extragalactic CRs.
TESTING FOR A LARGE LOCAL VOID BY INVESTIGATING THE NEAR-INFRARED GALAXY LUMINOSITY FUNCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenan, R. C.; Wang, W.-H.; Barger, A. J.
2012-08-01
Recent cosmological modeling efforts have shown that a local underdensity on scales of a few hundred Mpc (out to z {approx} 0.1) could produce the apparent acceleration of the expansion of the universe observed via Type Ia supernovae. Several studies of galaxy counts in the near-infrared (NIR) have found that the local universe appears underdense by {approx}25%-50% compared with regions a few hundred Mpc distant. Galaxy counts at low redshifts sample primarily L {approx} L* galaxies. Thus, if the local universe is underdense, then the normalization of the NIR galaxy luminosity function (LF) at z > 0.1 should be highermore » than that measured for z < 0.1. Here we present a highly complete (>90%) spectroscopic sample of 1436 galaxies selected in the H band (1.6 {mu}m) to study the normalization of the NIR LF at 0.1 < z < 0.3 and address the question of whether or not we reside in a large local underdensity. Our survey sample consists of all galaxies brighter than 18th magnitude in the H band drawn from six widely separated fields at high Galactic latitudes, which cover a total of {approx}2 deg{sup 2} on the sky. We find that for the combination of our six fields, the product {phi}*L* at 0.1 < z < 0.3 is {approx}30% higher than that measured at lower redshifts. While our statistical errors in this measurement are on the {approx}10% level, we find the systematics due to cosmic variance may be larger still. We investigate the effects of cosmic variance on our measurement using the COSMOS cone mock catalogs from the Millennium Simulation and recent empirical estimates of cosmic variance. We find that our survey is subject to systematic uncertainties due to cosmic variance at the 15% level (1{sigma}), representing an improvement by a factor of {approx}2 over previous studies in this redshift range. We conclude that observations cannot yet rule out the possibility that the local universe is underdense at z < 0.1. The fields studied in this work have a large amount of publicly available ancillary data and we make available the images and catalogs used here.« less
NASA Unveils First Images From Chandra X-Ray Observatory
NASA Astrophysics Data System (ADS)
1999-08-01
Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability to precisely measure these X-rays tells how much of each element is present. With this information, astronomers can investigate how the elements necessary for life are created and spread throughout the galaxy by exploding stars. "Chandra will help to confirm one of the most fascinating theories of modern science -- that we came from the stars," said Professor Robert Kirshner of Harvard University. "Its ability to make X-ray images of comparable quality to optical images will have an impact on virtually every area of astronomy." Chandra also imaged a distant and very luminous quasar -- a single star-like object -- sporting a powerful X-ray jet blasting into space. The quasar radiates with the power of 10 trillion suns, energy which scientists believe comes from a supermassive black hole at its center. Chandra's image, combined with radio telescope observations, should provide insight into the process by which supermassive black holes can produce such cosmic jets. "Chandra has allowed NASA to seize the opportunity to put the U.S. back in the lead of observational X-ray astronomy," said Dr. Edward Weiler, Associate Administrator of Space Science, NASA Headquarters, Washington, DC. "History teaches us that whenever you develop a telescope 10 times better than what came before, you will revolutionize astronomy. Chandra is poised to do just that." The Chandra X-ray observatory was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar. NASA's Marshall Space Flight Center manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Press: Fact Sheet The first Chandra images will be posted to the Internet at: http://chandra.nasa.gov and http://chandra.harvard.edu NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the message (not the subject line) users should type the words "subscribe press-release" (no quotes). The system will reply with a confirmation via E-mail of each subscription. A second automatic message will include additional information on the service. NASA releases also are available via CompuServe using the command GO NASA. To unsubscribe from this mailing list, address an E-mail message to domo@hq.nasa.gov, leave the subject blank, and type only "unsubscribe press-release" (no quotes) in the body of the message.
"Dark energy" in the Local Void
NASA Astrophysics Data System (ADS)
Villata, M.
2012-05-01
The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.
Inhomogeneous galactic chemical evolution of r-process elements
NASA Astrophysics Data System (ADS)
Wehmeyer, Benjamin
2018-01-01
Stars provide a fundamental contribution to the cosmic life cycle. Gas clouds form and collapse to stars, experiencing different evolutionary stages according to their properties like mass and metal content. Small stars like our Sun end their life as planetary nebulae, while more massive stars end their evolution with violent explosions like supernovae or hypernovae, leaving behind either a neutron star or a black hole. These compact objects may also merge, leading to a new ejection of material. Today the origin of the heaviest elements is still matter of debate. The relative contributions of the proposed sources of r-process elements (e.g., Supernovae, Neutron Star Mergers) in the early galaxy as well as in the Sun is one of the main uncertainties. We use the inhomogeneous chemical evolution tool “ICE” [1, 2] to study the role of some of the main parameters of the cosmic life cycle. With ICE's high resolution (≥ 20parsec/cell) runs, we are able to get converged simulations of the inhomogeneities in the early Galactic evolution stages, and of the observed scatter of r-process elements in metal-poor stars [3].[1] B. Wehmeyer, M. Pignatari, F.-K. Thielemann, 2015 MNRAS 452, 1970–1981[2] B. Wehmeyer, M. Pignatari, F.-K. Thielemann, 2016 AIPC 1743, 040009[3] I. Roederer et al., 2010 ApJ 724:975–993
The effect of cosmic-ray acceleration on supernova blast wave dynamics
NASA Astrophysics Data System (ADS)
Pais, M.; Pfrommer, C.; Ehlert, K.; Pakmor, R.
2018-05-01
Non-relativistic shocks accelerate ions to highly relativistic energies provided that the orientation of the magnetic field is closely aligned with the shock normal (quasi-parallel shock configuration). In contrast, quasi-perpendicular shocks do not efficiently accelerate ions. We model this obliquity-dependent acceleration process in a spherically expanding blast wave setup with the moving-mesh code AREPO for different magnetic field morphologies, ranging from homogeneous to turbulent configurations. A Sedov-Taylor explosion in a homogeneous magnetic field generates an oblate ellipsoidal shock surface due to the slower propagating blast wave in the direction of the magnetic field. This is because of the efficient cosmic ray (CR) production in the quasi-parallel polar cap regions, which softens the equation of state and increases the compressibility of the post-shock gas. We find that the solution remains self-similar because the ellipticity of the propagating blast wave stays constant in time. This enables us to derive an effective ratio of specific heats for a composite of thermal gas and CRs as a function of the maximum acceleration efficiency. We finally discuss the behavior of supernova remnants expanding into a turbulent magnetic field with varying coherence lengths. For a maximum CR acceleration efficiency of about 15 per cent at quasi-parallel shocks (as suggested by kinetic plasma simulations), we find an average efficiency of about 5 per cent, independent of the assumed magnetic coherence length.
NASA Astrophysics Data System (ADS)
Barrow, John D.; Davies, Paul C. W.; Harper, Charles L., Jr.
2004-06-01
This preview of the future of physics comprises contributions from recognized authorities inspired by the pioneering work of John Wheeler. Quantum theory represents a unifying theme within the book, as it relates to the topics of the nature of physical reality, cosmic inflation, the arrow of time, models of the universe, superstrings, quantum gravity and cosmology. Attempts to formulate a final unification theory of physics are also considered, along with the existence of hidden dimensions of space, hidden cosmic matter, and the strange world of quantum technology. John Archibald Wheeler is one of the most influential scientists of the twentieth century. His extraordinary career has spanned momentous advances in physics, from the birth of the nuclear age to the conception of the quantum computer. Famous for coining the term "black hole," Professor Wheeler helped lay the foundations for the rebirth of gravitation as a mainstream branch of science, triggering the explosive growth in astrophysics and cosmology that followed. His early contributions to physics include the S matrix, the theory of nuclear rotation (with Edward Teller), the theory of nuclear fission (with Niels Bohr), action-at-a-distance electrodynamics (with Richard Feynman), positrons as backward-in-time electrons, the universal Fermi interaction (with Jayme Tiomno), muonic atoms, and the collective model of the nucleus. His inimitable style of thinking, quirky wit, and love of the bizarre have inspired generations of physicists.
NASA Astrophysics Data System (ADS)
Tzanavaris, Panayiotis
Fluorescent Fe K emission from neutral matter in AGN spectracan arise in the accretion disk around the centralsupermassive black hole [SMBH] ("broad" line) and/or in distant matter ("narrow"line). If it is broad, it provides a unique windowto the strong gravity SMBH regime, including information on SMBH spin;if it is narrow, it probesthe distant reprocessor, likely a clumpy torus. We will use broadband X-ray data from four NASA X-ray missionsfor 45 nearby AGNs, and 1. Assess whether any known "broad" relativistic lines can be modeledas "narrow"instead, by means of self-consistent modeling of fluorescence,direct, and scattered continua; 2. Measure absorbing column densities both in and out of the line of sight; 3. Bootstrap measures of intrinsic bolometric AGN luminosity, with X-ray and optical data. This work will provide updated results on a) black hole spin, with implications on AGN jet power and accretion history; b) the census of highly-obscured (Compton thick) vs. Compton thin AGNs, with implications on models of the Cosmic X-ray Background; c) calibrations of Fe K line, X-ray intrinsic continuum, [OIII] and [OIV] luminosities as measures of intrinsc bolometric AGN luminosity, with implications on AGN feedback and galaxy evolution. Key in our approach is a physically based, self-consistent modeling of the narrow line, with finite column density in and out of the line of sight, and the latest relativistic modeling of the broad line.
Unbiased Large Spectroscopic Surveys of Galaxies Selected by SPICA Using Dust Bands
NASA Astrophysics Data System (ADS)
Kaneda, H.; Ishihara, D.; Oyabu, S.; Yamagishi, M.; Wada, T.; Armus, L.; Baes, M.; Charmandaris, V.; Czerny, B.; Efstathiou, A.; Fernández-Ontiveros, J. A.; Ferrara, A.; González-Alfonso, E.; Griffin, M.; Gruppioni, C.; Hatziminaoglou, E.; Imanishi, M.; Kohno, K.; Kwon, J.; Nakagawa, T.; Onaka, T.; Pozzi, F.; Scott, D.; Smith, J.-D. T.; Spinoglio, L.; Suzuki, T.; van der Tak, F.; Vaccari, M.; Vignali, C.; Wang, L.
2017-11-01
The mid-infrared range contains many spectral features associated with large molecules and dust grains such as polycyclic aromatic hydrocarbons and silicates. These are usually very strong compared to fine-structure gas lines, and thus valuable in studying the spectral properties of faint distant galaxies. In this paper, we evaluate the capability of low-resolution mid-infrared spectroscopic surveys of galaxies that could be performed by SPICA. The surveys are designed to address the question how star formation and black hole accretion activities evolved over cosmic time through spectral diagnostics of the physical conditions of the interstellar/circumnuclear media in galaxies. On the basis of results obtained with Herschel far-infrared photometric surveys of distant galaxies and Spitzer and AKARI near- to mid-infrared spectroscopic observations of nearby galaxies, we estimate the numbers of the galaxies at redshift z > 0.5, which are expected to be detected in the polycyclic aromatic hydrocarbon features or dust continuum by a wide (10 deg2) or deep (1 deg2) blind survey, both for a given observation time of 600 h. As by-products of the wide blind survey, we also expect to detect debris disks, through the mid-infrared excess above the photospheric emission of nearby main-sequence stars, and we estimate their number. We demonstrate that the SPICA mid-infrared surveys will efficiently provide us with unprecedentedly large spectral samples, which can be studied further in the far-infrared with SPICA.
Zhang, Zhi-Yu; Smith, M. W. L.; Xilouris, Emmanuel M.
2016-01-01
Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh–Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB. PMID:27429763
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halzen, Francis
Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. Its scientific missions include the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies more than two orders of magnitude beyond those produced by accelerator beams. In these lectures, we will focus on IceCube's most publicized mission, the search for the sources of cosmic rays. We will conclude with an overview of the firstmore » results obtained with the partially completed detector.These lectures are based on a review paper co-authored with Spencer Klein (arXiv:astroph.HE/1007.1247) to be published in Review of Scientific Instruments.« less
Fermi Gamma-Ray Space Telescope - Science Highlights for the First Two Years on Orbit
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2011-01-01
Fermi science objectives cover probably everything in high energy astrophysics: How do super massive black holes in Active Galactic Nuclei create powerful jets of material moving at nearly light speed? What are the jets made of? What are the mechanisms that produce Gamma-Ray Burst (GRB) explosions? What is the energy budget? How does the Sun generate high-energy gamma-rays in flares? How do the pulsars operate? How many of them are around and how different are they? What are the unidentified gamma-ray sources found by EGRET? What is the origin of the cosmic rays that pervade the Galaxy? What is the nature of dark matter? Fermi LAT successfully operates on the orbit for more than 2 years and demonstrates excellent performance, which is continuously monitored and calibrated. LAT collected> 100 billion on-orbit triggers
Dark matter and cosmological nucleosynthesis
NASA Technical Reports Server (NTRS)
Schramm, D. N.
1986-01-01
Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.
Tracing the growth of Milky Way-like galaxies
2013-11-15
This composite image shows examples of galaxies similar to our Milky Way at various stages of construction over a time span of 11 billion years. The galaxies are arranged according to time. Those on the left reside nearby; those at far right existed when the cosmos was about 2 billion years old. The bluish glow from young stars dominates the color of the galaxies on the right. The galaxies at left are redder from the glow of older stellar populations. Astronomers found the distant galaxies in two Hubble Space Telescope surveys: 3D-HST and the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, or CANDELS. The observations were made in visible and near-infrared light by Hubble's Wide Field Camera 3 and Advanced Camera for Surveys. The nearby galaxies were taken from the Sloan Digital Sky Survey. This image traces Milky Way-like galaxies over most of cosmic history, revealing how they evolve over time. Hubble's sharp vision resolved the galaxies' shapes, showing that their bulges and disks grew simultaneously. Credit: NASA, ESA, P. van Dokkum (Yale University), S. Patel (Leiden University), and the 3D-HST Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Cosmic Bell Test: Measurement Settings from Milky Way Stars
Handsteiner, Johannes; Friedman, Andrew S.; Rauch, Dominik; ...
2017-02-07
Bell’s theorem states that some predictions of quantum mechanics cannot be reproduced by a local-realist theory. That conflict is expressed by Bell’s inequality, which is usually derived under the assumption that there are no statistical correlations between the choices of measurement settings and anything else that can causally affect the measurement outcomes. In previous experiments, this “freedom of choice” was addressed by ensuring that selection of measurement settings via conventional “quantum random number generators” was spacelike separated from the entangled particle creation. This, however, left open the possibility that an unknown cause affected both the setting choices and measurement outcomesmore » as recently as mere microseconds before each experimental trial. Here in this paper we report on a new experimental test of Bell’s inequality that, for the first time, uses distant astronomical sources as “cosmic setting generators.” In our tests with polarization-entangled photons, measurement settings were chosen using real-time observations of Milky Way stars while simultaneously ensuring locality. Assuming fair sampling for all detected photons, and that each stellar photon’s color was set at emission, we observe statistically significant ≳7.31σ and ≳11.93σ violations of Bell’s inequality with estimated p values of ≲1.8 × 10 -13 and ≲4.0 × 10 -33, respectively, thereby pushing back by ~600 years the most recent time by which any local-realist influences could have engineered the observed Bell violation.« less
The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field.
Walter, Fabian; Decarli, Roberto; Carilli, Chris; Bertoldi, Frank; Cox, Pierre; Da Cunha, Elisabete; Daddi, Emanuele; Dickinson, Mark; Downes, Dennis; Elbaz, David; Ellis, Richard; Hodge, Jacqueline; Neri, Roberto; Riechers, Dominik A; Weiss, Axel; Bell, Eric; Dannerbauer, Helmut; Krips, Melanie; Krumholz, Mark; Lentati, Lindley; Maiolino, Roberto; Menten, Karl; Rix, Hans-Walter; Robertson, Brant; Spinrad, Hyron; Stark, Dan P; Stern, Daniel
2012-06-13
The Hubble Deep Field provides one of the deepest multiwavelength views of the distant Universe and has led to the detection of thousands of galaxies seen throughout cosmic time. An early map of the Hubble Deep Field at a wavelength of 850 micrometres, which is sensitive to dust emission powered by star formation, revealed the brightest source in the field, dubbed HDF 850.1 (ref. 2). For more than a decade, and despite significant efforts, no counterpart was found at shorter wavelengths, and it was not possible to determine its redshift, size or mass. Here we report a redshift of z = 5.183 for HDF 850.1, from a millimetre-wave molecular line scan. This places HDF 850.1 in a galaxy overdensity at z ≈ 5.2, corresponding to a cosmic age of only 1.1 billion years after the Big Bang. This redshift is significantly higher than earlier estimates and higher than those of most of the hundreds of submillimetre-bright galaxies identified so far. The source has a star-formation rate of 850 solar masses per year and is spatially resolved on scales of 5 kiloparsecs, with an implied dynamical mass of about 1.3 × 10(11) solar masses, a significant fraction of which is present in the form of molecular gas. Despite our accurate determination of redshift and position, a counterpart emitting starlight remains elusive.
Dark Matter under the Microscope: Constraining Compact Dark Matter with Caustic Crossing Events
NASA Astrophysics Data System (ADS)
Diego, Jose M.; Kaiser, Nick; Broadhurst, Tom; Kelly, Patrick L.; Rodney, Steve; Morishita, Takahiro; Oguri, Masamune; Ross, Timothy W.; Zitrin, Adi; Jauzac, Mathilde; Richard, Johan; Williams, Liliya; Vega-Ferrero, Jesus; Frye, Brenda; Filippenko, Alexei V.
2018-04-01
A galaxy cluster acts as a cosmic telescope over background galaxies but also as a cosmic microscope magnifying the imperfections of the lens. The diverging magnification of lensing caustics enhances the microlensing effect of substructure present within the lensing mass. Fine-scale structure can be accessed as a moving background source brightens and disappears when crossing these caustics. The recent discovery of a distant lensed star near the Einstein radius of the galaxy cluster MACSJ1149.5+2223 allows a rare opportunity to reach subsolar-mass microlensing through a supercritical column of cluster matter. Here we compare these observations with high-resolution ray-tracing simulations that include stellar microlensing set by the observed intracluster starlight and also primordial black holes that may be responsible for the recently observed LIGO events. We explore different scenarios with microlenses from the intracluster medium and black holes, including primordial ones, and examine strategies to exploit these unique alignments. We find that the best constraints on the fraction of compact dark matter (DM) in the small-mass regime can be obtained in regions of the cluster where the intracluster medium plays a negligible role. This new lensing phenomenon should be widespread and can be detected within modest-redshift lensed galaxies so that the luminosity distance is not prohibitive for detecting individual magnified stars. High-cadence Hubble Space Telescope monitoring of several such optimal arcs will be rewarded by an unprecedented mass spectrum of compact objects that can contribute to uncovering the nature of DM.
A roadmap for the detection and characterization of other Earths.
Fridlund, Malcolm; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Selsis, Franck; Beichman, Charles; Danchi, William; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J
2010-01-01
The European Space Agency and other space agencies such as NASA recognize that the question with regard to life beyond Earth in general, and the associated issue of the existence and study of exoplanets in particular, is of paramount importance for the 21(st) century. The new Cosmic Vision science plan, Cosmic Vision 2015-2025, which is built around four major themes, has as its first theme: "What are the conditions for planet formation and the emergence of life?" This main theme is addressed through further questions: 1) How do gas and dust give rise to stars and planets? 2) How will the search for and study of exoplanets eventually lead to the detection of life outside Earth (biomarkers)? 3) How did life in the Solar System arise and evolve? Although ESA has busied itself with these issues since the beginning of the Darwin study in 1996, it has become abundantly clear that, as these topics have evolved, only a very large effort, addressed from the ground and from space with the utilization of different instruments and space missions, can provide the empirical results required for a complete understanding. The good news is that the problems can be addressed and solved within a not-too-distant future. In this short essay, we present the present status of a roadmap related to projects that are related to the key long-term goal of understanding and characterizing exoplanets, in particular Earth-like planets.
Infrared Study of Supernova Ejecta and Dust
NASA Astrophysics Data System (ADS)
Meikle, W. Peter; Farrah, Duncan; Fesen, Robert; Fransson, Claes; Gerardy, Christopher; Hoeflich, Peter; Kotak, Rubina; Kozma, Cecilia; Lucy, Leon; Lundqvist, Peter; Mattila, Seppo; Pozzo, Monica; Sollerman, Jesper; van Dyk, Schuyler; Wheeler, Craig
2004-09-01
We propose to use IRAC and IRS to gain powerful new insights on the nature of supernova (SN) explosions and test the hypothesis that SNe are major sources of cosmic dust. One of our two aims is to carry out robust tests of SN explosion models through the measurement of fine-structure (FS) lines and, where possible, their evolution. The important molecule, SiO, will also be measured. By comparison with our spectral synthesis models, we shall test the explosion model-sensitive predictions of abundances and their distribution. Most of the FS lines arise from ground state transitions and so, in comparison with optical or near-IR spectra, are much less sensitive to temperature and density uncertainties. However, the FS lines are only accessible in the MIR and the most useful abundance measurements can only be achieved at late times when the ejecta are optically thin. Consequently, ground-based MIR observations at the necessary late epochs are difficult if not impossible for nearly all SNe. Observation with the Spitzer Space Telescope is therefore essential. Our second goal is to test the proposal that core-collapse SNe (CCSNe) are, or have been, the major source of dust in the universe. Direct evidence in support of this is still very sparse. Warm dust emits most strongly in the MIR region, and so is the ideal wavelength range for following the condensation of dust within the ejecta or, in the case of Type IIn SNe, in a cool, dense shell formed at the ejecta/progenitor wind interface. Alternatively, such radiation may arise from IR light echo emission from dust in the progenitor wind. Discrimination between condensing dust and pre-existing circumstellar dust can be achieved by measurement of its MIR spectral energy distribution and evolution. Such measurements can also provide dust mass estimates and give clues about the nature of the grain material. To achieve our two goals, we propose to use IRAC and IRS to observe up to 17 SNe at epochs ranging from about 100 days to 2 years post-explosion.
NASA Astrophysics Data System (ADS)
Krehl, Peter O. K.
2011-07-01
In the period of the Cold War (1945-1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.
NASA Astrophysics Data System (ADS)
2011-03-01
The discovery of a pattern of X-ray "stripes" in the remains of an exploded star may provide the first direct evidence that a cosmic event can accelerate particles to energies a hundred times higher than achieved by the most powerful particle accelerator on Earth. This result comes from a very long observation of the Tycho supernova remnant with NASA's Chandra X-ray Observatory. It could explain how some of the extremely energetic particles bombarding the Earth, called cosmic rays, are produced. "We've seen lots of intriguing structures in supernova remnants, but we've never seen stripes before," said Kristoffer Eriksen, a postdoctoral researcher at Rutgers University who led the study. "This made us think very hard about what's happening in the blast wave of this powerful explosion." This latest study from Chandra provides support for a theory about how magnetic fields can be dramatically amplified in such blast waves. In this theory, the magnetic fields become highly tangled and the motions of the particles very turbulent near the expanding supernova shock wave at the front edge of the supernova remnant. High-energy charged particles can bounce back and forth across the shock wave repeatedly, gaining energy with each crossing. Theoretical models of the motion of the most energetic particles -- which are mostly protons -- are predicted to leave a messy network of holes and dense walls corresponding to weak and strong regions of magnetic fields, respectively. The X-ray stripes discovered by the Chandra researchers are thought to be regions where the turbulence is greater and the magnetic fields more tangled than surrounding areas, and may be the walls predicted by the theory. Electrons become trapped in these regions and emit X-rays as they spiral around the magnetic field lines. However, the regular and almost periodic pattern of the X-ray stripes was not predicted by the theory. "It was a big surprise to find such a neatly arranged set of stripes," said co-author Jack Hughes, professor of physics and astronomy at Rutgers. "We were not expecting so much order to appear in so much chaos. It could mean that the theory is incomplete, or that there's something else we don't understand." Assuming that the spacing between the X-ray stripes corresponds to the radius of the spiraling motion of the highest energy protons in the supernova remnant, the spacing corresponds to energies about 100 times higher than reached in the Large Hadron Collider. These energies equal the highest energies of cosmic rays thought to be produced in our Galaxy. Because cosmic rays are composed of charged particles, like protons and electrons, their direction of motion changes when they encounter magnetic fields throughout the galaxy. So, the origin of individual cosmic rays detected on Earth cannot be determined. Supernova remnants have long been considered a good candidate for producing the most energetic cosmic rays in our Galaxy. The protons can reach energies that are hundreds of times higher than the highest energy electrons, but since they do not radiate efficiently like the electrons, direct evidence for the acceleration of cosmic ray protons in supernova remnants has been lacking. These results also support the prediction that magnetic fields in interstellar space are greatly amplified in supernova remnants, but the difference between the observed and predicted structures means that other interpretations cannot be ruled out. "We were excited to discover these stripes because they might allow us to directly track, for the first time, the origin of the most energetic particles produced in our galaxy," said Eriksen. "But, we're not claiming victory yet." The Tycho supernova remnant is named for the famous Danish astronomer Tycho Brahe, who reported observing the supernova in 1572. Scientists think the explosion occurred when a white dwarf star grew in mass and exceeded its weight limit, forming a so-called Type Ia supernova. The Tycho remnant is located in the Milky Way, about 13,000 light years from Earth. "Supernova remnants are our best cosmic laboratories for understanding how nature accelerates the highest energy cosmic rays," said Roger Blandford of Stanford University, a noted expert in this field who was not involved with these findings. "These careful measurements provide a very strong clue as to what actually happens at these giant shock fronts." These results were published in the February 20th, 2011 issue of The Astrophysical Journal Letters. The other co-authors are Carles Badenes from Tel-Aviv University and the Weizmann Institute of Science in Israel, Robert Fesen from Dartmouth College, NH, Parviz Ghavamian from Space Telescope Science Institute, Baltimore, MD, David Moffett, from Furman University, Greenville, SC, Paul Plucinsky from Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, Cara Rakowski from the Naval Research Laboratory, Washington, DC, Estela M. Reynoso from the Institute of Astronomy and Space Physics and University of Buenos Aires, Argentina and Patrick Slane from CfA. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.si.edu and http://chandra.nasa.gov
Ion Chemistry in Atmospheric and Astrophysical Plasmas
NASA Technical Reports Server (NTRS)
Dalgarno, A.; Fox, J. L.
1994-01-01
There are many differences and also remarkable similarities between the ion chemistry and physics of planetary ionospheres and the ion chemistry and physics of astronomical environments beyond the solar system. In the early Universe, an expanded cooling gas of hydrogen and helium was embedded in the cosmic background radiation field and ionized by it. As the Universe cooled by adiabatic expansion, recombination occurred and molecular formation was driven by catalytic reactions involving the relict electrons and protons. Similar chemical processes are effective in the ionized zones of gaseous and planetary nebulae and in stellar winds where the ionization is due to radiation from the central stars, in the envelopes of supernovae where the ionization is initiated by the deposition of gamma-rays, in dissociative shocks where the ionization arises from electron impacts in a hot gas and in quasar broad-line region clouds where the quasar is responsible for the ionization. At high altitudes in the atmospheres of the Jovian planets, the main constituents are hydrogen and helium and the ion chemistry and physics is determined by the same processes, the source of the ionization being solar ultraviolet radiation and cosmic rays. After the collapse of the first distinct astronomical entities to emerge from the uniform flow, heavy elements were created by nuclear burning in the cores of the collapsed objects and distributed throughout the Universe by winds and explosions. The chemistry and physics became more complicated. Over 90 distinct molecular species have been identified in interstellar clouds where they are ionized globally by cosmic ray impacts and locally by radiation and shocks associated with star formation and evolution. Complex molecules have also been found in circumstellar shells of evolved stars. At intermediate and low altitudes in the Jovian atmospheres, the ion chemistry is complicated by the increasing abundance of heavy elements such as carbon, and an extensive array of complex molecules has been predicted. Reactions involving heavy elements dominate the structure of the ionspheres of the terrestrial planets and the satellites Titan and Triton.
NASA Astrophysics Data System (ADS)
Grabski, V.; Lemus, V.; Nuñez-Cadena, R.; Aguilar, S.; Menchaca-Rocha, A.; Fucugauchi, J. U.
2013-05-01
Study of volcanic inner density distributions using cosmic muons is an innovative method, which is still in stage of development[1]. The method can be used to determine the average density along the muon track, as well as the density distribution of any volume by measuring the attenuation of cosmic muon flux in it[2]. In this study we present an analysis of using the muon radiography, integrating geophysical data to determine the density distribution of the Popocatepetl volcano. Popocatepelt is a large andesitic stratovolcano built in the Trans-Mexican volcanic arc, which has been active over the past years. The recent activity includes emplacement of a lava dome, with vulcanian explosions and frequent scoria and ash emissions. The study is directed to detect any variations in the dome and magmatic conduit system in some interval of time in the volume of Popocatepetl volcano lava dome. The study forms part of a long-term project of volcanic hazard monitoring that includes the Popocatepetl and Colima volcanoes[3]. The volcanoes are being studied by conventional geophysical techniques, including aerogeophysical surveys directed to determine the internal structure and characterize source characteristics and mechanism. The detector design mostly depends on the volume size to be investigated as well as the image-taking frequency to detect dynamic density variations. In this study we present a detector prototype design and suggestions on data taking, transferring and analyzing systems. We also present the approximate cost estimation of the suggested detector and discussion on a proposal about the creation of a national network for a volcanic alarm system. References [1] eg.H. Tanaka, et al., Nucl. Instr. and Meth. A 507 (2003) 657. [2] V. Grabski et al, NIM A 585 (2008) 128-135. [3] G. Conte, J. Urrutia-Fucugauchi, et al., International Geology Review, Vol. 46, 2004, p. 210-225.
Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets
NASA Astrophysics Data System (ADS)
Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.
2016-07-01
Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.
Caldera collapse in the Galápagos Islands, 1968
Simkin, T.; Howard, K.A.
1970-01-01
The summit caldera of Isla Fernandina, a large, uninhabited basaltic shield volcano, was further enlarged by 1 to 2 km3 in June 1968. A small quake and large vapor cloud on 11 June were followed 4 hours later by a remarkable volcanic ash cloud and, after another hour, by a major explosion recorded at infrasonic stations throughout the hemisphere. Seismic activity increased to a peak on 19 June, when more than 200 events per day were recorded by a seismograph 140 km away. Several hundred quakes were in the magnitude range 4.0 to 5.4 mb, but few such events were recorded after 23 June. Unusual lightning accompanied the major cloud, and, during the evening of 11 June, distant observers reported red glow and flashes from the area. Fine ash fell that night and much of the next day to distances at least 350 km from the volcano.
Electron beam directed energy device and methods of using same
Retsky, Michael W.
2007-10-16
A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.
Accuracy of assessing the level of impulse sound from distant sources.
Wszołek, Tadeusz; Kłaczyński, Maciej
2007-01-01
Impulse sound events are characterised by ultra high pressures and low frequencies. Lower frequency sounds are generally less attenuated over a given distance in the atmosphere than higher frequencies. Thus, impulse sounds can be heard over greater distances and will be more affected by the environment. To calculate a long-term average immission level it is necessary to apply weighting factors like the probability of the occurrence of each weather condition during the relevant time period. This means that when measuring impulse noise at a long distance it is necessary to follow environmental parameters in many points along the way sound travels and also to have a database of sound transfer functions in the long term. The paper analyses the uncertainty of immission measurement results of impulse sound from cladding and destroying explosive materials. The influence of environmental conditions on the way sound travels is the focus of this paper.
A stochastic inventory management model for a dual sourcing supply chain with disruptions
NASA Astrophysics Data System (ADS)
Iakovou, Eleftherios; Vlachos, Dimitrios; Xanthopoulos, Anastasios
2010-03-01
As companies continue to globalise their operations and outsource significant portion of their value chain activities, they often end up relying heavily on order replenishments from distant suppliers. The explosion in long-distance sourcing is exposing supply chains and shareholder value at ever increasing operational and disruption risks. It is well established, both in academia and in real-world business environments, that resource flexibility is an effective method for hedging against supply chain disruption risks. In this contextual framework, we propose a single period stochastic inventory decision-making model that could be employed for capturing the trade-off between inventory policies and disruption risks for an unreliable dual sourcing supply network for both the capacitated and uncapacitated cases. Through the developed model, we obtain some important managerial insights and evaluate the merit of contingency strategies in managing uncertain supply chains.
UCLA IGPP Space Plasma Simulation Group
NASA Technical Reports Server (NTRS)
1998-01-01
During the past 10 years the UCLA IGPP Space Plasma Simulation Group has pursued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: the solar wind, the low- and high-latitude magnetospheric boundary, the near-Earth and distant magnetotail, and the auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations.
NASA Astrophysics Data System (ADS)
Rison, W.; Krehbiel, P.; Thomas, R.; Edens, H.; Aulich, G.; O'Connor, N.; Kieft, S.; McNutt, S.; Tytgat, G.; Clark, E.
2006-12-01
Following the initial eruptions of Mt. Augustine on January 11-17 2006, we quickly prepared and deployed a first contingent of two portable mapping stations. This was our first use of the newly-developed portable stations, and we were able to deploy them in time to observe the second set of explosive eruptions during the night of January~27-28. The stations were located 17~km apart on the west coast of the Kenai Peninsula, 100~km distant from Augustine on the far western side of Cook Inlet. The stations comprised a minimal network capable of determining the azimuthal direction of VHF radiation sources from electrical discharges, and thus the transverse location of the electrical activity relative to the volcano. The time series data from the southern, Homer station for the initial, energetic explosion at 8:31 pm on January~27 revealed the occurrence of spectacular lightning, which from the two-station data drifted southward from Augustine with time, in the same direction as the plume from the eruption. About 300 distinct lightning discharges occurred over an 11-minute time interval, beginning 2-3~min after the main explosion. The lightning quickly became increasingly complex with time and developed large horizontal extents. One of the final discharges of the sequence lasted 600~ms and had a transverse extent of 15~km, extending to 22~km south of Augustine's summit. In addition to this more usual form of lightning, continuous bursts of radio frequency radiation occurred during the explosion itself, indicating that the tephra was highly charged upon being ejected from the volcano. A completely unplanned and initially missed but one of several fortuitous aspects of the observations was that the Homer station functioned as a 'sea-surface interferometer' whose interference pattern can be used to determine the altitude variation with time for some discharges. The station's VHF antenna was located on the edge of a bluff 210~m above Cook Inlet and received both the direct and reflected signals from the water surface. A clear pattern of interference fringes was observed for the strongest lightning event during the explosive phase and has shown that it was an upward-triggered discharge that propagated upward from Augustine's summit and into the downwind plume. The radiation sources were characteristic of negative polarity breakdown into inferred positive charge in the plume. None of the lightning activity from the January~27-28 eruptions was observed visually due to stormy weather conditions.
The AD775 cosmic event revisited: the Sun is to blame
NASA Astrophysics Data System (ADS)
Usoskin, I. G.; Kromer, B.; Ludlow, F.; Beer, J.; Friedrich, M.; Kovaltsov, G. A.; Solanki, S. K.; Wacker, L.
2013-04-01
Aims: Miyake et al. (2012, Nature, 486, 240, henceforth M12) recently reported, based on 14C data, an extreme cosmic event in about AD775. Using a simple model, M12 claimed that the event was too strong to be caused by a solar flare within the standard theory. This implied a new paradigm of either an impossibly strong solar flare or a very strong cosmic ray event of unknown origin that occurred around AD775. However, as we show, the strength of the event was significantly overestimated by M12. Several subsequent works have attempted to find a possible exotic source for such an event, including a giant cometary impact upon the Sun or a gamma-ray burst, but they are all based on incorrect estimates by M12. We revisit this event with analysis of new datasets and consistent theoretical modelling. Methods: We verified the experimental result for the AD775 cosmic ray event using independent datasets including 10Be series and newly measured 14C annual data. We surveyed available historical chronicles for astronomical observations for the period around the AD770s to identify potential sightings of aurorae borealis and supernovae. We interpreted the 14C measurements using an appropriate carbon cycle model. Results: We show that: (1) The reality of the AD775 event is confirmed by new measurements of 14C in German oak; (2) by using an inappropriate carbon cycle model, M12 strongly overestimated the event's strength; (3) the revised magnitude of the event (the global 14C production Q = (1.1 - 1.5) × 108 atoms/cm2) is consistent with different independent datasets (14C, 10Be, 36Cl) and can be associated with a strong, but not inexplicably strong, solar energetic particle event (or a sequence of events), and provides the first definite evidence for an event of this magnitude (the fluence >30 MeV was about 4.5 × 1010 cm-2) in multiple datasets; (4) this interpretation is in agreement with increased auroral activity identified in historical chronicles. Conclusions: The results point to the likely solar origin of the event, which is now identified as the greatest solar event on a multi-millennial time scale, placing a strong observational constraint on the theory of explosive energy releases on the Sun and cool stars.
Some aspects of the scientific significance of high energy gamma ray astrophysics
NASA Technical Reports Server (NTRS)
Fichtel, Carl E.
1991-01-01
The attraction of high energy gamma-ray astronomy lies in this radiation relating directly to those processes in astrophysical situations which deviate most from thermo-dynamic equilibrium. Some examples of these phenomena which are known to or expected to emit gamma rays are cosmic rays as they interact in intergalactic space, the high energy particles in the magnetic fields of neutron stars, the death of a black hole, the explosion and residual of a supernova, lumps of Weakly Interacting Massive Particles, energetic solar particles interacting near the sun, and very high energy particles in the extreme conditions associated with active galaxies. Although the intensities are known to be low as seen near the earth, a partially compensating characteristic is that the very penetrating nature of high energy gamma rays increases the probability that they can escape from their origin and reach the solar system.
NASA Astrophysics Data System (ADS)
Hui, Chung-Yue
2013-09-01
Here we review the effort of Fermi Asian Network (FAN) in exploring the supernova remnants (SNRs) with state-of-art high energy observatories, including Fermi Gamma-ray Space Telescope and Chandra X-ray Observatory, in the period of 2011- 2012. Utilizing the data from Fermi LAT, we have discovered the GeV emission at the position of the Galactic SNR Kes 17 which provides evidence for the hadronic acceleration. Our study also sheds light on the propagation of cosmic rays from their acceleration site to the intersteller medium. We have also launched an identification campaign of SNR candidates in the Milky Way, in which a new SNR G308.3-1.4 have been uncovered with our Chandra observation. Apart from the remnant, we have also discovered an associated compact object at its center. The multiwavelength properties of this X-ray source suggest it can possibly be the compact binary that survived a supernova explosion.
Cross-scale: multi-scale coupling in space plasmas
NASA Astrophysics Data System (ADS)
Schwartz, Steven J.; Horbury, Timothy; Owen, Christopher; Baumjohann, Wolfgang; Nakamura, Rumi; Canu, Patrick; Roux, Alain; Sahraoui, Fouad; Louarn, Philippe; Sauvaud, Jean-André; Pinçon, Jean-Louis; Vaivads, Andris; Marcucci, Maria Federica; Anastasiadis, Anastasios; Fujimoto, Masaki; Escoubet, Philippe; Taylor, Matt; Eckersley, Steven; Allouis, Elie; Perkinson, Marie-Claire
2009-03-01
Most of the visible universe is in the highly ionised plasma state, and most of that plasma is collision-free. Three physical phenomena are responsible for nearly all of the processes that accelerate particles, transport material and energy, and mediate flows in systems as diverse as radio galaxy jets and supernovae explosions through to solar flares and planetary magnetospheres. These processes in turn result from the coupling amongst phenomena at macroscopic fluid scales, smaller ion scales, and down to electron scales. Cross-Scale, in concert with its sister mission SCOPE (to be provided by the Japan Aerospace Exploration Agency—JAXA), is dedicated to quantifying that nonlinear, time-varying coupling via the simultaneous in-situ observations of space plasmas performed by a fleet of 12 spacecraft in near-Earth orbit. Cross-Scale has been selected for the Assessment Phase of Cosmic Vision by the European Space Agency.
Cross-Scale: multi-scale coupling in space plasmas
NASA Astrophysics Data System (ADS)
Vaivads, A.; Taylor, M. G.
2009-12-01
Most of the visible universe is in the highly ionised plasma state, and most of that plasma is collision-free. Three physical phenomena are responsible for nearly all of the processes that accelerate particles, transport material and energy, and mediate flows in systems as diverse as radio galaxy jets and supernovae explosions through to solar flares and planetary magnetospheres. These processes in turn result from the coupling amongst phenomena at macroscopic fluid scales, smaller ion scales, and down to electron scales. Cross-Scale, in concert with its sister mission SCOPE (to be provided by the Japan Aerospace Exploration Agency—JAXA in collaboration with the Canadian Space Agency), is dedicated to quantifying that nonlinear, time-varying coupling via the simultaneous in-situ observations of space plasmas performed by a fleet of 12 spacecraft in near-Earth orbit. Cross-Scale is currently in the Assessment Phase of ESA's Cosmic Vision.
Neutrino Emission from Supernovae
NASA Astrophysics Data System (ADS)
Janka, Hans-Thomas
Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.
Cosmic Chandlery with thermonuclear supernovae
Calder, Alan C.; Krueger, Brendan K.; Jackson, A. P.; ...
2017-05-30
Thermonuclear (Type Ia) supernovae are bright stellar explosions, the light curves of which can be calibrated to allow for use as "standard candles" for measuring cosmological distances. Contemporary research investigates how the brightness of an event may be influenced by properties of the progenitor system that follow from properties of the host galaxy such as composition and age. The goals are to better understand systematic effects and to assess the intrinsic scatter in the brightness, thereby reducing uncertainties in cosmological studies. We present the results from ensembles of simulations in the single-degenerate paradigm addressing the influence of age and metallicitymore » on the brightness of an event and compare our results to observed variations of brightness that correlate with properties of the host galaxy. As a result, we also present results from "hybrid" progenitor models that incorporate recent advances in stellar evolution.« less
Simulation of High Energy Emission from Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Ziaeepour, Houri
Gamma-Ray Bursts (GRBs) are the must violent explosions after the Big-Bang. Their high energy radiation can potentially carry information about the most inner part of the accretion disk of a collapsing star, ionize the surrounding material in the host galaxy, and thereby influence the process of star formation specially in the dense environment at high redshifts. They can also have a significant contribution in the formation of high energy cosmic-rays. Here we present new simulations of GRBs according to a dynamically consistent relativistic shock model for the prompt emission, with or without the presence of an magnetic field. They show that the properties of observed bursts are well reproduced by this model up to GeV energies. They help to better understand GRB phenomenon, and provide an insight into characteristics of relativistic jets and particle acceleration which cannot yet be simulated with enough precision from first principles.
NASA Astrophysics Data System (ADS)
Seward, Frederick D.; Charles, Philip A.
1995-11-01
Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale.
This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.NASA Astrophysics Data System (ADS)
Vieregg, Abigail
Through high energy neutrino astrophysics, we explore the structure and evolution of the universe in a unique way and learn about the physics inside of astrophysical sources that drives the acceleration of the highest energy particles. Neutrinos travel virtually unimpeded through the universe, making them unique messenger particles for cosmic sources and carrying information about very distant sources that would otherwise be unavailable. The highest energy neutrinos (E>10^{18} eV), created as a by-product of the interaction of the highest energy cosmic rays with the cosmic microwave background, are an important tool for determining the origin of the highest energy cosmic rays and still await discovery. Balloon-borne and ground-based experiments are poised to discover these ultra-high energy (UHE) cosmogenic neutrinos by looking for radio emission from two different types of neutrino interactions: particle cascades induced by neutrinos in glacial ice, and extensive air showers in the atmosphere induced by the charged-particle by-product of tau neutrinos interacting in the earth. These impulsive radio detectors are also sensitive to radio emission from extensive air showers induced directly by UHE cosmic rays. Balloon-borne experiments are especially well-suited for discovering the highest energy neutrinos, and are the only way to probe the high energy cutoff of the sources themselves to reveal the astrophysics that drives the central engines inside the most energetic accelerators in the universe. Balloon platforms offer the chance to monitor extremely large volumes of ice and atmosphere, but with a higher energy threshold compared to ground-based observatories, since the neutrino interaction happens farther from the detector. This tradeoff means that the sensitivity of balloon-borne experiments, such as the Antarctic Impulsive Transient Antenna (ANITA) or the ExaVolt Antenna, is optimized for discovery of the highest energy neutrinos. We are developing an interferometric phased array trigger for these impulsive radio detectors, a new type of trigger that will improve sensitivity substantially and expedite the discovery of the highest energy particles in our universe. We have developed an 8- channel interferometric trigger board for ground-based applications that will be deployed in December 2017 with the ground-based Askaryan Radio Array (ARA) experiment at the South Pole. Preliminary Monte Carlo simulations indicate that the cosmogenic neutrino event rate will go up by a factor of 3 with the new trigger. The true power of the interferometric trigger is in scaling to large numbers of channels, and the discovery space that is only available from a balloon platform at the highest energies is extremely appealing. We will build on and extend the NASA investment in the ANITA Long Duration Balloon (LDB) mission and the many other complementary particle astrophysics LDB missions by developing the electronics required to bring a large-scale radio interferometric trigger to a balloon platform, extending the scientific reach of any future LDB or Super Pressure Balloon (SPB) mission for radio detection of the highest energy cosmic particles. We will develop an interferometric trigger system that is scalable to O(100) channels and suitable for use on a balloon platform. Under this proposal, we will: 1) Design and fabricate interferometric trigger hardware for balloon-borne cosmic particle detectors that is scalable to large numbers of channels O(100) by reducing the power consumption per channel, increasing the number of channels per board, and developing high-speed communication capability between boards. 2) Perform a trade study and inform design decisions for future balloon missions by further developing our Monte Carlo simulation and adapting it to balloon geometries.
NASA Astrophysics Data System (ADS)
2014-12-01
The conference Swift: 10 years of discovery was held in Roma at La Sapienza University on Dec. 2-5 2014 to celebrate 10 years of Swift successes. Thanks to a large attendance and a lively program, it provided the opportunity to review recent advances of our knowledge of the high-energy transient Universe both from the observational and theoretical sides. When Swift was launched on November 20, 2004, its prime objective was to chase Gamma-Ray Bursts and deepen our knowledge of these cosmic explosions. And so it did, unveiling the secrets of long and short GRBs. However, its multi-wavelength instrumentation and fast scheduling capabilities made it the most versatile mission ever flown. Besides GRBs, Swift has observed, and contributed to our understanding of, an impressive variety of targets including AGNs, supernovae, pulsars, microquasars, novae, variable stars, comets, and much more. Swift is continuously discovering rare and surprising events distributed over a wide range of redshifts, out to the most distant transient objects in the Universe. Such a trove of discoveries has been addressed during the conference with sessions dedicated to each class of events. Indeed, the conference in Rome was a spectacular celebration of the Swift 10th anniversary. It included sessions on all types of transient and steady sources. Top scientists from around the world gave invited and contributed talks. There was a large poster session, sumptuous lunches, news interviews and a glorious banquet with officials attending from INAF and ASI. All the presentations, as well as several conference pictures, can be found in the conference website (http://www.brera.inaf.it/Swift10/Welcome.html). These proceedings have been collected owing to the efforts of Paolo D’Avanzo who has followed each paper from submission to final acceptance. Our warmest thanks to Paolo for all his work. The Conference has been made possible by the support from La Sapienza University as well as from the ARAP association. We acknowledge valuable inputs from the conference SOC and from the Swift User Committee Chair Dieter Hartmann. We also thank the LOC for their unrelenting efforts to solve all practical details. We would like to acknowledge financial support from INAF, ASI and NASA/GSFC. Patrizia Caraveo Neil Gehrels Gianpiero Tagliaferri
Gamma-ray blazars within the first 2 billion years
Ackermann, M.; Ajello, M.; Baldini, L.; ...
2017-02-27
Here, the detection of high-redshift (more » $$z\\,\\gt 3$$) blazars enables the study of the evolution of the most luminous relativistic jets over cosmic time. More importantly, high-redshift blazars tend to host massive black holes and can be used to constrain the space density of heavy black holes in the early universe. Here, we report the first detection with the Fermi-Large Area Telescope of five γ-ray-emitting blazars beyond z = 3.1, more distant than any blazars previously detected in γ-rays. Among these five objects, NVSS J151002+570243 is now the most distant known γ-ray-emitting blazar at z = 4.31. These objects have steeply falling γ-ray spectral energy distributions (SEDs), and those that have been observed in X-rays have a very hard X-ray spectrum, both typical of powerful blazars. Their Compton dominance (ratio of the inverse Compton to synchrotron peak luminosities) is also very large ($$\\gt 20$$). All of these properties place these objects among the most extreme members of the blazar population. Their optical spectra and the modeling of their optical-UV SEDs confirm that these objects harbor massive black holes ($${M}_{\\mathrm{BH}}\\sim {10}^{8-10}\\,{M}_{\\odot }$$). We find that, at $$z\\approx 4$$, the space density of $$\\gt {10}^{9}\\,{M}_{\\odot }$$ black holes hosted in radio-loud and radio-quiet active galactic nuclei are similar, implying that radio-loudness may play a key role in rapid black hole growth in the early universe.« less
A small-scale dynamo in feedback-dominated galaxies - III. Cosmological simulations
NASA Astrophysics Data System (ADS)
Rieder, Michael; Teyssier, Romain
2017-12-01
Magnetic fields are widely observed in the Universe in virtually all astrophysical objects, from individual stars to entire galaxies, even in the intergalactic medium, but their specific genesis has long been debated. Due to the development of more realistic models of galaxy formation, viable scenarios are emerging to explain cosmic magnetism, thanks to both deeper observations and more efficient and accurate computer simulations. We present here a new cosmological high-resolution zoom-in magnetohydrodynamic (MHD) simulation, using the adaptive mesh refinement technique, of a dwarf galaxy with an initially weak and uniform magnetic seed field that is amplified by a small-scale dynamo (SSD) driven by supernova-induced turbulence. As first structures form from the gravitational collapse of small density fluctuations, the frozen-in magnetic field separates from the cosmic expansion and grows through compression. In a second step, star formation sets in and establishes a strong galactic fountain, self-regulated by supernova explosions. Inside the galaxy, the interstellar medium becomes highly turbulent, dominated by strong supersonic shocks, as demonstrated by the spectral analysis of the gas kinetic energy. In this turbulent environment, the magnetic field is quickly amplified via a SSD process and is finally carried out into the circumgalactic medium by a galactic wind. This realistic cosmological simulation explains how initially weak magnetic seed fields can be amplified quickly in early, feedback-dominated galaxies, and predicts, as a consequence of the SSD process, that high-redshift magnetic fields are likely to be dominated by their small-scale components.
GRI: The Gamma-Ray Imager mission
NASA Astrophysics Data System (ADS)
Knödlseder, J.; Gri Consortium
Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe While at lower wavebands the observed emission is generally dominated by thermal processes the gamma-ray sky provides us with a view on the non-thermal Universe Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood and nuclear reactions are synthesizing the basic constituents of our world Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community and has put Europe in the lead in the field of gamma-ray astronomy INTEGRAL provides an unprecedented survey of the soft gamma-ray sky revealing hundreds of sources new classes of objects extraordinary views of antimatter annihilation in our Galaxy and fingerprints of recent nucleosynthesis processes While INTEGRAL has provided the global overview over the soft gamma-ray sky there is a growing need to perform deeper more focused investigations of gamma-ray sources In soft X-rays a comparable step was taken going from the Einstein satellite to the XMM Newton observatory Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission providing major improvements compared to past missions regarding sensitivity and angular resolution Such a
ANTARES and KM3NeT programs for the supernova neutrino detection
NASA Astrophysics Data System (ADS)
Kulikovskiy, Vladimir
2017-02-01
The currently working ANTARES neutrino telescope has capabilities to detect neutrinos produced in astrophysical transient sources. Neutrino alerts are regularly generated to trigger multi-wavelength observatories. Potential sources include gamma-ray bursts, core-collapse supernovae, and flaring active galactic nuclei. In particular, the neutrino detection together with the multi-wavelength observations may reveal hidden jets in the supernova explosions. Supernovae remnants are currently the most promising acceleration sites of the cosmic rays in our Galaxy. The neutrino emission is expected during the cosmic ray interaction with the surrounding matter. The neutrino telescopes in the Northern hemisphere have excellent visibility to the most of the galactic supernovae remnants. Recent results on the search for point-sources with the ANTARES detector and the prospects for the future KM3NeT detector are presented. Although ANTARES and KM3NeT detectors are mainly designed for high energy neutrino detection, the MeV neutrino signal from the supernova can be identified as a simultaneous increase of the counting rate of the optical modules in the detector. The noise from the optical background due to 40K decay in the sea water and the bioluminescence can be significantly reduced by using nanosecond coincidences between the nearby placed photomultipliers. This technique has been tested with the ANTARES storeys, each one consisting of three 10-inch photomultipliers, and it is further optimized for the KM3NeT telescope where the directional optical modules containing 31 3-inch photomultipliers provide very promising expectations.
Constraining high-energy neutrino emission from choked jets in stripped-envelope supernovae
NASA Astrophysics Data System (ADS)
Senno, Nicholas; Murase, Kohta; Mészáros, Peter
2018-01-01
There are indications that γ-ray dark objects such as supernovae (SNe) with choked jets, and the cores of active galactic nuclei may contribute to the diffuse flux of astrophysical neutrinos measured by the IceCube observatory. In particular, stripped-envelope SNe have received much attention since they are capable of producing relativistic jets and could explain the diversity in observations of collapsar explosions (e.g., gamma-ray bursts (GRBs), low-luminosity GRBs, and Type Ibc SNe). We use an unbinned maximum likelihood method to search for spatial and temporal coincidences between Type Ibc core-collapse SNe, which may harbor a choked jet, and muon neutrinos from a sample of IceCube up-going track-like events measured from May 2011–May 2012. In this stacking analysis, we find no significant deviation from a background-only hypothesis using one year of data, and are able to place upper limits on the total amount of isotropic equivalent energy that choked jet core-collapse SNe deposit in cosmic rays Script Ecr and the fraction of core-collapse SNe which have a jet pointed towards Earth fjet. This analysis can be extended with yet to be made public IceCube data, and the increased amount of optically detected core-collapse SNe discovered by wide field-of-view surveys such as the Palomar Transient Factory and All-Sky Automated Survey for Supernovae. The choked jet SNe/high-energy cosmic neutrino connection can be more tightly constrained in the near future.
Hubble Sees a Bizarre Cosmic Rarity
2013-12-06
This new Hubble image shows a peculiar galaxy known as NGC 660, located around 45 million light-years away from us. NGC 660 is classified as a "polar ring galaxy," meaning that it has a belt of gas and stars around its center that it ripped from a near neighbor during a clash about one billion years ago.The first polar ring galaxy was observed in 1978 and only around a dozen more have been discovered since then, making them something of a cosmic rarity. Unfortunately, NGC 660’s polar ring cannot be seen in this image, but the image has plenty of other features that make it of interest to astronomers – its central bulge is strangely off-kilter and, perhaps more intriguingly, it is thought to harbor exceptionally large amounts of dark matter. In addition, in late 2012 astronomers observed a massive outburst emanating from NGC 660 that was around ten times as bright as a supernova explosion. This burst was thought to be caused by a massive jet shooting out of the supermassive black hole at the center of the galaxy. Credit: Hubble/NASA/European Space Agency NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Share, G. H.; Murphy, R. J.; Lin, R. P.
2007-05-01
Positrons are created in nuclear interactions that produce β +-unstable nuclei and pi+ mesons. Satellites remotely observe positron production when they annihilate with electrons yielding the characteristic line at 511 keV. Radiation detectors such as the germanium diodes on the Ramaty High-Energy Solar Spectrocopic Imager (RHESSI) observe this line from positrons by nuclei activated in the spacecraft by proton interactions during transit through the Earth's radiation belts and from cosmic radiation. This forms an intense background for solar and astrophysical observations. RHESSI and other satellites have observed positron annihilation in over 50 solar flares. These measurements provide information on the temperature, density, and ionization state of solar atmosphere where the positrons annihilate. The measurements suggest that up to a few kg of positrons are produced in these flares. Detectable annihilation-line radiation is also emitted from the Earth's atmosphere in interactions of cosmic rays and solar energetic particles. An extended annihilation-line source has also been detected within about 10 degrees of the center of the Milky Way that is attributed to positrons released in radioactive decays of nuclei with long half-lives produced in supernovae, novae, and other stellar explosions. From 1980 to 1988 NASA's Solar Maximum Mission satellite also detected belts of positrons emitted by nuclear reactors onboard KOSMOS satellites and trapped temporarily in the Earth's magnetic field. This work was supported by NASA Supporting Research & Technology grants.
"Special Case" Stellar Blast Teaching Astronomers New Lessons About Cosmic Explosions
NASA Astrophysics Data System (ADS)
2006-07-01
A powerful thermonuclear explosion on a dense white-dwarf star last February has given astronomers their best look yet at the early stages of such explosions, called novae, and also is giving them tantalizing new clues about the workings of bigger explosions, called supernovae, that are used to measure the Universe. RS Ophiuchi Expansion RS Ophiuchi Expansion CREDIT: Rupen, Mioduszewski & Sokoloski, NRAO/AUI/NSF (Click on image for full-sized image and detailed caption) Using the National Science Foundation's Very Long Baseline Array (VLBA) and other telescopes, "We have seen structure in the blast earlier than in any other stellar explosion," said Tim O'Brien of the University of Manchester's Jodrell Bank Observatory in the U.K. "We see evidence that the explosion may be ejecting material in jets, contrary to theoretical models that assumed a spherical shell of ejected material," O'Brien added. The explosion occurred in a star system called RS Ophiuchi, in the constellation Ophiuchus. RS Ophiuchi consists of a dense white dwarf star with a red giant companion whose prolific stellar wind dumps material onto the surface of the white dwarf. When enough of this material has accumulated, theorists say, a gigantic thermonuclear explosion, similar to a hydrogen bomb but much larger, occurs. Systems such as RS Ophiuchi may eventually produce a vastly more powerful explosion -- a supernova -- when the white dwarf accumulates enough mass to cause it to collapse and explode violently. Because such supernova explosions (called Type 1a supernovae by astronomers) all are triggered as the white dwarf reaches the same mass, they are thought to be identical in their intrinsic brightness. This makes them extremely valuable as "standard candles" for measuring distances in the Universe. "We think the white dwarf in RS Ophiuchi is about as massive as a white dwarf can get, and so is close to the point when it will become a supernova," said Jennifer Sokoloski, of the Harvard- Smithsonian Center for Astrophysics. "If astronomers use such supernovae to measure the Universe, it's important to fully understand how these systems evolve prior to the explosion," she added. RS Ophiuchi is a "recurrent" nova that experienced such blasts in 1898, 1933, 1958, 1967, and 1985 prior to this year's event. Sokoloski also pointed out that RS Ophiuchi is "a very special type of system," in which the nova explosions occur inside a gaseous nebula created by the stellar wind coming from the red giant companion to the white dwarf. "This means that we can track the outward-moving blast wave from the explosion by observing X-rays produced as the blast plows through this nebula," said Sokoloski, who led a team using the Rossi X-Ray Timing Explorer (RXTE) satellite to do so. "One natural way to produce what we observe is with an explosion that was not spherical," she added. Another surprise came when the radio waves coming from RS Ophiuchi indicated that a strong magnetic field is present in the material ejected by the explosion. "This is the first case we've seen that showed signs of such a magnetic field in a recurrent nova," said Michael Rupen who, with Amy Mioduszewski, both of the National Radio Astronomy Observatory, and Sokoloski, did another study of the system using the VLBA. Rupen pointed out the importance of observing the object with both X-ray and radio telescopes. "What we could infer from the X-ray data, we could image with the radio telescopes," he said. All the researchers agree that their studies show that the explosion is more complex than scientists previously thought such blasts to be. "It's a jet-like explosion, probably shaped by the geometry of the binary-star system at the center," said O'Brien. Rupen added that RS Ophiuchi showed the "earliest detection ever of such a jet. In fact, we could actually tell -- within a couple of days -- when the jet turned on." The new information is valuable for understanding not just nova explosions but other stellar blasts, the scientists believe. "The physics is analogous to the physics of supernova explosions, so what we're learning from this object can be applied to supernovae and possibly to stellar explosions in general," Sokoloski said. In addition, she said, "in the early days of this explosion, we saw changes in the blast wave that it would take hundreds of years to see in a supernova explosion." The teams led by O'Brien and Sokoloski reported their findings in the July 20 edition of the scientific journal Nature. Rupen and Mioduszewski are submitting their results to the Astrophysical Journal Letters. Working with O'Brien were Mike Bode of Liverpool John Moores University in the U.K., Richard Porcas of the Max Planck Institute for Radioastronomy in Germany, Tom Muxlow of Jodrell Bank Observatory, Stewart Eyres of the University of Central Lancashire in the U.K., Rob Beswick, Simon Garrington and Richard Davis, all of Jodrell Bank, and Nye Evans of Keele University in the U.K. Working with Sokoloski were Gerardo Luna of the Harvard Smithsonian Center for Astrophysics, Koji Mukai of NASA's Goddard Space Flight Center and Scott Kenyon of the Harvard-Smithsonian Center for Astrophysics. In addition to the VLBA, O'Brien's group used the NSF's Very Large Array (VLA), the Multi-Element Radio-Linked Interferometer Network (MERLIN) in the U.K., and the European VLBI Network (EVN). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Origins Space Telescope: Cosmology and Reionization
NASA Astrophysics Data System (ADS)
Vieira, Joaquin D.; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.
Origins Space Telescope: Cosmology and Reionization
NASA Astrophysics Data System (ADS)
Vieira, Joaquin Daniel; Origins Space Telescope
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.
Star Formation-Driven Winds in the Early Universe
NASA Astrophysics Data System (ADS)
Peek, Matthew; Lundgren, Britt; Brammer, Gabriel
2018-01-01
Measuring the extent of star formation-driven winds from galaxies in the early universe is crucial for understanding of how galaxies evolve over cosmic time. Using WFC3/IR grism data from the Hubble Space Telescope (HST), we have measured the star formation rates and star formation rate surface densities of several hundred galaxies at redshift (z) = 1, when the universe was roughly half its present age. The galaxies we examine are also probed by background quasars, whose spectra provide information about the extent of metal-enriched gas in their halos. We use a computational pipeline to measure the density of the star formation in each galaxy and correlate these measurements with detections of Mg II absorption in nearby quasar spectra from the Sloan Digital Sky Survey. Our preliminary results support a model in which galaxies with high SFR surface densities drive metal-enriched gas out of the disk and into these galaxies’ extended halos, where that gas is detected in the spectra of more distant quasars.
Enhanced Fluoride Over-Coated Al Mirrors for FUV Astronomy
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; DelHoyo, Javier; Rice, Steve; Threat, Felix
2014-01-01
Astronomical observations in the Far Ultraviolet (FUV) spectral region are some of the more challenging due to the very distant and faint objects that are typically searched for in cosmic origin studies such as origin of large scale structure, the formation, evolution, and age of galaxies and the origin of stellar and planetary systems. These challenges are driving the need to improve the performance of optical coatings over a wide spectral range that would increase reflectance in mirrors and reduced absorption in dielectric filters used in optical telescope for FUV observations. This paper will present recent advances in reflectance performance for Al+MgF2 mirrors optimized for Lyman-alpha wavelength by performing the deposition of the MgF2 overcoat at elevated substrate temperatures. We will also present optical characterization of little studied rare-earth fluorides such as GdF3 and LuF3 that exhibit low-absorption over a wide wavelength range and could therefore be used as high refractive index alternatives for dielectric coatings at FUV wavelengths.
Recent Progress on 2012 SAT for UVOIR Coatings
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Del Hoyo, Javier G.; Rice, Stephen H.
2014-01-01
Astronomical observations in the Far Ultraviolet (FUV) spectral region are some of the more challenging due to the very distant and faint objects that are typically searched for in cosmic origin studies such as origin of large scale structure, the formation, evolution, and age of galaxies and the origin of stellar and planetary systems. These challenges are driving the need to improve the performance of optical coatings over a wide spectral range that would increase reflectance in mirrors and reduced absorption in dielectric filters used in optical telescope for FUV observations. This paper will present recent advances in reflectance performance for Al+MgF2 mirrors optimized for Lyman-alpha wavelength by performing the deposition of the MgF2 overcoat at elevated substrate temperatures. We will also present optical characterization of little studied rare-earth fluorides such as GdF3 and LuF3 that exhibit low-absorption over a wide wavelength range and could therefore be used as high refractive index alternatives fordielectric coatings at FUV wavelengths.
Organism and artifact: Proper functions in Paley organisms.
Holm, Sune
2013-12-01
In this paper I assess the explanatory powers of theories of function in the context of products that may result from synthetic biology. The aim is not to develop a new theory of functions, but to assess existing theories of function in relation to a new kind of biological and artifactual entity that might be produced in the not-too-distant future by means of synthetic biology. The paper thus investigates how to conceive of the functional nature of living systems that are not the result of evolution by natural selection, or instantly generated by cosmic coincidence, but which are products of intelligent design. The paper argues that the aetiological theory of proper functions in organisms and artifacts is inadequate as an account of proper functions in such 'Paley organisms' and defends an alternative organisational approach. The paper ends by considering the implications of the discussion of biological function for questions about the interests and moral status of non-sentient organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Henry, Richard C.
1994-01-01
Attachments to this final report include 2 papers connected with the Voyager work: 'Voyager Observations of Dust Scattering Near the Coalsack Nebula' and 'Search for the Intergalactic Medium'. An appendix of 12 one-page write-ups prepared in connection with another program, UVISI, is also included. The one-page write-ups are: (1) Sky survey of UV point sources to 600 times fainter than previous (TD-1) survey; (2) Diffuse galactic light: starlight scattered from dust at high galactic latitude; (3) Optical properties of interstellar grains; (4) Fluorescence of molecular hydrogen in the interstellar medium; (5) Line emission from hot interstellar medium and/or hot halo of galaxy; (6) Integrated light of distant galaxies in the ultraviolet; (7) Intergalactic far-ultraviolet radiation field; (8) Radiation from recombining intergalactic medium; (9) Radiation from re-heating of intergalactic medium following recombination; (10) Radiation from radiative decay of dark matter candidates (neutrino, etc.); (11) Reflectivity of the asteroids in the Ultraviolet; and (12) Zodiacal light.
A large neutral fraction of cosmic hydrogen a billion years after the Big Bang.
Wyithe, J Stuart B; Loeb, Abraham
2004-02-26
The fraction of ionized hydrogen left over from the Big Bang provides evidence for the time of formation of the first stars and quasar black holes in the early Universe; such objects provide the high-energy photons necessary to ionize hydrogen. Spectra of the two most distant known quasars show nearly complete absorption of photons with wavelengths shorter than the Lyman alpha transition of neutral hydrogen, indicating that hydrogen in the intergalactic medium (IGM) had not been completely ionized at a redshift of z approximately 6.3, about one billion years after the Big Bang. Here we show that the IGM surrounding these quasars had a neutral hydrogen fraction of tens of per cent before the quasar activity started, much higher than the previous lower limits of approximately 0.1 per cent. Our results, when combined with the recent inference of a large cumulative optical depth to electron scattering after cosmological recombination therefore suggest the presence of a second peak in the mean ionization history of the Universe.
NASA Astrophysics Data System (ADS)
Irwin, Mike J.; Lewis, Geraint F.
The origin and evolution of galaxies like the Milky Way and M31 remain among the key questions in astrophysics. The galaxies we see today in and around the Local Group are representatives of the general field population of the Universe and have been evolving for the majority of cosmic time. As our nearest neighbour systems they can be studied in far more detail than their distant counterparts and hence provide our best hope for understanding star formation and prototypical galaxy evolution over the lifetime of the Universe [K. Freeman, J. Bland-Hawthorn in Annu. Rev. Astron. Astrophys. 40, 487 (2002)]. Significant observational progress has been made, but we are still a long way from understanding galaxy genesis. To unravel this formative epoch, detailed large area multi-object spectroscopy of spatial, kinematic and chemical structures on 8 m-class telescopes are required, to provide the link between local near-field cosmology and predictions from the high-redshift Universe.
The Swift GRB Host Galaxy Legacy Survey
NASA Astrophysics Data System (ADS)
Perley, Daniel
2015-08-01
I will describe the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population and its redshift evolution from z=0 to z=7. Using unbiased selection criteria we have designated a subset of 119 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, Gemini, VLT, and Magellan to obtain complementary optical/NIR photometry and spectroscopy to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass distributions and their evolution with redshift, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to serve as tools for measuring and studying cosmic star-formation in the distant universe.
Reconciling the local void with the CMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadathur, Seshadri; Sarkar, Subir
2011-03-15
In the standard cosmological model, the dimming of distant Type Ia supernovae is explained by invoking the existence of repulsive ''dark energy'' which is causing the Hubble expansion to accelerate. However, this may be an artifact of interpreting the data in an (oversimplified) homogeneous model universe. In the simplest inhomogeneous model which fits the SNe Ia Hubble diagram without dark energy, we are located close to the center of a void modeled by a Lemaitre-Tolman-Bondi metric. It has been claimed that such models cannot fit the cosmic microwave background (CMB) and other cosmological data. This is, however, based on themore » assumption of a scale-free spectrum for the primordial density perturbation. An alternative physically motivated form for the spectrum enables a good fit to both SNe Ia (Constitution/Union2) and CMB (WMAP 7-yr) data, and to the locally measured Hubble parameter. Constraints from baryon acoustic oscillations and primordial nucleosynthesis are also satisfied.« less
Are some BL Lacs artefacts of gravitational lensing?
Ostriker, J P; Vietri, M
1990-03-01
WE suggested in 1985 that a significant fraction of BL Lacertae objects, a kind of lineless quasar, seen in nearby galaxies are in fact images, gravitationally lensed and substantially amplified by stars in the nearby galaxy, of background objects, optically violent variable (OVV) quasars at redshifts z > 1 (ref. 1). This hypothesis was made on the basis of certain general similarities between BL Lacs and O Ws, but for two recently observed BL Lacs(2,3) a strong case can be made that the accompanying elliptical galaxy is a foreground object. In addition, we argue that the distribution of BL Lac redshifts is hard to understand without gravitational lensing, unless we happen to be at a very local maximum of the spatial cosmic distribution of BL Lacs. Our analysis also indicates that the galaxies whose stars are likely to act as microlenses will be found in two peaks, one nearby, with redshift 0.05-0.10, and the other near the distant quasar.
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert
2008-01-01
The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.
Compton Reflection in AGN with Simbol-X
NASA Astrophysics Data System (ADS)
Beckmann, V.; Courvoisier, T. J.-L.; Gehrels, N.; Lubiński, P.; Malzac, J.; Petrucci, P. O.; Shrader, C. R.; Soldi, S.
2009-05-01
AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies >20 keV.
Astronomers Set a New Galaxy Distance Record
2015-05-06
This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Credits: NASA, ESA, P. Oesch (Yale U.)
Hunting Mirages in the Southern Sky
NASA Astrophysics Data System (ADS)
1996-02-01
Another Gravitational Lens Candidate Identified at ESO One more cosmic mirage has been found with the ESO 3.5-metre New Technology Telescope (NTT). It consists of two images of the same quasar, seen very close to each other in the southern constellation of Hydra (The Water-Snake). Ever since the exciting discovery of the first cosmic mirage was made seventeen years ago, astronomers have been asking how common this strange phenomenon really is. In most cases we see more than one image of the same celestial object. This effect is due to the bending and focusing of light from distant objects when it passes through the strong gravitational fields of massive galaxies on its way to us. However, from here on the opinions of the specialists diverge. While some believe that this is a very rare event, others disagree and some have even been suggesting that a substantial fraction of the very faint images seen on long exposure photos obtained with large astronomical telescopes may in fact be caused by this effect. If so, they would not be `real'. Is it thus conceivable that the distant Universe is just a great mirror cabinet? There is only one way to answer this important question - more and better observations must be obtained. It is in the course of these investigations that the new discovery was made by a group of three European astronomers [1]. Cosmic mirages are caused by gravitational lenses The physical principle behind a cosmic mirage is known since 1916 as a consequence of Einstein's General Relativity Theory. The gravitational field of a massive object curves the local geometry of the Universe, so light rays passing close to the object are also curved (in the same way as a `straight line' on the surface of the Earth is necessarily curved because of the curvature of the Earth's surface). This effect was first observed by astronomers in 1919 during a total solar eclipse. Accurate positional measurements of stars seen in the dark sky near the eclipsed Sun indicated an apparent displacement in the direction opposite to the Sun, about as much as predicted by the theory. The effect was obviously due to the gravitational attraction of the stellar photons when they passed near the Sun on their way to us. This was a direct confirmation of a new phenomenon and represented a milestone in physics. In the 1930's, astronomer Fritz Zwicky (1898 - 1974), of Swiss nationality and working at the Mount Wilson Observatory in California, realised that the same effect may also happen far out in space where galaxies and large galaxy clusters may be sufficiently compact and massive to bend the light from even more distant objects. However, it was only five decades later, in 1979, that his ideas were observationally confirmed when the first example of a cosmic mirage was discovered. In this connection, it is of particular interest, that this gravitational lensing effect may not only result in double or multiple images of the same object, but also that the intensities of these images increase significantly, just as it is the case with an ordinary optical lens. Distant galaxies, galaxy clusters, etc. may thereby act as natural telescopes which allow us to observe objects that would otherwise have been too faint to be detected with currently available astronomical telescopes. How to find cosmic mirages Several thousand quasars have so far been discovered. Most astronomers believe that they represent the incredibly bright and energetic centres of distant galaxies. Their distances can be estimated by measuring the velocities with which they recede from us. From their apparent brightness measured at the telescope, it is then easy to calculate their `intrinsic luminosity', that is the amount of energy they actually radiate. Some quasars emit more energy than others and the most active ones are known as Highly Luminous Quasars (HLQ's) . Most of these may indeed be exceedingly luminous, but it is quite likely that some appear to be so luminous, because their images have been subjected to amplification by an intervening gravitational lens. It is for this reason that the search for gravitational lenses, recognisable as such by the presence of multiple images of the quasar, is particularly promising among objects of the HLQ-type. This is also the background for the astronomers' success with their long-term ESO Key-Programme `Gravitational Lensing'. It has the declared goal to determine what fraction of Highly Luminous Quasars are actually subject to the lensing effect. The answer to this specific question will not only help us to understand how frequent gravitational lensing really is; of even more importance is its direct relation to the amount of visible and dark matter in the Universe and also to its geometry. The more common cosmic mirages are found to be, the higher is the number of massive objects in the distant Universe and the larger is their combined mass and hence their contribution to the mean density of the Universe. A new double quasar with very small angular separation The Highly Luminous Quasar known under the name J03.13 is the seventh extragalactic gravitational lens candidate to be discovered at La Silla [2] since the beginning of this Key-Programme in 1989. The new object has apparent visual magnitude V = 17.2 (i.e., it is 30,000 times fainter than what can be seen with the unaided eye) and a measured redshift of 2.545, i.e. the distance is approximately 10 billion light-years [3]. The fact that the image of J03.13 is double was first established with the SUSI camera at the ESO 3.5-metre New Technology Telescope (NTT) in February 1994. This Press Release is accompanied by Press Photo 06/96 (click here to get photo [GIF,75k] and caption ) which, thanks to the good angular resolution of the NTT and the large dynamical range of SUSI clearly demonstrates this. The separation of the two components (the `decomposition') was made with an advanced image processing computer programme and the astronomers have described the detailed results in a scientific paper that has just appeared in the professional European journal Astronomy & Astrophysics (Volume 305, pages L9-L12 (1996)). The two images of J03.13 are separated by just 0.84 arcsecond. They have the same colour and the difference in brightness is 2.1 mag, i.e. the flux ratio is about 7:1. Low dispersion spectroscopy, obtained with the multi-mode instrument EMMI at the NTT has revealed two absorption line systems (at redshifts z = 2.340 and z = 1.085). This provides evidence that two condensations of matter are located along the line-of-sight to the quasar. All these observations strongly suggest that we do see two distinct images of a single distant quasar via the effect of gravitational lensing. Still, to be absolutely sure, it is now necessary to obtain spectra of both images of J03.13. This is not easy because of their very small angular separation and is best done with the Hubble Space Telescope. These observations will be performed during the coming months. Statistics of high luminosity quasars More than 1000 HLQs have now been observed with the major telescopes at the ESO La Silla Observatory, the Canada-France-Hawaii Telescope on Mauna Kea, the Nordic Optical Telescope at the island of La Palma (Canarian Islands) as well as with the Hubble Space Telescope in orbit around the Earth. About 1 percent of all of these objects have been found to be affected by strong gravitational lensing effects; J03.13 is one of these. The results inferred from the related statistical studies are quite sensitive to the individual characteristics of the resolved, multiple quasar images, i.e. their angular separation, brightness difference, etc.. In this context, observations of multiple imaged quasars with an angular separation smaller than 1 arcsecond are particularly important and J03.13 is therefore of special interest. The existence of such ``tight'' images demonstrates that individual, massive elliptical and spiral galaxies at large distances are able to produce detectable lensing effects, and thus that they were already present several billions of years ago. Another study by the same group of astronomers, based on the characteristics of the doubly imaged quasars J03.13 A&B, Q1208+1011 A&B and Q1009+025 A&B, for which the galaxies which cause the lensing effect have not yet been found, indicates that any population of dark, compact objects with masses in the range of 10e10 - 10e12 solar masses cannot contribute more than 1/100 of the critical density which is necessary to ultimately stop the universal expansion and close the Universe. Notes: [1] The group consists of Jean-Francois Claeskens, Jean Surdej and Marc Remy (Institut d' Astrophysique, Universite de Liege, Belgium); Jean Surdej is also affiliated with the Space Telescope Science Institute, c/o ESA, Baltimore, Maryland. [2] The other systems are: UM673 A&B, H1413+117 A-D, UM425 A&B, Q1208+1011 A&B, HE1104-1805 A&B and Q1009-025 A& In five cases, two images of the same quasar are seen; H1413+117 has no less than four. [3] Assuming H0 = 60 km/s/Mpc and q0 = 1/2; 1 billion = 1000 million. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.
NASA Astrophysics Data System (ADS)
Hirschmann, Michaela; Charlot, Stephane; Feltre, Anna; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Somerville, Rachel S.
2017-12-01
Galaxies occupy different regions of the [O III]λ5007/H β-versus-[N II]λ6584/H α emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic giant branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the redshift evolution of the optical-line ratios [O III]λ5007/H β, [N II]λ6584/H α, [S II]λλ6717, 6731/H α and [O I]λ6300/H α. The line ratios of simulated galaxies agree well with observations of both star-forming and active local Sloan Digital Sky Survey galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [O III]/H β is predicted to increase and [N II]/H α, [S II]/H α and [O I]/H α to decrease - widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [O III]/H β and [N II]/H α. For [S II]/H α and [O I]/H α, this applies only to redshifts greater than z = 1.5, the evolution at lower redshift being driven in roughly equal parts by nebular emission from active galactic nuclei and post-AGB stellar populations. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.
Strong gravitational lensing statistics as a test of cosmogonic scenarios
NASA Technical Reports Server (NTRS)
Cen, Renyue; Gott, J. Richard, III; Ostriker, Jeremiah P.; Turner, Edwin L.
1994-01-01
Gravitational lensing statistics can provide a direct and powerful test of cosmic structure formation theories. Since lensing tests, directly, the magnitude of the nonlinear mass density fluctuations on lines of sight to distant objects, no issues of 'bias' (of mass fluctuations with respect to galaxy density fluctuations) exist here, although lensing observations provide their own ambiguities of interpretation. We develop numerical techniques for generating model density distributions with the very large spatial dynamic range required by lensing considerations and for identifying regions of the simulations capable of multiple image lensing in a conservative and computationally efficient way that should be accurate for splittings significantly larger than 3 seconds. Applying these techniques to existing standard Cold dark matter (CDM) (Omega = 1) and Primeval Baryon Isocurvature (PBI) (Omega = 0.2) simulations (normalized to the Cosmic Background Explorer Satellite (COBE) amplitude), we find that the CDM model predicts large splitting (greater than 8 seconds) lensing events roughly an order-of-magnitude more frequently than the PBI model. Under the reasonable but idealized assumption that lensing structrues can be modeled as singular isothermal spheres (SIS), the predictions can be directly compared to observations of lensing events in quasar samples. Several large splitting (Delta Theta is greater than 8 seconds) cases are predicted in the standard CDM model (the exact number being dependent on the treatment of amplification bias), whereas none is observed. In a formal sense, the comparison excludes the CDM model at high confidence (essentially for the same reason that CDM predicts excessive small-scale cosmic velocity dispersions.) A very rough assessment of low-density but flat CDM model (Omega = 0.3, Lambda/3H(sup 2 sub 0) = 0.7) indicates a far lower and probably acceptable level of lensing. The PBI model is consistent with, but not strongly tested by, the available lensing data, and other open models would presumably do as well as PBI. These preliminary conclusions and the assumptions on which they are based can be tested and the analysis can be applied to other cosmogonic models by straightforward extension of the work presented here.
Radio Astronomers Develop New Technique for Studying Dark Energy
NASA Astrophysics Data System (ADS)
2010-07-01
Pioneering observations with the National Science Foundation's giant Robert C. Byrd Green Bank Telescope (GBT) have given astronomers a new tool for mapping large cosmic structures. The new tool promises to provide valuable clues about the nature of the mysterious "dark energy" believed to constitute nearly three-fourths of the mass and energy of the Universe. Dark energy is the label scientists have given to what is causing the Universe to expand at an accelerating rate. While the acceleration was discovered in 1998, its cause remains unknown. Physicists have advanced competing theories to explain the acceleration, and believe the best way to test those theories is to precisely measure large-scale cosmic structures. Sound waves in the matter-energy soup of the extremely early Universe are thought to have left detectable imprints on the large-scale distribution of galaxies in the Universe. The researchers developed a way to measure such imprints by observing the radio emission of hydrogen gas. Their technique, called intensity mapping, when applied to greater areas of the Universe, could reveal how such large-scale structure has changed over the last few billion years, giving insight into which theory of dark energy is the most accurate. "Our project mapped hydrogen gas to greater cosmic distances than ever before, and shows that the techniques we developed can be used to map huge volumes of the Universe in three dimensions and to test the competing theories of dark energy," said Tzu-Ching Chang, of the Academia Sinica in Taiwan and the University of Toronto. To get their results, the researchers used the GBT to study a region of sky that previously had been surveyed in detail in visible light by the Keck II telescope in Hawaii. This optical survey used spectroscopy to map the locations of thousands of galaxies in three dimensions. With the GBT, instead of looking for hydrogen gas in these individual, distant galaxies -- a daunting challenge beyond the technical capabilities of current instruments -- the team used their intensity-mapping technique to accumulate the radio waves emitted by the hydrogen gas in large volumes of space including many galaxies. "Since the early part of the 20th Century, astronomers have traced the expansion of the Universe by observing galaxies. Our new technique allows us to skip the galaxy-detection step and gather radio emissions from a thousand galaxies at a time, as well as all the dimly-glowing material between them," said Jeffrey Peterson, of Carnegie Mellon University. The astronomers also developed new techniques that removed both man-made radio interference and radio emission caused by more-nearby astronomical sources, leaving only the extremely faint radio waves coming from the very distant hydrogen gas. The result was a map of part of the "cosmic web" that correlated neatly with the structure shown by the earlier optical study. The team first proposed their intensity-mapping technique in 2008, and their GBT observations were the first test of the idea. "These observations detected more hydrogen gas than all the previously-detected hydrogen in the Universe, and at distances ten times farther than any radio wave-emitting hydrogen seen before," said Ue-Li Pen of the University of Toronto. "This is a demonstration of an important technique that has great promise for future studies of the evolution of large-scale structure in the Universe," said National Radio Astronomy Observatory Chief Scientist Chris Carilli, who was not part of the research team. In addition to Chang, Peterson, and Pen, the research team included Kevin Bandura of Carnegie Mellon University. The scientists reported their work in the July 22 issue of the scientific journal Nature.
Explosion Source Location Study Using Collocated Acoustic and Seismic Networks in Israel
NASA Astrophysics Data System (ADS)
Pinsky, V.; Gitterman, Y.; Arrowsmith, S.; Ben-Horin, Y.
2013-12-01
We explore a joined analysis of seismic and infrasonic signals for improvement in automatic monitoring of small local/regional events, such as construction and quarry blasts, military chemical explosions, sonic booms, etc. using collocated seismic and infrasonic networks recently build in Israel (ISIN) in the frame of the project sponsored by the Bi-national USA-Israel Science Foundation (BSF). The general target is to create an automatic system, which will provide detection, location and identification of explosions in real-time or close-to-real time manner. At the moment the network comprises 15 stations hosting a microphone and seismometer (or accelerometer), operated by the Geophysical Institute of Israel (GII), plus two infrasonic arrays, operated by the National Data Center, Soreq: IOB in the South (Negev desert) and IMA in the North of Israel (Upper Galilee),collocated with the IMS seismic array MMAI. The study utilizes a ground-truth data-base of numerous Rotem phosphate quarry blasts, a number of controlled explosions for demolition of outdated ammunitions and experimental surface explosions for a structure protection research, at the Sayarim Military Range. A special event, comprising four military explosions in a neighboring country, that provided both strong seismic (up to 400 km) and infrasound waves (up to 300 km), is also analyzed. For all of these events the ground-truth coordinates and/or the results of seismic location by the Israel Seismic Network (ISN) have been provided. For automatic event detection and phase picking we tested the new recursive picker, based on Statistically optimal detector. The results were compared to the manual picks. Several location techniques have been tested using the ground-truth event recordings and the preliminary results obtained have been compared to the ground-truth locations: 1) a number of events have been located as intersection of azimuths estimated using the wide-band F-K analysis technique applied to the infrasonic phases of the two distant arrays; 2) a standard robust grid-search location procedure based on phase picks and a constant celerity for a phase (tropospheric or stratospheric) was applied; 3) a joint coordinate grid-search procedure using array waveforms and phase picks was tested, 4) the Bayesian Infrasonic Source Localization (BISL) method, incorporating semi-empirical model-based prior information, was modified for array+network configuration and applied to the ground-truth events. For this purpose we accumulated data of the former observations of the air-to-ground infrasonic phases to compute station specific ground-truth Celerity-Range Histograms (ssgtCRH) and/or model-based CRH (mbCRH), which allow to essentially improve the location results. For building the mbCRH the local meteo-data and the ray-tracing modeling in 3 available azimuth ranges, accounting seasonal variations of winds directivity (quadrants North:315-45, South: 135-225, East 45-135) have been used.
Tiny Electromagnetic Explosions
NASA Astrophysics Data System (ADS)
Thompson, Christopher
2017-08-01
This paper considers electromagnetic transients of a modest total energy ({ E }≳ {10}40 erg) and small initial size ({ R }≳ {10}-1 cm). They could be produced during collisions between relativistic field structures (e.g., macroscopic magnetic dipoles) that formed around or before cosmic electroweak symmetry breaking. The outflowing energy has a dominant electromagnetic component; a subdominant thermal component (temperature > 1 GeV) supplies inertia in the form of residual {e}+/- . A thin shell forms, expanding subluminally and attaining a Lorentz factor ˜ {10}6{--7} before decelerating. Drag is supplied by the reflection of an ambient magnetic field and deflection of ambient free electrons. Emission of low-frequency (GHz-THz) superluminal waves takes place through three channels: (I) reflection of the ambient magnetic field; (II) direct linear conversion of the embedded magnetic field into a superluminal mode; and (III) excitation outside the shell by corrugation of its surface. The escaping electromagnetic pulse is very narrow (a few wavelengths), so the width of the detected transient is dominated by propagation effects. GHz radio transients are emitted from (I) the dark matter halos of galaxies and (II) the near-horizon regions of supermassive black holes that formed via direct gas collapse and now accrete slowly. Brighter and much narrower 0.01-1 THz pulses are predicted at a rate at least comparable to fast radio bursts, experiencing weaker scattering and absorption. The same explosions also accelerate protons up to ˜ {10}19 eV, and heavier nuclei up to 1020-21 eV.
Geophysical survey of the proposed Tsenkher impact structure, Gobi Altai, Mongolia
NASA Astrophysics Data System (ADS)
Ormö, Jens; Gomez-Ortiz, David; Komatsu, Goro; Bayaraa, Togookhuu; Tserendug, Shoovdor
2010-03-01
We have performed forward magnetic and gravity modeling of data obtained during the 2007 expedition to the 3.7km in diameter, circular, Tsenkher structure, Mongolia, in order to evaluate the cause of its formation. Extensive occurrences of brecciated rocks, mainly in the form of an ejecta blanket outside the elevated rim of the structure, support an explosive origin (e.g., cosmic impact, explosive volcanism). The host rocks in the area are mainly weakly magnetic, silica-rich sandstones, and siltstones. A near absence of surface exposures of volcanic rocks makes any major volcanic structures (e.g., caldera) unlikely. Likewise, the magnetic models exclude any large, subsurface, intrusive body. This is supported by an 8mGal gravity low over the structure indicating a subsurface low density body. Instead, the best fit is achieved for a bowl-shaped structure with a slight central rise as expected for an impact crater of this size in mainly sedimentary target. The structure can be either root-less (i.e., impact crater) or rooted with a narrow feeder dyke with relatively higher magnetic susceptibility and density (i.e., volcanic maar crater). The geophysical signature, the solitary appearance, the predominantly sedimentary setting, and the comparably large size of the Tsenkher structure favor the impact crater alternative. However, until mineralogical/geochemical evidence for an impact is presented, the maar alternative remains plausible although exceptional as it would make the Tsenkher structure one of the largest in the world in an unusual setting for maar craters.
Shobharani, M; Viraktamath, C A; Webb, M D
2018-01-02
Species of the leafhopper genus Penthimia Germar known from the Indian subcontinent are reviewed based on the examination of type specimens. Seven new species of the genus, Penthimia curvata sp. nov. (Karnataka: Bandipur), P. meghalayensis sp. nov. (Meghalaya: Nangpoh), P. neoattenuata sp. nov. (India: Tamil Nadu), P. ribhoi sp. nov. (India: Meghalaya), P. sahyadrica sp. nov. (Karnataka: Dharmasthala, Agumbe; Kerala: Thekkady), P. spiculata sp. nov. (Karnataka: Nagarahole) and P. tumida sp. nov. (Tamil Nadu: Ootacamund; Kerala: Munnar) are described. The following nomenclatorial changes are proposed: Penthimia alba Zahniser, McKamey Dmitriev, 2012 (replacement name for P. thoracica Distant, 1918, nec Panzer, 1799), syn. nov. of P. quadrinotata Distant, 1918; Neodartus scutellatus Distant, 1908 syn. nov. of Penthimia ereba Distant 1908; P. nilgiriensis Distant, 1918 syn. nov. of P. montana Distant, 1918; P. scutellata (Distant) comb. nov. (from genus Neodartus); a lectotype is designated for P. maculosa Distant, stat. revived, thereby removing its synonymy with P. scapularis Distant. The following other lectotypes are designated: P. attenuata Distant, P. subniger Distant, P. scapularis Distant, P. distanti Baker, P. ereba Distant, N. scutellatus Distant, P. fraterna Distant, P. funebris Distant, P. juno Distant, P. maculosa Distant, P. montana Distant, P. noctua Distant, P. quadrinotata Distant, P. alba Zahniser, McKamey Dmitriev. Examination of types of Penthimia rufopunctata Motschulsky revealed that it belongs to Penthimia and hence it is transferred back to that genus from Neodartus, revised placement. The following species previously included in the genus Penthimia are transferred to the genera Tambila Distant and Vulturnus Kirkaldy: Tambila badia (Distant) comb. nov., T. majuscula (Distant) comb. nov., T. vittatifrons (Distant) comb. nov., T. variabilis (Distant) comb. nov. and Vulturnus flavocapitata (Distant) comb. nov. Three species are treated in a new Penthimia compacta Walker complex, i.e., Penthimia compacta Walker 1851, Penthimia subniger Distant 1908 and Penthimia scapularis Distant 1908. All taxa are described and a key to Penthimiini genera found in the subcontinent and also a key to species of Penthimia are included.
Beacons in the dark: using the most distant galaxies to probe cosmic reionization
NASA Astrophysics Data System (ADS)
De Barros, Stephane
2017-08-01
One of the major unresolved problems in modern cosmology is when and how the universe was ionized. The consensus scenario is that ultra-faint, low-mass galaxies contributed most to the UV background at high-redshift and that reionization was an inhomogeneous process, with ionized bubbles created first around galaxy overdensities. The very surprising discovery of Ly-alpha emission lines around a large fraction of the most luminous galaxies at z=7.4-8.7, when we expect the universe to be highly neutral, could thus be explained by the fact that they lie in large HII bubbles which were ionized thanks to yet undetected fainter neighbors. Theoretical models indeed predict a boost of up to 6x larger galaxy counts around the brightest sources compared to the general field, when probing down to luminosities as faint as 0.1L_UV of the central source. Here we propose a direct test of these models by searching for fainter neighbors around three bright z>7.4 galaxies emitting Ly-alpha, including two sources that lie only 9 Mpc from each other and could share the same ionized bubble, as well as the most distant confirmed Ly-alpha emitter EGSY-8p7 at z=8.68. Given the expected overdensities, we have the opportunity to detect 20 (and up to 50) new z 7-9 galaxies with only a modest investment of HST time. These observations are thus maximally efficient at providing a large number of precious high-redshift targets for early JWST spectroscopy to directly study the galaxies that are in the process of ionizing the universe. Our imaging will further enhance the legacy of the CANDELS/EGS field, and we will make the reduced data available to the community immediately for JWST follow-up.
HUBBLE AND KECK DISCOVER GALAXY BUILDING BLOCK
NASA Technical Reports Server (NTRS)
2002-01-01
This NASA Hubble Space Telescope image shows a very small, faint galaxy 'building block' newly discovered by a unique collaboration between ground- and space-based telescopes. Hubble and the 10-meter Keck Telescopes in Hawaii joined forces, using a galaxy cluster which acts as gravitational lens to detect what scientists believe is one of the smallest very distant objects ever found. The galaxy cluster Abell 2218 was used by a team of European and American astronomers led by Richard Ellis (Caltech) in their systematic search for intrinsically faint distant star-forming systems. Without help from Abell 2218's exceptional magnifying power to make objects appear about 30 times brighter, the galaxy building block would have been undetectable. In the image to the right, the object is seen distorted into two nearly identical, very red 'images' by the gravitational lens. The image pair represents the magnified result of a single background object gravitationally lensed by Abell 2218 and viewed at a distance of 13.4 billion light-years. The intriguing object contains only one million stars, far fewer than a mature galaxy, and scientists believe it is very young. Such young star-forming systems of low mass at early cosmic times are likely to be the objects from which present-day galaxies have formed. In the image to the left, the full overview of the galaxy cluster Abell 2218 is seen. This image was taken by Hubble in 1999 at the completion of Hubble Servicing Mission 3A. Credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: NASA, A. Fruchter and the ERO Team (STScI and ST-ECF)
A Positive Cosmological Constant as Centrifugal Force in an Expanding Kantian Model of the Universe
NASA Astrophysics Data System (ADS)
Sternglass, E. J.
1998-05-01
Recent redshift measurements of distant Type Ia supernovae appear to indicate that cosmic expansion has speeded up since these distant stars exploded, rather than slowing down under the action of gravity. These results suggest the existence of a repulsive force as originally assumed by Einstein through the introduction of the lambda constant. Such a repulsive force arises naturally as centrifugal force in the evolution of a hierarchically organized cosmological model involving a series of rotating structures of increasing size as originally suggested by Kant in the 18th century when combined with the idea of Lemaitre, according to which the universe and the observed systems arose in the course of repeated divisions by two of a primeval atom. As described in the AIP Conference Proceedings 254,105 (1992), if this atom is assumed to be a highly relativistic form of positronium or "quarkonium" at the Planck density one avoids an initial singularity and requires no other particles. The division process takes place in 27 stages of 10 divisions each beginning with a lower mass excited state of the original Lemaitre atom that forms a central cluster in which a quarter of the particles are initially retained. One then arrives at a model in which all structures are laid down in the form of massive "cold dark matter" during a period of exponential growth or inflation before the Big Bang, leading to an ultimately stable, closed "flat" universe of finite mass that explains the masses, sizes, rotational and expansion velocities and thus the Hubble constants of the various systems as well as the age of the universe since the Big Bang in good agreement with observations, using only e, mo, c and h.
NASA Astrophysics Data System (ADS)
Johnson, Traci L.; Rigby, Jane R.; Sharon, Keren; Gladders, Michael D.; Florian, Michael; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Livermore, Rachael; Murray, Katherine T.
2017-07-01
We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z = 2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r< 100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z˜ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc—physical scales not usually resolved at these redshifts by current telescopes—are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of the order of 1 kpc. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13003.
HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE
NASA Technical Reports Server (NTRS)
2002-01-01
Astronomers are using these three NASA Hubble Space Telescope images to help tackle the question of why distant galaxies have such odd shapes, appearing markedly different from the typical elliptical and spiral galaxies seen in the nearby universe. Do faraway galaxies look weird because they are truly weird? Or, are they actually normal galaxies that look like oddballs, because astronomers are getting an incomplete picture of them, seeing only the brightest pieces? Light from these galaxies travels great distances (billions of light-years) to reach Earth. During its journey, the light is 'stretched' due to the expansion of space. As a result, the light is no longer visible, but has been shifted to the infrared where present instruments are less sensitive. About the only light astronomers can see comes from regions where hot, young stars reside. These stars emit mostly ultraviolet light. But this light is stretched, appearing as visible light by the time it reaches Earth. Studying these distant galaxies is like trying to put together a puzzle with some of the pieces missing. What, then, do distant galaxies really look like? Astronomers studied 37 nearby galaxies to find out. By viewing these galaxies in ultraviolet light, astronomers can compare their shapes with those of their distant relatives. These three Hubble telescope pictures, taken with the Wide Field and Planetary Camera 2, represent a sampling from that survey. Astronomers observed the galaxies in ultraviolet and visible light to study all the stars that make up these 'cities of stars.' The results of their survey support the idea that astronomers are detecting the 'tip of the iceberg' of very distant galaxies. Based on these Hubble ultraviolet images, not all the faraway galaxies necessarily possess intrinsically odd shapes. The results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. The central region of the 'star-burst' spiral galaxy at far left, NGC 3310, shows young and old stars evenly distributed. If this were the case with most galaxies, astronomers would be able to recognize faraway galaxies fairly easily. In most galaxies, however, the stars are segregated by age, making classifying the distant ones more difficult. NGC 3310 is 46 million light-years from Earth in the constellation Ursa Major. The image was taken Sept. 12-13, 2000. The middle image is an example of a tiny, youthful spiral galaxy. ESO 418-008 is representative of the myriad of dwarf galaxies astronomers have seen in deep surveys. These galaxies are much smaller than typical ones like our Milky Way. In this galaxy, the population of stars is more strongly segregated by age. The older stars [red] reside in the center; the younger [blue], in the developing spiral arms. These small, young galaxies may be the building blocks of galaxy formation. ESO 418-008 is 56 million light-years from Earth in the southern constellation Fornax. The image was taken Oct. 10, 2000. The picture at right shows a cosmic collision between two galaxies, UGC 06471 and UGC 06472. These collisions occurred frequently in the early universe, producing galaxies of unusual shapes. The Hubble telescope has spied many such galaxies in the deep field surveys. The ultraviolet images of this galaxy merger suggest the presence of large amounts of dust, which were produced by massive stars that formed before or during this dramatic collision. This dust reddens the starlight in many places, just like a dusty atmosphere reddens the sunset. Studying the effects of this nearby collision could help astronomers explain the peculiar shapes seen in some of the distant galaxies. UGC 06471 and UGC 06472 are 145 million light-years from Earth in the constellation Ursa Major. The image was taken July 11, 2000. Photo credits: NASA, Rogier Windhorst (Arizona State University, Tempe, AZ), and the Hubble mid-UV team
The Past, Present, and Future of Statistical Cosmology
NASA Astrophysics Data System (ADS)
Hirata, Christopher M.
2016-01-01
We now have a standard paradigm for the evolution of the Universe and the distribution of matter on large scales. This model has many seemingly strange aspects: an inflationary period, during which quantum mechanical fluctuations set the initial conditions for the formation of galaxies and clusters; dark matter and dark energy, which make up most of the Universe, and yet have no established relation to the more familiar visible particles and fields; and -- if dark energy is a cosmological constant -- a future in which the Universe enters a permanent exponential expansion phase, with a limiting finite "temperature" and observable volume. Over the past 15 years, a diverse array of observations have continued to support the simplest version of this model at ever-improving levels of precision (although not without a few anomalies). I will describe this development from the perspective of one participant, with an emphasis on a subset of the observational probes -- the cosmic microwave background, galaxy surveys, and gravitational lensing. I will emphasize in particular the demands of tight control of systematic errors in both the observations and the theoretical predictions, and the impact this has had on the organization of research programs in cosmology.I will then turn to the the future of statistical cosmology. In the near term, a major goal in dark energy is to use new facilities to go beyond fitting a small number of parameters, and map out the full history of the expansion of the Universe and the growth of structures. I will describe some of these ambitious efforts to probe the effects of dark energy in the distant past, when it was a subdominant component of the cosmic energy budget. Finally, I will speculate on what cosmology as a field might look like in 25 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tibaldo, L.; Digel, S. W.; Franckowiak, A.
2015-07-10
It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding halo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of γ-ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locationsmore » throughout the Galactic plane. In this article we use 73 months of data from the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for γ-ray emission produced by CR interactions in several high- and intermediate-velocity clouds (IVCs) located at up to ∼7 kpc above the Galactic plane. We achieve the first detection of IVCs in γ rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. We find that the γ-ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. We compare our results to predictions of CR propagation models.« less
Astronomical random numbers for quantum foundations experiments
NASA Astrophysics Data System (ADS)
Leung, Calvin; Brown, Amy; Nguyen, Hien; Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason
2018-04-01
Photons from distant astronomical sources can be used as a classical source of randomness to improve fundamental tests of quantum nonlocality, wave-particle duality, and local realism through Bell's inequality and delayed-choice quantum eraser tests inspired by Wheeler's cosmic-scale Mach-Zehnder interferometer gedanken experiment. Such sources of random numbers may also be useful for information-theoretic applications such as key distribution for quantum cryptography. Building on the design of an astronomical random number generator developed for the recent cosmic Bell experiment [Handsteiner et al. Phys. Rev. Lett. 118, 060401 (2017), 10.1103/PhysRevLett.118.060401], in this paper we report on the design and characterization of a device that, with 20-nanosecond latency, outputs a bit based on whether the wavelength of an incoming photon is greater than or less than ≈700 nm. Using the one-meter telescope at the Jet Propulsion Laboratory Table Mountain Observatory, we generated random bits from astronomical photons in both color channels from 50 stars of varying color and magnitude, and from 12 quasars with redshifts up to z =3.9 . With stars, we achieved bit rates of ˜1 ×106Hz/m 2 , limited by saturation of our single-photon detectors, and with quasars of magnitudes between 12.9 and 16, we achieved rates between ˜102 and 2 ×103Hz /m2 . For bright quasars, the resulting bitstreams exhibit sufficiently low amounts of statistical predictability as quantified by the mutual information. In addition, a sufficiently high fraction of bits generated are of true astronomical origin in order to address both the locality and freedom-of-choice loopholes when used to set the measurement settings in a test of the Bell-CHSH inequality.
NASA Astrophysics Data System (ADS)
Carilli, C. L.; Chluba, J.; Decarli, R.; Walter, F.; Aravena, M.; Wagg, J.; Popping, G.; Cortes, P.; Hodge, J.; Weiss, A.; Bertoldi, F.; Riechers, D.
2016-12-01
We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C II] 158 μm line emission from very high redshift galaxies (z ˜ 6-7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T B = 0.94 ± 0.09 μK. In the 242 GHz band, the mean brightness is: T B = 0.55 ± 0.033 μK. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.
A case of suspended animation?
2016-04-11
At first glance this NASA/ESA Hubble Space Telescope image seems to show an array of different cosmic objects, but the speckling of stars shown here actually forms a single body — a nearby dwarf galaxy known as Leo A. Its few million stars are so sparsely distributed that some distant background galaxies are visible through it. Leo A itself is at a distance of about 2.5 million light-years from Earth and a member of the Local Group of galaxies; a group that includes the Milky Way and the well-known Andromeda galaxy. Astronomers study dwarf galaxies because they are very numerous and are simpler in structure than their giant cousins. However, their small size makes them difficult to study at great distances. As a result, the dwarf galaxies of the Local Group are of particular interest, as they are close enough to study in detail. As it turns out, Leo A is a rather unusual galaxy. It is one of the most isolated galaxies in the Local Group, has no obvious structural features beyond being a roughly spherical mass of stars, and shows no evidence for recent interactions with any of its few neighbours. However, the galaxy’s contents are overwhelmingly dominated by relatively young stars, something that would normally be the result of a recent interaction with another galaxy. Around 90% of the stars in Leo A are less than eight billion years old — young in cosmic terms! This raises a number of intriguing questions about why star formation in Leo A did not take place on the “usual” timescale, but instead waited until it was good and ready.
Hubble Peers into the Mouth of Leo A
2017-12-08
At first glance, this NASA/ESA Hubble Space Telescope image seems to show an array of different cosmic objects, but the speckling of stars shown here actually forms a single body — a nearby dwarf galaxy known as Leo A. Its few million stars are so sparsely distributed that some distant background galaxies are visible through it. Leo A itself is at a distance of about 2.5 million light-years from Earth and a member of the Local Group of galaxies; a group that includes the Milky Way and the well-known Andromeda galaxy. Astronomers study dwarf galaxies because they are very numerous and are simpler in structure than their giant cousins. However, their small size makes them difficult to study at great distances. As a result, the dwarf galaxies of the Local Group are of particular interest, as they are close enough to study in detail. As it turns out, Leo A is a rather unusual galaxy. It is one of the most isolated galaxies in the Local Group, has no obvious structural features beyond being a roughly spherical mass of stars, and shows no evidence for recent interactions with any of its few neighbors. However, the galaxy’s contents are overwhelmingly dominated by relatively young stars, something that would normally be the result of a recent interaction with another galaxy. Around 90% of the stars in Leo A are less than eight billion years old — young in cosmic terms! This raises a number of intriguing questions about why star formation in Leo A did not take place on the “usual” timescale, but instead waited until it was good and ready. Image credit: ESA/Hubble & NASA; Acknowledgment: Judy Schmidt
NASA Astrophysics Data System (ADS)
Walth, Gregory; Egami, Eiichi; Clément, Benjamin; Rujopakarn, Wiphu; Rawle, Tim; Richard, Johan; Dessauges, Miroslava; Perez-Gonzalez, Pablo; Ebeling, Harald; Vayner, Andrey; Wright, Shelley; Cosens, Maren; Herschel Lensing Survey
2018-01-01
We present our recent ALMA observations of Herschel-detected gravitationally lensed dusty, star-forming galaxies (DSFGs) and how they compliment our near-infrared spectroscopic observations of their rest-frame optical nebular emission. This provides the complete picture of star formation; from the molecular gas that fuels star formation, to the dust emission which are the sites of star formation, and the nebular emission which is the gas excited by the young stars. DSFGs undergo the largest starbursts in the Universe, contributing to the bulk of the cosmic star formation rate density between redshifts z = 1 - 4. Internal processes within high-redshift DSFGs remains largely unexplored; such as feedback from star formation, the role of turbulence, gas surface density of molecular gas, AGN activity, and the rates of metal production. Much that is known about DSFGs star formation properties comes from their CO and dust emission. In order to fully understand the star formation history of DSFGs, it is necessary to observe their optical nebular emission. Unfortunately, UV/optical emission is severely attenuated by dust, making it challenging to detect. With the Herschel Lensing Survey, a survey of the cores of almost 600 massive galaxy clusters, we are able to probe faint dust-attenuated nebular emission. We are currently conducting a new survey using Keck/OSIRIS to resolve a sample of gravitationally lensed DSFGs from the Herschel Lensing Survey (>100 mJy, with SFRs >100 Msun/yr) at redshifts z=1-4 with magnifications >10x all with previously detected nebular emission lines. We present the physical and resolved properties of gravitationally lensed DSFGs at unprecedented spatial scales; such as ionization, metallicity, AGN activity, and dust attenuation.
Tibaldo, L.; Digel, S. W.; Casandjian, J. M.; ...
2015-07-09
It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding halo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of γ-ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locationsmore » throughout the Galactic plane. In this article we use 73 months of data from the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for γ-ray emission produced by CR interactions in several high- and intermediate-velocity clouds (IVCs) located at up to ~7 kpc above the Galactic plane. We achieve the first detection of IVCs in γ rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. Here, we find that the γ-ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. Finally, we compare our results to predictions of CR propagation models.« less
Zika Virus: History, Emergence, Biology, and Prospects for Control
Weaver, Scott C.; Costa, Federico; Garcia-Blanco, Mariano A.; Ko, Albert I.; Ribeiro, Guilherme S.; Saade, George; Shi, Pei-Yong; Vasilakis, Nikos
2016-01-01
Zika virus (ZIKV), a previously obscure flavivirus closely related to dengue, West Nile, Japanese encephalitis and yellow fever viruses, has emerged explosively since 2007 to cause a series of epidemics in Micronesia, the South Pacific, and most recently the Americas. After its putative evolution in sub-Saharan Africa, ZIKV spread in the distant past to Asia and has probably emerged on multiple occasions into urban transmission cycles involving Aedes (Stegomyia) spp. mosquitoes and human amplification hosts, accompanied by a relatively mild dengue-like illness. The unprecedented numbers of people infected during recent outbreaks in the South Pacific and the Americas may have resulted in enough ZIKV infections to notice relatively rare congenital microcephaly and Guillain–Barré syndromes. Another hypothesis is that phenotypic changes in Asian lineage ZIKV strains led to these disease outcomes. Here, we review potential strategies to control the ongoing outbreak through vector-centric approaches as well as the prospects for the development of vaccines and therapeutics. PMID:26996139
Zika virus: History, emergence, biology, and prospects for control.
Weaver, Scott C; Costa, Federico; Garcia-Blanco, Mariano A; Ko, Albert I; Ribeiro, Guilherme S; Saade, George; Shi, Pei-Yong; Vasilakis, Nikos
2016-06-01
Zika virus (ZIKV), a previously obscure flavivirus closely related to dengue, West Nile, Japanese encephalitis and yellow fever viruses, has emerged explosively since 2007 to cause a series of epidemics in Micronesia, the South Pacific, and most recently the Americas. After its putative evolution in sub-Saharan Africa, ZIKV spread in the distant past to Asia and has probably emerged on multiple occasions into urban transmission cycles involving Aedes (Stegomyia) spp. mosquitoes and human amplification hosts, accompanied by a relatively mild dengue-like illness. The unprecedented numbers of people infected during recent outbreaks in the South Pacific and the Americas may have resulted in enough ZIKV infections to notice relatively rare congenital microcephaly and Guillain-Barré syndromes. Another hypothesis is that phenotypic changes in Asian lineage ZIKV strains led to these disease outcomes. Here, we review potential strategies to control the ongoing outbreak through vector-centric approaches as well as the prospects for the development of vaccines and therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.
Action Replay of Powerful Stellar Explosion
NASA Astrophysics Data System (ADS)
2008-03-01
Astronomers have made the best ever determination of the power of a supernova explosion that was visible from Earth long ago. By observing the remnant of a supernova and a light echo from the initial outburst, they have established the validity of a powerful new method for studying supernovas. Using data from NASA's Chandra X-ray Observatory, ESA's XMM-Newton Observatory, and the Gemini Observatory, two teams of researchers studied the supernova remnant and the supernova light echo that are located in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light years from Earth. They concluded that the supernova occurred about 400 years ago (in Earth’s time frame), and was unusually bright and energetic. X-ray Image of SNR 0509-67.5 X-ray Image of SNR 0509-67.5 This result is the first time two methods - X-ray observations of a supernova remnant and optical observations of the expanding light echoes from the explosion - have both been used to estimate the energy of a supernova explosion. Up until now, scientists had only made such an estimate using the light seen soon after a star exploded, or using remnants that are several hundred years old, but not from both. "People didn't have advanced telescopes to study supernovas when they went off hundreds of years ago," said Armin Rest of Harvard University, who led the light echo observations using Gemini. "But we've done the next best thing by looking around the site of the explosion and constructing an action replay of it." People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Oldest Known Objects Are Surprisingly Immature Discovery of Most Recent Supernova in Our Galaxy NASA Unveils Cosmic Images Book in Braille for Blind Readers In 2004, scientists used Chandra to determine that a supernova remnant, known as SNR 0509-67.5 in the LMC, was a so-called Type Ia supernova, caused by a white dwarf star in a binary system that reaches a critical mass and explodes. In the new optical study, an estimate of the explosion's energy came from studying an echo of the original light of the explosion. Just as sound bounces off walls of a canyon, so too can light waves create an echo by bouncing off dust clouds in space. The light from these echoes travels a longer path than the light that travels straight toward us, and so can be seen hundreds of years after the supernova itself. First seen by the Cerro-Tololo Inter-American Observatory in Chile, the light echoes were observed in greater detail by Gemini Observatory in Chile. The optical spectra of the light echo were used to confirm that the supernova was a Type Ia and to unambiguously determine the particular class of explosion and therefore its energy. The Chandra data, along with XMM data obtained in 2000, were then independently used to calculate the amount of energy involved in the original explosion, using an analysis of the supernova remnant and state-of-the-art explosion models. Their conclusion confirmed the results from the optical data, namely that the explosion was an especially energetic and bright variety of Type Ia supernova. This agreement provides strong evidence that the detailed explosion models are accurate. "Having these two methods agree lets us breathe a sigh of relief," said Carlos Badenes of Princeton University who led the Chandra and XMM study. "It looks like we're on the right track with trying to understand these big explosions. Their stellar debris really can retain a memory of what created them hundreds of years earlier." Both methods estimated a similar time since the explosion of about 400 years. An extra constraint on the age comes from the lack of recorded historical evidence for a recent supernova in the LMC. Because this star appears in the Southern Hemisphere, it likely would have been seen by navigators who noted similarly bright celestial events if it had occurred less than about 400 years ago. Because Type Ia supernovas have nearly uniform intrinsic brightness, they are used as important tools by scientists to study the expansion of the universe and the nature of dark energy. "It's crucial to know that the basic assumptions about these explosions are correct, so they're not used just as black-boxes to measure distances," said Badenes. This work is also being extended to other supernova remnants and light echoes. "This is the first case where the conclusions that are drawn from the supernova remnant about the original explosion can be directly tested by looking at the original event itself," said Rest. "We'll be able to learn a lot about supernovas in our own galaxy by using this technique." These results appear in two recently accepted papers in The Astrophysical Journal. The first discusses the spectrum obtained by Gemini, led by Rest. The second, with Badenes as first author, details the Chandra and XMM observations of SNR 0509-67.5. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
APEX Snaps First Close-up of Star Factories in Distant Universe
NASA Astrophysics Data System (ADS)
2010-03-01
For the first time, astronomers have made direct measurements of the size and brightness of regions of star-birth in a very distant galaxy, thanks to a chance discovery with the APEX telescope. The galaxy is so distant, and its light has taken so long to reach us, that we see it as it was 10 billion years ago. A cosmic "gravitational lens" is magnifying the galaxy, giving us a close-up view that would otherwise be impossible. This lucky break reveals a hectic and vigorous star-forming life for galaxies in the early Universe, with stellar nurseries forming one hundred times faster than in more recent galaxies. The research is published online today in the journal Nature. Astronomers were observing a massive galaxy cluster [1] with the Atacama Pathfinder Experiment (APEX) telescope, using submillimetre wavelengths of light, when they found a new and uniquely bright galaxy, more distant than the cluster and the brightest very distant galaxy ever seen at submillimetre wavelengths. It is so bright because the cosmic dust grains in the galaxy are glowing after being heated by starlight. The new galaxy has been given the name SMM J2135-0102. "We were stunned to find a surprisingly bright object that wasn't at the expected position. We soon realised it was a previously unknown and more distant galaxy being magnified by the closer galaxy cluster," says Carlos De Breuck from ESO, a member of the team. De Breuck was making the observations at the APEX telescope on the plateau of Chajnantor at an altitude of 5000 m in the Chilean Andes. The new galaxy SMM J2135-0102 is so bright because of the massive galaxy cluster that lies in the foreground. The vast mass of this cluster bends the light of the more distant galaxy, acting as a gravitational lens [2]. As with a telescope, it magnifies and brightens our view of the distant galaxy. Thanks to a fortuitous alignment between the cluster and the distant galaxy, the latter is strongly magnified by a factor of 32. "The magnification reveals the galaxy in unprecedented detail, even though it is so distant that its light has taken about 10 billion years to reach us," explains Mark Swinbank from Durham University, lead author of the paper reporting the discovery. "In follow-up observations with the Submillimeter Array telescope, we've been able to study the clouds where stars are forming in the galaxy with great precision." The magnification means that the star-forming clouds can be picked out in the galaxy, down to a scale of only a few hundred light-years - almost down to the size of giant clouds in our own Milky Way. To see this level of detail without the help of the gravitational lens would need future telescopes such as ALMA (the Atacama Large Millimeter/submillimeter Array), which is currently under construction on the same plateau as APEX. This lucky discovery has therefore given astronomers a unique preview of the science that will be possible in a few years time. These "star factories" are similar in size to those in the Milky Way, but one hundred times more luminous, suggesting that star formation in the early life of these galaxies is a much more vigorous process than typically found in galaxies that lie nearer to us in time and space. In many ways, the clouds look more similar to the densest cores of star-forming clouds in the nearby Universe. "We estimate that SMM J2135-0102 is producing stars at a rate that is equivalent to about 250 Suns per year," says de Breuck. "The star formation in its large dust clouds is unlike that in the nearby Universe, but our observations also suggest that we should be able to use similar underlying physics from the densest stellar nurseries in nearby galaxies to understand star birth in these more distant galaxies." Notes [1] Galaxy clusters are among the most massive objects in the Universe kept together by gravity. They are composed of hundreds to thousands of galaxies, which make up to only about a tenth of their total mass. The bulk of their mass, which amounts to up to a million billion [1015] times the mass of our Sun, is composed of hot gas and dark matter. In this case, the cluster being observed has the designation MACS J2135-010217 (or MACS J213512.10-010258.5), and is at a distance of about four billion light-years. [2] Gravitational lensing is an effect forecast by Albert Einstein's theory of general relativity. Due to their gigantic mass and their intermediate position between us and very distant galaxies, galaxy clusters act as extremely efficient gravitational lenses, bending the light coming from background galaxies. Depending on the cluster mass distribution a host of interesting effects are produced, such as magnification, shape distortions, giant arcs, and multiple images of the same source. More information This research was presented in a paper, "Intense star formation within resolved compact regions in a galaxy at z=2.3" (A. M. Swinbank et al., DOI 10.1038/nature08880) to appear online in Nature today. The team is composed of A. M. Swinbank, I. Smail, J. Richard, A. C. Edge, and K. E. K. Coppin (Institute for Computational Cosmology, Durham University, UK), S. Longmore, R. Blundell, M. Gurwell, and D. Wilner (Harvard-Smithsonian Center For Astrophysics, USA), A. I. Harris and L. J. Hainline (Department of Astronomy, University of Maryland, USA), A.J. Baker (Department of Physics and Astronomy, Rutgers, University of New Jersey, USA), C. De Breuck, A. Lundgren and G. Siringo (ESO), R. J. Ivison (UKATC and Royal Observatory of Edinburgh, UK), P. Cox, M. Krips and R. Neri (Institut de Radio Astronomie Millimétrique, France), B. Siana (California Institute of Technology, USA), D. P. Stark (Institute of Astronomy, University of Cambridge, UK), and J. D. Younger (Institute for Advanced Study, USA). The Atacama Pathfinder Experiment (APEX) telescope is a 12-metre telescope, located at 5100 m altitude on the arid plateau of Chajnantor in the Chilean Andes. APEX operates at millimetre and submillimetre wavelengths. This wavelength range is a relatively unexplored frontier in astronomy, requiring advanced detectors and an extremely high and dry observatory site, such as Chajnantor. APEX, the largest submillimetre-wave telescope operating in the southern hemisphere, is a collaboration between the Max Planck Institute for Radio Astronomy, the Onsala Space Observatory and ESO. Operation of APEX at Chajnantor is entrusted to ESO. APEX is a "pathfinder" for ALMA - it is based on a prototype antenna constructed for the ALMA project, it is located on the same plateau and will find many targets that ALMA will be able to study in extreme detail. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Supernova Explosions Stay In Shape
NASA Astrophysics Data System (ADS)
2009-12-01
At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular remnants. This type of supernova is thought to be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers as "standard candles" for measuring cosmic distances. On the other hand, the remnants tied to the "core-collapse" supernova explosions were distinctly more asymmetric. This type of supernova occurs when a very massive, young star collapses onto itself and then explodes. "If we can link supernova remnants with the type of explosion", said co-author Enrico Ramirez-Ruiz, also of University of California, Santa Cruz, "then we can use that information in theoretical models to really help us nail down the details of how the supernovas went off." Models of core-collapse supernovas must include a way to reproduce the asymmetries measured in this work and models of Type Ia supernovas must produce the symmetric, circular remnants that have been observed. Out of the 17 supernova remnants sampled, ten were classified as the core-collapse variety, while the remaining seven of them were classified as Type Ia. One of these, a remnant known as SNR 0548-70.4, was a bit of an "oddball". This one was considered a Type Ia based on its chemical abundances, but Lopez finds it has the asymmetry of a core-collapse remnant. "We do have one mysterious object, but we think that is probably a Type Ia with an unusual orientation to our line of sight," said Lopez. "But we'll definitely be looking at that one again." While the supernova remnants in the Lopez sample were taken from the Milky Way and its close neighbor, it is possible this technique could be extended to remnants at even greater distances. For example, large, bright supernova remnants in the galaxy M33 could be included in future studies to determine the types of supernova that generated them. The paper describing these results appeared in the November 20 issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov
An infrared flash contemporaneous with the gamma-rays of GRB 041219a.
Blake, C H; Bloom, J S; Starr, D L; Falco, E E; Skrutskie, M; Fenimore, E E; Duchêne, G; Szentgyorgyi, A; Hornstein, S; Prochaska, J X; McCabe, C; Ghez, A; Konopacky, Q; Stapelfeldt, K; Hurley, K; Campbell, R; Kassis, M; Chaffee, F; Gehrels, N; Barthelmy, S; Cummings, J R; Hullinger, D; Krimm, H A; Markwardt, C B; Palmer, D; Parsons, A; McLean, K; Tueller, J
2005-05-12
The explosion that results in a cosmic gamma-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows. Although observations of afterglows continue to refine our understanding of GRB progenitors and relativistic shocks, gamma-ray observations alone have not yielded a clear picture of the origin of the prompt emission nor details of the central engine. Only one concurrent visible-light transient has been found and it was associated with emission from an external shock. Here we report the discovery of infrared emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of GRB 041219a (ref. 8). We acquired 21 images during the active phase of the burst, yielding early multi-colour observations. Our analysis of the initial infrared pulse suggests an origin consistent with internal shocks.
DIAPHANE: A portable radiation transport library for astrophysical applications
NASA Astrophysics Data System (ADS)
Reed, Darren S.; Dykes, Tim; Cabezón, Rubén; Gheller, Claudio; Mayer, Lucio
2018-05-01
One of the most computationally demanding aspects of the hydrodynamical modelingof Astrophysical phenomena is the transport of energy by radiation or relativistic particles. Physical processes involving energy transport are ubiquitous and of capital importance in many scenarios ranging from planet formation to cosmic structure evolution, including explosive events like core collapse supernova or gamma-ray bursts. Moreover, the ability to model and hence understand these processes has often been limited by the approximations and incompleteness in the treatment of radiation and relativistic particles. The DIAPHANE project has focused on developing a portable and scalable library that handles the transport of radiation and particles (in particular neutrinos) independently of the underlying hydrodynamic code. In this work, we present the computational framework and the functionalities of the first version of the DIAPHANE library, which has been successfully ported to three different smoothed-particle hydrodynamic codes, GADGET2, GASOLINE and SPHYNX. We also present validation of different modules solving the equations of radiation and neutrino transport using different numerical schemes.