A search for X-ray bright distant clusters of galaxies
NASA Technical Reports Server (NTRS)
Nichol, R. C.; Ulmer, M. P.; Kron, R. G.; Wirth, G. D.; Koo, D. C.
1994-01-01
We present the results of a search for X-ray luminous distant clusters of galaxies. We found extended X-ray emission characteristic of a cluster toward two of our candidate clusters of galaxies. They both have a luminosity in the ROSAT bandpass of approximately equals 10(exp 44) ergs/s and a redshift greater than 0.5; thus making them two of the most distant X-ray clusters ever observed. Furthermore, we show that both clusters are optically rich and have a known radio source associated with them. We compare our result with other recent searches for distant X-ray luminous clusters and present a lower limit of 1.2 x 10(exp -7)/cu Mpc for the number density of such high-redshift clusters. This limit is consistent with the expected abundance of such clusters in a standard (b = 2) cold dark matter universe. Finally, our clusters provide important high-redshift targets for further study into the origin and evolution of massive clusters of galaxies.
Chandra X-Ray Observatory Image of the Distant Galaxy, 3C294
NASA Technical Reports Server (NTRS)
2000-01-01
This most distant x-ray cluster of galaxies yet has been found by astronomers using Chandra X-ray Observatory (CXO). Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant x-ray galaxy cluster. The existence of such a faraway cluster is important for understanding how the universe evolved. CXO's image reveals an hourglass-shaped region of x-ray emissions centered on the previously known central radio source (seen in this image as the blue central object) that extends outward for 60,000 light- years. The vast clouds of hot gas that surround such galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until CXO, x-ray telescopes have not had the needed sensitivity to identify such distant clusters of galaxies. Galaxy clusters are the largest gravitationally bound structures in the universe. The intensity of the x-rays in this CXO image of 3C294 is shown as red for low energy x-rays, green for intermediate, and blue for the most energetic x-rays. (Photo credit: NASA/loA/A. Fabian et al)
NASA Technical Reports Server (NTRS)
Dickinson, Mark
1993-01-01
In the course of a survey investigating the cluster environments of distant 3CR radio galaxies, I have identified a previously unknown 'giant luminous arc' gravitational lens. The lensing cluster is associated with the radio galaxy 3C 220.1 at z = 0.62 and is the most distant cluster now known to produce such arcs. I present imaging and spectroscopic observations of the cluster and the arc, and discuss the implications for the cluster mass. At z greater than 0.6 the cluster velocity dispersions implied by such giant arcs may provide an interesting constraint on theories of large scale structure formation. The parent investigation in which this arc was identified concerns galaxy clusters and radio galaxy environments at 0.35 less than z less than 0.8. At the present epoch, powerful FR 2 radio galaxies tend to be found in environments of poor or average galaxy density. In contrast, at the higher redshifts investigated here, richer group and cluster environments are common. I present additional data on other clusters from this survey, and discuss its extension to z greater than 1 through a program of near-infrared and optical imaging.
Chandra Finds Most Distant X-ray Galaxy Cluster
NASA Astrophysics Data System (ADS)
2001-02-01
The most distant X-ray cluster of galaxies yet has been found by astronomers using NASA’s Chandra X-ray Observatory. Approximately 10 billion light years from Earth, the cluster 3C294 is 40 percent farther than the next most distant X-ray galaxy cluster. The existence of such a distant galaxy cluster is important for understanding how the universe evolved. "Distant objects like 3C294 provide snapshots to how these galaxy clusters looked billions of years ago," said Andrew Fabian of the Institute of Astronomy, Cambridge, England and lead author of the paper accepted for publication in the Monthly Notices of Britain’s Royal Astronomical Society. "These latest results help us better understand what the universe was like when it was only 20 percent of its current age." Chandra’s image reveals an hourglass-shaped region of X-ray emission centered on the previously known central radio source. This X-ray emission extends outward from the central galaxy for at least 300,000 light years and shows that the known radio source is in the central galaxy of a massive cluster. Scientists have long suspected that distant radio-emitting galaxies like 3C294 are part of larger groups of galaxies known as "clusters." However, radio data provides astronomers with only a partial picture of these distant objects. Confirmation of the existence of clusters at great distances - and, hence, at early stages of the universe - requires information from other wavelengths. Optical observations can be used to pinpoint individual galaxies, but X-ray data are needed to detect the hot gas that fills the space within the cluster. "Galaxy clusters are the largest gravitationally bound structures in the universe," said Fabian. "We do not expect to find many massive objects, such as the 3C294 cluster, in early times because structure is thought to grow from small scales to large scales." The vast clouds of hot gas that envelope galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until Chandra, X-ray telescopes have not had the needed sensitivity to identify and measure hot gas clouds in distant clusters. Carolin Crawford, Stefano Ettori and Jeremy Sanders of the Institute of Astronomy were also members of the team that observed 3C294 for 5.4 hours on October 29, 2000 with the Advanced CCD Imaging Spectrometer (ACIS). The ACIS X-ray camera was developed for NASA by Pennsylvania State University and Massachusetts Institute of Technology. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program for the Office of Space Science in Washington, DC. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
ASCA observations of distant clusters of galaxies.
NASA Astrophysics Data System (ADS)
Tsuru, T.; Koyama, K.; Hughes, J. P.; Arimoto, N.; Kii, T.; Hattori, M.
It is important not only in studies of clusters of galaxies but also in cosmological aspects to investigate the evolution of X-ray properties of clusters of galaxies. ASCA enables detailed spectral studies on distant clusters and the evolution of temperature for the first time. The authors present here "preliminary" results of ASCA observation of 17 distant (z = 0.14 - 0.55) clusters of galaxies. The sample includes: Cl0016+16 Abell 370, Abell 1995, Abell 959, ACGG 118, Zw 3136, EMSS 1305.4+2941, Abell 1851, Abell 963, Abell 2163, EMSS 0839.8+2938, Abell 665, Abell 1689, Abell 2218, Abell 586, Abell 1413, Abell 1895. The cosmological constants of H0 = 50 km/s/Mpc and q0 = 0.5 are adopted in this paper.
Physics of Galaxy Clusters and How it Affects Cosmological Tests
NASA Technical Reports Server (NTRS)
Vikhlinin, Alexey; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
We have worked on the analysis of the Chandra observations of the nearby and distant clusters of galaxies, and on the expansion of the sample of distant X-ray clusters based on the archival ROSAT PSPC data. Some of the scientific results are discussed.
Massive and Distant Clusters of WISE Survey (MaDCoWS)
NASA Astrophysics Data System (ADS)
Brodwin, Mark; MaDCoWS Collaboration
2018-06-01
The Massive and Distant Clusters of WISE Survey (MaDCoWS) is a comprehensive program to detect and characterize the most massive galaxy clusters in the Universe at z ~ 1, and is the only all-sky survey sensitive to galaxy clusters at this epoch. The foundation for this program is data from the NASA Wide-field Infrared Survey Explorer (WISE). The primary goal is to study the evolution of massive galaxies in the most overdense environments at z > 1 when star formation and AGN activity may be peaking in these structures. Spitzer follow-up imaging of 2000 MaDCoWS clusters has allowed us to select the richest and/or most distant clusters for detailed study. To date we have spectroscopically confirmed over 35 MaDCoWS clusters, spanning a wide range of masses (2-11 x 10^14 Msun), out to z = 1.5. This includes the discovery of the most massive z > 1.15 cluster found to date, as well as a cluster at z = 1.23 that is lensing a z = 2.22 supernova Ia. Multiwavelength follow-up observations of these distant clusters, currently underway, will permit several novel studies of galaxy evolution in rich cluster environments at z > 1.
The CfA-Rosat Survey of Distant Clusters of Galaxies
NASA Technical Reports Server (NTRS)
McNamara, Brian
1998-01-01
We (Vikhlinin, McNamara, Forman, Jones, Hornstrup, Quintana) have completed a new survey of distant clusters of galaxies, which we use to to study cluster evolution over cosmological timescales. The clusters were identified as extended X-ray sources in 650 ROSAT PSPC images of high Galactic latitude fields. Our catalog of approximately 230 extended X-ray sources covers 160 square degrees on the sky. Ours is the largest of the several ROSAT serendipitous cluster surveys in progress (e.g. SHARC, Rosati, WARPS etc.). Using V,R,I imagery obtained at several observatories, we find that greater than 90% of the X-ray sources are associated with distant clusters of galaxies. We have obtained spectroscopic redshifts for nearly 80 clusters in our catalog, and we have measured photometric redshifts for the remaining clusters. Our sample contains more than 20 clusters at z > 0.5. I will discuss the logN-logS relationship for our clusters. Because our large survey area, we are able to confirm the evolution of the most luminous distant clusters first seen in the Einstein Extended Medium Sensitivity Survey. In addition, I will discuss the relationships between optical richness, core radius, and X-ray luminosity for distant, X-ray-selected clusters.
History of Chandra X-Ray Observatory
2000-10-01
This most distant x-ray cluster of galaxies yet has been found by astronomers using Chandra X-ray Observatory (CXO). Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant x-ray galaxy cluster. The existence of such a faraway cluster is important for understanding how the universe evolved. CXO's image reveals an hourglass-shaped region of x-ray emissions centered on the previously known central radio source (seen in this image as the blue central object) that extends outward for 60,000 light- years. The vast clouds of hot gas that surround such galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until CXO, x-ray telescopes have not had the needed sensitivity to identify such distant clusters of galaxies. Galaxy clusters are the largest gravitationally bound structures in the universe. The intensity of the x-rays in this CXO image of 3C294 is shown as red for low energy x-rays, green for intermediate, and blue for the most energetic x-rays. (Photo credit: NASA/loA/A. Fabian et al)
Pandora Cluster Seen by Spitzer
2016-09-28
This image of galaxy cluster Abell 2744, also called Pandora's Cluster, was taken by the Spitzer Space Telescope. The gravity of this galaxy cluster is strong enough that it acts as a lens to magnify images of more distant background galaxies. This technique is called gravitational lensing. The fuzzy blobs in this Spitzer image are the massive galaxies at the core of this cluster, but astronomers will be poring over the images in search of the faint streaks of light created where the cluster magnifies a distant background galaxy. The cluster is also being studied by NASA's Hubble Space Telescope and Chandra X-Ray Observatory in a collaboration called the Frontier Fields project. In this image, light from Spitzer's infrared channels is colored blue at 3.6 microns and green at 4.5 microns. http://photojournal.jpl.nasa.gov/catalog/PIA20920
Galaxy Clusters, Near and Far, Have a Lot in Common
NASA Astrophysics Data System (ADS)
2005-04-01
Using two orbiting X-ray telescopes, a team of international astronomers has examined distant galaxy clusters in order to compare them with their counterparts that are relatively close by. Speaking today at the RAS National Astronomy Meeting in Birmingham, Dr. Ben Maughan (Harvard-Smithsonian Center for Astrophysics), presented the results of this new analysis. The observations indicate that, despite the great expansion that the Universe has undergone since the Big Bang, galaxy clusters both local and distant have a great deal in common. This discovery could eventually lead to a better understanding of how to "weigh" these enormous structures, and, in so doing, answer important questions about the nature and structure of the Universe. Clusters of galaxies, the largest known gravitationally-bound objects, are the knots in the cosmic web of structure that permeates the Universe. Theoretical models make predictions about the number, distribution and properties of these clusters. Scientists can test and improve models of the Universe by comparing these predictions with observations. The most powerful way of doing this is to measure the masses of galaxy clusters, particularly those in the distant Universe. However, weighing galaxy clusters is extremely difficult. One relatively easy way to weigh a galaxy cluster is to use simple laws ("scaling relations") to estimate its weight from properties that are easy to observe, like its luminosity (brightness) or temperature. This is like estimating someone's weight from their height if you didn't have any scales. Over the last 3 years, a team of researchers, led by Ben Maughan, has observed 11 distant galaxy clusters with ESA's XMM-Newton and NASA's Chandra X-ray Observatory. The clusters have redshifts of z = 0.6-1.0, which corresponds to distances of 6 to 8 billion light years. This means that we see them as they were when the Universe was half its present age. The survey included two unusual systems, one in which two massive clusters are merging and another extremely massive cluster which appears very "relaxed" and undisturbed. The X-ray data allowed the scientists to measure the temperatures and luminosities of the gas in the clusters. They were then able to infer their total masses, which varied between 200 and 1,100 times the mass of our Milky Way galaxy. These measurements were then used to test whether galaxy clusters of different sizes and located at different distances from us are simply scaled versions of each other -- a condition known as being "self-similar." This is an important characteristic for astronomers to identify if they hope to get the true weights of galaxy clusters. "For example, chocolate bars are strongly self-similar," said Maughan. "If you shrank a king-size bar to a fun-size bar, they would be identical versions of each other but just different sizes." "However, if you shrank a castle to the size of a bungalow, they would be very different structures, despite being the same size. This means that they are not strongly self-similar objects." Another possible type of relationship between clusters is what scientists call "weakly self-similar." In this case, galaxy clusters in the distant universe and those nearby are almost identical to each other, but not exactly the same. (The only differences between them can be accounted for by the expansion of the Universe since the Big Bang.) Although astronomers have known for some time that galaxy clusters are not strongly self-similar, the question of whether or not they are weakly self-similar has remained open. The new results show that as long as astronomers take into account the continuous expansion of the Universe, then galaxy clusters are, in fact, weakly self-similar. This means that the same scaling relations used to weigh nearby galaxy clusters hold true for these very distant clusters. "Our results mean that weighing distant galaxy clusters could become as easy as converting from Fahrenheit to Celsius," said Maughan. "This will help to answer important questions about the nature and structure of the Universe." The other members of the team were: Laurence Jones (University of Birmingham, UK) Harald Ebeling (Institute for Astronomy, HI, USA), and Caleb Scharf (Columbia Astrophysics Laboratory, NY, USA). The observations were made with the European Photon Imaging Camera (EPIC) on XMM and the Advanced Camera for Imaging and Spectroscopy (ACIS) on Chandra. They were part of the WARPS survey of distant galaxy clusters detected by chance in observations made with the UK-US-Dutch ROSAT X-ray satellite. Additional information and images are available at: http://www.sr.bham.ac.uk/~habib/nampr/
Gravitational Lensing by Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Tyson, J.; Murdin, P.
2000-11-01
CLUSTERS OF GALAXIES are massive and relatively rare objects containing hundreds of galaxies. Their huge mass—dominated by DARK MATTER—bends light from all background objects, systematically distorting the images of thousands of distant galaxies (shear). This observed gravitational lens distortion can be inverted to produce an `image' of the mass in the foreground cluster of galaxies. Most of the...
NASA Astrophysics Data System (ADS)
Willis, J. P.; Ramos-Ceja, M. E.; Muzzin, A.; Pacaud, F.; Yee, H. K. C.; Wilson, G.
2018-07-01
We present a comparison of two samples of z> 0.8 galaxy clusters selected using different wavelength-dependent techniques and examine the physical differences between them. We consider 18 clusters from the X-ray-selected XMM Large Scale Structure (LSS) distant cluster survey and 92 clusters from the optical-mid-infrared (MIR)-selected Spitzer Adaptation of the Red Sequence Cluster survey (SpARCS) cluster survey. Both samples are selected from the same approximately 9 sq deg sky area and we examine them using common XMM-Newton, Spitizer Wide-Area Infrared Extra-galactic (SWIRE) survey, and Canada-France-Hawaii Telescope Legacy Survey data. Clusters from each sample are compared employing aperture measures of X-ray and MIR emission. We divide the SpARCS distant cluster sample into three sub-samples: (i) X-ray bright, (ii) X-ray faint, MIR bright, and (iii) X-ray faint, MIR faint clusters. We determine that X-ray- and MIR-selected clusters display very similar surface brightness distributions of galaxy MIR light. In addition, the average location and amplitude of the galaxy red sequence as measured from stacked colour histograms is very similar in the X-ray- and MIR-selected samples. The sub-sample of X-ray faint, MIR bright clusters displays a distribution of brightest cluster galaxy-barycentre position offsets which extends to higher values than all other samples. This observation indicates that such clusters may exist in a more disturbed state compared to the majority of the distant cluster population sampled by XMM-LSS and SpARCS. This conclusion is supported by stacked X-ray images for the X-ray faint, MIR bright cluster sub-sample that display weak, centrally concentrated X-ray emission, consistent with a population of growing clusters accreting from an extended envelope of material.
NASA Astrophysics Data System (ADS)
Willis, J. P.; Ramos-Ceja, M. E.; Muzzin, A.; Pacaud, F.; Yee, H. K. C.; Wilson, G.
2018-04-01
We present a comparison of two samples of z > 0.8 galaxy clusters selected using different wavelength-dependent techniques and examine the physical differences between them. We consider 18 clusters from the X-ray selected XMM-LSS distant cluster survey and 92 clusters from the optical-MIR selected SpARCS cluster survey. Both samples are selected from the same approximately 9 square degree sky area and we examine them using common XMM-Newton, Spitzer-SWIRE and CFHT Legacy Survey data. Clusters from each sample are compared employing aperture measures of X-ray and MIR emission. We divide the SpARCS distant cluster sample into three sub-samples: a) X-ray bright, b) X-ray faint, MIR bright, and c) X-ray faint, MIR faint clusters. We determine that X-ray and MIR selected clusters display very similar surface brightness distributions of galaxy MIR light. In addition, the average location and amplitude of the galaxy red sequence as measured from stacked colour histograms is very similar in the X-ray and MIR-selected samples. The sub-sample of X-ray faint, MIR bright clusters displays a distribution of BCG-barycentre position offsets which extends to higher values than all other samples. This observation indicates that such clusters may exist in a more disturbed state compared to the majority of the distant cluster population sampled by XMM-LSS and SpARCS. This conclusion is supported by stacked X-ray images for the X-ray faint, MIR bright cluster sub-sample that display weak, centrally-concentrated X-ray emission, consistent with a population of growing clusters accreting from an extended envelope of material.
Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4–0.9] redshift range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guennou, L.; et al.
2014-01-17
Context. The DAFT/FADA survey is based on the study of ~90 rich(masses found in the literature >2 x 10^14 M_⊙)and moderately distant clusters (redshifts 0.4 < z < 0.9), all withHST imaging data available. This survey has two main objectives: to constrain dark energy(DE) using weak lensing tomography on galaxy clusters and to build a database (deepmulti-band imaging allowing photometric redshift estimates, spectroscopic data, X-raydata) of rich distant clusters to study their properties.
HUBBLE OPENS ITS EYE ON THE UNIVERSE AND CAPTURES A COSMIC MAGNIFYING GLASS
NASA Technical Reports Server (NTRS)
2002-01-01
Scanning the heavens for the first time since the successful December 1999 servicing mission, NASA's Hubble Space Telescope has imaged a giant, cosmic magnifying glass, a massive cluster of galaxies called Abell 2218. This 'hefty' cluster resides in the constellation Draco, some 2 billion light-years from Earth. The cluster is so massive that its enormous gravitational field deflects light rays passing through it, much as an optical lens bends light to form an image. This phenomenon, called gravitational lensing, magnifies, brightens, and distorts images from faraway objects. The cluster's magnifying powers provides a powerful 'zoom lens' for viewing distant galaxies that could not normally be observed with the largest telescopes. This useful phenomenon has produced the arc-shaped patterns found throughout the Hubble picture. These 'arcs' are the distorted images of very distant galaxies, which lie 5 to 10 times farther than the lensing cluster. This distant population existed when the universe was just a quarter of its present age. Through gravitational lensing these remote objects are magnified, enabling scientists to study them in more detail. This analysis provides a direct glimpse of how star-forming regions are distributed in remote galaxies and yields other clues to the early evolution of galaxies. The picture is dominated by spiral and elliptical galaxies. Resembling a string of tree lights, the biggest and brightest galaxies are members of the foreground cluster. Researchers are intrigued by a tiny red dot just left of top center. This dot may be an extremely remote object made visible by the cluster's magnifying powers. Further investigation is needed to confirm the object's identity. The Hubble telescope first viewed this cluster in 1994, producing one of the most spectacular demonstrations of gravitational lensing up to that time. Scientists who analyzed that black-and-white picture discovered more than 50 remote, young galaxies. Hubble's latest multicolor image of the cluster will allow astronomers to probe in greater detail the internal structure of these early galaxies. The color picture already reveals several arc-shaped features that are embedded in the cluster and cannot be easily seen in the black-and-white image. The colors in this picture yield clues to the ages, distances, and temperatures of stars, the stuff of galaxies. Blue pinpoints hot young stars. The yellow-white color of several of the galaxies represents the combined light of many stars. Red identifies cool stars, old stars, and the glow of stars in distant galaxies. This view is only possible by combining Hubble's unique image quality with the rare lensing effect provided by the magnifying cluster. The picture was taken Jan. 11 to 13, 2000, with the Wide Field and Planetary Camera 2. Credits: NASA, Andrew Fruchter (STScI), and the ERO team (STScI, ST-ECF)
NASA Technical Reports Server (NTRS)
Jefferies, J. T.
1971-01-01
A large number of distant clusters of galaxies was examined for the presence of a bright compact galaxy or blue stellar object. Nearly 600 square degrees of sky were searched using glass copies of the National Geographic Society-Palomar Observatory Sky Survey plates, and over 20 fields were selected for observation. The objects were examined for infrared and ultraviolet excesses, using wideband filter photography and spectroscopy. Initial findings include a faint, distant cluster of galaxies near the quasi-stellar radio source 4C 37.43 with a red shift of 0.370. One of these galaxies has an emission line at 6895 A, indicating a possible red shift of 0.377 of the 5007 A line of (0 III).
ASCA Observations of Distant Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Tsuru, T. G.
We present results from ASCA observation of distant clusters of galaxies. The observed clusters are as follows; CL0016+16, A370, A959, AC118, Zw3136, MS1305.4+2941, A1851, A963, A2163, MS0839.8+2938, A665, A1689, A2218, A586 and A1413. The covering range of the redshifts is 0.14-0.55 and their average red-shift is 0.245. The negative correlation between the metal abundance and the plasma temperature seen in near clusters is also detected in the distant clusters. No apparent difference between the two correlation. It suggests no strong metal evolution has been made from z = 0.2-0.3 to z = 0. Data of velocity dispersion is available for seven clusters among our samples. All the betaspec of them are above the average of near clusters. The average betaspec for the distant clusters obtained to be betaspec = 1.85 with an rms scatter of 0.62. The value is significantly higher than the near clusters' value of betaspec = 0.94 plus or minus 0.08 with an rms scatter of 0.46.
Galaxies Gather at Great Distances
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Distant Galaxy Cluster Infrared Survey Poster [figure removed for brevity, see original site] [figure removed for brevity, see original site] Bird's Eye View Mosaic Bird's Eye View Mosaic with Clusters [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] 9.1 Billion Light-Years 8.7 Billion Light-Years 8.6 Billion Light-Years Astronomers have discovered nearly 300 galaxy clusters and groups, including almost 100 located 8 to 10 billion light-years away, using the space-based Spitzer Space Telescope and the ground-based Mayall 4-meter telescope at Kitt Peak National Observatory in Tucson, Ariz. The new sample represents a six-fold increase in the number of known galaxy clusters and groups at such extreme distances, and will allow astronomers to systematically study massive galaxies two-thirds of the way back to the Big Bang. A mosaic portraying a bird's eye view of the field in which the distant clusters were found is shown at upper left. It spans a region of sky 40 times larger than that covered by the full moon as seen from Earth. Thousands of individual images from Spitzer's infrared array camera instrument were stitched together to create this mosaic. The distant clusters are marked with orange dots. Close-up images of three of the distant galaxy clusters are shown in the adjoining panels. The clusters appear as a concentration of red dots near the center of each image. These images reveal the galaxies as they were over 8 billion years ago, since that's how long their light took to reach Earth and Spitzer's infrared eyes. These pictures are false-color composites, combining ground-based optical images captured by the Mosaic-I camera on the Mayall 4-meter telescope at Kitt Peak, with infrared pictures taken by Spitzer's infrared array camera. Blue and green represent visible light at wavelengths of 0.4 microns and 0.8 microns, respectively, while red indicates infrared light at 4.5 microns. Kitt Peak National Observatory is part of the National Optical Astronomy Observatory in Tuscon, Ariz.Galaxy evolution in clusters since z~1
NASA Astrophysics Data System (ADS)
Aragon-Salamanca, Alfonso
2010-09-01
Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.
Galaxy Evolution in Clusters Since z ~ 1
NASA Astrophysics Data System (ADS)
Aragón-Salamanca, A.
Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the Universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.
A cooling flow in a high-redshift, X-ray-selected cluster of galaxies
NASA Astrophysics Data System (ADS)
Nesci, Roberto; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.; Perola, Giuseppe C.; Schild, Rudolph E.; Wolter, Anna
1989-09-01
The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.
A cooling flow in a high-redshift, X-ray-selected cluster of galaxies
NASA Technical Reports Server (NTRS)
Nesci, Roberto; Perola, Giuseppe C.; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.
1989-01-01
The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.
"A Richness Study of 14 Distant X-Ray Clusters from the 160 Square Degree Survey"
NASA Technical Reports Server (NTRS)
Jones, Christine; West, Donald (Technical Monitor)
2001-01-01
We have measured the surface density of galaxies toward 14 X-ray-selected cluster candidates at redshifts z(sub i) 0.46, and we show that they are associated with rich galaxy concentrations. These clusters, having X-ray luminosities of Lx(0.5-2 keV) approx. (0.5 - 2.6) x 10(exp 44) ergs/ sec are among the most distant and luminous in our 160 deg(exp 2) ROSAT Position Sensitive Proportional Counter cluster survey. We find that the clusters range between Abell richness classes 0 and 2 and have a most probable richness class of 1. We compare the richness distribution of our distant clusters to those for three samples of nearby clusters with similar X-ray luminosities. We find that the nearby and distant samples have similar richness distributions, which shows that clusters have apparently not evolved substantially in richness since redshift z=0.5. There is, however, a marginal tendency for the distant clusters to be slightly poorer than nearby clusters, although deeper multicolor data for a large sample would be required to confirm this trend. We compare the distribution of distant X-ray clusters in the L(sub X)-richness plane to the distribution of optically selected clusters from the Palomar Distant Cluster Survey. The optically selected clusters appear overly rich for their X-ray luminosities, when compared to X-ray-selected clusters. Apparently, X-ray and optical surveys do not necessarily sample identical mass concentrations at large redshifts. This may indicate the existence of a population of optically rich clusters with anomalously low X-ray emission, More likely, however, it reflects the tendency for optical surveys to select unvirialized mass concentrations, as might be expected when peering along large-scale filaments.
A cooling flow in a high-redshift, X-ray-selected cluster of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesci, R.; Perola, G.C.; Gioia, I.M.
The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of themore » most distant cooling flow clusters known to date. 28 refs.« less
GRAVITATIONAL LENS CAPTURES IMAGE OF PRIMEVAL GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
This Hubble Space Telescope image shows several blue, loop-shaped objects that actually are multiple images of the same galaxy. They have been duplicated by the gravitational lens of the cluster of yellow, elliptical and spiral galaxies - called 0024+1654 - near the photograph's center. The gravitational lens is produced by the cluster's tremendous gravitational field that bends light to magnify, brighten and distort the image of a more distant object. How distorted the image becomes and how many copies are made depends on the alignment between the foreground cluster and the more distant galaxy, which is behind the cluster. In this photograph, light from the distant galaxy bends as it passes through the cluster, dividing the galaxy into five separate images. One image is near the center of the photograph; the others are at 6, 7, 8, and 2 o'clock. The light also has distorted the galaxy's image from a normal spiral shape into a more arc-shaped object. Astronomers are certain the blue-shaped objects are copies of the same galaxy because the shapes are similar. The cluster is 5 billion light-years away in the constellation Pisces, and the blue-shaped galaxy is about 2 times farther away. Though the gravitational light-bending process is not new, Hubble's high resolution image reveals structures within the blue-shaped galaxy that astronomers have never seen before. Some of the structures are as small as 300 light-years across. The bits of white imbedded in the blue galaxy represent young stars; the dark core inside the ring is dust, the material used to make stars. This information, together with the blue color and unusual 'lumpy' appearance, suggests a young, star-making galaxy. The picture was taken October 14, 1994 with the Wide Field Planetary Camera-2. Separate exposures in blue and red wavelengths were taken to construct this color picture. CREDIT: W.N. Colley and E. Turner (Princeton University), J.A. Tyson (Bell Labs, Lucent Technologies) and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.
Distant Galaxy Clusters Hosting Extreme Central Galaxies
NASA Astrophysics Data System (ADS)
McDonald, Michael
2014-09-01
The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.
Reconstructing galaxy histories from globular clusters.
West, Michael J; Côté, Patrick; Marzke, Ronald O; Jordán, Andrés
2004-01-01
Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.
Galaxy Evolution Viewed as Functions of Environment and Mass
NASA Astrophysics Data System (ADS)
Kodama, Tadayuki; Tanaka, Masayuki; Tanaka, Ichi; Kajisawa, Masaru
We present two large surveys of distant clusters currently being carried out with Subaru, making use of its great capability of wide-field study both in the optical and in the near-infrared. The optical surveys, called PISCES, have mapped out large scale structures in and around 8 distant clusters at 0.4 < z <1.3, composed of multiple filaments and clumps extended over 15-30 Mpc scale. From the photometric and spectroscopic properties of galaxies over a wide range in environment, we find that the truncation of galaxies is seen in the outskirts of clusters rather than in the cluster cores.We also see a clear environmental dependence of the down-sizing (progressively later quenching of star formation in smaller galaxies). The near-infrared surveys are being conducted with a new wide-field instrument targeting proto-clusters around high-zradio-loud galaxies up to z ~4. Most of these field are known to show a large number of Lyαand/or Hαemitters at the same redshifts of the radio galaxies. We see a clear excess of near-infrared selected galaxies (JHK s -selected galaxies as well as DRG) in these fields, and they are indeed proto-clusters with not only young emitters but also evolved populations. Spatial distribution of such NIR selected galaxies is filamentary and track similar structures traced by the emitters. There is an hint that the bright-end of the red sequence first appeared between z= 3 and 2.
A Proposal to Investigate Outstanding Problems in Astronomy
NASA Technical Reports Server (NTRS)
Ford, Holland
2003-01-01
During the past year the ACS science team has concentrated on analyzing ACS observations, writing papers, and disseminating our results to the astronomy community at conferences and workshops around the world. We also have put considerable effort in getting our results to the public via public lectures and through press releases. Taking a very broad view of our program, we are investigating the evolution of galaxies and clusters of galaxies from their birth, approximately one billion years after the beginning of the Universe, to the present. We have found and characterized a population of galaxies that are no more than 1.4 billion years old. These may well be the Universe s first generation of infant galaxies. Looking at the Universe 500,000 years later, we see what appears to be a cluster of galaxies just beginning to form (a proto-cluster) around a luminous radio galaxy. Moving forward in time and closer to the present, we are studying clusters of galaxies that are less than half the age of the Universe. Our observations and analysis lead us to the important conclusion that the elliptical galaxies in these clusters must have had their last significant star formation some three billion years earlier, which is about the time when the proto-cluster was forming. Coming still closer to home, we are observing nearby massive clusters of galaxies that are approximately 12 billion years old. The gravity from these large aggregates of dark and luminous matter is so strong it warps space-time itself, and makes the cluster act as a cosmic telescope that magnifies the distant galaxies behind the cluster. We used the magnified (or lensed) galaxies to map the distribution of the dominant matter within the clusters, which is the so-called dark matter (the matter is invisible, and its nature is unknown). We also are using these cosmic telescopes to study the distant lensed galaxies that would otherwise be too small and too faint to be seen even by Hubble and the ACS.
Chandra Catches "Piranha" Black Holes
NASA Astrophysics Data System (ADS)
2007-07-01
Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never had good evidence until now," said co-author Paul Martini, also of OSU. "This can help solve a couple of mysteries about galaxy clusters." One mystery is why there are so many blue, star-forming galaxies in young, distant clusters and fewer in nearby, older clusters. AGN are believed to expel or destroy cool gas in their host galaxy through powerful eruptions from the black hole. This may stifle star formation and the blue, massive stars will then gradually die off, leaving behind only the old, redder stars. This process takes about a billion years or more to take place, so a dearth of star-forming galaxies is only noticeable for older clusters. The process that sets the temperature of the hot gas in clusters when they form is also an open question. These new results suggest that even more AGN may have been present when most clusters were forming about ten billion years ago. Early heating of a cluster by large numbers of AGN can have a significant, long-lasting effect on the structure of a cluster by "puffing up" the gas. "In a few nearby clusters we've seen evidence for huge eruptions generated by supermassive black holes. But this is sedate compared to what might be going on in younger clusters," said Eastman. These results appeared in the July 20th issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
The clustering evolution of distant red galaxies in the GOODS-MUSIC sample
NASA Astrophysics Data System (ADS)
Grazian, A.; Fontana, A.; Moscardini, L.; Salimbeni, S.; Menci, N.; Giallongo, E.; de Santis, C.; Gallozzi, S.; Nonino, M.; Cristiani, S.; Vanzella, E.
2006-07-01
Aims.We study the clustering properties of Distant Red Galaxies (DRGs) to test whether they are the progenitors of local massive galaxies. Methods.We use the GOODS-MUSIC sample, a catalog of ~3000 Ks-selected galaxies based on VLT and HST observation of the GOODS-South field with extended multi-wavelength coverage (from 0.3 to 8~μm) and accurate estimates of the photometric redshifts to select 179 DRGs with J-Ks≥ 1.3 in an area of 135 sq. arcmin.Results.We first show that the J-Ks≥ 1.3 criterion selects a rather heterogeneous sample of galaxies, going from the targeted high-redshift luminous evolved systems, to a significant fraction of lower redshift (1
Photometric Signatures of Starbursts in Interacting Galaxies and the Butcher-Oemler Effect
NASA Technical Reports Server (NTRS)
Rakos, Karl D.; Maindl, Thomas I.; Schombert, James M.
1996-01-01
This paper presents new and synthetic narrow band photometry of ellipticals, spirals, Seyferts and interacting galaxies in an attempt to identify the cause of the unusually high fraction of blue cluster galaxies in distant clusters (the Butcher-Oemler Effect). The properties and distribution of the low redshift sample specifically points to starbursts as the origin of the blue narrow band colors in interacting Arp galaxies.
The Most Distant X-Ray Clusters
NASA Technical Reports Server (NTRS)
Dickinson, Mark
1999-01-01
In this program we have used ROSAT (Roentgen Satellite Mission) to observe X-ray emission around several high redshift radio galaxies in a search for extended, hot plasma which may indicate the presence of a rich galaxy cluster. When this program was begun, massive, X-ray emitting galaxy clusters were known to exist out to to z=0.8, but no more distant examples had been identified. However, we had identified several apparently rich clusters around 3CR radio galaxies at z greater than 0.8, and hoped to use ROSAT to confirm the nature of these structures as massive, virialized clusters. We have written up our results and submitted them as a paper to the Astrophysical Journal. This paper has been refereed and requires some significant revisions to accommodate the referees comments. We are in the process of doing this, adding some additional analysis as well. We will resubmit the paper early in 2000, and hopefully will meet with the referee's approval. We are including three copies of the submitted paper here, although it has not yet been accepted for publication.
Images From Hubbles's ACS Tell A Tale Of Two Record-Breaking Galaxy Clusters
NASA Astrophysics Data System (ADS)
2004-01-01
Looking back in time nearly 9 billion years, an international team of astronomers found mature galaxies in a young universe. The galaxies are members of a cluster of galaxies that existed when the universe was only 5 billion years old, or about 35 percent of its present age. This compelling evidence that galaxies must have started forming just after the big bang was bolstered by observations made by the same team of astronomers when they peered even farther back in time. The team found embryonic galaxies a mere 1.5 billion years after the birth of the cosmos, or 10 percent of the universe's present age. The "baby galaxies" reside in a still-developing cluster, the most distant proto-cluster ever found. The Advanced Camera for Surveys (ACS) aboard NASA's Hubble Space Telescope was used to make observations of the massive cluster, RDCS 1252.9-2927, and the proto-cluster, TN J1338-1942. Observations by NASA's Chandra X-ray Observatory yielded the mass and heavy element content of RDCS 1252, the most massive known cluster for that epoch. These observations are part of a coordinated effort by the ACS science team to track the formation and evolution of clusters of galaxies over a broad range of cosmic time. The ACS was built especially for studies of such distant objects. These findings further support observations and theories that galaxies formed relatively early in the history of the cosmos. The existence of such massive clusters in the early universe agrees with a cosmological model wherein clusters form from the merger of many sub-clusters in a universe dominated by cold dark matter. The precise nature of cold dark matter, however, is still not known. The first Hubble study estimated that galaxies in RDCS 1252 formed the bulk of their stars more than 11 billion years ago (at redshifts greater than 3). The results were published in the Oct. 20, 2003 issue of the Astrophysical Journal. The paper's lead author is John Blakeslee of the Johns Hopkins University in Baltimore, Md. Optical Image of RDCS 1252.9-2927 HST Optical Image of RDCS 1252.9-2927 The second Hubble study uncovered, for the first time, a proto-cluster of "infant galaxies" that existed more than 12 billion years ago (at redshift 4.1). These galaxies are so young that astronomers can still see a flurry of stars forming within them. The galaxies are grouped around one large galaxy. These results will be published in the Jan. 1, 2004 issue of Nature. The paper's lead author is George Miley of Leiden Observatory in the Netherlands. "Until recently people didn't think that clusters existed when the universe was only about 5 billion years old," Blakeslee explained. "Even if there were such clusters," Miley added, "until recently astronomers thought it was almost impossible to find clusters that existed 8 billion years ago. In fact, no one really knew when clustering began. Now we can witness it." Both studies led the astronomers to conclude that these systems are the progenitors of the galaxy clusters seen today. "The cluster RDCS 1252 looks like a present-day cluster," said Marc Postman of the Space Telescope Science Institute in Baltimore, Md., and co-author of both research papers. "In fact, if you were to put it next to a present-day cluster, you wouldn't know which is which." A Tale of Two Clusters How can galaxies grow so fast after the big bang? "It is a case of the rich getting richer," Blakeslee said. "These clusters grew quickly because they are located in very dense regions, so there is enough material to build up the member galaxies very fast." This idea is strengthened by X-ray observations of the massive cluster RDCS 1252. Chandra and the European Space Agency's XMM-Newton provided astronomers with the most accurate measurements to date of the properties of an enormous cloud of hot gas that pervades the massive cluster. This 160-million-degree Fahrenheit (70-million-degree Celsius) gas is a reservoir of most of the heavy elements in the cluster and an accurate tracer of its total mass. A paper by Piero Rosati of the European Southern Observatory (ESO) and colleagues that presents the X-ray observations of RDCS 1252 will be published in January 2004 in the Astronomical Journal. "Chandra's sharp vision resolved the shape of the hot gas halo and showed that RDCS 1252 is very mature for its age," said Rosati, who discovered the cluster with the ROSAT X-ray telescope. RDCS 1252 may contain many thousands of galaxies. Most of these galaxies, however, are too faint to detect. But the powerful "eyes" of the ACS pinpointed several hundred of them. Observations using ESO's Very Large Telescope (VLT) provided a precise measurement of the distance to the cluster. The ACS enabled the researchers to accurately determine the shapes and colors of the 100 galaxies, providing information on the ages of the stars residing in them. The ACS team estimated that most of the stars in the cluster were already formed when the universe was about 2 billion years old. X-ray observations, furthermore, showed that 5 billion years after the big bang the surrounding hot gas had been enriched with heavy elements from these stars and had been swept away from the galaxies. If most of the galaxies in RDCS 1252 have reached maturity and are settling into a quiet adulthood, the forming galaxies in the distant proto-cluster are in their energetic, unruly youth. The proto-cluster TN J1338 contains a massive embryonic galaxy surrounded by smaller developing galaxies, which look like dots in the Hubble image. The dominant galaxy is producing spectacular radio-emitting jets, fueled by a supermassive black hole deep within the galaxy's nucleus. Interaction between these jets and the gas can stimulate a torrent of star birth. The energetic radio galaxy's discovery by radio telescopes prompted astronomers to hunt for the smaller galaxies that make up the bulk of the cluster. "Massive clusters are the cities of the universe, and the radio galaxies within them are the smokestacks we can use for finding them when they are just beginning to form," Miley said. The two findings underscore the power of combining observations from many different telescopes that provided views of the distant universe in a range of wavelengths. Hubble's advanced camera provided critical information on the structure of both distant galaxy clusters. Chandra's and XMM-Newton's X-ray vision furnished the essential measurements of the primordial gas in which the galaxies in RDCS 1252 are embedded, and accurate estimates of the total mass contained within that cluster. Large ground-based telescopes, like the VLT, provided precise measurements of the distance of both clusters as well as the chemical composition of the galaxies in them. The ACS team is conducting further observations of distant clusters to solidify our understanding of how these young clusters and their galaxies evolve into the shape of things seen today. Their planned observations include using near-infrared observations to analyze the star-formation rates in some of the target clusters, including RDCS 1252, to measure the cosmic history of star formation in these massive structures. The team is also searching the regions around several ultra-distant radio galaxies for additional examples of proto-clusters. The team's ultimate scientific goal is to establish a complete picture of cluster evolution beginning with the formation at the earliest epochs and detailing the evolution up to today. Electronic image files and additional information are available at http://hubblesite.org/newscenter/newsdesk/archive/releases/2004/01/ The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA).
Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift.
Emonts, B H C; Lehnert, M D; Villar-Martín, M; Norris, R P; Ekers, R D; van Moorsel, G A; Dannerbauer, H; Pentericci, L; Miley, G K; Allison, J R; Sadler, E M; Guillard, P; Carilli, C L; Mao, M Y; Röttgering, H J A; De Breuck, C; Seymour, N; Gullberg, B; Ceverino, D; Jagannathan, P; Vernet, J; Indermuehle, B T
2016-12-02
The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy-a massive galaxy in a distant protocluster-is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift. Copyright © 2016, American Association for the Advancement of Science.
Ages of Extragalactic Intermediate-Age Star Clusters
NASA Technical Reports Server (NTRS)
Flower, P. J.
1983-01-01
A dating technique for faint, distant star clusters observable in the local group of galaxies with the space telescope is discussed. Color-magnitude diagrams of Magellanic Cloud clusters are mentioned along with the metallicity of star clusters.
Gravitational lensing by clusters of galaxies - Constraining the mass distribution
NASA Technical Reports Server (NTRS)
Miralda-Escude, Jordi
1991-01-01
The possibility of placing constraints on the mass distribution of a cluster of galaxies by analyzing the cluster's gravitational lensing effect on the images of more distant galaxies is investigated theoretically in the limit of weak distortion. The steps in the proposed analysis are examined in detail, and it is concluded that detectable distortion can be produced by clusters with line-of-sight velocity dispersions of over 500 km/sec. Hence it should be possible to determine (1) the cluster center position (with accuracy equal to the mean separation of the background galaxies), (2) the cluster-potential quadrupole moment (to within about 20 percent of the total potential if velocity dispersion is 1000 km/sec), and (3) the power law for the outer-cluster density profile (if enough background galaxies in the surrounding region are observed).
Ten billion years of brightest cluster galaxy alignments
NASA Astrophysics Data System (ADS)
West, Michael J.; de Propris, Roberto; Bremer, Malcolm N.; Phillipps, Steven
2017-07-01
A galaxy's orientation is one of its most basic observable properties. Astronomers once assumed that galaxies are randomly oriented in space; however, it is now clear that some have preferred orientations with respect to their surroundings. Chief among these are giant elliptical galaxies found in the centres of rich galaxy clusters. Numerous studies have shown that the major axes of these galaxies often share the same orientation as the surrounding matter distribution on larger scales1,2,3,4,5,6. Using Hubble Space Telescope observations of 65 distant galaxy clusters, we show that similar alignments are seen at earlier epochs when the Universe was only one-third of its current age. These results suggest that the brightest galaxies in clusters are the product of a special formation history, one influenced by development of the cosmic web over billions of years.
A Deep Chandra Observation of the Distant Galaxy Cluster MS 1137.5+6625
NASA Astrophysics Data System (ADS)
Grego, Laura; Vrtilek, J. M.; Van Speybroeck, Leon; David, Laurence P.; Forman, William; Carlstrom, John E.; Reese, Erik D.; Joy, Marshall K.
2004-06-01
We present results from a deep Chandra observation of MS 1137.5+66, a distant (z=0.783) and massive cluster of galaxies. Only a few similarly massive clusters are currently known at such high redshifts; accordingly, this observation provides much needed information on the dynamical state of these rare systems. The cluster appears both regular and symmetric in the X-ray image. However, our analysis of the spectral and spatial X-ray data in conjunction with interferometric Sunyaev-Zel'dovich effect data and published deep optical imaging suggests that the cluster has a fairly complex structure. The angular diameter distance we calculate from the Chandra and Sunyaev-Zel'dovich effect data assuming an isothermal, spherically symmetric cluster implies a low value for the Hubble constant for which we explore possible explanations.
SACS: Spitzer Archival Cluster Survey
NASA Astrophysics Data System (ADS)
Stern, Daniel
Emerging from the cosmic web, galaxy clusters are the most massive gravitationally bound structures in the universe. Thought to have begun their assembly at z > 2, clusters provide insights into the growth of large-scale structure as well as the physics that drives galaxy evolution. Understanding how and when the most massive galaxies assemble their stellar mass, stop forming stars, and acquire their observed morphologies in these environments remain outstanding questions. The redshift range 1.3 < z < 2 is a key epoch in this respect: elliptical galaxies start to become the dominant population in cluster cores, and star formation in spiral galaxies is being quenched. Until recently, however, this redshift range was essentially unreachable with available instrumentation, with clusters at these redshifts exceedingly challenging to identify from either ground-based optical/nearinfrared imaging or from X-ray surveys. Mid-infrared (MIR) imaging with the IRAC camera on board of the Spitzer Space Telescope has changed the landscape. High-redshift clusters are easily identified in the MIR due to a combination of the unique colors of distant galaxies and a negative k-correction in the 3-5 μm range which makes such galaxies bright. Even 90-sec observations with Spitzer/IRAC, a depth which essentially all extragalactic observations in the archive achieve, is sufficient to robustly detect overdensities of L* galaxies out to z~2. Here we request funding to embark on a ambitious scientific program, the “SACS: Spitzer Archival Cluster Survey”, a comprehensive search for the most distant galaxy clusters in all Spitzer/IRAC extragalactic pointings available in the archive. With the SACS we aim to discover ~2000 of 1.3 < z < 2.5 clusters, thus provide the ultimate catalog for high-redshift MIR selected clusters: a lasting legacy for Spitzer. The study we propose will increase by more than a factor of 10 the number of high-redshift clusters discovered by all previous surveys combined, providing a high-purity, uniform sample. Matching the Spitzer/IRAC-selected clusters with data at similar and longer wavelengths available in the archive (WISE 3- 5μm, Spitzer/MIPS 24μm or Herschel/SPIRE 250μm data) we will be also able to study the dependence on the environment of star formation and AGN activity out to z~2, and to study the effect of star-forming galaxies and AGNs on cosmological results from ongoing Sunyaev-Zel'dovich (SZ) and X-ray cluster surveys. The identified clusters will be valuable for both astrophysics and cosmology. In terms of astrophysics, the redshift probed by the MIR color selection targets a key epoch in cluster development, when star formation is shutting down and the galaxies are becoming passive. Massive clusters also distort space-time around them, creating powerful gravitational telescopes that lens the distant universe. This both allows detailed studies of the lensed objects with otherwise unachievable sensitivity, as well as provides a unique probe of the mass distribution in the lensing cluster. In terms of cosmology, clusters are the most massive structures in the universe, and their space density is sensitive to basic cosmological parameters. Clusters identified by this program will become a lasting legacy of Spitzer, providing exciting targets for Chandra, Hubble, James Webb Space Telescope (JWST), Astro-H, Athena, as well as future 30-m class ground-based telescopes (e.g., GMT, ELT, TMT). The upcoming large-scale, space-based surveys of eROSITA, Euclid, and WFIRST all have distant cluster studies as key scientific goals. Our proposed survey will provide new high redshift targets for those satellites, enabling unique, exciting multi-wavelength studies of the Spitzer-selected sample, as well as a training set to identify additional high-redshift clusters outside of the Spitzer footprint.
APEX Snaps First Close-up of Star Factories in Distant Universe
NASA Astrophysics Data System (ADS)
2010-03-01
For the first time, astronomers have made direct measurements of the size and brightness of regions of star-birth in a very distant galaxy, thanks to a chance discovery with the APEX telescope. The galaxy is so distant, and its light has taken so long to reach us, that we see it as it was 10 billion years ago. A cosmic "gravitational lens" is magnifying the galaxy, giving us a close-up view that would otherwise be impossible. This lucky break reveals a hectic and vigorous star-forming life for galaxies in the early Universe, with stellar nurseries forming one hundred times faster than in more recent galaxies. The research is published online today in the journal Nature. Astronomers were observing a massive galaxy cluster [1] with the Atacama Pathfinder Experiment (APEX) telescope, using submillimetre wavelengths of light, when they found a new and uniquely bright galaxy, more distant than the cluster and the brightest very distant galaxy ever seen at submillimetre wavelengths. It is so bright because the cosmic dust grains in the galaxy are glowing after being heated by starlight. The new galaxy has been given the name SMM J2135-0102. "We were stunned to find a surprisingly bright object that wasn't at the expected position. We soon realised it was a previously unknown and more distant galaxy being magnified by the closer galaxy cluster," says Carlos De Breuck from ESO, a member of the team. De Breuck was making the observations at the APEX telescope on the plateau of Chajnantor at an altitude of 5000 m in the Chilean Andes. The new galaxy SMM J2135-0102 is so bright because of the massive galaxy cluster that lies in the foreground. The vast mass of this cluster bends the light of the more distant galaxy, acting as a gravitational lens [2]. As with a telescope, it magnifies and brightens our view of the distant galaxy. Thanks to a fortuitous alignment between the cluster and the distant galaxy, the latter is strongly magnified by a factor of 32. "The magnification reveals the galaxy in unprecedented detail, even though it is so distant that its light has taken about 10 billion years to reach us," explains Mark Swinbank from Durham University, lead author of the paper reporting the discovery. "In follow-up observations with the Submillimeter Array telescope, we've been able to study the clouds where stars are forming in the galaxy with great precision." The magnification means that the star-forming clouds can be picked out in the galaxy, down to a scale of only a few hundred light-years - almost down to the size of giant clouds in our own Milky Way. To see this level of detail without the help of the gravitational lens would need future telescopes such as ALMA (the Atacama Large Millimeter/submillimeter Array), which is currently under construction on the same plateau as APEX. This lucky discovery has therefore given astronomers a unique preview of the science that will be possible in a few years time. These "star factories" are similar in size to those in the Milky Way, but one hundred times more luminous, suggesting that star formation in the early life of these galaxies is a much more vigorous process than typically found in galaxies that lie nearer to us in time and space. In many ways, the clouds look more similar to the densest cores of star-forming clouds in the nearby Universe. "We estimate that SMM J2135-0102 is producing stars at a rate that is equivalent to about 250 Suns per year," says de Breuck. "The star formation in its large dust clouds is unlike that in the nearby Universe, but our observations also suggest that we should be able to use similar underlying physics from the densest stellar nurseries in nearby galaxies to understand star birth in these more distant galaxies." Notes [1] Galaxy clusters are among the most massive objects in the Universe kept together by gravity. They are composed of hundreds to thousands of galaxies, which make up to only about a tenth of their total mass. The bulk of their mass, which amounts to up to a million billion [1015] times the mass of our Sun, is composed of hot gas and dark matter. In this case, the cluster being observed has the designation MACS J2135-010217 (or MACS J213512.10-010258.5), and is at a distance of about four billion light-years. [2] Gravitational lensing is an effect forecast by Albert Einstein's theory of general relativity. Due to their gigantic mass and their intermediate position between us and very distant galaxies, galaxy clusters act as extremely efficient gravitational lenses, bending the light coming from background galaxies. Depending on the cluster mass distribution a host of interesting effects are produced, such as magnification, shape distortions, giant arcs, and multiple images of the same source. More information This research was presented in a paper, "Intense star formation within resolved compact regions in a galaxy at z=2.3" (A. M. Swinbank et al., DOI 10.1038/nature08880) to appear online in Nature today. The team is composed of A. M. Swinbank, I. Smail, J. Richard, A. C. Edge, and K. E. K. Coppin (Institute for Computational Cosmology, Durham University, UK), S. Longmore, R. Blundell, M. Gurwell, and D. Wilner (Harvard-Smithsonian Center For Astrophysics, USA), A. I. Harris and L. J. Hainline (Department of Astronomy, University of Maryland, USA), A.J. Baker (Department of Physics and Astronomy, Rutgers, University of New Jersey, USA), C. De Breuck, A. Lundgren and G. Siringo (ESO), R. J. Ivison (UKATC and Royal Observatory of Edinburgh, UK), P. Cox, M. Krips and R. Neri (Institut de Radio Astronomie Millimétrique, France), B. Siana (California Institute of Technology, USA), D. P. Stark (Institute of Astronomy, University of Cambridge, UK), and J. D. Younger (Institute for Advanced Study, USA). The Atacama Pathfinder Experiment (APEX) telescope is a 12-metre telescope, located at 5100 m altitude on the arid plateau of Chajnantor in the Chilean Andes. APEX operates at millimetre and submillimetre wavelengths. This wavelength range is a relatively unexplored frontier in astronomy, requiring advanced detectors and an extremely high and dry observatory site, such as Chajnantor. APEX, the largest submillimetre-wave telescope operating in the southern hemisphere, is a collaboration between the Max Planck Institute for Radio Astronomy, the Onsala Space Observatory and ESO. Operation of APEX at Chajnantor is entrusted to ESO. APEX is a "pathfinder" for ALMA - it is based on a prototype antenna constructed for the ALMA project, it is located on the same plateau and will find many targets that ALMA will be able to study in extreme detail. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Spectroscopy of Luminous Compact Blue Galaxies in Distant Clusters. I. Spectroscopic Data
NASA Astrophysics Data System (ADS)
Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.; Hon, Kimo
2011-11-01
We used the DEIMOS spectrograph on the Keck II Telescope to obtain spectra of galaxies in the fields of five distant, rich galaxy clusters over the redshift range 0.5 < z < 0.9 in a search for luminous compact blue galaxies (LCBGs). Unlike traditional studies of galaxy clusters, we preferentially targeted blue cluster members identified via multi-band photometric pre-selection based on imaging data from the WIYN telescope. Of the 1288 sources that we targeted, we determined secure spectroscopic redshifts for 848 sources, yielding a total success rate of 66%. Our redshift measurements are in good agreement with those previously reported in the literature, except for 11 targets which we believe were previously in error. Within our sample, we confirm the presence of 53 LCBGs in the five galaxy clusters. The clusters all stand out as distinct peaks in the redshift distribution of LCBGs with the average number density of LCBGs ranging from 1.65 ± 0.25 Mpc-3 at z = 0.55 to 3.13 ± 0.65 Mpc-3 at z = 0.8. The number density of LCBGs in clusters exceeds the field density by a factor of 749 ± 116 at z = 0.55; at z = 0.8, the corresponding ratio is E = 416 ± 95. At z = 0.55, this enhancement is well above that seen for blue galaxies or the overall cluster population, indicating that LCBGs are preferentially triggered in high-density environments at intermediate redshifts. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
Hubble and Keck team up to find farthest known galaxy in the Universe
NASA Astrophysics Data System (ADS)
2004-02-01
Galaxy cluster Abell 2218 hi-res Size hi-res: 5212 Kb Credits: European Space Agency, NASA, J.-P. Kneib (Observatoire Midi-Pyrénées) and R. Ellis (Caltech) Close-up of the large galaxy cluster Abell 2218 This close-up of the large galaxy cluster Abell 2218 shows how this cluster acts as one of nature’s most powerful ‘gravitational telescopes’ and amplifies and stretches all galaxies lying behind the cluster core (seen as red, orange and blue arcs). Such natural gravitational ‘telescopes’ allow astronomers to see extremely distant and faint objects that could otherwise not be seen. A new galaxy (split into two ‘images’ marked with an ellipse and a circle) was detected in this image taken with the Advanced Camera for Surveys on board the NASA/ESA Hubble Space Telescope. The extremely faint galaxy is so far away that its visible light has been stretched into infrared wavelengths, making the observations particularly difficult. The galaxy may have set a new record in being the most distant known galaxy in the Universe. Located an estimated 13 billion light-years away (z~7), the object is being viewed at a time only 750 million years after the big bang, when the Universe was barely 5 percent of its current age. In the image the distant galaxy appears as multiple ‘images’, an arc (left) and a dot (right), as its light is forced along different paths through the cluster’s complex clumps of mass (the yellow galaxies) where the magnification is quite large. The colour of the different lensed galaxies in the image is a function of their distances and galaxy types. The orange arc is for instance an elliptical galaxy at moderate redshift (z=0.7) and the blue arcs are star forming galaxies at intermediate redshift (z between 1 and 2.5). An image of Abell 2218 hi-res Size hi-res: 29 563 Kb Credits: European Space Agency, NASA, J.-P. Kneib (Observatoire Midi-Pyrénées) and R. Ellis (Caltech) A ground-based wide-angle image of Abell 2218 This wide-angle image spans 0.4 by 0.4 degrees and was taken by the 12k camera on Canada-France-Hawaii Telescope on Mauna Kea, Hawaii, United States. The image is composited by three exposures through blue (B), red (R), and infrared (I) filters. The primeval galaxy was identified by combining the power of the NASA/ESA Hubble Space Telescope and CARA's W. M. Keck Telescopes on Mauna Kea in Hawaii. These great observatories got a boost from the added magnification of a natural ‘cosmic gravitational lens’ in space that further amplifies the brightness of the distant object. The newly discovered galaxy is likely to be a young galaxy shining during the end of the so-called "Dark Ages" - the period in cosmic history which ended with the first galaxies and quasars transforming opaque, molecular hydrogen into the transparent, ionized Universe we see today. The new galaxy was detected in a long exposure of the nearby cluster of galaxies Abell 2218, taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. This cluster is so massive that the light of distant objects passing through the cluster actually bends and is amplified, much as a magnifying glass bends and magnifies objects seen through it. Such natural gravitational ‘telescopes’ allow astronomers to see extremely distant and faint objects that could otherwise not be seen. The extremely faint galaxy is so far away its visible light has been stretched into infrared wavelengths, making the observations particularly difficult. "As we were searching for distant galaxies magnified by Abell 2218, we detected a pair of strikingly similar images whose arrangement and colour indicate a very distant object," said astronomer Jean-Paul Kneib (Observatoire Midi-Pyrénées and California Institute of Technology), who is lead author reporting the discovery in a forthcoming article in the Astrophysical Journal. Analysis of a sequence of Hubble images indicate the object lies between a redshift of 6.6 and 7.1, making it the most distant source currently known. However, long exposures in the optical and infrared taken with spectrographs on the 10-meter Keck telescopes suggests that the object has a redshift towards the upper end of this range, around redshift 7. Redshift is a measure of how much the wavelengths of light are shifted to longer wavelengths. The greater the shift in wavelength toward the redder regions of the spectrum, the more distant the object is. "The galaxy we have discovered is extremely faint, and verifying its distance has been an extraordinarily challenging adventure," said Dr. Kneib. "Without the 25 x magnification afforded by the foreground cluster, this early object could simply not have been identified or studied in any detail at all with the present telescopes available. Even with aid of the cosmic lens, the discovery has only been possible by pushing our current observatories to the limits of their capabilities!" Using the combination of the high resolution of Hubble and the large magnification of the cosmic lens, the astronomers estimate that this object, although very small - only 2,000 light-years across - is forming stars extremely actively. However, two intriguing properties of the new source are the apparent lack of the typically bright hydrogen emission line and its intense ultraviolet light which is much stronger than that seen in star-forming galaxies closer by. "The properties of this distant source are very exciting because, if verified by further study, they could represent the hallmark of a truly young stellar system that ended the Dark Ages" added Dr. Richard Ellis, Steele Professor of Astronomy at Caltech, and a co-author in the article. The team is encouraged by the success of their technique and plans to continue the search for more examples by looking through other cosmic lenses in the sky. Hubble's exceptional resolution makes it ideally suited for such searches. "Estimating the abundance and characteristic properties of sources at early times is particularly important in understanding how the Universe reionized itself, thus ending the Dark Ages," said Mike Santos, a former Caltech graduate student, now a postdoctoral researcher at the Institute of Astronomy, Cambridge, UK. "The cosmic lens has given us a first glimpse into this important epoch. We are now eager to learn more by finding further examples, although it will no doubt be challenging." "We are looking at the first evidence of our ancestors on the evolutionary tree of the entire Universe," said Dr. Frederic Chaffee, director of the W. M. Keck Observatory, home to the twin 10-meter Keck telescopes that confirmed the discovery. "Telescopes are virtual time machines, allowing our astronomers to look back to the early history of the cosmos, and these marvellous observations are of the earliest time yet."
Galaxy evolution in clusters since z=1
NASA Astrophysics Data System (ADS)
Aragón-Salamanca, A.
2011-11-01
It is now 30 years since Alan Dressler published his seminal paper onthe morphology-density relation. Although there is still much to learnon the effect of the environment on galaxy evolution, extensive progress has been made since then both observationally and theoretically.Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature'' vs. "nurture'' in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age.Many of the results presented here have been obtainedwithin the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.
Galaxy Cluster Smashes Distance Record
NASA Astrophysics Data System (ADS)
2009-10-01
he most distant galaxy cluster yet has been discovered by combining data from NASA's Chandra X-ray Observatory and optical and infrared telescopes. The cluster is located about 10.2 billion light years away, and is observed as it was when the Universe was only about a quarter of its present age. The galaxy cluster, known as JKCS041, beats the previous record holder by about a billion light years. Galaxy clusters are the largest gravitationally bound objects in the Universe. Finding such a large structure at this very early epoch can reveal important information about how the Universe evolved at this crucial stage. JKCS041 is found at the cusp of when scientists think galaxy clusters can exist in the early Universe based on how long it should take for them to assemble. Therefore, studying its characteristics - such as composition, mass, and temperature - will reveal more about how the Universe took shape. "This object is close to the distance limit expected for a galaxy cluster," said Stefano Andreon of the National Institute for Astrophysics (INAF) in Milan, Italy. "We don't think gravity can work fast enough to make galaxy clusters much earlier." Distant galaxy clusters are often detected first with optical and infrared observations that reveal their component galaxies dominated by old, red stars. JKCS041 was originally detected in 2006 in a survey from the United Kingdom Infrared Telescope (UKIRT). The distance to the cluster was then determined from optical and infrared observations from UKIRT, the Canada-France-Hawaii telescope in Hawaii and NASA's Spitzer Space Telescope. Infrared observations are important because the optical light from the galaxies at large distances is shifted into infrared wavelengths because of the expansion of the universe. The Chandra data were the final - but crucial - piece of evidence as they showed that JKCS041 was, indeed, a genuine galaxy cluster. The extended X-ray emission seen by Chandra shows that hot gas has been detected between the galaxies, as expected for a true galaxy cluster rather than one that has been caught in the act of forming. Also, without the X-ray observations, the possibility remained that this object could have been a blend of different groups of galaxies along the line of sight, or a filament, a long stream of galaxies and gas, viewed front on. The mass and temperature of the hot gas detected estimated from the Chandra observations rule out both of those alternatives. The extent and shape of the X-ray emission, along with the lack of a central radio source argue against the possibility that the X-ray emission is caused by scattering of cosmic microwave background light by particles emitting radio waves. It is not yet possible, with the detection of just one extremely distant galaxy cluster, to test cosmological models, but searches are underway to find other galaxy clusters at extreme distances. "This discovery is exciting because it is like finding a Tyrannosaurus Rex fossil that is much older than any other known," said co-author Ben Maughan, from the University of Bristol in the United Kingdom. "One fossil might just fit in with our understanding of dinosaurs, but if you found many more, you would have to start rethinking how dinosaurs evolved. The same is true for galaxy clusters and our understanding of cosmology." The previous record holder for a galaxy cluster was 9.2 billion light years away, XMMXCS J2215.9-1738, discovered by ESA's XMM-Newton in 2006. This broke the previous distance record by only about 0.1 billion light years, while JKCS041 surpasses XMMXCS J2215.9 by about ten times that. "What's exciting about this discovery is the astrophysics that can be done with detailed follow-up studies," said Andreon. Among the questions scientists hope to address by further studying JKCS041 are: What is the build-up of elements (such as iron) like in such a young object? Are there signs that the cluster is still forming? Do the temperature and X-ray brightness of such a distant cluster relate to its mass in the same simple way as they do for nearby clusters? The paper describing the results on JKCS041 from Andreon and his colleagues will appear in an upcoming issue of the journal Astronomy and Astrophysics. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington, DC. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
RELICS: Strong-lensing Analysis of the Massive Clusters MACS J0308.9+2645 and PLCK G171.9‑40.7
NASA Astrophysics Data System (ADS)
Acebron, Ana; Cibirka, Nathália; Zitrin, Adi; Coe, Dan; Agulli, Irene; Sharon, Keren; Bradač, Maruša; Frye, Brenda; Livermore, Rachael C.; Mahler, Guillaume; Salmon, Brett; Umetsu, Keiichi; Bradley, Larry; Andrade-Santos, Felipe; Avila, Roberto; Carrasco, Daniela; Cerny, Catherine; Czakon, Nicole G.; Dawson, William A.; Hoag, Austin T.; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Kikuchihara, Shotaro; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Ouchi, Masami; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Ryan, Russell E.; Sendra-Server, Irene; Stark, Daniel P.; Strait, Victoria; Toft, Sune; Trenti, Michele; Vulcani, Benedetta
2018-05-01
Strong gravitational lensing by galaxy clusters has become a powerful tool for probing the high-redshift universe, magnifying distant and faint background galaxies. Reliable strong-lensing (SL) models are crucial for determining the intrinsic properties of distant, magnified sources and for constructing their luminosity function. We present here the first SL analysis of MACS J0308.9+2645 and PLCK G171.9‑40.7, two massive galaxy clusters imaged with the Hubble Space Telescope, in the framework of the Reionization Lensing Cluster Survey (RELICS). We use the light-traces-mass modeling technique to uncover sets of multiply imaged galaxies and constrain the mass distribution of the clusters. Our SL analysis reveals that both clusters have particularly large Einstein radii (θ E > 30″ for a source redshift of z s = 2), providing fairly large areas with high magnifications, useful for high-redshift galaxy searches (∼2 arcmin2 with μ > 5 to ∼1 arcmin2 with μ > 10, similar to a typical Hubble Frontier Fields cluster). We also find that MACS J0308.9+2645 hosts a promising, apparently bright (J ∼ 23.2–24.6 AB), multiply imaged high-redshift candidate at z ∼ 6.4. These images are among the brightest high-redshift candidates found in RELICS. Our mass models, including magnification maps, are made publicly available for the community through the Mikulski Archive for Space Telescopes.
NASA Astrophysics Data System (ADS)
Noirot, Gaël; Stern, Daniel; Mei, Simona; Wylezalek, Dominika; Cooke, Elizabeth A.; De Breuck, Carlos; Galametz, Audrey; Hatch, Nina A.; Vernet, Joël; Brodwin, Mark; Eisenhardt, Peter; Gonzalez, Anthony H.; Jarvis, Matt; Rettura, Alessandro; Seymour, Nick; Stanford, S. A.
2018-05-01
We report spectroscopic results from our 40-orbit Hubble Space Telescope slitless grism spectroscopy program observing the 20 densest Clusters Around Radio-Loud AGN (CARLA) candidate galaxy clusters at 1.4 < z < 2.8. These candidate rich structures, among the richest and most distant known, were identified on the basis of [3.6]–[4.5] color from a 408 hr multi-cycle Spitzer program targeting 420 distant radio-loud AGN. We report the spectroscopic confirmation of 16 distant structures at 1.4 < z < 2.8 associated with the targeted powerful high-redshift radio-loud AGN. We also report the serendipitous discovery and spectroscopic confirmation of seven additional structures at 0.87 < z < 2.12 not associated with the targeted radio-loud AGN. We find that 1010–1011 M ⊙ member galaxies of our confirmed CARLA structures form significantly fewer stars than their field counterparts at all redshifts within 1.4 ≤ z ≤ 2. We also observe higher star-forming activity in the structure cores up to z = 2, finding similar trends as cluster surveys at slightly lower redshifts (1.0 < z < 1.5). By design, our efficient strategy of obtaining just two grism orbits per field only obtains spectroscopic confirmation of emission line galaxies. Deeper spectroscopy will be required to study the population of evolved, massive galaxies in these (forming) clusters. Lacking multi-band coverage of the fields, we adopt a very conservative approach of calling all confirmations “structures,” although we note that a number of features are consistent with some of them being bona fide galaxy clusters. Together this survey represents a unique and large homogenous sample of spectroscopically confirmed structures at high redshifts, potentially more than doubling the census of confirmed, massive clusters at z > 1.4.
Record-breaking ancient galaxy clusters
NASA Astrophysics Data System (ADS)
2003-12-01
A tale of two record-breaking clusters hi-res Size hi-res: 768 kb Credits: for RDCS1252: NASA, ESA, J.Blakeslee (Johns Hopkins Univ.), M.Postman (Space Telescope Science Inst.) and P.Rosati, Chris Lidman & Ricardo Demarco (European Southern Observ.) for TNJ1338: NASA, ESA, G.Miley (Leiden Observ.) and R.Overzier (Leiden Obs) A tale of two record-breaking clusters Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured these revealing images of two galaxy clusters. The image at left, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic (heic0313d) reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002 (combined from a J filter exposure and a K filter exposure). In the image at right, astronomers are seeing an embryonic cluster as it was when the universe was 1500 million years old. The young system, called TNJ1338-1942, is the most distant known developing cluster, or proto-cluster. It is dominated by a massive ‘baby galaxy’ - the green object. The cluster RDCS1252.9-2927 hi-res Size hi-res: 2611 kb Credits: NASA, ESA, J. Blakeslee (Johns Hopkins University), M. Postman (Space Telescope Science Institute) and P. Rosati, Chris Lidman & Ricardo Demarco (European Southern Observatory) The cluster RDCS1252.9-2927 Looking back in time to when the Universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured this revealing image of the galaxy cluster RDCS1252.9-2927. The image shows the entire cluster (1/15 of a degree, corresponding to about 7 million light-years, across). The cluster probably contains many thousands of galaxies. Most of the other galaxies in the image, including most of the blue galaxies, are foreground or background galaxies. The image, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002 (combined from a J filter exposure and a K filter exposure). The embryonic cluster TNJ1338-1942 hi-res Size hi-res: 154 kb Credits: NASA, ESA, G. Miley (Leiden Observatory) and R. Overzier (Leiden Observatory) The embryonic cluster TNJ1338-1942 In this image astronomers are seeing an embryonic cluster as it was when the universe was 1500 million years old. The young system, called TNJ1338-1942, is the most distant known developing cluster, or proto-cluster. It is dominated by a massive ‘baby galaxy’ - the green object in the centre. The galaxy is producing powerful radio emissions, and is the brightest galaxy in the proto-cluster. The green colour indicates that the galaxy is emitting glowing hydrogen gas. Its clumpy appearance suggests that it is still in the process of forming. Smaller developing galaxies are scattered around the massive galaxy. The galaxy on the left of the massive galaxy is a foreground galaxy. The bright object in the upper half of the image is a foreground star. This colour-composite image was assembled from observations taken between July 8 and 12, 2002 by the ACS Wide Field Camera. The cluster RDCS1252.9-2927 hi-res Size hi-res: 259 kb Credits: NASA, ESA, J. Blakeslee (Johns Hopkins University), M. Postman (Space Telescope Science Institute) and P. Rosati, Chris Lidman & Ricardo Demarco (European Southern Observatory) The cluster RDCS1252.9-2927 Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured this revealing image of the galaxy cluster RDCS1252.9-2927. This image is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1 000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002 (combined from a J filter exposure and a K filter exposure). Looking back in time nearly 9000 million years, an international team of astronomers found mature galaxies in a young Universe. The galaxies are members of a cluster of galaxies that existed when the Universe was only 5000 million years old, or about 35 percent of its present age. This is compelling evidence that galaxies must have started forming just after the Big Bang and is bolstered by observations made by the same team of astronomers when they peered even farther back in time. The team found embryonic galaxies a mere 1500 million years after the birth of the cosmos, or 10 percent of the Universe's present age. The ‘baby galaxies’ reside in a still developing cluster, the most distant proto-cluster ever found. The Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope was used to make the observations of the massive cluster, RDCS1252.9-2927, and the proto-cluster, TNJ1338-1942. Observations by NASA’s Chandra X-ray Observatory yielded the mass and heavy element content of RDCS1252.9-2927, the most massive known cluster for that epoch. These observations are part of a co-ordinated effort by the ACS science team to track the formation and evolution of clusters of galaxies over a broad span of cosmic time. The ACS was specially built for such studies of very distant objects. These findings support the theory that galaxies formed relatively early in the history of the cosmos. The existence of such massive clusters in the early Universe agrees with a cosmological model wherein clusters form by the merger of many sub-clusters in a Universe dominated by cold dark matter. The precise nature of cold dark matter, however, is still not known. The first Hubble study estimated that the galaxies in RCDS1252 formed the bulk of their stars more than 11 000 million years ago (redshifts greater than 3). The results were published in the 20 October 2003, issue of the Astrophysical Journal. The paper's lead author is John Blakeslee of the Johns Hopkins University in Baltimore, USA. The second Hubble study uncovered, for the first time, a proto-cluster of ‘infant galaxies’ that existed more than 12 000 million years ago (redshift 4.1). These galaxies are so young that astronomers can still see a flurry of stars forming within them. The galaxies are grouped around one large galaxy. These results will be published in the January 1, 2004 issue of Nature. The paper's lead author is George Miley of Leiden Observatory in the Netherlands. "Until recently people didn't think that clusters existed when the Universe was only about 5000 million years old," Blakeslee explained. "Even if there were such clusters," Miley added, "until recently astronomers thought it was almost impossible to find clusters that existed 8000 million years ago. In fact, no one really knew when clustering began. Now we can witness it." Both studies led the astronomers to conclude that these systems are the progenitors of the galaxy clusters seen today. "The cluster RDCS1252 looks like a present-day cluster," said Marc Postman of the Space Telescope Science Institute in Baltimore, USA, and co-author of both research papers. "In fact, if you were to put it next to a present-day cluster you wouldn't know which is which." ‘A tale of two clusters’ How can galaxies grow so fast after the Big Bang? "It is a case of the rich getting richer," Blakeslee said. "These clusters grew quickly because they are located in very dense regions, so there is enough material to build up the member galaxies very fast." This idea is bolstered by X-ray observations of the massive cluster RDCS1252. Chandra and the European Space Agency's XMM-Newton provided astronomers with the most accurate measurements to date of the properties of an enormous cloud of hot gas that pervades the massive cluster. This 70 million °C gas is a reservoir of most of the heavy elements in the cluster, and an accurate tracer of its total mass. A paper by Piero Rosati of the European Southern Observatory (ESO) and colleagues that presents the X-ray observations of RDCS1252 will be published in January 2004 in the Astronomical Journal. "Chandra's sharp vision resolved the shape of the hot gas halo and showed that RDCS1252 is very mature for its age," said Rosati, who discovered the cluster with the ROSAT X-ray telescope. RDCS1252 may contain many thousands of galaxies. Most of those galaxies, however, are too faint to detect, although the powerful ‘eyes’ of the ACS pinpointed several hundred of them. Observations using ESO's Very Large Telescope (VLT) provided a precise measurement of the distance to the cluster. The ACS enabled the researchers to determine the shapes and the colours of the 100 galaxies accurately, providing information on the ages of the stars residing in them. The ACS team estimated that most of the stars in the cluster were already formed by the time the Universe was about 2000 million years old. In addition X-ray observations showed that 5 000 million years after the Big Bang the surrounding hot gas had been enriched with heavy elements from these stars and swept away from the galaxies. If most of the galaxies in RDCS1252 have reached maturity and are settling into a quiet adulthood, the galaxies forming in the distant proto-cluster are in their energetic, unruly youth. The proto-cluster TN J1338 contains a massive embryonic galaxy surrounded by smaller developing galaxies, which look like dots in the Hubble image. The dominant galaxy is producing spectacular radio-emitting jets, fuelled by a supermassive black hole deep within the galaxy's nucleus. Interaction between these jets and the gas can stimulate a torrent of star birth. The discovery of the energetic radio galaxy by radio telescopes prompted astronomers to hunt for the smaller galaxies that make up the bulk of the cluster. "Massive clusters are the cities of the Universe, and the radio galaxies within them are the smokestacks we can use for finding them when they are just beginning to form," Miley said. The two findings underscore the power of combining observations from many different telescopes to provide views of the distant Universe over a range of wavelengths. Hubble’s advanced camera provided critical information on the structure of both distant galaxy clusters. Chandra's and XMM-Newton’s X-ray vision furnished the essential measurements of the primordial gas in which the galaxies in RDCS1252 are embedded, and accurate estimates of the total mass contained within that cluster. Large ground-based telescopes, like the VLT, provided precise measurements of the distance of both clusters as well as the chemical composition of the galaxies in them. The ACS team is conducting further observations of distant clusters to solidify our understanding of how these young clusters and their galaxies evolve into the shape of things seen today. Their planned observations include using near-infrared observations to analyse the star-formation rates in some of their clusters, including RDCS1252, in order to measure the cosmic history of star formation in these massive structures. The team is also searching the regions around several ultra-distant radio galaxies for additional examples of proto-clusters. The team's ultimate scientific goal is to establish a complete picture of cluster evolution beginning with their formation at the earliest epochs and detailing their evolution up to the present time.
Beyond MACS: A Snapshot Survey of the Most Massive Clusters of Galaxies at z>0.5
NASA Astrophysics Data System (ADS)
Ebeling, Harald
2017-08-01
Truly massive galaxy clusters play a pivotal role for a wealth of extragalactic and cosmological research topics, and SNAPshot observations of these systems are ideally suited to identify the most promising cluster targets for further, in-depth study. The power of this approach was demonstrated by ACS/WFC3 SNAPshots of X-ray selected MACS and eMACS clusters at z>0.3 obtained by us in previous Cycles (44 of them in all of F606W, F814W, F110W, and F140W). Based on these data, the CLASH MCT program selected 16 out of 25 of their targets to be MACS clusters. Similarly, all but one of the six most powerful cluster lenses selected for in-depth study by the HST Frontier Fields initiative are MACS detections, and so are 16 of the 29 z>0.3 clusters targeted by the RELICS legacy program.We propose to extend our spectacularly successful SNAPshot survey of the most X-ray luminous distant clusters to a redshift-mass regime that is poorly sampled by any other project. Targeting only extremely massive clusters at z>0.5 from the X-ray selected eMACS sample (median velocity dispersion: 1180 km/s), the proposed program will (a) identify the most powerful gravitational telescopes at yet higher redshift for the next generation of in-depth studies of the distant Universe with HST and JWST, (b) provide constraints on the mass distribution within these extreme systems, (c) help improve our understanding of the physical nature of galaxy-galaxy and galaxy-gas interactions in cluster cores, and (d) unveil Balmer Break Galaxies at z 2 and Lyman-break galaxies at z>6 as F814W dropouts.Acknowledging the broad community interest in our sample we waive our data rights for these observations.
Radio Selection of the Most Distant Galaxy Clusters
NASA Astrophysics Data System (ADS)
Daddi, E.; Jin, S.; Strazzullo, V.; Sargent, M. T.; Wang, T.; Ferrari, C.; Schinnerer, E.; Smolčić, V.; Calabró, A.; Coogan, R.; Delhaize, J.; Delvecchio, I.; Elbaz, D.; Gobat, R.; Gu, Q.; Liu, D.; Novak, M.; Valentino, F.
2017-09-01
We show that the most distant X-ray-detected cluster known to date, Cl J1001 at {z}{spec}=2.506, hosts a strong overdensity of radio sources. Six of them are individually detected (within 10\\prime\\prime ) in deep 0\\buildrel{\\prime\\prime}\\over{.} 75 resolution VLA 3 GHz imaging, with {S}3{GHz}> 8 μ {Jy}. Of the six, an active galactic nucleus (AGN) likely affects the radio emission in two galaxies, while star formation is the dominant source powering the remaining four. We searched for cluster candidates over the full COSMOS 2 deg2 field using radio-detected 3 GHz sources and looking for peaks in {{{Σ }}}5 density maps. Cl J1001 is the strongest overdensity by far with > 10σ , with a simple {z}{phot}> 1.5 preselection. A cruder photometric rejection of z< 1 radio foregrounds leaves Cl J1001 as the second strongest overdensity, while even using all radio sources Cl J1001 remains among the four strongest projected overdensities. We conclude that there are great prospects for future deep and wide-area radio surveys to discover large samples of the first generation of forming galaxy clusters. In these remarkable structures, widespread star formation and AGN activity of massive galaxy cluster members, residing within the inner cluster core, will ultimately lead to radio continuum as one of the most effective means for their identification, with detection rates expected in the ballpark of 0.1-1 per square degree at z≳ 2.5. Samples of hundreds such high-redshift clusters could potentially constrain cosmological parameters and test cluster and galaxy formation models.
Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr
NASA Astrophysics Data System (ADS)
Chiang, Yi-Kuan; Overzier, Roderik A.; Gebhardt, Karl; Henriques, Bruno
2017-08-01
Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological context using a set of N-body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z = 0 to z = 7. We show that (proto)cluster galaxies are an important and even dominant population at high redshift, as their expected contribution to the cosmic star formation rate density rises (from 1% at z = 0) to 20% at z = 2 and 50% at z = 10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z ˜ 10-5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the universe; at z ˜ 5-1.5, rapid star formation occurred within the entire 10-20 Mpc structures, forming most of their present-day stellar mass; at z ≲ 1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during cosmic noon, and their connection to reionization during cosmic dawn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, S. M.; Wirth, Gregory D.; Bershady, M. A.
2016-02-01
Luminous Compact Blue Galaxies (LCBGs) are an extreme star-bursting population of galaxies that were far more common at earlier epochs than today. Based on spectroscopic and photometric measurements of LCBGs in massive (M > 10{sup 15} M{sub ⊙}), intermediate redshift (0.5 < z < 0.9) galaxy clusters, we present their rest-frame properties including star formation rate, dynamical mass, size, luminosity, and metallicity. The appearance of these small, compact galaxies in clusters at intermediate redshift helps explain the observed redshift evolution in the size–luminosity relationship among cluster galaxies. In addition, we find the rest-frame properties of LCBGs appearing in galaxy clusters are indistinguishable from field LCBGs atmore » the same redshift. Up to 35% of the LCBGs show significant discrepancies between optical and infrared indicators of star formation, suggesting that star formation occurs in obscured regions. Nonetheless, the star formation for LCBGs shows a decrease toward the center of the galaxy clusters. Based on their position and velocity, we estimate that up to 10% of cluster LCBGs are likely to merge with another cluster galaxy. Finally, the observed properties and distributions of the LCBGs in these clusters lead us to conclude that we are witnessing the quenching of the progenitors of dwarf elliptical galaxies that dominate the number density of present-epoch galaxy clusters.« less
NASA Astrophysics Data System (ADS)
Fassbender, R.; Böhringer, H.; Nastasi, A.; Šuhada, R.; Mühlegger, M.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mohr, J. J.; Pierini, D.; Pratt, G. W.; Quintana, H.; Rosati, P.; Santos, J. S.; Schwope, A. D.
2011-12-01
We present the largest sample to date of spectroscopically confirmed x-ray luminous high-redshift galaxy clusters comprising 22 systems in the range 0.9 as part of the XMM-Newton Distant Cluster Project (XDCP). All systems were initially selected as extended x-ray sources over 76.1 deg2 of non-contiguous deep archival XMM-Newton coverage, of which 49.4 deg2 are part of the core survey with a quantifiable selection function and 17.7 deg2 are classified as ‘gold’ coverage as the starting point for upcoming cosmological applications. Distant cluster candidates were followed up with moderately deep optical and near-infrared imaging in at least two bands to photometrically identify the cluster galaxy populations and obtain redshift estimates based on the colors of simple stellar population models. We test and calibrate the most promising redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least z ˜ 1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z ≳ 0.9. Photometrically identified high-z systems are spectroscopically confirmed with VLT/FORS 2 with a minimum of three concordant cluster member redshifts. We present first details of two newly identified clusters, XDCP J0338.5+0029 at z = 0.916 and XDCP J0027.2+1714 at z = 0.959, and investigate the x-ray properties of SpARCS J003550-431224 at z = 1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide x-ray properties and luminosity-based total mass estimates for the full sample of 22 high-z clusters, of which 17 are at z ⩾ 1.0 and seven populate the highest redshift bin at z > 1.3. The median system mass of the sample is M200 ≃ 2 × 1014 M⊙, while the probed mass range for the distant clusters spans approximately (0.7-7) × 1014 M⊙. The majority (>70%) of the x-ray selected clusters show rather regular x-ray morphologies, albeit in most cases with a discernible elongation along one axis. In contrast to local clusters, the z > 0.9 systems mostly do not harbor central dominant galaxies coincident with the x-ray centroid position, but rather exhibit significant brightest cluster galaxy (BCG) offsets from the x-ray center with a median value of about 50 kpc in projection and a smaller median luminosity gap to the second-ranked galaxy of Δm12 ≃ 0.3 mag. We estimate a fraction of cluster-associated NVSS 1.4 GHz radio sources of about 30%, preferentially located within 1‧ from the x-ray center. This value suggests an increase of the fraction of very luminous cluster-associated radio sources by about a factor of 2.5-5 relative to low-z systems. The galaxy populations in z ≳ 1.5 cluster environments show first evidence for drastic changes on the high-mass end of galaxies and signs of a gradual disappearance of a well-defined cluster red-sequence as strong star formation activity is observed in an increasing fraction of massive galaxies down to the densest core regions. The presented XDCP high-z sample will allow first detailed studies of the cluster population during the critical cosmic epoch at lookback times of 7.3-9.5 Gyr on the aggregation and evolution of baryons in the cold and hot phases as a function of redshift and system mass. Based on observations under program IDs 079.A-0634 and 085.A-0647 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
Surprise Discovery of Highly Developed Structure in the Young Universe
NASA Astrophysics Data System (ADS)
2005-03-01
ESO-VLT and ESA XMM-Newton Together Discover Earliest Massive Cluster of Galaxies Known Summary Combining observations with ESO's Very Large Telescope and ESA's XMM-Newton X-ray observatory, astronomers have discovered the most distant, very massive structure in the Universe known so far. It is a remote cluster of galaxies that is found to weigh as much as several thousand galaxies like our own Milky Way and is located no less than 9,000 million light-years away. The VLT images reveal that it contains reddish and elliptical, i.e. old, galaxies. Interestingly, the cluster itself appears to be in a very advanced state of development. It must therefore have formed when the Universe was less than one third of its present age. The discovery of such a complex and mature structure so early in the history of the Universe is highly surprising. Indeed, until recently it would even have been deemed impossible. PR Photo 05a/05: Discovery X-Ray Image of the Distant Cluster (ESA XMM-Netwon) PR Photo 05b/05: False Colour Image of XMMU J2235.3-2557 (FORS/VLT and ESA XMM-Newton) Serendipitous discovery ESO PR Photo 05a/05 ESO PR Photo 05a/05 Discovery X-Ray Image of the Distant Cluster (ESA XMM-Newton) [Preview - JPEG: 400 x 421 pix - 106k] [Normal - JPEG: 800 x 842 pix - 843k] [Full Res - JPEG: 2149 x 2262 pix - 2.5M] Caption: ESO PR Photo 05a/05 is a reproduction of the XMM-Newton observations of the nearby active galaxy NGC7314 (bright object in the centre) from which the newly found distant cluster (white box) was serendipitously identified. The circular field-of-view of XMM-Newton is half-a-degree in diameter, or about the same angular size as the Full Moon. The inset shows the diffuse X-ray emission from the distant cluster XMMU J2235.3-2557. Clusters of galaxies are gigantic structures containing hundreds to thousands of galaxies. They are the fundamental building blocks of the Universe and their study thus provides unique information about the underlying architecture of the Universe as a whole. About one-fifth of the optically invisible mass of a cluster is in the form of a diffuse, very hot gas with a temperature of several tens of millions of degrees. This gas emits powerful X-ray radiation and clusters of galaxies are therefore best discovered by means of X-ray satellites (cf. ESO PR 18/03 and 15/04). It is for this reason that a team of astronomers [1] has initiated a search for distant, X-ray luminous clusters "lying dormant" in archive data from ESA's XMM-Newton satellite observatory. Studying XMM-Newton observations targeted at the nearby active galaxy NGC 7314, the astronomers found evidence of a galaxy cluster in the background, far out in space. This source, now named XMMU J2235.3-2557, appeared extended and very faint: no more than 280 X-ray photons were detected over the entire 12 hour-long observations. A Mature Cluster at Redshift 1.4 ESO PR Photo 05b/05 ESO PR Photo 05b/05 False Colour Image of XMMU J2235.3-2557 (FORS/VLT and ESA XMM-Newton) [Preview - JPEG: 400 x 455 pix - 50k] [Normal - JPEG: 800 x 909 pix - 564k] [Full Res - JPEG: 1599 x 1816 pix - 1.5M] Caption: ESO PR Photo 05b/05 is a false colour image of the XMMU J2235.3-2557 cluster of galaxies, overlaid with the X-ray intensity contours derived from the ESA XMM-Newton data. The red channel is a VLT-ISAAC image (exposure time: 1 hour) obtained in the near-infrared Ks-band (at wavelength 2.2 microns); the green channel is a VLT-FORS2 z-band image (910 nm; 480 sec); the blue channel is a VLT-FORS2 R-band image (; 657 nm; 1140 sec). The VLT reveals 12 reddish galaxies, of elliptical types, as members of the cluster. Knowing where to look, the astronomers then used the European Southern Observatory's Very Large Telescope (VLT) at Paranal (Chile) to obtain images in the visible wavelength region. They confirmed the nature of this cluster and it was possible to identify 12 comparatively bright member galaxies on the images (see ESO PR Photo 05b/05). The galaxies appear reddish and are of the elliptical type. They are full of old, red stars. All of this indicates that these galaxies are already several thousand million years old. Moreover, the cluster itself has a largely spherical shape, also a sign that it is already a very mature structure. In order to determine the distance of the cluster - and hence its age - Christopher Mullis, former European Southern Observatory post-doctoral fellow and now at the University of Michigan in the USA, and his colleagues used again the VLT, now in the spectroscopic mode. By means of one of the FORS multi-mode instruments, the astronomers zoomed-in on the individual galaxies in the field, taking spectral measurements that reveal their overall characteristics, in particular their redshift and hence, distance [2]. The FORS instruments are among the most efficient and versatile available anywhere for this delicate work, obtaining on the average quite detailed spectra of 30 or more galaxies at a time. The VLT data measured the redshift of this cluster as 1.4, indicating a distance of 9,000 million light-years, 500 million light years farther out than the previous record holding cluster. This means that the present cluster must have formed when the Universe was less than one third of its present age. The Universe is now believed to be 13,700 million years old. "We are quite surprised to see that a fully-fledged structure like this could exist at such an early epoch," says Christopher Mullis. "We see an entire network of stars and galaxies in place, just a few thousand million years after the Big Bang". "We seem to have underestimated how quickly the early Universe matured into its present-day state," adds Piero Rosati of ESO, another member of the team. "The Universe did grow up fast!" Towards a Larger Sample This discovery was relative easy to make, once the space-based XMM and the ground-based VLT observations were combined. As an impressive result of the present pilot programme that is specifically focused on the identification of very distant galaxy clusters, it makes the astronomers very optimistic about their future searches. The team is now carrying out detailed follow-up observations both from ground- and space-based observatories. They hope to find many more exceedingly distant clusters, which would then allow them to test competing theories of the formation and evolution of such large structures. "This discovery encourages us to search for additional distant clusters by means of this very efficient technique," says Axel Schwope, team leader at the Astrophysical Institute Potsdam (Germany) and responsible for the source detection from the XMM-Newton archival data. Hans Böhringer of the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching, another member of the team, adds: "Our result also confirms the great promise inherent in other facilities to come, such as APEX (Atacama Pathfinder Experiment) at Chajnantor, the site of the future Atacama Large Millimeter Array. These intense searches will ultimately place strong constraints on some of the most fundamental properties of the Universe." More information This finding is presented today by Christopher Mullis at a scientific meeting in Kona, Hawaii, entitled "The Future of Cosmology with Clusters of Galaxies". It will also soon appear in The Astrophysical Journal ("Discovery of an X-ray Luminous Galaxy Cluster at z=1.4", by C. R. Mullis et al.). More images and information is available on Christopher Mullis' dedicated web page at http://www.astro.lsa.umich.edu/~cmullis/research/xmmuj2235/. A German version of the press release is issued by the Max Planck Society and is available at http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2005/pressemitteilung20050228/presselogin/ .
NASA Astrophysics Data System (ADS)
Fassbender, R.; Nastasi, A.; Böhringer, H.; Šuhada, R.; Santos, J. S.; Rosati, P.; Pierini, D.; Mühlegger, M.; Quintana, H.; Schwope, A. D.; Lamer, G.; de Hoon, A.; Kohnert, J.; Pratt, G. W.; Mohr, J. J.
2011-03-01
Context. Observational galaxy cluster studies at z > 1.5 probe the formation of the first massive M > 1014 M⊙ dark matter halos, the early thermal history of the hot ICM, and the emergence of the red-sequence population of quenched early-type galaxies. Aims: We present first results for the newly discovered X-ray luminous galaxy cluster XMMU J1007.4+1237 at z = 1.555, detected and confirmed by the XMM-Newton Distant Cluster Project (XDCP) survey. Methods: We selected the system as a serendipitous weak extended X-ray source in XMM-Newton archival data and followed it up with two-band near-infrared imaging and deep optical spectroscopy. Results: We can establish XMMU J1007.4+1237 as a spectroscopically confirmed, massive,bona fide galaxy cluster with a bolometric X-ray luminosity of Lbol_X,500≃(2.1 ± 0.4)× 10^{44} erg/s, a red galaxy population centered on the X-ray emission, and a central radio-loud brightest cluster galaxy. However, we see evidence for the first time that the massive end of the galaxy population and the cluster red-sequence are not yet fully in place. In particular, we find ongoing starburst activity for the third ranked galaxy close to the center and another slightly fainter object. Conclusions: At a lookback time of 9.4 Gyr, the cluster galaxy population appears to be caught in an important evolutionary phase, prior to full star-formation quenching and mass assembly in the core region. X-ray selection techniques are an efficient means of identifying and probing the most distant clusters without any prior assumptions about their galaxy content. Based on observations under programme ID 081.A-0312 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Figure 2 and Tables 1 and 2 are only available in electronic form at http://www.aanda.org
Distant clusters of galaxies in the 2XMM/SDSS footprint: follow-up observations with the LBT
NASA Astrophysics Data System (ADS)
Rabitz, A.; Lamer, G.; Schwope, A.; Takey, A.
2017-11-01
Context. Galaxy clusters at high redshift are important to test cosmological models and models for the growth of structure. They are difficult to find in wide-angle optical surveys, however, leaving dedicated follow-up of X-ray selected candidates as one promising identification route. Aims: We aim to increase the number of galaxy clusters beyond the SDSS-limit, z 0.75. Methods: We compiled a list of extended X-ray sources from the 2XMMp catalogue within the footprint of the Sloan Digital Sky Survey. Fields without optical counterpart were selected for further investigation. Deep optical imaging and follow-up spectroscopy were obtained with the Large Binocular Telescope, Arizona (LBT), of those candidates not known to the literature. Results: From initially 19 candidates, selected by visually screening X-ray images of 478 XMM-Newton observations and the corresponding SDSS images, 6 clusters were found in the literature. Imaging data through r,z filters were obtained for the remaining candidates, and 7 were chosen for multi-object (MOS) spectroscopy. Spectroscopic redshifts, optical magnitudes, and X-ray parameters (flux, temperature, and luminosity) are presented for the clusters with spectroscopic redshifts. The distant clusters studied here constitute one additional redshift bin for studies of the LX-T relation, which does not seem to evolve from high to low redshifts. Conclusions: The selection method of distant galaxy clusters presented here was highly successful. It is based solely on archival optical (SDSS) and X-ray (XMM-Newton) data. Out of 19 selected candidates, 6 of the 7 candidates selected for spectroscopic follow-up were verified as distant clusters, a further candidate is most likely a group of galaxies at z 1.21. Out of the remaining 12 candidates, 6 were known previously as galaxy clusters, one object is a likely X-ray emission from an AGN radio jet, and for 5 we see no clear evidence for them to be high-redshift galaxy clusters. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: the University of Arizona on behalf of the Arizona Board of Regents; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, The Leibniz Institute for Astrophysics Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia - http://www.lbto.org/for-investigators.htmlThe catalogue, similar to Table A.1, is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A56
RELICS: Reionization Lensing Cluster Survey - Discovering Brightly Lensed Distant Galaxies for JWST
NASA Astrophysics Data System (ADS)
Coe, Dan; Bradley, Larry; Salmon, Brett; Avila, Roberto J.; Ogaz, Sara; Bradac, Marusa; Huang, Kuang-Han; Strait, Victoria; Hoag, Austin; Sharon, Keren q.; Cerny, Catherine; Paterno-Mahler, Rachel; Johnson, Traci Lin; Mahler, Guillaume; Zitrin, Adi; Sendra Server, Irene; Acebron, Ana; Cibirka, Nathália; Rodney, Steven; Strolger, Louis; Riess, Adam; Dawson, William; Jones, Christine; Andrade-Santos, Felipe; Lovisari, Lorenzo; Czakon, Nicole; Umetsu, Keiichi; Trenti, Michele; Vulcani, Benedetta; Carrasco, Daniela; Livermore, Rachael; Stark, Daniel P.; Mainali, Ramesh; Frye, Brenda; Oesch, Pascal; Lam, Daniel; Toft, Sune; Ryan, Russell; Peterson, Avery; Past, Matthew; Kikuchihara, Shotaro; Ouchi, Masami; Oguri, Masamune
2018-01-01
The Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program has completed observations of 41 massive galaxy clusters with 188 orbits of HST ACS and WFC3/IR imaging and 390 hours of Spitzer IRAC imaging. This poster presents an overview of the program and data releases. Reduced images, catalogs, and lens models for all clusters are now available on MAST. RELICS is studying the clusters, supernovae, and lensed high-redshift galaxies. A companion poster presents our high-redshift results: over 300 lensed z ~ 6 - 10 candidates, including some of the brightest known at these redshifts (Salmon et al. 2018). These will be excellent targets for detailed follow-up study in JWST Cycle 1 GO proposals.
The detection of distant cooling flows and the formation of dark matter
NASA Technical Reports Server (NTRS)
Fabian, A. C.; Arnaud, K. A.; Nulsen, P. E. J.; Mushotzky, R. F.
1986-01-01
Cooling flows involving substantial mass inflow rates appear to be common in many nearby rich and poor clusters and in isolated galaxies. The extensive optical and ultraviolet filaments produced by the thermal instability of large flows are detectable out to redshifts greater than 1. It is proposed that this may explain the extended optical line emission reported in, and around, many distant radio galaxies, narrow-line quasars, and even nearby normal and active galaxies. An important diagnostic to distinguish cooling flows from other possible origins of emission line filaments is the presence of extensive regions at high thermal pressure. Other evidence for distant cooling flows and the resultant star formation is further discussed, together with the implications of cooling flow initial-mass functions for galaxy formation and the nature of 'dark' matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Andrew B.; Ellis, Richard S.; Andreon, Stefano
2014-06-10
We present Hubble Space Telescope imaging and grism spectroscopy in the field of the distant galaxy cluster JKCS 041 using the Wide Field Camera 3. We confirm that JKCS 041 is a rich cluster and derive a redshift z = 1.80 via the spectroscopic identification of 19 member galaxies, of which 15 are quiescent. These are centered upon diffuse X-ray emission seen by the Chandra observatory. As JKCS 041 is the most distant known cluster with such a large, spectroscopically confirmed quiescent population, it provides a unique opportunity to study the effect of the environment on galaxy properties at earlymore » epochs. We construct high-quality composite spectra of the quiescent cluster members that reveal prominent Balmer and metallic absorption lines. Using these, we measure the mean stellar ages in two bins of stellar mass. The quiescent cluster members' ages agree remarkably closely with that inferred by Whitaker et al. for similarly selected samples in the field, supporting the idea that the cluster environment is more efficient at truncating star formation while not having a strong effect on the mean epoch of quenching. We find some evidence (90% confidence) for a lower fraction of disk-like quiescent systems in JKCS 041 compared to a sample of coeval field galaxies drawn from the CANDELS survey. Taking this into account, we do not detect a significant difference between the mass-radius relations of the quiescent JKCS 041 members and our z ∼ 1.8 field sample. Finally, we demonstrate how differences in the morphological mixture of quenched systems can complicate measures of the environmental dependence of size growth.« less
Evolution of the early-type galaxy fraction in clusters since z = 0.8
NASA Astrophysics Data System (ADS)
Simard, L.; Clowe, D.; Desai, V.; Dalcanton, J. J.; von der Linden, A.; Poggianti, B. M.; White, S. D. M.; Aragón-Salamanca, A.; De Lucia, G.; Halliday, C.; Jablonka, P.; Milvang-Jensen, B.; Saglia, R. P.; Pelló, R.; Rudnick, G. H.; Zaritsky, D.
2009-12-01
We study the morphological content of a large sample of high-redshift clusters to determine its dependence on cluster mass and redshift. Quantitative morphologies are based on PSF-convolved, 2D bulge+disk decompositions of cluster and field galaxies on deep Very Large Telescope FORS2 images of eighteen, optically-selected galaxy clusters at 0.45 < z < 0.80 observed as part of the ESO Distant Cluster Survey (“EDisCS”). Morphological content is characterized by the early-type galaxy fraction f_et, and early-type galaxies are objectively selected based on their bulge fraction and image smoothness. This quantitative selection is equivalent to selecting galaxies visually classified as E or S0. Changes in early-type fractions as a function of cluster velocity dispersion, redshift and star-formation activity are studied. A set of 158 clusters extracted from the Sloan Digital Sky Survey is analyzed exactly as the distant EDisCS sample to provide a robust local comparison. We also compare our results to a set of clusters from the Millennium Simulation. Our main results are: (1) the early-type fractions of the SDSS and EDisCS clusters exhibit no clear trend as a function of cluster velocity dispersion. (2) Mid-z EDisCS clusters around σ = 500 km s-1 have f_et ≃ 0.5 whereas high-z EDisCS clusters have f_et ≃ 0.4. This represents a ~25% increase over a time interval of 2 Gyr. (3) There is a marked difference in the morphological content of EDisCS and SDSS clusters. None of the EDisCS clusters have early-type galaxy fractions greater than 0.6 whereas half of the SDSS clusters lie above this value. This difference is seen in clusters of all velocity dispersions. (4) There is a strong and clear correlation between morphology and star formation activity in SDSS and EDisCS clusters in the sense that decreasing fractions of [OII] emitters are tracked by increasing early-type fractions. This correlation holds independent of cluster velocity dispersion and redshift even though the fraction of [OII] emitters decreases from z ˜0.8 to z ˜ 0.06 in all environments. Our results pose an interesting challenge to structural transformation and star formation quenching processes that strongly depend on the global cluster environment (e.g., a dense ICM) and suggest that cluster membership may be of lesser importance than other variables in determining galaxy properties. Based on observations obtained in visitor and service modes at the ESO Very Large Telescope (VLT) as part of the Large Programme 166.A-0162 (the ESO Distant Cluster Survey). Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal 9476. Support for this proposal was provided by NASA through a grant from the Space Telescope Science Institute. Table [see full textsee full textsee full textsee full textsee full text] is only available in electronic form at http://www.aanda.org
The Physical Properties of Intracluster Gas at z > 1
NASA Technical Reports Server (NTRS)
Rosati, Piero; Ford, Holland C.
2004-01-01
We have used XMM-Newton, Chandra and HST/ACS data on one of the most distant clusters known to date, RDCS1252-29 at z= 1.24, to measure the mass of its baryonic and dark components for the first time at these large redshifts. By comparing physical properties of cluster galaxies and of the X-ray emitting intra-cluster medium (including the iron abundance) with those in low-redshift clusters, we have found that little evolution has taken place over 60% of the lifetime of the Universe. This suggests that most of the stars formed at z>approx.3 and metal enrichment processes took place early in the evolutionary history of galaxy clusters. These findings have a strong bearing on galaxy and cluster evolution models.
A QUANTITATIVE ANALYSIS OF DISTANT OPEN CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janes, Kenneth A.; Hoq, Sadia
2011-03-15
The oldest open star clusters are important for tracing the history of the Galactic disk, but many of the more distant clusters are heavily reddened and projected against the rich stellar background of the Galaxy. We have undertaken an investigation of several distant clusters (Berkeley 19, Berkeley 44, King 25, NGC 6802, NGC 6827, Berkeley 52, Berkeley 56, NGC 7142, NGC 7245, and King 9) to develop procedures for separating probable cluster members from the background field. We next created a simple quantitative approach for finding approximate cluster distances, reddenings, and ages. We first conclude that with the possible exceptionmore » of King 25 they are probably all physical clusters. We also find that for these distant clusters our typical errors are about {+-}0.07 in E(B - V), {+-}0.15 in log(age), and {+-}0.25 in (m - M){sub o}. The clusters range in age from 470 Myr to 7 Gyr and range from 7.1 to 16.4 kpc from the Galactic center.« less
Possible Very Distant or Optically Dark Cluster of Galaxies
NASA Technical Reports Server (NTRS)
Vikhlinin, Alexey; Mushotzky, Richard (Technical Monitor)
2003-01-01
The goal of this proposal was an XMM followup observation of the extended X-ray source detected in our ROSAT PSPC cluster survey. Approximately 95% of extended X-ray sources found in the ROSAT data were optically identified as clusters of galaxies. However, we failed to find any optical counterparts for C10952-0148. Two possibilities remained prior to the XMM observation: (1) This is was a very distant or optically dark cluster of galaxies, too faint in the optical, in which case XMM would easily detect extended X-ray emission and (2) this was a group of point-like sources, blurred to a single extended source in the ROSAT data, but easily resolvable by XMM due to a better energy resolution. The XMM data have settled the case --- C10952-0148 is a group of 7 relatively bright point sources located within 1 square arcmin. All but one source have no optical counterparts down to I=22. Potentially, this can be an interesting group of quasars at a high redshift. We are planning further optical and infrared followup of this system.
Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yi-Kuan; Overzier, Roderik A.; Gebhardt, Karl
Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological context using a set of N -body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z = 0 to z = 7. We show that (proto)cluster galaxies are an important and even dominant population at high redshift, as their expected contribution to the cosmic star formation rate density rises (from 1% at zmore » = 0) to 20% at z = 2 and 50% at z = 10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z ∼ 10–5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the universe; at z ∼ 5–1.5, rapid star formation occurred within the entire 10–20 Mpc structures, forming most of their present-day stellar mass; at z ≲ 1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during cosmic noon, and their connection to reionization during cosmic dawn.« less
Discovery of a large-scale clumpy structure of the Lynx supercluster at z[similar]1.27
NASA Astrophysics Data System (ADS)
Nakata, Fumiaki; Kodama, Tadayuki; Shimasaku, Kazuhiro; Doi, Mamoru; Furusawa, Hisanori; Hamabe, Masaru; Kimura, Masahiko; Komiyama, Yutaka; Miyazaki, Satoshi; Okamura, Sadanori; Ouchi, Masami; Sekiguchi, Maki; Yagi, Masafumi; Yasuda, Naoki
2004-07-01
We report the discovery of a probable large-scale structure composed of many galaxy clumps around the known twin clusters at z=1.26 and z=1.27 in the Lynx region. Our analysis is based on deep, panoramic, and multi-colour imaging with the Suprime-Cam on the 8.2 m Subaru telescope. We apply a photometric redshift technique to extract plausible cluster members at z˜1.27 down to ˜ M*+2.5. From the 2-D distribution of these photometrically selected galaxies, we newly identify seven candidates of galaxy groups or clusters where the surface density of red galaxies is significantly high (>5σ), in addition to the two known clusters, comprising the largest most distant supercluster ever identified.
NASA Astrophysics Data System (ADS)
Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi; HSC Collaboration
2018-01-01
The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z~1 to date. In this exploratory study of cluster galaxy evolution from z=1 to z=0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), and evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Our stellar mass is derived from a machine-learning algorithm, which we show to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs, and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. The clusters are found to contain more red galaxies compared to the expectations from the field, even after the differences in density between the two environments have been taken into account. We also present the first measurement of the radio luminosity distribution in clusters out to z~1.
The enhancement of rapidly quenched galaxies in distant clusters at 0.5 < z < 1.0
NASA Astrophysics Data System (ADS)
Socolovsky, Miguel; Almaini, Omar; Hatch, Nina A.; Wild, Vivienne; Maltby, David T.; Hartley, William G.; Simpson, Chris
2018-05-01
We investigate the relationship between environment and galaxy evolution in the redshift range 0.5 < z < 1.0. Galaxy overdensities are selected using a friends-of-friends algorithm, applied to deep photometric data in the Ultra-Deep Survey field. A study of the resulting stellar mass functions reveals clear differences between cluster and field environments, with a strong excess of low-mass rapidly quenched galaxies in cluster environments compared to the field. Cluster environments also show a corresponding deficit of young, low-mass star-forming galaxies, which show a sharp radial decline towards cluster centres. By comparing mass functions and radial distributions, we conclude that young star-forming galaxies are rapidly quenched as they enter overdense environments, becoming post-starburst galaxies before joining the red sequence. Our results also point to the existence of two environmental quenching pathways operating in galaxy clusters, operating on different time-scales. Fast quenching acts on galaxies with high specific star formation rates, operating on time-scales shorter than the cluster dynamical time (<1 Gyr). In contrast, slow quenching affects galaxies with moderate specific star formation rates, regardless of their stellar mass, and acts on longer time-scales (≳ 1 Gyr). Of the cluster galaxies in the stellar mass range 9.0 < log (M/M⊙) < 10.5 quenched during this epoch, we find that 73 per cent were transformed through fast quenching, while the remaining 27 per cent followed the slow quenching route.
ESA's XMM-Newton gains deep insights into the distant Universe
NASA Astrophysics Data System (ADS)
2003-07-01
First image from the XMM-LSS survey hi-res Size hi-res: 87 kb Credits: ESA First image from the XMM-LSS survey The first image from the XMM-LSS survey is actually a combination of fourteen separate 'pointings' of the space observatory. It represents a region of the sky eight times larger than the full Moon and contains around 25 clusters. The circles represent the sources previously known from the 1991 ROSAT All-Sky Survey. A computer programme zooms in on an interesting region hi-res Size hi-res: 86 kb Credits: ESA A computer programme zooms in on an interesting region A computer programme zooms in on an interesting region of the image and identifies the possible cluster. Each point on this graph represents a single X-ray photons detected by XMM-Newton. Most come from distant actie galaxies and the computer must perform a sophisticated, statistical computation to determine which X-ray come from clusters. Contour map of clusters hi-res Size hi-res: 139 kb Credits: ESA Contour map of clusters The computer programme transforms the XMM-Newton data into a contour map of the cluster's probable extent and superimposes it over the CFHT snapshot, allowing the individual galaxies in the cluster to be targeted for further observations with ESO's VLT, to measure its distance and locate the cluster in the universe. Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies like our own which themselves congregate into clusters. These clusters are 'strung' throughout the Universe in a web-like structure. Astronomers have studied this large-scale structure of the nearby Universe but have lacked the instruments to extend the search to the large volumes of the distant Universe. Thanks to its unrivalled sensitivity, in less than three hours, ESA's X-ray observatory XMM-Newton can see back about 7000 million years to a cosmological era when the Universe was about half its present size, and clusters of galaxies more tightly packed. Marguerite Pierre, CEA Saclay, France, with a European and Chilean team, used this ability to search for remote clusters of galaxies and map out their distribution. The work heralds a new era of studying the distant Universe. The optical identification of clusters shows only the galaxies themselves. However, X-rays show the gas in between the galaxies - which is where most of the matter in a cluster resides. This is like going from seeing a city at night, where you only see the lighted windows, to seeing it during the daytime, when you finally get to see the buildings themselves. Tracking down the clusters is a painstaking, multi-step process. In tandem with XMM-Newton, the team uses the four-metre Canada-France-Hawaii Telescope (CFHT), on Mauna Kea, Hawaii, to take an optical snapshot of the same region of space. A tailor-made computer programme combs the XMM-Newton data looking for concentrations of X-rays that suggest large, extended structures. These are the clusters and they represent only about 10% of the detected X-ray sources (the others are mostly distant active galaxies). When the program finds a cluster, it zooms in on that region and converts the XMM-Newton data into a contour map of X-ray intensity, which it then superimposes on the CFHT optical image. The astronomers use this to check if anything is visible within the X-ray emission. If it is, the work then shifts to one of the world's largest telescopes, the European Southern Observatory (ESO) Very Large Telescope where the astronomers identify the individual galaxies in the cluster and take 'redshift' measurements. These give a measurement of the cluster's distance. In this way, Pierre and colleagues are mapping the distribution of galaxy clusters of the distant Universe, for the first time in astronomy. "Galaxy clusters are the largest concentrations of matter in the Universe and XMM-Newton is extremely efficient at finding them," says Pierre. Although the task is still a work in progress, first results seem to confirm that the number of clusters 7000 million years ago is little different from that of today. This behaviour is predicted by models of the Universe that expand forever and drive the galaxy clusters further and further apart. Eventually, it will be possible for the team to use their results to determine whether the expansion of the Universe is accelerating, as indicated by some other recent observations, or decelerating, as traditionally thought. Note to Editors: This is a coordinated ESA/ESO release. The presented results have been obtained by the XMM-LSS consortium, led by Service d'Astrophysique du CEA (France) and consisting of Co-I institutes from the United Kingdom, Ireland, Denmark, The Netherlands, Belgium, France, Italy, Germany, Spain and Chile. The home page of the XMM-LSS project can be found at: http://vela.astro.ulg.ac.be/themes/spatial/xmm/LSS/index_e.html This work is based on two papers to be published in the professional astronomy journal, Astronomy and Astrophysics (The XMM-LSS survey:I. Scientific motivations, design and first results by Marguerite Pierre et al., astro-ph/0305191 and The XMM-LSS survey:II. First high redshift galaxy clusters: relaxed and collapsing systems by Ivan Valtchanov et al.,astro-ph/0305192). More about XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.
DISTANT CLUSTER OF GALAXIES [left
NASA Technical Reports Server (NTRS)
2002-01-01
One of the deepest images to date of the universe, taken with NASA's Hubble Space Telescope (HST), reveals thousands of faint galaxies at the detection limit of present day telescopes. Peering across a large volume of the observable cosmos, Hubble resolves thousands of galaxies from five to twelve billion light-years away. The light from these remote objects has taken billions of years to cross the expanding universe, making these distant galaxies fossil evidence' of events that happened when the universe was one-third its present age. A fraction of the galaxies in this image belong to a cluster located nine billion light-years away. Though the field of view (at the cluster's distance) is only two million light-years across, it contains a multitude of fragmentary objects. (By comparison, the two million light-years between our Milky Way galaxy and its nearest large companion galaxy, in the constellation Andromeda, is essentially empty space!) Very few of the cluster's members are recognizable as normal spiral galaxies (like our Milky Way), although some elongated members might be edge-on disks. Among this zoo of odd galaxies are ``tadpole-like'' objects, disturbed and apparently merging systems dubbed 'train-wrecks,' and a multitude of faint, tiny shards and fragments, dwarf galaxies or possibly an unknown population of objects. However, the cluster also contains red galaxies that resemble mature examples of today's elliptical galaxies. Their red color comes from older stars that must have formed shortly after the Big Bang. The image is the full field view of the Wide Field and Planetary Camera-2. The picture was taken in intervals between May 11 and June 15, 1994 and required an 18-hour long exposure, over 32 orbits of HST, to reveal objects down to 29th magnitude. [bottom right] A close up view of the peculiar radio galaxy 3C324 used to locate the cluster. The galaxy is nine billion light-years away as measured by its spectral redshift (z=1.2), and located in the constellation Serpens. Based on the colors and the statistical distribution of the galaxies in 3C 324's vicinity, astronomers conclude a remote cluster is at the same distance as a radio galaxy. [center right] This pair of elliptical galaxies, seen together with a few fainter companions, is remarkably similar in shape, light distribution, and color to their present day descendants. This Hubble image provides evidence that ellipticals formed remarkably early in the universe. [top right] Some of the objects in this compact tangled group resemble today's spiral galaxies. However, they have irregular shapes and appear disrupted and asymmetric. This might be due to a high frequency of galaxy collisions and close encounters in the early universe. Credit: Mark Dickinson (STScI) and NASA
SZ observations to study the physics of the intra-cluster medium
NASA Astrophysics Data System (ADS)
Pointecouteau, E.
2017-10-01
Recent Sunyaev-Zeldovich surveys have delivered new catalogues of galaxy clusters over the whole sky and out to distant redshifts. The new generation of SZ facilities (NIKA, MUSTANG, ALMA) now focuses on high angular resolution and high sensitivity. I will discuss the current status of SZ observations and the perspective with the future instruments for the measurement of physical properties of galaxy clusters, and their relevance to the study of the ICM physics. I will also discuss the natural synergy between the SZ signal and the X-ray emission from the hot intra-cluster medium.
An X-ray Luminous, Distant (z=0.78) Cluster of Galaxies
NASA Technical Reports Server (NTRS)
Donahue, Megan
2001-01-01
This granted funded ASCA studies of the most X-ray luminous clusters of galaxies in the Extended Medium Sensitivity Survey. These studies leveraged further observations with Chandra and sparked a new collaboration between the PI and John Carlstrom's Sunyaev-Zel'dovich team. The major scientific results due largely or in part from these observations: the first z=0.5-0.8 cluster temperature function, constraints on cluster evolution which showed definitively that the density of the universe divided by the critical density, Omega-m, could not be 1.0, constraints on cluster evolution limiting Omega_m to 0.2-0.5, independent of lambda, the first detections of intracluster iron in a z>0.6 cluster of galaxies. These results are independent of the supernova and cosmological microwave background results, and provide independent constraint on cosmological parameters.
Keck/LRIS Spectroscopy of the Distant Cluster Cl0016+16
NASA Astrophysics Data System (ADS)
Wirth, Gregory D.; Koo, David C.
1994-12-01
The rich galaxy cluster Cl0016+16 at z=0.55 initially achieved visibility (Koo 1981) for being the original ``anti Butcher-Oemler effect'' cluster: its galaxy population was found to be almost entirely red, indistinguishable in rest-frame color from local E/S0 galaxies, despite the expectation that higher redshift clusters should have a greater proportion of blue galaxies (Butcher & Oemler 1978, 1984). Interest in this cluster has heightened over the last decade as: X-ray observations found it to be among the most luminous clusters known (Henry et al. 1992); radio observations showed it to be among only a handful of clusters exhibiting a Sunyaev-Zel'dovich microwave decrement, useful for measuring the Hubble Constant (Lasenby 1992); optical spectroscopy revealed a significant population of ``E+A'' galaxies, enigmatic objects with spectra suggesting a recently-concluded episode of star formation (Dressler & Gunn 1992). Further observations by ROSAT, ASCA, and HST have established Cl0016+16 as among the best-studied clusters beyond Coma. The red nature of its galaxy population makes Cl0016+16 a prime candidate for the study of cluster galaxy evolution. As part of an ongoing effort to study the early-type galaxies in this cluster, we recently used the Keck Telescope and Low-Resolution Imaging Spectrograph to obtain high quality spectra of 19 cluster members at 6 Angstroms (FWHM) resolution. This poster describes the preliminary results from these data, which will allow us to investigate galaxy age and metallicity at lookback times nearly halfway to the Big Bang, probe the internal kinematics of galaxies at z=0.55, and thus perhaps trace the evolution of the ``fundamental plane'' for E/S0 galaxies.
HUBBLE VIEWS DISTANT GALAXIES THROUGH A COSMIC LENS
NASA Technical Reports Server (NTRS)
2002-01-01
This NASA Hubble Space Telescope image of the rich galaxy cluster, Abell 2218, is a spectacular example of gravitational lensing. The arc-like pattern spread across the picture like a spider web is an illusion caused by the gravitational field of the cluster. The cluster is so massive and compact that light rays passing through it are deflected by its enormous gravitational field, much as an optical lens bends light to form an image. The process magnifies, brightens and distorts images of objects that lie far beyond the cluster. This provides a powerful 'zoom lens' for viewing galaxies that are so far away they could not normally be observed with the largest available telescopes. Hubble's high resolution reveals numerous arcs which are difficult to detect with ground-based telescopes because they appear to be so thin. The arcs are the distorted images of a very distant galaxy population extending 5-10 times farther than the lensing cluster. This population existed when the universe was just one quarter of its present age. The arcs provide a direct glimpse of how star forming regions are distributed in remote galaxies, and other clues to the early evoution of galaxies. Hubble also reveals multiple imaging, a rarer lensing event that happens when the distortion is large enough to produce more than one image of the same galaxy. Abell 2218 has an unprecedented total of seven multiple systems. The abundance of lensing features in Abell 2218 has been used to make a detailed map of the distribution of matter in the cluster's center. From this, distances can be calculated for a sample of 120 faint arclets found on the Hubble image. These arclets represent galaxies that are 50 times fainter than objects that can be seen with ground-based telescopes. Studies of remote galaxies viewed through well-studied lenses like Abell 2218 promise to reveal the nature of normal galaxies at much earlier epochs than was previously possible. The technique is a powerful combination of Hubble's superlative capabilities and the 'natural' focusing properties of massive clusters like Abell 2218. The image was taken with the Wide Field Planetary Camera 2. Credits: W.Couch (University of New South Wales), R. Ellis (Cambridge University), and NASA
Hubble Captures Massive Dead Disk Galaxy that Challenges Theories of Galaxy Evolution
2017-12-08
By combining the power of a "natural lens" in space with the capability of NASA's Hubble Space Telescope, astronomers made a surprising discovery—the first example of a compact yet massive, fast-spinning, disk-shaped galaxy that stopped making stars only a few billion years after the big bang. Finding such a galaxy early in the history of the universe challenges the current understanding of how massive galaxies form and evolve, say researchers. Read more: go.nasa.gov/2sWwKkc caption: Acting as a “natural telescope” in space, the gravity of the extremely massive foreground galaxy cluster MACS J2129-0741 magnifies, brightens, and distorts the far-distant background galaxy MACS2129-1, shown in the top box. The middle box is a blown-up view of the gravitationally lensed galaxy. In the bottom box is a reconstructed image, based on modeling that shows what the galaxy would look like if the galaxy cluster were not present. The galaxy appears red because it is so distant that its light is shifted into the red part of the spectrum. Credits: NASA, ESA, M. Postman (STScI), and the CLASH team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Detection of X-ray emission from distant clusters of galaxies
NASA Technical Reports Server (NTRS)
Henry, J. P.; Branduardi, G.; Fabricant, D.; Feigelson, E.; Murray, S.; Tananbaum, H.; Briel, U.; Soltan, A.
1979-01-01
The paper reports the first extensive detection of X-ray emission from clusters of galaxies at cosmological distances. The properties of these objects are similar to those observed in objects at low redshifts. The 0.5-4.5 keV luminosities are in the range of less than 1 x 10 to the 43rd to 2 x 10 to the 45th ergs/s; the core radii are on the order of 0.5 Mpc; and Bautz-Morgan type I clusters are more luminous than types II or III. The observations are consistent with models assuming an evolving cluster potential and moderately efficient galaxy formation, but do not require them when observational selection is considered. X-ray observations of the 3C 295 cluster indicate that there is sufficient intergalactic medium to cause stripping of the cluster spirals, but the colors of these galaxies imply that they have not been stripped. A possible explanation of this discrepancy is discussed.
A Survey of Distant Clusters of Galaxies Selected by X-Rays
NASA Technical Reports Server (NTRS)
McNamara, Brian
1997-01-01
I will discuss the results of a new survey of X-ray selected, distant clusters of galaxies that has been undertaken by our group at.CfA (Vikhlinin, McNamara, Forman, Jones). We have analyzed the inner 17.5 arcminute region of roughly 650 ROSAT PSPC images of high latitude fields to compile a complete, flux-limited sample of clusters with a mean flux limit roughly 20 times more sensitive than the Einstein Medium Sensitivity Survey. The goal of our survey, which presently contains 233 extended X-ray sources, is to study cluster evolution over cosmological timescales. We have obtained optical images for nearly all of the faintest sources using the 1.2 m telescope of the Fred L. Whipple Observatory, and when including POSS images of the brighter sources, we have nearly completed the identification of all of the extended sources. Roughly 80% of the sources were identified as clusters of galaxies. We have measured redshifts for 42 clusters using the MMT, and including additional measurements from the literature, roughly 70 clusters in our catalog have spectroscopic redshifts. Using CCD photometry and spectroscopic redshifts, we have determined a magnitude-redshift relation which will allow redshifts of the remaining clusters in our sample to be determined photometrically to within a delta z over z of roughly ten percent. I will discuss the Log(N)-Log(S) relation for our sample and compare it to other determinations. In addition, I will discuss the evolution of core radii of clusters.
Extended Source/Galaxy All Sky 1
2003-03-27
This panoramic view of the entire sky reveals the distribution of galaxies beyond our Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is constructed from a database of over 1.6 million galaxies listed in the survey's Extended Source Catalog; more than half of the galaxies have never before been catalogued. The image is a representation of the relative brightnesses of these million-plus galaxies, all observed at a wavelength of 2.2 microns. The brightest and nearest galaxies are represented in blue, and the faintest, most distant ones are in red. This color scheme gives insights into the three dimensional large-scale structure of the nearby universe with the brightest, closest clusters and superclusters showing up as the blue and bluish-white features. The dark band in this image shows the area of the sky where our Milky Way galaxy blocks our view of distant objects, which, in this projection, lies predominantly along the edges of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04252
NASA Astrophysics Data System (ADS)
Reines, Amy Ellen
2011-01-01
Globular star clusters and supermassive black holes are fundamental components of today's massive galaxies, with origins dating back to the very early universe. Both globular clusters and the seeds of supermassive black holes are believed to have formed in the progenitors of modern massive galaxies, although the details are poorly understood. Direct observations of these low-mass, distant, and hence faint systems are unobtainable with current capabilities. However, gas-rich dwarf starburst galaxies in the local universe, analogous in many ways to protogalaxies at high-redshift, can provide critical insight into the early stages of galaxy evolution including the formation of globular clusters and massive black holes. This thesis presents a panchromatic study of nearby dwarf starburst galaxies harboring nascent globular clusters still embedded in their birth material. Infant clusters are identified via their production of thermal radio emission at centimeter wavelengths, which comes from dense gas ionized by young massive stars. By combining radio observations with complementary data at ultraviolet, optical and infrared wavelengths, we obtain a comprehensive view of massive clusters emerging from their gaseous and dusty birth cocoons. This thesis also presents the first example of a nearby dwarf starburst galaxy hosting an actively accreting massive central black hole. The black hole in this dwarf galaxy is unusual in that it is not associated with a bulge, a nuclear star cluster, or any other well-defined nucleus, likely reflecting an early phase of black hole and galaxy evolution that has not been previously observed.
Interpreting the Clustering of Distant Red Galaxies
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.; Wechsler, Risa H.; Zheng, Zheng
2010-01-01
We analyze the angular clustering of z ~ 2.3 distant red galaxies (DRGs) measured by Quardi et al. We find that, with robust estimates of the measurement errors and realistic halo occupation distribution modeling, the measured clustering can be well fit within standard halo occupation models, in contrast to previous results. However, in order to fit the strong break in w(θ) at θ = 10'', nearly all satellite galaxies in the DRG luminosity range are required to be DRGs. Within this luminosity-threshold sample, the fraction of galaxies that are DRGs is ~44%, implying that the formation of DRGs is more efficient for satellite galaxies than for central galaxies. Despite the evolved stellar populations contained within DRGs at z = 2.3, 90% of satellite galaxies in the DRG luminosity range have been accreted within 500 Myr. Thus, satellite DRGs must have known they would become satellites well before the time of their accretion. This implies that the formation of DRGs correlates with large-scale environment at fixed halo mass, although the large-scale bias of DRGs can be well fit without such assumptions. Further data are required to resolve this issue. Using the observational estimate that ~30% of DRGs have no ongoing star formation, we infer a timescale for star formation quenching for satellite galaxies of 450 Myr, although the uncertainty on this number is large. However, unless all non-star-forming satellite DRGs were quenched before accretion, the quenching timescale is significantly shorter than z ~ 0 estimates. Down to the completeness limit of the Quadri et al. sample, we find that the halo masses of central DRGs are ~50% higher than non-DRGs in the same luminosity range, but at the highest halo masses the central galaxies are DRGs only ~2/3 of the time.
NASA Telescopes Help Identify Most Distant Galaxy Cluster
NASA Astrophysics Data System (ADS)
2011-01-01
WASHINGTON -- Astronomers have uncovered a burgeoning galactic metropolis, the most distant known in the early universe. This ancient collection of galaxies presumably grew into a modern galaxy cluster similar to the massive ones seen today. The developing cluster, named COSMOS-AzTEC3, was discovered and characterized by multi-wavelength telescopes, including NASA's Spitzer, Chandra and Hubble space telescopes, and the ground-based W.M. Keck Observatory and Japan's Subaru Telescope. "This exciting discovery showcases the exceptional science made possible through collaboration among NASA projects and our international partners," said Jon Morse, NASA's Astrophysics Division director at NASA Headquarters in Washington. Scientists refer to this growing lump of galaxies as a proto-cluster. COSMOS-AzTEC3 is the most distant massive proto-cluster known, and also one of the youngest, because it is being seen when the universe itself was young. The cluster is roughly 12.6 billion light-years away from Earth. Our universe is estimated to be 13.7 billion years old. Previously, more mature versions of these clusters had been spotted at 10 billion light-years away. The astronomers also found that this cluster is buzzing with extreme bursts of star formation and one enormous feeding black hole. "We think the starbursts and black holes are the seeds of the cluster," said Peter Capak of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena. "These seeds will eventually grow into a giant, central galaxy that will dominate the cluster -- a trait found in modern-day galaxy clusters." Capak is first author of a paper appearing in the Jan. 13 issue of the journal Nature. Most galaxies in our universe are bound together into clusters that dot the cosmic landscape like urban sprawls, usually centered around one old, monstrous galaxy containing a massive black hole. Astronomers thought that primitive versions of these clusters, still forming and clumping together, should exist in the early universe. But locating one proved difficult -- until now. Capak and his colleagues first used the Chandra X-ray Observatory and the United Kingdom's James Clerk Maxwell Telescope on Mauna Kea, Hawaii, to search for the black holes and bursts of star formation needed to form the massive galaxies at the centers of modern galaxy cities. The astronomers then used Hubble and the Subaru telescopes to estimate the distances to these objects, and look for higher densities of galaxies around them. Finally, the Keck telescope was used to confirm that these galaxies were at the same distance and part of the same galactic sprawl. Once the scientists found this lumping of galaxies, they measured the combined mass with the help of Spitzer. At this distance the optical light from stars is shifted, or stretched, to infrared wavelengths that can only be observed in outer space by Spitzer. The lump sum of the mass turned out to be a minimum of 400 billion suns -- enough to indicate that the astronomers had indeed uncovered a massive proto-cluster. The Spitzer observations also helped confirm a massive galaxy at the center of the cluster was forming stars at an impressive rate. Chandra X-ray observations were used to find and characterize the whopping black hole with a mass of more than 30 million suns. Massive black holes are common in present-day galaxy clusters, but this is the first time a feeding black hole of this heft has been linked to a cluster that is so young. Finally, the Institut de Radioastronomie Millimétrique's interferometer telescope in France and 30-meter telescope in Spain, along with the National Radio Astronomy Observatory's Very Large Array telescope in New Mexico, measured the amount of gas, or fuel for future star formation, in the cluster. The results indicate the cluster will keep growing into a modern city of galaxies. "It really did take a village of telescopes to nail this cluster," said Capak. "Observations across the electromagnetic spectrum, from X-ray to millimeter wavelengths, were all critical in providing a comprehensive view of the cluster's many facets." COSMOS-AzTEC3, located in the constellation Sextans, is named after the region where it was found, called COSMOS after the Cosmic Evolution Survey. AzTEC is the name of the camera used on the James Clerk Maxwell Telescope -- this camera is now on its way to the Large Millimeter Telescope located in Mexico's Puebla state. For more information about NASA's Spitzer, Chandra and Hubble space telescopes, visit: http://www.nasa.gov/chandra http://www.nasa.gov/spitzer http://www.nasa.gov/hubble
NASA Astrophysics Data System (ADS)
Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-Non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi
2017-12-01
The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z∼ 1 to date. In this exploratory study of cluster galaxy evolution from z = 1 to z = 0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), the evolution of stellar mass and luminosity distributions, the stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high-redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Over the 230 deg2 area of the current HSC-SSP footprint, selecting the top 100 clusters in each of the four redshift bins allows us to observe the buildup of galaxy population in descendants of clusters whose z≈ 1 mass is about 2× {10}14 {M}ȯ . Our stellar mass is derived from a machine-learning algorithm, which is found to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs (about 35% between z = 1 and 0.3), and no evidence for evolution in both the total stellar mass–cluster mass correlation and the shape of the stellar mass surface density profile. We also present the first measurement of the radio luminosity distribution in clusters out to z∼ 1, and show hints of changes in the dominant accretion mode powering the cluster radio galaxies at z∼ 0.8.
NASA Astrophysics Data System (ADS)
Kelkar, Kshitija; Gray, Meghan E.; Aragón-Salamanca, Alfonso; Rudnick, Gregory; Milvang-Jensen, Bo; Jablonka, Pascale; Schrabback, Tim
2017-08-01
With the aim of understanding the effect of the environment on the star formation history and morphological transformation of galaxies, we present a detailed analysis of the colour, morphology and internal structure of cluster and field galaxies at 0.4 ≤ z ≤ 0.8. We use the Hubble Space Telescope data for over 500 galaxies from the ESO Distant Cluster Survey to quantify how the galaxies' light distribution deviate from symmetric smooth profiles. We visually inspect the galaxies' images to identify the likely causes for such deviations. We find that the residual flux fraction (RFF), which measures the fractional contribution to the galaxy light of the residuals left after subtracting a symmetric and smooth model, is very sensitive to the degree of structural disturbance but not the causes of such disturbance. On the other hand, the asymmetry of these residuals (Ares) is more sensitive to the causes of the disturbance, with merging galaxies having the highest values of Ares. Using these quantitative parameters, we find that, at a fixed morphology, cluster and field galaxies show statistically similar degrees of disturbance. However, there is a higher fraction of symmetric and passive spirals in the cluster than in the field. These galaxies have smoother light distributions than their star-forming counterparts. We also find that while almost all field and cluster S0s appear undisturbed, there is a relatively small population of star-forming S0s in clusters but not in the field. These findings are consistent with relatively gentle environmental processes acting on galaxies infalling on to clusters.
NASA Astrophysics Data System (ADS)
Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.
2011-09-01
X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.
New Fast Lane towards Discoveries of Clusters of Galaxies Inaugurated
NASA Astrophysics Data System (ADS)
2003-07-01
Space and Ground-Based Telescopes Cooperate to Gain Deep Cosmological Insights Summary Using the ESA XMM-Newton satellite, a team of European and Chilean astronomers [2] has obtained the world's deepest "wide-field" X-ray image of the cosmos to date. This penetrating view, when complemented with observations by some of the largest and most efficient ground-based optical telescopes, including the ESO Very Large Telescope (VLT), has resulted in the discovery of several large clusters of galaxies. These early results from an ambitious research programme are extremely promising and pave the way for a very comprehensive and thorough census of clusters of galaxies at various epochs. Relying on the foremost astronomical technology and with an unequalled observational efficiency, this project is set to provide new insights into the structure and evolution of the distant Universe. PR Photo 19a/03: First image from the XMM-LSS survey. PR Photo 19b/03: Zoom-in on PR Photo 19b/03. PR Photo 19c/03: XMM-Newton contour map of the probable extent of a cluster of galaxies, superimposed upon a CHFT I-band image. PR Photo 19d/03: Velocity distribution in the cluster field shown in PR Photo 19c/03. The universal web Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies which themselves congregate into clusters (and even clusters of clusters). These clusters are "strung" throughout the Universe in a web-like structure, cf. ESO PR 11/01. Our Galaxy, the Milky Way, for example, belongs to the so-called Local Group which also comprises "Messier 31", the Andromeda Galaxy. The Local Group contains about 30 galaxies and measures a few million light-years across. Other clusters are much larger. The Coma cluster contains thousands of galaxies and measures more than 20 million light-years. Another well known example is the Virgo cluster, covering no less than 10 degrees on the sky ! Clusters of galaxies are the most massive bound structures in the Universe. They have masses of the order of one thousand million million times the mass of our Sun. Their three-dimensional space distribution and number density change with cosmic time and provide information about the main cosmological parameters in a unique way. About one fifth of the optically invisible mass of a cluster is in the form of a diffuse hot gas in between the galaxies. This gas has a temperature of the order of several tens of million degrees and a density of the order of one atom per liter. At such high temperatures, it produces powerful X-ray emission. Observing this intergalactic gas and not just the individual galaxies is like seeing the buildings of a city in daytime, not just the lighted windows at night. This is why clusters of galaxies are best discovered using X-ray satellites. Using previous X-ray satellites, astronomers have performed limited studies of the large-scale structure of the nearby Universe. However, they so far lacked the instruments to extend the search to large volumes of the distant Universe. The XMM-Newton wide-field observations ESO PR Photo 19a/03 ESO PR Photo 19a/03 [Preview - JPEG: 575 x 400 pix - 52k [Normal - JPEG: 1130 x 800 pix - 420k] ESO PR Photo 19b/03 ESO PR Photo 19b/03 [Preview - JPEG: 400 x 489 pix - 52k [Normal - JPEG: 800 x 978 pix - 464k] Captions: PR Photo 19a/03 is the first image from the XMM-LSS X-Ray survey. It is actually a combination of fourteen separate "pointings" of this space observatory. It represents a region of the sky eight times larger than the full Moon and contains around 25 clusters. The circles represent the X-Ray sources previously known from the 1991 ROSAT All-Sky Survey. PR Photo 19b/03 zooms in on a particularly interesting region of the image shown in ESO PR Photo 19a/03 with a possible cluster identified (in box). Each point on this graph represents a single X-ray photon detected by XMM-Newton. Marguerite Pierre (CEA Saclay, France), with a European/Chilean team of astronomers known as the XMM-LSS consortium [2], used the large field-of-view and the high sensitivity of ESA's X-ray observatory XMM-Newton to search for remote clusters of galaxies and map out their distribution in space. They could see back about 7,000 million years to a cosmological era when the Universe was about half its present size and age, when clusters of galaxies were more tightly packed. Tracking down the clusters is a painstaking, multi-step process, requiring both space and ground-based telescopes. Indeed, from X-ray images with XMM, it was possible to select several tens of cluster candidate objects, identified as areas of enhanced X-radiation (cf PR Photo 19b/03). But having candidates is not enough ! They must be confirmed and further studied with ground-based telescopes. In tandem with XMM-Newton, Pierre uses the very-wide-field imager attached to the 4-m Canada-France-Hawaii Telescope, on Mauna Kea, Hawaii, to take an optical snapshot of the same region of space. A tailor-made computer programme then combs the XMM-Newton data looking for concentrations of X-rays that suggest large, extended structures. These are the clusters and represent only about 10% of the detected X-ray sources. The others are mostly distant active galaxies. Back to the Ground ESO PR Photo 19c/03 ESO PR Photo 19c/03 [Preview - JPEG: 400 x 481 pix - 84k [Normal - JPEG: 800 x 961 pix - 1M] ESO PR Photo 19d/03 ESO PR Photo 19d/03 [Preview - JPEG: 400 x 488 pix - 44k [Normal - JPEG: 800 x 976 pix - 520k] Captions: PR Photo 19c/03 represents the XMM-Newton X-ray contour map of the cluster's probable extent superimposed upon the CFHT I-band image. A concentration of distant galaxies is conspicuous, thus confirming the X-ray detection. The symbols indicate the galaxies which have been subject to a subsequent spectroscopic measurement and found to be cluster members (triangles flag emission line galaxies). The individual galaxies in the cluster can then be targeted for further observations with ESO's VLT, in order to measure its distance and locate the cluster in the universe. Following the X-ray discovery and the optical cluster identification, galaxies in the cluster field shown in ESO PR Photo 19c/03 have been spectroscopically observed at the ESO VLT using the FORS2 instrument in order to determine the cluster redshift [3]. Using two masks, each of them observed during one hour, allowing to take the spectra of 16 emission-line galaxies at a time, the cluster was found to have a redshift of 0.84, corresponding to a distance of 8,000 million light-years, and a velocity dispersion of 750 km/s. PR Photo 19d/03 shows the measured velocity distribution. This is one of the most distant known clusters of galaxies for which a velocity dispersion has been measured. When the programme finds a cluster, it zooms in on that region and converts the XMM-Newton data into a contour map of X-ray intensity, which is then superimposed upon the CFHT optical image (PR Photo 19c/03). The astronomers use this to check if anything is visible within the area of extented X-ray emission. If something is seen, the work then shifts to one of the world's prime optical/infrared telescopes, the European Southern Observatory's Very Large Telescope (VLT) at Paranal (Chile). By means of the FORS multi-mode instruments, the astronomers zoom-in on the individual galaxies in the field, taking spectral measurements that reveal their overall characteristics, in particular their redshift and hence, distance. Cluster galaxies have similar distances and these measurement ultimately provide, by averaging, the cluster's distance as well as the velocity dispersion in the cluster. The FORS instruments are among the most efficient and versatile for this type of work, taking on the average spectra of 30 galaxies at a time. The first spectroscopic observations dedicated to the identification and redshift measurement of the XMM-LSS galaxy clusters took place during three nights in the fall of 2002. As of March 2003, there were only 5 known clusters in the literature at such a large redshift with enough spectroscopically measured redshifts to allow an estimate of the velocity dispersion. But the VLT allowed obtaining the dispersion in a distant cluster in 2 hours only, raising great expectations for future work. 700 spectra... Marguerite Pierre is extremely content : Weather and working conditions at the VLT were optimal. In three nights only, 12 cluster fields were observed, yielding no less than 700 spectra of galaxies. The overall strategy proved very successful. The high observing efficiency of the VLT and FORS support our plan to perform follow-up studies of large numbers of distant clusters with relatively little observing time. This represents a most substantial increase in efficiency compared to former searches. The present research programme has begun well, clearly demonstrating the feasibility of this new multi-telescope approach and its very high efficiency. And Marguerite Pierre and her colleagues are already seeing the first tantalising results: it seems to confirm that the number of clusters 7,000 million years ago is little different from that of today. This particular behaviour is predicted by models of the Universe that expand forever, driving the galaxy clusters further and further apart. Equally important, this multi-wavelength, multi-telescope approach developed by the XMM-LSS consortium to locate clusters of galaxies also constitutes a decisive next step in the fertile synergy between space and ground-based observatories and is therefore a basic building block of the forthcoming Virtual Observatory. More information This work is based on two papers to be published in the professional astronomy journal, Astronomy and Astrophysics (The XMM-LSS survey : I. Scientific motivations, design and first results by Marguerite Pierre et al., astro-ph/0305191 and The XMM-LSS survey : II. First high redshift galaxy clusters: relaxed and collapsing systems by Ivan Valtchanov et al., astro-ph/0305192). Dr. M. Pierre will give an invited talk on this subject at the IAU Symposium 216 - Maps of the Cosmos - this Thursday July 17, 2003 during the IAU General Assembly 2003 in Sydney, Australia.
HUBBLE AND KECK DISCOVER GALAXY BUILDING BLOCK
NASA Technical Reports Server (NTRS)
2002-01-01
This NASA Hubble Space Telescope image shows a very small, faint galaxy 'building block' newly discovered by a unique collaboration between ground- and space-based telescopes. Hubble and the 10-meter Keck Telescopes in Hawaii joined forces, using a galaxy cluster which acts as gravitational lens to detect what scientists believe is one of the smallest very distant objects ever found. The galaxy cluster Abell 2218 was used by a team of European and American astronomers led by Richard Ellis (Caltech) in their systematic search for intrinsically faint distant star-forming systems. Without help from Abell 2218's exceptional magnifying power to make objects appear about 30 times brighter, the galaxy building block would have been undetectable. In the image to the right, the object is seen distorted into two nearly identical, very red 'images' by the gravitational lens. The image pair represents the magnified result of a single background object gravitationally lensed by Abell 2218 and viewed at a distance of 13.4 billion light-years. The intriguing object contains only one million stars, far fewer than a mature galaxy, and scientists believe it is very young. Such young star-forming systems of low mass at early cosmic times are likely to be the objects from which present-day galaxies have formed. In the image to the left, the full overview of the galaxy cluster Abell 2218 is seen. This image was taken by Hubble in 1999 at the completion of Hubble Servicing Mission 3A. Credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: NASA, A. Fruchter and the ERO Team (STScI and ST-ECF)
The Hubble Space Telescope Medium Deep Survey Cluster Sample: Methodology and Data
NASA Astrophysics Data System (ADS)
Ostrander, E. J.; Nichol, R. C.; Ratnatunga, K. U.; Griffiths, R. E.
1998-12-01
We present a new, objectively selected, sample of galaxy overdensities detected in the Hubble Space Telescope Medium Deep Survey (MDS). These clusters/groups were found using an automated procedure that involved searching for statistically significant galaxy overdensities. The contrast of the clusters against the field galaxy population is increased when morphological data are used to search around bulge-dominated galaxies. In total, we present 92 overdensities above a probability threshold of 99.5%. We show, via extensive Monte Carlo simulations, that at least 60% of these overdensities are likely to be real clusters and groups and not random line-of-sight superpositions of galaxies. For each overdensity in the MDS cluster sample, we provide a richness and the average of the bulge-to-total ratio of galaxies within each system. This MDS cluster sample potentially contains some of the most distant clusters/groups ever detected, with about 25% of the overdensities having estimated redshifts z > ~0.9. We have made this sample publicly available to facilitate spectroscopic confirmation of these clusters and help more detailed studies of cluster and galaxy evolution. We also report the serendipitous discovery of a new cluster close on the sky to the rich optical cluster Cl l0016+16 at z = 0.546. This new overdensity, HST 001831+16208, may be coincident with both an X-ray source and a radio source. HST 001831+16208 is the third cluster/group discovered near to Cl 0016+16 and appears to strengthen the claims of Connolly et al. of superclustering at high redshift.
NASA Astrophysics Data System (ADS)
Sultanova, Madina; Barkhouse, Wayne; Rude, Cody
2018-01-01
The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 < z < 0.184) from Rude et al. 2017 (in preparation), which were observed by the Canada-France-Hawaii Telescope. Additionally, I studied 57 galaxy clusters from Barkhouse et al. (2007), 77 clusters from the WINGS survey (Fasano et al. 2006), and the six Hubble Space Telescope (HST) Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.
Radial Profiles of PKS 0745-191 Galaxy Cluster with XMM-Newton X-Ray Observations
NASA Astrophysics Data System (ADS)
Tumer, A.; Ezer, C.; Ercan, E.
2017-10-01
Since clusters of galaxies are the largest comprehensive samples of the universe, they provide essential information on from the most basic to the most complex physical mechanisms such as nucleosynthesis and supernovae events. Some of these information are provided by the X-ray emission data from Intra Cluster Medium (ICM) which contains hot dilute gas. Recent archieved observation of the X-Ray spectrum of the cool core galaxy cluster PKS 0745-191 provided by XMM-Newton is subjected to data analysis using ESAS package. Followed by spectra analysis utilizing Xspec spectral fitting software, we present the radial profiles of temperature and abundance from the core to 0.5R_500 of brightest distant cluster (z ˜ 0.102) PKS 0745-191. Using the deprojected spectra, the radial distribution of pressure and entropy in the aforementioned region are also presented.
The morphological transformation of red sequence galaxies in clusters since z ˜ 1
NASA Astrophysics Data System (ADS)
Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R.
2017-11-01
The study of galaxy morphology is fundamental to understand the physical processes driving the structural evolution of galaxies. It has long been known that dense environments host high fractions of early-type galaxies and low fractions of late-type galaxies, indicating that the environment affects the structural evolution of galaxies. In this paper, we present an analysis of the morphological composition of red sequence galaxies in a sample of nine galaxy clusters at 0.8 < z < 1.5 drawn from the HAWK-I Cluster Survey (HCS), with the aim of investigating the evolutionary paths of galaxies with different morphologies. We classify galaxies according to their apparent bulge-to-total light ratio and compare with red sequence galaxies from the lower redshift WIde-field Nearby Galaxy-cluster Survey (WINGS) and ESO Distant Cluster Survey (EDisCS). We find that, while the HCS red sequence is dominated by elliptical galaxies at all luminosities and stellar masses, the WINGS red sequence is dominated by elliptical galaxies only at its bright end (MV < -21.0 mag), while S0s become the most frequent class at fainter luminosities. Disc-dominated galaxies comprise 10-14 per cent of the red sequence population in the low (WINGS) and high (HCS) redshift samples, although their fraction increases up to 40 per cent at 0.4 < z < 0.8 (EDisCS). We find a 20 per cent increase in the fraction of S0 galaxies from z ∼ 1.5 to 0.05 on the red sequence. These results suggest that elliptical and S0 galaxies follow different evolutionary histories and, in particular, that S0 galaxies result, at least at intermediate luminosities (-22.0 < MV < -20.0), from the morphological transformation of quiescent spiral galaxies.
2013-12-18
The collection of red dots seen here show one of several very distant galaxy clusters discovered by combining ground-based optical data from the NOAO Kitt Peak National Observatory with infrared data from NASA Spitzer Space Telescope.
An X-ray study of the Centaurus Cluster of galaxies using Einstein
NASA Technical Reports Server (NTRS)
Matilsky, T.; Jones, C.; Forman, W.
1985-01-01
Einstein Imaging Proportional Counter observations of the core of the Centaurus Cluster of galaxies have been analyzed to map the 0.5-3.5 keV surface brightness and temperature of the intracluster gas. The emission is centered on NGC 4696, the elliptical galaxy believed to be at or near the dynamical center of the cluster. Because the X-ray-emitting gas responds to the gravitational potential of the cluster, the observations may be used to measure the total mass distribution around the central region. It is shown that the gas is very likely in hydrostatic equilibrium. It is found that surrounding NGC 4696, like M87 at the center of the Virgo Cluster, is a dark, massive halo, with a gravitating mass of about 2 x 10 to the 13th M out to a radius of about 20 arcmin (or 200 kpc for H(o) = 50 km/s Mpc). The elliptical galaxy NGC 4709, at the core of a more distant cluster, is also detected with a luminosity of 2 x 10 to the 40th ergs per sec.
Panoramic Views of Cluster Evolution Since z = 3
NASA Astrophysics Data System (ADS)
Kodama, Tadayuki; Tanaka, M.; Tanaka, Ichi; Kajisawa, M.
2007-05-01
We have been conducting PISCES project (Panoramic Imaging and Spectroscopy of Cluster Evolution with Subaru) with making use of the wide-field imaging capability of Subaru. Our motivations are first to map out large scale structure and local environment of galaxies therein, and then to investigate the variation in galaxy properties as a function of environment and mass. We have completed multi-colour imaging of 8 distant clusters between 0.4
NASA Astrophysics Data System (ADS)
Prichard, Laura Jane; Davies, Roger L.; Beifiori, Alessandra; Chan, Jeffrey C. C.; Cappellari, Michele; Houghton, Ryan C. W.; Mendel, Trevor; Bender, Ralf; Galametz, Audrey; Saglia, Roberto P.; Smith, Russell; Stott, John P.; Wilman, David J.; Lewis, Ian J.; Sharples, Ray; Wegner, Michael
2018-01-01
Galaxy clusters are the largest gravitationally bound structures in the Universe, and we know that early type galaxies (ETGs) are more common towards their centers. Clusters of galaxies are increasingly rare at early times, but are essential for understanding the formation of these massive structures and how they alter the fate of their member galaxies. However, long integration times are required to constrain the stellar properties of these distant cluster ETGs. Now with the advent of the multiplexed near-infrared integral field instrument, the K-band Multi-Object Spectrograph (KMOS) on the Very Large Telescope, we can target the ETGs in these valuable high-redshift clusters more efficiently than ever. The KMOS guaranteed observing program, the KMOS Cluster Survey (KCS; P.I.s Bender & Davies), has enabled a study of cluster galaxies in overdensities spanning z=1-2 through absorption-line spectroscopy obtained from 20-hour integrations. We will present spectra for 16 galaxies in the furthest KCS overdensity, JKCS 041, an ETG-rich cluster at z=1.80. We measured seven velocity dispersions from the quiescent galaxy spectra, expanding the sample of like measurements in the literature at or above z=1.80 by more than 40%. Through the analysis of Hubble Space Telescope photometry and deep absorption-line spectroscopy, we were able to construct the highest redshift fundamental plane (FP) within a single system for galaxies in JKCS 041. From the redshift evolution of the FP zero-point, we derived a mean age of the galaxies in this cluster of 1.4 +/- 0.2 Gyrs. We determined relative velocities of the galaxies to study the three-dimensional structure of this overdensity. We noticed from the dynamics of JKCS 041 that a group of galaxies was infalling towards the cluster center. When measuring FP ages for the infalling group, we found these galaxies had significantly younger mean ages (0.3 +/- 0.2 Gyrs) than the other galaxies in the cluster (2.0 +0.3/-0.1 Gyrs). Based on the galaxy dynamics, cluster morphology, and galaxy stellar age results, we concluded that JKCS 041 is in formation and consists of two merging groups of galaxies. This could link galaxy ages to large-scale structure for the first time at this redshift.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-04-01
Powerful jets emitted from the centers of distant galaxies make for spectacular signposts in the radio sky. Can observations of these jets reveal information about the environments that surround them?Signposts in the SkyVLA FIRST images of seven bent double-lobed radio galaxies from the authors sample. [Adapted from Silverstein et al. 2018]An active supermassive black hole lurking in a galactic center can put on quite a show! These beasts fling out accreting material, often forming intense jets that punch their way out of their host galaxies. As the jets propagate, they expand into large lobes of radio emission that we can spot from Earth observable signs of the connection between distant supermassive black holes and the galaxies in which they live.These distinctive double-lobed radio galaxies (DLRGs) dont all look the same. In particular, though the jets are emitted from the black holes two poles, the lobes of DLRGs dont always extend perfectly in opposite directions; often, the jets become bent on larger scales, appearing to us to subtend angles of less than 180 degrees.Can we use our observations of DLRG shapes and distributions to learn about their surroundings? A new study led by Ezekiel Silverstein (University of Michigan) has addressed this question by exploring DLRGs living in dense galaxy-cluster environments.Projected density of DLRGcentral galaxy matches (black) compared to a control sample of random positionscentral galaxy matches (red) for different distances from acluster center. DLRGs have a higher likelihood of being located close to a cluster center. [Silverstein et al. 2018]Living Near the HubTo build a sample of DLRGs in dense environments, Silverstein and collaborators started from a large catalog of DLRGs in Sloan Digital Sky Survey quasars with radio lobes visible in Very Large Array data. They then cross-matched these against three galaxy catalogs to produce a sample of 44 DLRGs that are each paired to a nearby massive galaxy, galaxy group, or galaxy cluster.To determine if these DLRGs locations are unusual, the authors next constructed a control sample of random galaxies using the same selection biases as their DLRG sample.Silverstein and collaborators found that the density of DLRGs as a function of distance from a cluster center drops off more rapidly than the density of galaxies in a typical cluster. Observed DLRGs are therefore more likely than random galaxies to be found near galaxy groups and clusters. The authors speculate that this may be a selection effect: DLRGs further from cluster centers may be less bright, preventing their detection.Bent Under PressureThe angle subtended by the DLRG radio lobes, plotted against the distance of the DLRG to the cluster center. Central galaxies (red circle) experience different physics and are therefore excluded from the sample. In the remaining sample, bent DLRGs appear to favor cluster centers, compared to unbent DLRGs. [Silverstein et al. 2018]In addition, Silverstein and collaborators found that location appears to affect the shape of a DLRG. Bent DLRGs (those with a measured angle between their lobes of 170 or smaller) are more likely to be found near a cluster center than unbent DLRGs (those with angles of 170180). The fraction of bent DLRGs is 78% within 3 million light-years of the cluster center, and 56% within double that distance compared to a typical fraction of just 29% in the field.These results support the idea that ram pressure the pressure experienced by a galaxy as it moves through the higher density environment closer to the center of a cluster is what bends the DLRGs.Whats next to learn? This study relies on a fairly small sample, so Silverstein and collaborators hope that future deep optical surveys will increase the completeness of cluster catalogs, enabling further testing of these outcomes and the exploration of other physics of galaxy-cluster environments.CitationEzekiel M Silverstein et al 2018 AJ 155 14. doi:10.3847/1538-3881/aa9d2e
A DISTANT RADIO MINI-HALO IN THE PHOENIX GALAXY CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Weeren, R. J.; Andrade-Santos, F.; Forman, W. R.
We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z = 0.596) with the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightest Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observationsmore » show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of 17 ± 5 mJy, resulting in a 1.4 GHz radio power of (10.4 ± 3.5) × 10{sup 24} W Hz{sup –1}. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of –0.84 ± 0.12 for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.« less
Discovery of a Galaxy Cluster with a Violently Starbursting Core at z = 2.506
NASA Astrophysics Data System (ADS)
Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schreiber, Corentin; Martín, Sergio; Strazzullo, Veronica; Valentino, Francesco; van der Burg, Remco; Zanella, Anita; Ciesla, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Yanxia
2016-09-01
We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at z spec = 2.506, which contains 11 massive (M * ≳ 1011 M ⊙) galaxies in the central 80 kpc region (11.6σ overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from Hα. The X-ray luminosity, stellar mass content, and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass M 200c = 1013.9±0.2 M ⊙, making it the most distant X-ray-detected cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only 2 out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80 kpc core reaches ˜3400 M ⊙ yr-1 with a gas depletion time of ˜200 Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction (˜25%, compared to 3%-5% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.
DISCOVERY OF A GALAXY CLUSTER WITH A VIOLENTLY STARBURSTING CORE AT z = 2.506
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tao; Elbaz, David; Daddi, Emanuele
2016-09-01
We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at z {sub spec} = 2.506, which contains 11 massive (M {sub *} ≳ 10{sup 11} M {sub ⊙}) galaxies in the central 80 kpc region (11.6 σ overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from H α . The X-ray luminosity, stellar mass content, and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass M {sub 200} {sub c} = 10{sup 13.9±0.2} M {sub ⊙}, making it the most distant X-ray-detectedmore » cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only 2 out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80 kpc core reaches ∼3400 M {sub ⊙} yr{sup −1} with a gas depletion time of ∼200 Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction (∼25%, compared to 3%–5% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.« less
X-Ray Gas Temperatures in the Arc Clusters MS0440+204 and MS0302+1658
NASA Technical Reports Server (NTRS)
Gioia, Isabella M.; White, Nicholas
1997-01-01
The cluster of galaxies MS0440+02, originally discovered through its X-ray emission, was part of an optical observational program to search for arcs and arclets in a complete sample of X-ray luminous, medium-distant clusters of galaxies. Mauna Kea CCD images of MS0440+02 showed a remarkable optical morphology. The core of the cluster contains 6 bright galaxies and numerous fainter ones embedded in a low surface brightness halo. Besides, MS0440+02 is the most spectacular example that we have found of an arc system in a compact condensed cluster, with arcs symmetrically distributed to draw almost perfect circles around the cluster center. Giant arcs are magnified images of distant galaxies, gravitationally distorted by massive foreground clusters. It is of great importance to compare the results of the lensing studies with those derived from X-ray observations, as the two are independent methods of studying the mass distribution. Thus MS0440+02 was the ideal target to obtain temperature measurement with ASCA and good spatial resolution X-ray observations with ROSAT. The X-ray data have been used in conjunction with Hubble Space Telescope observations to put more stringent constrains on the mass estimates. Most of the different wavelength datasets have been reduced and analyzed. Mass determinations have been separately obtained from galaxy virial motions and X-ray profile fitting using the cluster gas temperature as measured by the ASCA satellite. Assuming that the hot gas is in hydrostatic equilibrium and in a spherical potential, we find from the X-ray data a mass distribution profile that is well described by a Beta model. From the multiple images formed by gravitational lensing (HST data) using the modelling of the gravitational lensed arcs, we have derived Beta model. To reconcile the mass estimates we have explored the possibility of having a supercluster surrounding the MOS0440 cluster, that is a model with two isothermal spheres, one embedded inside the other. These results have been published or are in press.
Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4-0.9] redshift range
NASA Astrophysics Data System (ADS)
Guennou, L.; Adami, C.; Durret, F.; Lima Neto, G. B.; Ulmer, M. P.; Clowe, D.; LeBrun, V.; Martinet, N.; Allam, S.; Annis, J.; Basa, S.; Benoist, C.; Biviano, A.; Cappi, A.; Cypriano, E. S.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Jullo, E.; Just, D.; Limousin, M.; Márquez, I.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.
2014-01-01
Context. The DAFT/FADA survey is based on the study of ~90 rich (masses found in the literature >2 × 1014 M⊙) and moderately distant clusters (redshifts 0.4 < z < 0.9), all with HST imaging data available. This survey has two main objectives: to constrain dark energy (DE) using weak lensing tomography on galaxy clusters and to build a database (deep multi-band imaging allowing photometric redshift estimates, spectroscopic data, X-ray data) of rich distant clusters to study their properties. Aims: We analyse the structures of all the clusters in the DAFT/FADA survey for which XMM-Newton and/or a sufficient number of galaxy redshifts in the cluster range are available, with the aim of detecting substructures and evidence for merging events. These properties are discussed in the framework of standard cold dark matter (ΛCDM) cosmology. Methods: In X-rays, we analysed the XMM-Newton data available, fit a β-model, and subtracted it to identify residuals. We used Chandra data, when available, to identify point sources. In the optical, we applied a Serna & Gerbal (SG) analysis to clusters with at least 15 spectroscopic galaxy redshifts available in the cluster range. We discuss the substructure detection efficiencies of both methods. Results: XMM-Newton data were available for 32 clusters, for which we derive the X-ray luminosity and a global X-ray temperature for 25 of them. For 23 clusters we were able to fit the X-ray emissivity with a β-model and subtract it to detect substructures in the X-ray gas. A dynamical analysis based on the SG method was applied to the clusters having at least 15 spectroscopic galaxy redshifts in the cluster range: 18 X-ray clusters and 11 clusters with no X-ray data. The choice of a minimum number of 15 redshifts implies that only major substructures will be detected. Ten substructures were detected both in X-rays and by the SG method. Most of the substructures detected both in X-rays and with the SG method are probably at their first cluster pericentre approach and are relatively recent infalls. We also find hints of a decreasing X-ray gas density profile core radius with redshift. Conclusions: The percentage of mass included in substructures was found to be roughly constant with redshift values of 5-15%, in agreement both with the general CDM framework and with the results of numerical simulations. Galaxies in substructures show the same general behaviour as regular cluster galaxies; however, in substructures, there is a deficiency of both late type and old stellar population galaxies. Late type galaxies with recent bursts of star formation seem to be missing in the substructures close to the bottom of the host cluster potential well. However, our sample would need to be increased to allow a more robust analysis. Tables 1, 2, 4 and Appendices A-C are available in electronic form at http://www.aanda.org
Has ESA's XMM-Newton cast doubt over dark energy?
NASA Astrophysics Data System (ADS)
2003-12-01
Galaxy cluster RXJ0847 hi-res Size hi-res: 100k Galaxy cluster RXJ0847 The fuzzy object at the centre of the frame is one of the galaxy clusters observed by XMM-Newton in its investigation of the distant Universe. The cluster, designated RXJ0847.2+3449, is about 7 000 million light years away, so we see it here as it was 7 000 million years ago, when the Universe was only about half of its present age. This cluster is made up of several dozen galaxies. Observations of eight distant clusters of galaxies, the furthest of which is around 10 thousand million light years away, were studied by an international group of astronomers led by David Lumb of ESA's Space Research and Technology Centre (ESTEC) in the Netherlands. They compared these clusters to those found in the nearby Universe. This study was conducted as part of the larger XMM-Newton Omega Project, which investigates the density of matter in the Universe under the lead of Jim Bartlett of the College de France. Clusters of galaxies are prodigious emitters of X-rays because they contain a large quantity of high-temperature gas. This gas surrounds galaxies in the same way as steam surrounds people in a sauna. By measuring the quantity and energy of X-rays from a cluster, astronomers can work out both the temperature of the cluster gas and also the mass of the cluster. Theoretically, in a Universe where the density of matter is high, clusters of galaxies would continue to grow with time and so, on average, should contain more mass now than in the past. Most astronomers believe that we live in a low-density Universe in which a mysterious substance known as 'dark energy' accounts for 70% of the content of the cosmos and, therefore, pervades everything. In this scenario, clusters of galaxies should stop growing early in the history of the Universe and look virtually indistinguishable from those of today. In a paper soon to be published by the European journal Astronomy and Astrophysics, astronomers from the XMM-Newton Omega Project present results showing that clusters of galaxies in the distant Universe are not like those of today. They seem to give out more X-rays than today. So clearly, clusters of galaxies have changed their appearance with time. In an accompanying paper, Alain Blanchard of the Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées and his team use the results to calculate how the abundance of galaxy clusters changes with time. Blanchard says, "There were fewer galaxy clusters in the past." Such a result indicates that the Universe must be a high-density environment, in clear contradiction to the 'concordance model,' which postulates a Universe with up to 70% dark energy and a very low density of matter. Blanchard knows that this conclusion will be highly controversial, saying, "To account for these results you have to have a lot of matter in the Universe and that leaves little room for dark energy." To reconcile the new XMM-Newton observations with the concordance models, astronomers would have to admit a fundamental gap in their knowledge about the behaviour of the clusters and, possibly, of the galaxies within them. For instance, galaxies in the faraway clusters would have to be injecting more energy into their surrounding gas than is currently understood. That process should then gradually taper off as the cluster and the galaxies within it grow older. No matter which way the results are interpreted, XMM-Newton has given astronomers a new insight into the Universe and a new mystery to puzzle over. As for the possibility that the XMM-Newton results are simply wrong, they are in the process of being confirmed by other X-ray observations. Should these return the same answer, we might have to rethink our understanding of the Universe. Notes for editors The two papers, The XMM-Newton Omega Project: I. The X-ray Luminosity-Temperature Relationship at z>0.4 by D.H. Lumb et al. and The XMM-Newton Omega Project: II. Cosmological implications from the high redshift L-T relation of X-ray clusters by S.C. Vauclair, A. Blanchard et al. will be published shortly in Astronomy and Astrophysics. The contents of the Universe The content of the Universe is widely thought to consist of three types of substance: normal matter, dark matter and dark energy. Normal matter consists of the atoms that make up stars, planets, human beings and every other visible object in the Universe. As humbling as it sounds, normal matter almost certainly accounts for a small proportion of the Universe, somewhere between 1% and 10%. The more astronomers observed the Universe, the more matter they needed to find to explain it all. This matter could not be made of normal atoms, however, otherwise there would be more stars and galaxies to be seen. Instead, they coined the term dark matter for this peculiar substance precisely because it escapes our detection. At the same time, physicists trying to further the understanding of the forces of nature were starting to believe that new and exotic particles of matter must be abundant in the Universe. These would hardly ever interact with normal matter and many now believe that these particles are the dark matter. At the present time, even though many experiments are underway to detect dark matter particles, none have been successful. Nevertheless, astronomers still believe that somewhere between 30% and 99% of the Universe may consist of dark matter. Dark energy is the latest addition to the contents of the Universe. Originally, Albert Einstein introduced the idea of an all-pervading 'cosmic energy' before he knew that the Universe is expanding. The expanding Universe did not need a 'cosmological constant' as Einstein had called his energy. However, in the 1990s observations of exploding stars in the distant Universe suggested that the Universe was not just expanding but accelerating as well. The only way to explain this was to reintroduce Einstein's cosmic energy in a slightly altered form, called dark energy. No one knows what the dark energy might be. In the currently popular 'concordance model' of the Universe, 70% of the cosmos is thought to be dark energy, 25% dark matter and 5% normal matter. XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects. Image caption The fuzzy object at the centre of the frame is one of the galaxy clusters observed by XMM-Newton in its investigation of the distant Universe. The cluster, designated RXJ0847.2+3449, is about 7 000 million light years away, so we see it here as it was 7 000 million years ago, when the Universe was only about half of its present age. This cluster is made up of several dozen galaxies. Credits: ESA
NASA Astrophysics Data System (ADS)
Randriamampandry, S. M.; Crawford, S. M.; Bershady, M. A.; Wirth, G. D.; Cress, C. M.
2017-10-01
We investigate the stellar masses of the class of star-forming objects known as luminous compact blue galaxies (LCBGs) by studying a sample of galaxies in the distant cluster MS 0451.6-0305 at z ≈ 0.54 with ground-based multicolour imaging and spectroscopy. For a sample of 16 spectroscopically confirmed cluster LCBGs (colour B - V < 0.5, surface brightness μB < 21 mag arcsec-2 and magnitude MB < -18.5), we measure stellar masses by fitting spectral energy distribution (SED) models to multiband photometry, and compare with dynamical masses [determined from velocity dispersion in the range 10 < σv(km s- 1) < 80] we previously obtained from their emission-line spectra. We compare two different stellar population models that measure stellar mass in star-bursting galaxies, indicating correlations between the stellar age, extinction and stellar mass derived from the two different SED models. The stellar masses of cluster LCBGs are distributed similarly to those of field LCBGs, but the cluster LCBGs show lower dynamical-to-stellar mass ratios (Mdyn/M⋆ = 2.6) than their field LCBG counterparts (Mdyn/M⋆ = 4.8), echoing trends noted previously in low-redshift dwarf elliptical galaxies. Within this limited sample, the specific star formation rate declines steeply with increasing mass, suggesting that these cluster LCBGs have undergone vigorous star formation.
Galactic City at the Edge of the Universe
2011-01-12
Astronomers have discovered a massive cluster of young galaxies forming in the distant universe. The growing galactic metropolis is known as COSMOS-AzTEC3. This image was taken Japan Subaru telescope atop Mauna Kea in Hawaii.
Radio active galactic nuclei in galaxy clusters: Feedback, merger signatures, and cluster tracers
NASA Astrophysics Data System (ADS)
Paterno-Mahler, Rachel Beth
Galaxy clusters, the largest gravitationally-bound structures in the universe, are composed of 50-1000s of galaxies, hot X-ray emitting gas, and dark matter. They grow in size over time through cluster and group mergers. The merger history of a cluster can be imprinted on the hot gas, known as the intracluster medium (ICM). Merger signatures include shocks, cold fronts, and sloshing of the ICM, which can form spiral structures. Some clusters host double-lobed radio sources driven by active galactic nuclei (AGN). First, I will present a study of the galaxy cluster Abell 2029, which is very relaxed on large scales and has one of the largest continuous sloshing spirals yet observed in the X-ray, extending outward approximately 400 kpc. The sloshing gas interacts with the southern lobe of the radio galaxy, causing it to bend. Energy injection from the AGN is insufficient to offset cooling. The sloshing spiral may be an important additional mechanism in preventing large amounts of gas from cooling to very low temperatures. Next, I will present a study of Abell 98, a triple system currently undergoing a merger. I will discuss the merger history, and show that it is causing a shock. The central subcluster hosts a double-lobed AGN, which is evacuating a cavity in the ICM. Understanding the physical processes that affect the ICM is important for determining the mass of clusters, which in turn affects our calculations of cosmological parameters. To further constrain these parameters, as well as models of galaxy evolution, it is important to use a large sample of galaxy clusters over a range of masses and redshifts. Bent, double-lobed radio sources can potentially act as tracers of galaxy clusters over wide ranges of these parameters. I examine how efficient bent radio sources are at tracing high-redshift (z>0.7) clusters. Out of 646 sources in our high-redshift Clusters Occupied by Bent Radio AGN (COBRA) sample, 282 are candidate new, distant clusters of galaxies based on measurements of excess galaxy counts surrounding the radio sources in Spitzer infrared images.
Observations of Distant Clusters
NASA Technical Reports Server (NTRS)
Donahue, Megan
2004-01-01
The is the proceedings and papers supported by the LTSA grant: Homer, D. J.\\& Donahue, M. 2003, in "The Emergence of Cosmic Structure": 13'h Astrophysics Conference Proceedings, Vol. 666,3 1 1-3 14, (AIP). Baumgartner, W. H., Loewenstein, M., Horner, D. J., Mushotzky, R. F. 2003, HEAD- AAS, 35.3503. Homer, D. J. , Donahue, M., Voit G. M. 2003, HEAD-AAS, 35.1309. Nowak, M. A., Smith, B., Donahue, M., Stocke, J. 2003, HEAD-AAS, 35.1316. Scott, D., Borys, C., Chapman, S. C., Donahue, M., Fahlman, G. G., Halpem, M. Newbury, P. 2002, AAS, 128.01. Jones, L. R. et al. 2002, A new era in cosmology, ASP Conference Proceedings, Vol. 283, p. 223 Donahue, M., Daly, R. A., Homer, D. J. 2003, ApJ, 584, 643, Constraints on the Cluster Environments and Hotspot magnetic field strengths for radio sources 3280 and 3254. Donahue, M., et al. 2003, ApJ, 598, 190. The mass, baryonic fraction, and x-ray temperature of the luminous, high-redshift cluster of galaxies MS045 1.6-0305 Perlman, E. S. et al. 2002, ApJS, 140, 256. Smith, B. J., Nowak, M., Donahue, M., Stocke, J. 2003, AJ, 126, 1763. Chandra Observations of the Interacting NGC44 10 Group of Galaxies. Postman, M., Lauer, T. R., Oegerle, W., Donahue, M. 2002, ApJ, 579, 93. The KPNO/deep-range cluster survey I. The catalog and space density of intermediate-redshift clusters. Molnar, S. M., Hughes, J. P., Donahue, M., Joy, M. 2002, ApJ, 573, L91, Chandra Observations of Unresolved X-Ray Sources around Two Clusters of Galaxies. Donahue, M., Mack, J., 2002 NewAR, 46, 155, HST NIcmos and WFPC2 observations of molecular hydrogen and dust around cooling flows. Koekemoer, A. M. et al. 2002 NewAR, 46, 149, Interactions between the A2597 central radio source and dense gas host galaxy. Donahue, M. et al. 2002 ApJ, 569,689, Distant cluster hunting II.
GALAXIES IN THE YOUNG UNIVERSE [left
NASA Technical Reports Server (NTRS)
2002-01-01
This image of a small region of the constellation Sculptor, taken with a ground-based photographic sky survey camera, illustrates the extremely small angular size of a distant galaxy cluster in the night sky. Though this picture encompasses a piece of the sky about the width of the bowl of the Big Dipper, the cluster is so far away it fills a sky area only 1/10th the diameter of the Full Moon. The cluster members are not visible because they are so much fainter than foreground stars. [center] A NASA Hubble Space Telescope (HST) image of the farthest cluster of galaxies in the universe, located at a distance of 12 billion light-years. Because the light from these remote galaxies has taken 12 billion years to reach us, this image is a remarkable glimpse of the primeval universe, at it looked about two billion years after the Big Bang. The cluster contains 14 galaxies, the other objects are largely foreground galaxies. The galaxy cluster lies in front of quasar Q0000-263 in the constellation Sculptor. Presumably the brilliant core of an active galaxy, the quasar provides a beacon for searching for primordial galaxy clusters. The image is the full field view of the Wide Field and Planetary Camera-2, taken on September 6, 1994. The 4.7-hour exposure reveals objects down to 28.5 magnitude. [right] This enlargement shows one of the farthest normal galaxies yet detected, (blob at center right) at a distance of 12 billion light-years (redshift of z=3.330). The galaxy lies 300 million light-years in front of the quasar Q0000-263 (z=4.11, large white blob and spike on left side of frame) and was detected because it absorbs some light from the quasar. The galaxy's spectrum reveals that vigorous star formation is taking place. Credit: Duccio Macchetto (ESA/STScI), Mauro Giavalisco (STScI), and NASA
Most Distant Group of Galaxies Known in the Universe
NASA Astrophysics Data System (ADS)
2002-04-01
New VLT Discovery Pushes Back the Beginnings Summary Using the ESO Very Large Telescope (VLT) , a team of astronomers from The Netherlands, Germany, France and the USA [1] have discovered the most distant group of galaxies ever seen , about 13.5 billion light-years away. It has taken the light now recorded by the VLT about nine-tenths of the age of the Universe to cover the huge distance. We therefore observe those galaxies as they were at a time when the Universe was only about 10% of its present age . The astronomers conclude that this group of early galaxies will develop into a rich cluster of galaxies, such as those seen in the nearby Universe. The newly discovered structure provides the best opportunity so far for studying when and how galaxies began to form clusters after the initial Big Bang , one of the greatest puzzles in modern cosmology. PR Photo 11a/02 : Sky field with the distant cluster of galaxies. PR Photo 11b/02 : Spectra of some of the galaxies in the cluster. Radio Galaxies as cosmic signposts A most intriguing question in modern astronomy is how the first groupings or "clusters" of galaxies emerged from the gas produced in the Big Bang. Some theoretical models predict that densely populated galaxy clusters ("rich clusters" in current astronomical terminology) are built up through a step-wise process. Clumps develop in the primeval gas, and stars condense out of these clumps to form small galaxies. Then these small galaxies merge together to form larger units. The peculiar class of "radio galaxies" is particularly important for investigating such scenarios. They are called so because their radio emission - a result of violent processes believed to be related to massive black holes located at the centres of these galaxies - is stronger by 5 - 10 orders of magnitude than that of our own Milky Way galaxy. In fact, this radio emission is often so intense that the galaxies can be spotted at extremely large distances, and thus at the remote epoch when the Universe was very young, just a small fraction of its present age. The radio galaxies are amongst the most massive objects in the early Universe and there has long been circumstantial evidence that they are located at the heart of young clusters of galaxies, still in the process of formation. In this sense, they act as signposts of early cosmic "meeting points" . Radio galaxies are therefore potential beacons for pinpointing regions of the Universe in which large galaxies and clusters of galaxies are being formed. VLT observations of the environment of radio galaxy TN J1338-1942 ESO PR Photo 11a/02 ESO PR Photo 11a/02 [Preview - JPEG: 400 x 493 pix - 336k] [Normal - JPEG: 1250 x 1541 pix - 2.3M] Caption : PR Photo 11a/02 shows the sky region near the powerful radio galaxy TN J1338-1942 at a redshift of 4.1 [2], i.e. at a distance of about 13.5 billion light-years from the Earth (we see it as it was when the Universe was just 1.5 billion years old). The photo is a "negative" rendering (the objects are dark on a bright background) of an image obtained with the FORS2 multi-mode instrument on the 8.2-m VLT KUEYEN telescope (ESO Paranal Observatory, Chile) through a narrow-band optical filter, centered at the wavelength of the redshifted Lyman-alpha line. The 20 galaxies that have been confirmed to be emitting the sharp colours due to glowing hydrogen gas at the distance of the radio galaxy are encircled in blue. The green rectangle marks the radio galaxy, from which a stream of hydrogen gas stretches to the northwest, over a distance of about 300,000 light-years. The size of the sky field corresponds to about 10 million light-years at the distance of these galaxies. North is up and East is left. Technical information about the photo is available below. ESO PR Photo 11b/02 ESO PR Photo 11b/02 [Preview - JPEG: 515 x 400 pix - 136k] [Normal - JPEG: 1000 x 777 pix - 320k] Caption : PR Photo 11b/02 shows the spectra (brightness as a function of wavelength) for ten of the confirmed galaxies in the very distant, young cluster found near the radio galaxy TN J1338-1942 . Each galaxy displays a sharp peak in colour showing the signature of its hydrogen gas - this is the redshifted Lyman-alpha emission line [2]. Technical information about the photo is available below. Following up this conjecture, the Leiden astronomers and their colleagues in the USA and Germany [1] proposed a large observing programme with the ESO VLT at Paranal (Chile) to search for groupings of galaxies in the vicinity of distant radio galaxies that might be the ancestors of rich clusters. For this, they first used the FORS2 multi-mode instrument on the 8.2-m VLT KUEYEN telescope to take very "deep" pictures of sky regions around several radio galaxies, each field measuring about one-fifth of the diameter of the full moon. The most distant of these was an object called TN J1338-1942 , a radio galaxy at a distance of about 13.5 billion light years from the Earth. To search for galaxies at the same distance as the radio galaxy, the pictures were optimised in sensitivity for the sharp colour emitted by glowing hydrogen gas at the distance of the radio galaxy [2]. Images were taken through two red filters, one that is "tuned" to light produced by the hydrogen gas (the redshifted Lyman-alpha line) and the other that is dominated by light from stars (the R-band), cf. PR Photo 11a/02 . An earlier example of this observational technique is described in ESO PR 13/99. These images revealed 28 galaxies that are likely to be at the distance of the radio galaxy. More detailed information was obtained for 23 of these with the FORS2 instrument in the spectrographic mode, now confirming 20 of them to be indeed located at the same distance as the radio galaxy, cf. PR Photo 11b/02 . Earliest known group of galaxies The spectra also showed that the galaxies are moving around with speeds of a few hundred kilometers per second. The observed structure of galaxies is more than 10 million light-years across and its existence means that galaxies must have begun to form groups already at this early epoch, i.e. still within the first 10% of the history of the Universe . From the excess number of detected galaxies and the observed volume of the structure, its combined mass can be estimated. The derived number is 1000 million million (10 15 ) times the mass of the Sun - this is comparable with the masses of nearby rich clusters of galaxies. For the present structure to evolve into a nearby rich cluster, it must contract in volume by an order of magnitude in about one billion years. This newly discovered group of galaxies is the most remote discovered so far and hence the earliest known at this moment - another, less distant one was recently described in ESO PR 03/02. The VLT observations also establish a crucial link between the ancestors of rich galaxy clusters and the bright galaxies whose active nuclei produce the bright radio emission. Based on the 4 radio galaxies surveyed by the VLT so far, the team concludes that every forming cluster may house a bright galaxy that is or has been a powerful radio source . The radio sources are believed to be powered by massive black holes located deep within their nuclei. Next steps The next step in the present project will be to use the VLT to establish the boundaries of the proto-cluster. Also, the colours and shapes of galaxies in the structure will be studied intensively by the Advanced Camera for Surveys (ACS), recently fitted to the Hubble Space Telescope (HST) . George Miley , also a member of the ACS Science Team, is enthusiastic: "We have now scheduled this particular target for one of the deepest observations ever to be made with the HST. Our project is an example of the great possibilities now opening to astronomers by combining the complementary strengths of the wonderful new ground- and space-based observational facilities!" More information The results described in this Press Release are about to appear in print in the research journal Astrophysical Journal ("The Most Distant Structure of Galaxies Known: a Protocluster at z = 4.1" by B.P. Venemans and co-authors), cf. astro-ph/0203249. Notes [1]: The team is led by George Miley (Leiden University, The Netherlands) and the first author of the resulting research paper is Bram Venemans , a graduate student of Miley's. Other members are Jaron Kurk and Huub Röttgering (also Leiden University), Laura Pentericci (MPIA, Heidelberg, Germany), Wil van Breugel (Lawrence Livermore National Laboratory, USA), Chris Carilli (US National Radio Astronomy Observatory, Charlottesville, USA), Carlos De Breuck (Institut d'Astrophysique, Paris, France) Holland Ford and Tim Heckman (Johns Hopkins University, Baltimore, USA) and Pat McCarthy (Carnegie Institute, Pasadena, USA). [2]: The measured redshift of TN J1338-1942 is z = 4.1. In astronomy, the redshift denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a remote galaxy provides an estimate of its distance. The distances indicated in the present text are based on an age of the Universe of 15 billion years. At the indicated redshift, the Lyman-alpha line of atomic hydrogen (rest wavelength 121.6 nm) is observed at 620 nm, i.e. in the red spectral region. Contact George Miley Leiden University Observatory The Netherlands Tel.: +31-715275849 email: miley@strw.leidenuniv.nl Technical information about the photos PR Photo 11a/02 is reproduced from FORS2-exposures, obtained on March 25 and 26, 2001, using a narrow-band optical filter (peak at 619.5 nm with transmission 80%, FWHM 6.0 nm). The total exposure time was 33300 sec (9 hrs 15 min). The field-of-view of the final image is 6.4 x 6.2 arcmin 2 , corresponding to about 3 Mpc on each side. The frames were obtained in photometric conditions, and the image quality in the combined frame is 0.65 arcsec. The galaxy spectra shown in PR Photo 11b/02 were obtained by FORS2 in the MXU-mode on May 20, 21 and 22, 2001. Exposures of 31500 sec and 35100 sec, respectively, were made through two masks under photometric conditions, with seeing 1.0 arcsec and slit sizes of 1 arcsec. The 600RI grism was used; it has peak efficiency 87%, resolution R = 1011 at 663.0 nm and spectral dispersion of 0.132 nm/pixel, corresponding to 290 km/s at z = 4.1.
High star formation activity in the central region of a distant cluster at z = 1.46
NASA Astrophysics Data System (ADS)
Hayashi, Masao; Kodama, Tadayuki; Koyama, Yusei; Tanaka, Ichi; Shimasaku, Kazuhiro; Okamura, Sadanori
2010-03-01
We present an unbiased deep [OII] emission survey of a cluster XMMXCS J2215.9-1738 at z = 1.46, the most distant cluster to date with a detection of extended X-ray emission. With wide-field optical and near-infrared cameras (Suprime-Cam and MOIRCS, respectively) on Subaru telescope, we performed deep imaging with a narrow-band filter NB912 (λc = 9139 Å, Δλ = 134 Å) as well as broad-band filters (B,z',J and Ks). From the photometric catalogues, we have identified 44 [OII] emitters in the cluster central region of 6 × 6 arcmin2 down to a dust-free star formation rate (SFR) of 2.6Msolaryr-1 (3σ). Interestingly, it is found that there are many [OII] emitters even in the central high-density region. In fact, the fraction of [OII] emitters to the cluster members as well as their SFRs and equivalent widths stay almost constant with decreasing cluster-centric distance up to the cluster core. Unlike clusters at lower redshifts (z <~ 1) where star formation activity is mostly quenched in their central regions, this higher redshift XMMXCS J2215.9-1738 cluster shows its high star formation activity even at its centre, suggesting that we are beginning to enter the formation epoch of some galaxies in the cluster core eventually. Moreover, we find a deficit of galaxies on the red sequence at magnitudes fainter than ~M* + 0.5 on the colour-magnitude diagram. This break magnitude is brighter than that of lower redshift clusters, and it is likely that we are seeing the formation phase of more massive red galaxies in the cluster core at z ~ 1. These results may indicate inside-out and down-sizing propagation of star formation activity in the course of cluster evolution.
THE RED SEQUENCE AT BIRTH IN THE GALAXY CLUSTER Cl J1449+0856 AT z = 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strazzullo, V.; Pannella, M.; Daddi, E.
We use Hubble Space Telescope /WFC3 imaging to study the red population in the IR-selected, X-ray detected, low-mass cluster Cl J1449+0856 at z = 2, one of the few bona fide established clusters discovered at this redshift, and likely a typical progenitor of an average massive cluster today. This study explores the presence and significance of an early red sequence in the core of this structure, investigating the nature of red-sequence galaxies, highlighting environmental effects on cluster galaxy populations at high redshift, and at the same time underlining similarities and differences with other distant dense environments. Our results suggest thatmore » the red population in the core of Cl J1449+0856 is made of a mixture of quiescent and dusty star-forming galaxies, with a seedling of the future red sequence already growing in the very central cluster region, and already characterizing the inner cluster core with respect to lower-density environments. On the other hand, the color–magnitude diagram of this cluster is definitely different from that of lower-redshift z ≲ 1 clusters, as well as of some rare particularly evolved massive clusters at similar redshift, and it is suggestive of a transition phase between active star formation and passive evolution occurring in the protocluster and established lower-redshift cluster regimes.« less
Deep, wide-field, multi-band imaging of z approximately equal to 0.4 clusters and their environs
NASA Technical Reports Server (NTRS)
Silva, David R.; Pierce, Michael J.
1993-01-01
The existence of an excess population of blue galaxies in the cores of distant, rich clusters of galaxies, commonly referred to as the 'Butcher-Oemler' effect is now well established. Spectroscopy of clusters at z = 0.2-0.4 has confirmed that the luminous blue populations comprise as much as 20 percent of these clusters. This fraction is much higher that the 2 percent blue fraction found for nearby rich clusters, such as Coma, indicating that rapid galaxy evolution has occurred on a relatively short time scale. Spectroscopy has also shown that the 'blue' galaxies can basically be divided into three classes: 'starburst' galaxies with large (O II) equivalent widths, 'post-starburst' E+A galaxies (i.e. galaxies with strong Balmer lines shortward of 4000A but elliptical-like colors, and normal spiral/irregulars. Unfortunately, it is difficult to obtain enough spectra of individual galaxies in these intermediate redshift clusters to say anything statistically meaningful. Thus, limited information is available about the relative numbers of these three classes of 'blue' galaxies and the associated E/SO population in these intermediate redshift clusters. More statistically meaningful results can be derived from deep imaging of these clusters. However, the best published data to date (e.g. MacLaren et al. 1988; Dressler & Gunn 1992) are limited to the cluster cores and do not sample the galaxy luminosity functions very deeply at the bluest wavelengths. Furthermore, only limited spectro-energy distribution data is available below 4000A in the observed cluster rest frame providing limited sensitivity to 'recent' star formation activity. To improve this situation, we are currently obtaining deep, wide-field UBRI images of all known rich clusters at z approx. equals 0.4. Our main objective is to obtain the necessary color information to distinguish between the E+SO, 'E+A', and spiral/irregular galaxy populations throughout the cluster/supercluster complex. At this redshift, UBRI correspond to rest-frame 2500A/UVR bandpasses. The rest-frame UVR system provides a powerful 'blue' galaxy discriminate given the expected color distribution. Moreover, since 'hot' stars peak near 2500A, that bandpass is a powerful probe of recent star formation activity in all classes of galaxies. In particular, it is sensitive to ellipticals with 'UV excess' populations (MacLaren et al. 1988).
Astronomers Discover Six-Image Gravitational Lens
NASA Astrophysics Data System (ADS)
2001-08-01
An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard-Smithsonian Center for Astrophysics (CfA). "When we understand this system, we will have a much clearer picture of how galaxies are changed by being part of a bigger cluster of galaxies," he added. B1359+154 was discovered in 1999 by the Cosmic Lens All-Sky Survey, an international collaboration of astronomers who use radio telescopes to search the sky for gravitational lenses. Images made by the NSF's Very Large Array in New Mexico and by Britain's MERLIN radio telescope showed six objects suspected of being gravitational-lens images, but the results were inconclusive. Rusin and his team used the VLBA and HST in 1999 and 2000 to make more-detailed studies of B1359+154. The combination of data from the VLBA and HST convinced the astronomers that B1359+154 actually consists of six lensed images of a single background galaxy. The VLBA images were made from data collected during observations at a radio frequency of 1.7 GHz. "This is a great example of modern, multi-wavelength astronomy," said Rusin. "We need the radio telescopes to detect the gravitational lenses in the first place, then we need the visible-light information from Hubble to show us additional detail about the structure of the system." Armed with the combined VLBA and HST data about the positions and brightnesses of the six images of the background galaxy as well as the positions of the three intermediate galaxies, the astronomers did computer simulations to show how the gravitation of the three galaxies could produce the lens effect. They were able to design a computer model of the system that, in fact, produces the six images seen in B1359+154. "Our computer model certainly is not perfect, and we need to do more observations of this system to refine it, but we have clearly demonstrated that the three galaxies we see can produce a six-image lens system," said Martin Norbury, a graduate student at Jodrell Bank Observatory in Britain. "We think this work will give us an excellent tool for studying much-denser clusters of galaxies and the relationships of the individual cluster galaxies to the 'halo' of dark matter in which they are embedded," he added. Clusters of galaxies are known to produce gravitational lenses with up to eight images of a single background object. However, the number of galaxies in such a cluster makes it difficult for astronomers to decipher just how their gravitational effects have combined to produce the multiple images. Researchers hope to be able to understand the lensing effect well enough to use the lenses to show them how galaxies, gas and unseen dark matter in clusters are distributed. A system such as B1359+154, with only three galaxies involved in the lensing, can help astronomers learn how complex gravitational lenses work. "The next big step is to use HST to see the pattern of rings produced by the galaxy surrounding the black hole. We already see hints of them, but with the upgrades to HST in the next servicing mission we should be able to trace it completely both to pin down the structure of the lens and to have an enormously magnified image for studying the distant host galaxy," Kochanek said. In addition to Rusin, Kochanek and Norbury, the researchers are: Emilio Falco of the CfA; Chris Impey of Steward Observatory at the University of Arizona; Joseph Lehar of the CfA; Brian McLeod of the CfA; Hans-Walter Rix of the Max Planck Institute for Astronomy in Germany; Chuck Keeton of Steward Observatory; Jose Munoz of the Astrophysical Institute of the Canaries in Tenerife, Spain; and Chien Peng of Steward Observatory. The team published its results in the Astrophysical Journal. The VLBA is a system of 10 radio-telescope antennas that work together as a single astronomical instrument. The antennas are spread across the United States, from Hawaii in the west to the U.S. Virgin Islands in the east. A radio telescope system more than 5,000 miles across, the VLBA produces extremely detailed images. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA,, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international Cooperation between NASA and the European Space Agency.
NASA Astrophysics Data System (ADS)
Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek
2014-12-01
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.
Distant Massive Clusters and Cosmology
NASA Technical Reports Server (NTRS)
Donahue, Megan
1999-01-01
We present a status report of our X-ray study and analysis of a complete sample of distant (z=0.5-0.8), X-ray luminous clusters of galaxies. We have obtained ASCA and ROSAT observations of the five brightest Extended Medium Sensitivity (EMSS) clusters with z > 0.5. We have constructed an observed temperature function for these clusters, and measured iron abundances for all of these clusters. We have developed an analytic expression for the behavior of the mass-temperature relation in a low-density universe. We use this mass-temperature relation together with a Press-Schechter-based model to derive the expected temperature function for different values of Omega-M. We combine this analysis with the observed temperature functions at redshifts from 0 - 0.8 to derive maximum likelihood estimates for the value of Omega-M. We report preliminary results of this analysis.
Faint Compact Galaxy in the Early Universe
2015-12-03
This is a Hubble Space Telescope view of a very massive cluster of galaxies, MACS J0416.1-2403, located roughly 4 billion light-years away and weighing as much as a million billion suns. The cluster's immense gravitational field magnifies the image of galaxies far behind it, in a phenomenon called gravitational lensing. The inset is an image of an extremely faint and distant galaxy that existed only 400 million years after the big bang. It was discovered by Hubble and NASA's Spitzer Space Telescope. The gravitational lens makes the galaxy appear 20 times brighter than normal. The galaxy is comparable in size to the Large Magellanic Cloud (LMC), a diminutive satellite galaxy of our Milky Way. It is rapidly making stars at a rate ten times faster than the LMC. This might be the growing core of what was to eventually evolve into a full-sized galaxy. The research team has nicknamed the object Tayna, which means "first-born" in Aymara, a language spoken in the Andes and Altiplano regions of South America. http://photojournal.jpl.nasa.gov/catalog/PIA20054
GASP. V. Ram-pressure stripping of a ring Hoag's-like galaxy in a massive cluster
NASA Astrophysics Data System (ADS)
Moretti, A.; Poggianti, B. M.; Gullieuszik, M.; Mapelli, M.; Jaffé, Y. L.; Fritz, J.; Biviano, A.; Fasano, G.; Bettoni, D.; Vulcani, B.; D'Onofrio, M.
2018-04-01
Through an ongoing MUSE program dedicated to study gas removal processes in galaxies (GAs Stripping Phenomena in galaxies with MUSE, GASP), we have obtained deep and wide integral field spectroscopy of the galaxy JO171. This galaxy resembles the Hoag's galaxy, one of the most spectacular examples of ring galaxies, characterized by a completely detached ring of young stars surrounding a central old spheroid. At odds with the isolated Hoag's galaxy, JO171 is part of a dense environment, the cluster Abell 3667, which is causing gas stripping along tentacles. Moreover, its ring counter-rotates with respect to the central spheroid. The joint analysis of the stellar populations and the gas/stellar kinematics shows that the origin of the ring was not due to an internal mechanism, but was related to a gas accretion event that happened in the distant past, prior to accretion on to Abell 3667, most probably within a filament. More recently, since infall in the cluster, the gas in the ring has been stripped by ram pressure, causing the quenching of star formation in the stripped half of the ring. This is the first observed case of ram-pressure stripping in action in a ring galaxy, and MUSE observations are able to reveal both of the events (accretion and stripping) that caused dramatic transformations in this galaxy.
NASA Astrophysics Data System (ADS)
Lee, Myung Gyoon; Jang, In Sung; Beaton, Rachael; Seibert, Mark; Bono, Giuseppe; Madore, Barry
2017-02-01
Ultra-faint dwarf galaxies (UFDs) are the faintest known galaxies, and due to their incredibly low surface brightness, it is difficult to find them beyond the Local Group. We report a serendipitous discovery of a UFD, Fornax UFD1, in the outskirts of NGC 1316, a giant galaxy in the Fornax cluster. The new galaxy is located at a projected radius of 55 kpc in the south-east of NGC 1316. This UFD is found as a small group of resolved stars in the Hubble Space Telescope images of a halo field of NGC 1316, obtained as part of the Carnegie-Chicago Hubble Program. Resolved stars in this galaxy are consistent with being mostly metal-poor red giant branch (RGB) stars. Applying the tip of the RGB method to the mean magnitude of the two brightest RGB stars, we estimate the distance to this galaxy, 19.0 ± 1.3 Mpc. Fornax UFD1 is probably a member of the Fornax cluster. The color-magnitude diagram of these stars is matched by a 12 Gyr isochrone with low metallicity ([Fe/H] ≈ -2.4). Total magnitude and effective radius of Fornax UFD1 are MV ≈ -7.6 ± 0.2 mag and reff = 146 ± 9 pc, which are similar to those of Virgo UFD1 that was discovered recently in the intracluster field of Virgo by Jang & Lee. Fornax UFD1 is the most distant known UFD that is confirmed by resolved stars. This indicates that UFDs are ubiquitous and that more UFDs remain to be discovered in the Fornax cluster. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #10505 and #13691.
Discovery of Misaligned Radio Emission in Galaxy Cluster Zw CL 2971
NASA Astrophysics Data System (ADS)
Wallack, Nicole; Migliore, C.; Resnick, A.; White, T.; Liu, C.
2014-01-01
In a search for green valley galaxies with radio loud active galactic nuclei (AGN), we found one such object that may be associated with the cluster of galaxies Zw CL 2971 (z = 0.098). Serendipitously, we found in this cluster a strong bent-jet radio source associated with the cluster's central dominant (cD) elliptical galaxy. The center of the cD galaxy is coincident (0.35 arcsecond) with the second brightest spot of radio continuum emission (34.3 mJy as measured by FIRST), but the brightest radio hotspot (66.8 mJy) is offset by 4.6 arcseconds 9 kpc at the redshift of the cluster) and has no visible counterpart. Furthermore, the optical spectrum of the cD galaxy has only weak emission lines, suggesting the absence of a currently active nucleus. It is possible that the counterpart is optically faint (possibly due to a recently completed duty cycle) or is not visible due to movement or position. If the radio source is a distant background object, then the brighter jet is most likely magnified by gravitational lensing. If the radio source is located at the redshift of the cluster, then the brighter radio jet trails backward toward and past the cD galaxy to a distance of ~120 kpc, while the fainter jet is bent at a nearly orthogonal angle, ~40 kpc away from the brightest radio hotspot, in the opposite direction. These geometric offsets could be used to constrain the duty cycle history of the AGN creating the radio emission, as well as the dynamical properties of the intracluster medium.
Hennawi, Joseph F; Prochaska, J Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio
2015-05-15
All galaxies once passed through a hyperluminous quasar phase powered by accretion onto a supermassive black hole. But because these episodes are brief, quasars are rare objects typically separated by cosmological distances. In a survey for Lyman-α emission at redshift z ≈ 2, we discovered a physical association of four quasars embedded in a giant nebula. Located within a substantial overdensity of galaxies, this system is probably the progenitor of a massive galaxy cluster. The chance probability of finding a quadruple quasar is estimated to be ∼10(-7), implying a physical connection between Lyman-α nebulae and the locations of rare protoclusters. Our findings imply that the most massive structures in the distant universe have a tremendous supply (≃10(11) solar masses) of cool dense (volume density ≃ 1 cm(-3)) gas, which is in conflict with current cosmological simulations. Copyright © 2015, American Association for the Advancement of Science.
HUBBLE UNVEILS A GALAXY IN LIVING COLOR
NASA Technical Reports Server (NTRS)
2002-01-01
In this view of the center of the magnificent barred spiral galaxy NGC 1512, NASA Hubble Space Telescope's broad spectral vision reveals the galaxy at all wavelengths from ultraviolet to infrared. The colors (which indicate differences in light intensity) map where newly born star clusters exist in both 'dusty' and 'clean' regions of the galaxy. This color-composite image was created from seven images taken with three different Hubble cameras: the Faint Object Camera (FOC), the Wide Field and Planetary Camera 2 (WFPC2), and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). NGC 1512 is a barred spiral galaxy in the southern constellation of Horologium. Located 30 million light-years away, relatively 'nearby' as galaxies go, it is bright enough to be seen with amateur telescopes. The galaxy spans 70,000 light-years, nearly as much as our own Milky Way galaxy. The galaxy's core is unique for its stunning 2,400 light-year-wide circle of infant star clusters, called a 'circumnuclear' starburst ring. Starbursts are episodes of vigorous formation of new stars and are found in a variety of galaxy environments. Taking advantage of Hubble's sharp vision, as well as its unique wavelength coverage, a team of Israeli and American astronomers performed one of the broadest and most detailed studies ever of such star-forming regions. The results, which will be published in the June issue of the Astronomical Journal, show that in NGC 1512 newly born star clusters exist in both dusty and clean environments. The clean clusters are readily seen in ultraviolet and visible light, appearing as bright, blue clumps in the image. However, the dusty clusters are revealed only by the glow of the gas clouds in which they are hidden, as detected in red and infrared wavelengths by the Hubble cameras. This glow can be seen as red light permeating the dark, dusty lanes in the ring. 'The dust obscuration of clusters appears to be an on-off phenomenon,' says Dan Maoz, who headed the collaboration. 'The clusters are either completely hidden, enshrouded in their birth clouds, or almost completely exposed.' The scientists believe that stellar winds and powerful radiation from the bright, newly born stars have cleared away the original natal dust cloud in a fast and efficient 'cleansing' process. Aaron Barth, a co-investigator on the team, adds: 'It is remarkable how similar the properties of this starburst are to those of other nearby starbursts that have been studied in detail with Hubble.' This similarity gives the astronomers the hope that, by understanding the processes occurring in nearby galaxies, they can better interpret observations of very distant and faint starburst galaxies. Such distant galaxies formed the first generations of stars, when the universe was a fraction of its current age. Circumstellar star-forming rings are common in the universe. Such rings within barred spiral galaxies may in fact comprise the most numerous class of nearby starburst regions. Astronomers generally believe that the giant bar funnels the gas to the inner ring, where stars are formed within numerous star clusters. Studies like this one emphasize the need to observe at many different wavelengths to get the full picture of the processes taking place.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Ying; Reiprich, Thomas H.; Schneider, Peter; Clerc, Nicolas; Merloni, Andrea; Schwope, Axel; Borm, Katharina; Andernach, Heinz; Caretta, César A.; Wu, Xiang-Ping
2017-03-01
We present the relation of X-ray luminosity versus dynamical mass for 63 nearby clusters of galaxies in a flux-limited sample, the HIghest X-ray FLUx Galaxy Cluster Sample (HIFLUGCS, consisting of 64 clusters). The luminosity measurements are obtained based on 1.3 Ms of clean XMM-Newton data and ROSAT pointed observations. The masses are estimated using optical spectroscopic redshifts of 13647 cluster galaxies in total. We classify clusters into disturbed and undisturbed based on a combination of the X-ray luminosity concentration and the offset between the brightest cluster galaxy and X-ray flux-weighted center. Given sufficient numbers (I.e., ≥45) of member galaxies when the dynamical masses are computed, the luminosity versus mass relations agree between the disturbed and undisturbed clusters. The cool-core clusters still dominate the scatter in the luminosity versus mass relation even when a core-corrected X-ray luminosity is used, which indicates that the scatter of this scaling relation mainly reflects the structure formation history of the clusters. As shown by the clusters with only few spectroscopically confirmed members, the dynamical masses can be underestimated and thus lead to a biased scaling relation. To investigate the potential of spectroscopic surveys to follow up high-redshift galaxy clusters or groups observed in X-ray surveys for the identifications and mass calibrations, we carried out Monte Carlo resampling of the cluster galaxy redshifts and calibrated the uncertainties of the redshift and dynamical mass estimates when only reduced numbers of galaxy redshifts per cluster are available. The resampling considers the SPIDERS and 4MOST configurations, designed for the follow-up of the eROSITA clusters, and was carried out for each cluster in the sample at the actual cluster redshift as well as at the assigned input cluster redshifts of 0.2, 0.4, 0.6, and 0.8. To follow up very distant clusters or groups, we also carried out the mass calibration based on the resampling with only ten redshifts per cluster, and redshift calibration based on the resampling with only five and ten redshifts per cluster, respectively. Our results demonstrate the power of combining upcoming X-ray and optical spectroscopic surveys for mass calibration of clusters. The scatter in the dynamical mass estimates for the clusters with at least ten members is within 50%.
Enhancement of AGN Activity in Distant Galaxy Clusters
NASA Astrophysics Data System (ADS)
Krishnan, Charutha; Hatch, Nina; Almaini, Omar
2017-07-01
I present our recent study of the prevalence of X-ray AGN in the high-redshift protocluster Cl 0218.3-0510 at z=1.62, and review the implications for our understanding of galaxy evolution. There has long been a consensus that X-ray AGN avoid clusters in the local universe, particularly their cores. The high-redshift universe appears to not follow these trends, as there is a reversal in the local anti-correlation between galaxy density and AGN activity. In this z=1.62 protocluster, we find a large overdensity of AGN by a factor of 23, and an enhancement in the AGN fraction among massive galaxies relative to the field by a factor of 2. I will discuss the comparison of the properties of AGN in the protocluster to the field, and explain how our results point towards similar triggering mechanisms in the two environments. I will also describe how our study of the morphologies of these galaxies provide tentative evidence towards galaxy mergers and interactions being responsible for triggering AGN, and explain the reversal of the local anti-correlation between galaxy density and AGN activity.
NASA Astrophysics Data System (ADS)
van der Marel, Roeland P.; van Dokkum, Pieter G.
2007-10-01
We present spatially resolved stellar rotation velocity and velocity dispersion profiles from Keck/LRIS absorption-line spectra for 25 galaxies, mostly visually classified ellipticals, in three clusters at z~0.5. We interpret the kinematical data and HST photometry using oblate axisymmetric two-integral f(E,Lz) dynamical models based on the Jeans equations. This yields good fits, provided that the seeing and observational characteristics are carefully modeled. The fits yield for each galaxy the dynamical mass-to-light ratio (M/L) and a measure of the galaxy rotation rate. Paper II addresses the implied M/L evolution. Here we study the rotation-rate evolution by comparison to a sample of local elliptical galaxies of similar present-day luminosity. The brightest galaxies in the sample all rotate too slowly to account for their flattening, as is also observed at z=0. But the average rotation rate is higher at z~0.5 than locally. This may be due to a higher fraction of misclassified S0 galaxies (although this effect is insufficient to explain the observed strong evolution of the cluster S0 fraction with redshift). Alternatively, dry mergers between early-type galaxies may have decreased the average rotation rate over time. It is unclear whether such mergers are numerous enough in clusters to explain the observed trend quantitatively. Disk-disk mergers may affect the comparison through the so-called ``progenitor bias,'' but this cannot explain the direction of the observed rotation-rate evolution. Additional samples are needed to constrain possible environmental dependencies and cosmic variance in galaxy rotation rates. Either way, studies of the internal stellar dynamics of distant galaxies provide a valuable new approach for exploring galaxy evolution.
A Cluster and a Sea of Galaxies
NASA Astrophysics Data System (ADS)
2010-05-01
A new wide-field image released today by ESO displays many thousands of distant galaxies, and more particularly a large group belonging to the massive galaxy cluster known as Abell 315. As crowded as it may appear, this assembly of galaxies is only the proverbial "tip of the iceberg", as Abell 315 - like most galaxy clusters - is dominated by dark matter. The huge mass of this cluster deflects light from background galaxies, distorting their observed shapes slightly. When looking at the sky with the unaided eye, we mostly only see stars within our Milky Way galaxy and some of its closest neighbours. More distant galaxies are just too faint to be perceived by the human eye, but if we could see them, they would literally cover the sky. This new image released by ESO is both a wide-field and long-exposure one, and reveals thousands of galaxies crowding an area on the sky roughly as large as the full Moon. These galaxies span a vast range of distances from us. Some are relatively close, as it is possible to distinguish their spiral arms or elliptical halos, especially in the upper part of the image. The more distant appear just like the faintest of blobs - their light has travelled through the Universe for eight billion years or more before reaching Earth. Beginning in the centre of the image and extending below and to the left, a concentration of about a hundred yellowish galaxies identifies a massive galaxy cluster, designated with the number 315 in the catalogue compiled by the American astronomer George Abell in 1958 [1]. The cluster is located between the faint, red and blue galaxies and the Earth, about two billion light-years away from us. It lies in the constellation of Cetus (the Whale). Galaxy clusters are some of the largest structures in the Universe held together by gravity. But there is more in these structures than the many galaxies we can see. Galaxies in these giants contribute to only ten percent of the mass, with hot gas in between galaxies accounting for another ten percent [2]. The remaining 80 percent is made of an invisible and unknown ingredient called dark matter that lies in between the galaxies. The presence of dark matter is revealed through its gravitational effect: the enormous mass of a galaxy cluster acts on the light from galaxies behind the cluster like a cosmic magnifying glass, bending the trajectory of the light and thus making the galaxies appear slightly distorted [3]. By observing and analysing the twisted shapes of these background galaxies, astronomers can infer the total mass of the cluster responsible for the distortion, even when this mass is mostly invisible. However, this effect is usually tiny, and it is necessary to measure it over a huge number of galaxies to obtain significant results: in the case of Abell 315, the shapes of almost 10 000 faint galaxies in this image were studied in order to estimate the total mass of the cluster, which amounts to over a hundred thousand billion times the mass of our Sun [4]. To complement the enormous range of cosmic distances and sizes surveyed by this image, a handful of objects much smaller than galaxies and galaxy clusters and much closer to Earth are scattered throughout the field: besides several stars belonging to our galaxy, many asteroids are also visible as blue, green or red trails [5]. These objects belong to the main asteroid belt, located between the orbits of Mars and Jupiter, and their dimensions vary from some tens of kilometres, for the brightest ones, to just a few kilometres in the case of the faintest ones. This image has been taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. It is a composite of several exposures acquired using three different broadband filters, for a total of almost one hour in the B filter and about one and a half hours in the V and R filters. The field of view is 34 x 33 arcminutes. Notes [1] The Abell catalogue from 1958 comprised 2712 clusters of galaxies, and was integrated with an additional 1361 clusters in 1989. Abell put together this impressive collection by visual inspection of photographic plates of the sky, seeking those areas where more galaxies than average were found at approximately the same distance from us. [2] Ten percent of a galaxy cluster's mass consists of a very hot mixture of protons and electrons (a plasma), with temperatures as high as ten million degrees or more, which makes it visible to X-ray telescopes. [3] Astronomers refer to these slight distortions as weak gravitational lensing, as opposed to strong gravitational lensing, characterised by more spectacular phenomena such as giant arcs, rings and multiple images. [4] A weak lensing study of the galaxy cluster Abell 315 has been published in a paper that appeared in Astronomy & Astrophysics in 2009 ("Weak lensing observations of potentially X-ray underluminous galaxy clusters", by J. Dietrich et al.). [5] The blue, green or red tracks indicate that each asteroid has been detected through one of the three filters, respectively. Each track is composed of several, smaller sub-tracks, reflecting the sequence of several exposures performed in each of the filters; from the length of these sub-tracks, the distance to the asteroid can be calculated. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
The Most Distant Mature Galaxy Cluster - Young, but surprisingly grown-up
NASA Astrophysics Data System (ADS)
2011-03-01
Astronomers have used an armada of telescopes on the ground and in space, including the Very Large Telescope at ESO's Paranal Observatory in Chile to discover and measure the distance to the most remote mature cluster of galaxies yet found. Although this cluster is seen when the Universe was less than one quarter of its current age it looks surprisingly similar to galaxy clusters in the current Universe. "We have measured the distance to the most distant mature cluster of galaxies ever found", says the lead author of the study in which the observations from ESO's VLT have been used, Raphael Gobat (CEA, Paris). "The surprising thing is that when we look closely at this galaxy cluster it doesn't look young - many of the galaxies have settled down and don't resemble the usual star-forming galaxies seen in the early Universe." Clusters of galaxies are the largest structures in the Universe that are held together by gravity. Astronomers expect these clusters to grow through time and hence that massive clusters would be rare in the early Universe. Although even more distant clusters have been seen, they appear to be young clusters in the process of formation and are not settled mature systems. The international team of astronomers used the powerful VIMOS and FORS2 instruments on ESO's Very Large Telescope (VLT) to measure the distances to some of the blobs in a curious patch of very faint red objects first observed with the Spitzer space telescope. This grouping, named CL J1449+0856 [1], had all the hallmarks of being a very remote cluster of galaxies [2]. The results showed that we are indeed seeing a galaxy cluster as it was when the Universe was about three billion years old - less than one quarter of its current age [3]. Once the team knew the distance to this very rare object they looked carefully at the component galaxies using both the NASA/ESA Hubble Space Telescope and ground-based telescopes, including the VLT. They found evidence suggesting that most of the galaxies in the cluster were not forming stars, but were composed of stars that were already about one billion years old. This makes the cluster a mature object, similar in mass to the Virgo Cluster, the nearest rich galaxy cluster to the Milky Way. Further evidence that this is a mature cluster comes from observations of X-rays coming from CL J1449+0856 made with ESA's XMM-Newton space observatory. The cluster is giving off X-rays that must be coming from a very hot cloud of tenuous gas filling the space between the galaxies and concentrated towards the centre of the cluster. This is another sign of a mature galaxy cluster, held firmly together by its own gravity, as very young clusters have not had time to trap hot gas in this way. As Gobat concludes: "These new results support the idea that mature clusters existed when the Universe was less than one quarter of its current age. Such clusters are expected to be very rare according to current theory, and we have been very lucky to spot one. But if further observations find many more then this may mean that our understanding of the early Universe needs to be revised." Notes [1] The strange name refers to the object's position in the sky. [2] The galaxies appear red in the picture partly because they are thought to be mainly composed of cool, red stars. In addition the expansion of the Universe since the light left these remote systems has increased the wavelength of the light further so that it is mostly seen as infrared radiation when it gets to Earth. [3] The astronomers measured the distance to the cluster by splitting the light up into its component colours in a spectrograph. They then compared this spectrum with one of a similar object in the nearby Universe. This allowed them to measure the redshift of the remote galaxies - how much the Universe has expanded since the light left the galaxies. The redshift was found to be 2.07, which means that the cluster is seen about three billion years after the Big Bang. More information This research was presented in a paper, "A mature cluster with X-ray emission at z = 2.07", by R. Gobat et al., published in the journal Astronomy & Astrophysics. The team is composed of R. Gobat (Laboratoire AIM-Paris-Saclay, France), E. Daddi (AIM-Paris), M. Onodera (ETH Zürich, Switzerland), A. Finoguenov (Max-Planck-Institut für extraterrestrische Physik [MPE], Garching, Germany), A. Renzini (INAF-Osservatorio Astronomico di Padova), N. Arimoto (National Astronomical Observatory of Japan), R. Bouwens (Lick Observatory, Santa Cruz, USA), M. Brusa (MPE), R.-R. Chary (California Institute of Technology, USA), A. Cimatti (Università di Bologna, Italy), M. Dickinson (NOAO, Tucson, USA), X. Kong (University of Science and Technology of China), and M.Mignoli (INAF - Osservatorio Astronomico di Bologna, Italy). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
NASA Astrophysics Data System (ADS)
Šuhada, R.; Fassbender, R.; Nastasi, A.; Böhringer, H.; de Hoon, A.; Pierini, D.; Santos, J. S.; Rosati, P.; Mühlegger, M.; Quintana, H.; Schwope, A. D.; Lamer, G.; Kohnert, J.; Pratt, G. W.
2011-06-01
Context. Multi-wavelength surveys for clusters of galaxies are opening a window on the elusive high-redshift (z > 1) cluster population. Well controlled statistical samples of distant clusters will enable us to answer questions about their cosmological context, early assembly phases and the thermodynamical evolution of the intracluster medium. Aims: We report on the detection of two z > 1 systems, XMMU J0302.2-0001 and XMMU J1532.2-0836, as part of the XMM-Newton Distant Cluster Project (XDCP) sample. We investigate the nature of the sources, measure their spectroscopic redshift and determine their basic physical parameters. Methods: The results of the present paper are based on the analysis of XMM-Newton archival data, optical/near-infrared imaging and deep optical follow-up spectroscopy of the clusters. Results: We confirm the X-ray source XMMU J0302.2-0001 as a gravitationally bound, bona fide cluster of galaxies at spectroscopic redshift z = 1.185. We estimate its M500 mass to (1.6 ± 0.3) × 1014 M⊙ from its measured X-ray luminosity. This ranks the cluster among intermediate mass system. In the case of XMMU J1532.2-0836 we find the X-ray detection to be coincident with a dynamically bound system of galaxies at z = 1.358. Optical spectroscopy reveals the presence of a central active galactic nucleus, which can be a dominant source of the detected X-ray emission from this system. We provide upper limits of X-ray parameters for the system and discuss cluster identification challenges in the high-redshift low-mass cluster regime. A third, intermediate redshift (z = 0.647) cluster, XMMU J0302.1-0000, is serendipitously detected in the same field as XMMU J0302.2-0001. We provide its analysis as well. Based on observations obtained with ESO Telescopes at the Paranal Observatory under program ID 080.A-0659 and 081.A-0312, observations collected at the Centro Astrnómico Hispano Alemán (CAHA) at Calar Alto, Spain operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). X-ray observations were obtained by XMM-Newton.
Two peculiar fast transients in a strongly lensed host galaxy
NASA Astrophysics Data System (ADS)
Rodney, S. A.; Balestra, I.; Bradac, M.; Brammer, G.; Broadhurst, T.; Caminha, G. B.; Chirivı, G.; Diego, J. M.; Filippenko, A. V.; Foley, R. J.; Graur, O.; Grillo, C.; Hemmati, S.; Hjorth, J.; Hoag, A.; Jauzac, M.; Jha, S. W.; Kawamata, R.; Kelly, P. L.; McCully, C.; Mobasher, B.; Molino, A.; Oguri, M.; Richard, J.; Riess, A. G.; Rosati, P.; Schmidt, K. B.; Selsing, J.; Sharon, K.; Strolger, L.-G.; Suyu, S. H.; Treu, T.; Weiner, B. J.; Williams, L. L. R.; Zitrin, A.
2018-04-01
A massive galaxy cluster can serve as a magnifying glass for distant stellar populations, as strong gravitational lensing magnifies background galaxies and exposes details that are otherwise undetectable. In time-domain astronomy, imaging programmes with a short cadence are able to detect rapidly evolving transients, previously unseen by surveys designed for slowly evolving supernovae. Here, we describe two unusual transient events discovered in a Hubble Space Telescope programme that combined these techniques with high-cadence imaging on a field with a strong-lensing galaxy cluster. These transients were faster and fainter than any supernovae, but substantially more luminous than a classical nova. We find that they can be explained as separate eruptions of a luminous blue variable star or a recurrent nova, or as an unrelated pair of stellar microlensing events. To distinguish between these hypotheses will require clarification of the cluster lens models, along with more high-cadence imaging of the field that could detect related transient episodes. This discovery suggests that the intersection of strong lensing with high-cadence transient surveys may be a fruitful path for future astrophysical transient studies.
NASA Astrophysics Data System (ADS)
Lotz, Jennifer; Mountain, M.; Grogin, N. A.; Koekemoer, A. M.; Capak, P. L.; Mack, J.; Coe, D. A.; Barker, E. A.; Adler, D. S.; Avila, R. J.; Anderson, J.; Casertano, S.; Christian, C. A.; Gonzaga, S.; Ferguson, H. C.; Fruchter, A. S.; Jenkner, H.; Jordan, I. J.; Hammer, D.; Hilbert, B.; Lawton, B. L.; Lee, J. C.; Lucas, R. A.; MacKenty, J. W.; Mutchler, M. J.; Ogaz, S.; Reid, I. N.; Royle, P.; Robberto, M.; Sembach, K.; Smith, L. J.; Sokol, J.; Surace, J. A.; Taylor, D.; Tumlinson, J.; Viana, A.; Williams, R. E.; Workman, W.
2014-01-01
Using Director's Discretionary observing time, HST is undertaking a revolutionary deep field observing program to peer deeper into the Universe than ever before. The Frontier Fields will combine the power of HST with the natural gravitational telescopes of high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies and the second-deepest observations of blank fields ever obtained. Up to six strong-lensing clusters (Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, AbellS1063, and Abell 370) will be targeted with coordinated parallels of adjacent blank fields with ACS/WFC and WFC3/IR cameras to ~29th ABmag depths in seven bandpasses over the next three years. These observations will reveal distant galaxy populations ~10-100 times fainter than any previously observed, and improve our statistical understanding of galaxies during the epoch of reionization. Here we present Hubble Space Telescope observations of the first set of the Frontier Fields, Abell 2744, and describe the HST Frontier Fields observing strategy and schedule. All data for this observing program is nonproprietary and available immediately upon entry into the Mikulski Archive for Space Telescopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% atmore » redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.« less
Shedding Light on the Cosmic Skeleton
NASA Astrophysics Data System (ADS)
2009-11-01
Astronomers have tracked down a gigantic, previously unknown assembly of galaxies located almost seven billion light-years away from us. The discovery, made possible by combining two of the most powerful ground-based telescopes in the world, is the first observation of such a prominent galaxy structure in the distant Universe, providing further insight into the cosmic web and how it formed. "Matter is not distributed uniformly in the Universe," says Masayuki Tanaka from ESO, who led the new study. "In our cosmic vicinity, stars form in galaxies and galaxies usually form groups and clusters of galaxies. The most widely accepted cosmological theories predict that matter also clumps on a larger scale in the so-called 'cosmic web', in which galaxies, embedded in filaments stretching between voids, create a gigantic wispy structure." These filaments are millions of light years long and constitute the skeleton of the Universe: galaxies gather around them, and immense galaxy clusters form at their intersections, lurking like giant spiders waiting for more matter to digest. Scientists are struggling to determine how they swirl into existence. Although massive filamentary structures have been often observed at relatively small distances from us, solid proof of their existence in the more distant Universe has been lacking until now. The team led by Tanaka discovered a large structure around a distant cluster of galaxies in images they obtained earlier. They have now used two major ground-based telescopes to study this structure in greater detail, measuring the distances from Earth of over 150 galaxies, and, hence, obtaining a three-dimensional view of the structure. The spectroscopic observations were performed using the VIMOS instrument on ESO's Very Large Telescope and FOCAS on the Subaru Telescope, operated by the National Astronomical Observatory of Japan. Thanks to these and other observations, the astronomers were able to make a real demographic study of this structure, and have identified several groups of galaxies surrounding the main galaxy cluster. They could distinguish tens of such clumps, each typically ten times as massive as our own Milky Way galaxy - and some as much as a thousand times more massive - while they estimate that the mass of the cluster amounts to at least ten thousand times the mass of the Milky Way. Some of the clumps are feeling the fatal gravitational pull of the cluster, and will eventually fall into it. "This is the first time that we have observed such a rich and prominent structure in the distant Universe," says Tanaka. "We can now move from demography to sociology and study how the properties of galaxies depend on their environment, at a time when the Universe was only two thirds of its present age." The filament is located about 6.7 billion light-years away from us and extends over at least 60 million light-years. The newly uncovered structure does probably extend further, beyond the field probed by the team, and hence future observations have already been planned to obtain a definite measure of its size. More information This research was presented in a paper published as a letter in the Astronomy & Astrophysics Journal: The spectroscopically confirmed huge cosmic structure at z = 0.55, by Tanaka et al. The team is composed of Masayuki Tanaka (ESO), Alexis Finoguenov (Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany and University of Maryland, Baltimore, USA), Tadayuki Kodama (National Astronomical Observatory of Japan, Tokyo, Japan), Yusei Koyama (Department of Astronomy, University of Tokyo, Japan), Ben Maughan (H.H. Wills Physics Laboratory, University of Bristol, UK) and Fumiaki Nakata (Subaru Telescope, National Astronomical Observatory of Japan). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Diffuse Optical Light in Galaxy Clusters. II. Correlations with Cluster Properties
NASA Astrophysics Data System (ADS)
Krick, J. E.; Bernstein, R. A.
2007-08-01
We have measured the flux, profile, color, and substructure in the diffuse intracluster light (ICL) in a sample of 10 galaxy clusters with a range of mass, morphology, redshift, and density. Deep, wide-field observations for this project were made in two bands at the 1 m Swope and 2.5 m du Pont telescopes at Las Campanas Observatory. Careful attention in reduction and analysis was paid to the illumination correction, background subtraction, point-spread function determination, and galaxy subtraction. ICL flux is detected in both bands in all 10 clusters ranging from 7.6×1010 to 7.0×1011 h-170 Lsolar in r and 1.4×1010 to 1.2×1011 h-170 Lsolar in the B band. These fluxes account for 6%-22% of the total cluster light within one-quarter of the virial radius in r and 4%-21% in the B band. Average ICL B-r colors range from 1.5 to 2.8 mag when k- and evolution corrected to the present epoch. In several clusters we also detect ICL in group environments near the cluster center and up to 1 h-170 Mpc distant from the cluster center. Our sample, having been selected from the Abell sample, is incomplete in that it does not include high-redshift clusters with low density, low flux, or low mass, and it does not include low-redshift clusters with high flux, high mass, or high density. This bias makes it difficult to interpret correlations between ICL flux and cluster properties. Despite this selection bias, we do find that the presence of a cD galaxy corresponds to both centrally concentrated galaxy profiles and centrally concentrated ICL profiles. This is consistent with ICL either forming from galaxy interactions at the center or forming at earlier times in groups and later combining in the center.
The Carla Survey: Insights From The Densest Carla Structures At 1.4 < Z < 2.8.
NASA Astrophysics Data System (ADS)
Noirot, Gaël; Stern, Daniel; Wylezalek, Dominika; Cooke, Elizabeth A.; Mei, Simona; De Breuck, Carlos; Vernet, Joël; Brodwin, Mark; Eisenhardt, Peter; Galametz, Audrey; Gonzalez, Anthony H.; Hatch, Nina A.; Jarvis, Matt; Rettura, Alessandro; Seymour, Nick; Stanford, S. A.
2017-06-01
Radio-loud AGN (RLAGN) tend to reside in the most massive dark matter halos, and have a long history of being used to efficiently identify rich high-z structures (i.e., clusters and protoclusters). Our team contributed to this effort with a targeted 400hr Spitzer program surveying 420 RLAGN (radio-loud quasars and high-z radio galaxies) at z=1.3-3.2 across the full sky: Clusters Around RLAGN (CARLA; Wylezalek+2013,2014). The CARLA Survey identified 200 cluster candidates at z=1.3-3.2 as 2-8σ overdensities of red color-selected Spitzer/IRAC galaxies around the targeted powerful RLAGN. We present results from our follow-up 40-orbit HST program on the 20 densest CARLA cluster candidates at z=1.4-2.8 (Noirot+2016,2017). We spectroscopically confirm 16/20 distant structures associated with the RLAGN, up to z=2.8. For the first time at these redshifts, we statistically investigate the star-formation content of a large sample of galaxies in dense structures. We show that >10^(10) M⊙ cluster galaxies form significantly fewer stars than their field star-forming counterparts at all redshifts within 1.4 ≤ z ≤ 2. This survey represents a unique and large homogenous sample of spectroscopically confirmed clusters at high redshifts, ideal to investigate quenching mechanisms in dense environments.
Dynamics, Chemical Abundances, and ages of Globular Clusters in the Virgo Cluster of Galaxies
NASA Astrophysics Data System (ADS)
Guhathakurta, Puragra; NGVS Collaboration
2018-01-01
We present a study of the dynamics, metallicities, and ages of globular clusters (GCs) in the Next Generation Virgo cluster Survey (NGVS), a deep, multi-band (u, g, r, i, z, and Ks), wide-field (104 deg2) imaging survey carried out using the 3.6-m Canada-France-Hawaii Telescope and MegaCam imager. GC candidates were selected from the NGVS survey using photometric and image morphology criteria and these were followed up with deep, medium-resolution, multi-object spectroscopy using the Keck II 10-m telescope and DEIMOS spectrograph. The primary spectroscopic targets were candidate GC satellites of dwarf elliptical (dE) and ultra-diffuse galaxies (UDGs) in the Virgo cluster. While many objects were confirmed as GC satellites of Virgo dEs and UDGs, many turned out to be non-satellites based on their radial velocity and/or positional mismatch any identifiable Virgo cluster galaxy. We have used a combination of spectral characteristics (e.g., presence of absorption vs. emission lines), new Gaussian mixture modeling of radial velocity and sky position data, and a new extreme deconvolution analysis of ugrizKs photometry and image morphology, to classify all the objects in our sample into: (1) GC satellites of dE galaxies, (2) GC satellites of UDGs, (3) intra-cluster GCs (ICGCs) in the Virgo cluster, (4) GCs in the outer halo of the central cluster galaxy M87, (5) foreground Milky Way stars, and (6) distant background galaxies. We use these data to study the dynamics and dark matter content of dE and UDGs in the Virgo cluster, place important constraints on the nature of dE nuclei, and study the origin of ICGCs versus GCs in the remote M87 halo.We are grateful for financial support from the NSF and NASA/STScI.
2017-12-08
Release Date: March 10, 2010 - Distant galaxy clusters mysteriously stream at a million miles per hour along a path roughly centered on the southern constellations Centaurus and Hydra. A new study led by Alexander Kashlinsky at NASA's Goddard Space Flight Center in Greenbelt, Md., tracks this collective motion -- dubbed the "dark flow" -- to twice the distance originally reported, out to more than 2.5 billion light-years. Abell 1689, redshift 0.181. Credit: NASA/Goddard Space Flight Center/Scientific Visualization Studio/ESA/L. Bradley/JHU To learn more go to: www.nasa.gov/centers/goddard/news/releases/2010/10-023.html To see other visualizations related to this story go to: svs.gsfc.nasa.gov/goto?10580
Imaging the Sunyaev-Zeldovich Effect in the High Redshift Galaxy Cluster MS1137+66
NASA Technical Reports Server (NTRS)
Joy, M. K.; Patel, S. K.; Carlstrom, J. E.; Grego, L.; Holder, G. P.; Holzapfel, W. L.; Hughes, J. P.; Reese, E. D.
2000-01-01
We present interferometric measurements of the Sunyaev-Zelldovich Effect (SZE) in MS1137+66, a distant galaxy cluster at a redshift of 0.78. The data were obtained in 1997 and 1998 at the Berkeley-Illinois-Maryland millimeter array using sensitive 28.5 GHz receivers optimized for imaging of the SZE, with a total on-source integration time of 87.8 hours. We discuss constraints derived from spherical "beta" model fits to the SZE data, place an upper limit on the strength of any possible radio point sources in the field, and compare the results with the x-ray data published by Donahue et al. in 1999.
NASA Astrophysics Data System (ADS)
Ebeling, H.; Barrett, E.; Donovan, D.
2004-07-01
We report the detection of a 4 h-170 Mpc long large-scale filament leading into the massive galaxy cluster MACS J0717.5+3745. The extent of this object well beyond the cluster's nominal virial radius (~2.3 Mpc) rules out prior interaction between its constituent galaxies and the cluster and makes it a prime candidate for a genuine filament as opposed to a merger remnant or a double cluster. The structure was discovered as a pronounced overdensity of galaxies selected to have V-R colors close to the cluster red sequence. Extensive spectroscopic follow-up of over 300 of these galaxies in a region covering the filament and the cluster confirms that the entire structure is located at the cluster redshift of z=0.545. Featuring galaxy surface densities of typically 15 Mpc-2 down to luminosities of 0.13L*V, the most diffuse parts of the filament are comparable in density to the clumps of red galaxies found around A851 in the only similar study carried out to date (Kodama et al.). Our direct detection of an extended large-scale filament funneling matter onto a massive distant cluster provides a superb target for in-depth studies of the evolution of galaxies in environments of greatly varying density and supports the predictions from theoretical models and numerical simulations of structure formation in a hierarchical picture. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based partly on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNP (Brazil), and CONICET (Argentina).
NASA Astrophysics Data System (ADS)
Koyama, Yusei; Hayashi, Masao; Tanaka, Masayuki; Kodama, Tadayuki; Shimakawa, Rhythm; Yamamoto, Moegi; Nakata, Fumiaki; Tanaka, Ichi; Suzuki, Tomoko L.; Tadaki, Ken-ichi; Nishizawa, Atsushi J.; Yabe, Kiyoto; Toba, Yoshiki; Lin, Lihwai; Jian, Hung-Yu; Komiyama, Yutaka
2018-01-01
We present the environmental dependence of color, stellar mass, and star formation (SF) activity in Hα-selected galaxies along the large-scale structure at z = 0.4 hosting twin clusters in the DEEP2-3 field, discovered by the Subaru Strategic Program of Hyper Suprime-Cam (HSC SSP). By combining photo-z-selected galaxies and Hα emitters selected with broadband and narrowband (NB) data from the recent data release of HSC SSP (DR1), we confirm that galaxies in higher-density environments or galaxies in cluster central regions show redder colors. We find that there still remains a possible color-density and color-radius correlation even if we restrict the sample to Hα-selected galaxies, probably due to the presence of massive Hα emitters in denser regions. We also find a hint of increased star formation rates (SFR) amongst Hα emitters toward the highest-density environment, again primarily driven by the excess of red/massive Hα emitters in high-density environments, while their specific SFRs do not significantly change with environment. This work demonstrates the power of the HSC SSP NB data for studying SF galaxies across environments in the distant universe.
NASA Astrophysics Data System (ADS)
Ma, Cheng-Jiun; Ebeling, Harald; Donovan, David; Barrett, Elizabeth
2008-09-01
We present the results of a wide-field spectroscopic analysis of the galaxy population of the massive cluster MACS J0717.5+3745 and the surrounding filamentary structure (z = 0.55), as part of our systematic study of the 12 most distant clusters in the MACS sample. Of 1368 galaxies spectroscopically observed in this field, 563 are identified as cluster members; of those, 203 are classified as emission-line galaxies, 260 as absorption-line galaxies, and 17 as E+A galaxies (defined by (H δ + H γ )/2 > 6 Å and no detection of [O II] and Hβ in emission). The variation of the fraction of emission- and absorption-line galaxies as a function of local projected galaxy density confirms the well-known morphology-density relation, and becomes flat at projected galaxy densities less than ~20 Mpc-2. Interestingly, 16 out of 17 E+A galaxies lie (in projection) within the ram-pressure stripping radius around the cluster core, which we take to be direct evidence that ram-pressure stripping is the primary mechanism that terminates star formation in the E+A population of galaxy clusters. This conclusion is supported by the rarity of E+A galaxies in the filament, which rules out galaxy mergers as the dominant driver of evolution for E+A galaxies in clusters. In addition, we find that the 42 e(a) and 27 e(b) member galaxies, i.e., the dusty-starburst and starburst galaxies respectively, are spread out across almost the entire study area. Their spatial distribution, which shows a strong preference for the filament region, suggests that starbursts are triggered in relatively low-density environments as galaxies are accreted from the field population. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based also in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. The spectroscopic data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atek, Hakim; Kneib, Jean-Paul; Richard, Johan
2015-02-10
Exploiting the power of gravitational lensing, the Hubble Frontier Fields (HFF) program aims at observing six massive galaxy clusters to explore the distant universe far beyond the limits of blank field surveys. Using the complete Hubble Space Telescope observations of the first HFF cluster A2744, we report the detection of 50 galaxy candidates at z ∼ 7 and eight candidates at z ∼ 8 in a total survey area of 0.96 arcmin{sup 2} in the source plane. Three of these galaxies are multiply imaged by the lensing cluster. Using an updated model of the mass distribution in the cluster we weremore » able to calculate the magnification factor and the effective survey volume for each galaxy in order to compute the ultraviolet galaxy luminosity function (LF) at both redshifts 7 and 8. Our new measurements reliably extend the z ∼ 7 UV LF down to an absolute magnitude of M {sub UV} ∼ –15.5. We find a characteristic magnitude of M{sub UV}{sup ⋆}=−20.90{sub −0.73}{sup +0.90} mag and a faint-end slope α=−2.01{sub −0.28}{sup +0.20}, close to previous determinations in blank fields. We show here for the first time that this slope remains steep down to very faint luminosities of 0.01 L {sup *}. Although prone to large uncertainties, our results at z ∼ 8 also seem to confirm a steep faint-end slope below 0.1 L {sup *}. The HFF program is therefore providing an extremely efficient way to study the faintest galaxy populations at z > 7 that would otherwise be inaccessible with current instrumentation. The full sample of six galaxy clusters will provide even better constraints on the buildup of galaxies at early epochs and their contribution to cosmic reionization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristensen, Lars E.; Bergin, Edwin A., E-mail: lkristensen@cfa.harvard.edu
2015-07-10
Most low-mass protostars form in clusters, in particular high-mass clusters; however, how low-mass stars form in high-mass clusters and what the mass distribution is are still open questions both in our own Galaxy and elsewhere. To access the population of forming embedded low-mass protostars observationally, we propose using molecular outflows as tracers. Because the outflow emission scales with mass, the effective contrast between low-mass protostars and their high-mass cousins is greatly lowered. In particular, maps of methanol emission at 338.4 GHz (J = 7{sub 0}–6{sub 0} A{sup +}) in low-mass clusters illustrate that this transition is an excellent probe ofmore » the low-mass population. We present here a model of a forming cluster where methanol emission is assigned to every embedded low-mass protostar. The resulting model image of methanol emission is compared to recent ALMA observations toward a high-mass cluster and the similarity is striking: the toy model reproduces observations to better than a factor of two and suggests that approximately 50% of the total flux originates in low-mass outflows. Future fine-tuning of the model will eventually make it a tool for interpreting the embedded low-mass population of distant regions within our own Galaxy and ultimately higher-redshift starburst galaxies, not just for methanol emission but also water and high-J CO.« less
Hubble tracks down a galaxy cluster's dark matter
NASA Astrophysics Data System (ADS)
2003-07-01
Unique mass map hi-res Size hi-res: 495 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Unique mass map This is a mass map of galaxy cluster Cl0024+1654 derived from an extensive Hubble Space Telescope campaign. The colour image is made from two images: a dark-matter map (the blue part of the image) and a 'luminous-matter' map determined from the galaxies in the cluster (the red part of the image). They were constructed by feeding Hubble and ground-based observations into advanced mathematical mass-mapping models. The map shows that dark matter is present where the galaxies clump together. The mass of the galaxies is shown in red, the mass of the dark matter in blue. The dark matter behaves like a 'glue', holding the cluster together. The dark-matter distribution in the cluster is not spherical. A secondary concentration of dark-matter mass is shown in blue to the upper right of the main concentration. Sky around galaxy cluster Cl0024+1654 hi-res Size hi-res: 3742 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Sky around galaxy cluster Cl0024+1654 This is a 2.5-degree field around galaxy cluster Cl0024+1654. The cluster galaxies are visible in the centre of the image in yellow. The image is a colour composite constructed from three Digitized Sky Survey 2 images: Blue (shown in blue), Red (shown in green), and Infrared (shown in red). HST observes shapes of more than 7000 faint background galaxies hi-res Size hi-res: 5593 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Hubble observes shapes of more than 7000 faint background galaxies Five days of observations produced the altogether 39 Hubble Wide Field and Planetary Camera 2 (WFPC2) images required to map the mass of the galaxy cluster Cl0024+1654. Each WFPC2 image has a size of about 1/150 the diameter of the full Moon. In total, the image measures 27 arc-minutes across, slightly smaller than the diameter of the Moon. The observed warped shapes of more than 7000 faint background galaxies have been converted into a unique map of the dark matter in the cluster. The images were taken through a red filter and have been reduced a factor of two in size. Ground-based image of the galaxy cluster C10024+1654 hi-res Size hi-res: 4699 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Ground-based image of the galaxy cluster C10024+1654 This is a colour image of the galaxy cluster C10024+1654 obtained with the CFHT12k camera at the Canada France Hawaii Telescope on Mauna Kea (Hawaii). The cluster clearly appears as a concentration of yellow galaxies in the centre of this image although cluster galaxies actually extend at least to the edge of this image. This image measures 21 x 21 arc-minutes. Clusters of galaxies are the largest stable systems in the Universe. They are like laboratories for studying the relationship between the distributions of dark and visible matter. In 1937, Fritz Zwicky realised that the visible component of a cluster (the thousands of millions of stars in each of the thousands of galaxies) represents only a tiny fraction of the total mass. About 80-85% of the matter is invisible, the so-called 'dark matter'. Although astronomers have known about the presence of dark matter for many decades, finding a technique to view its distribution is a much more recent development. Led by Drs Jean-Paul Kneib (from the Observatoire Midi-Pyrénées, France/Caltech, United States), Richard Ellis and Tommaso Treu (both Caltech, United States), the team used the NASA/ESA Hubble Space Telescope to reconstruct a unique 'mass map' of the galaxy cluster CL0024+1654. It enabled them to see for the first time on such large scales how mysterious dark matter is distributed with respect to galaxies. This comparison gives new clues on how such large clusters assemble and which role dark matter plays in cosmic evolution. Tracing dark matter is not an easy task because it does not shine. To make a map, astronomers must focus on much fainter, more distant galaxies behind the cluster. The shapes of these distant systems are distorted by the gravity of the foreground cluster. This distortion provides a measure of the cluster mass, a phenomenon known as 'weak gravitational lensing'. To map the dark matter of CL0024+1654, more than 120 hours observing time was dedicated to the team. This is the largest amount of Hubble time ever devoted to studying a galaxy cluster. Despite its distance of 4.5 thousand million light-years (about one third of the look-back time to the Big Bang) from Earth, this massive cluster is wide enough to equal the angular size of the full Moon. To make a mass map that covers the entire cluster required observations that probed 39 regions of the galaxy cluster. The investigation has resulted in the most comprehensive study of the distribution of dark matter in a galaxy cluster so far and extends more than 20 million light-years from its centre, much further than previous investigations. Many groups of researchers have tried to perform these types of measurements with ground-based telescopes. However, the technique relies heavily on finding the exact shapes of distant galaxies behind the cluster. The sharp vision of a space telescope such as NASA-ESA's Hubble is superior. The study reveals that the density of dark matter on large scales drops sharply with distance from the cluster centre. This confirms a picture that has emerged from recent detailed computer simulations. As Richard Ellis says: "Although theorists have predicted the form of dark matter in galaxy clusters from numerical simulations based on the effects of gravity alone, this is the first time we have convincing observations to back them up. Some astronomers had speculated clusters might contain large reservoirs of dark matter in their outermost regions. Assuming our cluster is representative, this is not the case." The team noticed that dark matter appears to clump together in their map. For example, they found concentrations of dark matter associated with galaxies known to be slowly falling into the system. Generally, the researchers found that the dark matter traces the cluster galaxies remarkably well and over an unprecedented range of physical scales. "When a cluster is being assembled, the dark matter will be smeared out between the galaxies where it acts like a glue," says Jean-Paul Kneib."The overall association of dark matter and 'glowing matter' is very convincing evidence that structures like CL0024+1654 grow by merging of smaller groups of galaxies that were already bound by their own dark matter components." Future investigations using Hubble's new camera, the Advanced Camera for Surveys (ACS), will extend this work when Hubble is trained on a second galaxy cluster later this year. ACS is 10 times more efficient than the Wide Field and Planetary Camera 2 used for this investigation, making it possible to study finer mass clumps in galaxy clusters and help work out how the clusters are assembled. Notes for editors The team is composed of Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, United States), Patrick Hudelot (Observatoire Midi-Pyrénées, France),Richard S. Ellis (Caltech, United States), Tommaso Treu (Caltech, United States), Graham P. Smith (Caltech, United States), Phil Marshall (MRAO, United Kingdom), Oliver Czoske (Institut für Astrophysik und Extraterrestrische Forschung, Germany), Ian Smail (University of Durham, United Kingdom) and Priya Natarajan (Yale University, United States). The ground-based observations were done with the Canada-France-Hawaii Telescope (CFHT) using the CFHT12k camera, the Keck telescopes, and the Hale 5-metre telescope at Palomar, United States, using the WIRC camera. The team will present their study at the General Assembly of the International Astronomical Union. They will also publish their results in a forthcoming issue of Astrophysical Journal. For broadcasters, animations of the discovery and general Hubble Space Telescope background footage is available from http://www.spacetelescope.org/video/releases.html Image credit: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, United States)
FIRST RESULTS FROM Z -FOURGE : DISCOVERY OF A CANDIDATE CLUSTER AT z = 2.2 IN COSMOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitler, Lee R.; Glazebrook, Karl; Poole, Gregory B.
2012-04-01
We report the first results from the Z -FOURGE survey: the discovery of a candidate galaxy cluster at z = 2.2 consisting of two compact overdensities with red galaxies detected at {approx}> 20{sigma} above the mean surface density. The discovery was made possible by a new deep (K{sub s} {approx}< 24.8 AB 5{sigma}) Magellan/FOURSTAR near-IR imaging survey with five custom medium-bandwidth filters. The filters pinpoint the location of the Balmer/4000 A break in evolved stellar populations at 1.5 < z < 3.5, yielding significantly more accurate photometric redshifts than possible with broadband imaging alone. The overdensities are within 1' ofmore » each other in the COSMOS field and appear to be embedded in a larger structure that contains at least one additional overdensity ({approx}10{sigma}). Considering the global properties of the overdensities, the z = 2.2 system appears to be the most distant example of a galaxy cluster with a population of red galaxies. A comparison to a large {Lambda}CDM simulation suggests that the system may consist of merging subclusters, with properties in between those of z > 2 protoclusters with more diffuse distributions of blue galaxies and the lower-redshift galaxy clusters with prominent red sequences. The structure is completely absent in public optical catalogs in COSMOS and only weakly visible in a shallower near-IR survey. The discovery showcases the potential of deep near-IR surveys with medium-band filters to advance the understanding of environment and galaxy evolution at z > 1.5.« less
Toward An Understanding of Cluster Evolution: A Deep X-Ray Selected Cluster Catalog from ROSAT
NASA Technical Reports Server (NTRS)
Jones, Christine; Oliversen, Ronald (Technical Monitor)
2002-01-01
In the past year, we have focussed on studying individual clusters found in this sample with Chandra, as well as using Chandra to measure the luminosity-temperature relation for a sample of distant clusters identified through the ROSAT study, and finally we are continuing our study of fossil groups. For the luminosity-temperature study, we compared a sample of nearby clusters with a sample of distant clusters and, for the first time, measured a significant change in the relation as a function of redshift (Vikhlinin et al. in final preparation for submission to Cape). We also used our ROSAT analysis to select and propose for Chandra observations of individual clusters. We are now analyzing the Chandra observations of the distant cluster A520, which appears to have undergone a recent merger. Finally, we have completed the analysis of the fossil groups identified in ROM observations. In the past few months, we have derived X-ray fluxes and luminosities as well as X-ray extents for an initial sample of 89 objects. Based on the X-ray extents and the lack of bright galaxies, we have identified 16 fossil groups. We are comparing their X-ray and optical properties with those of optically rich groups. A paper is being readied for submission (Jones, Forman, and Vikhlinin in preparation).
The Second Most Distant Cluster of Galaxies in the Extended Medium Sensitivity Survey
NASA Technical Reports Server (NTRS)
Donahue, Megan; Voit, G. Mark; Scharf, Caleb A.; Gioia, Isabella M.; Mullis, Christopher R.; Hughes, John P.; Stocke, John T.
1999-01-01
We report on our ASCA, Keck, and ROSAT observations of MS 1137.5+6625, the second most distant cluster of galaxies in the Einstein Extended Medium Sensitivity Survey (EMSS), at redshift 0.78. We now have a full set of X-ray temperatures, optical velocity dispersions, and X-ray images for a complete, high-redshift sample of clusters of galaxies drawn from the EMSS. Our ASCA observations of MS 1137.5 +6625 yield a temperature of 5.7 (+2.1)(-1.1) keV and a metallicity of 0.43 (+40)(-3.7) solar, with 90% confidence limits. Keck II spectroscopy of 22 cluster members reveals a velocity dispersion of 884 (+185)(-124) km 24/s. This cluster is the most distant in the sample with a detected iron line. We also derive a mean abundance at z = 0.8 by simultaneously fitting X-ray data for the two z = 0.8 clusters, and obtain an abundance of Z(sub Fe) = 0.33 (+.26)(-.23). Our ROSAT observations show that MS 1137.5+6625 is regular and highly centrally concentrated. Fitting of a Beta model to the X-ray surface brightness yields a core radius of only 71/h kpc (q(sub o) = 0.1) with Beta = 0.70(+.45)(-.15) The gas mass interior to 0.5/h Mpc is thus 1.2 (+0.2)(-0.3) X 10(exp 13) h(exp - 5/2) Solar Mass (q(sub o) = 0.1). If the cluster's gas is nearly isothermal and in hydrostatic equilibrium with the cluster potential, the total mass of the cluster within this same region is 2.1(+1.5)(-0.8) X 10exp 14)/h Solar Mass, giving a gas fraction of 0.06 +/-0.04 h (exp -3/2). This cluster is the highest redshift EMSS cluster showing evidence for a possible cooling flow (about 20-400 Solar Mass/yr). The velocity dispersion, temperature, gas fraction, and iron abundance of MS 1137.5+6625 are all statistically the same as those properties in lower red- shift clusters of similar luminosity. With this cluster's temperature now in hand, we derive a high-redshift temperature function for EMSS clusters at 0.5 < z < 0.9 and compare it with temperature functions at lower redshifts, showing that the evolution of the temperature function is relatively modest. Supplementing our high-redshift sample with other data from the literature, we demonstrate that neither the cluster luminosity-temperature relation, nor cluster metallicities, nor the cluster gas evolved with redshift. The very modest degree of evolution in the luminosity-temperature relation inferred from these data is inconsistent with the absence of evolution in the X-ray luminosity functions derived from ROSAT cluster surveys if a critical density structure formation model is assumed.
NASA Astrophysics Data System (ADS)
Sembolini, Federico; De Petris, Marco; Yepes, Gustavo; Foschi, Emma; Lamagna, Luca; Gottlöber, Stefan
2014-06-01
In this work, we study the properties of protoclusters of galaxies by employing the MultiDark SImulations of galaxy Clusters (MUSIC) set of hydrodynamical simulations, featuring a sample of 282 resimulated clusters with available merger trees up to z = 4. We study the characteristics and redshift evolution of the mass and the spatial distribution for all the protoclusters, which we define as the most massive progenitors of the clusters identified at z = 0. We extend the study of the baryon content to redshifts larger than 1 also in terms of gas and stars budgets: no remarkable variations with redshift are discovered. Furthermore, motivated by the proven potential of Sunyaev-Zel'dovich surveys to blindly search for faint distant objects, we compute the scaling relation between total object mass and integrated Compton y-parameter. We find that the slope of this scaling law is steeper than what expected for a self-similarity assumption among these objects, and it increases with redshift mainly when radiative processes are included. We use three different criteria to account for the dynamical state of the protoclusters, and find no significant dependence of the scaling parameters on the level of relaxation. We exclude the dynamical state as the cause of the observed deviations from self-similarity in protoclusters.
A NEW APPROACH TO IDENTIFYING THE MOST POWERFUL GRAVITATIONAL LENSING TELESCOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark
2013-05-20
The best gravitational lenses for detecting distant galaxies are those with the largest mass concentrations and the most advantageous configurations of that mass along the line of sight. Our new method for finding such gravitational telescopes uses optical data to identify projected concentrations of luminous red galaxies (LRGs). LRGs are biased tracers of the underlying mass distribution, so lines of sight with the highest total luminosity in LRGs are likely to contain the largest total mass. We apply this selection technique to the Sloan Digital Sky Survey and identify the 200 fields with the highest total LRG luminosities projected withinmore » a 3.'5 radius over the redshift range 0.1 {<=} z {<=} 0.7. The redshift and angular distributions of LRGs in these fields trace the concentrations of non-LRG galaxies. These fields are diverse; 22.5% contain one known galaxy cluster and 56.0% contain multiple known clusters previously identified in the literature. Thus, our results confirm that these LRGs trace massive structures and that our selection technique identifies fields with large total masses. These fields contain two to three times higher total LRG luminosities than most known strong-lensing clusters and will be among the best gravitational lensing fields for the purpose of detecting the highest redshift galaxies.« less
Cosmology with EMSS Clusters of Galaxies
NASA Technical Reports Server (NTRS)
Donahue, Megan; Voit, G. Mark
1999-01-01
We use ASCA observations of the Extended Medium Sensitivity Survey sample of clusters of galaxies to construct the first z = 0.5 - 0.8 cluster temperature function. This distant cluster temperature function, when compared to local z approximately 0 and to a similar moderate redshift (z = 0.3 - 0.4) temperature function strongly constrains the matter density of the universe. Best fits to the distributions of temperatures and redshifts of these cluster samples results in Omega(sub M) = 0.45 +/- 0.1 if Lambda = 0 and Omega = 0.27 +/- 0.1 if Lambda + Omega(sub M) = 1. The uncertainties are 1sigma statistical. We examine the systematics of our approach and find that systematics, stemming mainly from model assumptions and not measurement errors, are about the same size as the statistical uncertainty +/- 0.1. In this poster proceedings, we clarify the issue of a8 as reported in our paper Donahue & Voit (1999), since this was a matter of discussion at the meeting.
Confronting models of star formation quenching in galaxy clusters with archival Spitzer data
NASA Astrophysics Data System (ADS)
Rudnick, Gregory
Large scale structures in the universe form hierarchically: small structures merge to form larger ones. Over the same epoch where these structures experience significant growth, the fraction of star forming galaxies within them decreases, and at a faster rate than for field galaxies. It is now widely accepted that there must be physical processes at work in these dense environments to actively quench star formation. However, despite no shortage of candidate mechanisms, sophisticated cosmological simulations still cannot reproduce the star formation rate distributions within dense environments, such as galaxy clusters. Insufficient observational constraints are a primary obstacle to further progress. In particular, the interpretation of observations of nearby clusters relies on untested assumptions about the properties of galaxies before they entered the dense cluster environment at higher redshifts. Clearly, direct constraints on these properties are required. Our group has assembled two data sets designed to address these concerns. The first focuses on an intermediate wide-field cluster sample and the second focuses on a well-matched low-redshift cluster sample. We will use these samples, along with sophisticated models of hierarchical galaxy formation, to meet the following objectives: 1. Directly measure the SFR distribution of the progenitors of present-day cluster galaxies. We will use ground-based spectroscopy to identify cluster members within four virial radii of eight intermediate-redshift clusters. We will couple this with archival Spitzer/MIPS data to measure the SFRs of galaxies out to the cluster outskirts. 2. Measure the SFR distribution of the present-day cluster galaxies using Spitzer and WISE. Robust N-body simulations tell us statistically which galaxies at intermediate redshifts will have entered the cluster virial radius by the current epoch. By combining our wide-field coverage at high redshift with our local cluster sample, we will determine the evolution in cluster galaxy SFRs over 6 billion years making minimal assumptions about the infalling galaxy population. 3. Provide a rigorous test of the quenching processes embedded in the theoretical models. We will create observed realizations of the theoretical models by subjecting them to our observational selection. This will enable a fair comparison between the models and the data, which will provide a valuable test of current theoretical implementations of quenching processes. We will also modify the quenching prescriptions in the models to determine the parameters required to reproduce the observations. The proposed research is novel for several reasons. 1) We have wide-field Spitzer/MIPS data that allows us to robustly measure SFRs in our distant cluster galaxies. WISE data on local clusters will provide us with analogous measurements in the nearby Universe. 2) Our significant investment in ancillary spectroscopy allows us to identify infalling galaxies that will eventually join the central regions of the cluster z=0. 3) Our intermediate redshift cluster sample was chosen to have characteristics expected for the progenitors of a large fraction of the known clusters at z=0. 4) We will take advantage of our own cosmological simulations of structure growth to interpret our data. 5) We have optical photometry over the full infall region, allowing us to control for stellar masses and to distinguish passive from dusty star-forming galaxies. We will learn which, if any, of the quenching prescriptions currently employed in semi-analytic models correctly reproduces the observed characteristics of the galaxies that will become cluster galaxies at z=0. We will pinpoint the cluster-centric radii over which quenching takes place between. We will determine the timescale (as a function of stellar mass) over which it must take place. This program will cement the legacy of Spitzer and WISE as tools for studying galaxy formation in clusters.
ROSAT Discovers Unique, Distant Cluster of Galaxies
NASA Astrophysics Data System (ADS)
1995-06-01
Brightest X-ray Cluster Acts as Strong Gravitational Lens Based on exciting new data obtained with the ROSAT X-ray satellite and a ground-based telescope at the ESO La Silla Observatory, a team of European astronomers [2] has just discovered a very distant cluster of galaxies with unique properties. It emits the strongest X-ray emission of any cluster ever observed by ROSAT and is accompanied by two extraordinarily luminous arcs that represent the gravitationally deflected images of even more distant objects. The combination of these unusual characteristics makes this cluster, now known as RXJ1347.5-1145, a most interesting object for further cosmological studies. DISCOVERY AND FOLLOW-UP OBSERVATIONS This strange cluster of galaxies was discovered during the All Sky Survey with the ROSAT X-ray satellite as a moderately intense X-ray source in the constellation of Virgo. It could not be identified with any already known object and additional ground-based observations were therefore soon after performed with the Max-Planck-Society/ESO 2.2-metre telescope at the La Silla observatory in Chile. These observations took place within a large--scale redshift survey of X-ray clusters of galaxies detected by the ROSAT All Sky Survey, a so-called ``ESO Key Programme'' led by astronomers from the Max-Planck-Institut fur Extraterrestrische Physik and the Osservatorio Astronomico di Brera. The main aim of this programme is to identify cluster X-ray sources, to determine the distance to the X-ray emitting clusters and to investigate their overall properties. These observations permitted to measure the redshift of the RXJ1347.5-1145 cluster as z = 0.45, i.e. it moves away from us with a velocity (about 106,000 km/sec) equal to about one-third of the velocity of light. This is an effect of the general expansion of the universe and it allows to determine the distance as about 5,000 million light-years (assuming a Hubble constant of 75 km/sec/Mpc). In other words, we see these galaxies as they were 5,000 million years ago. Knowing the intensity of the X-ray emission as measured by ROSAT and also the distance, the astronomers were then able to estimate the total X-ray energy emitted by this cluster. It was found to be extremely high [3], in fact higher than that of any other cluster ever observed by ROSAT. It amounts to no less than 1.5 million million times the total energy emitted by the Sun. It is believed that this strong X-ray emission originates in a hot gas located between the galaxies in the cluster. The high temperature indicates that the components of the gas move very rapidly; this is related to the strong gravitational field within the cluster. THE GRAVITATIONAL ARCS To their great surprise and delight, the astronomers also discovered two bright arcs, 5 - 6 arcseconds long and symmetrically placed about 35 arcseconds to the North-East and South-West of the brightest galaxies in the cluster (see the photo). They were detected on exposures of only 3 minutes duration with the 2.2-metre telescope and are among the brightest such arcs ever found. At the indicated distance, the arcs are situated at a projected distance of about 500,000 light-years from the centre of the cluster. It is an interesting possibility that the two arcs may in fact be two images of the same, very distant galaxy, that is situated far beyond RXJ1347.5-1145 and whose light has been bent and split by this cluster's strong gravitational field. This strange phenomenon was first discovered in the late 1970's and is referred to as gravitational lensing. Quite a few examples are now known, in most cases in the form of double or multiple images of quasars. About three dozen cases involve well visible galaxy clusters and elongated arcs, but few, if any, of these arcs are as bright as those seen in the present cluster. This particular arc configuration enables a very accurate determination of the total mass of the cluster, once the distance of the background galaxy has been measured (by obtaining spectra of the arcs and measuring their redshift). The masses of galaxy clusters are important for the determination, for instance of the mean density and distribution of matter in the universe. This is because these clusters are the most massive, clearly defined objects known and as such trace these parameters in the universe on very large scales. Another possibility to derive the cluster mass is offered by X-ray observations, because the distribution of the hot, X-ray emitting gas traces the gravitational field of the cluster. Recently, in some clusters there has been a discrepancy between the mass determined in this way and that found from gravitational lensing effects. The team of astronomers now hopes that follow-up X-ray observations of RXJ1347.5-1145 will help to solve this puzzle. Moreover, the combination of extremely high X-ray brightness and the possibility to perform a rather accurate mass determination by the gravitational lensing effect makes this particular cluster a truly unique object. In view of the exceptional X-ray brightness, a very high mass is expected. The exact determination will be possible, as soon as spectra have been obtained of the two arcs. Contrary to what is the case in other clusters, this will not be so difficult, due to their unusual brightness and their ideal geometrical configuration. [1] This is a joint Press Release of ESO and the Max-Planck-Society. It is accompanied by a B/W photo. [2] The investigation described in this Press Release is the subject of a Letter to the Editor which will soon appear in the European journal Astronomy & Astrophysics, with the following authors: Sabine Schindler (Max-Planck-Institut fuer Extraterrestrische Physik and Max-Planck-Institut fuer Astrophysik, Garching, Germany), Hans Boehringer, Doris M. Neumann and Ulrich G. Briel (Max-Planck-Institut fuer Extraterrestrische Physik, Garching, Germany), Luigi Guzzo (Osservatorio Astronomico di Brera, Merate, Italy), Guido Chincarini (Osservatorio Astronomico di Brera, Merate, and Dipartimento di Fisica, Universita di Milano, Italy), Harald Ebeling (Institute of Astronomy, Cambridge, U.K.), Chris A. Collins (School of Chemical and Physical Sciences, John-Moores University, Liverpool, U.K.), Sabrina De Grandi (Dipartimento di Fisica, Universita di Milano, Italy), Peter Shaver (ESO, Garching, Germany) and Giampaolo Vettolani (Istituto di Radioastronomia del CNR, Bologna, Italy). [3] The total X-ray energy emitted by RXJ1347.5-1145 is (6.2 +-0.6) 10^45 erg s-1 in the range 0.1--2.4 keV. ESO Press Information is made available on the World-Wide Web (URL: http://www.hq.eso.org/) and on CompuServe (space science and astronomy area, GO SPACE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrosian, Vahe; /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept.; Madejski, Greg
2006-08-16
Evidence for non-thermal activity in clusters of galaxies is well established from radio observations of synchrotron emission by relativistic electrons. New windows in the Extreme Ultraviolet and Hard X-ray ranges have provided for more powerful tools for the investigation of this phenomenon. Detection of hard X-rays in the 20 to 100 keV range have been reported from several clusters of galaxies, notably from Coma and others. Based on these earlier observations we identified the relatively high redshift cluster 1E0657-56 (also known as RX J0658-5557) as a good candidate for hard X-ray observations. This cluster, also known as the bullet cluster,more » has many other interesting and unusual features, most notably that it is undergoing a merger, clearly visible in the X-ray images. Here we present results from a successful RXTE observations of this cluster. We summarize past observations and their theoretical interpretation which guided us in the selection process. We describe the new observations and present the constraints we can set on the flux and spectrum of the hard X-rays. Finally we discuss the constraints one can set on the characteristics of accelerated electrons which produce the hard X-rays and the radio radiation.« less
NASA Astrophysics Data System (ADS)
Stark, Daniel P.; Richard, Johan; Charlot, Stéphane; Clément, Benjamin; Ellis, Richard; Siana, Brian; Robertson, Brant; Schenker, Matthew; Gutkin, Julia; Wofford, Aida
2015-06-01
Deep spectroscopic observations of z ≳ 6.5 galaxies have revealed a marked decline with increasing redshift in the detectability of Ly α emission. While this may offer valuable insight into the end of the reionization process, it presents a challenge to the detailed spectroscopic study of bright photometrically-selected distant sources now being found via deep Hubble Space Telescope imaging, and particularly those highly magnified sources viewed through foreground lensing clusters. In this paper, we demonstrate the validity of a new way forward via the detection of an alternative diagnostic line, C III] λ1909 Å, seen in spectroscopic exposures of a star-forming galaxy at zLyα = 6.029. We also report tentative detection of C III] λ1909 Å in a galaxy at zLyα = 7.213. The former 3.3σ detection is based on a 3.5 h XShooter spectrum of a bright (J125 = 25.2) gravitationally-lensed galaxy behind the cluster Abell 383. The latter 2.8σ detection is based on a 4.2 h MOSFIRE spectra of one of the most distant spectroscopically confirmed galaxies, GN-108036, with J140 = 25.2. Both targets were chosen for their continuum brightness and previously-known redshift (based on Ly α), ensuring that any C III] emission would be located in a favourable portion of the near-infrared sky spectrum. Since the availability of secure Ly α redshifts significantly narrows the wavelength range where C III] is sought, this increases confidence in these, otherwise, low-signal-to-noise ratio detections. We compare our C III] and Ly α equivalent widths in the context of those found at z ≃ 2 from earlier work and discuss the motivation for using lines other than Ly α to study galaxies in the reionization era.
NASA Astrophysics Data System (ADS)
Guhathakurta, Puragra; Toloba, Elisa; Peng, Eric W.; Li, Biao; Gwyn, Stephen; Ferrarese, Laura; Cote, Patrick; Chu, Jason; Sparkman, Lea; Chen, Stephanie; Yagati, Samyukta; Muller, Meredith; Next Generation Virgo Survey Collaboration
2015-01-01
We present results from an ongoing study of globular cluster (GC) satellites of low-luminosity dwarf elliptical (dE) galaxies in the Virgo cluster. Our 21 dE targets and candidate GC satellites around them in the apparent magnitude range g ~ 20-24 were selected from the Next Generation Virgo Survey (NGVS) and followed up with medium-resolution Keck/DEIMOS spectroscopy (resolving power: R ~ 2000; wavelength coverage: 4800-9500 Angstrom). In addition, the remaining space available on the nine DEIMOS multi-slit masks were populated with "filler" targets in the form of distant Milky Way halo star candidates in a comparable apparent magnitude range. A combination of radial velocity information (measured from the Keck/DEIMOS spectra), color-color information (from four-band NGVS photometry), and sky position information was used to sort the sample into the following categories: (1) GC satellites of dEs, (2) other non-satellite GCs in the Virgo cluster (we dub them "orphan" GCs), (3) foreground Milky Way stars that are members of the Sagittarius stream, the Virgo overdensity, or the field halo population, and (4) distant background galaxies. We stack the GC satellite population across all 21 host dEs and carry out dynamical modeling of the stacked sample in order to constrain the average mass of dark matter halos that these dEs are embedded in. We study rotation in the system of GC satellites of dEs in the handful of more populated systems in our sample - i.e., those that contain 10 or more GC satellites per dE. A companion AAS poster presented at this meeting (Chu, J. et al. 2015) presents chemical composition and age constraints for these GC satellites relative to the nuclei of the host dEs based on absorption line strengths in co-added spectra. The orphan GCs are likely to be intergalactic GCs within the Virgo cluster (or, equivalently, GCs in the remote outer envelope of the cluster's central galaxy, the giant elliptical M87).This project is funded in part by the National Science Foundation. Some of this research was conducted by high-school students working under the auspices of the Science Internship Program at the University of California Santa Cruz.
NASA Astrophysics Data System (ADS)
Fritz, J.; Poggianti, B. M.; Cava, A.; Moretti, A.; Varela, J.; Bettoni, D.; Couch, W. J.; D'Onofrio D'Onofrio, M.; Dressler, A.; Fasano, G.; Kjærgaard, P.; Marziani, P.; Moles, M.; Omizzolo, A.
2014-06-01
Context. Cluster galaxies are the ideal sites to look at when studying the influence of the environment on the various aspects of the evolution of galaxies, such as the changes in their stellar content and morphological transformations. In the framework of wings, the WIde-field Nearby Galaxy-cluster Survey, we have obtained optical spectra for ~6000 galaxies selected in fields centred on 48 local (0.04 < z < 0.07) X-ray selected clusters to tackle these issues. Aims: By classifying the spectra based on given spectral lines, we investigate the frequency of the various spectral types as a function of both the clusters' properties and the galaxies' characteristics. In this way, using the same classification criteria adopted for studies at higher redshift, we can consistently compare the properties of the local cluster population to those of their more distant counterparts. Methods: We describe a method that we have developed to automatically measure the equivalent width of spectral lines in a robust way, even in spectra with a non optimal signal-to-noise ratio. This way, we can derive a spectral classification reflecting the stellar content, based on the presence and strength of the [Oii] and Hδ lines. Results: After a quality check, we are able to measure 4381 of the ~6000 originally observed spectra in the fields of 48 clusters, of which 2744 are spectroscopically confirmed cluster members. The spectral classification is then analysed as a function of galaxies' luminosity, stellar mass, morphology, local density, and host cluster's global properties and compared to higher redshift samples (MORPHS and EDisCS). The vast majority of galaxies in the local clusters population are passive objects, being also the most luminous and massive. At a magnitude limit of MV < -18, galaxies in a post-starburst phase represent only ~11% of the cluster population, and this fraction is reduced to ~5% at MV < -19.5, which compares to the 18% at the same magnitude limit for high-z clusters. "Normal" star-forming galaxies (e(c)) are proportionally more common in local clusters. Conclusions: The relative occurrence of post-starbursts suggests a very similar quenching efficiency in clusters at redshifts in the 0 to ~1 range. Furthermore, more important than the global environment, the local density seems to be the main driver of galaxy evolution in local clusters at least with respect to their stellar populations content. Based on observations taken at the Anglo Australian Telescope (3.9 m- AAT) and at the William Herschel Telescope (4.2 m-WHT).Full Table A.1 is available in electronic form at both the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A32 and by querying the wings database at http://web.oapd.inaf.it/wings/new/index.htmlAppendices are available in electronic form at http://www.aanda.org
The Frontier Fields: Survey Design and Initial Results
NASA Astrophysics Data System (ADS)
Lotz, J. M.; Koekemoer, A.; Coe, D.; Grogin, N.; Capak, P.; Mack, J.; Anderson, J.; Avila, R.; Barker, E. A.; Borncamp, D.; Brammer, G.; Durbin, M.; Gunning, H.; Hilbert, B.; Jenkner, H.; Khandrika, H.; Levay, Z.; Lucas, R. A.; MacKenty, J.; Ogaz, S.; Porterfield, B.; Reid, N.; Robberto, M.; Royle, P.; Smith, L. J.; Storrie-Lombardi, L. J.; Sunnquist, B.; Surace, J.; Taylor, D. C.; Williams, R.; Bullock, J.; Dickinson, M.; Finkelstein, S.; Natarajan, P.; Richard, J.; Robertson, B.; Tumlinson, J.; Zitrin, A.; Flanagan, K.; Sembach, K.; Soifer, B. T.; Mountain, M.
2017-03-01
What are the faintest distant galaxies we can see with the Hubble Space Telescope (HST) now, before the launch of the James Webb Space Telescope? This is the challenge taken up by the Frontier Fields, a Director’s discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combines the power of HST and Spitzer with the natural gravitational telescopes of massive high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. Six clusters—Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, Abell S1063, and Abell 370—have been targeted by the HST ACS/WFC and WFC3/IR cameras with coordinated parallel fields for over 840 HST orbits. The parallel fields are the second-deepest observations thus far by HST with 5σ point-source depths of ˜29th ABmag. Galaxies behind the clusters experience typical magnification factors of a few, with small regions magnified by factors of 10-100. Therefore, the Frontier Field cluster HST images achieve intrinsic depths of ˜30-33 mag over very small volumes. Spitzer has obtained over 1000 hr of Director’s discretionary imaging of the Frontier Field cluster and parallels in IRAC 3.6 and 4.5 μm bands to 5σ point-source depths of ˜26.5, 26.0 ABmag. We demonstrate the exceptional sensitivity of the HST Frontier Field images to faint high-redshift galaxies, and review the initial results related to the primary science goals.
NASA Astrophysics Data System (ADS)
Nastasi, A.; Fassbender, R.; Böhringer, H.; Šuhada, R.; Rosati, P.; Pierini, D.; Verdugo, M.; Santos, J. S.; Schwope, A. D.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mühlegger, M.; Quintana, H.
2011-08-01
We report the discovery of a galaxy cluster at z = 1.490 originally selected as an extended X-ray source in the XMM-Newton Distant Cluster Project. Further observations carried out with the VLT-FORS2 spectrograph allowed the spectroscopic confirmation of seven secure cluster members, providing a median system redshift of z = 1.490 ± 0.009. The color-magnitude diagram of XMMU J0338.8+0021 reveals the presence of a well-populated red sequence with z - H ≈ 3, albeit with an apparent significant scatter in color. Since we do not detect indications of any strong star formation activity in these objects, the color spread could represent the different stellar ages of the member galaxies. In addition, we found the brightest cluster galaxy in a very active dynamical state, with an interacting, merging companion located at a physical projected distance of d ≈ 20 kpc. From the X-ray luminosity, we estimate a cluster mass of M200 ~ 1.2 × 1014 M⊙. The data appear to be consistent with a scenario in which XMMU J0338.8+0021 is a young system, possibly caught in a moment of active ongoing mass assembly. Based on observations under programme ID 084.A-0844 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Tables 1, 2 and Figs. 3-6 are available in electronic form at http://www.aanda.org
Detection and Characterization of Galaxy Systems at Intermediate Redshift.
NASA Astrophysics Data System (ADS)
Barrena, Rafael
2004-11-01
This thesis is divided into two very related parts. In the first part we implement and apply a galaxy cluster detection method, based on multiband observations in visible. For this purpose, we use a new algorithm, the Voronoi Galaxy Cluster Finder, which identifies overdensities over a Poissonian field of objects. By applying this algorithm over four photometric bands (B, V, R and I) we reduce the possibility of detecting galaxy projection effects and spurious detections instead of real galaxy clusters. The B, V, R and I photometry allows a good characterization of galaxy systems. Therefore, we analyze the colour and early-type sequences in the colour-magnitude diagrams of the detected clusters. This analysis helps us to confirm the selected candidates as actual galaxy systems. In addition, by comparing observational early-type sequences with a semiempirical model we can estimate a photometric redshift for the detected clusters. We will apply this detection method on four 0.5x0.5 square degrees areas, that partially overlap the Postman Distant Cluster Survey (PDCS). The observations were performed as part of the International Time Programme 1999-B using the Wide Field Camera mounted at Isaac Newton Telescope (Roque de los Muchachos Observatory, La Palma island, Spain). The B and R data obtained were completed with V and I photometry performed by Marc Postman. The comparison of our cluster catalogue with that of PDCS reveals that our work is a clear improvement in the cluster detection techniques. Our method efficiently selects galaxy clusters, in particular low mass galaxy systems, even at relative high redshift, and estimate a precise photometric redshift. The validation of our method comes by observing spectroscopically several selected candidates. By comparing photometric and spectroscopic redshifts we conclude: 1) our photometric estimation method gives an precision lower than 0.1; 2) our detection technique is even able to detect galaxy systems at z~0.7 using visible photometric bands. In the second part of this thesis we analyze in detail the dynamical state of 1E0657-56 (z=0.296), a hot galaxy cluster with strong X-ray and radio emissions. Using spectroscopic and photometric observations in visible (obtained with the New Technology Telescope and the Very Large Telescope, both located at La Silla Observatory, Chile) we analyze the velocity field, morphology, colour and star formation in the galaxy population of this cluster. 1E0657-56 is involved in a collision event. We identify the substructure involved in this collision and we propose a dynamical model that allows us to investigate the origins of X-ray and radio emissions and the relation between them. The analysis of 1E0657-56 presented in this thesis constitutes a good example of what kind of properties could be studied in some of the clusters catalogued in first part of this thesis. In addition, the detailed analysis of this cluster represents an improvement in the study of the origin of X-ray and radio emissions and merging processes in galaxy clusters.
A ROSAT HRI observation of the cooling flow cluster MS0839.9+2938.
NASA Astrophysics Data System (ADS)
Nesci, R.; Perola, G. C.; Wolter, A.
1995-07-01
A ROSAT HRI observation of the cluster MS0839.9+2938 at z=0.194 is presented. It confirms the earlier suggestion, based on the detection of extended Hα emission, that the inner regions of this cluster are dominated by a cooling flow. Within the cooling radius a marginally significant evidence is found of structures in the surface brightness, which are similar to those more significantly found in two less distant cooling flow clusters (A2029 and 2A0335+096). We note that, although its barycentre falls on top of the central giant elliptical galaxy, the azimuthally averaged brightness distribution does not peak at that position and actually stays flat out to about 40kpc (10") from the galaxy centre. From comparison with the two clusters mentioned above, this situation seems peculiar, and it is suggested that it could arise from photoelectric absorption by cold gas within the cooling flow, with an equivalent column density in the order of 5x10^21^/cm^2^ within ~10" from the centre, a factor 2-3 higher than the column spectroscopically detected in the comparison clusters.
Evidence for an extensive intracluster medium from radio observations of distant Abell clusters
NASA Technical Reports Server (NTRS)
Hanisch, R. J.; Ulmer, M. P.
1985-01-01
Observations have been made of 18 distance class 5 and 6 Abell clusters of galaxies using the VLA in its 'C' configuration at a frequency of 1460 MHz. Half of the clusters in the sample are confirmed or probable sources of X-ray emission. All the detected radio sources with flux densities above 10 mJy are reported, and information is provided concerning the angular extent of the sources, as well as the most likely optical identification. The existence of an extensive intracluster medium is inferred by identifying extended/distorted radio sources with galaxies whose apparent magnitudes are consistent with their being cluster members and that are at projected distances of 3-4 Abell radii (6-8 Mpc) from the nearest cluster center. By requiring that the radio sources are confined by the ambient medium, the ambient density is calculated and the total cluster mass is estimated. As a sample calculation, a wide-angle-tail radio source some 5 Mpc from the center of Abell 348 is used to estimate these quantities.
NASA Astrophysics Data System (ADS)
Kurk, Jaron; Cimatti, Andrea; Daddi, Emanuele; Mignoli, Marco; Bolzonella, Micol; Pozzetti, Lucia; Cassata, Paolo; Halliday, Claire; Zamorani, Gianni; Berta, Stefano; Brusa, Marcella; Dickinson, Mark; Franceschini, Alberto; Rodighiero, Guilia; Rosati, Piero; Renzini, Alvio
2009-03-01
We report on the motivation, sample selection and first results of our VLT FORS2 Large Programme (173.A-0687), which has obtained the longest targeted spectra of distant galaxies obtained so far with the VLT. These long exposures, up to 77 hours for objects included in three masks, were required to detect spectral features of extremely faint galaxies, such as absorption lines of passive galaxies at z > 1.4, a population that had previously escaped attention due to its faintness in the optical wavelength regime, but which represents a critical phase in the evolution of massive galaxies. The ultra-deep spectroscopy allowed us to estimate the stellar metallicity of star-forming galaxies at z ~ 2, to trace colour bimodality up to z = 2 and to characterise a galaxy cluster progenitor at z = 1.6. The approximately 200 spectra produced by GMASS constitute a lasting legacy, populating the “redshift desert” in GOODS-S.
SEARCH FOR RED DWARF STARS IN GLOBULAR CLUSTER NGC 6397
NASA Technical Reports Server (NTRS)
2002-01-01
Left A NASA Hubble Space Telescope image of a small region (1.4 light-years across) in the globular star cluster NGC 6397. Simulated stars (diamonds) have been added to this view of the same region of the cluster to illustrate what astronomers would have expected to see if faint red dwarf stars were abundant in the Milky Way Galaxy. The field would then contain 500 stars, according to theoretical calculations. Right The unmodified HST image shows far fewer stars than would be expected, according to popular theories of star formation. HST resolves about 200 stars. The stellar density is so low that HST can literally see right through the cluster and resolve far more distant background galaxies. From this observation, scientists have identified the surprising cutoff point below which nature apparently doesn't make many stars smaller that 1/5 the mass of our Sun. These HST findings provide new insights into star formation in our Galaxy. Technical detail:The globular cluster NGC 6397, one of the nearest and densest agglomerations of stars, is located 7,200 light-years away in the southern constellation Ara. This visible-light picture was taken on March 3, 1994 with the Wide Field Planetary Camera 2, as part the HST parallel observing program. Credit: F. Paresce, ST ScI and ESA and NASA
A Distant, X-Ray Luminous Cluster of Galaxies at Redshift 0.83
NASA Technical Reports Server (NTRS)
Donahue, Megan
1999-01-01
We have observed the most distant (= 0.829) cluster of galaxies in the Einstein Extended Medium Sensitivity Survey (EMSS), with the ASCA and ROSAT satellites. We find an X-ray temperature of 12.3(sup 3.1, sub 2.2) keV for this cluster, and the ROSAT map reveals significant substructure. The high temperature of MS1054-0321 is consistent with both its approximate velocity dispersion, based on the redshifts of 12 cluster members we have obtained at the Keck and the Canada-France-Hawaii telescopes, and with its weak lensing signature. The X-ray temperature of this cluster implies a virial mass approximately 7.4 x 10(exp 14) /h solar mass, if the mean matter density in the universe equals the critical value (OMEGA(sub 0) = 1), or larger if OMEGA(sub 0) < 1. Finding such a hot, massive cluster in the EMSS is extremely improbable if clusters grew from Gaussian perturbations in an OMEGA(sub 0) = 1 universe. Combining the assumptions that OMEGA(sub 0) = 1 and that the initial perturbations were Gaussian with the observed X-ray temperature function at low redshift, we show that this probability of this cluster occurring in the volume sampled by the EMSS is less than a few times 10(exp -5). Nor is MS1054-0321 the only hot cluster at high redshift; the only two other z > 0.5 EMSS clusters already observed with ASCA also have temperatures exceeding 8 keV. Assuming again that the initial perturbations were Gaussian and OMEGA(sub 0) = 1, we find that each one is improbable at the < 10(exp -2) level. These observations, along with the fact that these luminosities and temperatures of the high-z clusters all agree with the low-z L(sub x) - T(sub x) relation, argue strongly that OMEGA(sub 0) < 1. Otherwise, the initial perturbations must be non-Gaussian, if these clusters' temperatures do indeed reflect their gravitational potentials.
Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0
NASA Astrophysics Data System (ADS)
van der Wel, Arjen; Holden, Bradford P.; Zirm, Andrew W.; Franx, Marijn; Rettura, Alessandro; Illingworth, Garth D.; Ford, Holland C.
2008-11-01
Strong size and internal density evolution of early-type galaxies between z ~ 2 and the present has been reported by several authors. Here we analyze samples of nearby and distant (z ~ 1) galaxies with dynamically measured masses in order to confirm the previous, model-dependent results and constrain the uncertainties that may play a role. Velocity dispersion (σ) measurements are taken from the literature for 50 morphologically selected 0.8 < z < 1.2 field and cluster early-type galaxies with typical masses Mdyn = 2 × 1011 M⊙. Sizes (Reff) are determined with Advanced Camera for Surveys imaging. We compare the distant sample with a large sample of nearby (0.04 < z < 0.08) early-type galaxies extracted from the Sloan Digital Sky Survey for which we determine sizes, masses, and densities in a consistent manner, using simulations to quantify systematic differences between the size measurements of nearby and distant galaxies. We find a highly significant difference between the σ - Reff distributions of the nearby and distant samples, regardless of sample selection effects. The implied evolution in Reff at fixed mass between z = 1 and the present is a factor of 1.97 +/- 0.15. This is in qualitative agreement with semianalytic models; however, the observed evolution is much faster than the predicted evolution. Our results reinforce and are quantitatively consistent with previous, photometric studies that found size evolution of up to a factor of 5 since z ~ 2. A combination of structural evolution of individual galaxies through the accretion of companions and the continuous formation of early-type galaxies through increasingly gas-poor mergers is one plausible explanation of the observations. Based on observations with the Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555, and observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Based on observations collected at the European Southern Observatory, Chile (169.A-0458). Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Galaxy kinematics in the XMMU J2235-2557 cluster field at z 1.4
NASA Astrophysics Data System (ADS)
Pérez-Martínez, J. M.; Ziegler, B.; Verdugo, M.; Böhm, A.; Tanaka, M.
2017-09-01
Aims: The relationship between baryonic and dark components in galaxies varies with the environment and cosmic time. Galaxy scaling relations describe strong trends between important physical properties. A very important quantitative tool in case of spiral galaxies is the Tully-Fisher relation (TFR), which combines the luminosity of the stellar population with the characteristic rotational velocity (Vmax) taken as proxy for the total mass. In order to constrain galaxy evolution in clusters, we need measurements of the kinematic status of cluster galaxies at the starting point of the hierarchical assembly of clusters and the epoch when cosmic star formation peaks. Methods: We took spatially resolved slit FORS2 spectra of 19 cluster galaxies at z 1.4, and 8 additional field galaxies at 1 < z < 1.2 using the ESO Very Large Telescope. The targets were selected from previous spectroscopic and photometric campaigns as [OII] and Hα emitters. Our spectroscopy was complemented with HST/ACS imaging in the F775W and F850LP filters, which is mandatory to derive the galaxy structural parameters accurately. We analyzed the ionized gas kinematics by extracting rotation curves from the two-dimensional spectra. Taking into account all geometrical, observational, and instrumental effects, we used these rotation curves to derive the intrinsic maximum rotation velocity. Results: Vmax was robustly determined for six cluster galaxies and three field galaxies. Galaxies with sky contamination or insufficient spatial rotation curve extent were not included in our analysis. We compared our sample to the local B-band TFR and the local velocity-size relation (VSR), finding that cluster galaxies are on average 1.6 mag brighter and a factor 2-3 smaller. We tentatively divided our cluster galaxies by total mass (I.e., Vmax) to investigate a possible mass dependency in the environmental evolution of galaxies. The averaged deviation from the local TFR is ⟨ ΔMB ⟩ = -0.7 for the high-mass subsample (Vmax > 200 km s-1). This mild evolution may be driven by younger stellar populations (SP) of distant galaxies with respect to their local counterparts, and thus, an increasing luminosity is expected toward higher redshifts. However, the low-mass subsample (Vmax < 200 km s-1) is made of highly overluminous galaxies that show ⟨ ΔMB ⟩ = -2.4 mag. When we repeated a similar analysis with the stellar mass TFR, we did not find significant offsets in our subsamples with respect to recent results at similar redshift. While the B-band TFR is sensitive to recent episodes of star formation, the stellar mass TFR tracks the overall evolution of the underlying stellar population. In order to understand the discrepancies between these two incarnations of the TFR, the reported B-band offsets can no longer be explained only by the gradual evolution of stellar populations with lookback time. We suspect that we instead see compact galaxies whose star formation was enhanced during their infall toward the dense regions of the cluster through interactions with the intracluster medium. Based on observations with the European Southern Observatory Very Large Telescope (ESO-VLT), observing run ID 091.B-0778(B).
Dark Matter Core Defies Explanation
2017-12-08
NASA image release March 2, 2012 This composite image shows the distribution of dark matter, galaxies, and hot gas in the core of the merging galaxy cluster Abell 520, formed from a violent collision of massive galaxy clusters. The natural-color image of the galaxies was taken with NASA's Hubble Space Telescope and with the Canada-France-Hawaii Telescope in Hawaii. Superimposed on the image are "false-colored" maps showing the concentration of starlight, hot gas, and dark matter in the cluster. Starlight from galaxies, derived from observations by the Canada-France-Hawaii Telescope, is colored orange. The green-tinted regions show hot gas, as detected by NASA's Chandra X-ray Observatory. The gas is evidence that a collision took place. The blue-colored areas pinpoint the location of most of the mass in the cluster, which is dominated by dark matter. Dark matter is an invisible substance that makes up most of the universe's mass. The dark-matter map was derived from the Hubble Wide Field Planetary Camera 2 observations, by detecting how light from distant objects is distorted by the cluster galaxies, an effect called gravitational lensing. The blend of blue and green in the center of the image reveals that a clump of dark matter resides near most of the hot gas, where very few galaxies are found. This finding confirms previous observations of a dark-matter core in the cluster. The result could present a challenge to basic theories of dark matter, which predict that galaxies should be anchored to dark matter, even during the shock of a collision. Abell 520 resides 2.4 billion light-years away. To read more go to: www.nasa.gov/mission_pages/hubble/science/dark-matter-cor... Credit: NASA, ESA, CFHT, CXO, M.J. Jee (University of California, Davis), and A. Mahdavi (San Francisco State University) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Luppino, G. A.; Gioia, I. M.
1995-01-01
During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.
Watching the Birth of a Galaxy Cluster?
NASA Astrophysics Data System (ADS)
1999-07-01
First Visiting Astronomers to VLT ANTU Observe the Early Universe When the first 8.2-m VLT Unit Telescope (ANTU) was "handed over" to the scientists on April 1, 1999, the first "visiting astronomers" at Paranal were George Miley and Huub Rottgering from the Leiden Observatory (The Netherlands) [1]. They obtained unique pictures of a distant exploding galaxy known as 1138 - 262 . These images provide new information about how massive galaxies and clusters of galaxies may have formed in the early Universe. Formation of clusters of galaxies An intriguing question in modern astronomy is how the first galaxies and groupings or clusters of galaxies emerged from the primeval gas produced in the Big Bang. Some theories predict that giant galaxies, often found at the centres of rich galaxy clusters, are built up through a step-wise process. Clumps develop in this gas and stars condense out of those clumps to form small galaxies. Finally these small galaxies merge together to form larger units. An enigmatic class of objects important for investigating such scenarios are galaxies which emit intense radio emission from explosions that occur deep in their nuclei. The explosions are believed to be triggered when material from the merging swarm of smaller galaxies is fed into a rotating black hole located in the central regions. There is strong evidence that these distant radio galaxies are amongst the oldest and most massive galaxies in the early Universe and are often located at the heart of rich clusters of galaxies. They can therefore help pinpoint regions of the Universe in which large galaxies and clusters of galaxies are being formed. The radio galaxy 1138-262 The first visiting astronomers pointed ANTU towards a particularly important radio galaxy named 1138-262 . It is located in the southern constellation Hydra (The Water Snake). This galaxy was discovered some years ago using ESO's 3.5-m New Technology Telescope (NTT) at La Silla. Because 1138-262 is at a distance of about 10,000 million light-years from the Earth (the redshift is 2.2), the VLT sees it as it was when the Universe was only about 20% of its present age. Previous observations of this galaxy by the same team of astronomers showed that its radio, X-ray and optical emission had many extreme characteristics that would be expected from a giant galaxy, forming at the centre of a rich cluster. However, because the galaxy is so distant, the cluster could not be seen directly. Radio data obtained by the Very Large Array (VLA) in the USA and X-ray data with the ROSAT satellite both indicated that the galaxy is surrounded by a hot gas similar to that observed at the centres of nearby rich clusters of galaxies. Most telling was a picture taken by the Hubble Space Telescope that revealed that the galaxy comprises a large number of clumps, and which bore a remarkable resemblance to computer models of the birth of giant galaxies in clusters. From these observations, it was concluded that 1138-262 is likely to be a massive galaxy in the final stage of assemblage through merging with many smaller galaxies in an infant rich cluster and the most distant known X-ray cluster. VLT obtains Lyman-alpha images ESO PR Photo 33a/99 ESO PR Photo 33a/99 [Preview - JPEG: 483 x 400 pix - 86k] [Normal - JPEG: 966 x 800 pix - 230k] [High-Res - JPEG: 2894 x 2396 pix - 1.1M] Caption to ESO PR Photo 33a/99 : False-colour picture of the ionized hydrogen gas surrounding 1138-262 (Lyman-alpha). The size of this cloud is about 5 times larger than the optical extent of the Milky Way Galaxy. A contour plot, as observed with VLT ANTU + FORS1 in a narrow-band filter around the wavelength of the redshifted Lyman-alpha line, is superposed on a false-colour representation of the same image. The contour levels are a geometric progression in steps of 2 1/2. The image has not been flux calibrated, so the first contour level is arbitrary. The field measures 35 x 25 arcsec 2 , corresponding to about 910,000 x 650,000 light-years (280 x 200 kpc). The linear scale is indicated at the lower left. North is up and East is left. The Leiden astronomers used the FORS1 instrument on ANTU to take long-exposure pictures of 1138-262 and a surrounding field of 36 square arcmin. Images were obtained through two optical filters, one which tunes in to light produced by hydrogen gas (the redshifted Lyman-alpha line) and the other which is dominated by light from stars (the B-band). The "difference" between the images shows that the hydrogen gas surrounding the galaxy and from which the galaxy is presumably forming is huge ( Photo 33a/99 ). The measured size is about 20 arcsec or, at the distance of the cluster, somewhat more than 500,000 light-years (160 kpc), making it the largest such structure ever seen. It corresponds to about 5 times the size of the optical extent of the Milky Way Galaxy ! ESO PR Photo 33b/99 ESO PR Photo 33b/99 [Preview - JPEG: 400 x 593 pix - 149k] [Normal - JPEG: 800 x 1185 pix - 335k] [High-Res - JPEG: 1982 x 2935 pix - 1.1M] Caption to ESO PR Photo 33b/99 : Three small fields near radio galaxy 1138-262 as observed with VLT ANTU + FORS1 in a narrow-band filter at the redshifted wavelength of Lyman-alpha emission in that galaxy (left) and a broader filter in the surrounding spectral region (right), respectively. Three excellent candidates of Lyman-alpha emitters are seen at the centres of the fields. They are clearly visible in the narrow-band image (that mostly shows the gas), but are not detected in the broad-band image (that mostly shows the stars). Each field measures 24 x 24 arcsec 2 , corresponding to about 620,000 x 620,000 light-years (190 x 190 kpc); North is up and East is left. Even more intriguing is the presence of a number of objects in the gas picture (to the left in PR Photo 33b/99 ), but absent from the stars' picture (right). These are galaxies whose hydrogen gas is emitting the bright Lyman-alpha spectral line within a distance of the order of about 3 million light-years (1 Mpc) from the radio galaxy, and probably in the surrounding cluster. The team has pinpointed a total of 26 objects in the surrounding field that may be companion galaxies with fainter hydrogen emission. The detection by the VLT of the huge gas halo and of the companion galaxies is further evidence that 1138-262 is a massive galaxy, forming in a group or cluster of galaxies. The next step The next step in the project will be to confirm the distances of the candidate companion galaxies and establish that they are indeed members of a cluster of galaxies surrounding 1138-262 . This can be done using one of the spectrographs on the VLT. Note [1] The project on 1138-262 is being carried out by a large international consortium of scientists led by astronomers from the Leiden Observatory. Besides George Miley and Huub Rottgering , the team includes Jaron Kurk , Laura Pentericci , and Bram Venemans (Leiden), Alan Moorwood (ESO), Chris Carilli (US National Radio Astronomy Observatory - NRAO), Wil van Breugel (University of California, USA) Holland Ford and Tim Heckman (Johns Hopkins University, Baltimore, USA) and Pat McCarthy (Carnegie Institute, Pasadena, USA). Technical information about the VLT images of 1138-262 Narrow and broad-band imaging was carried out on April 12 and 13, 1999, with the ESO VLT ANTU (UT1), using the FORS1 multi-mode instrument in imaging mode. A narrow-band filter was used which has a central wavelength of 381.4 nm and a bandpass of 6.5 nm. For 1138-262 (redshift z = 2.2), the emission of Lyman-alpha at 121.6 nm is redshifted to 383.8 nm, which falls in this narrow band. The broad-band filter was a Bessel-B with central wavelength of 429.0 nm. The detector was a Tektronix CCD with 2048 x 2046 pixels and an image scale of 0.20 arcsec/pixel. Eight separate 30-min exposures were taken in the narrow band and six 5-min in the broad band, shifted by about 20 arcsec with respect to each other to minimize problems due to flat-fielding and to facilitate cosmic ray removal. The average seeing was 1.0 arcsec. Image reduction was carried out by means of the IRAF reduction package. The individual images were bias subtracted and flat-fielded using twilight exposures (narrow band) or an average of the unregistered science exposures (broad-band). The images were then registered by shifting them in position by an amount determined from the location of several stars on the CCD. The registered images were co-added and dark pixels from cosmic rays were cleaned. To improve the signal-to-noise ratio, the resulting images were smoothed with a Gaussian function having full-width-at half-maximum (FWHM) = 1 arcsec (5 pixels). How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.
New Ultra-Compact Dwarf Galaxies in Clusters
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-02-01
How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and Bell discovered a sample of compact objects grouped around the central galaxies of the clusters that are consistent with ultra-compact galaxies. The inferred sizes (many around 600 light-years in radius) and masses (roughly one billion solar masses) of these objects suggest that this sample may contain some of the densest UCDs discovered to date.The properties of this new set of UCD candidates arent enough to distinguish between formation scenarios yet, but the authors argue that if we find more such galaxies, we will be able to use the statistics of their spatial and color distributions to determine how they were formed.Zhang and Bell estimate that the 17 CLASH clusters studied in this work each contain an average of 2.7 of these objects in the central million light-years of the cluster. The authors work here suggests that searching wide-field survey data for similar discoveries is a plausible way to increase our sample of UCDs. This will allow us to statistically characterize these dense, compact galaxies and better understand their origins.CitationYuanyuan Zhang and Eric F. Bell 2017 ApJL 835 L2. doi:10.3847/2041-8213/835/1/L2
NASA Astrophysics Data System (ADS)
2004-06-01
Largest Census Of X-Ray Galaxy Clusters Provides New Constraints on Dark Matter [1] Clusters of galaxies Clusters of galaxies are very large building blocks of the Universe. These gigantic structures contain hundreds to thousands of galaxies and, less visible but equally interesting, an additional amount of "dark matter" whose origin still defies the astronomers, with a total mass of thousands of millions of millions times the mass of our Sun. The comparatively nearby Coma cluster, for example, contains thousands of galaxies and measures more than 20 million light-years across. Another well-known example is the Virgo cluster at a distance of about 50 million light-years, and still stretching over an angle of more than 10 degrees in the sky! Clusters of galaxies form in the densest regions of the Universe. As such, they perfectly trace the backbone of the large-scale structures in the Universe, in the same way that lighthouses trace a coastline. Studies of clusters of galaxies therefore tell us about the structure of the enormous space in which we live. The REFLEX survey ESO PR Photo 18a/04 ESO PR Photo 18a/04 Galaxy Cluster RXCJ 1206.2-0848 (Visible and X-ray) [Preview - JPEG: 400 x 478 pix - 70k] [Normal - JPEG: 800 x 956 pix - 1.2Mk] Caption: PR Photo 18a shows the very massive distant cluster of galaxies RXCJ1206.2-0848, newly discovered during the REFLEX project, and located at a redshift of z = 0.44 [3]. The contours indicate the X-ray surface brightness distribution. Most of the yellowish galaxies are cluster members. A gravitationally lensed galaxy with a distorted, very elongated image is seen, just right of the centre. The image was obtained with the EFOSC multi-mode instrument on the ESO 3.6-m telescope at the La Silla Observatory (Chile). ESO PR Photo 18b/04 ESO PR Photo 18b/04 Galaxy cluster RXCJ1131.9-1955 [Preview - JPEG: 400 x 477 pix - 40k] [Normal - JPEG: 800 x 953 pix - 912k] [FullRes - JPEG: 2251 x 2681 pix - 7.7Mk] Caption: PR Photo 18b displays the very massive galaxy cluster RXCJ1131.9-1955 at redshift z = 0.306 [3] in a very rich galaxy field with two major concentrations. It was originally found by George Abell and designated "Abell 1300". The image was obtained with the ESO/MPG 2.2-m telescope and the WFI camera at La Silla. ESO PR Photo 18c/04 ESO PR Photo 18c/04 Galaxy Cluster RXCJ0937.9-2020 [Preview - JPEG: 400 x 746 pix - 60k] [Normal - JPEG: 800 x 1491 pix - 1.3M] [HiRes - JPEG: 2380 x 4437 pix - 14.2M] Caption: PR Photo 18c/04 shows the much smaller, more nearby galaxy group RXCJ0937.9-2020 at a redshift of z = 0.034 [3]. It is dominated by the massive elliptical galaxy seen at the top of the image. The photo covers only the southern part of this group. Such galaxy groups with typical masses of a few 1013 solar masses constitute the smallest objects included in the REFLEX catalogue. This image was obtained with the FORS1 multi-mode instrument on the ESO 8.2-m VLT Antu telescope. ESO PR Video Clip 05/04 ESO PR Video Clip 05/04 Galaxy Clusters in the REFLEX Catalogue (3D-visualization) [MPG - 11.7Mb] Caption: ESO PR Video Clip 05/04 illustrates the three-dimensional distribution of the galaxy clusters identfied in the ROSAT All-Sky survey in the northern and southern sky. In addition to the galaxy clusters in the REFLEX catalogue this movie also contains those identified during the ongoing, deeper search for X-ray clusters: the extension of the southern REFLEX Survey and the northern complementary survey that is conducted by the MPE team at the Calar Alto observatory and at US observatories in collaboration with John Huchra and coworkers at the Harvard-Smithonian Center for Astrophysics. In total, more than 1400 X-ray bright galaxy cluster have been found to date. (Prepared by Ferdinand Jamitzky.) Following this idea, a European team of astronomers [2], under the leadership of Hans Böhringer (MPE, Garching, Germany), Luigi Guzzo (INAF, Milano, Italy), Chris A. Collins (JMU, Liverpool), and Peter Schuecker (MPE, Garching) has embarked on a decade-long study of these gargantuan structures, trying to locate the most massive of clusters of galaxies. Since about one-fifth of the optically invisible mass of a cluster is in the form of a diffuse very hot gas with a temperature of the order of several tens of millions of degrees, clusters of galaxies produce powerful X-ray emission. They are therefore best discovered by means of X-ray satellites. For this fundamental study, the astronomers thus started by selecting candidate objects using data from the X-ray Sky Atlas compiled by the German ROSAT satellite survey mission. This was the beginning only - then followed a lot of tedious work: making the final identification of these objects in visible light and measuring the distance (i.e., redshift [3]) of the cluster candidates. The determination of the redshift was done by means of observations with several telescopes at the ESO La Silla Observatory in Chile, from 1992 to 1999. The brighter objects were observed with the ESO 1.5-m and the ESO/MPG 2.2-m telescopes, while for the more distant and fainter objects, the ESO 3.6-m telescope was used. Carried out at these telescopes, the 12 year-long programme is known to astronomers as the REFLEX (ROSAT-ESO Flux Limited X-ray) Cluster Survey. It has now been concluded with the publication of a unique catalogue with the characteristics of the 447 brightest X-ray clusters of galaxies in the southern sky. Among these, more than half the clusters were discovered during this survey. Constraining the dark matter content ESO PR Photo 18d/04 ESO PR Photo 18d/04 Constraints on Cosmological Parameters [Preview - JPEG: 400 pix x 572 - 37k] [Normal - JPEG: 800 x 1143 pix - 265k] Caption: PR Photo 18d demonstrates the current observational constraints on the cosmic density of all matter including dark matter (Ωm) and the dark energy (ΩΛ) relative to the density of a critical-density Universe (i.e., an expanding Universe which approaches zero expansion asymptotically after an infinite time and has a flat geometry). All three observational tests by means of supernovae (green), the cosmic microwave background (blue) and galaxy clusters converge at a Universe around Ωm ~ 0.3 and ΩΛ ~ 0.7. The dark red region for the galaxy cluster determination corresponds to 95% certainty (2-sigma statistical deviation) when assuming good knowledge of all other cosmological parameters, and the light red region assumes a minimum knowledge. For the supernovae and WMAP results, the inner and outer regions corespond to 68% (1-sigma) and 95% certainty, respectively. References: Schuecker et al. 2003, A&A, 398, 867 (REFLEX); Tonry et al. 2003, ApJ, 594, 1 (supernovae); Riess et al. 2004, ApJ, 607, 665 (supernovae) Galaxy clusters are far from being evenly distributed in the Universe. Instead, they tend to conglomerate into even larger structures, "super-clusters". Thus, from stars which gather in galaxies, galaxies which congregate in clusters and clusters tying together in super-clusters, the Universe shows structuring on all scales, from the smallest to the largest ones. This is a relict of the very early (formation) epoch of the Universe, the so-called "inflationary" period. At that time, only a minuscule fraction of one second after the Big Bang, the tiny density fluctuations were amplified and over the eons, they gave birth to the much larger structures. Because of the link between the first fluctuations and the giant structures now observed, the unique REFLEX catalogue - the largest of its kind - allows astronomers to put considerable constraints on the content of the Universe, and in particular on the amount of dark matter that is believed to pervade it. Rather interestingly, these constraints are totally independent from all other methods so far used to assert the existence of dark matter, such as the study of very distant supernovae (see e.g. ESO PR 21/98) or the analysis of the Cosmic Microwave background (e.g. the WMAP satellite). In fact, the new REFLEX study is very complementary to the above-mentioned methods. The REFLEX team concludes that the mean density of the Universe is in the range 0.27 to 0.43 times the "critical density", providing the strongest constraint on this value up to now. When combined with the latest supernovae study, the REFLEX result implies that, whatever the nature of the dark energy is, it closely mimics a Universe with Einstein's cosmological constant. A giant puzzle The REFLEX catalogue will also serve many other useful purposes. With it, astronomers will be able to better understand the detailed processes that contribute to the heating of the gas in these clusters. It will also be possible to study the effect of the environment of the cluster on each individual galaxy. Moreover, the catalogue is a good starting point to look for giant gravitational lenses, in which a cluster acts as a giant magnifying lens, effectively allowing observations of the faintest and remotest objects that would otherwise escape detection with present-day telescopes. But, as Hans Böhringer says: "Perhaps the most important advantage of this catalogue is that the properties of each single cluster can be compared to the entire sample. This is the main goal of surveys: assembling the pieces of a gigantic puzzle to build the grander view, where every single piece then gains a new, more comprehensive meaning." More information The results presented in this Press Release will appear in the research journal Astronomy and Astrophysics ("The ROSAT-ESO Flux Limited X-ray (REFLEX) Galaxy Cluster Survey. V. The cluster catalogue" by H. Böhringer et al.; astro-ph/0405546). See also the REFLEX website.
Evolutional schemes for objects with active nuclei
NASA Technical Reports Server (NTRS)
Komberg, B. V.
1979-01-01
The observational properties of quasistellar objects (QSO) reveal that they are extremely violent nuclei of distant galaxies, but the evolutionary stage of these galaxies is still undetermined. Various published attempts to classify QSO under different criteria - including the one based on the morphological type of the surrounding galaxy E- or S- are analyzed. There are evidences that radioactive quasars reside in E-, while radio-quiet quasars reside in both E- and S- systems. The latter may be evolutionary connected to Seyfert-like objects. A correlation between the nuclei activity level in systems of different morphological type and the relative amount of gas in them is noted. From the point of view of activity level and the duration of active stage of nuclei it is concluded that an interaction of galaxies with the intergalactic medium is of particular importance and must be most conspicuous in spheriodal systems of central regions of rich clusters, in tight groups and binary galaxies.
Galactic Teamwork Makes Distant Bubbles
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-03-01
During the period of reionization that followed the dark ages of our universe, hydrogen was transformed from a neutral state, which is opaque to radiation, to an ionized one, which is transparent to radiation. But what generated the initial ionizing radiation? The recent discovery of multiple distant galaxies offers evidence for how this process occurred.Two Distant GalaxiesWe believe reionization occurred somewhere between a redshift of z = 6 and 7, because Ly-emitting galaxies drop out at roughly this redshift. Beyond this distance, were generally unable to see the light from these galaxies, because the universe is no longer transparent to their emission. This is not always the case, however: if a bubble of ionized gas exists around a distant galaxy, the radiation can escape, allowing us to see the galaxy.This is true of two recently-discovered Ly-emitting galaxies, confirmed to be at a redshift of z~7 and located near one another in a region known as the Bremer Deep Field. The fact that were able to see the radiation from these galaxies means that they are in an ionized HII region presumably one of the earlier regions to have become reionized in the universe.But on their own, neither of these galaxies is capable of generating an ionized bubble large enough for their light to escape. So what ionized the region around them, and what does this mean for our understanding of how reionization occurred in the universe?A Little Help From FriendsLocation in different filters of the objects in the Hubble Bremer Deep Field catalog. The z~7 selection region is outlined by the grey box. BDF-521 and BDF-3299 were the two originally discovered galaxies; the remaining red markers indicate the additional six galaxies discovered in the same region. [Castellano et al. 2016]A team of scientists led by Marco Castellano (Rome Observatory, INAF) investigated the possibility that there are other, faint galaxies near these two that have helped to ionize the region. Performing a survey using deep field Hubble observations, Castellano and collaborators found an additional 6 galaxies in the same region as the first two, also at a redshift of z~7!The authors believe these galaxies provide a simple explanation of the ionized bubble: each of these faint, normal galaxies produced a small ionized bubble. The overlap of these many small bubbles provided the larger ionized region from which the light of the two originally discovered galaxies was able to escape.How normal is this clustering of galaxies found by Castellano and collaborators? The team demonstrates via cosmological modeling that the number density of galaxies in this region is a factor of 34 greater than would be expected at this distance in a random pointing of the same size.These results greatly support the theoretical prediction that the first ionization fronts in the universe were formed in regions with significant galaxy overdensities. The discovery of this deep-field collection of galaxies strongly suggests that reionization was driven by faint, normal star-forming galaxies in a clumpy process.CitationM. Castellano et al 2016 ApJ 818 L3. doi:10.3847/2041-8205/818/1/L3
NASA Astrophysics Data System (ADS)
1999-02-01
Scientists Meet in Antofagasta to Discuss Front-Line Astrophysics To mark the beginning of the VLT era, the European Southern Observatory is organizing a VLT Opening Symposium which will take place in Antofagasta (Chile) on 1-4 March 1999, just before the start of regular observations with the ESO Very Large Telescope on April 1, 1999. The Symposium occupies four full days and is held on the campus of the Universidad Catolica del Norte. It consists of plenary sessions on "Science in the VLT Era and Beyond" and three parallel Workshops on "Clusters of Galaxies at High Redshift" , "Star-way to the Universe" and "From Extrasolar Planets to Brown Dwarfs" . There will be many presentations of recent work at the major astronomical facilities in the world. The meeting provides a very useful forum to discuss the latest developments and, in this sense, contributes to the planning of future research with the VLT and other large telescopes. The symposium will be opened with a talk by the ESO Director General, Prof. Riccardo Giacconi , on "Paranal - an observatory for the 21st century". It will be followed by reports about the first scientific results from the main astronomical instruments on VLT UT1, FORS1 and ISAAC. The Symposium participants will see the VLT in operation during special visits to the Paranal Observatory. Press conferences are being arranged each afternoon to inform about the highlights of the conference. After the Symposium, there will be an Official Inauguration Ceremony at Paranal on 5 March Contributions from ESO ESO scientists will make several presentations at the Symposium. They include general reviews of various research fields as well as important new data and results from the VLT that show the great potential of this new astronomical facility. Some of the recent work is described in this Press Release, together with images and spectra of a large variety of objects. Note that all of these data will soon become publicly available via the VLT Archive. The text below summarizes the individual projects. Comprehensive texts with all photos and diagrammes are available in nine separate web documents ( ESO PR Photos 08/99 to 16/99 ) that may be accessed via the links at the top of each section. The degree of detail and level of complexity of the texts depend on the subject and the available materials. 1. Dwarf Galaxies in the Local Group ESO PR Photo 10a/99 ESO PR Photo 10a/99 The Antlia Galaxy (FORS1 colour composite) . Access full text and PR Photos 10a-d/99 In addition to large spiral galaxies like the Milky Way Galaxy, the Andromeda Galaxy and Messier 33, the Local Group of Galaxies contains many dwarf galaxies. The VLT has observed two of these, Antlia and NGC 6822 . Antlia is a low-surface brightness, spheroidal dwarf galaxy that was only discovered in 1997. While it contains a large amount of atomic hydrogen at its centre, no young stars are found, and it appears that most of its stars are old. This is unlike other dwarf galaxies in the Milky Way neighbourhood, as star formation is expected to occur within dense hydrogen clouds. Further observations will be necessary to understand this unusual characteristics. The VLT also obtained images of an irregular dwarf galaxy in the Local Group, NGC 6822, as well as spectra of some of its stars. This galaxy is of the "irregular" type and is situated at a distance of about 2 million light-years. A comparison of the spectra of supergiant stars in NGC 6822 shows that many spectral lines are much weaker than in stars of similar type in the Milky Way, but of similar strength as in stars in the Small Magellanic Cloud. This confirms an earlier finding that NGC 6822 has chemical composition (a lower "metallicity") that is different from what is observed in our Galaxy. 2. The Double Stellar Cluster NGC 1850 in the LMC ESO PR Photo 15/99 ESO PR Photo 15/99 NGC 1850 (FORS1 colour composite) . Access full text and PR Photo 15/99 NGC 1850 is a double cluster in the Large Magellanic Cloud, a satellite galaxy to the Milky Way Galaxy. This cluster is representative of a class of objects, young, globular-like stellar associations , that has no counterpart in our own Galaxy. The VLT images show faint nebulosity in this area, with filaments and various sharp "shocks". This offers support to the theory of supernova-induced star birth in the younger of the two clusters. It is estimated that about 1000 stars in the older of the clusters have exploded during the past 20 million years. 3. The Barred Galaxy NGC 1365 ESO PR Photo 08a/99 ESO PR Photo 08a/99 The Barred Galaxy NGC 1365 (FORS1 colour composite) . Access full text and PR Photos 08a-e/99 NGC 1365 is one of the most prominent "barred" galaxies in the sky. It is a supergiant galaxy and is a member of the Fornax Cluster of Galaxies, at a distance of about 60 million light-years. This galaxy has an intricate structure with a massive straight bar and two pronounced spiral arms. There are many dust lanes and emission nebulae in these and also a bright nuclear region at the center that may hide a black hole. Several images of NGC 1365 have recently been obtained with all three astronomical instruments, now installed at the VLT UT1. They show the overall structure of this magnificent galaxy, and also the fine details of the innermost region, close to the centre. An infrared ISAAC image penetrates deep into the obscuring dust clouds in this area. 4. The colours of NGC 1232 ESO PR Photo 13a/99 ESO PR Photo 13a/99 Differential (UV-B) image of NGC 1232 (FORS1) . Access full text and PR Photos 13a-b/99 NGC 1232 is a large spiral galaxy in the constellation Eridanus (The River). With a diameter of nearly 200,000 light-years, it is about twice the size of the Milky Way galaxy. The distance is about 100 million light-years, but the excellent optical quality of the VLT and FORS allows us to see an incredible wealth of details. Computer processed "colour-index images" have been prepared that show the "difference" between images of the galaxy, as seen in different wavebands. Since different types of objects have different brightness in different colours, this method is very useful to locate objects of a particular type and to obtain an overview of their distribution in the galaxy. The distribution of star-forming regions and dust lanes in NGC 1232 are shown on two such photos. 5. A Selection of ISAAC Spectra ESO PR Photo 11a/99 ESO PR Photo 11a/99 He I 1038 nm line in SN1987A (ISAAC spectrum) . Access full text and PR Photos 11a-c/99 Various observations were made with the ISAAC multi-mode instrument at the Nasmyth focus of VLT UT1 during the recent commissioning periods for this infrared multi-mode instrument. They impressively demonstrate the unique capabilities of this facility. The new data include several infrared spectra of faint objects with interesting features. A spectrum was obtained in the near-infrared region of the ring nebula around SN 1987A in the Large Magellanic Cloud. It consists of material blown off the progenitor star during its evolution. Of particular interest is a jet like structure in the dispersion direction which reveals the presence of a broad, blueshifted, HeI component which presumably originates in the shock ionized ejecta. Another spectrum shows emission features in two galaxies at redshift z = 0.6 [1] that allow the determination of a rotation curve at this large distance. The 1 - 2.5 µm infrared spectrum of the radio galaxy MRC0406 at z =2.42 is also included. 6. The Cluster of Galaxies MS1008.1-1224 ESO PR Photo 09b/99 ESO PR Photo 09b/99 Centre of the Cluster of Galaxies MS1008.1-122 (FORS1 colour composite) . Access full text and PR Photos 09a-b/99 The study of "Deep Fields" is becoming a common tool in astronomy. Among the various sky fields that have been selected for detailed investigation of the faint and distant objects therein, is the FORS Deep Field that will be observed during FORS1 "guaranteed time", available to astronomers from institutes that built this instrument. In preparation of this work, an imaging programme was carried out during the FORS1 Science Verification programme. Multicolour (UBVRI) deep images were obtained of the galaxy cluster MS1008.1-1224 , to be complemented with infrared (JHK) images with ISAAC of the cluster core. The redshift is z = 0.306 and many arclets from gravitational lensing are seen within the cluster area. Such observations serve many purposes, including the study of the distribution of mass and the associated gravitational field of the cluster, of individual cluster galaxies, and also of background objects whose images are amplified and distorted by gravitational lensing caused by the cluster. 7. Quasar Spectra ESO PR Photo 14a/99 ESO PR Photo 14c/99 Spectrum of Quasar at z = 5 Access full text and PR Photos 14a-c/99 The FORS1 multi-mode instrument is able to record images as well as spectra of even very distant objects. During the past months, data have been obtained that show the properties of some of the remotest known objects in the Universe. Three spectral tracings of very distant quasars are included, for which the redshifts have been determined as z = 3.11, 3.83 and 5.0. They were taken by the FORS Commissioning Team in September and December 1998 in the long-slit spectroscopy mode of FORS1. This instrument is very efficient; even for the most distant and faintest quasar, the exposure time was only 1 hour. All spectra show a wealth of details. 8. Spectrum of a Gravitationally Lensed Galaxy ESO PR Photo 16c/99 ESO PR Photo 16c/99 Spectrum of Gravitationally Lensed Galaxy at z = 3.23 (FORS1) . Access full text and PR Photos 16a-c/99 The galaxy cluster 1ES 0657-55 is located in the southern constellation Carina (The Keel), at redshift z = 0.29. It emits strong and very hot X-ray emission and has an asymmetric galaxy distribution, indicating a large mass and recent formation. Earlier images with the ESO NTT at La Silla have revealed the presence of a gravitational arc, i.e. a background galaxy at larger distance, whose image is strongly distorted by the gravitational field of this cluster. New images of this cluster have been obtained with FORS1 under good seeing conditions. They show that this arc is very thin and long. Other arcs and arclets are also visible. It was possible to obtain a spectrum of the arc. Several absorption lines are well visible and show that the arc is the highly distorted image of a young, background galaxy at redshift z = 3.23. 9. Spectra of Faint Primordial Objects ESO PR Photo 12d/99 ESO PR Photo 12d/99 Spectrum of Distant Galaxy EIS 107 at z = 3.92 (FORS1) . Access full text and PR Photos 12a-f/99 During the recent commissioning and science verification of FORS1, spectra were taken of several objects, thought to be high-redshift galaxies. These objects are extremely faint and their spectra can only be observed with very large telescopes like the VLT and a highly efficient spectrograph. The near-infrared (I) magnitudes of the objects studied during the present test observations ranged between 23.4 and 25.5, or between 10 and 65 million times fainter than what can be seen with the unaided eye. As predicted, a large fraction of the spectra obtained turned out to be those of extremely distant galaxies, in the redshift range between z = 2.8 - 4.0. Outlook These observations provide but a small demonstration of the great capability of the ESO VLT to provide front-line astronomical data. Many others will be discussed during the Symposium and contribute to the future planning of the best possible exploitation of this great new research facility. The first 8.2-m VLT Unit Telescope (UT1) with which the observations reported in this Press Release were made will soon be joined by UT2, for which "First Light" is expected shortly, cf. PR Photos 07/99. The first instrument to be mounted on this telescope will be UVES that will provide the capability of obtaining high-dispersion spectra; the next is FORS2. During the coming years, more instruments of different types and capabilities will become available on the four 8.2-m telescopes, together providing an unrivalled potential for astronomical investigations. Note: [1]: In astronomy, the redshift (z) denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy or quasar gives a direct estimate of the universal expansion (i.e. the `recession velocity'). Since this expansion rate increases with the distance, the velocity (and thus the redshift) is itself a function (the Hubble relation) of the distance to the object. The larger the distance, the longer it has taken the light from the object to reach us, and the larger is the "look-back" time, i.e. the fraction of the age of the Universe that has elapsed since the light we now receive, was emitted from the object. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory . Note also the comprehensive VLT Information site.
The Frontier Fields: Survey Design and Initial Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lotz, J. M.; Koekemoer, A.; Grogin, N.
What are the faintest distant galaxies we can see with the Hubble Space Telescope ( HST ) now, before the launch of the James Webb Space Telescope ? This is the challenge taken up by the Frontier Fields, a Director’s discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combines the power of HST and Spitzer with the natural gravitational telescopes of massive high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. Six clusters—Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, Abellmore » S1063, and Abell 370—have been targeted by the HST ACS/WFC and WFC3/IR cameras with coordinated parallel fields for over 840 HST orbits. The parallel fields are the second-deepest observations thus far by HST with 5 σ point-source depths of ∼29th ABmag. Galaxies behind the clusters experience typical magnification factors of a few, with small regions magnified by factors of 10–100. Therefore, the Frontier Field cluster HST images achieve intrinsic depths of ∼30–33 mag over very small volumes. Spitzer has obtained over 1000 hr of Director’s discretionary imaging of the Frontier Field cluster and parallels in IRAC 3.6 and 4.5 μ m bands to 5 σ point-source depths of ∼26.5, 26.0 ABmag. We demonstrate the exceptional sensitivity of the HST Frontier Field images to faint high-redshift galaxies, and review the initial results related to the primary science goals.« less
NASA Astrophysics Data System (ADS)
Dias, B.; Barbuy, B.; Saviane, I.; Held, E. V.; Da Costa, G. S.; Ortolani, S.; Gullieuszik, M.; Vásquez, S.
2016-05-01
Context. Globular clusters trace the formation and evolution of the Milky Way and surrounding galaxies, and outline their chemical enrichment history. To accomplish these tasks it is important to have large samples of clusters with homogeneous data and analysis to derive kinematics, chemical abundances, ages and locations. Aims: We obtain homogeneous metallicities and α-element enhancement for 51 Galactic bulge, disc, and halo globular clusters that are among the most distant and/or highly reddened in the Galaxy's globular cluster system. We also provide membership selection based on stellar radial velocities and atmospheric parameters. The implications of our results are discussed. Methods: We observed R ~ 2000 spectra in the wavelength interval 456-586 nm for over 800 red giant stars in 51 Galactic globular clusters. We applied full spectrum fitting with the code ETOILE together with libraries of observed and synthetic spectra. We compared the mean abundances of all clusters with previous work and with field stars. We used the relation between mean metallicity and horizontal branch morphology defined by all clusters to select outliers for discussion. Results: [Fe/H], [Mg/Fe], and [α/Fe] were derived in a consistent way for almost one-third of all Galactic globular clusters. We find our metallicities are comparable to those derived from high-resolution data to within σ = 0.08 dex over the interval -2.5< [Fe/H] < 0.0. Furthermore, a comparison of previous metallicity scales with our values yields σ< 0.16 dex. We also find that the distribution of [Mg/Fe] and [α/Fe] with [Fe/H] for the 51 clusters follows the general trend exhibited by field stars. It is the first time that the following clusters have been included in a large sample of homogeneous stellar spectroscopic observations and metallicity derivation: BH 176, Djorg 2, Pal 10, NGC 6426, Lynga 7, and Terzan 8. In particular, only photometric metallicities were available previously for the first three clusters, and the available metallicity for NGC 6426 was based on integrated spectroscopy and photometry. Two other clusters, HP 1 and NGC 6558, are confirmed as candidates for the oldest globular clusters in the Milky Way. Conclusions: Stellar spectroscopy in the visible at R ~ 2000 for a large sample of globular clusters is a robust and efficient way to trace the chemical evolution of the host galaxy and to detect interesting objects for follow-up at higher resolution and with forthcoming giant telescopes. The technique used here can also be applied to globular cluster systems in nearby galaxies with current instruments and to distant galaxies with the advent of ELTs. Based on observations collected at the European Southern Observatory/Paranal, Chile, under programmes 68.B-0482(A), 69.D-0455(A), 71.D-0219(A), 077.D-0775(A), and 089.D-0493(B).Full Tables 1 and A.2 with the derived average parameters for the 758 red giant stars are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A9
Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS
Jouvel, S.; Delubac, T.; Comparat, J.; ...
2017-03-24
We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a meanmore » redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6« less
Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jouvel, S.; Delubac, T.; Comparat, J.
We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a meanmore » redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6« less
Dark Matter under the Microscope: Constraining Compact Dark Matter with Caustic Crossing Events
NASA Astrophysics Data System (ADS)
Diego, Jose M.; Kaiser, Nick; Broadhurst, Tom; Kelly, Patrick L.; Rodney, Steve; Morishita, Takahiro; Oguri, Masamune; Ross, Timothy W.; Zitrin, Adi; Jauzac, Mathilde; Richard, Johan; Williams, Liliya; Vega-Ferrero, Jesus; Frye, Brenda; Filippenko, Alexei V.
2018-04-01
A galaxy cluster acts as a cosmic telescope over background galaxies but also as a cosmic microscope magnifying the imperfections of the lens. The diverging magnification of lensing caustics enhances the microlensing effect of substructure present within the lensing mass. Fine-scale structure can be accessed as a moving background source brightens and disappears when crossing these caustics. The recent discovery of a distant lensed star near the Einstein radius of the galaxy cluster MACSJ1149.5+2223 allows a rare opportunity to reach subsolar-mass microlensing through a supercritical column of cluster matter. Here we compare these observations with high-resolution ray-tracing simulations that include stellar microlensing set by the observed intracluster starlight and also primordial black holes that may be responsible for the recently observed LIGO events. We explore different scenarios with microlenses from the intracluster medium and black holes, including primordial ones, and examine strategies to exploit these unique alignments. We find that the best constraints on the fraction of compact dark matter (DM) in the small-mass regime can be obtained in regions of the cluster where the intracluster medium plays a negligible role. This new lensing phenomenon should be widespread and can be detected within modest-redshift lensed galaxies so that the luminosity distance is not prohibitive for detecting individual magnified stars. High-cadence Hubble Space Telescope monitoring of several such optimal arcs will be rewarded by an unprecedented mass spectrum of compact objects that can contribute to uncovering the nature of DM.
European astronomers' successes with the Hubble Space Telescope*
NASA Astrophysics Data System (ADS)
1997-02-01
[Figure: Laguna Nebula] Their work spans all aspects of astronomy, from the planets to the most distant galaxies and quasars, and the following examples are just a few European highlights from Hubble's second phase, 1994-96. A scarcity of midget stars Stars less massive and fainter than the Sun are much numerous in the Milky Way Galaxy than the big bright stars that catch the eye. Guido De Marchi and Francesco Paresce of the European Southern Observatory as Garching, Germany, have counted them. With the wide-field WFPC2 camera, they have taken sample censuses within six globular clusters, which are large gatherings of stars orbiting independently in the Galaxy. In every case they find that the commonest stars have an output of light that is only one-hundredth of the Sun's. They are ten times more numerous than stars like the Sun. More significant for theories of the Universe is a scarcity of very faint stars. Some astronomers have suggested that vast numbers of such stars could account for the mysterious dark matter, which makes stars and galaxies move about more rapidly than expected from the mass of visible matter. But that would require an ever-growing count of objects at low brightnesses, and De Marchi and Paresce find the opposite to be the case -- the numbers diminish. There may be a minimum size below which Nature finds starmaking difficult. The few examples of very small stars seen so far by astronomers may be, not the heralds of a multitude of dark-matter stars, but rareties. Unchanging habits in starmaking Confirmation that very small stars are scarce comes from Gerry Gilmore of the Institute of Astronomy in Cambridge (UK). He leads a European team that analyses long-exposure images in the WFPC2 camera, obtained as a by-product when another instrument is examining a selected object. The result is an almost random sample of well-observed stars and galaxies. The most remarkable general conclusion is that the make-up of stellar populations never seems to vary. In dense or diffuse regions, in very young or very old agglomerations, in the Milky Way Galaxy or elsewhere, the relative numbers of stars of different masses are always roughly the same. Evidently Nature mass-produces quotas of large and small stars irrespective of circumstances. This discovery will assist astronomers in making sense of very distant and early galaxies. They can assume that the stars are of the most familiar kinds. Another surprise was spotted by Rebecca Elson in Gilmore's team, in long-exposure images of the giant galaxy M87, in the nearby Virgo cluster. It possesses globular clusters of very different ages. In the Milky Way and its similar spiral neighbour, the Andromeda galaxy, globular clusters contain the oldest stars. While M87 has ancient globular clusters too, some are different in colour and much younger. The theory is that they were manufactured during collisions of the galaxies that merged into M87, making it the egg-shaped giant seen today. If so, the absence of young globular clusters in the Milky Way may mean that our Galaxy has never suffered a major collision. Accidents in the galactic traffic Brighter than a million million suns, a quasar is the most powerful lamp in the Universe. Astronomers understand it to be powered by matter falling into a massive black hole in the heart of a galaxy. Mike Disney of the University of Wales, Cardiff, leads a European team that asks why some thousands of galaxies harbour quasars, in contrast to the billions that do not. In almost every case that he and his colleagues have investigated, using Hubble's WFPC2 camera at its highest resolution, they see the quasar's home galaxy involved in a collision with another galaxy. "It's my opinion that almost any galaxy can be a quasar," Disney says, "if only its central black hole gets enough to eat. In the galactic traffic accidents that Hubble reveals, we can visualize fresh supplies of stars and gas being driven into the black hole's clutches. My American opposite number, John Bahcall, prefers to stress those quasar hosts that look like undisturbed galaxies. But the important thing is that we have wonderfully clear pictures to argue about. Quasar theories were mostly pure speculation before we had Hubble." The history of the elements Astronomers at the Hamburger Sternwarte use the Faint Object Spectrograph to analyse ultraviolet light from distant quasars, which they also examine by visible light from the ground. They trace the origin, through cosmic time, of elements like carbon, silicon and iron, from which planets and living things can be built. On its way to Hubble, the quasar light passes through various intervening galaxies and gas clouds, like the skewer of a kebab. Each object visited absorbs some of the quasar light, depending on the local abundances of the elements. As they detect more and more objects, Dieter Reimers and his colleagues form an impression of galaxies building up their stocks of elements progressively through time, by the alchemy of successive generations of stars. Apart from primordial hydrogen the second lightest element, helium, has also been abundant since the origin of the Universe. The first major discovery after Hubble's last refurbishment came from Peter Jakobsen of ESA's Space Science Department at Noordwijk, who detected ionized helium in the remote Universe, by the light of a very distant quasar, 0302-003. That was in January 1994, and since then Jakobsen has looked for the ionized helium using other quasars. He now suspects that this helium is nearly all gathered in clumps, rather than scattered freely through intergalactic space. If so, it greatly increases the estimates of the total mass of ordinary matter in the Universe. Through a lens to the early Universe Natural lenses scattered through the cosmos reveal distant galaxies, and make an astronomical tool for Richard Ellis of the Institute of Astronomy, Cambridge (UK). The strong gravity of an intervening cluster of galaxies can bend the light from more distant objects, so magnifying and intensifying their images. In one spectacular case, cluster Abell 2218 creates in Hubble's WFPC2 camera more than a hundred images of galaxies lying beyond it. Without the magnifying effect of the cluster, many of these remote objects would be too faint to study in detail. Compared with man-made optics, the gravitational lenses are complex. They produce multiple images (as many as seven or more views of the same object) and they also smear the images into arcs. Team-member Jean-Paul Kneib, who is now at Toulouse, uses the distortions as a guide to distance. The more distorted the image, the farther off a galaxy is. The galaxies imaged by Abell 2218 are 5 to 8 billion light-years away, and Kneib's estimates have been confirmed by Tim Ebbels of Cambridge using the William Herschel Telescope located on the Spanish island of La Palma. Seen as they were early in the history of the Universe, the objects seem surprisingly similar to nearer and more mature galaxies. The cosmic scale Gustav Tammann of Basel and his collaborators use the Hubble Space Telescope to measure the Hubble Constant. Both are named after Edwin Hubble who discovered, almost 70 years ago, that the galaxies are spreading apart. The Hubble Constant is the rate of expansion -- and the most important number in cosmology, because it fixes the size and the maximum age of the observable Universe. Since the launch of the space telescope in 1990, two independent teams have tried to fix the constant but their answers disagree. A high expansion rate, which makes the Universe relatively young, is preferred by Wendy Freedman's team consisting largely of American astronomers. A lower value for Hubble's Constant, implying an older Universe, comes from a mainly European team led by the American astronomer Allan Sandage. Tammann belongs to the latter, "old Universe" camp and he is philosophical about the delay in reaching a consensus. "I've been waiting nearly 20 years for this result, and I expect the arguments will go on for a while longer," Gustav Tammann says. "In 1979 I asserted that a key task for the space telescope should be to use variable stars to fix the distances to nearby galaxies in which standard supernovae have been seen. Then the supernovae become candles lighting our way far out into the Universe. Well we've done it now, with stars in seven galaxies, and their supernovae give us wonderfully consistent answers. So we're in no mood to compromise, or to split the difference with Wendy Freedman's Hubble Constant. Time will tell us who is closer to the right answer." * Note to TV editors : A betacam tape on this subject is available from ESA Public Relations Office (Tel: 33(0)01.53.69.7155 Fax : 33(0)01.53.69.7690)
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Strait, Victoria; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Oesch, Pascal; Lam, Danel; Carrasco Nunez, Daniela Patricia; Paterno-Mahler, Rachel; Frye, Brenda
2018-05-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose to complete deep Spitzer imaging of the fields behind the 10 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 440 Spitzer hours). 6 clusters out of 10 are still lacking deep data. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 60 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.
Distant galaxy formed stars only 250 million years after the Big Bang
NASA Astrophysics Data System (ADS)
Bouwens, Rychard
2018-05-01
Little is known about the star-birth activity of the earliest galaxies. Observations of a particularly distant galaxy provide evidence for such activity when the Universe was just 2% of its current age.
NASA Astrophysics Data System (ADS)
Jee, Myungkook James
2006-06-01
Clusters of galaxies, the largest gravitationally bound objects in the Universe, are useful tracers of cosmic evolution, and particularly detailed studies of still-forming clusters at high-redshifts can considerably enhance our understanding of the structure formation. We use two powerful methods that have become recently available for the study of these distant clusters: spaced- based gravitational weak-lensing and high-resolution X-ray observations. Detailed analyses of five high-redshift (0.8 < z < 1.3) clusters are presented based on the deep Advanced Camera for Surveys (ACS) and Chandra X-ray images. We show that, when the instrumental characteristics are properly understood, the newly installed ACS on the Hubble Space Telescope (HST) can detect subtle shape distortions of background galaxies down to the limiting magnitudes of the observations, which enables the mapping of the cluster dark matter in unprecedented high-resolution. The cluster masses derived from this HST /ACS weak-lensing study have been compared with those from the re-analyses of the archival Chandra X-ray data. We find that there are interesting offsets between the cluster galaxy, intracluster medium (ICM), and dark matter centroids, and possible scenarios are discussed. If the offset is confirmed to be uniquitous in other clusters, the explanation may necessitate major refinements in our current understanding of the nature of dark matter, as well as the cluster galaxy dynamics. CL0848+4452, the highest-redshift ( z = 1.27) cluster yet detected in weak-lensing, has a significant discrepancy between the weak- lensing and X-ray masses. If this trend is found to be severe and common also for other X-ray weak clusters at redshifts beyond the unity, the conventional X-ray determination of cluster mass functions, often inferred from their immediate X-ray properties such as the X-ray luminosity and temperature via the so-called mass-luminosity (M-L) and mass-temperature (M-T) relations, will become highly unstable in this redshift regime. Therefore, the relatively unbiased weak-lensing measurements of the cluster mass properties can be used to adequately calibrate the scaling relations in future high-redshift cluster investigations.
NASA Astrophysics Data System (ADS)
Mellier, Yannick
2016-07-01
The ESA Euclid mission aims to understand why the expansion of the Universe is accelerating and pin down the source responsible for the acceleration. It will uncover the very nature of dark energy and gravitation by measuring with exquisite accuracy the expansion rate of the Universe and the growth rate of structure formation in the Universe. To achieve its objectives Euclid will observe the distribution of dark matter in the Universe by measuring shapes of weakly distorted distant galaxies lensed by foreground cosmic structures with the VIS imaging instrument. In parallel, Euclid will analyse the clustering of galaxies and the distribution of clusters of galaxies by using spectroscopy and measuring redshifts of galaxies with the NISP photometer and spectrometer instrument. The Euclid mission will observe one third of the sky (15,000 deg2) to collect data on several billion galaxies spread over the last ten billion years. In this presentation I will report on the considerable technical and scientific progresses made since COSPAR 2014, on behalf of the Euclid Collaboration. The recent mission PDR that has been passed successfully shows that Euclid should meet its requirements and achieve its primary scientific objectives to map the dark universe. The most recent forecasts and constraints on dark energy, gravity, dark matter and inflation will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franck, J. R.; McGaugh, S. S.
2016-12-10
The Candidate Cluster and Protocluster Catalog (CCPC) is a list of objects at redshifts z > 2 composed of galaxies with spectroscopically confirmed redshifts that are coincident on the sky and in redshift. These protoclusters are identified by searching for groups in volumes corresponding to the expected size of the most massive protoclusters at these redshifts. In CCPC1 we identified 43 candidate protoclusters among 14,000 galaxies between 2.74 < z < 3.71. Here we expand our search to more than 40,000 galaxies with spectroscopic redshifts z > 2.00, resulting in an additional 173 candidate structures. The most significant of these are 36 protoclusters withmore » overdensities δ {sub gal} > 7. We also identify three large proto-supercluster candidates containing multiple protoclusters at z = 2.3, 3.5 and z = 6.56. Eight candidates with N ≥ 10 galaxies are found at redshifts z > 4.0. The last system in the catalog is the most distant spectroscopic protocluster candidate known to date at z = 6.56.« less
NASA Astrophysics Data System (ADS)
Rodrigues, M.; Patricio, V.; Rothberg, B.; Sanchez-Janssen, R.; Vale Asari, N.
We present the first results of our observational project 'Starfish' (STellar Population From Integrated Spectrum). The goal of this project is to calibrate, for the first time, the properties of stellar populations derived from integrated spectra with the same properties derived from direct imaging of stellar populations in the same set of galaxies. These properties include the star-formation history (SFH), stellar mass, age, and metallicity. To date, such calibrations have been demonstrated only in star clusters, globular clusters with single stellar populations, not in complex and composite objects such as galaxies. We are currently constructing a library of integrated spectra obtained from a sample of 38 nearby dwarf galaxies obtained with GEMINI/GMOS-N&S (25h) and VLT/VIMOS-IFU (43h). These are to be compared with color magnitude diagrams (CMDs) of the same galaxies constructed from archival HST imaging sensitive to at least 1.5 magnitudes below the tip of the red giant branch. From this comparison we will assess the systematics and uncertainties from integrated spectral techniques. The spectra library will be made publicly available to the community via a dedicated web-page and Vizier database. This dataset will provide a unique benchmark for testing fitting procedures and stellar population models for both nearby and distant galaxies. http://www.sc.eso.org/˜marodrig/Starfish/
NASA Astrophysics Data System (ADS)
Atek, Hakim; Richard, Johan; Kneib, Jean-Paul; Jauzac, Mathilde; Schaerer, Daniel; Clement, Benjamin; Limousin, Marceau; Jullo, Eric; Natarajan, Priyamvada; Egami, Eiichi; Ebeling, Harald
2015-02-01
Exploiting the power of gravitational lensing, the Hubble Frontier Fields (HFF) program aims at observing six massive galaxy clusters to explore the distant universe far beyond the limits of blank field surveys. Using the complete Hubble Space Telescope observations of the first HFF cluster A2744, we report the detection of 50 galaxy candidates at z ~ 7 and eight candidates at z ~ 8 in a total survey area of 0.96 arcmin2 in the source plane. Three of these galaxies are multiply imaged by the lensing cluster. Using an updated model of the mass distribution in the cluster we were able to calculate the magnification factor and the effective survey volume for each galaxy in order to compute the ultraviolet galaxy luminosity function (LF) at both redshifts 7 and 8. Our new measurements reliably extend the z ~ 7 UV LF down to an absolute magnitude of M UV ~ -15.5. We find a characteristic magnitude of M\\star UV = -20.90+0.90-0.73 mag and a faint-end slope α =-2.01+0.20-0.28, close to previous determinations in blank fields. We show here for the first time that this slope remains steep down to very faint luminosities of 0.01 L sstarf. Although prone to large uncertainties, our results at z ~ 8 also seem to confirm a steep faint-end slope below 0.1 L sstarf. The HFF program is therefore providing an extremely efficient way to study the faintest galaxy populations at z > 7 that would otherwise be inaccessible with current instrumentation. The full sample of six galaxy clusters will provide even better constraints on the buildup of galaxies at early epochs and their contribution to cosmic reionization. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13495, 11386, 13389, and 11689. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. The Hubble Frontier Fields data were obtained from the Mikulski Archive for Space Telescopes (MAST).
Distant Galaxy Bursts with Stars
2011-12-21
This image from NASA Hubble telescope shows one of the most distant galaxies known, called GN-108036, dating back to 750 million years after the Big Bang that created our universe. The galaxy light took 12.9 billion years to reach us.
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Bradley, Larry; Huang, Kuang-Han; Ryan, Russell; Dawson, Will; Zitrin, Adi; Hoag, Austin; Jones, Christine; Czakon, Nicole; Sharon, Keren; Trenti, Michele; Stark, Daniel; Bouwens, Rychard
2015-10-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). Furthermore, it is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z>7-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind 41 powerful cosmic telescopes selected using Planck data from the RELICS program (Reionization Lensing Cluster Survey; 190 HST orbits). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to detect early galaxies with Spitzer and directly study stellar properties of a large number, ~20 galaxies (10 at z~7, 7 at z~8, 3 at z~9, and 1 at z~10). Spitzer data will much improve photometric redshifts of the earliest galaxies and will be crucial to ascertain the nature of any z>~10 candidate galaxies uncovered in the HST data. Spitzer also allows for an efficient selection of likely line emitters (as demonstrated by our recent spectroscopic confirmation of the most distant galaxy to date at z=8.68). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z~9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.
Stellar population models in the Near-Infrared (Ph.D. thesis)
NASA Astrophysics Data System (ADS)
Meneses-Goytia, Sofia
2015-11-01
The study of early-type elliptical and lenticular galaxies provides important information about the formation and evolution of galaxies in the early Universe. These distant systems cannot be studied by looking at their individual stars but information can still be obtained by studying their unresolved spectrum in detail. During my PhD I have constructed accurate unresolved stellar population models for populations of a single age and metallicity in the near-infrared range. The extension to the NIR is important for the study of early-type galaxies, since these galaxies are predominantly old and therefore emit most of their light in this wavelength range. The models are based on the NASA IRTF library of empirical stellar spectra. Integrating these spectra along theoretical isochrones, while assuming an initial mass function, we have produced model spectra of single age-metallicity stellar populations at an intermediate resolution. Comparison to literature results show that our models are well suited for studying stellar populations in unresolved galaxies. They are particularly useful for studying the old and intermediate-age stellar populations in galaxies, relatively free from contamination of young stars and extinction by dust. Subsequently, we use the models to fit the observed spectra of globular clusters and galaxies, to derive their age distribution, chemical abundances and IMF properties. We show that the contribution of AGB stars to the galaxy spectrum is clearly larger in the field than it is in the Fornax cluster. This implies that the environment plays an important role in driving the evolutionary histories of the galaxies.
A Galaxy is Born in a Swirling Hydrogen Cloud
NASA Astrophysics Data System (ADS)
1995-10-01
Astronomers from the University of Leiden have discovered an extremely distant, enormous gas cloud. It is probably a `cocoon' from which one or more galaxies are in the process of being born, soon after the Big Bang. The observations also indicate that this gas cloud is slowly rotating, an entirely new result of great cosmological significance. The discovery was made with the ESO 3.5-metre New Technology Telescope (NTT) at La Silla in Chile by a team consisting of Rob van Ojik, Huub Röttgering, Chris Carilli, George Miley and Malcolm Bremer from Leiden Observatory (The Netherlands) and Duccio Macchetto of the European Space Agency (ESA) stationed in Baltimore, U.S.A. Their extensive observations are reported in an article accepted for publication in the professional European journal `Astronomy and Astrophysics' and also as a chapter of van Ojik's Ph.D. thesis which is defended at the University of Leiden on October 25. This exciting result casts new light on one of the most important questions of modern cosmology, i.e. how lumpy galaxies were `born' out of the extremely smooth fireball produced during the Big Bang . Discovery of a Very Distant Infant Galaxy Among the most important questions which astronomers are now attempting to answer are when and how did galaxies form. This involves a very difficult and time-consuming study of the most distant galaxies that can be perceived with modern telescopes. Because of the extremely long time it has taken their light to reach us, we now observe them, as they looked like soon after the Big Bang. For some years, the Leiden group has been using a combination of observational techniques at radio and optical telescopes to pinpoint very distant galaxies. In fact, this group has discovered more than half of the sixty most distant galaxies now known. The majority of these remote galaxies were first detected because of their strong radio emission and many of them were later found to be embedded in clouds of hot gas, mostly consisting of hydrogen. This gas radiates intensely at characteristic wavelengths (colours), also in the optical and infrared parts of the spectrum. These characteristic emission features are shifted towards longer wavelengths when compared with the emission from similar gas measured in laboratories on the Earth. This `redshift' (Doppler-effect) arises because the distant galaxies and their surrounding gas clouds recede from us at high velocities that are due to the general expansion of the Universe. The larger the distance, the higher is the velocity and the larger the redshift. The redshift is the standard yardstick which astronomers use to measure distance of galaxies [1]. The distant galaxy 1243+036 (this designation indicates its location in the sky) is one of the half dozen most distant galaxies found so far. It was first detected by the Leiden group three years ago by means of the ESO telescopes at La Silla. Its redshift is z = 3.6, corresponding to a `look-back' time of about 90 percent of the age of the Universe. In other words, light now reaching the Earth from an object at this large distance was emitted when the age of the Universe was only about 10 percent of what it is now. It is believed that most galaxies and groups of galaxies formed at this early epoch or soon thereafter. The Hydrogen Cloud around 1243+036 The spectacular properties of galaxy 1243+036 were first revealed when long-exposure images with the SUSI camera at the ESO 3.5-metre NTT showed an extensive, surrounding cloud of gas. The redshifted Lyman-alpha emission by the hydrogen atoms in this cloud was observed with the EMMI instrument at the same telescope in the spectroscopic mode during a 4-hour exposure. These observations profited from excellent sky conditions; in both cases, the seeing was 0.6 arcseconds. Moreover, the galaxy was observed in the radio region of the spectrum with the Very Large Array of the US National Radio Astronomy Observatory in New Mexico, U.S.A. When the optical and radio images are combined, it is seen that a radio `jet' emerges from the centre of the galaxy and interacts vigorously with the inner region of the gas cloud. This jet is believed to be a narrow stream of high-energy electrons spewed out at the edge of a black hole located at the center of the galaxy. Such jets are often seen in distant radio galaxies. But the most intriguing property of 1243+036 is revealed by the faint glow from the hydrogen atoms in the outer regions of the gas cloud, now detected on the EMMI spectra. The extent of this faint light shows that the size of the gas cloud is almost 500,000 light years, i.e. many times larger than the clouds seen around normal galaxies. The mass of this enormous cloud probably exceeds 10,000 million times that of the Sun. This Press Release is accompanied by ESO Press Photo 32/95 [86K] with an explanatory text that shows these features. The Giant Hydrogen Cloud Rotates ! Even more exciting, the astronomers also found that the measured wavelength of the Lyman-alpha emission from the hydrogen gas differs slightly, but systematically from one side of the cloud to the other. The difference implies that the two extremities of the cloud are rushing away from us with speeds that differ by 450 km/s. This is the first time ever that organized motion in such a large and distant structure has been detected and measured. According to van Ojik and his colleagues, the most likely explanation of the variation in speed is that the huge gas cloud rotates in such a way that the Northwest edge is receding and the Southeast edge is approaching, relative to the embedded galaxy at its centre. The measured size of the cloud and the rotation velocity indicate that it has made about one complete revolution since the Big Bang. The cloud around 1243+036 may be a relic of the earliest stages of formation of this galaxy. The observed motion may in fact represent a typical state of the gas around primeval galaxies in the young Universe, before it is affected by the violent motion of the material that is now observed as a radio jet. As this cloud rotates, gas falls towards the centre, feeding mass and energy to the black hole while smaller clumps of gas contract and form stars. In this way, the enormous, rotating gas cloud ``gives birth'' to the galaxy and possibly to an entire group or cluster of galaxies. Some theories of galaxy and cluster formation predict the existence of such giant rotating clouds in the early Universe. The discovery of the cloud around the galaxy 1243+036 with exactly these properties provides the first evidence in favour of such models. Note [1] See ESO Press Releases 09/95 of 17 August 1995 and 11/95 of 15 September 1995. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.
RELICS: A Candidate Galaxy Arc at z~10 and Other Brightly Lensed z>6 Galaxies
NASA Astrophysics Data System (ADS)
Salmon, Brett; Coe, Dan; Bradley, Larry; Bradac, Marusa; Huang, Kuang-Han; Oesch, Pascal; Brammer, Gabriel; Stark, Daniel P.; Sharon, Keren; Trenti, Michele; Avila, Roberto J.; Ogaz, Sara; Acebron, Ana; Andrade-Santos, Felipe; Carrasco, Daniela; Cerny, Catherine; Cibirka, Nathália; Dawson, William; Frye, Brenda; Hoag, Austin; Jones, Christine; Mainali, Ramesh; Ouchi, Masami; Paterno-Mahler, Rachel; Rodney, Steven; Umetsu, Keiichi; Zitrin, Adi; RELICS
2018-01-01
Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here some of the most brightly lensed z>6 galaxy candidates known from the Reionization Lensing Cluster Survey (RELICS) and the discovery of a particularly fortuitous z~10 galaxy candidate which has been arced by the effects of strong gravitational lensing. The z~10 candidate has a lensed H-band magnitude of 25.8 AB mag and a high lensing magnification (~4-7). The inferred upper limits on the stellar mass (log [M_star /M_Sun]=9.5) and star formation rate (log [SFR/(M_Sun/yr)]=1.5) indicate that this candidate is a typical star-forming galaxy on the z>6 SFR-M_star relation. We rule out the only low-z solution as unphysical based on the required stellar mass, dust attenuation, size, and [OIII] EW needed for a z~2 SED to match the data. Finally, we reconstruct the source-plane image and estimate the candidate's physical size at z~10, finding a half-light radius of r_e < 0.8 kpc that is in line with the sizes of other z>9 candidates. While the James Webb Space Telescope will detect z>10 with ease, this rare candidate offers the potential for unprecedented spatial resolution less than 500 Myr after the Big Bang.
Tholken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; ...
2018-03-05
Here, observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tholken, Sophia; Schrabback, Tim; Reiprich, Thomas H.
Here, observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased.
VizieR Online Data Catalog: Follow-up study of gal. & AGNs in z>1 clusters (Alberts+, 2016)
NASA Astrophysics Data System (ADS)
Alberts, S.; Pope, A.; Brodwin, M.; Chung, S. M.; Cybulski, R.; Dey, A.; Eisenhardt, P. R. M.; Galametz, A.; Gonzalez, A. H.; Jannuzi, B. T.; Stanford, S. A.; Snyder, G. F.; Stern, D.; Zeimann, G. R.
2016-08-01
In this work, we concentrate our analysis on 11 spectroscopically confirmed clusters from the IRAC Shallow/Distant Cluster Survey (ISCS/IDCS) that we observed with Herschel/PACS at 100 and 160um, obtained during Open Time 2 observing (PID: OT2apope3) (summary of imaging in table 6 spanning from June 2012 to January 2013). Given the resolution of PACS (FWHM~6.7" at 100um and 11" at 160um), we expect the majority of sources and all cluster galaxies in our maps to be point sources. See sections 2.1 and 2.3 for further details. The IRAC Shallow Survey (ISS) was followed up with three more observations as part of SDWFS (Ashby et al. 2009, see J/ApJ/716/530), providing a factor of 2 deeper IRAC catalog with an aperture-corrected 5σ limit of 5.2uJy at 4.5um ([4.5]=18.83mag). Spitzer/MIPS observations are available from the MIPS AGM and Galaxy Evolution Survey (MAGES; Jannuzi et al. 2010AAS...21547001J). See section 2.4 for further details. Targeted follow up campaigns by our group have obtained spectroscopic redshifts for galaxies and AGNs in z>1 clusters using multi-object Keck optical spectroscopy and Wide Field Camera 3 (WFC3) slitless NIR grism spectroscopy from the Hubble Space Telescope (HST). The reader is directed to Brodwin et al. (2013ApJ...779..138B), Zeimann et al. (2013, J/ApJ/779/137), and references therein for a detailed description of the targeted spectroscopy. Some spectroscopic redshifts are additionally provided by the AGN and Galaxy Evolution Survey (AGES; Kochanek et al. 2012, J/ApJS/200/8). See section 2.2. (3 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenney, Jeffrey D. P.; Geha, Marla; Jáchym, Pavel
We present optical imaging and spectroscopy and H I imaging of the Virgo Cluster galaxy IC 3418, which is likely a 'smoking gun' example of the transformation of a dwarf irregular into a dwarf elliptical galaxy by ram pressure stripping. IC 3418 has a spectacular 17 kpc length UV-bright tail comprised of knots, head-tail, and linear stellar features. The only Hα emission arises from a few H II regions in the tail, the brightest of which are at the heads of head-tail UV sources whose tails point toward the galaxy ('fireballs'). Several of the elongated tail sources have Hα peaksmore » outwardly offset by ∼80-150 pc from the UV peaks, suggesting that gas clumps continue to accelerate through ram pressure, leaving behind streams of newly formed stars which have decoupled from the gas. Absorption line strengths, measured from Keck DEIMOS spectra, together with UV colors, show star formation stopped 300 ± 100 Myr ago in the main body, and a strong starburst occurred prior to quenching. While neither Hα nor H I emission are detected in the main body of the galaxy, we have detected 4 × 10{sup 7} M {sub ☉} of H I from the tail with the Very Large Array. The velocities of tail H II regions, measured from Keck LRIS spectra, extend only a small fraction of the way to the cluster velocity, suggesting that star formation does not happen in more distant parts of the tail. Stars in the outer tail have velocities exceeding the escape speed, but some in the inner tail should fall back into the galaxy, forming halo streams.« less
NASA Astrophysics Data System (ADS)
Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; von der Linden, A.; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.
2018-02-01
We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (zmedian = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z)M500c/1014 M⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81^{+0.24}_{-0.14}(stat.) {± } 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrabback, T.; et al.
We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the sourcemore » redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.« less
NASA Astrophysics Data System (ADS)
Goudfrooij, Paul
2009-07-01
Much current research in cosmology and galaxy formation relies on an accurate interpretation of colors of galaxies in terms of their evolutionary state, i.e., in terms of ages and metallicities. One particularly important topic is the ability to identify early-type galaxies at "intermediate" ages { 500 Myr - 5 Gyr}, i.e., the period between the end of star formation and half the age of the universe. Currently, integrated-light studies must rely on population synthesis models which rest upon spectral libraries of stars in the solar neighborhood. These models have a difficult time correctly incorporating short-lived evolutionary phases such as thermally pulsing AGB stars, which produce up to 80% of the flux in the near-IR in this age range. Furthermore, intermediate-age star clusters in the Local Group do not represent proper templates against which to calibrate population synthesis models in this age range, because their masses are too low to render the effect of stochastic fluctuations due to the number of bright RGB and AGB stars negligible. As a consequence, current population synthesis models have trouble reconciling the evolutionary state of high-redshift galaxies from optical versus near-IR colors. We propose a simple and effective solution to this issue, namely obtaining high-quality EMPIRICAL colors of massive globular clusters in galaxy merger remnants which span this important age range. These colors should serve as relevant references, both to identify intermediate-age objects in the local and distant universe and as calibrators for population synthesis modellers.
A Multi-wavelength Mass Analysis of RCS2 J232727.6-020437, A ˜3 × 1015 M⊙ Galaxy Cluster at z = 0.7
NASA Astrophysics Data System (ADS)
Sharon, K.; Gladders, M. D.; Marrone, D. P.; Hoekstra, H.; Rasia, E.; Bourdin, H.; Gifford, D.; Hicks, A. K.; Greer, C.; Mroczkowski, T.; Barrientos, L. F.; Bayliss, M.; Carlstrom, J. E.; Gilbank, D. G.; Gralla, M.; Hlavacek-Larrondo, J.; Leitch, E.; Mazzotta, P.; Miller, C.; Muchovej, S. J. C.; Schrabback, T.; Yee, H. K. C.; RCS-Team
2015-11-01
We present an initial study of the mass and evolutionary state of a massive and distant cluster, RCS2 J232727.6-020437. This cluster, at z = 0.6986, is the richest cluster discovered in the RCS2 project. The mass measurements presented in this paper are derived from all possible mass proxies: X-ray measurements, weak-lensing shear, strong lensing, Sunyaev-Zel’dovich effect decrement, the velocity distribution of cluster member galaxies, and galaxy richness. While each of these observables probe the mass of the cluster at a different radius, they all indicate that RCS2 J232727.6-020437 is among the most massive clusters at this redshift, with an estimated mass of {M}200˜ 3× {10}15{h}70-1 {M}⊙ . In this paper, we demonstrate that the various observables are all reasonably consistent with each other to within their uncertainties. RCS2 J232727.6-020437 appears to be well relaxed—with circular and concentric X-ray isophotes, with a cool core, and no indication of significant substructure in extensive galaxy velocity data. Based on observations obtained with : MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; the NASA/ESA Hubble Space Telescope (HST), obtained from the data archive at the Space Telescope Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-2655; the 6.5 m Magellan telescopes located at Las Campanas Observatory, Chile;
A large-scale structure traced by [O II] emitters hosting a distant cluster at z= 1.62
NASA Astrophysics Data System (ADS)
Tadaki, Ken-ichi; Kodama, Tadayuki; Ota, Kazuaki; Hayashi, Masao; Koyama, Yusei; Papovich, Casey; Brodwin, Mark; Tanaka, Masayuki; Iye, Masanori
2012-07-01
We present a panoramic narrow-band imaging survey of [O II] emitters in and around the ClG J0218.3-0510 cluster at z= 1.62 with Suprime-Cam on Subaru Telescope. 352 [O II] emitters were identified on the basis of narrow-band excesses and photometric redshifts. We discovered a huge filamentary structure with some clumps traced by [O II] emitters and found that the ClG J0218.3-0510 cluster is embedded in an even larger superstructure than the one reported previously. 31 [O II] emitters were spectroscopically confirmed with the detection of Hα and/or [O III] emission lines by Fibre Multi Object Spectrograph observations. In the high-density regions such as cluster core and clumps, star-forming [O II] emitters show a high overdensity by a factor of more than 10 compared to the field region. Interestingly, the relative fraction of [O II] emitters in photo-z selected sample does not depend significantly on the local density. Although the star formation activity is very high even in the cluster core, some massive quiescent galaxies also exist at the same time. Furthermore, the properties of the individual [O II] emitters, such as star formation rates (SFRs), stellar masses and specific SFRs, do not show a significant dependence on the local density, either. Such a lack of environmental dependence is consistent with our earlier result by Hayashi et al. on a z= 1.5 cluster and its surrounding region. The fact that the star-forming activity of galaxies in the cluster core is as high as that in the field at z˜ 1.6 may suggest that the star-forming galaxies are probably just in a transition phase from a starburst mode to a quiescent mode, and are thus showing comparable level of star formation rates to those in lower density environments. We may be witnessing the start of the reversal of the local SFR-density relation due to the 'biased' galaxy formation and evolution in high-density regions at this high redshift, beyond which massive galaxies would be forming vigorously in a more biased way in protocluster cores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doria, Alberto; Gitti, Myriam; Brighenti, Fabrizio
2012-07-01
We present a study of the cavity system in the galaxy cluster RBS 797 based on Chandra and Very Large Array (VLA) data. RBS 797 (z = 0.35) is one of the most distant galaxy clusters in which two pronounced X-ray cavities have been discovered. The Chandra data confirm the presence of a cool core and indicate a higher metallicity along the cavity directions. This is likely due to the active galactic nucleus outburst, which lifts cool metal-rich gas from the center along the cavities, as seen in other systems. We find indications that the cavities are hotter than themore » surrounding gas. Moreover, the new Chandra images show bright rims contrasting with the deep, X-ray deficient cavities. The likely cause is that the expanding 1.4 GHz radio lobes have displaced the gas, compressing it into a shell that appears as bright cool arms. Finally, we show that the large-scale radio emission detected with our VLA observations may be classified as a radio mini-halo, powered by the cooling flow, as it nicely follows the trend P{sub radio} versus P{sub CF} predicted by the reacceleration model.« less
Outskirts of Distant Galaxies in Absorption
NASA Astrophysics Data System (ADS)
Chen, Hsiao-Wen
QSO absorption spectroscopy provides a sensitive probe of both the neutral medium and diffuse ionized gas in the distant Universe. It extends 21 cm maps of gaseous structures around low-redshift galaxies both to lower gas column densities and to higher redshifts. Combining galaxy surveys with absorption-line observations of gas around galaxies enables comprehensive studies of baryon cycles in galaxy outskirts over cosmic time. This chapter presents a review of the empirical understanding of the cosmic neutral gas reservoir from studies of damped Lyα absorbers (DLAs). It describes the constraints on the star formation relation and chemical enrichment history in the outskirts of distant galaxies from DLA studies. A brief discussion of available constraints on the ionized circumgalactic gas from studies of lower column density Lyα absorbers and associated ionic absorption transitions is presented at the end.
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trentu, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Patricia Carasco Nunez, Daniela; Paterno-Mahler, Rachel; Strait, Victoria
2017-10-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind the most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 550 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 20 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal is a unique opportunity to establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed, this result will require a paradigm shift in our understanding of the earliest star formation.
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Carrasco Nunez, Daniela Patricia
2017-04-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind 3 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 390 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 30 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.
The formation of Local Group planes of galaxies
NASA Astrophysics Data System (ADS)
Shaya, Ed J.; Tully, R. Brent
2013-12-01
The confinement of most satellite galaxies in the Local Group to thin planes presents a challenge to the theory of hierarchical galaxy clustering. The Pan-Andromeda Archaeological Survey (PAndAS) collaboration has identified a particularly thin configuration with kinematic coherence among companions of M31 and there have been long-standing claims that the dwarf companions to the Milky Way lie in a plane roughly orthogonal to the disc of our galaxy. This discussion investigates the possible origins of four Local Group planes: the plane similar, but not identical to that identified by the PAndAS collaboration, an adjacent slightly tilted plane and two planes in the vicinity of the Milky Way: one with very nearby galaxies and the other with more distant ones. Plausible orbits are found by using a combination of Numerical Action methods and a backward in time integration procedure. This investigation assumes that the companion galaxies formed at an early time in accordance with the standard cosmological model. For M31, M33, IC10 and Leo I, solutions are found that are consistent with measurements of their proper motions. For galaxies in planes, there must be commonalities in their proper motions, and this constraint greatly limits the number of physically plausible solutions. Key to the formation of the planar structures has been the evacuation of the Local Void and consequent build-up of the Local Sheet, a wall of this void. Most of the M31 companion galaxies were born in early-forming filamentary or sheet-like substrata that chased M31 out of the void. M31 is a moving target because of its attraction towards the Milky Way, and the result has been alignments stretched towards our galaxy. In the case of the configuration around the Milky Way, it appears that our galaxy was in a three-way competition for companions with M31 and Centaurus A. Only those within a modest band fell our way. The Milky Way's attraction towards the Virgo Cluster resulted in alignment along the Milky Way-Virgo Cluster line.
Self-similarity of temperature profiles in distant galaxy clusters: the quest for a universal law
NASA Astrophysics Data System (ADS)
Baldi, A.; Ettori, S.; Molendi, S.; Gastaldello, F.
2012-09-01
Context. We present the XMM-Newton temperature profiles of 12 bright (LX > 4 × 1044 erg s-1) clusters of galaxies at 0.4 < z < 0.9, having an average temperature in the range 5 ≲ kT ≲ 11 keV. Aims: The main goal of this paper is to study for the first time the temperature profiles of a sample of high-redshift clusters, to investigate their properties, and to define a universal law to describe the temperature radial profiles in galaxy clusters as a function of both cosmic time and their state of relaxation. Methods: We performed a spatially resolved spectral analysis, using Cash statistics, to measure the temperature in the intracluster medium at different radii. Results: We extracted temperature profiles for the clusters in our sample, finding that all profiles are declining toward larger radii. The normalized temperature profiles (normalized by the mean temperature T500) are found to be generally self-similar. The sample was subdivided into five cool-core (CC) and seven non cool-core (NCC) clusters by introducing a pseudo-entropy ratio σ = (TIN/TOUT) × (EMIN/EMOUT)-1/3 and defining the objects with σ < 0.6 as CC clusters and those with σ ≥ 0.6 as NCC clusters. The profiles of CC and NCC clusters differ mainly in the central regions, with the latter exhibiting a slightly flatter central profile. A significant dependence of the temperature profiles on the pseudo-entropy ratio σ is detected by fitting a function of r and σ, showing an indication that the outer part of the profiles becomes steeper for higher values of σ (i.e. transitioning toward the NCC clusters). No significant evidence of redshift evolution could be found within the redshift range sampled by our clusters (0.4 < z < 0.9). A comparison of our high-z sample with intermediate clusters at 0.1 < z < 0.3 showed how the CC and NCC cluster temperature profiles have experienced some sort of evolution. This can happen because higher z clusters are at a less advanced stage of their formation and did not have enough time to create a relaxed structure, which is characterized by a central temperature dip in CC clusters and by flatter profiles in NCC clusters. Conclusions: This is the first time that a systematic study of the temperature profiles of galaxy clusters at z > 0.4 has been attempted. We were able to define the closest possible relation to a universal law for the temperature profiles of galaxy clusters at 0.1 < z < 0.9, showing a dependence on both the relaxation state of the clusters and the redshift. Appendix A is only available in electronic form at http://www.aanda.org
Redshifts of groups and clusters in the rich superclusters 1451+22 and 1615+43
NASA Technical Reports Server (NTRS)
Ciardullo, R.; Ford, H.; Bartko, F.; Harms, R.
1983-01-01
Redshift measurements and finding charts are presented for galaxy clusters in the field of two rich, distant superclusters. Both systems are shown to have morphological and dynamical properties similar to the nearby superclusters, including small internal velocity dispersions and high density contrasts in redshift space. This data is consistent with two interpretations: either both superclusters are highly flattened systems with major axes close to the plane of the sky, or the observed velocity dispersions do not arise from unperturbed Hubble flow. If the latter explanation is correct, these radial velocity data are a powerful probe of the large scale matter density in the universe.
The nature of radio emission from distant galaxies
NASA Astrophysics Data System (ADS)
Richards, Eric A.
I describe an observational program aimed at understanding the radio emission from distant, rapidly evolving galaxy populations. These observations were carried out at 1.4 and 8.5 GHz with the VLA centered on the Hubble Deep Field. Further MERLIN observations of the HDF region at 1.4 GHz provided an angular resolution of 0.2'' and when combined with the VLA data produced an image with an unprecedented rms noise of 4 μJy. All radio sources detected in the VLA complete sample are resolved with a median angular size of 1-2''. The differential count of the radio sources is marginally sub-Euclidean (γ = -2.4 +/- 0.1) and fluctuation analysis suggests nearly 60 sources per armin2 are present at the 1 μJy level. A correlation analysis indicates spatial clustering among the 371 radio sources on angular scales of 1-40 arcmin. Optical identifications are made primarily with bright (I = 22) disk systems composed of irregulars, peculiars, interacting/merging galaxies, and a few isolated field spirals. Available redshifts span the range 0.2-3. These clues coupled with the steep spectral index of the 1.4 GHz selected sample are indicative of diffuse synchrotron radiation in distant galactic disks. Thus the evolution in the microjansky radio population is driven principally by star-formation. I have isolated a number of optically faint radio sources (about 25% of the overall sample) which remain unidentified to I = 26-28 in the HDF and flanking optical fields. Several of these objects have extremely red counterparts and constitute a new class of radio sources which are candidate high redshift dusty protogalaxies.
Chandra X-ray observations of the hyper-luminous infrared galaxy IRAS F15307+3252
NASA Astrophysics Data System (ADS)
Hlavacek-Larrondo, J.; Gandhi, P.; Hogan, M. T.; Gendron-Marsolais, M.-L.; Edge, A. C.; Fabian, A. C.; Russell, H. R.; Iwasawa, K.; Mezcua, M.
2017-01-01
Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with LIR > 1013 L⊙. They are thought to be closer counterparts of the more distant sub-millimeter galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z = 0.93 and hosting a radio-loud AGN (L1.4 GHz ˜ 3.5 × 1025 W Hz-1). The Chandra images reveal the presence of extended (r = 160 kpc), asymmetric X-ray emission in the soft 0.3-2.0 keV band that has no radio counterpart. We therefore argue that the emission is of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. We find that the temperature (˜2 keV) and bolometric X-ray luminosity (˜3 × 1043 erg s-1) of the gas follow the expected LX-ray-T correlation for groups and clusters, and that the gas has a remarkably short cooling time of 1.2 Gyr. In addition, VLA radio observations reveal that the galaxy hosts an unresolved compact steep-spectrum (CSS) source, most likely indicating the presence of a young radio source similar to 3C186. We also confirm that the nucleus is dominated by a redshifted 6.4 keV Fe Kα line, strongly suggesting that the AGN is Compton-thick. Finally, Hubble images reveal an overdensity of galaxies and sub-structure in the galaxy that correlates with soft X-ray emission. This could be a snapshot view of on-going groupings expected in a growing cluster environment. IRAS F15307+3252 might therefore be a rare example of a group in the process of transforming into a cluster.
Dark Matter Mystery Deepens in Cosmic "Train Wreck"
NASA Astrophysics Data System (ADS)
2007-08-01
Astronomers have discovered a chaotic scene unlike any witnessed before in a cosmic "train wreck" between giant galaxy clusters. NASA's Chandra X-ray Observatory and optical telescopes revealed a dark matter core that was mostly devoid of galaxies, which may pose problems for current theories of dark matter behavior. "These results challenge our understanding of the way clusters merge," said Dr. Andisheh Mahdavi of the University of Victoria, British Columbia. "Or, they possibly make us even reexamine the nature of dark matter itself." There are three main components to galaxy clusters: individual galaxies composed of billions of stars, hot gas in between the galaxies, and dark matter, a mysterious substance that dominates the cluster mass and can be detected only through its gravitational effects. Illustration of Abell 520 System Illustration of Abell 520 System Optical telescopes can observe the starlight from the individual galaxies, and can infer the location of dark matter by its subtle light-bending effects on distant galaxies. X-ray telescopes like Chandra detect the multimillion-degree gas. A popular theory of dark matter predicts that dark matter and galaxies should stay together, even during a violent collision, as observed in the case of the so-called Bullet Cluster. However, when the Chandra data of the galaxy cluster system known as Abell 520 was mapped along with the optical data from the Canada-France-Hawaii Telescope and Subaru Telescope atop Mauna Kea, HI, a puzzling picture emerged. A dark matter core was found, which also contained hot gas but no bright galaxies. "It blew us away that it looks like the galaxies are removed from the densest core of dark matter," said Dr. Hendrik Hoekstra, also of University of Victoria. "This would be the first time we've seen such a thing and could be a huge test of our knowledge of how dark matter behaves." Animation of Galaxy Cluster Animation of Galaxy Cluster In addition to the dark matter core, a corresponding "light region" containing a group of galaxies with little or no dark matter was also detected. The dark matter appears to have separated from the galaxies. "The observation of this group of galaxies that is almost devoid of dark matter flies in the face of our current understanding of the cosmos," said Dr. Arif Babul, University of Victoria. "Our standard model is that a bound group of galaxies like this should have a lot of dark matter. What does it mean that this one doesn't?" In the Bullet Cluster, known as 1E 0657-56, the hot gas is slowed down during the collision but the galaxies and dark matter appear to continue on unimpeded. In Abell 520, it appears that the galaxies were unimpeded by the collision, as expected, while a significant amount of dark matter has remained in the middle of the cluster along with the hot gas. Mahdavi and his colleagues have two possible explanations for their findings, both of which are uncomfortable for prevailing theories. The first option is that the galaxies were separated from the dark matter through a complex set of gravitational "slingshots." This explanation is problematic because computer simulations have not been able to produce slingshots that are nearly powerful enough to cause such a separation. The second option is that dark matter is affected not only by gravity, but also by an as-yet-unknown interaction between dark matter particles. This exciting alternative would require new physics and could be difficult to reconcile with observations of other galaxies and galaxy clusters, such as the aforementioned Bullet Cluster. In order to confirm and fully untangle the evidence for the Abell 520 dark matter core, the researchers have secured time for new data from Chandra plus the Hubble Space Telescope. With the additional observations, the team hopes to resolve the mystery surrounding this system. These results are scheduled to appear in the October 20th issue of The Astrophysical Journal. Other members of the research team included David Balam (University of Victoria) and Peter Capak (California Institute of Technology). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. CFHT is a joint facility of National Research Council of Canada, Centre National de la Recherche Scientifique of France, and University of Hawaii.
NASA Astrophysics Data System (ADS)
de la Torre, S.; Guzzo, L.; Peacock, J. A.; Branchini, E.; Iovino, A.; Granett, B. R.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Moscardini, L.; Paioro, L.; Percival, W. J.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Monaco, P.; Nichol, R. C.; Phleps, S.; Wolk, M.; Zamorani, G.
2013-09-01
We present the general real- and redshift-space clustering properties of galaxies as measured in the first data release of the VIPERS survey. VIPERS is a large redshift survey designed to probe in detail the distant Universe and its large-scale structure at 0.5 < z < 1.2. We describe in this analysis the global properties of the sample and discuss the survey completeness and associated corrections. This sample allows us to measure the galaxy clustering with an unprecedented accuracy at these redshifts. From the redshift-space distortions observed in the galaxy clustering pattern we provide a first measurement of the growth rate of structure at z = 0.8: fσ8 = 0.47 ± 0.08. This is completely consistent with the predictions of standard cosmological models based on Einstein gravity, although this measurement alone does not discriminate between different gravity models. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/
NASA Astrophysics Data System (ADS)
Gómez, M.; Geisler, D.; Harris, W. E.; Richtler, T.; Harris, G. L. H.; Woodley, K. A.
2006-03-01
We have investigated a number of globular cluster candidates from a recent wide-field study by Harris et al. (2004a, AJ, 128, 712) of the giant elliptical galaxy NGC 5128. We used the Magellan I telescope + MagIC camera under excellent seeing conditions (0.3 arcsec-0.6 arcsec) and obtained very high resolution images for a sample of 44 candidates. Of these, 15 appear to be bonafide globular clusters in NGC 5128 while the rest are either foreground stars or background galaxies. We also serendipitously discovered 18 new cluster candidates in the same fields. Our images allow us to study the light profiles of the likely clusters, all of which are well resolved. This is the first ground-based study of structural parameters for globular clusters outside the Local Group. We compare the psf-deconvolved profiles with King models and derive structural parameters, ellipticities and surface brightnesses. We compare the derived structural properties with those of other well-studied globular cluster systems. In general, our clusters are similar in size, ellipticity, core radius and central surface brightness to their counterparts in other galaxies, in particular those in NGC 5128 observed with HST by Harris et al. (2002, AJ, 124, 1435). However, our clusters extend to higher ellipticities and larger half-light radii than their Galactic counterparts, as do the Harris et al. sample. Combining our results with those of Harris et al. fills in the gaps previously existing in rh - MV parameter space and indicates that any substantial difference between presumed distinct cluster types in this diagram, including for example the Faint Fuzzies of Larsen & Brodie (2000, AJ, 120, 2938) and the "extended, luminous" M 31 clusters of Huxor et al. (2005, MNRAS, 360, 1007) is now removed and that clusters form a continuum in this diagram. Indeed, this continuum now extends to the realm of the Ultra Compact Dwarfs. The metal-rich clusters in our sample have half-light radii that are almost twice as large in the mean as their metal-poor counterparts, at odds with the generally accepted trend. The possibility exists that this result could be due in part to contamination by background galaxies. We have carried out additional analysis to quantify this contamination. This shows that, although galaxies cannot be easily told apart from clusters in some of the structural diagrams, the combination of excellent image quality and Washington photometry should limit the contamination to roughly 10% of the population of cluster candidates. Finally, our discovery of a substantial number of new cluster candidates in the relatively distant regions of the NGC 5128 halo suggests that current values of the total number of globular clusters may be underestimates.
Too Fast, Too Furious: A Galaxy's Fatal Plunge
NASA Astrophysics Data System (ADS)
2004-01-01
Trailing 200,000-light-year-long streamers of seething gas, a galaxy that was once like our Milky Way is being shredded as it plunges at 4.5 million miles per hour through the heart of a distant cluster of galaxies. In this unusually violent collision with ambient cluster gas, the galaxy is stripped down to its skeletal spiral arms as it is eviscerated of fresh hydrogen for making new stars. The galaxy's untimely demise is offering new clues to solving the mystery of what happens to spiral galaxies in a violent universe. Views of the early universe show that spiral galaxies were once much more abundant in rich clusters of galaxies. But they seem to have been vanishing over cosmic time. Where have these "missing bodies" gone? Astronomers are using a wide range of telescopes and analysis techniques to conduct a "CSI" or Crime Scene Investigator-style look at what is happening to this galaxy inside its cluster's rough neighborhood. "It's a clear case of galaxy assault and battery," says William Keel of the University of Alabama. "This is the first time we have a full suite of results from such disparate techniques showing the crime being committed, and the modus operandi." Keel and colleagues are laying out the "forensic evidence" of the galaxy's late life, in a series of presentations today in Atlanta, Ga., at the 203rd meeting of the American Astronomical Society. Astronomers have assembled the evidence by combining a variety of diagnostic observations from telescopes analyzing the galaxy's appearance in X-ray, optical, and radio light. Parallel observations at different wavelengths trace how stars, gas, and dust are being tossed around and torn from the fragile galaxy, called C153. Though such "distressed" galaxies have been seen before, this one's demise is unusually swift and violent. The galaxy belongs to a cluster of galaxies that slammed into another cluster about 100 million years ago. This galaxy took the brunt of the beating as it fell along a trajectory straight through the dense core of the colliding cluster. "This helps explain the weird X-ray and radio emissions we see," says Keel. "The galaxy is a laboratory for studying how gas can be stripped away when it flies through the hot cluster gas, shutting down star birth and transforming the galaxy." The first suggestion of galactic mayhem in this cluster came in 1994 when the Very Large Array radio telescope near Socorro, N.M., detected an unusual number of radio galaxies in the cluster, called Abell 2125. Radio sources trace both star formation and the feeding of central black holes in galaxy clusters. The radio observations also showed that C153 stood out from the other galaxies as an exceptionally powerful radio source. Keel's team began an extensive program of further observations to uncover details about the galaxies. "This was designed to see what the connection could possibly be between events on the 10-million-light-year scale of the cluster merger and what happens deep inside individual galaxies," says Keel. X-ray observations from the ROSAT satellite (an acronym for the Roentgen Satellite) demonstrated that the cluster contains vast amounts of 36-million-degree Fahrenheit (20-million-degree Kelvin) gas that envelops the galaxies. The gas is concentrated into two main lumps rather than smoothly distributed across the cluster, as is more commonly the case. This bolstered the suspicion that two galaxy clusters are actually colliding. In the mid-to-late 1990s astronomers turned the Mayall 4-meter telescope and the WIYN 3.5-meter telescope at the Kitt Peak National Observatory on the cluster to analyze the starlight via spectroscopy. They found many star-forming systems and even active galactic black holes fueled by the collision. The disintegrating galaxy C153 stood out dramatically when the KPNO telescopes were used to photomap the cluster in color. Astronomers then trained NASA's Hubble Space Telescope (HST) onto C153 and resolved a bizarre shape. They found that the galaxy looks unusually clumpy with many young star clusters and chaotic dust features. Besides the disrupted features in the galaxy's disk, HST also showed that the light in the tail is mostly attributed to recent star formation, providing a direct link to the stripping of the galaxy as it passed through the cluster core. Gas compressed along the galaxy's leading edge, like snow before a plow, ignited a firestorm of new star birth. Evidence of recent star formation also comes from the optical spectrum obtained at the 10-meter Gemini North telescope in Hawaii. The spectrum allows the researchers to estimate the time since the most recent burst of star formation. This conclusion was further bolstered when the Mosaic camera on Kitt Peak's Mayall telescope found a very long tail of extended gas coming off the galaxy. The tail was apparently generated in part by a hurricane of stellar winds boiling off the new star-birth regions and being blown backwards as the galaxy streaks through the surrounding hot gas of the cluster. Spectroscopic observations with the Gemini telescope allowed astronomers to age-date the starburst. They find that 90 percent of C153's blue light is from a population of stars that are 100 million years old. This age corresponds to the time the galaxy should have gone careening through the densest gas in the cluster core. The Gemini spectroscopic observations show the stars are in a regular pattern of orbital motion around the center, as usual for disk galaxies. However, there are multiple widespread clouds of gas moving independently of the stars. "This is an important clue that something beyond gravitational forces must be at work, since stars and gas respond the same way to purely gravitational forces," says Keel. "In other words, the galaxy's gas doesn't know what the stars are doing." NASA's Chandra X-ray Observatory discovered that the cooler clouds detected with optical telescopes and an associated radio feature are embedded in a much larger multimillion-degree trail of gas. Chandra's data indicate that this hot gas was probably enriched in heavy elements by the starburst and driven out of the galaxy by its supersonic motion through the much larger cloud of gas that pervades the cluster. Collectively, these observations offer evidence that the ram pressure of external gas in the cluster is stripping away the galaxy's own gas. This process has long been hypothesized to account for the forced evolution of cluster galaxies. Its aftermath has been seen in several ways. Some nearby examples, Seyfert's Sextet and Stefan's Quintet, are tight clusters that show the aftermath of high-velocity collisions. The galaxy C153 is destined to lose the last vestiges of its spiral arms and become a bland S0-type galaxy having a central bulge and disk, but no spiral-arm structure. These types of galaxies are common in the dense galaxy clusters seen today. Astronomers plan to make new observations with Gemini again in 2004 to study the dynamics of the gas and stars in the tail. The science team members are William Keel (University of Alabama), Frazer Owen (National Radio Astronomy Observatory), Michael Ledlow (Gemini Observatory), and Daniel Wang (University of Massachusetts). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grillo, C.; Christensen, L.; Gobat, R.
2014-05-01
We present a complex strong lensing system in which a double source is imaged five times by two early-type galaxies. We take advantage in this target of the extraordinary multi-band photometric data set obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program, complemented by the spectroscopic measurements of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift value of 3.7 for the source and confirm spectroscopically the membership of the two lenses to the galaxy cluster MACS J1206.2–0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to modelmore » the two lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersion values of 97 ± 3 and 240 ± 6 km s{sup –1}. Interestingly, the total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, which is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of approximately (1.0 ± 0.5) × 10{sup 9} M {sub ☉} (assuming a Salpeter stellar initial mass function). By combining the total and luminous mass estimates of the two lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 ± 0.21 and 0.80 ± 0.32. Remarkably, with these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are approximately two and three times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales, like massive early-type galaxies and dwarf spheroidals, reveals the potential of studies of this kind for improving our knowledge about the internal structure of galaxies. These studies, made possible thanks to the CLASH survey, will allow us to go beyond the current limits posed by the available lens samples in the field.« less
Classification of X-ray sources in the direction of M31
NASA Astrophysics Data System (ADS)
Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.
2012-01-01
M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.
Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy
NASA Technical Reports Server (NTRS)
Fazio, G. G.
1985-01-01
Presented are scientific objectives, engineering analysis and design, and results of technology development for a Three-Meter Balloon-Borne Far-Infrared and Submillimeter Telescope. The scientific rationale is based on two crucial instrumental capabilities: high angular resolution which approaches eight arcseconds at one hundred micron wavelength, and high resolving power spectroscopy with good sensitivity throughout the telescope's 30-micron to 1-mm wavelength range. The high angular resolution will allow us to resolve and study in detail such objects as collapsing protostellar condensations in our own galaxy, clusters of protostars in the Magellanic clouds, giant molecular clouds in nearby galaxies, and spiral arms in distant galaxies. The large aperture of the telescope will permit sensitive spectral line measurements of molecules, atoms, and ions, which can be used to probe the physical, chemical, and dynamical conditions in a wide variety of objects.
Have We Finally Found Pop III Stars?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-08-01
Elusive Population: Population III stars — the theoretical generation of extremely metal-poor stars that should have been formed in the early universe before metals existed — have been conspicuously absent in observations. But a team led by David Sobral (Institute of Astrophysics and Space Sciences, University of Lisbon, and Leiden Observatory) may have changed this paradigm with their recent detection of an extremely bright galaxy in the early universe. The team's broad survey of distant galaxies using ESO's Very Large Telescope provides a glimpse of the universe as it was only 800 million years after the Big Bang. The survey uncovered several unusually bright galaxies — including the brightest galaxy ever seen at this distance, an important discovery by itself. But further scrutiny of this galaxy, named CR7, produced an even more exciting find: a bright pocket of the galaxy contained no sign of any metals. Follow-up with other telescopes confirmed this initial detection. Formation Waves: Sobral and his team postulate that we are observing this galaxy at just the right time to have caught a cluster of Population III stars — the bright, metal-free region of the galaxy — at the end of a wave of early star formation. The observations of CR7 also suggest the presence of regular stars in clumps around the metal-free pocket. These older, surrounding clusters may have formed stars first, helping to ionize a local bubble in the galaxy and allowing us to now observe the light from CR7. It was previously thought that Population III stars might only be found in small, dim galaxies, making them impossible for us to detect. But CR7 provides an interesting alternative: this galaxy is bright, and the candidate Population III stars are surrounded by clusters of normal stars. This suggests that these first-generation stars might in fact be easier to detect than was originally thought. Additional follow-up observations with other telescopes will help to confirm the identity of these stars. In particular, the James Webb Space Telescope is expected to further advance the pursuit of the earliest galaxies and stars in the universe. Citation: David Sobral et al. 2015, ApJ, 808, 139. doi:10.1088/0004-637X/808/2/139
Hubble's View of Little Blue Dots
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-02-01
The recent discovery of a new type of tiny, star-forming galaxy is the latest in a zoo of detections shedding light on our early universe. What can we learn from the unique little blue dots found in archival Hubble data?Peas, Berries, and DotsGreen pea galaxies identified by citizen scientists with Galaxy Zoo. [Richard Nowell Carolin Cardamone]As telescope capabilities improve and we develop increasingly deeper large-scale surveys of our universe, we continue to learn more about small, faraway galaxies. In recent years, increasing sensitivity first enabled the detection of green peas luminous, compact, low-mass (10 billion solar masses; compare this to the Milky Ways 1 trillion solar masses!) galaxies with high rates of star formation.Not long thereafter, we discovered galaxies that form stars similarly rapidly, but are even smaller only 330 million solar masses, spanning less than 3,000 light-years in size. These tiny powerhouses were termed blueberries for their distinctive color.Now, scientists Debra and Bruce Elmegreen (of Vassar College and IBM Research Division, respectively) report the discovery of galaxies that have even higher star formation rates and even lower masses: little blue dots.Exploring Tiny Star FactoriesThe Elmegreens discovered these unique galaxies by exploring archival Hubble data. The Hubble Frontier Fields data consist of deep images of six distant galaxy clusters and the parallel fields next to them. It was in the archival data for two Frontier Field Parallels, those for clusters Abell 2744 and MAS J0416.1-2403, that the authors noticed several galaxies that stand out as tiny, bright, blue objects that are nearly point sources.Top: a few examples of the little blue dots recently identified in two Hubble Frontier Field Parallels. Bottom: stacked images for three different groups of little blue dots. [Elmegreen Elmegreen 2017]The authors performed a search through the two Frontier Field Parallels, discovering a total of 55 little blue dots with masses spanning 105.8107.4solar masses, specific star formation rates of 10-7.4, and redshifts of 0.5 z 5.4.Exploring these little blue dots, the Elmegreens find that the galaxies sizes tend to be just a few hundred light-years across. They are gas-dominated; gas currently outweighs stars in these galaxies by perhaps a factor of five. Impressively, based on the incredibly high specific star formation rates observed in these little blue dots, they appear to have formed all of their stars in the last 1% of the age of the universe for them.An Origin for Globulars?Log-log plot of star formation rate vs. mass for the three main groups of little blue dots (red, green, and blue markers), a fourth group of candidates with different properties (brown markers), and previously discovered local blueberry galaxies. The three main groups of little blue dots appear to be low-mass analogs of blueberries. [Elmegreen Elmegreen 2017]Intriguingly, this rapid star formation might be the key to answering a long-standing question: where do globular clusters come from? The Elmegreens propose that little blue dots might actually be an explanation for the origin of these orbiting, spherical, low-metallicity clusters of stars.The authors demonstrate that, if the current star formation rates observed in little blue dots were to persist for another 50 Myr before feedback or gas exhaustion halted star production, the little blue dots could form enough stars to create clusters of roughly a million solar masses which is large enough to explain the globular clusters we observe today.If little blue dots indeed rapidly produced such star clusters in the past, the clusters could later be absorbed into the halos of todays spiral and elliptical galaxies, appearing to us as the low-metallicity globular clusters that orbit large galaxies today.CitationDebra Meloy Elmegreen and Bruce G. Elmegreen 2017 ApJL 851 L44. doi:10.3847/2041-8213/aaa0ce
Telescope Scientist on the Advanced X-ray Astrophysics Observatory
NASA Technical Reports Server (NTRS)
Smith, Carl M. (Technical Monitor); VanSpeybroeck, Leon; Tananbaum, Harvey D.
2004-01-01
In this period, the Chandra X-ray Observatory continued to perform exceptionally well, with many scientific observations and spectacular results. The HRMA performance continues to be essentially identical to that predicted from ground calibration data. The Telescope Scientist Team has improved the mirror model to provide a more accurate description to the Chandra observers, enabling them to reduce the systematic errors and uncertainties in their data reduction. There also has been good progress in the scientific program. Using the Telescope Scientist GTO time, we carried out an extensive Chandra program to observe distant clusters of galaxies. The goals of this program were to use clusters to derive cosmological constraints and to investigate the physics and evolution of clusters. A total of 71 clusters were observed with ACIS-I; the last observations were completed in December 2003.
NASA Technical Reports Server (NTRS)
Henry, Todd J.; Beedict, G. Fritz; Gies, Douglas R.; Golimowski, David A.; Ianna, Philip A.; Mason, Brian; McArthur, Barbara; Nelan, Edmund; Torres, Guillermo
2004-01-01
The MASSIF (Masses and Stellar Systems with Interferometry) Team will use SIM to investigate the mass content of the Galaxy - from huge stars to barely glimmering brown dwarfs, and from hot white dwarfs to exotic black holes. We will target various samples of the Galactic population to determine and relate the fundamental characteristics of mass, luminosity, age, composition, and multiplicity - attributes that together yield an extensive understanding of the stars. Our samples will include distant clusters that span a factor of 5000 in age, and commonplace stars and substellar objects that lurk near the Sun. The principal goals of the MASSIF Key Project are to (1) define the mass-luminosity relation for main sequence stars in five fundamental clusters so that effects of age and metallicity can be mapped (Trapezium, TW Hydrae, Pleiades, Hyades, and M67), and (2) determine accurate masses for representative examples of nearly every type of star, stellar descendant or brown dwarf in the Galaxy.
2017-12-08
Image release August 19, 2010 An international team of astronomers using gravitational lensing observations from the NASA/ESA Hubble Space Telescope has taken an important step forward in the quest to solve the riddle of dark energy, a phenomenon which mysteriously appears to power the Universe's accelerating expansion. Their results appear in the 20 August 2010 issue of the journal Science. This image shows the galaxy cluster Abell 1689, with the mass distribution of the dark matter in the gravitational lens overlaid (in purple). The mass in this lens is made up partly of normal (baryonic) matter and partly of dark matter. Distorted galaxies are clearly visible around the edges of the gravitational lens. The appearance of these distorted galaxies depends on the distribution of matter in the lens and on the relative geometry of the lens and the distant galaxies, as well as on the effect of dark energy on the geometry of the Universe. Credit: NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM). To view a video of this image go to: www.flickr.com/photos/gsfc/4909967467 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook To read more go to: www.spacetelescope.org/news/heic1014/?utm_source=feedburn...
HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE
NASA Technical Reports Server (NTRS)
2002-01-01
Astronomers are using these three NASA Hubble Space Telescope images to help tackle the question of why distant galaxies have such odd shapes, appearing markedly different from the typical elliptical and spiral galaxies seen in the nearby universe. Do faraway galaxies look weird because they are truly weird? Or, are they actually normal galaxies that look like oddballs, because astronomers are getting an incomplete picture of them, seeing only the brightest pieces? Light from these galaxies travels great distances (billions of light-years) to reach Earth. During its journey, the light is 'stretched' due to the expansion of space. As a result, the light is no longer visible, but has been shifted to the infrared where present instruments are less sensitive. About the only light astronomers can see comes from regions where hot, young stars reside. These stars emit mostly ultraviolet light. But this light is stretched, appearing as visible light by the time it reaches Earth. Studying these distant galaxies is like trying to put together a puzzle with some of the pieces missing. What, then, do distant galaxies really look like? Astronomers studied 37 nearby galaxies to find out. By viewing these galaxies in ultraviolet light, astronomers can compare their shapes with those of their distant relatives. These three Hubble telescope pictures, taken with the Wide Field and Planetary Camera 2, represent a sampling from that survey. Astronomers observed the galaxies in ultraviolet and visible light to study all the stars that make up these 'cities of stars.' The results of their survey support the idea that astronomers are detecting the 'tip of the iceberg' of very distant galaxies. Based on these Hubble ultraviolet images, not all the faraway galaxies necessarily possess intrinsically odd shapes. The results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. The central region of the 'star-burst' spiral galaxy at far left, NGC 3310, shows young and old stars evenly distributed. If this were the case with most galaxies, astronomers would be able to recognize faraway galaxies fairly easily. In most galaxies, however, the stars are segregated by age, making classifying the distant ones more difficult. NGC 3310 is 46 million light-years from Earth in the constellation Ursa Major. The image was taken Sept. 12-13, 2000. The middle image is an example of a tiny, youthful spiral galaxy. ESO 418-008 is representative of the myriad of dwarf galaxies astronomers have seen in deep surveys. These galaxies are much smaller than typical ones like our Milky Way. In this galaxy, the population of stars is more strongly segregated by age. The older stars [red] reside in the center; the younger [blue], in the developing spiral arms. These small, young galaxies may be the building blocks of galaxy formation. ESO 418-008 is 56 million light-years from Earth in the southern constellation Fornax. The image was taken Oct. 10, 2000. The picture at right shows a cosmic collision between two galaxies, UGC 06471 and UGC 06472. These collisions occurred frequently in the early universe, producing galaxies of unusual shapes. The Hubble telescope has spied many such galaxies in the deep field surveys. The ultraviolet images of this galaxy merger suggest the presence of large amounts of dust, which were produced by massive stars that formed before or during this dramatic collision. This dust reddens the starlight in many places, just like a dusty atmosphere reddens the sunset. Studying the effects of this nearby collision could help astronomers explain the peculiar shapes seen in some of the distant galaxies. UGC 06471 and UGC 06472 are 145 million light-years from Earth in the constellation Ursa Major. The image was taken July 11, 2000. Photo credits: NASA, Rogier Windhorst (Arizona State University, Tempe, AZ), and the Hubble mid-UV team
Cannibal Stars Cause Giant Explosions in Fornax Cluster Galaxy
NASA Astrophysics Data System (ADS)
2000-07-01
The VLT Observes Most Remote Novae Ever Seen About 70 million years ago, when dinosaurs were still walking on the Earth, a series of violent thermo-nuclear explosions took place in a distant galaxy. After a very long travel across vast reaches of virtually empty space (70 million light-years, or ~ 7 x 10 20 km), dim light carrying the message about these events has finally reached us. It was recorded by the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile) during an observing programme by a group of Italian astronomers [1]. The subsequent analysis has shown that the observers witnessed the most distant nova outbursts ever seen . They were caused by "stellar cannibalism" in binary systems in which one relatively cool star loses matter to its smaller and hotter companion. An instability results that leads to the ignition of a "hydrogen bomb" on the surface of the receiving star. The "Stella Nova" Phenomenon A stellar outburst of the type now observed with the VLT is referred to as a "Stella Nova" ("new star" in Latin), or just "Nova" . Novae caused by explosions in binary stars in our home galaxy, the Milky Way system, are relatively frequent and about every second or third year one of them is bright enough to be easily visible with the naked eye. For our ancestors, who had no means to see the faint binary star before the explosion, it looked as if a new star had been born in the sky, hence the name. The most common nova explosion occurs in a binary stellar system in which a white dwarf (a very dense and hot, compact star with a mass comparable to that of the Sun and a size like the Earth) accretes hydrogen from a cooler and larger red dwarf star [2]. As the hydrogen collects on the surface of the white dwarf star, it becomes progressively hotter until a thermonuclear explosion is ignited at the bottom of the collected gas. A huge amount of energy is released and causes a million-fold increase in the brightness of the binary system within a few hours. After reaching maximum light within some days or weeks, it begins to fade as the hydrogen supply is exhausted and blown into space. The processed material is ejected at high speeds, up to ~1000 km/sec, and may later be visible as an expanding shell of emitting gas. Altogether, the tremendous flash of light involves the release of about 10 45 ergs in a few weeks, or about as much energy as our Sun produces in 10,000 years. Supernovae explosions that completely destroy heavier stars at the end of their lives are even more powerful. However, in contrast to supernovae and despite the colossal energy production, the progenitor of a nova is not destroyed during the explosion. Some time after an outburst, transfer of hydrogen from the companion star begins anew, and the process repeats itself with explosions taking place about once every 100,000 years. The nova star will finally die of "old age" when the cool companion has been completely cannibalized. Novae as Distance Indicators Due to their exceptional luminosity, novae can be used as powerful beacons that allow relative distances to different types of galaxies to be measured. The measurement is based on the assumption that novae of the same type are intrinsically equally bright, together with the physical law that states that an object's observed brightness decreases with the square of the distance to the observer. Thus, if we observe that a nova in a certain galaxy is one million times fainter than a nearby one, we know that it must be one thousand times more distant. In addition, observations of novae in other galaxies shed light on the history of formation of their stars. Despite their scientific importance, surveys of novae in distant, rich clusters of galaxies have not been very popular among astronomers. Major reasons are probably the inherent observational difficulties and the comparatively low rates of discovery. In the past, with 4-m class telescopes, tens of hours of monitoring of several galaxies have indeed been necessary to detect a few distant novae [3]. VLT observations of NGC 1316 in the Fornax Cluster ESO PR Photo 18a/00 ESO PR Photo 18a/00 [Preview - JPEG: 400 x 448 pix - 28k] [Normal - JPEG: 800 x 895 pix - 136k] [Full-Res - JPEG: 1941 x 2172 pix - 904k] Caption : Colour composite photo of the central area of NGC 1316 , a giant elliptical galaxy in the Fornax cluster of galaxies. Many dark dust clouds and lanes are visible. Some of the star-like objects in the field are globular clusters of stars that belong to the galaxy. It is based on CCD exposures, obtained with the 8.2-m VLT/ANTU telescope and the FORS-1 multi-mode instrument through B (blue), V (green-yellow) and I (here rendered as red) filters, respectively. The "pyramids" above and below the bright centre of the galaxy and the vertical lines at some of the brighter stars are caused by overexposure ("CCD bleeding"). The field measures 6.8 x 6.8 arcmin 2 , with 0.2 arcsec/pixel. The image quality of this composite is about 0.9 arcsec. North is up and East is left. NGC 1316 is a giant "dusty" galaxy ( PR Photo 18a/00 ), located in the Fornax cluster seen in the southern constellation of that name ("The Oven"). This galaxy is of special interest in connection with current attempts to establish an accurate distance scale in the Universe. In 1980 and 1981, NGC 1316 was the host of two supernovae of type Ia , a class of object that is widely used as a "cosmological standard candle" to determine the distance to very distant galaxies, cf. ESO PR 21/98. A precise measurement of the distance to NGC 1316 may therefore provide an independent calibration of the intrinsic brightness of these supernovae. The new observations were performed during 8 nights distributed over the period from January 9 to 19, 2000. They were made in service mode at the 8.2-m VLT/ANTU telescope with the FORS-1 multi-mode instrument, using a 2k x 2k CCD camera with 0.2 arcsec pixels and a field of 6.8 x 6.8 arcmin 2. The exposures lasted 20 min and were carried out with three optical filters (B, V and I). The most distant Novae observed so far ESO PR Photo 18b/00 ESO PR Photo 18b/00 [Preview - JPEG: 400 x 452 pix - 83k] [Normal - JPEG: 800 x 904 pix - 224k] ESO PR Photo 18c/00 ESO PR Photo 18c/00 [Preview - JPEG: 400 x 458 pix - 54k] [Normal - JPEG: 800 x 916 pix - 272k] Caption : Images of two of the novae in NGC 1316 that were discovered during the observational programme described in this Press Release. Both composites show the blue images (B-filter) obtained on January 9 (upper left), 12 (upper right), 15 (lower left) and 19 (lower right), 2000, respectively. The decline of the brightness of the objects is obvious. An analysis of the images that were obtained in blue light (B-filter) resulted in the detection of four novae. They were identified because of the typical change of brightness over the observation period, cf. PR Photos 18b-c/00 , as well as their measured colours. Although the time-consuming reduction of the data and the subsequent astrophysical interpretation is still in progress, the astronomers are already now very satisfied with the outcome. In particular, no less than four novae were detected in a single giant galaxy within only 11 days . This implies a rate of approximately 100 novae/year in NGC 1316, or about 3 times larger than the rate estimated for the Milky Way galaxy. This may (at least partly) be due to the fact that NGC 1316 is of a different type and contains more stars than our own galaxy. The novae in NGC 1316 are quite faint, of about magnitude 24 and decreasing towards 25-26 during the period of observation. This corresponds to nearly 100 million times fainter than what can be seen with the naked eye. The corresponding distance to NGC 1316 is found to be about 70 million light-years . Moreover, the discovery of four novae in one galaxy in the Fornax cluster was possible with only 3 hours of observing time per filter. This clearly shows that the new generation of 8-m class telescopes like the VLT, equipped with the new and large detectors, is able to greatly improve the efficiency of this type of astronomical investigations (by a factor of 10 or more) , as compared to previous searches with 4-m telescopes. The road is now open for exhaustive searches for novae in remote galaxies, with all the resulting benefits, also for the accurate determination of the extragalactic distance scale. Notes [1]: The group consists of Massimo Della Valle (Osservatorio Astrofisico di Arcetri, Firenze, Italy), Roberto Gilmozzi and Rodolfo Viezzer (both ESO). [2]: A graphical illustration of the nova phenomenon can be found at this website. [3]: For example, in 1987, Canadian astronomers Christopher Pritchet and Sidney van den Bergh , in an heroic tour de force with the 4-m Canada-France-Hawaii telescope, found 9 novae after 56 hours of monitoring of 3 giant elliptical galaxies in the Virgo cluster of galaxies.
CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z Almost-Equal-To 11 GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Dan; Postman, Marc; Bradley, Larry
2013-01-01
We present a candidate for the most distant galaxy known to date with a photometric redshift of z = 10.7{sup +0.6} {sub -0.4} (95% confidence limits; with z < 9.5 galaxies of known types ruled out at 7.2{sigma}). This J-dropout Lyman break galaxy, named MACS0647-JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0.591. The images are magnified by factors of {approx}80, 7, and 2, with the brighter two observed at {approx}26th magnitudemore » AB ({approx}0.15 {mu}Jy) in the WFC3/IR F160W filter ({approx}1.4-1.7 {mu}m) where they are detected at {approx}>12{sigma}. All three images are also confidently detected at {approx}>6{sigma} in F140W ({approx}1.2-1.6 {mu}m), dropping out of detection from 15 lower wavelength Hubble Space Telescope filters ({approx}0.2-1.4 {mu}m), and lacking bright detections in Spitzer/IRAC 3.6 {mu}m and 4.5 {mu}m imaging ({approx}3.2-5.0 {mu}m). We rule out a broad range of possible lower redshift interlopers, including some previously published as high-redshift candidates. Our high-redshift conclusion is more conservative than if we had neglected a Bayesian photometric redshift prior. Given CLASH observations of 17 high-mass clusters to date, our discoveries of MACS0647-JD at z {approx} 10.8 and MACS1149-JD at z {approx} 9.6 are consistent with a lensed luminosity function extrapolated from lower redshifts. This would suggest that low-luminosity galaxies could have reionized the universe. However, given the significant uncertainties based on only two galaxies, we cannot yet rule out the sharp drop-off in number counts at z {approx}> 10 suggested by field searches.« less
The two-component giant radio halo in the galaxy cluster Abell 2142
NASA Astrophysics Data System (ADS)
Venturi, T.; Rossetti, M.; Brunetti, G.; Farnsworth, D.; Gastaldello, F.; Giacintucci, S.; Lal, D. V.; Rudnick, L.; Shimwell, T. W.; Eckert, D.; Molendi, S.; Owers, M.
2017-07-01
Aims: We report on a spectral study at radio frequencies of the giant radio halo in A 2142 (z = 0.0909), which we performed to explore its nature and origin. The optical and X-ray properties of the cluster suggest that A 2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. Methods: We performed deep radio observations of A 2142 with the Giant Metrewave Radio Telescope (GMRT) at 608 MHz, 322 MHz, and 234 MHz and with the Very Large Array (VLA) in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions, from the galaxy scale, I.e. 5'', up to 60'' to image the diffuse cluster-scale emission. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A 2142, about 1 Mpc away from the cluster centre. We studied the spectral index in two regions: the central part of the halo, where the X-ray emission peaks and the two brightest dominant galaxies are located; and a second region, known as the ridge (in the direction of the most distant south-eastern cold front), selected to follow the bright part of the halo and X-ray emission. We complemented our deep observations with a preliminary LOw Frequency ARray (LOFAR) image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. Results: The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, I.e. α1.78 GHz118 MHz = 1.33 ± 0.08 . The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, I.e. α1.78 GHz118 MHz 1.5. We propose that the brightest part of the radio halo is powered by the central sloshing in A 2142, in a process similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On the other hand, the steeper ridge may probe particle re-acceleration by turbulence generated either by stirring the gas and magnetic fields on a larger scale or by less energetic mechanisms, such as continuous infall of galaxy groups or an off-axis (minor) merger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrabback, T.; Applegate, D.; Dietrich, J. P.
Here we present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z median = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev–Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass–observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration–mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass–temperature scaling relation ln (E(z)M 500c/10 14 M ⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81more » $$+0.24\\atop{-0.14}$$(stat.)±0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c 200c=5.6$$+3.7\\atop{-1.8}$$.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrabback, T.; Applegate, D.; Dietrich, J. P.
We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z(median) = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in Vmore » - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z) M-500c/10(14)M(circle dot)) = A + 1.5ln (kT/7.2 keV) to A = 1.81(-0.14)(+0.24)(stat.)+/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c(200c) = 5.6(-1.8)(+3.7).« less
Schrabback, T.; Applegate, D.; Dietrich, J. P.; ...
2017-10-14
Here we present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z median = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev–Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass–observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration–mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass–temperature scaling relation ln (E(z)M 500c/10 14 M ⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81more » $$+0.24\\atop{-0.14}$$(stat.)±0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c 200c=5.6$$+3.7\\atop{-1.8}$$.« less
Frequency and properties of bars in cluster and field galaxies at intermediate redshifts
NASA Astrophysics Data System (ADS)
Barazza, F. D.; Jablonka, P.; Desai, V.; Jogee, S.; Aragón-Salamanca, A.; De Lucia, G.; Saglia, R. P.; Halliday, C.; Poggianti, B. M.; Dalcanton, J. J.; Rudnick, G.; Milvang-Jensen, B.; Noll, S.; Simard, L.; Clowe, D. I.; Pelló, R.; White, S. D. M.; Zaritsky, D.
2009-04-01
We present a study of large-scale bars in field and cluster environments out to redshifts of ~0.8 using a final sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. We characterize bars and their host galaxies and look for relations between the presence of a bar and the properties of the underlying disk. We investigate whether the fraction and properties of bars in clusters are different from their counterparts in the field. The properties of bars and disks are determined by ellipse fits to the surface brightness distribution of the galaxies using HST/ACS images in the F814W filter. The bar identification is based on quantitative criteria after highly inclined (> 60°) systems have been excluded. The total optical bar fraction in the redshift range z = 0.4-0.8 (median z = 0.60), averaged over the entire sample, is 25% (20% for strong bars). For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. We find that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher (~31%) than at larger distances (~18%). These findings however rely on a relatively small subsample and might be affected by small number statistics. In agreement with local studies, we find that disk-dominated galaxies have a higher optical bar fraction (~45%) than bulge-dominated galaxies (~15%). This result is based on Hubble types and effective radii and does not change with redshift. The latter finding implies that bar formation or dissolution is strongly connected to the emergence of the morphological structure of a disk and is typically accompanied by a transition in the Hubble type. The question whether internal or external factors are more important for bar formation and evolution cannot be answered definitely. On the one hand, the bar fraction and properties of cluster and field samples of disk galaxies are quite similar, indicating that internal processes are crucial for bar formation. On the other hand, we find evidence that cluster centers are favorable locations for bars, which suggests that the internal processes responsible for bar growth are supported by the typical interactions taking place in such environments. Based on observations collected at the European Southern Observatory, Chile, as part of large programme 166.A-0162 (the ESO Distant Cluster Survey). Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal 9476. Support for this porposal was provided by NASA through a grant from Space Telescope Science Institute.
Methods in Computational Cosmology
NASA Astrophysics Data System (ADS)
Vakili, Mohammadjavad
State of the inhomogeneous universe and its geometry throughout cosmic history can be studied by measuring the clustering of galaxies and the gravitational lensing of distant faint galaxies. Lensing and clustering measurements from large datasets provided by modern galaxy surveys will forever shape our understanding of the how the universe expands and how the structures grow. Interpretation of these rich datasets requires careful characterization of uncertainties at different stages of data analysis: estimation of the signal, estimation of the signal uncertainties, model predictions, and connecting the model to the signal through probabilistic means. In this thesis, we attempt to address some aspects of these challenges. The first step in cosmological weak lensing analyses is accurate estimation of the distortion of the light profiles of galaxies by large scale structure. These small distortions, known as the cosmic shear signal, are dominated by extra distortions due to telescope optics and atmosphere (in the case of ground-based imaging). This effect is captured by a kernel known as the Point Spread Function (PSF) that needs to be fully estimated and corrected for. We address two challenges a head of accurate PSF modeling for weak lensing studies. The first challenge is finding the centers of point sources that are used for empirical estimation of the PSF. We show that the approximate methods for centroiding stars in wide surveys are able to optimally saturate the information content that is retrievable from astronomical images in the presence of noise. The fist step in weak lensing studies is estimating the shear signal by accurately measuring the shapes of galaxies. Galaxy shape measurement involves modeling the light profile of galaxies convolved with the light profile of the PSF. Detectors of many space-based telescopes such as the Hubble Space Telescope (HST) sample the PSF with low resolution. Reliable weak lensing analysis of galaxies observed by the HST camera requires knowledge of the PSF at a resolution higher than the pixel resolution of HST. This PSF is called the super-resolution PSF. In particular, we present a forward model of the point sources imaged through filters of the HST WFC3 IR channel. We show that this forward model can accurately estimate the super-resolution PSF. We also introduce a noise model that permits us to robustly analyze the HST WFC3 IR observations of the crowded fields. Then we try to address one of the theoretical uncertainties in modeling of galaxy clustering on small scales. Study of small scale clustering requires assuming a halo model. Clustering of halos has been shown to depend on halo properties beyond mass such as halo concentration, a phenomenon referred to as assembly bias. Standard large-scale structure studies with halo occupation distribution (HOD) assume that halo mass alone is sufficient to characterize the connection between galaxies and halos. However, assembly bias could cause the modeling of galaxy clustering to face systematic effects if the expected number of galaxies in halos is correlated with other halo properties. Using high resolution N-body simulations and the clustering measurements of Sloan Digital Sky Survey (SDSS) DR7 main galaxy sample, we show that modeling of galaxy clustering can slightly improve if we allow the HOD model to depend on halo properties beyond mass. One of the key ingredients in precise parameter inference using galaxy clustering is accurate estimation of the error covariance matrix of clustering measurements. This requires generation of many independent galaxy mock catalogs that accurately describe the statistical distribution of galaxies in a wide range of physical scales. We present a fast and accurate method based on low-resolution N-body simulations and an empirical bias model for generating mock catalogs. We use fast particle mesh gravity solvers for generation of dark matter density field and we use Markov Chain Monti Carlo (MCMC) to estimate the bias model that connects dark matter to galaxies. We show that this approach enables the fast generation of mock catalogs that recover clustering at a percent-level accuracy down to quasi-nonlinear scales. Cosmological datasets are interpreted by specifying likelihood functions that are often assumed to be multivariate Gaussian. Likelihood free approaches such as Approximate Bayesian Computation (ABC) can bypass this assumption by introducing a generative forward model of the data and a distance metric for quantifying the closeness of the data and the model. We present the first application of ABC in large scale structure for constraining the connections between galaxies and dark matter halos. We present an implementation of ABC equipped with Population Monte Carlo and a generative forward model of the data that incorporates sample variance and systematic uncertainties. (Abstract shortened by ProQuest.).
Intracluster light in clusters of galaxies at redshifts 0.4 < z < 0.8
NASA Astrophysics Data System (ADS)
Guennou, L.; Adami, C.; Da Rocha, C.; Durret, F.; Ulmer, M. P.; Allam, S.; Basa, S.; Benoist, C.; Biviano, A.; Clowe, D.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Johnston, D.; Just, D.; Kron, R.; Kubo, J. M.; Le Brun, V.; Marshall, P.; Mazure, A.; Murphy, K. J.; Pereira, D. N. E.; Rabaça, C. R.; Rostagni, F.; Rudnick, G.; Russeil, D.; Schrabback, T.; Slezak, E.; Tucker, D.; Zaritsky, D.
2012-01-01
Context. The study of intracluster light (ICL) can help us to understand the mechanisms taking place in galaxy clusters, and to place constraints on the cluster formation history and physical properties. However, owing to the intrinsic faintness of ICL emission, most searches and detailed studies of ICL have been limited to redshifts z < 0.4. Aims: To help us extend our knowledge of ICL properties to higher redshifts and study the evolution of ICL with redshift, we search for ICL in a subsample of ten clusters detected by the ESO Distant Cluster Survey (EDisCS), at redshifts 0.4 < z < 0.8, that are also part of our DAFT/FADA Survey. Methods: We analyze the ICL by applying the OV WAV package, a wavelet-based technique, to deep HST ACS images in the F814W filter and to V-band VLT/FORS2 images of three clusters. Detection levels are assessed as a function of the diffuse light source surface brightness using simulations. Results: In the F814W filter images, we detect diffuse light sources in all the clusters, with typical sizes of a few tens of kpc (assuming that they are at the cluster redshifts). The ICL detected by stacking the ten F814W images shows an 8σ detection in the source center extending over a ~50 × 50 kpc2 area, with a total absolute magnitude of -21.6 in the F814W filter, equivalent to about two L∗ galaxies per cluster. We find a weak correlation between the total F814W absolute magnitude of the ICL and the cluster velocity dispersion and mass. There is no apparent correlation between the cluster mass-to-light ratio (M/L) and the amount of ICL, and no evidence of any preferential orientation in the ICL source distribution. We find no strong variation in the amount of ICL between z = 0 and z = 0.8. In addition, we find wavelet-detected compact objects (WDCOs) in the three clusters for which data in two bands are available; these objects are probably very faint compact galaxies that in some cases are members of the respective clusters and comparable to the faint dwarf galaxies of the Local Group. Conclusions: We show that the ICL is prevalent in clusters at least up to redshift z = 0.8. In the future, we propose to detect the ICL at even higher redshifts, to determine wether there is a particular stage of cluster evolution where it was stripped from galaxies and spread into the intracluster medium. Based on observations made at ESO Telescopes at the Paranal Observatory under programme ID 082.A-0374. Also based on the use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archives at the Space Telescope European Coordinating Facility and the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
On the Distribution of Orbital Poles of Milky Way Satellites
NASA Astrophysics Data System (ADS)
Palma, Christopher; Majewski, Steven R.; Johnston, Kathryn V.
2002-01-01
In numerous studies of the outer Galactic halo some evidence for accretion has been found. If the outer halo did form in part or wholly through merger events, we might expect to find coherent streams of stars and globular clusters following orbits similar to those of their parent objects, which are assumed to be present or former Milky Way dwarf satellite galaxies. We present a study of this phenomenon by assessing the likelihood of potential descendant ``dynamical families'' in the outer halo. We conduct two analyses: one that involves a statistical analysis of the spatial distribution of all known Galactic dwarf satellite galaxies (DSGs) and globular clusters, and a second, more specific analysis of those globular clusters and DSGs for which full phase space dynamical data exist. In both cases our methodology is appropriate only to members of descendant dynamical families that retain nearly aligned orbital poles today. Since the Sagittarius dwarf (Sgr) is considered a paradigm for the type of merger/tidal interaction event for which we are searching, we also undertake a case study of the Sgr system and identify several globular clusters that may be members of its extended dynamical family. In our first analysis, the distribution of possible orbital poles for the entire sample of outer (Rgc>8 kpc) halo globular clusters is tested for statistically significant associations among globular clusters and DSGs. Our methodology for identifying possible associations is similar to that used by Lynden-Bell & Lynden-Bell, but we put the associations on a more statistical foundation. Moreover, we study the degree of possible dynamical clustering among various interesting ensembles of globular clusters and satellite galaxies. Among the ensembles studied, we find the globular cluster subpopulation with the highest statistical likelihood of association with one or more of the Galactic DSGs to be the distant, outer halo (Rgc>25 kpc), second-parameter globular clusters. The results of our orbital pole analysis are supported by the great circle cell count methodology of Johnston, Hernquist, & Bolte. The space motions of the clusters Pal 4, NGC 6229, NGC 7006, and Pyxis are predicted to be among those most likely to show the clusters to be following stream orbits, since these clusters are responsible for the majority of the statistical significance of the association between outer halo, second-parameter globular clusters and the Milky Way DSGs. In our second analysis, we study the orbits of the 41 globular clusters and six Milky Way-bound DSGs having measured proper motions to look for objects with both coplanar orbits and similar angular momenta. Unfortunately, the majority of globular clusters with measured proper motions are inner halo clusters that are less likely to retain memory of their original orbit. Although four potential globular cluster/DSG associations are found, we believe three of these associations involving inner halo clusters to be coincidental. While the present sample of objects with complete dynamical data is small and does not include many of the globular clusters that are more likely to have been captured by the Milky Way, the methodology we adopt will become increasingly powerful as more proper motions are measured for distant Galactic satellites and globular clusters, and especially as results from the Space Interferometry Mission (SIM) become available.
NASA Technical Reports Server (NTRS)
Simpson, C.; Eisenhardt, P.
1998-01-01
We investigate the ability of the Space Infrared Telescope Facility's Infrared Array Camera to detect distant (z3) galaxies and measure their photometric redshifts. Our analysis shows that changing the original long wavelength filter specifications provides significant improvements in performance in this and other areas.
Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea, E-mail: alis@ucolick.org
Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ☉} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with amore » lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.« less
High-redshift galaxy populations and their descendants
NASA Astrophysics Data System (ADS)
Guo, Qi; White, Simon D. M.
2009-06-01
We study predictions in the concordance Λ cold dark matter cosmology for the abundance and clustering of high-redshift galaxies and for the properties of their descendants. We focus on three high-redshift populations: Lyman break galaxies (LBGs) at z ~ 3, optically selected star-forming galaxies at z ~ 2 (BXs) and distant red galaxies (DRGs) at z ~ 2. We select galaxies from mock catalogues based on the Millennium Simulation using the observational colour and apparent magnitude criteria. With plausible dust assumptions, our galaxy formation model can simultaneously reproduce the abundances, redshift distributions and clustering of all three observed populations. The star formation rates (SFRs) of model LBGs and BXs are lower than those quoted for the real samples, reflecting differing initial mass functions and scatter in model dust properties. About 85 per cent of model galaxies selected as DRGs are star forming, with SFRs in the range 1 to ~100Msolaryr-1. Model LBGs, BXs and DRGs together account for less than half of all star formation over the range 1.5 < z < 3.2; many massive, star-forming galaxies are predicted to be too heavily obscured to appear in these populations. Model BXs have metallicities which agree roughly with observation, but model LBGs are only slightly more metal poor, in disagreement with recent observational results. The model galaxies are predominantly disc dominated. Stellar masses for LBGs and BXs are ~109.9Msolar, and for DRGs are ~1010.7Msolar. Only about 30 per cent of model galaxies with M* > 1011Msolar are classified as LBGs or BXs at the relevant redshifts, while 65 per cent are classified as DRGs. Almost all model LBGs and BXs are the central galaxies of their dark haloes, but fewer than half of the haloes of any given mass have an LBG or BX central galaxy. Half of all LBG descendants at z = 2 would be identified as BXs, but very few as DRGs. Clustering increases with decreasing redshift for descendants of all three populations, becoming stronger than that of L* galaxies by z = 0, when many have become satellite galaxies and their typical stellar mass has increased by a factor of 10 for LBGs and BXs and by a factor of 3 for DRGs. This growth is dominated by star formation until z ~ 1 and thereafter by mergers. Merging is predicted to be more important for LBG and DRG descendants than for BX descendants. Most LBGs and DRGs end up as red ellipticals, while BXs have a more varied fate. Over 70 per cent of local galaxies with M* > 1011Msolar are predicted to have at least one LBG/BX/DRG progenitor.
Simulations of extragalactic magnetic fields and of their observables
NASA Astrophysics Data System (ADS)
Vazza, F.; Brüggen, M.; Gheller, C.; Hackstein, S.; Wittor, D.; Hinz, P. M.
2017-12-01
The origin of extragalactic magnetic fields is still poorly understood. Based on a dedicated suite of cosmological magneto-hydrodynamical simulations with the ENZO code we have performed a survey of different models that may have caused present-day magnetic fields in galaxies and galaxy clusters. The outcomes of these models differ in cluster outskirts, filaments, sheets and voids and we use these simulations to find observational signatures of magnetogenesis. With these simulations, we predict the signal of extragalactic magnetic fields in radio observations of synchrotron emission from the cosmic web, in Faraday rotation, in the propagation of ultra high energy cosmic rays, in the polarized signal from fast radio bursts at cosmological distance and in spectra of distant blazars. In general, primordial scenarios in which present-day magnetic fields originate from the amplification of weak (⩽nG ) uniform seed fields result in more homogeneous and relatively easier to observe magnetic fields than astrophysical scenarios, in which present-day fields are the product of feedback processes triggered by stars and active galaxies. In the near future the best evidence for the origin of cosmic magnetic fields will most likely come from a combination of synchrotron emission and Faraday rotation observed at the periphery of large-scale structures.
PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Gladders, Michael D.; Florian, Michael K.
2016-09-01
Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that ofmore » the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.« less
PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Gladders, Michael D.; Rangel, Esteban M.
2016-08-29
Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that ofmore » the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.« less
Clusters, Groups, and Filaments in the Chandra Deep Field-South up to Redshift 1
NASA Astrophysics Data System (ADS)
Dehghan, S.; Johnston-Hollitt, M.
2014-03-01
We present a comprehensive structure detection analysis of the 0.3 deg2 area of the MUSYC-ACES field, which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogs, we find 62 overdense regions up to redshifts of 1, including clusters, groups, and filaments. We also present the detection of a relatively small void of ~10 Mpc2 at z ~ 0.53. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalog of all structures present, including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular, we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that 80% of these structures are associated with diffuse, soft-band (0.4-1 keV) X-ray emission, including 90% of all objects classified as clusters. The presence of soft-band X-ray emission in these massive structures (M 200 >= 4.9 × 1013 M ⊙) provides a strong independent confirmation of our methodology and classification scheme. In the closest two clusters identified (z < 0.13) high-quality optical imaging from the Deep2c field of the Garching-Bonn Deep Survey reveals the cD galaxies and demonstrates that they sit at the center of the detected X-ray emission. Nearly 60% of the clusters, groups, and filaments are detected in the known enhanced density regions of the CDFS at z ~= 0.13, 0.52, 0.68, and 0.73. Additionally, all of the clusters, bar the most distant, are found in these overdense redshift regions. Many of the clusters and groups exhibit signs of ongoing formation seen in their velocity distributions, position within the detected cosmic web, and in one case through the presence of tidally disrupted central galaxies exhibiting trails of stars. These results all provide strong support for hierarchical structure formation up to redshifts of 1.
The Peculiarities in O-Type Galaxy Clusters
NASA Astrophysics Data System (ADS)
Panko, E. A.; Emelyanov, S. I.
We present the results of analysis of 2D distribution of galaxies in galaxy cluster fields. The Catalogue of Galaxy Clusters and Groups PF (Panko & Flin) was used as input observational data set. We selected open rich PF galaxy clusters, containing 100 and more galaxies for our study. According to Panko classification scheme open galaxy clusters (O-type) have no concentration to the cluster center. The data set contains both pure O-type clusters and O-type clusters with overdence belts, namely OL and OF types. According to Rood & Sastry and Struble & Rood ideas, the open galaxy clusters are the beginning stage of cluster evolution. We found in the O-type clusters some types of statistically significant regular peculiarities, such as two crossed belts or curved strip. We suppose founded features connected with galaxy clusters evolution and the distribution of DM inside the clusters.
No sign (yet) of intergalactic globular clusters in the Local Group
NASA Astrophysics Data System (ADS)
Mackey, A. D.; Beasley, M. A.; Leaman, R.
2016-07-01
We present Gemini Multi-Object Spectrograph (GMOS) imaging of 12 candidate intergalactic globular clusters (IGCs) in the Local Group, identified in a recent survey of the Sloan Digital Sky Survey (SDSS) footprint by di Tullio Zinn & Zinn. Our image quality is sufficiently high, at ˜0.4-0.7 arcsec, that we are able to unambiguously classify all 12 targets as distant galaxies. To reinforce this conclusion we use GMOS images of globular clusters in the M31 halo, taken under very similar conditions, to show that any genuine clusters in the putative IGC sample would be straightforward to distinguish. Based on the stated sensitivity of the di Tullio Zinn & Zinn search algorithm, we conclude that there cannot be a significant number of IGCs with MV ≤ -6 lying unseen in the SDSS area if their properties mirror those of globular clusters in the outskirts of M31 - even a population of 4 would have only a ≈1 per cent chance of non-detection.
Hubble and ESO's VLT provide unique 3D views of remote galaxies
NASA Astrophysics Data System (ADS)
2009-03-01
Astronomers have obtained exceptional 3D views of distant galaxies, seen when the Universe was half its current age, by combining the twin strengths of the NASA/ESA Hubble Space Telescope's acute eye, and the capacity of ESO's Very Large Telescope to probe the motions of gas in tiny objects. By looking at this unique "history book" of our Universe, at an epoch when the Sun and the Earth did not yet exist, scientists hope to solve the puzzle of how galaxies formed in the remote past. ESO PR Photo 10a/09 A 3D view of remote galaxies ESO PR Photo 10b/09 Measuring motions in 3 distant galaxies ESO PR Video 10a/09 Galaxies in collision For decades, distant galaxies that emitted their light six billion years ago were no more than small specks of light on the sky. With the launch of the Hubble Space Telescope in the early 1990s, astronomers were able to scrutinise the structure of distant galaxies in some detail for the first time. Under the superb skies of Paranal, the VLT's FLAMES/GIRAFFE spectrograph (ESO 13/02) -- which obtains simultaneous spectra from small areas of extended objects -- can now also resolve the motions of the gas in these distant galaxies (ESO 10/06). "This unique combination of Hubble and the VLT allows us to model distant galaxies almost as nicely as we can close ones," says François Hammer, who led the team. "In effect, FLAMES/GIRAFFE now allows us to measure the velocity of the gas at various locations in these objects. This means that we can see how the gas is moving, which provides us with a three-dimensional view of galaxies halfway across the Universe." The team has undertaken the Herculean task of reconstituting the history of about one hundred remote galaxies that have been observed with both Hubble and GIRAFFE on the VLT. The first results are coming in and have already provided useful insights for three galaxies. In one galaxy, GIRAFFE revealed a region full of ionised gas, that is, hot gas composed of atoms that have been stripped of one or several electrons. This is normally due to the presence of very hot, young stars. However, even after staring at the region for more than 11 days, Hubble did not detect any stars! "Clearly this unusual galaxy has some hidden secrets," says Mathieu Puech, lead author of one of the papers reporting this study. Comparisons with computer simulations suggest that the explanation lies in the collision of two very gas-rich spiral galaxies. The heat produced by the collision would ionise the gas, making it too hot for stars to form. Another galaxy that the astronomers studied showed the opposite effect. There they discovered a bluish central region enshrouded in a reddish disc, almost completely hidden by dust. "The models indicate that gas and stars could be spiralling inwards rapidly," says Hammer. This might be the first example of a disc rebuilt after a major merger (ESO 01/05). Finally, in a third galaxy, the astronomers identified a very unusual, extremely blue, elongated structure -- a bar -- composed of young, massive stars, rarely observed in nearby galaxies. Comparisons with computer simulations showed the astronomers that the properties of this object are well reproduced by a collision between two galaxies of unequal mass. "The unique combination of Hubble and FLAMES/GIRAFFE at the VLT makes it possible to model distant galaxies in great detail, and reach a consensus on the crucial role of galaxy collisions for the formation of stars in a remote past," says Puech. "It is because we can now see how the gas is moving that we can trace back the mass and the orbits of the ancestral galaxies relatively accurately. Hubble and the VLT are real ‘time machines' for probing the Universe's history", adds Sébastien Peirani, lead author of another paper reporting on this study. The astronomers are now extending their analysis to the whole sample of galaxies observed. "The next step will then be to compare this with closer galaxies, and so, piece together a picture of the evolution of galaxies over the past six to eight billion years, that is, over half the age of the Universe," concludes Hammer.
From Cosmic Dusk till Dawn with RELICS
NASA Astrophysics Data System (ADS)
Bradac, Marusa
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and the epoch of reionization? What are the conditions in typical lowmass, star-forming galaxies at z 4? Why is galaxy evolution dependent on environment? Recent observations indicate several critical puzzles in studies that address these questions. Chief among these, galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang) and their star formation history differs from what is predicted from simulations. Furthermore, the details of the mechanisms that regulate star formation and morphological transformation in dense environments are still unknown. To solve these puzzles of galaxy evolution, we will use 41 galaxy clusters from the RELICS program (Reionization Lensing Cluster Survey) that are among the most powerful cosmic telescopes. Their magnification will allow us to study stellar properties of a large number of galaxies all the way to the reionization era. Accurate knowledge of stellar masses, ages, and star formation rates (SFRs) requires measuring both rest-frame UV and optical light, which only Spitzer can probe at z>0.5-11 for a sufficiently large sample of typical galaxies. This program will combine Spitzer imaging from two large programs, Director Discretionary Time (DDT) and the SRELICS program led by the PI.The main challenge in a study such as this is the capability to perform reliable photometry in crowded fields. Our team recently helped develop TPHOT, which is a much improved and much faster version of previously available codes. TPHOT is specifically designed to extract fluxes in crowded fields with very different PSFs. We will combine Spitzer photometry with ground based imaging and spectroscopy to obtain robust measurements of galaxy star formation rates, stellar masses, and stellar ages. This program will be a crucial legacy complement to previous Spitzer/IRAC deep blank field surveys and cluster studies, and will open up new parameter space by probing intrinsically fainter objects than most current surveys with a significantly improved sample variance over deep field surveys. It will allow us to study the properties (e.g. SFRs and stellar masses) of a large number of galaxies (200 at z=6-10), thus meeting our goal of reconstructing the cosmic SFR density with sufficient precision to better understand the role of galaxies in the reionization process. We will measure the presence (or absence) of established stellar populations with Spitzer for the largest sample to date. Furthermore this proposal will allow us to study the SFRs of the intrinsically faint (and magnified) intermediate redshift (z 4) galaxies, as well as the stellar mass function of z=0.3-0.7 galaxy members of our cluster sample, thereby expanding our understanding of star formation from reionization to the epoch of galaxy formation and dense environments. Many of the science goals of this proposal are main science drivers for JWST. Due to magnification our effective depth and resolution match those of the JWST blank fields and affords us a sneak preview of JWST sources with Spitzer now. This program will thus provide a valuable test-bed for simulations, observation planning and source selection just in time for JWST Cycle 1.
Dark matter maps reveal cosmic scaffolding.
Massey, Richard; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Leauthaud, Alexie; Finoguenov, Alexis; Capak, Peter; Bacon, David; Aussel, Hervé; Kneib, Jean-Paul; Koekemoer, Anton; McCracken, Henry; Mobasher, Bahram; Pires, Sandrine; Refregier, Alexandre; Sasaki, Shunji; Starck, Jean-Luc; Taniguchi, Yoshi; Taylor, Andy; Taylor, James
2007-01-18
Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter--whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built.
Cluster-cluster correlations and constraints on the correlation hierarchy
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.; Gott, J. R., III
1988-01-01
The hypothesis that galaxies cluster around clusters at least as strongly as they cluster around galaxies imposes constraints on the hierarchy of correlation amplitudes in hierachical clustering models. The distributions which saturate these constraints are the Rayleigh-Levy random walk fractals proposed by Mandelbrot; for these fractal distributions cluster-cluster correlations are all identically equal to galaxy-galaxy correlations. If correlation amplitudes exceed the constraints, as is observed, then cluster-cluster correlations must exceed galaxy-galaxy correlations, as is observed.
An astrophysics data program investigation of cluster evolution
NASA Technical Reports Server (NTRS)
Kellogg, Edwin M.
1990-01-01
A preliminary status report is given on studies using the Einstein x ray observations of distant clusters of galaxies that are also candidates for gravitational lenses. The studies will determine the location and surface brightness distribution of the x ray emission from clusters associated with selected gravitational lenses. The x ray emission comes from hot gas that traces out the total gravitational potential in the cluster, so its distribution is approximately the same as the mass distribution causing gravitational lensing. Core radii and x ray virial masses can be computed for several of the brighter Einstein sources, and preliminary results are presented on A2218. Preliminary status is also reported on a study of the optical data from 0024+16. A provisional value of 1800 to 2200 km/s for the equivalent velocity dispersion is obtained. The ultimate objective is to extract the mass of the gravitational lens, and perhaps more detailed information on the distribution of matter as warranted. A survey of the Einstein archive shows that the clusters A520, A1704, 3C295, A2397, A1722, SC5029-247, A3186 and A370 have enough x ray counts observed to warrant more detailed optical observations of arcs for comparison. Mass estimates for these clusters can therefore be obtained from three independent sources: the length scale (core radius) that characterizes the density dropoff of the x ray emitting hot gas away from its center, the velocity dispersion of the galaxies moving in the cluster potential, and gravitational bending of light by the total cluster mass. This study will allow the comparison of these three techniques and ultimately improve the knowledge of cluster masses.
NIR Spectroscopic Observation of Massive Galaxies in the Protocluster at z = 3.09
NASA Astrophysics Data System (ADS)
Kubo, Mariko; Yamada, Toru; Ichikawa, Takashi; Kajisawa, Masaru; Matsuda, Yuichi; Tanaka, Ichi
2015-01-01
We present the results of near-infrared spectroscopic observations of the K-band-selected candidate galaxies in the protocluster at z = 3.09 in the SSA22 field. We observed 67 candidates with K AB < 24 and confirmed redshifts of the 39 galaxies at 2.0 < z spec < 3.4. Of the 67 candidates, 24 are certainly protocluster members with 3.04 <= z spec <= 3.12, which are massive red galaxies that have been unidentified in previous optical observations of the SSA22 protocluster. Many distant red galaxies (J - K AB > 1.4), hyper extremely red objects (J - K AB > 2.1), Spitzer MIPS 24 μm sources, active galactic nuclei (AGNs) as well as the counterparts of Lyα blobs and the AzTEC/ASTE 1.1 mm sources in the SSA22 field are also found to be protocluster members. The mass of the SSA22 protocluster is estimated to be ~2-5 × 1014 M ⊙, and this system is plausibly a progenitor of the most massive clusters of galaxies in the current universe. The reddest (J - K AB >= 2.4) protocluster galaxies are massive galaxies with M star ~ 1011 M ⊙ showing quiescent star formation activities and plausibly dominated by old stellar populations. Most of these massive quiescent galaxies host moderately luminous AGNs detected by X-ray. There are no significant differences in the [O III] λ5007/Hβ emission line ratios and [O III] λ5007 line widths and spatial extents of the protocluster galaxies from those of massive galaxies at z ~ 2-3 in the general field.
NASA Astrophysics Data System (ADS)
Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Borncamp, David; Gunning, Heather C.; Hilbert, Bryan; Khandrika, Harish G.; Lucas, Ray A.; Ogaz, Sara; Porterfield, Blair; Grogin, Norman A.; Robberto, Massimo; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team
2016-01-01
The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The first four of these clusters are now complete, namely Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223, with each of these having been observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, using ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W). The remaining two clusters, Abell 370 and Abell S1063, are currently in progress. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including a total of 24 separate cumulative-depth data releases during each epoch, as well as full-depth version 1.0 releases at the end of each completed epoch. These products include all the full-depth distortion-corrected mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The resulting high-level science products are delivered via the Mikulski Archive for Space Telescopes (MAST) to the community on a rapid timescale to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.
NASA Astrophysics Data System (ADS)
Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Borncamp, David; Gunning, Heather C.; Hilbert, Bryan; Khandrika, Harish G.; Lucas, Ray A.; Ogaz, Sara; Porterfield, Blair; Sunnquist, Ben; Grogin, Norman A.; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team
2016-06-01
The Hubble Space Telescope Frontier Fields program (PI: J. Lotz) is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The first four of these clusters are now complete, namely Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223, with each of these having been observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, using ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W). The remaining two clusters, Abell 370 and Abell S1063, are currently in progress, with the first epoch for each having been completed. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth v0.5 data releases during each epoch, as well as full-depth version 1.0 releases after the completion of each epoch. These products include all the full-depth distortion-corrected mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.
NASA Astrophysics Data System (ADS)
Chilingarian, Igor V.; Asa’d, Randa
2018-05-01
The star formation (SFH) and chemical enrichment (CEH) histories of Local Group galaxies are traditionally studied by analyzing their resolved stellar populations in a form of color–magnitude diagrams obtained with the Hubble Space Telescope. Star clusters can be studied in integrated light using ground-based telescopes to much larger distances. They represent snapshots of the chemical evolution of their host galaxy at different ages. Here we present a simple theoretical framework for the chemical evolution based on the instantaneous recycling approximation (IRA) model. We infer a CEH from an SFH and vice versa using observational data. We also present a more advanced model for the evolution of individual chemical elements that takes into account the contribution of supernovae type Ia. We demonstrate that ages, iron, and α-element abundances of 15 star clusters derived from the fitting of their integrated optical spectra reliably trace the CEH of the Large Magellanic Cloud obtained from resolved stellar populations in the age range 40 Myr < t < 3.5 Gyr. The CEH predicted by our model from the global SFH of the LMC agrees remarkably well with the observed cluster age–metallicity relation. Moreover, the present-day total gas mass of the LMC estimated by the IRA model (6.2× {10}8 {M}ȯ ) matches within uncertainties the observed H I mass corrected for the presence of molecular gas (5.8+/- 0.5× {10}8 {M}ȯ ). We briefly discuss how our approach can be used to study SFHs of galaxies as distant as 10 Mpc at the level of detail that is currently available only in a handful of nearby Milky Way satellites. .
NASA Find Clues that May Help Identify Dark Matter
2015-03-26
Using observations from NASA’s Hubble Space Telescope and Chandra X-ray Observatory, astronomers have found that dark matter does not slow down when colliding with itself, meaning it interacts with itself less than previously thought. Researchers say this finding narrows down the options for what this mysterious substance might be. Dark matter is an invisible matter that makes up most of the mass of the universe. Because dark matter does not reflect, absorb or emit light, it can only be traced indirectly by, such as by measuring how it warps space through gravitational lensing, during which the light from a distant source is magnified and distorted by the gravity of dark matter. Read more: 1.usa.gov/1E5LcpO Caption: Here are images of six different galaxy clusters taken with NASA's Hubble Space Telescope (blue) and Chandra X-ray Observatory (pink) in a study of how dark matter in clusters of galaxies behaves when the clusters collide. A total of 72 large cluster collisions were studied. Credit: NASA and ESA mage Credit: NASA and ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The baryon content of the Cosmic Web
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-01-01
Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589
Montero-Dorta, Antonio D.; Bolton, Adam S.; Shu, Yiping
2017-02-24
When two galaxies that are distant from one another (and also distant from Earth) happen to lie along a single line of sight in the sky, the resulting phenomenon is known as a “gravitational lens.” The gravity of the more nearby galaxy warps the image of the more distant galaxy into multiple images or complete rings (know as “Einstein rings” since the quantitative description of the gravitational lensing effect relies on Einstein’s theory of gravity.) Strong gravitational lens systems have multiple scientific applications. If the more distant galaxy happens to contain a time-varying quasar (bright emission powered by a supermassivemore » black hole at the galaxy’s center) or supernova explosion, the time delay between multiple images can be used as a probe of the expansion rate of the universe (and other cosmological parameters.) Forecasting the incidence of gravitational lenses in future large-scale sky surveys relies on quantifying the population of potential lens galaxies in the universe in terms of their abundance and their lensing efficiency. The lensing efficiency is most directly correlated with the galaxy’s “velocity dispersion:” the characteristic speed with which stars in the galaxy are orbiting under the influence of the galaxy’s overall gravitational field. This paper uses previous results quantifying the combined demographics of galaxies in brightness and velocity dispersion to compute the demographics of massive “elliptical” galaxies in velocity dispersion alone, thereby providing the essential ingredient for forecasting the expected incidence of strong gravitational lensing by these types of galaxies in future sky surveys such as DESI and LSST. These results are also applicable to the association of massive galaxies with their associated dark-matter “halos,” which is an essential ingredient for the most accurate and informative extraction of cosmological parameters from the data sets produced by large-scale surveys of the universe.« less
First Visiting Astronomers at VLT KUEYEN
NASA Astrophysics Data System (ADS)
2000-04-01
A Deep Look into the Universal Hall of Mirrors Starting in the evening of April 1, 2000, Ghislain Golse and Francisco Castander from the Observatoire Midi-Pyrénées (Toulouse, France) [1] were the first "visiting astronomers" at Paranal to carry out science observations with the second 8.2-m VLT Unit Telescope, KUEYEN . Using the FORS2 multi-mode instrument as a spectrograph, they measured the distances to a number of very remote galaxies, located far out in space behind two clusters of galaxies. Such observations may help to determine the values of cosmological parameters that define the geometry and fate of the Universe. After two nights of observations, the astronomers came away from Paranal with a rich harvest of data and a good feeling. "We are delighted that the telescope performed so well. It is really impressive how far out one can reach with the VLT, compared to the `smaller' 4-meter telescopes with which we previously observed. It opens a new window towards the distant, early Universe. Now we are eager to start reducing and analysing these data!" , Francisco Castander said. Measuring the Geometry of the Universe with Multiple Images in Cluster Lenses The present programme is typical of the fundamental cosmological studies that are now being undertaken with the ESO Very Large Telescope (VLT). Clusters of galaxies are very massive objects. Their gravitational fields intensify ("magnify") and distort the images of galaxies behind them. The magnification factor for the faint background galaxy population seen within a few arcminutes of the centre of a massive cluster at intermediate distance (redshift z ~ 0.2 - 0.4, i.e., corresponding to a look-back time of approx. 2 - 4 billion years) is typically larger than 2, and occasionally much larger. The clusters thus function as gravitational lenses . They may be regarded as "natural telescopes" that help us to see fainter objects further out into space than would otherwise be possible with our own telescopes. In a few cases, the images of the objects behind the clusters are split into several components. Knowing the distance to the objects for which we see multiple images and the distribution of matter in the cluster that produce the lensing effect allows to determine the geometry of the universe in the corresponding direction , independently of its rate of expansion. For a given cluster lens, a minimum of three such multiple-imaged objects with measured distances and positions is in principle sufficient to determine the geometry of the universe in that direction, as expressed by the values of two of the main cosmological parameters, the density (Omega: ) and the cosmological constant (Lambda: ). Detailed observations of these cosmic mirages thus have a direct implication for our understanding of the universe in which we live. A study of the clusters of galaxies Abell 1689 and MS 1008 The first visiting astronomers to KUEYEN used FORS2 to measure the distances to some of the background objects that are being multiple-lensed by the cluster of galaxies Abell 1689 . This cluster was first discovered by American astronomer George Abell some thirty years ago when he studied photographic plates obtained at the Palomar Observatory. Since then, this cluster has been further observed and deep images taken by the Hubble Space Telescope (HST) have revealed at least five multiple-lensed objects in this direction. However, because of the faintness of these images, it has so far not been possible to measure the distances to those objects. This has only become possible now, with the advent of new and powerful astronomical instruments like the FORS2 spectrograph at KUEYEN. At the beginning of the night - before Abell 1689 was high enough in the sky to be observable - the astronomers also observed another cluster lens, MS 1008 . This cluster was discovered with the Einstein X-ray satellite and has been studied in great detail by means of images in different colours by the VLT ANTU telescope during the Science Verification phase. Spectra of distant lensed objects ESO PR Photo 10a/00 ESO PR Photo 10a/00 [Preview - JPEG: 400 x 446 pix - 67k] [Normal - JPEG: 800 x 892 pix - 1.0M] [Full-Res - JPEG: 942 x 1050 pix - 1.3M] Caption : Multi-colour image of the field in the galaxy cluster MS 1008, with a 24.5-mag lensed quasar (arrow) observed at redshift z = 4.0 during the present study. This image was obtained by the VLT/ANTU telescope during its Science Verification phase. The photo is based on a composite of four images with exposure times and seeing conditions of 82 min and 0.72 arcsec (B band), 90 min and 0.65 arcsec (V band), 90 min and 0.64 arcsec (R band) and 67 min and 0.55 arcsec (I band), respectively. The field is 1.8 x 1.6 arcmin 2 ; North is up and East is left. ESO PR Photo 10b/00 ESO PR Photo 10b/00 [Preview - JPEG: 400 x 341 pix - 46k] [Normal - JPEG: 800 x 681 pix - 112k] Caption : The spectrum obtained with FORS2 at KUEYEN of a quasar at redshift z = 4.0, lensed by the massive cluster of galaxies MS 1008. The redshifted Lyman-alpha line from hydrogen (rest wavelength 1216 Å in the far-ultraviolet part of the spectrum) is clearly seen in emission at 6025 Å as a high peak in the red spectral region. Another emission line, from four times ionized nitrogen (rest wavelength 1240 Å), is seen in the right wing of the Lyman-alpha line. The spectrum was obtained after two hours of exposure through a 1.0 arcsec slit in good atmospheric conditions (seeing: 0.6 arcsec). With the comparatively large field-of-view of FORS2 at VLT KUEYEN, the Toulouse team obtained spectra of very faint objects, not only in the cluster core region where the multiple-lensed background galaxies are found, but also in the outer regions of the cluster where the images of objects are not split into several images, but only magnified. One of the faint objects ( Photo 10a/00 ) turned out to be a very distant quasar with a redshift of about z = 4.0, as determined by the Lyman-alpha line well visible in the red region of its spectrum ( Photo 10b/00 ). The quasar is therefore located at a large distance that corresponds to when the universe was quite young, about 10% of its current age. The measured redshift was only slightly higher than what was predicted by the observers ( z = 3.6) on the basis of earlier multi-colour photometric measurements from VLT/ANTU [2]. The magnitude of this quasar is 24.5, i.e., 25 million times fainter than the faintest star that can be seen with the naked eye at a dark site. As the observers remark, this quasar, at the measured magnitude and redshift, is an intrinsically fainter member of its class. A good start Another dozen objects also showed spectral features that will allow the Toulouse team to determine their distances, once their data have been properly analysed. The detection of these spectral features in such distant and faint objects is a powerful demonstration of the extraordinary sensitivity of the KUEYEN/FORS2 constellation. It is also a fine result from the very first observing night with this new facility and an good illustration of the effective use of space- and ground-based telescopes within the same research project. The Toulouse team, with other colleagues, including Ian Smail (Durham University, UK) and Harald Ebeling (Institute for Astrophysics, Hawaii, USA), have again applied for observing time to continue this programme at the VLT , in order to measure the distances of multiple-lensed objects behind other massive clusters of galaxies observed with HST . With more observations of this type available, it will become possible to determine more accurately Omega and Lambda. Notes [1] The present project on the determination of cosmological parameters defining the geometry of the universe by means of multiple images that are gravitationally lensed by massive clusters of galaxies is carried out by a group of astronomers from the Observatoire Midi-Pyrenees (Toulouse, France), including Francisco Castander , Ghislain Golse , Jean-Paul Kneib and Genevieve Soucail . [2] The photometric redshift method to determine cosmological distances is based on measurement of colours. Depending on the redshift and hence, the distance, distinct features in the spectra of galaxies produce changes in the observed colours. More information about the photometric redshift code HyperZ is available at http://webast.ast.obs-mip.fr/hyperz.
High molecular gas fractions in normal massive star-forming galaxies in the young Universe.
Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B
2010-02-11
Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts
NASA Astrophysics Data System (ADS)
Schirmer, Mischa; Garrel, Vincent; Sivo, Gaetano; Marin, Eduardo; Carrasco, Eleazar R.
2017-11-01
Multi-conjugated adaptive optics (MCAO) yield nearly diffraction-limited images at 2 μm wavelengths. Currently, Gemini Multi-Conjugate Adaptive Optics System (GeMS)/Gemini South Adaptive Optics Imager (GSAOI) at Gemini South is the only MCAO facility instrument at an 8-m telescope. Using real data, and for the first time, we investigate the gain in depth and signal-to-noise ratios (S/N) when MCAO is employed for Ks-band observations of distant galaxies. Our analysis is based on the Frontier Fields cluster MACS J0416.1-2403, observed with GeMS/GSAOI (near diffraction-limited) and compared against Very Large Telescope/HAWK-I (natural seeing) data. Using galaxy number counts, we show that the substantially increased thermal background and lower optical throughput of the MCAO unit are fully compensated for by the wavefront correction because the galaxy images can be measured in smaller apertures with less sky noise. We also performed a direct comparison of the S/N of sources detected in both data sets. For objects with intrinsic angular sizes corresponding to half the HAWK-I image seeing, the gain in S/N is 40 per cent. Even smaller objects experience a boost in S/N by up to a factor of 2.5 despite our suboptimal natural guide star configuration. The depth of the near diffraction limited images is more difficult to quantify than that of seeing limited images, due to a strong dependence on the intrinsic source profiles. Our results emphasize the importance of cooled MCAO systems for Ks-band observations with future, extremely large telescopes.
The Cosmic Dance of Distant Galaxies
NASA Astrophysics Data System (ADS)
2006-03-01
GIRAFFE at VLT reveals the turbulent life of distant galaxies Studying several tens of distant galaxies, an international team of astronomers found that galaxies had the same amount of dark matter relative to stars 6 billion years ago as they have now. If confirmed, this suggests a much closer interplay between dark and normal matter than previously believed. The scientists also found that as many as 4 out of 10 galaxies are out of balance. These results shed a new light on how galaxies form and evolve since the Universe was only half its current age. ESO PR Photo 10a/06 ESO PR Photo 10a/06 Collision Between Galaxies (Artist's Impression) "This may imply that collisions and merging are important in the formation and evolution of galaxies", said François Hammer, Paris Observatory, France, and one of the leaders of the team [1]. The scientists were interested in finding out how galaxies that are far away - thus seen as they were when the Universe was younger - evolved into the ones nearby. In particular, they wanted to study the importance of dark matter in galaxies. "Dark matter, which composes about 25% of the Universe, is a simple word to describe something we really don't understand," said Hector Flores, co-leader. "From looking at how galaxies rotate, we know that dark matter must be present, as otherwise these gigantic structures would just dissolve." In nearby galaxies, and in our own Milky Way for that matter, astronomers have found that there exists a relation between the amount of dark matter and ordinary stars: for every kilogram of material within a star there is roughly 30 kilograms of dark matter. But does this relation between dark and ordinary matter still hold in the Universe's past? ESO PR Photo 10b/06 ESO PR Photo 10b/06 Mapping Distant Galaxies (FLAMES-GIRAFFE/VLT) This required measuring the velocity in different parts of distant galaxies, a rather tricky experiment: previous measurements were indeed unable to probe these galaxies in sufficient detail, since they had to select a single slit, i.e. a single direction, across the galaxy. Things changed with the availability of the multi-object GIRAFFE spectrograph [2], now installed on the 8.2-m Kueyen Unit Telescope of ESO's Very Large Telescope (VLT) at the Paranal Observatory (Chile). In one mode, known as "3-D spectroscopy" or "integral field", this instrument can obtain simultaneous spectra of smaller areas of extended objects like galaxies or nebulae. For this, 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) , cf. ESO PR 01/02 , are used to make meticulous measurements of distant galaxies. Each IFU is a microscopic, state-of-the-art two-dimensional lens array with an aperture of 3 x 2 arcsec2 on the sky. It is like an insect's eye, with twenty micro-lenses coupled with optical fibres leading the light recorded at each point in the field to the entry slit of the spectrograph. ESO PR Photo 10c/06 ESO PR Photo 10c/06 Dark Matter and Stellar Mass in Distant Galaxies "GIRAFFE on ESO's VLT is the only instrument in the world that is able to analyze simultaneously the light coming from 15 galaxies covering a field of view almost as large as the full moon," said Mathieu Puech, lead author of one the papers presenting the results [3]. "Every galaxy observed in this mode is split into continuous smaller areas where spectra are obtained at the same time." The astronomers used GIRAFFE to measure the velocity fields of several tens of distant galaxies, leading to the surprising discovery that as much as 40% of distant galaxies were "out of balance" - their internal motions were very disturbed - a possible sign that they are still showing the aftermath of collisions between galaxies. When they limited themselves to only those galaxies that have apparently reached their equilibrium, the scientists found that the relation between the dark matter and the stellar content did not appear to have evolved during the last 6 billions years. Thanks to its exquisite spectral resolution, GIRAFFE also allows for the first time to study the distribution of gas as a function of its density in such distant galaxies. The most spectacular results reveal a possible outflow of gas and energy driven by the intense star-formation within the galaxy and a giant region of very hot gas (HII region) in a galaxy in equilibrium that produces many stars. "Such a technique can be expanded to obtain maps of many physical and chemical characteristics of distant galaxies, enabling us to study in detail how they assembled their mass during their entire life," said François Hammer. "In many respects, GIRAFFE and its multi-integral field mode gives us a first flavour of what will be achieved with future extremely large telescopes." Notes [1]: The team comprises: François Hammer, Hector Flores, Mathieu Puech, Chantal Balkowski (GEPI - Observatoire de Paris), Philippe Amram (LAM - Observatoire Astronomique Marseille-Provence), Göran Östlin (Stockholm Observatory), Thomas Marquart (Dept. of Astronomy and Space Physics - Uppsala, Sweden) and Matthew D. Lehnert (MPE, Germany). [2]: This complex and unique instrument allows obtaining high-quality spectra of a large variety of celestial objects, from individual stars in the Milky Way and other nearby galaxies, to very distant galaxies. It functions by means of multiple optical fibres that guide the light from the telescope's focal plane into the entry slit of the spectrograph. Here the light is dispersed into its different colours. GIRAFFE and these fibres are an integral part of the advanced Fibre Large Array Multi-Element Spectrograph (FLAMES) facility which also includes the OzPoz positioner and an optical field corrector. It is the outcome of a collaboration between ESO, Observatoire de Paris-Meudon, Observatoire de Genève-Lausanne and the Anglo Australian Observatory (AAO). More details are available in ESO PR 01/02. The principle of this instrument involves the positioning in the telescope's focal plane of a large number of optical fibres. This is done in such a way that each of them guides the light from one particular celestial object towards the spectrograph that records the spectra of all these objects simultaneously. The size of the available field-of-view is no less than about 25 arcmin across, i.e. almost as large as the full moon. The individual fibres are moved and positioned "on the objects" in the field by means of the OzPoz positioner. See also ESO PR 13/02. [3]: The results will be published in a series of three papers in the leading research journal, Astronomy and Astrophysics (click on the title to access the papers): "3D spectroscopy with VLT/GIRAFFE - I: The true Tully-Fisher relationship at z~ 0.6" (Flores H., Hammer F., Puech M. et al.); "3D spectroscopy with VLT/GIRAFFE - II: Are Luminous Compact Galaxies merger remnants?" (Puech M., Hammer F., Flores H. et al.); and "3D spectroscopy with VLT/GIRAFFE - III: Mapping electron densities in distant galaxies" (Puech M., Flores H., Hammer F. & Lehnert M.D.).
Galaxy Evolution Explorer Spies Band of Stars
2007-06-20
Globular star cluster NGC 362, in a false-color image from NASA's Galaxy Evolution Explorer. Image credit: NASA/JPL-Caltech/Univ. of Virginia The Galaxy Evolution Explorer's ultraviolet eyes have captured a globular star cluster, called NGC 362, in our own Milky Way galaxy. In this new image, the cluster appears next to stars from a more distant neighboring galaxy, known as the Small Magellanic Cloud. "This image is so interesting because it allows a study of the final stages of evolution of low-mass stars in NGC 362, as well as the history of star formation in the Small Magellanic Cloud," said Ricardo Schiavon of the University of Virginia, Charlottesville, Va. Globular clusters are densely packed bunches of old stars scattered in galaxies throughout the universe. NGC 362, located 30,000 light-years away, can be spotted as the dense collection of mostly yellow-tinted stars surrounding a large white-yellow spot toward the top-right of this image. The white spot is actually the core of the cluster, which is made up of stars so closely packed together that the Galaxy Evolution Explorer cannot see them individually. The light blue dots surrounding the cluster core are called extreme horizontal branch stars. These stars used to be very similar to our sun and are nearing the end of their lives. They are very hot, with temperatures reaching up to about four times that of the surface of our sun (25,000 Kelvin or 45,500 degrees Fahrenheit). A star like our sun spends most of its life fusing hydrogen atoms in its core into helium. When the star runs out of hydrogen in its core, its outer envelope will expand. The star then becomes a red giant, which burns hydrogen in a shell surrounding its inner core. Throughout its life as a red giant, the star loses a lot of mass, then begins to burn helium at its core. Some stars will have lost so much mass at the end of this process, up to 85 percent of their envelopes, that most of the envelope is gone. What is left is a very hot ultraviolet-bright core, or extreme horizontal branch star. Blue dots scattered throughout the image are hot, young stars in the Small Magellanic Cloud, a satellite galaxy of the Milky Way located approximately 200,000 light-years away. The stars in this galaxy are much brighter intrinsically than extreme horizontal branch stars, but they appear just as bright because they are farther away. The blue stars in the Small Magellanic Cloud are only about a few tens of millions of years old, much younger than the approximately 10-million-year-old stars in NGC 362. Because NGC 362 sits on the northern edge of the Small Magellanic Cloud galaxy, the blue stars are denser toward the south, or bottom, of the image. Some of the yellow spots in this image are stars in the Milky Way galaxy that are along this line of sight. Astronomers believe that some of the other spots, particularly those closer to NGC 362, might actually be a relatively ultraviolet-dim family of stars called "blue stragglers." These stars are formed from collisions or close encounters between two closely orbiting stars in a globular cluster. "This observation could only be done with the Galaxy Evolution Explorer because it is the only ultraviolet imager available to the astronomical community with such a large field of view," said Schiavon. This image is a false-color composite, where light detected by the Galaxy Evolution Explorer's far-ultraviolet detector is colored blue, and light from the telescope's near-ultraviolet detector is red. Written by Linda Vu, Spitzer Science Center Media contact: Whitney Clavin/JPL (818) 354-4673
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.
2009-01-01
Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.
Elegant spiral hides a hungry monster
2015-10-12
NGC 4639 is a beautiful example of a type of galaxy known as a barred spiral. It lies over 70 million light-years away in the constellation of Virgo and is one of about 1500 galaxies that make up the Virgo Cluster. In this image, taken by the NASA/ESA Hubble Space Telescope, one can clearly see the bar running through the bright, round core of the galaxy. Bars are found in around two thirds of spiral galaxies, and are thought to be a natural phase in their evolution. The galaxy’s spiral arms are sprinkled with bright regions of active star formation. Each of these tiny jewels is actually several hundred light-years across and contains hundreds or thousands of newly formed stars. But NGC 4639 also conceals a dark secret in its core — a massive black hole that is consuming the surrounding gas. This is known as an active galactic nucleus (AGN), and is revealed by characteristic features in the spectrum of light from the galaxy and by X-rays produced close to the black hole as the hot gas plunges towards it. Most galaxies are thought to contain a black hole at the centre. NGC 4639 is in fact a very weak example of an AGN, demonstrating that AGNs exist over a large range of activity, from galaxies like NGC 4639 to distant quasars, where the parent galaxy is almost completely dominated by the emissions from the AGN.
STScI-PRC02-11a FARAWAY GALAXIES PROVIDE A STUNNING 'WALLPAPER' BACKDROP FOR A RUNAWAY GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
Against a stunning backdrop of thousands of galaxies, this odd-looking galaxy with the long streamer of stars appears to be racing through space, like a runaway pinwheel firework. This picture of the galaxy UGC 10214 was taken by the Advanced Camera for Surveys (ACS), which was installed aboard NASA's Hubble Space Telescope in March during Servicing Mission 3B. Dubbed the 'Tadpole,' this spiral galaxy is unlike the textbook images of stately galaxies. Its distorted shape was caused by a small interloper, a very blue, compact galaxy visible in the upper left corner of the more massive Tadpole. The Tadpole resides about 420 million light-years away in the constellation Draco. Seen shining through the Tadpole's disk, the tiny intruder is likely a hit-and-run galaxy that is now leaving the scene of the accident. Strong gravitational forces from the interaction created the long tail of debris, consisting of stars and gas that stretch out more than 280,000 light-years. Numerous young blue stars and star clusters, spawned by the galaxy collision, are seen in the spiral arms, as well as in the long 'tidal' tail of stars. Each of these clusters represents the formation of up to about a million stars. Their color is blue because they contain very massive stars, which are 10 times hotter and 1 million times brighter than our Sun. Once formed, the star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. These clusters will eventually become old globular clusters similar to those found in essentially all halos of galaxies, including our own Milky Way. Two prominent clumps of young bright blue stars in the long tail are separated by a 'gap' -- a section that is fainter than the rest of the tail. These clumps of stars will likely become dwarf galaxies that orbit in the Tadpole's halo. The galactic carnage and torrent of star birth are playing out against a spectacular backdrop: a 'wallpaper pattern' of 6,000 galaxies. These galaxies represent twice the number of those discovered in the legendary Hubble Deep Field, the orbiting observatory's 'deepest' view of the heavens, taken in 1995 by the Wide Field and Planetary Camera 2. The ACS picture, however, was taken in one-twelfth the time it took to observe the original Hubble Deep Field. In blue light, ACS sees even fainter objects than were seen in the 'deep field.' The galaxies in the ACS picture, like those in the deep field, stretch back to nearly the beginning of time. They are a myriad of shapes and represent fossil samples of the universe's 13-billion-year evolution. The ACS image is so sharp that astronomers can identify distant colliding galaxies, the 'building blocks' of galaxies, an exquisite 'Whitman's Sampler' of galaxies, and many extremely faraway galaxies. ACS made this observation on April 1 and 9, 2002. The color image is constructed from three separate images taken in near-infrared, orange, and blue filters. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA The ACS Science Team: (H. Ford, G. Illingworth, M. Clampin, G. Hartig, T. Allen, K. Anderson, F. Bartko, N. Benitez, J. Blakeslee, R. Bouwens, T. Broadhurst, R. Brown, C. Burrows, D. Campbell, E. Cheng, N. Cross, P. Feldman, M. Franx, D. Golimowski, C. Gronwall, R. Kimble, J. Krist, M. Lesser, D. Magee, A. Martel, W. J. McCann, G. Meurer, G. Miley, M. Postman, P. Rosati, M. Sirianni, W. Sparks, P. Sullivan, H. Tran, Z. Tsvetanov, R. White, and R. Woodruff)
Gas loss in simulated galaxies as they fall into clusters
Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A.
2014-01-01
We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip. PMID:24843167
Gas loss in simulated galaxies as they fall into clusters.
Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A
2014-06-03
We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip.
C III] Emission in Star-forming Galaxies Near and Far
NASA Astrophysics Data System (ADS)
Rigby, J. R.; Bayliss, M. B.; Gladders, M. D.; Sharon, K.; Wuyts, E.; Dahle, H.; Johnson, T.; Peña-Guerrero, M.
2015-11-01
We measure [C iii] 1907, C iii] 1909 Å emission lines in 11 gravitationally lensed star-forming galaxies at z ˜ 1.6-3, finding much lower equivalent widths than previously reported for fainter lensed galaxies. While it is not yet clear what causes some galaxies to be strong C iii] emitters, C iii] emission is not a universal property of distant star-forming galaxies. We also examine C iii] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST and IUE. Twenty percent of these local galaxies show strong C iii] emission, with equivalent widths < -5 Å. Three nearby galaxies show C iii] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf-Rayet galaxies. At all redshifts, strong C iii] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C iii] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.
C III] Emission in Star-Forming Galaxies Near and Far
NASA Technical Reports Server (NTRS)
Rigby, J, R.; Bayliss, M. B.; Gladders, M. D.; Sharon, K.; Wuyts, E.; Dahle, H.; Johnson, T.; Pena-Guerrero, M.
2015-01-01
We measure C III Lambda Lambda 1907, 1909 Angstrom emission lines in eleven gravitationally-lensed star-forming galaxies at zeta at approximately 1.6-3, finding much lower equivalent widths than previously reported for fainter lensed galaxies (Stark et al. 2014). While it is not yet clear what causes some galaxies to be strong C III] emitters, C III] emission is not a universal property of distant star-forming galaxies. We also examine C III] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST, and IUE. Twenty percent of these local galaxies show strong C III] emission, with equivalent widths less than -5 Angstrom. Three nearby galaxies show C III] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf-Rayet galaxies. At all redshifts, strong C III] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C III] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.
The HST Frontier Fields: Complete High-Level Science Data Products for All 6 Clusters
NASA Astrophysics Data System (ADS)
Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team
2017-01-01
The Hubble Space Telescope Frontier Fields program (PI: J. Lotz) is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.
NASA Astrophysics Data System (ADS)
Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team
2017-06-01
The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.
Lens models under the microscope: comparison of Hubble Frontier Field cluster magnification maps
NASA Astrophysics Data System (ADS)
Priewe, Jett; Williams, Liliya L. R.; Liesenborgs, Jori; Coe, Dan; Rodney, Steven A.
2017-02-01
Using the power of gravitational lensing magnification by massive galaxy clusters, the Hubble Frontier Fields provide deep views of six patches of the high-redshift Universe. The combination of deep Hubble imaging and exceptional lensing strength has revealed the greatest numbers of multiply-imaged galaxies available to constrain models of cluster mass distributions. However, even with O(100) images per cluster, the uncertainties associated with the reconstructions are not negligible. The goal of this paper is to show the diversity of model magnification predictions. We examine seven and nine mass models of Abell 2744 and MACS J0416, respectively, submitted to the Mikulski Archive for Space Telescopes for public distribution in 2015 September. The dispersion between model predictions increases from 30 per cent at common low magnifications (μ ˜ 2) to 70 per cent at rare high magnifications (μ ˜ 40). MACS J0416 exhibits smaller dispersions than Abell 2744 for 2 < μ < 10. We show that magnification maps based on different lens inversion techniques typically differ from each other by more than their quoted statistical errors. This suggests that some models underestimate the true uncertainties, which are primarily due to various lensing degeneracies. Though the exact mass sheet degeneracy is broken, its generalized counterpart is not broken at least in Abell 2744. Other local degeneracies are also present in both clusters. Our comparison of models is complementary to the comparison of reconstructions of known synthetic mass distributions. By focusing on observed clusters, we can identify those that are best constrained, and therefore provide the clearest view of the distant Universe.
Infalling groups and galaxy transformations in the cluster A2142
NASA Astrophysics Data System (ADS)
Einasto, Maret; Deshev, Boris; Lietzen, Heidi; Kipper, Rain; Tempel, Elmo; Park, Changbom; Gramann, Mirt; Heinämäki, Pekka; Saar, Enn; Einasto, Jaan
2018-03-01
Context. Superclusters of galaxies provide dynamical environments for the study of the formation and evolution of structures in the cosmic web from galaxies, to the richest galaxy clusters, and superclusters themselves. Aims: We study galaxy populations and search for possible merging substructures in the rich galaxy cluster A2142 in the collapsing core of the supercluster SCl A2142, which may give rise to radio and X-ray structures in the cluster, and affect galaxy properties of this cluster. Methods: We used normal mixture modelling to select substructure of the cluster A2142. We compared alignments of the cluster, its brightest galaxies (hereafter BCGs), subclusters, and supercluster axes. The projected phase space (PPS) diagram and clustercentric distributions are used to analyse the dynamics of the cluster and study the distribution of various galaxy populations in the cluster and subclusters. Results: We find several infalling galaxy groups and subclusters. The cluster, supercluster, BCGs, and one infalling subcluster are all aligned. Their orientation is correlated with the alignment of the radio and X-ray haloes of the cluster. Galaxy populations in the main cluster and in the outskirts subclusters are different. Galaxies in the centre of the main cluster at the clustercentric distances 0.5 h-1 Mpc (Dc/Rvir < 0.5, Rvir = 0.9 h-1 Mpc) have older stellar populations (with the median age of 10-11 Gyr) than galaxies at larger clustercentric distances. Star-forming and recently quenched galaxies are located mostly at the clustercentric distances Dc ≈ 1.8 h-1 Mpc, where subclusters fall into the cluster and the properties of galaxies change rapidly. In this region the median age of stellar populations of galaxies is about 2 Gyr. Galaxies in A2142 on average have higher stellar masses, lower star formation rates, and redder colours than galaxies in rich groups. The total mass in infalling groups and subclusters is M ≈ 6 × 1014 h-1 M⊙, that is approximately half of the mass of the cluster. This mass is sufficient for the mass growth of the cluster from redshift z = 0.5 (half-mass epoch) to the present. Conclusions: Our analysis suggests that the cluster A2142 has formed as a result of past and present mergers and infallen groups, predominantly along the supercluster axis. Mergers cause complex radio and X-ray structure of the cluster and affect the properties of galaxies in the cluster, especially at the boundaries of the cluster in the infall region. Explaining the differences between galaxy populations, mass, and richness of A2142, and other groups and clusters may lead to better insight about the formation and evolution of rich galaxy clusters.
Astronomers Take the Measure of Dark Matter in the universe
NASA Astrophysics Data System (ADS)
2001-09-01
Using NASA's Chandra X-ray Observatory, astronomers have obtained their most accurate determination to date of the amount of dark matter in galaxy clusters, the most massive objects in the universe. The results provide an important step towards a precise measurement of the total matter density of the universe. These results were presented today by Steven W. Allen of the Institute of Astronomy in Cambridge, UK at a press conference at the `Two Years of Science with Chandra' symposium in Washington, DC. Allen and his colleagues Robert W. Schmidt and Andrew C. Fabian at the Institute of Astronomy observed a carefully chosen sample of five of the largest clusters of galaxies known, whose distances range from 1.5 to 4 billion light years. The team made temperature maps of the hot multimillion-degree gas that fills the clusters. "The temperature maps can be used to determine the mass needed to prevent the hot gas from escaping the clusters" explained Allen. "We found that the stars in the galaxies and hot gas together contribute only about 13 percent of the mass. The rest must be in the form of dark matter." The nature of the dark matter is not known, but most astronomers think that it is in the form of an as yet unknown type of elementary particle that contributes to gravity through its mass but otherwise interacts weakly with normal matter. These dark matter particles are often called WIMPs, an acronym for `weakly interacting massive particles'. Clusters of galaxies are vast concentrations of galaxies, hot gas and dark matter spanning millions of light years, held together by gravity. Because of their size, clusters of galaxies are thought to provide a fair sample of the proportion of dark matter in the universe as a whole. "The implication of our results is that we live in a low-density universe" said Allen. "The total mass-density is only about thirty percent of that needed to stop the universe from expanding forever." The result reinforces recent findings from measurements of the cosmic microwave background radiation, the large-scale distribution of galaxies, and the properties of distant supernovas. The Institute of Astronomy team minimized systematic errors in their work by placing independent constraints on the masses of the clusters using data from NASA's Hubble Space Telescope and the Canada-France-Hawaii Telescope atop Mauna Kea, HI. The new Chandra results also show how the average X-ray luminosity and temperature of the hot gas varies with the mass of a cluster. These findings should allow astronomers to use the data from large cluster catalogues, for which only X-ray luminosities are generally available, to get even more accurate measurements of the mean mass density of the universe, and to understand further the processes by which clusters form and grow. The Chandra observations were carried out using the Advanced CCD Imaging Spectrometer, which was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program, and TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
Hubble Spotlights a Celestial Sidekick
2017-12-08
This image was captured by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS), a highly efficient wide-field camera covering the optical and near-infrared parts of the spectrum. While this lovely image contains hundreds of distant stars and galaxies, one vital thing is missing — the object Hubble was actually studying at the time! This is not because the target has disappeared. The ACS actually uses two detectors: the first captures the object being studied — in this case an open star cluster known as NGC 299 — while the other detector images the patch of space just ‘beneath’ it. This is what can be seen here. Technically, this picture is merely a sidekick of the actual object of interest — but space is bursting with activity, and this field of bright celestial bodies offers plenty of interest on its own. It may initially seem to show just stars, but a closer look reveals many of these tiny objects to be galaxies. The spiral galaxies have arms curving out from a bright center. The fuzzier, less clearly shaped galaxies might be ellipticals. Some of these galaxies contain millions or even billions of stars, but are so distant that all of their starry residents are contained within just a small pinprick of light that appears to be the same size as a single star! The bright blue dots are very hot stars, sometimes distorted into crosses by the struts supporting Hubble’s secondary mirror. The redder dots are cooler stars, possibly in the red giant phase when a dying star cools and expands. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Thölken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; Lovisari, Lorenzo; Allen, Steven W.; Hoekstra, Henk; Applegate, Douglas; Buddendiek, Axel; Hicks, Amalia
2018-03-01
Context. Observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased. Aims: We study the very luminous, high redshift (z = 0.902) galaxy cluster Cl J120958.9+495352 using XMM-Newton data. We measure global cluster properties and study the temperature profile and the cooling time to investigate the dynamical status with respect to the presence of a cool core. We use Hubble Space Telescope (HST) weak lensing data to estimate its total mass and determine the gas mass fraction. Methods: We perform a spectral analysis using an XMM-Newton observation of 15 ks cleaned exposure time. As the treatment of the background is crucial, we use two different approaches to account for the background emission to verify our results. We account for point spread function effects and deproject our results to estimate the gas mass fraction of the cluster. We measure weak lensing galaxy shapes from mosaic HST imaging and select background galaxies photometrically in combination with imaging data from the William Herschel Telescope. Results: The X-ray luminosity of Cl J120958.9+495352 in the 0.1-2.4 keV band estimated from our XMM-Newton data is LX = (13.4+1.2-1.0) × 1044 erg/s and thus it is one of the most X-ray luminous clusters known at similarly high redshift. We find clear indications for the presence of a cool core from the temperature profile and the central cooling time, which is very rare at such high redshifts. Based on the weak lensing analysis, we estimate a cluster mass of M500/1014 M⊙ = 4.4+2.2-2.0 (stat.) + 0.6 (sys.) and a gas mass fraction of fgas,2500 = 0.11-0.03+0.06 in good agreement with previous findings for high redshift and local clusters.
Violence in the hearts of galaxies: aberration or adolescence?
Mundell, Carole G
2002-12-15
Violent activity in the nuclei of galaxies has long been considered a curiosity in its own right; manifestations of this phenomenon include distant quasars in the early Universe and comparatively nearby Seyfert galaxies, both thought to be powered by the release of gravitational potential energy as material from the host galaxy accretes onto a central supermassive black hole (SMBH). Traditionally, the broader study of the formation, structure and evolution of galaxies has largely excluded active galactic nuclei. Recently, however, this situation has changed dramatically, both observationally and theoretically, with the realization that the growth and influence of the SMBH, the origin and development of galaxies and nuclear activity at different epochs in the Universe may be intimately related. The most spectacular fireworks seen in distant quasars may be relatively easy to explain, since the era of greatest quasar activity seems to coincide with turbulent dynamics at the epoch of galaxy formation in the young, gas-rich Universe. Ubiquitous black holes are believed to be a legacy of this violent birth. Alternatively, black holes may be the seeds that drive galaxy formation in the first place. Closer to home, and hence more recently in the history of the Universe, a fraction of comparatively ordinary galaxies, similar to our own, has reignited their central engines, albeit at a lower level of activity. Since these galaxies are more established than their younger and more distant counterparts, the activity here is all the more puzzling. Whatever the mechanisms involved, they are likely to play an important role in galaxy evolution. I review the intriguing evidence for causal links between SMBHs, nuclear activity and the formation and evolution of galaxies, and describe opportunities for testing these relationships using the next generation of earthbound and space-borne astronomical facilities.
NASA Astrophysics Data System (ADS)
Silk, Joseph
Our universe was born billions of years ago in a hot, violent explosion of elementary particles and radiation - the big bang. What do we know about this ultimate moment of creation, and how do we know it? Drawing upon the latest theories and technology, this new edition of The big bang, is a sweeping, lucid account of the event that set the universe in motion. Joseph Silk begins his story with the first microseconds of the big bang, on through the evolution of stars, galaxies, clusters of galaxies, quasars, and into the distant future of our universe. He also explores the fascinating evidence for the big bang model and recounts the history of cosmological speculation. Revised and updated, this new edition features all the most recent astronomical advances, including: Photos and measurements from the Hubble Space Telescope, Cosmic Background Explorer Satellite (COBE), and Infrared Space Observatory; the latest estimates of the age of the universe; new ideas in string and superstring theory; recent experiments on neutrino detection; new theories about the presence of dark matter in galaxies; new developments in the theory of the formation and evolution of galaxies; the latest ideas about black holes, worm holes, quantum foam, and multiple universes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A., E-mail: crawford@saao.ac.za, E-mail: wirth@keck.hawaii.edu, E-mail: mab@astro.wisc.edu
2014-05-01
We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 < z < 0.9) to investigate the physical processes driving galaxy evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters havemore » similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster.« less
Using ALMA to Resolve the Nature of the Early Star-Forming Large-Scale Structure G073
NASA Astrophysics Data System (ADS)
Hill, R.; Kneissl, R.; Polletta, M.; Clarenc, B.; Dole, H. A.; Nesvadba, N. P. H.; Scott, D.; Béthermin, M.; Lagache, G.; Montier, L.
2017-07-01
Galaxy clusters at large redshift are key targets for understanding the nature of the early Universe, yet locating them has proven to be very challenging. Recently, a large sample of over 2000 high-z candidate structures have been found using Planck's all-sky submillimetre maps, and a subset of 234 have been followed up with Herschel-SPIRE, which showed that the emission can be attributed to large far-infrared overdensities. However, the individual galaxies giving rise to the emission seen by Planck and Herschel have not yet been resolved nor characterized, so we do not yet know whether these sources are the progenitors of present-day, massive galaxy clusters. In an attempt to address this, we targeted the eight brightest Herschel-SPIRE peaks in the centre of the Planck peak G073.4-57.5 using ALMA at 1.3 mm, and complemented these observations with multi-wavelength data from Spitzer-IRAC at 3.6 and 4.5 μm and from CFHT-WIRCam at 1.2 and 2.2 μm. We also utilize data on G073.4-57.5 at 850 μm from JCMT's SCUBA-2 instrument. We detect a total of 18 millimetre galaxies brighter than 0.3mJy in 2.4arcmin2. In every case we are able to match these to their NIR counterparts, and while the most significant SCUBA-2 sources are not included in the ALMA pointings, we find an 8σ detection when stacking the ALMA source positions in the 850 μm data. We derive photometric redshifts, IR luminosities, star-formation rates, stellar masses, dust temperatures, and dust masses; the photometric redshifts are concentrated around z ≃ 1 and z ≃ 2 and the NIR colours show a "red" sequence, while the star-formation rates indicate that three of the galaxies are "starbursts". Serendipitous CO line detections of two of the galaxies appear to match their photometric redshifts with z = 2.05. We find that the ALMA source density is 8-30 times higher than average background estimates, and thus also larger than seen in typical "proto-cluster" fields. The evidence seems to be indicating the existence of two distant galaxy clusters aligned along the line of sight; however, a more complete mapping of the Planck and Herschel field at high resolution, coupled with spectroscopic redshifts, will be necessary to confirm this.
The Evolution of the Observed Hubble Sequence over the past 6Gyr
NASA Astrophysics Data System (ADS)
Delgado-Serrano, R.; Hammer, F.; Yang, Y. B.; Puech, M.; Flores, H.; Rodrigues, M.
2011-10-01
During the past years we have confronted serious problems of methodology concerning the morphological and kinematic classification of distant galaxies. This has forced us to create a new simple and effective morphological classification methodology, in order to guarantee a morpho-kinematic correlation, make the reproducibility easier and restrict the classification subjectivity. Giving the characteristic of our morphological classification, we have thus been able to apply the same methodology, using equivalent observations, to representative samples of local and distant galaxies. It has allowed us to derive, for the first time, the distant Hubble sequence (~6 Gyr ago), and determine a morphological evolution of galaxies over the past 6 Gyr. Our results strongly suggest that more than half of the present-day spirals had peculiar morphologies, 6 Gyr ago.
NASA Astrophysics Data System (ADS)
Thomas, R.; Le Fèvre, O.; Le Brun, V.; Cassata, P.; Garilli, B.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Tasca, L. A. M.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vanzella, E.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.
2017-01-01
The observed UV rest-frame spectra of distant galaxies are the result of their intrinsic emission combined with absorption along the line of sight produced by the inter-galactic medium (IGM). Here we analyse the evolution of the mean IGM transmission Tr(Lyα) and its dispersion along the line of sight for 2127 galaxies with 2.5 < z < 5.5 in the VIMOS Ultra Deep Survey (VUDS). We fitted model spectra combined with a range of IGM transmission to the galaxy spectra using the spectral fitting algorithm GOSSIP+. We used these fits to derive the mean IGM transmission towards each galaxy for several redshift slices from z = 2.5 to z = 5.5. We found that the mean IGM transmission defined as Tr(Lyα) = e- τ (with τ as the HI optical depth) is 79%, 69%, 59%, 55%, and 46% at redshifts 2.75, 3.22, 3.70, 4.23, and 4.77, respectively. We compared these results to measurements obtained from quasar lines of sight and found that the IGM transmission towards galaxies is in excellent agreement with quasar values up to redshift z 4. We found tentative evidence for a higher IGM transmission at z ≥ 4 compared to results from QSOs, but a degeneracy between dust extinction and IGM prevents us from firmly concluding whether the internal dust extinction for star-forming galaxies at z > 4 takes a mean value significantly in excess of E(B-V) > 0.15. Most importantly, we found a large dispersion of IGM transmission along the lines of sight towards distant galaxies with 68% of the distribution within 10 to 17% of the median value in δz = 0.5 bins, similar to what is found on the lines of sight towards QSOs. We demonstrate that taking this broad range of IGM transmission into account is important when selecting high-redshift galaxies based on their colour properties (e.g. LBG or photometric redshiftselection) because failing to do so causes a significant incompleteness in selecting high-redshift galaxy populations. We finally discuss the observed IGM properties and speculate that the broad range of observed transmissions might be the result of cosmic variance and clustering along lines of sight. This clearly shows that the sources that cause this extinction need to be more completely modelled. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.
NASA Astrophysics Data System (ADS)
Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.; Rudick, Craig; Janowiecki, Steven; Morrison, Heather; Slater, Colin; Watkins, Aaron
2017-01-01
We present the results of a deep imaging survey of the Virgo cluster of galaxies, concentrated around the cores of Virgo subclusters A and B. The goal of this survey was to detect and study very low surface brightness features present in Virgo, including discrete tidal features, the faint halos of luminous galaxies, and the diffuse intracluster light (ICL). Our observations span roughly 16 degrees2 in two filters, reaching a 3σ limiting depth of {μ }B = 29.5 and {μ }V = 28.5 mag arcsec-2. At these depths, our limiting systematic uncertainties are astrophysical: variations in faint background sources as well as scattered light from galactic dust. We show that this dust-scattered light is well traced by deep far-infrared imaging, making it possible to separate it from true diffuse light in Virgo. We use our imaging to trace and measure the color of the diffuse tidal streams and ICL in the Virgo core near M87, in fields adjacent to the core including the M86/M84 region, and to the south of the core around M49 and subcluster B, along with the more distant W{}\\prime cloud around NGC 4365. Overall, the bulk of the projected ICL is found in the Virgo core and within the W{}\\prime cloud; we find little evidence for an extensive ICL component in the field around M49. The bulk of the ICL we detect is fairly red in color (B - V = 0.7-0.9), indicative of old, evolved stellar populations. Based on the luminosity of the observed ICL features in the cluster, we estimate a total Virgo ICL fraction of 7%-15%. This value is somewhat smaller than that expected for massive, evolved clusters, suggesting that Virgo is still in the process of growing its extended ICL component. We also trace the shape of M87's extremely boxy outer halo out to ˜150 kpc, and show that the current tidal stripping rate from low luminosity galaxies is insufficient to have built M87's outer halo over a Hubble time. We identify a number of previously unknown low surface brightness structures around galaxies projected close to M86 and M84. The extensive diffuse light seen in the infalling W{}\\prime cloud around NGC 4365 is likely to be subsumed in the general Virgo ICL component once the group enters the cluster, illustrating the importance of group infall in generating ICL. Finally, we also identify another large and extremely low surface brightness ultradiffuse galaxy, likely in the process of being shredded by the cluster tidal field. With the survey complete, the full imaging data set is now available for public release.
GRB070125: The First Long-Duration Gamma-Ray Burst in a Halo Environment
NASA Technical Reports Server (NTRS)
Bradley, Cenko S.; Fox, Derek B.; Penprase, Brian E.; Kulkarni, Shri R.; Price, Paul A.; Berger, Edo; Kulkarni, Shri R.; Harrison, Fiona A.; Gal-Yam, Avishay; Ofek, Eran O.;
2007-01-01
We present the discovery and high signal-to-noise spectroscopic observations of the optical afterglow of the long-duration gamma-ray burst GRB070125. Unlike all previously observed long-duration afterglows in the redshift range 0.5 < z < 2.0, we find no strong (rest-frame equivalent width W > 1.0 A) absorption features in the wavelength range 4000 - 10000 A. The sole significant feature is a weak doublet we identify as Mg 11 2796 (W = 0.18 +/- 0.02 A), 2803 (W = 0.08 +0I.-01 ) at z = 1.5477 +/- 0.0001. The low observed Mg II and inferred H I column densities are typically observed in galactic halos, far away from the bulk of massive star formation. Deep ground-based imaging reveals no host directly underneath the afterglow to a limit of R > 25.4 mag. Either of the two nearest blue galaxies could host GRB070125; the large offset (d >= 27 kpc) would naturally explain the low column density. To remain consistent with the large local (i.e. parsec scale) circum-burst density inferred from broadband afterglow observations, we speculate GRB070125 may have occurred far away from the disk of its host in a compact star-forming cluster. Such distant stellar clusters, typically formed by dynamical galaxy interactions, have been observed in the nearby universe, and should be more prevalent at z>l where galaxy mergers occur more frequently.
Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts
Durret, F.; Adami, C.; Bertin, E.; ...
2015-06-10
Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less
Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durret, F.; Adami, C.; Bertin, E.
Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less
Probing the Evolution of the Galaxy Interaction/Merger Rate Using Distant Collisional Ring Galaxies
NASA Astrophysics Data System (ADS)
Lavery, Russell J.; Remijan, Anthony J.
We present the initial results from our long-term program of identifying distant collisional ring galaxies (CRGS) in deep HST WFPC-2 images. The unique morphological characteristics of these galaxies make them easily identifiable out to a redshift of z = 1. To date, we have visually scanned 100 WFPC-2 fields and identified 14 excellent collisional ring galaxy (CRG) candidates. Based on estimated redshifts, these 14 galaxies are expected to lie in the redshift interval of 0.1 to 1. We have used this sample of CRGs to estimate the evolution of the galaxy interaction/merger rate with redshift. To account for the number of CRGs we have identified in these fields, the galaxy interaction/merger rate, parameterized as (1 + z)m, must increase steeply with redshift, with m = 5.7 +/- 1.5. We can rule out a non-evolving galaxy merger rate (m = 0) at greater than the 3σ level. We compare our results with other programs to determine the value of m using the evolution of galaxy pairs.
2005-03-01
This spectrum shows the light from a dusty, distant galaxy located 11 billion light-years away. The galaxy is invisible to optical telescopes, but NASA Spitzer Space Telescope captured the light from it and dozens of other similar galaxies.
Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuanyuan
2016-01-01
Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less
TWO DISTANT HALO VELOCITY GROUPS DISCOVERED BY THE PALOMAR TRANSIENT FACTORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sesar, Branimir; Cohen, Judith G.; Levitan, David
2012-08-20
We report the discovery of two new halo velocity groups (Cancer groups A and B) traced by eight distant RR Lyrae stars and observed by the Palomar Transient Factory survey at R.A. {approx} 129 Degree-Sign , decl. {approx} 20 Degree-Sign (l {approx} 205 Degree-Sign , b {approx} 32 Degree-Sign ). Located at 92 kpc from the Galactic center (86 kpc from the Sun), these are some of the most distant substructures in the Galactic halo known to date. Follow-up spectroscopic observations with the Palomar Observatory 5.1 m Hale telescope and W. M. Keck Observatory 10 m Keck I telescope indicatemore » that the two groups are moving away from the Galaxy at v-bar{sub gsr}{sup A} = 78.0{+-}5.6 km s{sup -1} (Cancer group A) and v-bar{sub gsr}{sup B} = 16.3{+-}7.1 km s{sup -1} (Cancer group B). The groups have velocity dispersions of {sigma}{sub v{sub g{sub s{sub r}{sup A}}}} = 12.4{+-}5.0 km s{sup -1} and {sigma}B{sub v{sub g{sub s{sub r}{sup B}}}} =14.9{+-}6.2 km s{sup -1} and are spatially extended (about several kpc), making it very unlikely that they are bound systems, and more likely to be debris of tidally disrupted dwarf galaxies or globular clusters. Both groups are metal-poor (median metallicities of [Fe/H]{sup A} = -1.6 dex and [Fe/H]{sup B} = -2.1 dex) and have a somewhat uncertain (due to small sample size) metallicity dispersion of {approx}0.4 dex, suggesting dwarf galaxies as progenitors. Two additional RR Lyrae stars with velocities consistent with those of the Cancer groups have been observed {approx}25 Degree-Sign east, suggesting possible extension of the groups in that direction.« less
Pre-processing and post-processing in group-cluster mergers
NASA Astrophysics Data System (ADS)
Vijayaraghavan, R.; Ricker, P. M.
2013-11-01
Galaxies in clusters are more likely to be of early type and to have lower star formation rates than galaxies in the field. Recent observations and simulations suggest that cluster galaxies may be `pre-processed' by group or filament environments and that galaxies that fall into a cluster as part of a larger group can stay coherent within the cluster for up to one orbital period (`post-processing'). We investigate these ideas by means of a cosmological N-body simulation and idealized N-body plus hydrodynamics simulations of a group-cluster merger. We find that group environments can contribute significantly to galaxy pre-processing by means of enhanced galaxy-galaxy merger rates, removal of galaxies' hot halo gas by ram pressure stripping and tidal truncation of their galaxies. Tidal distortion of the group during infall does not contribute to pre-processing. Post-processing is also shown to be effective: galaxy-galaxy collisions are enhanced during a group's pericentric passage within a cluster, the merger shock enhances the ram pressure on group and cluster galaxies and an increase in local density during the merger leads to greater galactic tidal truncation.
Dynamical evolution of globular-cluster systems in clusters of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzio, J.C.
1987-04-01
The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.
NIR SPECTROSCOPIC OBSERVATION OF MASSIVE GALAXIES IN THE PROTOCLUSTER AT z = 3.09
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubo, Mariko; Yamada, Toru; Ichikawa, Takashi
2015-01-20
We present the results of near-infrared spectroscopic observations of the K-band-selected candidate galaxies in the protocluster at z = 3.09 in the SSA22 field. We observed 67 candidates with K {sub AB} < 24 and confirmed redshifts of the 39 galaxies at 2.0 < z {sub spec} < 3.4. Of the 67 candidates, 24 are certainly protocluster members with 3.04 ≤ z {sub spec} ≤ 3.12, which are massive red galaxies that have been unidentified in previous optical observations of the SSA22 protocluster. Many distant red galaxies (J – K {sub AB} > 1.4), hyper extremely red objects (J –more » K {sub AB} > 2.1), Spitzer MIPS 24 μm sources, active galactic nuclei (AGNs) as well as the counterparts of Lyα blobs and the AzTEC/ASTE 1.1 mm sources in the SSA22 field are also found to be protocluster members. The mass of the SSA22 protocluster is estimated to be ∼2-5 × 10{sup 14} M {sub ☉}, and this system is plausibly a progenitor of the most massive clusters of galaxies in the current universe. The reddest (J – K {sub AB} ≥ 2.4) protocluster galaxies are massive galaxies with M {sub star} ∼ 10{sup 11} M {sub ☉} showing quiescent star formation activities and plausibly dominated by old stellar populations. Most of these massive quiescent galaxies host moderately luminous AGNs detected by X-ray. There are no significant differences in the [O III] λ5007/Hβ emission line ratios and [O III] λ5007 line widths and spatial extents of the protocluster galaxies from those of massive galaxies at z ∼ 2-3 in the general field.« less
A young source of optical emission from distant radio galaxies.
Hammer, F; Fèvre, O Le; Angonin, M C
1993-03-25
DISTANT radio galaxies provide valuable insights into the properties of the young Universe-they are the only known extended optical sources at high redshift and might represent an early stage in the formation and evolution of galaxies in general. This extended optical emission often has very complex morphologies, but the origin of the light is still unclear. Here we report spectroscopic observations for several distant radio galaxies (0.75≤ z ≤ 1.1) in which the rest-frame spectra exhibit featureless continua between 2,500 Å and 5,000 Å. We see no evidence for the break in the spectrum at 4,000 Å expected for an old stellar population 1-3 , and suggest that young stars or scattered emissions from the active nuclei are responsible for most of the observed light. In either case, this implies that the source of the optical emission is com-parable in age to the associated radio source, namely 10 7 years or less.
ALMA Examines a Distant Quasar Host
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-04-01
The dust continuum (top) and the [CII] emission (bottom) maps for the region around J1120+0641. [Adapted from Venemans et al. 2017]A team of scientists has used the Atacama Large Millimeter/submillimeter Array (ALMA) to explore the host galaxy of the most distant quasar known. Their observations may help us to build a picture of how the first supermassive black holes in the universe formed and evolved.Faraway Monsters and Their GalaxiesWe know that quasars the incredibly luminous and active centers of some distant galaxies are powered by accreting, supermassive black holes. These monstrous powerhouses have been detected out to redshifts of z 7, when the universe was younger than a billion years old.Though weve observed over a hundred quasars at high redshift, we still dont understand how these early supermassive black holes formed, or whether the black holes and the galaxies that host them co-evolved. In order to answer questions like these, however, we first need to gather information about the properties and behavior of various supermassive black holes and their host galaxies.A team of scientists led by Bram Venemans (Max-Planck Institute for Astronomy, Germany) recently used the unprecedented sensitivity and angular resolution of ALMA as well as the Very Large Array and the IRAM Plateau de Bure Interferometer to examine the most distant quasar currently known, J1120+0641, located at a redshift of z = 7.1.A High-Resolution LookThe teams observations of the dust and gas emission from the quasars host galaxy revealed a number of intriguing things:The red and blue sides of the [CII] emission line are shown here as contours, demonstrating that theres no ordered rotational motion of the gas on kpc scales. [Adapted from Venemans et al. 2017]The majority of the galaxys emission is very compact. Around 80% of the observed flux came from a region of only 11.5 kpc in diameter.Despite the fact that the 2.4-billion-solar-mass black hole at the galaxys center is accreting at a high rate, the heating in the galaxy is dominated not by the black holes accretion, but by star formation.Theres no sign of the expected structure of a rotating disk on kpc scales.The authors estimate a dynamical mass of the host galaxy of 43 billion solar masses and the black hole at the galaxys center makes up 6% of that. This ratio is roughly 10x higher than the black-hole-to-bulge mass ratio in local early-type galaxies.In the very central region, the black hole accounts for around 20% of the galaxys dynamical mass, and gas and dust likely accounts for most of the remainder. This doesnt leave much room for massive stars in the center of the galaxy.ALMAs capabilities have enabled these first efforts to spatially resolve the host galaxy of the most distant quasar known, resulting new and unexpected information. The authors now look hopefully to the future, when even longer baselines of ALMA may allow us a still-higher-resolution look at this distant quasar, possibly providing answers to some of the questions it has raised.CitationBram P. Venemans et al 2017 ApJ 837 146. doi:10.3847/1538-4357/aa62ac
The Nature of LSB galaxies revealed by their Globular Clusters
NASA Astrophysics Data System (ADS)
Kissler-Patig, Markus
2005-07-01
Low Surface Brightness {LSB} galaxies encompass many of the extremes in galaxy properties. Their understanding is essential to complete our picture of galaxy formation and evolution. Due to their historical under-representation on galaxy surveys, their importance to many areas of astronomy has only recently began to be realized. Globular clusters are superb tracers of the formation histories of galaxies and have been extensively used as such in high surface brightness galaxies. We propose to investigate the nature of massive LSB galaxies by studying their globular cluster systems. No globular cluster study has been reported for LSB galaxies to date. Yet, both the presence or absence of globular clusters set very strong constraints on the conditions prevailing during LSB galaxy formation and evolution. Both in dwarf and giant high surface brightness {HSB} galaxies, globular clusters are known to form as a constant fraction of baryonic mass. Their presence/absence immediately indicates similarities or discrepancies in the formation and evolution conditions of LSB and HSB galaxies. In particular, the presence/absence of metal-poor halo globular clusters infers similarities/differences in the halo formation and assembly processes of LSB vs. HSB galaxies, while the presence/absence of metal-rich globular clusters can be used to derive the occurrence and frequency of violent events {such as mergers} in the LSB galaxy assembly history. Two band imaging with ACS will allow us to identify the globular clusters {just resolved at the selected distance} and to determine their metallicity {potentially their rough age}. The composition of the systems will be compared to the extensive census built up on HSB galaxies. Our representative sample of six LSB galaxies {cz < 2700 km/s} are selected such, that a large system of globular clusters is expected. Globular clusters will constrain phases of LSB galaxy formation and evolution that can currently not be probed by other means. HST/ACS imaging is the only facility capable of studying the globular cluster systems of LSB galaxies given their distance and relative scarcity.
The far-infrared view on the distant Universe
NASA Astrophysics Data System (ADS)
Elbaz, David
2015-08-01
I will review what we have learnt on distant galaxies from far infrared surveys and present news ways to identify z>2 highly star-forming galaxies, often missed by standard techniques such as LBGs, that may represent the missing progenitors of passive z~2 galaxies. I will also discuss inconsistencies between SFR indicators that can be linked to the starburstiness and compactness of star-forming galaxies. Based on these results we will discuss the evidence in favor/against the existence of a SFR-M* main sequence up to z=4. The impact of the spatial distribution of star formation and its evolution with redshift will be discussed on the basis of newly obtained ALMA data.
A Portrait of One Hundred Thousand and One Galaxies
NASA Astrophysics Data System (ADS)
2002-08-01
Rich and Inspiring Experience with NGC 300 Images from the ESO Science Data Archive Summary A series of wide-field images centred on the nearby spiral galaxy NGC 300 , obtained with the Wide-Field Imager (WFI) on the MPG/ESO 2.2-m telescope at the La Silla Observatory , have been combined into a magnificent colour photo. These images have been used by different groups of astronomers for various kinds of scientific investigations, ranging from individual stars and nebulae in NGC 300, to distant galaxies and other objects in the background. This material provides an interesting demonstration of the multiple use of astronomical data, now facilitated by the establishment of extensively documented data archives, like the ESO Science Data Archive that now is growing rapidly and already contains over 15 Terabyte. Based on the concept of Astronomical Virtual Observatories (AVOs) , the use of archival data sets is on the rise and provides a large number of scientists with excellent opportunities for front-line investigations without having to wait for precious observing time. In addition to presenting a magnificent astronomical photo, the present account also illustrates this important new tool of the modern science of astronomy and astrophysics. PR Photo 18a/02 : WFI colour image of spiral galaxy NGC 300 (full field) . PR Photo 18b/02 : Cepheid stars in NGC 300 PR Photo 18c/02 : H-alpha image of NGC 300 PR Photo 18d/02 : Distant cluster of galaxies CL0053-37 in the NGC 300 field PR Photo 18e/02 : Dark matter distribution in CL0053-37 PR Photo 18f/02 : Distant, reddened cluster of galaxies in the NGC 300 field PR Photo 18g/02 : Distant galaxies, seen through the outskirts of NGC 300 PR Photo 18h/02 : "The View Beyond" ESO PR Photo 18a/02 ESO PR Photo 18a/02 [Preview - JPEG: 400 x 412 pix - 112k] [Normal - JPEG: 1200 x 1237 pix - 1.7M] [Hi-Res - JPEG: 4000 x 4123 pix - 20.3M] Caption : PR Photo 18a/02 is a reproduction of a colour-composite image of the nearby spiral galaxy NGC 300 and the surrounding sky field, obtained in 1999 and 2000 with the Wide-Field Imager (WFI) on the MPG/ESO 2.2-m telescope at the La Silla Observatory. See the text for details about the many different uses of this photo. Smaller areas in this large field are shown in Photos 18b-h/02 , cf. below. The High-Res version of this image has been compressed by a factor 4 (2 x 2 pixel rebinning) to reduce it to a reasonably transportable size. Technical information about this and the other photos is available at the end of this communication. Located some 7 million light-years away, the spiral galaxy NGC 300 [1] is a beautiful representative of its class, a Milky-Way-like member of the prominent Sculptor group of galaxies in the southern constellation of that name. NGC 300 is a big object in the sky - being so close, it extends over an angle of almost 25 arcmin, only slightly less than the size of the full moon. It is also relative bright, even a small pair of binoculars will unveil this magnificent spiral galaxy as a hazy glowing patch on a dark sky background. The comparatively small distance of NGC 300 and its face-on orientation provide astronomers with a wonderful opportunity to study in great detail its structure as well as its various stellar populations and interstellar medium. It was exactly for this purpose that some images of NGC 300 were obtained with the Wide-Field Imager (WFI) on the MPG/ESO 2.2-m telescope at the La Silla Observatory. This advanced 67-million pixel digital camera has already produced many impressive pictures, some of which are displayed in the WFI Photo Gallery [2]. With its large field of view, 34 x 34 arcmin 2 , the WFI is optimally suited to show the full extent of the spiral galaxy NGC 300 and its immediate surroundings in the sky, cf. PR Photo 18a/02 . NGC 300 and "Virtual Astronomy" In addition to being a beautiful sight in its own right, the present WFI-image of NGC 300 is also a most instructive showcase of how astronomers with very different research projects nowadays can make effective use of the same observations for their programmes . The idea to exploit one and the same data set is not new, but thanks to rapid technological developments it has recently developed into a very powerful tool for the astronomers in their continued quest to understand the Universe. This kind of work has now become very efficient with the advent of a fully searchable data archive from which observational data can then - after the expiry of a nominal one-year proprietary period for the observers - be made available to other astronomers. The ESO Science Data Archive was established some years ago and now encompasses more than 15 Terabyte [3]. Normally, the identification of specific data sets in such a large archive would be a very difficult and time-consuming task. However, effective projects and software "tools" like ASTROVIRTEL and Querator now allow the users quickly to "filter" large amounts of data and extract those of their specific interest. Indeed, "Archival Astronomy" has already led to many important discoveries, cf. the ASTROVIRTEL list of publications. There is no doubt that "Virtual Astronomical Observatories" will play an increasingly important role in the future, cf. ESO PR 26/01. The present wide-field images of NGC 300 provide an impressive demonstration of the enormous potential of this innovative approach. Some of the ways they were used are explained below. Cepheids in NGC 300 and the cosmic distance scale ESO PR Photo 18b/02 ESO PR Photo 18b/02 [Preview - JPEG: 468 x 400 pix - 112k] [Full-Res - JPEG: 1258 x 1083 pix - 1.6M] Caption : PR Photo 18b/02 shows some of the Cepheid type stars in the spiral galaxy NGC 300 (at the centre of the markers), as they were identified by Wolfgang Gieren and collaborators during the research programme for which the WFI images of NGC 300 were first obtained. In this area of NGC 300, there is also a huge cloud of ionized hydrogen (a "HII shell"). It measures about 2000 light-years in diameter, thus dwarfing even the enormous Tarantula Nebula in the LMC, also photographed with the WFI (cf. ESO PR Photos 14a-g/02 ). The largest versions ("normal" or "full-res") of this and the following photos are shown with their original pixel size, demonstrating the incredible amount of detail visible on one WFI image. Technical information about this photo is available below. In 1999, Wolfgang Gieren (Universidad de Concepcion, Chile) and his colleagues started a search for Cepheid-type variable stars in NGC 300. These stars constitute a key element in the measurement of distances in the Universe. It has been known since many years that the pulsation period of a Cepheid-type star depends on its intrinsic brightness (its "luminosity"). Thus, once its period has been measured, the astronomers can calculate its luminosity. By comparing this to the star's apparent brightness in the sky, and applying the well-known diminution of light with the second power of the distance, they can obtain the distance to the star. This fundamental method has allowed some of the most reliable measurements of distances in the Universe and has been essential for all kinds of astrophysics, from the closest stars to the remotest galaxies. Previous to Gieren's new project, only about a dozen Cepheids were known in NGC 300. However, by regularly obtaining wide-field WFI exposures of NGC 300 from July 1999 through January 2000 and carefully monitoring the apparent brightness of its brighter stars during that period, the astronomers detected more than 100 additional Cepheids . The brightness variations (in astronomical terminology: "light curves") could be determined with excellent precision from the WFI data. They showed that the pulsation periods of these Cepheids range from about 5 to 115 days. Some of these Cepheids are identified on PR Photo 18b/02 , in the middle of a very crowded field in NGC 300. When fully studied, these unique observational data will yield a new and very accurate distance to NGC 300, making this galaxy a future cornerstone in the calibration of the cosmic distance scale . Moreover, they will also allow to understand in more detail how the brightness of a Cepheid-type star depends on its chemical composition, currently a major uncertainty in the application of the Cepheid method to the calibration of the extragalactic distance scale. Indeed, the effect of the abundance of different elements on the luminosity of a Cepheid can be especially well measured in NGC 300 due to the existence of large variations of these abundances in the stars located in the disk of this galaxy. Gieren and his group, in collaboration with astronomers Fabio Bresolin and Rolf Kudritzki (Institute of Astronomy, Hawaii, USA) are currently measuring the variations of these chemical abundances in stars in the disk of NGC 300, by means of spectra of about 60 blue supergiant stars, obtained with the FORS multi-mode instruments at the ESO Very Large Telescope (VLT) on Paranal. These stars, that are among the optically brightest in NGC 300, were first identified in the WFI images of this galaxy obtained in different colours - the same that were used to produce PR Photo 18a/02 . The nature of those stars was later spectroscopically confirmed at the VLT. As an important byproduct of these measurements, the luminosities of the blue supergiant stars in NGC 300 will themselves be calibrated (as a new cosmic "standard candle"), taking advantage of their stellar wind properties that can be measured from the VLT spectra. The WFI Cepheid observations in NGC 300, as well as the VLT blue supergiant star observations, form part of a large research project recently initiated by Gieren and his group that is concerned with the improvement of various stellar distance indicators in nearby galaxies (the "ARAUCARIA" project ). Clues on star formation history in NGC 300 ESO PR Photo 18c/02 ESO PR Photo 18c/02 [Preview - JPEG: 440 x 400 pix - 63k] [Normal - JPEG: 1200 x 1091 pix - 664k] [Full-Res - JPEG: 5515 x 5014 pix - 14.3M] Caption : PR Photo 18c/02 displays NGC 300, as seen through a narrow optical filter (H-alpha) in the red light of hydrogen atoms. A population of intrinsically bright and young stars turned "on" just a few million years ago. Their radiation and strong stellar winds have shaped many of the clouds of ionized hydrogen gas ("HII shells") seen in this photo. The "rings" near some of the bright stars are caused by internal reflections in the telescope. Technical information about this photo is available below.. But there is much more to discover on these WFI images of NGC 300! The WFI images obtained in several broad and narrow band filters from the ultraviolet to the near-infrared spectral region (U, B, V, R, I and H-alpha) allow a detailed study of groups of heavy, hot stars (known as "OB associations") and a large number of huge clouds of ionized hydrogen ("HII shells") in this galaxy. Corresponding studies have been carried out by Gieren's group, resulting in the discovery of an amazing number of OB associations, including a number of giant associations. These investigations, taken together with the observed distribution of the pulsation periods of the Cepheids, allow to better understand the history of star formation in NGC 300. For example, three distinct peaks in the number distribution of the pulsation periods of the Cepheids seem to indicate that there have been at least three different bursts of star formation within the past 100 million years. The large number of OB associations and HII shells ( PR Photo 18c/02 ) furthermore indicate the presence of a numerous, very young stellar population in NGC 300, aged only a few million years. Dark matter and the observed shapes of distant galaxies In early 2002, Thomas Erben and Mischa Schirmer from the "Institut für Astrophysik and extraterrestrische Forschung" ( IAEF , Universität Bonn, Germany), in the course of their ASTROVIRTEL programme, identified and retrieved all available broad-band and H-alpha images of NGC 300 available in the ESO Science Data Archive. Most of these have been observed for the project by Gieren and his colleagues, described above. However, the scientific interest of the German astronomers was very different from that of their colleagues and they were not at all concerned about the main object in the field, NGC 300. In a very different approach, they instead wanted to study those images to measure the amount of dark matter in the Universe, by means of the weak gravitational lensing effect produced by distant galaxy clusters. Various observations, ranging from the measurement of internal motions ("rotation curves") in spiral galaxies to the presence of hot X-ray gas in clusters of galaxies and the motion of galaxies in those clusters, indicate that there is about ten times more matter in the Universe than what is observed in the form of stars, gas and galaxies ("luminous matter"). As this additional matter does not emit light at any wavelengths, it is commonly referred to as "dark" matter - its true nature is yet entirely unclear. Insight into the distribution of dark matter in the Universe can be gained by looking at the shapes of images of very remote galaxies, billions of light-years away, cf. ESO PR 24/00. Light from such distant objects travels vast distances through space before arriving here on Earth, and whenever it passes heavy clusters of galaxies, it is bent a little due to the associated gravitational field. Thus, in long-exposure, high-quality images, this "weak lensing" effect can be perceived as a coherent pattern of distortion of the images of background galaxies. Gravitational lensing in the NGC 300 field ESO PR Photo 18d/02 ESO PR Photo 18d/02 [Preview - JPEG: 400 x 495 pix - 82k] [Full-Res - JPEG: 1304 x 1615 pix - 3.2M] Caption : PR Photo 18d/02 shows the distant cluster of galaxies CL0053-37 , as imaged on the WFI photo of the NGC 300 sky field. The elongated distribution of the cluster galaxies, as well as the presence of two large, early-type elliptical galaxies indicate that this cluster is still in the process of formation. Some of the galaxies appear to be merging. From the measured redshift ( z = 0.1625), a distance of about 2.1 billion light-years is deduced. Technical information about this photo is available below. ESO PR Photo 18e/02 ESO PR Photo 18e/02 [Preview - JPEG: 400 x 567 pix - 89k] [Normal - JPEG: 723 x 1024 pix - 424k] Caption : PR Photo 18e/02 is a "map" of the dark matter distribution (black contours) in the cluster of galaxies CL0053-37 (shown in PR Photo 18d/02 ), as obtained from the weak lensing effects detected in the WFI images, and the X-ray flux (green contours) taken from the All-Sky Survey carried out by the ROSAT satellite observatory. The distribution of galaxies resembles the elongated, dark-matter profile. Because of ROSAT's limited image sharpness (low "angular resolution"), it cannot be entirely ruled out that the observed X-ray emission is due to an active nucleus of a galaxy in CL0053-37, or even a foreground stellar binary system in NGC 300. The WFI NGC 300 images appeared promising for gravitational lensing research because of the exceptionally long total exposure time. Although the large foreground galaxy NGC 300 would block the light of tens of thousands of galaxies in the background, a huge number of others would still be visible in the outskirts of this sky field, making a search for clusters of galaxies and associated lensing effects quite feasible. To ensure the best possible image sharpness in the combined image, and thus to obtain the most reliable measurements of the shapes of the background objects, only red (R-band) images obtained under the best seeing conditions were combined. In order to provide additional information about the colours of these faint objects, a similar approach was adopted for images in the other bands as well. The German astronomers indeed measured a significant lensing effect for one of the galaxy clusters in the field ( CL0053-37 , see PR Photo 18d/02 ); the images of background galaxies around this cluster were noticeably distorted in the direction tangential to the cluster center. Based on the measured degree of distortion, a map of the distribution of (dark) matter in this direction was constructed ( PR Photo 18e/02 ). The separation of unlensed foreground (bluer) and lensed background galaxies (redder) greatly profited from the photometric measurements done by Gieren's group in the course of their work on the Cepheids in NGC 300. Assuming that the lensed background galaxies lie at a mean redshift of 1.0, i.e. a distance of 8 billion light-years, a mass of about 2 x 10 14 solar masses was obtained for the CL0053-37 cluster. This lensing analysis in the NGC 300 field is part of the Garching-Bonn Deep Survey (GaBoDS) , a weak gravitational lensing survey led by Peter Schneider (IAEF). GaBoDS is based on exposures made with the WFI and until now a sky area of more than 12 square degrees has been imaged during very good seeing conditions. Once complete, this investigation will allow more insight into the distribution and cosmological evolution of galaxy cluster masses, which in turn provide very useful information about the structure and history of the Universe. One hundred thousand galaxies ESO PR Photo 18f/02 ESO PR Photo 18f/02 [Preview - JPEG: 400 x 526 pix - 93k] [Full-Res - JPEG: 756 x 994 pix - 1.0M] Caption : PR Photo 18f/02 shows a group of galaxies , seen on the NGC 300 images. They are all quite red and their similar colours indicate that they must be about equally distant. They probably constitute a distant cluster, now in the stage of formation. Technical information about this photo is available below. ESO PR Photo 18g/02 ESO PR Photo 18g/02 [Preview - JPEG: 469 x 400 pix - xxk] [Full-Res - JPEG: 1055 x 899 pix - 968k] Caption : PR Photo 18g/02 shows an area in the outer regions of NGC 300. Disks of spiral galaxies are usually quite "thin" (some hundred light-years), as compared to their radial extent (tens of thousands of light-years across). In areas where only small amounts of dust are present, it is possible to see much more distant galaxies right through the disk of NGC 300 , as demonstrated by this image. Technical information about this photo is available below. ESO PR Photo 18h/02 ESO PR Photo 18h/02 [Preview - JPEG: 451 x 400 pix - 89k] [Normal - JPEG: 902 x 800 pix - 856k] [Full-Res - JPEG: 2439 x 2163 pix - 6.0M] Caption : PR Photo 18h/02 is an astronomers' joy ride to infinity. Such a rarely seen view of our universe imparts a feeling of the vast distances in space. In the upper half of the image, the outer region of NGC 300 is resolved into innumerable stars, while in the lower half, myriads of galaxies - a thousand times more distant - catch the eye. In reality, many of them are very similar to NGC 300, they are just much more remote. In addition to allowing a detailed investigation of dark matter and lensing effects in this field, the present, very "deep" colour image of NGC 300 invites to perform a closer inspection of the background galaxy population itself . No less than about 100,000 galaxies of all types are visible in this amazing image. Three known quasars ([ICS96] 005342.1-375947, [ICS96] 005236.1-374352, [ICS96] 005336.9-380354) with redshifts 2.25, 2.35 and 2.75, respectively, happen to lie inside this sky field, together with many interacting galaxies, some of which feature tidal tails. There are also several groups of highly reddened galaxies - probably distant clusters in formation, cf. PR Photo 18f/02 . Others are seen right through the outer regions of NGC 300, cf. PR Photo 18g/02 . More detailed investigations of the numerous galaxies in this field are now underway. From the nearby spiral galaxy NGC 300 to objects in the young Universe, it is all there, truly an astronomical treasure trove, cf. PR Photo 18h/02 ! Notes [1]: "NGC" means "New General Catalogue" (of nebulae and clusters) that was published in 1888 by J.L.E. Dreyer in the "Memoirs of the Royal Astronomical Society". [2]: Other colour composite images from the Wide-Field Imager at the MPG/ESO 2.2-m telescope at the La Silla Observatory are available at the ESO Outreach website at http://www.eso.org/esopia"bltxt">Tarantula Nebula in the LMC, cf. ESO PR Photos 14a-g/02. [3]: 1 Terabyte = 10 12 byte = 1000 Gigabyte = 1 million million byte. Technical information about the photos PR Photo 18a/02 and all cutouts were made from 110 WFI images obtained in the B-band (total exposure time 11.0 hours, rendered as blue), 105 images in the V-band (10.4 hours, green), 42 images in the R-band (4.2 hours, red) and 21 images through a H-alpha filter (5.1 hours, red). In total, 278 images of NGC 300 have been assembled to produce this colour image, together with about as many calibration images (biases, darks and flats). 150 GB of hard disk space were needed to store all uncompressed raw data, and about 1 TB of temporary files was produced during the extensive data reduction. Parallel processing of all data sets took about two weeks on a four-processor Sun Enterprise 450 workstation. The final colour image was assembled in Adobe Photoshop. To better show all details, the overall brightness of NGC 300 was reduced as compared to the outskirts of the field. The (red) "rings" near some of the bright stars originate from the H-alpha frames - they are caused by internal reflections in the telescope. The images were prepared by Mischa Schirmer at the Institut für Astrophysik und Extraterrestrische Forschung der Universität Bonn (IAEF) by means of a software pipeline specialised for reduction of multiple CCD wide-field imaging camera data. The raw data were extracted from the public sector of the ESO Science Data Archive. The extensive observations were performed at the ESO La Silla Observatory by Wolfgang Gieren, Pascal Fouque, Frederic Pont, Hermann Boehnhardt and La Silla staff, during 34 nights between July 1999 and January 2000. Some additional observations taken during the second half of 2000 were retrieved by Mischa Schirmer and Thomas Erben from the ESO archive. CD-ROM with full-scale NGC 300 image soon available PR Photo 18a/02 has been compressed by a factor 4 (2 x 2 rebinning). For PR Photos 18b-h/02 , the largest-size versions of the images are shown at the original scale (1 pixel = 0.238 arcsec). A full-resolution TIFF-version (approx. 8000 x 8000 pix; 200 Mb) of PR Photo 18a/02 will shortly be made available by ESO on a special CD-ROM, together with some other WFI images of the same size. An announcement will follow in due time.
NASA Astrophysics Data System (ADS)
Miao, Connie; Chen, Jerry; Torres Hernandez, Jose; Guhathakurta, Puragra; Jang, Hyerin
2017-01-01
The stark difference between the chaotic internal motion of distant galaxies and the ordered rotation of typical local spiral galaxies suggests that disordered galaxies at high redshifts (i.e., early times in the Universe's history) gradually settle into well ordered disk morphologies with ordered rotation. We have used slit spectra obtained with Keck DEIMOS at four different position angles for 133 distant objects (z ~ 1.0) in the GOODS-N field. The emission lines in the 2D spectra of the galaxies were used to calculate the redshift/velocity at each spatial location. For each slit row, the distribution of flux over velocity was modeled as a Gaussian curve from which we obtained the radial velocity and spread of radial velocity. Rotation curves and velocity dispersions for each galaxy at each slit angle were plotted at these values. We qualitatively classified galaxies as regularly rotating, merging, face-on, or unable to be determined by examining overlays of the rotation curves from the four slit angles. We found that regular rotating galaxies tended to have peak velocity dispersion at the center while mergers had fairly constant velocity dispersions. Face-on galaxies had chaotic and inconsistent velocity dispersions between different slit angles. Regularly rotation galaxies represented 45% of our sample and mergers represented 27%. The relative percentage of galaxies that were either regularly rotating or mergers roughly matched those of the literature. This research was supported by NASA and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.
Galaxies Near and Far Artist Concept
2011-06-30
This artist concept shows how a normal spiral galaxy around our local universe left might have looked back in the distant universe, when astronomers think galaxies would have been filled with larger populations of hot, bright stars right.
The Hubble Space Telescope Frontier Fields Program
NASA Astrophysics Data System (ADS)
Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt
2017-08-01
The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.
Luminosity segregation in galaxy clusters as an indication of dynamical evolution
NASA Technical Reports Server (NTRS)
Baier, F. W.; Schmidt, K.-H.
1993-01-01
Theoretical models describing the dynamical evolution of self-gravitating systems predict a spatial mass segregation for more evolved systems, with the more massive objects concentrated toward the center of the configuration. From the observational point of view, however, the existence of mass segregation in galaxy clusters seems to be a matter of controversy. A special problem in this connection is the formation of cD galaxies in the centers of galaxy clusters. The most promising scenarios of their formation are galaxy cannibalism (merger scenario) and growing by cooling flows. It seems to be plausible to consider the swallowing of smaller systems by a dominant galaxy as an important process in the evolution of a cD galaxy. The stage of the evolution of the dominant galaxy should be reflected by the surrounding galaxy population, especially by possible mass segregation effects. Assuming that mass segregation is tantamount to luminosity segregation we analyzed luminosity segregation in roughly 40 cD galaxy clusters. Obviously there are three different groups of clusters: (1) clusters with luminosity segregation, (2) clusters without luminosity segregation, and (3) such objects exhibiting a phenomenon which we call antisegregation in luminosity, i.e. a deficiency of bright galaxies in the central regions of clusters. This result is interpreted in the sense of different degrees of mass segregation and as an indication for different evolution stages of these clusters. The clusters are arranged in the three segregation classes 2, 1, and 0 (S2 = strong mass segregation, S1 = moderate mass segregation, S0 = weak or absent mass segregation). We assume that a galaxy cluster starts its dynamical evolution after virialization without any radial mass segregation. Energy exchange during encounters of cluster members as well as merger processes between cluster galaxies lead to an increasing radial mass segregation in the cluster (S1). If a certain degree of segregation (S2) has been established, an essential number of slow-moving and relative massive cluster members in the center will be cannibalized by the initial brightest cluster galaxy. This process should lead to the growing of the predominate galaxy, which is accompanied by a diminution of the mass segregation (transition to S1 and S0, respectively) in the neighborhood of the central very massive galaxy. An increase of the areal density of brighter galaxies towards the outer cluster regions (antisegregation of luminosity), i.e. an extreme low degree of mass segregation was estimated for a substantial percentage of cD clusters. This result favors the cannibalism scenario for the formation of cD galaxies.
MACS: The impact of environment on galaxy evolution at z>0.5
NASA Astrophysics Data System (ADS)
Ma, Cheng-Jiun
2010-08-01
In order to investigate galaxy evolution in environments of greatly varying density, we conduct an extensive spectroscopic survey of galaxies in eight X-ray luminous clusters at redshift higher than 0.5. Unlike most spectroscopic surveys of cluster galaxies, we sample the galaxy population beyond the virial radius of each cluster (out to ˜6 Mpc), thereby probing regions that differ by typically two orders of magnitude in galaxy density. Galaxies are classified by spectroscopic type into emission-line, absorption-line, post starburst (E+A), and starburst (e(a) and e(b)) galaxies, and the spatial distribution of each type is used as a diagnostic of the presence and efficiency of different physical mechanisms of galaxy evolution. Our analysis yields the perhaps strongest confirmation so far of the morphology-density relation for emission- and absorption-line galaxies. In addition, we find E+A galaxies to be exclusively located within the ram-pressure stripping radius of each cluster. Taking advantage of this largest sample of E+A galaxies in clusters compiled to date, the spatial profile of the distribution of E+A galaxies can be studied for the first time. We show that ram-pressure stripping is the dominant, and possibly only, physical mechanism to cause the post-starburst phase of cluster galaxies. In addition, two particular interesting clusters are studied individually. For MACS J0717.5+3745, a clear morphology-density correlation is observed for lenticular (S0) galaxies around this cluster, but becomes insignificant toward the center of cluster. We interpret this finding as evidence of the creation of S0s being triggered primarily in environments of low to intermediate density. In MACS J0025.4-1225, a cluster undergoing a major merger, all faint E+A galaxies are observed to lie near the peak of the X-ray surface brightness, strongly suggesting that starbursts are enhanced as well as terminated during cluster mergers. We conclude that ram-pressure stripping and/or tidal destruction are central to the evolution of galaxies clusters, and that wide-field spectroscopic surveys around clusters are essential to distinguish between competing physical effects driving galaxy evolution in different environments.
Exploring for Galaxies in the First Billion Years with Hubble and Spitzer - Pathfinding for JWST
NASA Astrophysics Data System (ADS)
Illingworth, Garth D.
2017-01-01
Hubble has revolutionized the field of distant galaxies through its deep imaging surveys, starting with the Hubble Deep Field (HDF) in 1995. That first deep survey revealed galaxies at redshift z~1-3 that provided insights into the development of the Hubble sequence. Each new HST instrument has explored new regimes, through the peak of star formation at z~2-3, just 2-3 billion years after the Big Bang, to our first datasets at a billion years at z~6, and then earlier to z~11. HST's survey capabilities were enhanced by 40X with ACS, and then similarly with the WFC3/IR, which opened up the first billion years to an unforeseen degree. I will discuss what we have learned from the remarkable HST and Spitzer imaging surveys (HUDF, GOODS, HUDF09/12 and CANDELS), as well as surveys of clusters like the Hubble Frontier Fields (HFF). Lensing clusters provide extraordinary opportunities for characterizing the faintest earliest galaxies, but also present extraordinary challenges. Together these surveys have resulted in the measurement of the volume density of galaxies in the first billion years down to astonishingly faint levels. The role of faint galaxies in reionizing the universe is still much-discussed, but there is no doubt that such galaxies contribute greatly to the UV ionizing flux, as shown by deep luminosity function studies. Together Hubble and Spitzer have also established the stellar-mass buildup over 97% of cosmic history. Yet some of the greatest surprises have come from the discovery of very luminous galaxies at z~8-11, around 400-650 million years after the Big Bang. Spectroscopic followup by Keck of some of these very rare, bright galaxies has confirmed redshifts from z~7 to z~9, and revealed, surprisingly, strong Lyα emission near the peak of reionization when the HI fraction in the IGM is high. The recent confirmation of a z=11.1 galaxy, just 400 million years after the Big Bang, by a combination of Hubble and Spitzer data, moved Hubble into JWST territory, far beyond what we ever expected Hubble could do. Twenty years of astonishing progress with Hubble and Spitzer leave me looking to JWST to provide even more remarkable exploration of the realm of the first galaxies.
Science capabilities of the Maunakea Spectroscopic Explorer
NASA Astrophysics Data System (ADS)
Devost, Daniel; McConnachie, Alan; Flagey, Nicolas; Cote, Patrick; Balogh, Michael; Driver, Simon P.; Venn, Kim
2017-01-01
The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multiobject spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 20,000. The project is currently in design phase, with full science operations nominally starting in 2025. MSE will enable transformational science in areas as diverse as exoplanetary host characterization; stellar monitoring campaigns; tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of the distant Galaxy; connecting galaxies to the large scale structure of the Universe; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, eROSITA, SKA, and WFIRST, and is an ideal feeder facility for E-ELT, TMT and GMT. I will give an update on the status of the project and review some of the most exciting scientific capabilities of the observatory.
NASA Astrophysics Data System (ADS)
Jaffé, Yara L.; Poggianti, Bianca M.; Moretti, Alessia; Gullieuszik, Marco; Smith, Rory; Vulcani, Benedetta; Fasano, Giovanni; Fritz, Jacopo; Tonnesen, Stephanie; Bettoni, Daniela; Hau, George; Biviano, Andrea; Bellhouse, Callum; McGee, Sean
2018-06-01
It is well known that galaxies falling into clusters can experience gas stripping due to ram pressure by the intra-cluster medium. The most spectacular examples are galaxies with extended tails of optically bright stripped material known as `jellyfish'. We use the first large homogeneous compilation of jellyfish galaxies in clusters from the WINGS and OmegaWINGS surveys, and follow-up MUSE observations from the GASP MUSE programme to investigate the orbital histories of jellyfish galaxies in clusters and reconstruct their stripping history through position versus velocity phase-space diagrams. We construct analytic models to define the regions in phase-space where ram-pressure stripping is at play. We then study the distribution of cluster galaxies in phase-space and find that jellyfish galaxies have on average higher peculiar velocities (and higher cluster velocity dispersion) than the overall population of cluster galaxies at all cluster-centric radii, which is indicative of recent infall into the cluster and radial orbits. In particular, the jellyfish galaxies with the longest gas tails reside very near the cluster cores (in projection) and are moving at very high speeds, which coincides with the conditions of the most intense ram pressure. We conclude that many of the jellyfish galaxies seen in clusters likely formed via fast (˜1-2 Gyr), incremental, outside-in ram-pressure stripping during first infall into the cluster in highly radial orbits.
Radial alignment of elliptical galaxies by the tidal force of a cluster of galaxies
NASA Astrophysics Data System (ADS)
Rong, Yu; Yi, Shu-Xu; Zhang, Shuang-Nan; Tu, Hong
2015-08-01
Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster are expected to point preferentially towards the centre of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work, an analytic model is formulated to simulate this effect. The deformation time-scale of a galaxy in a cluster is usually much shorter than the time-scale of change of the tidal force; the dynamical process of tidal interaction within the galaxy can thus be ignored. The equilibrium shape of a galaxy is then assumed to be the surface of equipotential that is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte Carlo method to calculate the radial orientation distribution of cluster galaxies, by assuming a Navarro-Frenk-White mass profile for the cluster and the initial ellipticity of field galaxies. The radial angles show a single-peak distribution centred at zero. The Monte Carlo simulations also show that a shift of the reference centre from the real cluster centre weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell 2744 are consistent with the simulated distribution.
Star-Forming Galaxies in the Hercules Cluster: Hα Imaging of A2151
NASA Astrophysics Data System (ADS)
Cedrés, Bernabé; Iglesias-Páramo, Jorge; Vílchez, José Manuel; Reverte, Daniel; Petropoulou, Vasiliki; Hernández-Fernández, Jonathan
2009-09-01
This paper presents the first results of an Hα imaging survey of galaxies in the central regions of the A2151 cluster. A total of 50 sources were detected in Hα, from which 41 were classified as secure members of the cluster and 2 as likely members based on spectroscopic and photometric redshift considerations. The remaining seven galaxies were classified as background contaminants and thus excluded from our study on the Hα properties of the cluster. The morphologies of the 43 Hα selected galaxies range from grand design spirals and interacting galaxies to blue compacts and tidal dwarfs or isolated extragalactic H II regions, spanning a range of magnitudes of -21 <= MB <= -12.5 mag. From these 43 galaxies, 7 have been classified as active galactic nucleus (AGN) candidates. These AGN candidates follow the L(Hα) versus MB relationship of the normal galaxies, implying that the emission associated with the nuclear engine has a rather secondary impact on the total Hα emission of these galaxies. A comparison with the clusters Coma and A1367 and a sample of field galaxies has shown the presence of cluster galaxies with L(Hα) lower than expected for their MB , a consequence of the cluster environment. This fact results in differences in the L(Hα) versus EW(Hα) and L(Hα) distributions of the clusters with respect to the field, and in cluster-to-cluster variations of these quantities, which we propose are driven by a global cluster property as the total mass. In addition, the cluster Hα emitting galaxies tend to avoid the central regions of the clusters, again with different intensity depending on the cluster total mass. For the particular case of A2151, we find that most Hα emitting galaxies are located close to the regions with the higher galaxy density, offset from the main X-ray peak. Overall, we conclude that both the global cluster environment and the cluster merging history play a non-negligible role in the integral star formation properties of clusters of galaxies.
STAR-FORMING GALAXIES IN THE HERCULES CLUSTER: H{alpha} IMAGING OF A2151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cedres, Bernabe; Iglesias-Paramo, Jorge; VIlchez, Jose Manuel
2009-09-15
This paper presents the first results of an H{alpha} imaging survey of galaxies in the central regions of the A2151 cluster. A total of 50 sources were detected in H{alpha}, from which 41 were classified as secure members of the cluster and 2 as likely members based on spectroscopic and photometric redshift considerations. The remaining seven galaxies were classified as background contaminants and thus excluded from our study on the H{alpha} properties of the cluster. The morphologies of the 43 H{alpha} selected galaxies range from grand design spirals and interacting galaxies to blue compacts and tidal dwarfs or isolated extragalacticmore » H II regions, spanning a range of magnitudes of -21 {<=} M{sub B} {<=} -12.5 mag. From these 43 galaxies, 7 have been classified as active galactic nucleus (AGN) candidates. These AGN candidates follow the L(H{alpha}) versus M{sub B} relationship of the normal galaxies, implying that the emission associated with the nuclear engine has a rather secondary impact on the total H{alpha} emission of these galaxies. A comparison with the clusters Coma and A1367 and a sample of field galaxies has shown the presence of cluster galaxies with L(H{alpha}) lower than expected for their M{sub B} , a consequence of the cluster environment. This fact results in differences in the L(H{alpha}) versus EW(H{alpha}) and L(H{alpha}) distributions of the clusters with respect to the field, and in cluster-to-cluster variations of these quantities, which we propose are driven by a global cluster property as the total mass. In addition, the cluster H{alpha} emitting galaxies tend to avoid the central regions of the clusters, again with different intensity depending on the cluster total mass. For the particular case of A2151, we find that most H{alpha} emitting galaxies are located close to the regions with the higher galaxy density, offset from the main X-ray peak. Overall, we conclude that both the global cluster environment and the cluster merging history play a non-negligible role in the integral star formation properties of clusters of galaxies.« less
NASA Telescopes Help Discover Surprisingly Young Galaxy
2017-12-08
NASA image release April 12, 2011 Astronomers have uncovered one of the youngest galaxies in the distant universe, with stars that formed 13.5 billion years ago, a mere 200 million years after the Big Bang. The finding addresses questions about when the first galaxies arose, and how the early universe evolved. NASA's Hubble Space Telescope was the first to spot the newfound galaxy. Detailed observations from the W.M. Keck Observatory on Mauna Kea in Hawaii revealed the observed light dates to when the universe was only 950 million years old; the universe formed about 13.7 billion years ago. Infrared data from both Hubble and NASA's Spitzer Space Telescope revealed the galaxy's stars are quite mature, having formed when the universe was just a toddler at 200 million years old. The galaxy's image is being magnified by the gravity of a massive cluster of galaxies (Abell 383) parked in front of it, making it appear 11 times brighter. This phenomenon is called gravitational lensing. Hubble imaged the lensing galaxy Abell 383 with the Wide Field Camera 3 and the Advanced Camera for Surveys in November 2010 through March 2011. Credit: NASA, ESA, J. Richard (Center for Astronomical Research/Observatory of Lyon, France), and J.-P. Kneib (Astrophysical Laboratory of Marseille, France) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
2017-12-08
Hubble sees a galaxy 60 million light-years away This new NASA/ESA Hubble Space Telescope image shows the galaxy IC 335 in front of a backdrop of distant galaxies. IC 335 is part of a galaxy group containing three other galaxies, and located in the Fornax Galaxy Cluster 60 million light-years away. As seen in this image, the disk of IC 335 appears edge-on from the vantage point of Earth. This makes it harder for astronomers to classify it, as most of the characteristics of a galaxy’s morphology — the arms of a spiral or the bar across the center — are only visible on its face. Still, the 45 000 light-year-long galaxy could be classified as an S0 type. These lenticular galaxies are an intermediate state in galaxy morphological classification schemes between true spiral and elliptical galaxies. They have a thin stellar disk and a bulge, like spiral galaxies, but in contrast to typical spiral galaxies they have used up most of the interstellar medium. Only a few new stars can be created out of the material that is left and the star formation rate is very low. Hence, the population of stars in S0 galaxies consists mainly of aging stars, very similar to the star population in elliptical galaxies. As S0 galaxies have only ill-defined spiral arms they are easily mistaken for elliptical galaxies if they are seen inclined face-on or edge-on as IC 335 here. And indeed, despite the morphological differences between S0 and elliptical class galaxies, they share some common characteristics, like typical sizes and spectral features. Both classes are also deemed "early-type" galaxies, because they are evolving passively. However, while elliptical galaxies may be passively evolving when we observe them, they have usually had violent interactions with other galaxies in their past. In contrast, S0 galaxies are either aging and fading spiral galaxies, which never had any interactions with other galaxies, or they are the aging result of a single merger between two spiral galaxies in the past. The exact nature of these galaxies is still a matter of debate. Credit: ESA/Hubble and NASA
Enviromental Effects on Internal Color Gradients of Early-Type Galaxies
NASA Astrophysics Data System (ADS)
La Barbera, F.; de Carvalho, R. R.; Gal, R. R.; Busarello, G.; Haines, C. P.; Mercurio, A.; Merluzzi, P.; Capaccioli, M.; Djorgovski, S. G.
2007-05-01
One of the most debated issues of observational and theoretical cosmology is that of how the environment affects the formation and evolution of galaxies. To gain new insight into this subject, we have derived surface photometry for a sample of 3,000 early-type galaxies belonging to 163 clusters with different richness, spanning a redshift range of 0.05 to 0.25. This large data-set is used to analyze how the color distribution inside galaxies depends on several parameters, such as cluster richness, local galaxy density, galaxy luminosity and redshift. We find that the internal color profile of galaxies strongly depends on the environment where galaxies reside. Galaxies in poor and rich clusters are found to follow two distinct trends in the color gradient vs. redshift diagram, with color gradients beeing less steep in rich rather than in poor clusters. No dependence of color gradients on galaxy luminosity is detected both for poor and rich clusters. We find that color gradients strongly depend on local galaxy density, with more shallow gradients in high density regions. Interestingly, this result holds only for low richness clusters, with color gradients of galaxies in rich clusters showing no dependence on local galaxy density. Our results support a reasonable picture whereby young early-type galaxies form in a dissipative collapse process, and then undergo increased (either major or minor) merging activity in richer rather than in poor clusters.
Investigations of Galaxy Clusters Using Gravitational Lensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiesner, Matthew P.
2014-08-01
In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters andmore » gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.« less
A class of compact dwarf galaxies from disruptive processes in galaxy clusters.
Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S
2003-05-29
Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.
LoCuSS: pre-processing in galaxy groups falling into massive galaxy clusters at z = 0.2
NASA Astrophysics Data System (ADS)
Bianconi, M.; Smith, G. P.; Haines, C. P.; McGee, S. L.; Finoguenov, A.; Egami, E.
2018-01-01
We report direct evidence of pre-processing of the galaxies residing in galaxy groups falling into galaxy clusters drawn from the Local Cluster Substructure Survey (LoCuSS). 34 groups have been identified via their X-ray emission in the infall regions of 23 massive (
The Tully-Fisher Relation in Cluster Cl 0024+1654 at z=0.4
NASA Astrophysics Data System (ADS)
Metevier, Anne J.; Koo, David C.; Simard, Luc; Phillips, Andrew C.
2006-06-01
Using moderate-resolution Keck spectra, we have examined the velocity profiles of 15 members of cluster Cl 0024+1654 at z=0.4. WFPC2 images of the cluster members have been used to determine structural parameters, including disk sizes, orientations, and inclinations. We compare two methods of optical rotation curve analysis for kinematic measurements. Both methods take seeing, slit size and orientation, and instrumental effects into account and yield similar rotation velocity measurements. Four of the galaxies in our sample exhibit unusual kinematic signatures, such as noncircular motions. Our key result is that the Cl 0024 galaxies are marginally underluminous (0.50+/-0.23 mag), given their rotation velocities, as compared to the local Tully-Fisher relation. In this analysis, we assume no slope evolution and take into account systematic differences between local and distant velocity and luminosity measurements. Our result is particularly striking considering that the Cl 0024 members have very strong emission lines and local galaxies with similar Hα equivalent widths tend to be overluminous on the Tully-Fisher relation. Cl 0024 Tully-Fisher residuals appear to be correlated most strongly with galaxy rotation velocities, indicating a possible change in the slope of the Tully-Fisher relation. However, we caution that this result may be strongly affected by magnitude selection and by the original slope assumed for the analysis. Cl 0024 residuals also depend weakly on color, emission-line strength and extent, and photometric asymmetry. In a comparison of stellar and gas motions in two Cl 0024 members, we find no evidence for counterrotating stars and gas, an expected signature of mergers. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the California Institute of Technology and the University of California. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Dynamical Effects of the Scale Invariance of the Empty Space: The Fall of Dark Matter?
NASA Astrophysics Data System (ADS)
Maeder, Andre
2017-11-01
The hypothesis of the scale invariance of the macroscopic empty space, which intervenes through the cosmological constant, has led to new cosmological models. They show an accelerated cosmic expansion after the initial stages and satisfy several major cosmological tests. No unknown particles are needed. Developing the weak-field approximation, we find that the here-derived equation of motion corresponding to Newton’s equation also contains a small outward acceleration term. Its order of magnitude is about \\sqrt{{\\varrho }{{c}}/\\varrho } × Newton’s gravity (ϱ being the mean density of the system and {\\varrho }{{c}} the usual critical density). The new term is thus particularly significant for very low density systems. A modified virial theorem is derived and applied to clusters of galaxies. For the Coma Cluster and Abell 2029, the dynamical masses are about a factor of 5-10 smaller than in the standard case. This tends to leave no room for dark matter in these clusters. Then, the two-body problem is studied and an equation corresponding to the Binet equation is obtained. It implies some secular variations of the orbital parameters. The results are applied to the rotation curve of the outer layers of the Milky Way. Starting backward from the present rotation curve, we calculate the past evolution of the Galactic rotation and find that, in the early stages, it was steep and Keplerian. Thus, the flat rotation curves of galaxies appear as an age effect, a result consistent with recent observations of distant galaxies by Genzel et al. and Lang et al. Finally, in an appendix we also study the long-standing problem of the increase with age of the vertical velocity dispersion in the Galaxy. The observed increase appears to result from the new small acceleration term in the equation of the harmonic oscillator describing stellar motions around the Galactic plane. Thus, we tend to conclude that neither dark energy nor dark matter seems to be needed in the proposed theoretical context.
Massive Stars and Star Clusters in the Era of JWST
NASA Astrophysics Data System (ADS)
Klein, Richard
Massive stars lie at the center of the web of physical processes that has shaped the universe as we know it, governing the evolution of the interstellar medium of galaxies, producing a majority of the heavy elements, and thereby determining the evolution of galaxies. Massive stars are also important as signposts, since they produce most of the light and almost all the ionizing radiation in regions of active star formation. A significant fraction of all stars form in massive clusters, which will be observable throughout the visible universe with JWST. Their luminosities are so high that the pressure of their light on interstellar dust grains is likely the dominant feedback mechanism regulating their formation. While this process has been studied in the local Universe, much less attention has been focused on how it behaves at high redshift, where the dust abundance is much lower due to the overall lower abundance of heavy elements. The high redshift Universe also differs from the nearby one in that observations imply that high redshift star formation occurs at significantly higher densities than are typically found locally. We propose to simulate the formation of individual massive stars from the high redshift universe to the present day universe spanning metallicities ranging from 0.001 to 1.0 and column densities from 0.1to 30.0 g/cm2 focusing on how the process depends on both the dust abundance and on the density of the star-forming gas. These simulations will be among the first to treat the formation of Population II stars, which form in regions of low metallicity. Based on these results, we shall then simulate the formation of clusters of stars across also cosmic time, both of moderate mass, such as the Orion Nebula Cluster, and of high mass, such as the super star clusters seen in starburst galaxies. These state-of-the-art simulations will be carried out using our newly developed advanced techniques in our radiation-magneto-hydrodynamic AMR code ORION, for radiative transfer with both ionizing and non-ionizing radiation that accurately handle both the direct radiation from stars and the diffuse infrared radiation field that builds up when direct radiation is reprocessed by dust grains. Our simulations include all of the relevant feedback effects such as radiative heating, radiation pressure, photodissociation and photoionization, protostellar outflows and stellar winds. The challenge in simulating the formation of massive stars and massive clusters is to include all these feedback effects self-consistently as they occur collectively. We are in an excellent position to do so. The results of these simulations will be directly relevant to the interpretation of observations with JWST, which will probe cluster formation in both the nearby and distant universe, and with SOFIA, which can observe high-mass star formation in the Galaxy. We shall make direct comparison with observations of massive protostars in the Galactic disk. We shall also compare with observations of star clusters that form in dense environments, such as the Galactic Center and in merging galaxies (e.g., the Antennae), and in low metallicity environments, such as the dwarf starburst galaxy I Zw 18. Once our simulations have been benchmarked with observations of massive protostars in the Galaxy and massive protoclusters in the local universe, they will provide the theoretical basis for interpreting observations of the formation of massive star clusters at high redshift with JWST. What determines the maximum mass of a star? How does stellar feedback affect the formation of individual stars and the formation of massive star clusters and how the answers to these questions evolve with cosmic time. The proposed research will provide high-resolution input to the study of stellar feedback on galaxy formation with a significantly more accurate treatment of the physics, particularly the radiative transfer that is so important for feedback.
NASA Astrophysics Data System (ADS)
Gupta, Anshu; Yuan, Tiantian; Torrey, Paul; Vogelsberger, Mark; Martizzi, Davide; Tran, Kim-Vy H.; Kewley, Lisa J.; Marinacci, Federico; Nelson, Dylan; Pillepich, Annalisa; Hernquist, Lars; Genel, Shy; Springel, Volker
2018-06-01
We use the IllustrisTNG simulations to investigate the evolution of the mass-metallicity relation (MZR) for star-forming cluster galaxies as a function of the formation history of their cluster host. The simulations predict an enhancement in the gas-phase metallicities of star-forming cluster galaxies (109 < M* < 1010 M⊙ h-1) at z ≤ 1.0 in comparisons to field galaxies. This is qualitatively consistent with observations. We find that the metallicity enhancement of cluster galaxies appears prior to their infall into the central cluster potential, indicating for the first time a systematic `chemical pre-processing' signature for infalling cluster galaxies. Namely, galaxies that will fall into a cluster by z = 0 show a ˜0.05 dex enhancement in the MZR compared to field galaxies at z ≤ 0.5. Based on the inflow rate of gas into cluster galaxies and its metallicity, we identify that the accretion of pre-enriched gas is the key driver of the chemical evolution of such galaxies, particularly in the stellar mass range (109 < M* < 1010 M⊙ h-1). We see signatures of an environmental dependence of the ambient/inflowing gas metallicity that extends well outside the nominal virial radius of clusters. Our results motivate future observations looking for pre-enrichment signatures in dense environments.
The X-ray emitting gas in poor clusters with central dominant galaxies
NASA Technical Reports Server (NTRS)
Kriss, G. A.; Cioffi, D. F.; Canizares, C. R.
1983-01-01
The 12 clusters detected in the present study by the Einstein Observatory's X-ray imaging proportional counter show X-ray emission centered on the dominant galaxy in all cases. Comparison of the deduced distribution of binding mass with the light distribution of the central galaxies of four clusters indicates that the mass/luminosity ratio rises to over 200 solar masses/solar luminosity in the galaxy halos. These halos must therefore, like the clusters themselves, posses dark matter. The X-ray data clearly show that the dominant galaxies sit at the bottoms of the poor cluster gravitational potential wells, suggesting a similar origin for dominant galaxies in poor and rich clusters, perhaps through the merger and cannibalism of cluster galaxies. It is the luminosity of the distended cD envelope that reflects the relative wealth of the cluster environment.
Absorption line indices in the UV. I. Empirical and theoretical stellar population models
NASA Astrophysics Data System (ADS)
Maraston, C.; Nieves Colmenárez, L.; Bender, R.; Thomas, D.
2009-01-01
Aims: Stellar absorption lines in the optical (e.g. the Lick system) have been extensively studied and constitute an important stellar population diagnostic for galaxies in the local universe and up to moderate redshifts. Proceeding towards higher look-back times, galaxies are younger and the ultraviolet becomes the relevant spectral region where the dominant stellar populations shine. A comprehensive study of ultraviolet absorption lines of stellar population models is however still lacking. With this in mind, we study absorption line indices in the far and mid-ultraviolet in order to determine age and metallicity indicators for UV-bright stellar populations in the local universe as well as at high redshift. Methods: We explore empirical and theoretical spectral libraries and use evolutionary population synthesis to compute synthetic line indices of stellar population models. From the empirical side, we exploit the IUE-low resolution library of stellar spectra and system of absorption lines, from which we derive analytical functions (fitting functions) describing the strength of stellar line indices as a function of gravity, temperature and metallicity. The fitting functions are entered into an evolutionary population synthesis code in order to compute the integrated line indices of stellar populations models. The same line indices are also directly evaluated on theoretical spectral energy distributions of stellar population models based on Kurucz high-resolution synthetic spectra, In order to select indices that can be used as age and/or metallicity indicators for distant galaxies and globular clusters, we compare the models to data of template globular clusters from the Magellanic Clouds with independently known ages and metallicities. Results: We provide synthetic line indices in the wavelength range ~1200 Å to ~3000 Å for stellar populations of various ages and metallicities.This adds several new indices to the already well-studied CIV and SiIV absorptions. Based on the comparison with globular cluster data, we select a set of 11 indices blueward of the 2000 Å rest-frame that allows us to recover well the ages and the metallicities of the clusters. These indices are ideal to study ages and metallicities of young galaxies at high redshift. We also provide the synthetic high-resolution stellar population SEDs.
2017-12-08
The gravitational field surrounding this massive cluster of galaxies, Abell 68, acts as a natural lens in space to brighten and magnify the light coming from very distant background galaxies. Like a fun house mirror, lensing creates a fantasy landscape of arc-like images and mirror images of background galaxies. The foreground cluster is 2 billion light-years away, and the lensed images come from galaxies far behind it. In this photo, the image of a spiral galaxy at upper left has been stretched and mirrored into a shape similar to that of a simulated alien from the classic 1970s computer game "Space Invaders!" A second, less distorted image of the same galaxy appears to the left of the large, bright elliptical galaxy. In the upper right of the photo is another striking feature of the image that is unrelated to gravitational lensing. What appears to be purple liquid dripping from a galaxy is a phenomenon called ram-pressure stripping. The gas clouds within the galaxy are being stripped out and heated up as the galaxy passes through a region of denser intergalactic gas. This image was taken in infrared light by Hubble’s Wide Field Camera 3, and combined with near-infrared observations from Hubble’s Advanced Camera for Surveys. The image is based in part on data spotted by Nick Rose in the Hubble’s Hidden Treasures image processing competition. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington. Credit: NASA and ESA Acknowledgement: N. Rose For image files and more information about Abell 68, visit: hubblesite.org/news/2013/09 www.spacetelescope.org/news/heic04 heritage.stsci.edu/2013/09 www.spacetelescope.org/projects/hiddentreasures/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
The gravitational field surrounding this massive cluster of galaxies, Abell 68, acts as a natural lens in space to brighten and magnify the light coming from very distant background galaxies. Like a fun house mirror, lensing creates a fantasy landscape of arc-like images and mirror images of background galaxies. The foreground cluster is 2 billion light-years away, and the lensed images come from galaxies far behind it. In this photo, the image of a spiral galaxy at upper left has been stretched and mirrored into a shape similar to that of a simulated alien from the classic 1970s computer game "Space Invaders!" A second, less distorted image of the same galaxy appears to the left of the large, bright elliptical galaxy. In the upper right of the photo is another striking feature of the image that is unrelated to gravitational lensing. What appears to be purple liquid dripping from a galaxy is a phenomenon called ram-pressure stripping. The gas clouds within the galaxy are being stripped out and heated up as the galaxy passes through a region of denser intergalactic gas. This image was taken in infrared light by Hubble’s Wide Field Camera 3, and combined with near-infrared observations from Hubble’s Advanced Camera for Surveys. The image is based in part on data spotted by Nick Rose in the Hubble’s Hidden Treasures image processing competition. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington. To read more go to: 1.usa.gov/Z6uDUp Credit: NASA and ESA Acknowledgement: N. Rose For image files and more information about Abell 68, visit: hubblesite.org/news/2013/09 www.spacetelescope.org/news/heic04 heritage.stsci.edu/2013/09 www.spacetelescope.org/projects/hiddentreasures/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Radial Alignment of Ellipitcal Galaxies by the Tidal Force of a Cluster of Galaxies
NASA Astrophysics Data System (ADS)
Zhang, Shuang-Nan; Rong, Yu; Tu, Hong
2015-08-01
Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.
Radial Alignment of Elliptical Galaxies by the Tidal Force of a Cluster of Galaxies
NASA Astrophysics Data System (ADS)
Zhang, Shuang-Nan; Rong, Yu; Tu, Hong
2015-08-01
Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.
NASA Astrophysics Data System (ADS)
Torres-Zafra, Juanita; Cellone, Sergio A.; Buzzoni, Alberto; Andruchow, Ileana; Portilla, José G.
2018-03-01
The BL Lac object 3C 66A is one of the most luminous extragalactic sources at TeV γ-rays (very high energy, i.e. E > 100 GeV). Since TeV γ-ray radiation is absorbed by the extragalactic background light (EBL), it is crucial to know the redshift of the source in order to reconstruct its original spectral energy distribution, as well as to constrain EBL models. However, the optical spectrum of this BL Lac is almost featureless, so a direct measurement of z is very difficult; in fact, the published redshift value for this source (z = 0.444) has been strongly questioned. Based on EBL absorption arguments, several constraints to its redshift, in the range 0.096 < z < 0.5, were proposed. Since these active galactic nuclei (AGNs) are hosted, typically, in early-type galaxies that are members of groups or clusters, we have analysed spectro-photometrically the environment of 3C 66A, with the goal of finding the galaxy group hosting this blazar. This study was made using optical images of a 5.5 × 5.5 arcmin2 field centred on the blazar, and spectra of 24 sources obtained with Gemini/GMOS-N multi-object spectroscopy. We found spectroscopic evidence of two galaxy groups along the blazar's line of sight: one at z ≃ 0.020 and the second one at z ≃ 0.340. The first one is consistent with a known foreground structure, while the second group presented here has six spectroscopically confirmed members. Their location along a red sequence in the colour-magnitude diagram allows us to identify 34 additional candidate members of the more distant group. The blazar's spectrum shows broad absorption features that we identify as arising in the intergalactic medium, thus allowing us to tentatively set a redshift lower limit at z_3C66A ≳ 0.33. As a consequence, we propose that 3C 66A is hosted in a galaxy that belongs to a cluster at z = 0.340.
SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.
We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg{sup 2} of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal ofmore » these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m {sup ⋆}). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.« less
SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; ...
2016-11-01
Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less
SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.
Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less
SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey
NASA Astrophysics Data System (ADS)
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.
2016-11-01
We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.
The NIKA2 Instrument at 30-m IRAM Telescope: Performance and Results
NASA Astrophysics Data System (ADS)
Catalano, A.; Adam, R.; Ade, P. A. R.; André, P.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Comis, B.; De Petris, M.; Désert, F.-X.; Doyle, S.; Driessen, E. F. C.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Lestrade, J.-F.; Macías-Pérez, J. F.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Romero, C.; Roussel, H.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.; Barria, E.; Bres, G.; Camus, P.; Chanthib, P.; Donnier-Valentin, G.; Exshaw, O.; Garde, G.; Gerardin, A.; Leggeri, J.-P.; Levy-Bertrand, F.; Guttin, C.; Hoarau, C.; Grollier, M.; Mocellin, J.-L.; Pont, G.; Rodenas, H.; Tissot, O.; Galvez, G.; John, D.; Ungerechts, H.; Sanchez, S.; Mellado, P.; Munoz, M.; Pierfederici, F.; Penalver, J.; Navarro, S.; Bosson, G.; Bouly, J.-L.; Bouvier, J.; Geraci, C.; Li, C.; Menu, J.; Ponchant, N.; Roni, S.; Roudier, S.; Scordillis, J. P.; Tourres, D.; Vescovi, C.; Barbier, A.; Billon-Pierron, D.; Adane, A.; Andrianasolo, A.; Bracco, A.; Coiffard, G.; Evans, R.; Maury, A.; Rigby, A.
2018-03-01
The New IRAM KID Arrays 2 (NIKA2) consortium has just finished installing and commissioning a millimetre camera on the IRAM 30-m telescope. It is a dual-band camera operating with three frequency-multiplexed kilo-pixels arrays of lumped element kinetic inductance detectors (LEKID) cooled at 150 mK, designed to observe the intensity and polarisation of the sky at 260 and 150 GHz (1.15 and 2 mm). NIKA2 is today an IRAM resident instrument for millimetre astronomy, such as intracluster medium from intermediate to distant clusters and so for the follow-up of Planck satellite detected clusters, high redshift sources and quasars, early stages of star formation and nearby galaxies emission. We present an overview of the instrument performance as it has been evaluated at the end of the commissioning phase.
Spectrum from Faint Galaxy IRAS F00183-7111
NASA Technical Reports Server (NTRS)
2003-01-01
NASA's Spitzer Space Telescope has detected the building blocks of life in the distant universe, albeit in a violent milieu. Training its powerful infrared eye on a faint object located at a distance of 3.2 billion light-years, Spitzer has observed the presence of water and organic molecules in the galaxy IRAS F00183-7111. With an active galactic nucleus, this is one of the most luminous galaxies in the universe, rivaling the energy output of a quasar. Because it is heavily obscured by dust (see visible-light image in the inset), most of its luminosity is radiated at infrared wavelengths.The infrared spectrograph instrument onboard Spitzer breaks light into its constituent colors, much as a prism does for visible light. The image shows a low-resolution spectrum of the galaxy obtained by the spectrograph at wavelengths between 4 and 20 microns. Spectra are graphical representations of a celestial object's unique blend of light. Characteristic patterns, or fingerprints, within the spectra allow astronomers to identify the object's chemical composition and to determine such physical properties as temperature and density.The broad depression in the center of the spectrum denotes the presence of silicates (chemically similar to beach sand) in the galaxy. An emission peak within the bottom of the trough is the chemical signature for molecular hydrogen. The hydrocarbons (orange) are organic molecules comprised of carbon and hydrogen, two of the most common elements on Earth. Since it has taken more than three billion years for the light from the galaxy to reach Earth, it is intriguing to note the presence of organics in a distant galaxy at a time when life is thought to have started forming on our home planet.Additional features in the spectrum reveal the presence of water ice (blue), carbon dioxide ice (green) and carbon monoxide (purple) in both gas and solid forms. The magenta peak corresponds to singly ionized neon gas, a spectral line often used by astronomers as a diagnostic of star formation rates in distant galaxies.The Spitzer spectrum is the result of only 14 minutes of integration time, highlighting the power of the infrared spectrograph to unlock the secrets of distant galaxies.Detection of CO emission in Hydra 1 cluster galaxies
NASA Technical Reports Server (NTRS)
Huchtmeier, W. K.
1990-01-01
A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies.
The dipole anisotropy of AllWISE galaxies
NASA Astrophysics Data System (ADS)
Rameez, M.; Mohayaee, R.; Sarkar, S.; Colin, J.
2018-06-01
We determine the dipole in the WISE (Wide Infrared Satellite Explorer) galaxy catalogue. After reducing star contamination to < 0.1 per cent by rejecting sources with high apparent motion and those close to the Galactic plane, we eliminate low redshift sources to suppress the non-kinematic, clustering dipole. We remove sources within ±5° of the supergalactic plane, as well as those within 1ʺ of 2MRS sources at redshift z < 0.03. We enforce cuts on the source angular extent to preferentially select distant ones. As we progress along these steps, the dipole converges in direction to within 5° of the Cosmic Microwave Background (CMB) dipole and its magnitude also progressively reduces but stabilizes at ˜0.012, corresponding to a velocity >1000 km s-1 if it is solely of kinematic origin. However, previous studies have shown that only ˜ 70 per cent of the velocity of the Local Group as inferred from the CMB dipole is due to sources at z < 0.03. We examine the Dark Sky simulations to quantify the prevalence of such environments and find that <2.1 per cent of Milky Way-like observers in a ΛCDM universe should observe the bulk flow (>240 km s-1 extending to z > 0.03) that we do. We construct mock catalogues in the neighbourhood of such peculiar observers in order to mimic our final galaxy selection and quantify the residual clustering dipole. After subtracting this, the remaining dipole is 0.0048 ± 0.0022, corresponding to a velocity of 420 ± 213 km s-1, which is consistent with the CMB. However, the sources (at z > 0.03) of such a large clustering dipole remain to be identified.
Abundances of Local Group Globular Clusters Using High Resolution Integrated Light Spectroscopy
NASA Astrophysics Data System (ADS)
Sakari, Charli; McWilliam, A.; Venn, K.; Shetrone, M. D.; Dotter, A. L.; Mackey, D.
2014-01-01
Abundances and kinematics of extragalactic globular clusters provide valuable clues about galaxy and globular cluster formation in a wide variety of environments. In order to obtain such information about distant, unresolved systems, specific observational techniques are required. An Integrated Light Spectrum (ILS) provides a single spectrum from an entire stellar population, and can therefore be used to determine integrated cluster abundances. This dissertation investigates the accuracy of high resolution ILS analysis methods, using ILS (taken with the Hobby-Eberly Telescope) of globular clusters associated with the Milky Way (47 Tuc, M3, M13, NGC 7006, and M15) and then applies the method to globular clusters in the outer halo of M31 (from the Pan-Andromeda Archaeological Survey, or PAndAS). Results show that: a) as expected, the high resolution method reproduces individual stellar abundances for elements that do not vary within a cluster; b) the presence of multiple populations does affect the abundances of elements that vary within the cluster; c) certain abundance ratios are very sensitive to systematic effects, while others are not; and d) certain abundance ratios (e.g. [Ca/Fe]) can be accurately obtained from unresolved systems. Applications of ILABUNDS to the PAndAS clusters reveal that accretion may have played an important role in the formation of M31's outer halo.
Searching for the missing baryons with the VSA and WMAP
NASA Astrophysics Data System (ADS)
Genova-Santos, Ricardo
2004-12-01
The hot diffuse gas in the local Universe which could host the missing baryons, could produce detectable thermal Sunyaev-Zel’dovich effect (tSZE). With this aim, in this work, I present the discussion of the search of this gas, via two different ways. Both takes into account this fact: Firstly, the search for the imprint of the tSZE in the first year data of the WMAP satellite, by applying a pixel to pixel correlation method between this data and a template constructed from the Two Micron All Sky Survey (2MASS) Extended Source Catalogue, which it has been assumed that trace the distribution of this hot gas. This analysis has yielded a detection of 35 7 µK in ¢ ¡ the 26 d eg2 of the sky containing the largest projected galaxy density. Nevertheless, this signal is mostly due to the contribution from galaxy clusters subtending an angular size of 20 30 . When ¡ £ the regions affected by the clusters are removed from the analysis, it is found a decrement of 96 37 µK in 0 8 d eg2 of the sky. Nevertheless, most of this signal comes from five different ¢ ¡ ¤ cluster candidates in the Zone of Avoidance (ZoA), present in the Clusters in the ZoA catalogue (CIZA). Hence, it is not found any clear evidence of structures larger than clusters, as it would be the case of this hot gas, contributing to the tSZE signal in the WMAP data. Secondly, interferometric imaging at 33 GH z of the well known Corona Borealis supercluster with the Very Small Array (VSA). The maps built up from these observations, apart from the common Cosmic Microwave Background (CMB) primordial fluctuations, show the presence of two intriguing strong negative features near the centre of the core of the supercluster [1]. It is discussed the possibility of being caused by CMB fluctuations, or by tSZ signals related to either unknown distant galaxy clusters or to diffuse extended warm/hot gas.
Simulating The Dynamical Evolution Of Galaxies In Group And Cluster Environments
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani
2015-07-01
Galaxy clusters are harsh environments for their constituent galaxies. A variety of physical processes effective in these dense environments transform gas-rich, spiral, star-forming galaxies to elliptical or spheroidal galaxies with very little gas and therefore minimal star formation. The consequences of these processes are well understood observationally. Galaxies in progressively denser environments have systematically declining star formation rates and gas content. However, a theoretical understanding of of where, when, and how these processes act, and the interplay between the various galaxy transformation mechanisms in clusters remains elusive. In this dissertation, I use numerical simulations of cluster mergers as well as galaxies evolving in quiescent environments to develop a theoretical framework to understand some of the physics of galaxy transformation in cluster environments. Galaxies can be transformed in smaller groups before they are accreted by their eventual massive cluster environments, an effect termed `pre-processing'. Galaxy cluster mergers themselves can accelerate many galaxy transformation mechanisms, including tidal and ram pressure stripping of galaxies and galaxy-galaxy collisions and mergers that result in reassemblies of galaxies' stars and gas. Observationally, cluster mergers have distinct velocity and phase-space signatures depending on the observer's line of sight with respect to the merger direction. Using dark matter only as well as hydrodynamic simulations of cluster mergers with random ensembles of particles tagged with galaxy models, I quantify the effects of cluster mergers on galaxy evolution before, during, and after the mergers. Based on my theoretical predictions of the dynamical signatures of these mergers in combination with galaxy transformation signatures, one can observationally identify remnants of mergers and quantify the effect of the environment on galaxies in dense group and cluster environments. The presence of long-lived, hot X-ray emitting coronae observed in a large fraction of group and cluster galaxies is not well-understood. These coronae are not fully stripped by ram pressure and tidal forces that are efficient in these environments. Theoretically, this is a fascinating and challenging problem that involves understanding and simulating the multitude of physical processes in these dense environments that can remove or replenish galaxies' hot coronae. To solve this problem, I have developed and implemented a robust simulation technique where I simulate the evolution of a realistic cluster environment with a population of galaxies and their gas. With this technique, it is possible to isolate and quantify the importance of the various cluster physical processes for coronal survival. To date, I have performed hydrodynamic simulations of galaxies being ram pressure stripped in quiescent group and cluster environments. Using these simulations, I have characterized the physics of ram pressure stripping and investigated the survival of these coronae in the presence of tidal and ram pressure stripping. I have also generated synthetic X-ray observations of these simulated systems to compare with observed coronae. I have also performed magnetohydrodynamic simulations of galaxies evolving in a magnetized intracluster medium plasma to isolate the effect of magnetic fields on coronal evolution, as well the effect of orbiting galaxies in amplifying magnetic fields. This work is an important step towards understanding the effect of cluster environments on galactic gas, and consequently, their long term evolution and impact on star formation rates.
Galaxy properties in clusters. II. Backsplash galaxies
NASA Astrophysics Data System (ADS)
Muriel, H.; Coenda, V.
2014-04-01
Aims: We explore the properties of galaxies on the outskirts of clusters and their dependence on recent dynamical history in order to understand the real impact that the cluster core has on the evolution of galaxies. Methods: We analyse the properties of more than 1000 galaxies brighter than M0.1r = - 19.6 on the outskirts of 90 clusters (1 < r/rvir < 2) in the redshift range 0.05 < z < 0.10. Using the line of sight velocity of galaxies relative to the cluster's mean, we selected low and high velocity subsamples. Theoretical predictions indicate that a significant fraction of the first subsample should be backsplash galaxies, that is, objects that have already orbited near the cluster centre. A significant proportion of the sample of high relative velocity (HV) galaxies seems to be composed of infalling objects. Results: Our results suggest that, at fixed stellar mass, late-type galaxies in the low-velocity (LV) sample are systematically older, redder, and have formed fewer stars during the last 3 Gyrs than galaxies in the HV sample. This result is consistent with models that assume that the central regions of clusters are effective in quenching the star formation by means of processes such as ram pressure stripping or strangulation. At fixed stellar mass, LV galaxies show some evidence of having higher surface brightness and smaller size than HV galaxies. These results are consistent with the scenario where galaxies that have orbited the central regions of clusters are more likely to suffer tidal effects, producing loss of mass as well as a re-distribution of matter towards more compact configurations. Finally, we found a higher fraction of ET galaxies in the LV sample, supporting the idea that the central region of clusters of galaxies may contribute to the transformation of morphological types towards earlier types.
Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization
NASA Astrophysics Data System (ADS)
Hoag, Austin; Bradač, Maruša; Trenti, Michele; Treu, Tommaso; Schmidt, Kasper B.; Huang, Kuang-Han; Lemaux, Brian C.; He, Julie; Bernard, Stephanie R.; Abramson, Louis E.; Mason, Charlotte A.; Morishita, Takahiro; Pentericci, Laura; Schrabback, Tim
2017-04-01
Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch1,2. However, at the highest redshifts (z > 7.5 lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population3. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z > 7.5. We detected the Lyman-α emission line at ˜10,504 Å in two separate observations with MOSFIRE4 on the Keck I Telescope and independently with the Hubble Space Telescope's slitless grism spectrograph, implying a source redshift of z = 7.640 ± 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z = 0.545), with an estimated intrinsic luminosity of MAB = -19.6 ± 0.2 mag and a stellar mass of M⊙=3.0-0.8+1.5×108 solar masses. Both are an order of magnitude lower than the four other Lyman-α emitters currently known at z > 7.5, making it probably the most distant representative source of reionization found to date.
NASA Astrophysics Data System (ADS)
Kotulla, Ralf
2012-10-01
Over its lifespan Hubble has invested significant effort into detailed observations of galaxies both in the local and distant universe. To extract the physical information from the observed {spectro-}photometry requires detailed and accurate models. Stellar population synthesis models are frequently used to obtain stellar masses, star formation rate, galaxy ages and star formation histories. Chemical evolution models offer another valuable and complementary approach to gain insight into many of the same aspects, yet these two methods have rarely been used in combination.Our proposed next generation of galaxy evolution models will help us improve our understanding of how galaxies form and evolve. Building on GALEV evolutionary synthesis models we incorporate state-of-the-art input physics for stellar evolution of binaries and rotating stars as well as new spectral libraries well matched to the modern observational capabilities. Our improved chemical evolution model allows us to self-consistently trace abundances of individual elements, fully accounting for the increasing initial abundances of successive stellar generations. GALEV will support variable Initial Mass Functions {IMF}, enabling us to test recent observational findings of a non-universal IMF by predicting chemical properties and integrated spectra in an integrated and consistent manner.HST is the perfect instrument for testing this approach. Its wide wavelength coverage from UV to NIR enables precise SED fitting, and with its spatial resolution we can compare the inferred chemical evolution to studies of star clusters and resolved stellar populations in nearby galaxies.
Discovery of the Kinematic Alignment of Early-type Galaxies in the Virgo Cluster
NASA Astrophysics Data System (ADS)
Kim, Suk; Jeong, Hyunjin; Lee, Jaehyun; Lee, Youngdae; Joo, Seok-Joo; Kim, Hak-Sub; Rey, Soo-Chang
2018-06-01
Using the kinematic position angles (PAkin), an accurate indicator for the spin axis of a galaxy, obtained from the ATLAS3D integral-field-unit (IFU) spectroscopic data, we discovered that 57 Virgo early-type galaxies tend to prefer the specific PAkin values of 20° and 100°, suggesting that they are kinematically aligned with each other. These kinematic alignment angles are further associated with the directions of the two distinct axes of the Virgo cluster extending east–west and north–south, strongly suggesting that the two distinct axes are the filamentary structures within the cluster as a trace of infall patterns of galaxies. Given that the spin axis of a massive early-type galaxy does not change easily even in clusters from the hydrodynamic simulations, Virgo early-type galaxies are likely to fall into the cluster along the filamentary structures while maintaining their angular momentum. This implies that many early-type galaxies in clusters are formed in filaments via major mergers before subsequently falling into the cluster. Investigating the kinematic alignment in other clusters will allow us to understand the formation of galaxy clusters and early-type galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.
We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We findmore » that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.« less
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...
2015-09-30
In this paper, we present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5 m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6 m Bolshoi Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fieldsmore » were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. Finally, we also present new spectroscopic redshifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.« less
THE XMM CLUSTER SURVEY: THE STELLAR MASS ASSEMBLY OF FOSSIL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Craig D.; Miller, Christopher J.; Richards, Joseph W.
This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightestmore » galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5 R{sub 200}, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters.« less
Rotation curves of spiral galaxies in clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitmore, B.C.
1990-06-01
Recent observations of rotation curves of spiral galaxies in clusters made by Rubin et al. (1988), Whitmore et al. (1988) and Forbes and Whitmore (1988) are analyzed. It is found that spiral galaxies in the inner region of clusters appear to have falling rotation curves and M/L gradients which are flatter than for galaxies in the outer regions of clusters. Problems encountered in attempts to construct mass models for cluster galaxies are briefly discussed. 18 refs.
Chandra Provides New View of Biggest Construction Sites in Universe
NASA Astrophysics Data System (ADS)
2003-05-01
Images made by NASA's Chandra X-ray Observatory have revealed two distant cosmic construction sites buzzing with activity. This discovery shows how super massive black holes control the growth of massive galaxies in the distant universe. X-rays were detected from vast clouds of high-energy particles around the galaxies 3C294 and 4C41.17, which are 10 and 12 billion light years from Earth, respectively. The energetic particles were left over from past explosive events that can be traced through the X-ray and radio jets back to the super massive black holes located in the centers of the galaxies. "These galaxies are revealing an energetic phase in which a super massive black hole transfers considerable energy into the gas surrounding the galaxies," said Andrew Fabian of England's Cambridge University, lead author of a paper on 3C294 to appear in an upcoming issue of the Monthly Notices of the Royal Astronomical Society. "This appears to be crucial in explaining the puzzling properties of present-day galaxies, especially those that group together in large clusters," he said. The picture that is emerging is of a grand cosmic cycle. A dense region of intergalactic gas cools to form several smaller galaxies, which merge to form a larger galaxy with a super massive black hole. The galaxy and its central black hole continue to grow until the energy generated by jets from the vicinity of the voracious black hole stops the fall of matter into the black hole. Millions of years after the jet activity subsides, matter will resume falling into the black hole and the cycle begins anew. 4C41.17 and 3C294 4C41.17 Both 3C294 and 4C41.17 reside in regions of space containing unusually high numbers of galaxies. The gas and galaxies surrounding these galaxies will eventually collapse to form galaxy clusters, some of the most massive objects in the universe. Although 3C294 and 4C41.17 will grow to gargantuan sizes, through the accumulation of surrounding matter that forms hundreds of billions of stars, their growth does not go unchecked. "It's as if nature tries to impose a weight limit on the size of the most massive galaxies," said Caleb Scharf of Columbia University, N.Y., and lead author of a paper on 4C41.17 to be published in The Astrophysical Journal. "The Chandra observations have given us an important clue as to how this occurs. The high energy jets give the super massive black holes an extended reach to regulate the growth of these galaxies," he said. In 3C294 and 4C41.17, the hot swirling infernos around their super massive black holes have launched magnetized jets of high energy particles first identified by radio telescopes. These jets, which were also detected by Chandra, have swept up clouds of dust and gas and have helped trigger the formation of billions of new stars. The dusty, star-forming clouds of 4C41.17, the most powerful source of infrared radiation ever observed, are embedded in even larger clouds of gas. Astronomers recently used the Keck Observatory to observe these larger clouds, which have a temperature of 10,000 degree Celsius gas. These clouds are leftover material from the galaxy's formation and should have cooled rapidly by radiation in the absence of a heat source. Animation of How Supermassive Black Holes Affect the Formation of Massive Galaxies Animation of How Supermassive Black Holes Affect the Formation of Massive Galaxies "Significantly, the warm gas clouds coincide closely with the largest extent of the X-ray emission," said Michiel Reuland of Lawrence Livermore National Laboratory, Livermore, Calif., a coauthor on the 4C41.17 paper and a paper describing Keck Observatory work. "The Chandra results show that high energy particles or radiation can supply the necessary energy to light up these clouds," he said. Most of the X-rays from 4C41.17 and 3C294 are due to collisions of energetic electrons with the cosmic background of photons produced in the hot early universe. Because these galaxies are far away, their observed radiation originated when the universe was younger and the background was more intense. This effect enhances the X-radiation and helps astronomers to study extremely distant galaxies. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass., for the Office of Space Science, NASA Headquarters, Washington. Images and additional information about this result are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
A History of H I Stripping in Virgo: A Phase-space View of VIVA Galaxies
NASA Astrophysics Data System (ADS)
Yoon, Hyein; Chung, Aeree; Smith, Rory; Jaffé, Yara L.
2017-04-01
We investigate the orbital histories of Virgo galaxies at various stages of H I gas stripping. In particular, we compare the location of galaxies with different H I morphology in phase space. This method is a great tool for tracing the gas stripping histories of galaxies as they fall into the cluster. Most galaxies at the early stage of H I stripping are found in the first infall region of Virgo, while galaxies undergoing active H I stripping mostly appear to be falling in or moving out near the cluster core for the first time. Galaxies with severely stripped, yet symmetric, H I disks are found in one of two locations. Some are deep inside the cluster, but others are found in the cluster outskirts with low orbital velocities. We suggest that the latter group of galaxies belong to a “backsplash” population. These present the clearest candidates for backsplashed galaxies observationally identified to date. We further investigate the distribution of a large sample of H I-detected galaxies toward Virgo in phase space, confirming that most galaxies are stripped of their gas as they settle into the gravitational potential of the cluster. In addition, we discuss the impact of tidal interactions between galaxies and group preprocessing on the H I properties of the cluster galaxies, and link the associated star formation evolution to the stripping sequence of cluster galaxies.
Nature of multiple-nucleus cluster galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, D.
1984-05-01
In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent withmore » the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.« less
Galaxies 800 million years after the Big Bang seen with the Atacama Large Millimetre Array
NASA Astrophysics Data System (ADS)
Smit, Renske
2018-01-01
The identification of galaxies in the first billion years after the Big Bang presents a challenge for even the largest optical telescopes. When the Atacama Large Millimetre Array (ALMA) started science operations in 2011 it presented a tantalising opportunity to identify and characterise these first sources of light in a new window of the electromagnetic spectrum. I will present new sources successfully identified at z=6.8 using ALMA; the first spectroscopic confirmations of typical star-forming galaxies during the Epoch or Reionization using a sub-millimetre telescope. Moreover, these observations reveal the gas kinematics of such distant sources for the first time. The velocity gradient in these galaxies indicate that these galaxies likely have similar dynamical properties as the turbulent, yet rotation-dominated disks that have been observed for Hα emitting galaxies 2 billion years later at cosmic noon. This novel approach for confirming galaxies during Reionization paves the way for larger studies of distant galaxies with spectroscopic redshifts. Particularly important, this opens up opportunities for the measurement of high angular-resolution dynamics in galaxies less than one billion years after the Big Bang.
Strong Lens Models for Massive Galaxy Clusters in the Reionization Lensing Cluster Survey
NASA Astrophysics Data System (ADS)
Cerny, Catherine; Sharon, Keren; Coe, Dan A.; Paterno-Mahler, Rachel; Jones, Christine; Czakon, Nicole G.; Umetsu, Keiichi; Stark, Daniel; Bradley, Larry D.; Trenti, Michele; Johnson, Traci; Bradac, Marusa; Dawson, William; Rodney, Steven A.; Strolger, Louis-Gregory; RELICS Team
2017-01-01
We present strong lensing models for five galaxy clusters from the Planck SZ cluster catalog as a part of the Reionization Lensing Cluster Survey (RELICS), a program that seeks to constrain the galaxy luminosity function past z~9 by conducting a wide field survey of massive galaxy clusters with HST (GO-14096, PI: Coe). The strong gravitational lensing effects of these clusters significantly magnify background galaxies, which enhances our ability to discover the large numbers of high redshift galaxies at z~9-12 needed to create a representative sample. We use strong lensing models for these clusters to study their mass distribution and magnification, which allows us to quantify the lensing effect on the background galaxies. These models can then be utilized in the RELICS survey in order to identify high redshift galaxy candidates that may be lensed by the clusters. The intrinsic properties of these galaxy candidates can be derived by removing the lensing effect as predicted by our models, which will meet the science goals of the RELICS survey. We use HST WFC3 and ACS imaging to create lensing models for the clusters RXC J0142.9+4438, ACO-2537, ACO-2163, RXCJ2211.7-0349, and ACT-CLJ0102-49151.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenney, Jeffrey D. P.; Abramson, Anne; Bravo-Alfaro, Hector, E-mail: jeff.kenney@yale.edu
Remarkable dust extinction features in the deep Hubble Space Telescope (HST) V and I images of the face-on Coma cluster spiral galaxy NGC 4921 show in unprecedented ways how ram pressure strips the ISM from the disk of a spiral galaxy. New VLA HI maps show a truncated and highly asymmetric HI disk with a compressed HI distribution in the NW, providing evidence for ram pressure acting from the NW. Where the HI distribution is truncated in the NW region, HST images show a well-defined, continuous front of dust that extends over 90° and 20 kpc. This dust front separatesmore » the dusty from dust-free regions of the galaxy, and we interpret it as galaxy ISM swept up near the leading side of the ICM–ISM interaction. We identify and characterize 100 pc–1 kpc scale substructure within this dust front caused by ram pressure, including head–tail filaments, C-shaped filaments, and long smooth dust fronts. The morphology of these features strongly suggests that dense gas clouds partially decouple from surrounding lower density gas during stripping, but decoupling is inhibited, possibly by magnetic fields that link and bind distant parts of the ISM.« less
Omega Centauri Looks Radiant in Infrared
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Poster Version A cluster brimming with millions of stars glistens like an iridescent opal in this image from NASA's Spitzer Space Telescope. Called Omega Centauri, the sparkling orb of stars is like a miniature galaxy. It is the biggest and brightest of the 150 or so similar objects, called globular clusters, that orbit around the outside of our Milky Way galaxy. Stargazers at southern latitudes can spot the stellar gem with the naked eye in the constellation Centaurus. Globular clusters are some of the oldest objects in our universe. Their stars are over 12 billion years old, and, in most cases, formed all at once when the universe was just a toddler. Omega Centauri is unusual in that its stars are of different ages and possess varying levels of metals, or elements heavier than boron. Astronomers say this points to a different origin for Omega Centauri than other globular clusters: they think it might be the core of a dwarf galaxy that was ripped apart and absorbed by our Milky Way long ago. In this new view of Omega Centauri, Spitzer's infrared observations have been combined with visible-light data from the National Science Foundation's Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory in Chile. Visible-light data with a wavelength of .55 microns is colored blue, 3.6-micron infrared light captured by Spitzer's infrared array camera is colored green and 24-micron infrared light taken by Spitzer's multiband imaging photometer is colored red. Where green and red overlap, the color yellow appears. Thus, the yellow and red dots are stars revealed by Spitzer. These stars, called red giants, are more evolved, larger and dustier. The stars that appear blue were spotted in both visible and 3.6-micron-, or near-, infrared light. They are less evolved, like our own sun. Some of the red spots in the picture are distant galaxies beyond our own. Spitzer found very little dust around any but the most luminous, coolest red giants, implying that the dimmer red giants do not form significant amounts of dust. The space between the stars in Omega Centauri was also found to lack dust, which means the dust is rapidly destroyed or leaves the cluster.Exponential Potential versus Dark Matter
1993-10-15
scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the
NASA Technical Reports Server (NTRS)
Binggeli, B.; Tammann, G. A.; Sandage, A.
1985-01-01
The present catalog of 2096 galaxies within an area of about 140 sq deg approximately centered on the Virgo cluster should be an essentially complete listing of all certain and possible cluster members, independent of morphological type. Cluster membership is essentially decided by galaxy morphology; for giants and the rare class of high surface brightness dwarfs, membership rests on velocity data. While 1277 of the catalog entries are considered members of the Virgo cluster, 574 are possible members and 245 appear to be background Zwicky galaxies. Major-to-minor axis ratios are given for all galaxies brighter than B(T) = 18, as well as for many fainter ones.
UVES Investigates the Environment of a Very Remote Galaxy
NASA Astrophysics Data System (ADS)
2002-03-01
Surplus of Intergalactic Material May Be Young Supercluster Summary Observations with ESO's Very Large Telescope (VLT) have enabled an international group of astronomers [1] to study in unprecedented detail the surroundings of a very remote galaxy, almost 12 billion light-years distant [2]. The corresponding light travel time means that it is seen at a moment only about 3 billion years after the Big Bang. This galaxy is designated MS 1512-cB58 and is the brightest known at such a large distance and such an early time. This is due to a lucky circumstance: a massive cluster of galaxies ( MS 1512+36 ) is located about halfway along the line-of-sight, at a distance of about 7 billion light-years, and acts as a gravitational "magnifying glass". Thanks to this lensing effect, the image of MS1512-cB58 appears 50 times brighter . Nevertheless, the apparent brightness is still as faint as magnitude 20.6 (i.e., nearly 1 million times fainter than what can be perceived with the unaided eye). Moreover, MS 1512-cB58 is located 36° north of the celestial equator and never rises more than 29° above the horizon at Paranal. It was therefore a great challenge to secure the present observational data with the UVES high-dispersion spectrograph on the 8.2-m VLT KUEYEN telescope . The extremely detailed UVES-spectrum of MS 1512-cB58 displays numerous signatures (absorption lines) of intergalactic gas clouds along the line-of-sight . Some of the clouds are quite close to the galaxy and the astronomers have therefore been able to investigate the distribution of matter in its immediate surroundings. They found an excess of material near MS 1512-cB58, possible evidence of a young supercluster of galaxies , already at this very early epoch. The new observations thus provide an invaluable contribution to current studies of the birth and evolution of structures in the early Universe. This is the first time this kind of observation has ever been done of a galaxy at such a large distance . All previous studies were based on much more luminous quasars (QSOs - extremely active galaxy nuclei). However, any investigation of the intergalactic matter around a quasar is complicated by the strong radiation and consequently, high ionization of the gas by the QSO itself, rendering an unbiased assessment of the gas distribution impossible. PR Photo 08a/02 : HST photo of MS 1512-cB58 . PR Photo 08b/02 : UVES spectrum of MS 1512-cB58. PR Photo 08c/02 : UVES spectrum of MS 1512-cB58 ( detail ). Clustering in the Early Universe ESO PR Photo 08a/02 ESO PR Photo 08a/02 [Preview - JPEG: 400 x 614 pix - 304k] [Normal - JPEG: 1200 x 1843 pix - 1.8M] Caption : PR Photo 08a/02 shows the gravitationally amplified, elongated image of the very distant, 20.6-mag galaxy MS 1512-cB58 (indicated with an arrow), as seen in the field of the distant cluster of galaxies MS 1512+36 . The photo is based on exposures with the NASA/ESA Hubble Space Telescope (HST). Technical information about the photo is available below. With new and powerful astronomical telescopes, the exploration of the young Universe is progressing rapidly . By means of highly efficient instruments, scientists are now probing the objects seen at these early times in ever greater detail, painstakingly gaining precious new knowledge about these crucial evolutionary stages. They form an integral part of the long chain of events that has ultimately led to our own existence - no wonder that we would like to know more about those remote times! One of the key questions now asked by cosmologists is how the matter in the early Universe assembled into larger structures . With plenty of gaseous material available, it appears that contraction set in rather soon after the Big Bang, perhaps only a few hundred million years after this initial explosion. Stars and proto-galaxies formed, a web-like structure emerged (cf. ESO PR 11/01 ) and at some moment, these larger building blocks began to gather into "clusters" and "clusters of clusters" (superclusters) . This process took time and it is not yet known when the first major clusters of galaxies formed. However, recent results from the ESO Very Large Telescope at Paranal are casting new light on those early events and may actually provide evidence of an extensive cluster of clouds, perhaps a real supercluster , as early as only 3 billion years after the Big Bang. The lighthouse and the forest In order to investigate the large-scale structure of the Universe, astronomers have since some time employed the powerful technique of spectral analysis of the light from remote "lighthouses" (or "beacons") . One of the strongest spectral lines seen in astronomical objects is the Lyman-alpha line of atomic hydrogen . It is normally seen as a bright spectral peak (an "emission line") in the "lighthouse" object. The rest wavelength is 121.6 nm in the far-ultraviolet part of the spectrum. That spectral region is not accessible to ground-based telescopes - UV-light does not pass through the Earth's atmosphere. However, in very distant objects, the Lyman-alpha line is redshifted towards longer wavelengths and becomes observable from the ground [2]. On its way to us, the light beam from a bright and distant object traverses a long path , mostly through (nearly) empty space. However, once in a while, it passes through a cloud of matter, for instance in the outskirts of a remote galaxy. Each time, specific signatures from the atoms and molecules in that cloud are imprinted on the passing light in the form of spectral absorption lines at particular wavelengths. Such clouds contain hydrogen and thus produce a specific Lyman-alpha signature in the spectrum of the "lighthouse" object [3] Because of the different distances of the individual clouds, their Lyman-alpha spectral lines have different "redshifts" and are therefore observed at different wavelengths. In practice, the Lyman-alpha absorption lines from the intervening clouds are located on the blueward side (i.e., at shorter wavelengths because of their smaller redshifts) of the main emission peak, giving rise to the concept of a "Lyman-alpha forest" of spectral absorption lines. In some cases, over one thousand absorption lines have been seen, showing the presence of as many individual hydrogen-rich gas clouds along the line-of-sight towards the background "lighthouse", cf. ESO PR 15/99 and ESO PR 08/00. MS 1512-cB58 : a bright and remote galaxy MS 1512-cB58 is a remote, very bright galaxy, located at a distance of approximately 12 billion light-years in the northern constellation of Boötes. Its light has travelled 12 billion years to reach us and we therefore observe it as it was when the Universe was about 3 billion years old. Because of the extremely large distance, this galaxy would normally only be seen as a very faint object in the sky, so faint indeed that it could not be observed in any detail by existing telescopes. However, we are lucky, thanks to the fortuitious effect of gravitational lensing . About halfway on its way to us, the light from MS 1512-cB58 happens to pass through the strong gravitational field of a cluster of galaxies known as MS 1512+36 and this produces an amazingly efficient focussing effect: the light from MS 1512-cB58 that finally reaches us has been amplified no less than some 50 times! This beneficial effect makes all the difference. At the observed magnitude of 20.6 - though still nearly 1 million times fainter than what can be perceived with the unaided eye - MS 1512-cB58 is the best suited remote object of its type for the above mentioned kind of investigation. Thus, a detailed study of its spectrum, in particular the spectral region on the shortward side of the Lyman-alpha line (seen in absorption in this comparatively "normal" galaxy), provides very useful information about the many clouds of hydrogen that are located along the line-of-sight towards this object. The UVES spectrum ESO PR Photo 08b/02 ESO PR Photo 08b/02 [Preview - JPEG: 512 x 400 pix - 184k] [Normal - JPEG: 1023 x 800 pix - 448k] ESO PR Photo 08c/02 ESO PR Photo 08c/02 [Preview - JPEG: 750 x 400 pix - 136k] [Normal - JPEG: 1500 x 800 pix - 288k] Caption : PR Photo 08b/02 shows a section of the UVES spectrum of the very distant, 20.6-mag galaxy MS 1512-cB58 , obtained with the UVES high-dispersion spectrograph at the VLT KUEYEN telescope. The Lyman-alpha absorption line from the galaxy itself is seen as the broad depression at about 4530 Å (453 nm; lower panel). The absorption lines at shorter wavelengths are the signatures of individual intergalactic clouds along the line-of-sight; they are indicated by red vertical lines. Blue arrows point at absorption lines associated with heavy elements present in the gas inside the MS 1512-cB58 galaxy. PR Photo 08c/02 is an enlargement of a small wavelength region that shows the full resolution and extreme wealth of information contained in the spectrum of this faint object. Also here, Lyman-alpha absorption lines arising in intervening intergalactic clouds are indicated by red vertical lines. Technical information about the photos is available below. Using one of the most efficient astronomical spectrographs available, the Ultraviolet-Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT) at the Paranal Observatory , an international group of astronomers [1] succeeded in obtaining a very detailed (high-dispersion) spectrum of MS 1512-cB58 . Despite the fact that this object is located some 36° north of the celestial equator and can therefore only be observed for about 90 min each night from Paranal (at geographical latitude 25° south), the superposition of several exposures obtained between March and August 2000 has produced the most detailed and informative spectrum ever obtained of a distant galaxy, cf. PR Photos 08b-c/02 . At the same time, it provides a very comprehensive map of the Universe to such a large distance along a line-of-sight , as this can be read from the numerous Lyman-alpha absorption lines from intervening clouds, seen in this spectrum. The surroundings of MS 1512-cB58 The astronomers were particularly interested in the distribution of clouds in the region of space near MS 1512-cB58 . Thanks to the excellent quality of the UVES data, it was possible to identify and measure a substantial number of Lyman-alpha lines blueward of the broad Lyman-alpha absorption line from the galaxy itself, present in the lower panel of PR Photo 08b/01 . They correspond to intergalactic hydrogen clouds comparatively near the "lighthouse" object MS 1512-cB58 . Most interestingly, it turned out that there are exceptionally many such clouds rather near this remote galaxy (the corresponding absorption lines are seen in the middle panel of PR Photo 08b/01 of which a small part has been enlarged for clarity in PR Photo 08c/01 . Comparing with the mean density along the line-of-sight, a surplus of about 200% was evident. An effect of this dimension has never been seen before near such a remote object, i.e., at such an early epoch, only 3 billion years after the Big Bang. A young supercluster? What does this tell us? The astronomers have two explanations: either we are seeing a very large cluster of clouds (proto-galaxies) at some distance from MS 1512-cB58 , or the clouds are in some way directly connected to the environment of that galaxy. A rich distribution of gas clouds is indeed expected around star-forming galaxies like MS 1512-cB58 at this early epoch. For various reasons, however, including the actual distribution of the observed clouds, the astronomers do not favour the second hypothesis. It appears more likely that these clouds are separate objects not related to MS 1512-cB58 . In that case, this would imply the presence of large-scale structure at this early time , only 3 billion years after the Big Bang. MS 1512-cB58 might then be the largest (heaviest) single object in the neigbourhood, a likely progenitor of the local massive galaxies observed at the present time. More information The results described in this Press Release are presented in a research paper "The Lyman-alpha forest of a Lyman-Break Galaxy: VLT Spectra of MS 1512-cB58 at z = 2.724" by Sandra Savaglio, Nino Panagia and Paolo Padovani, appearing in the research journal "Astrophysical Journal" this month. Notes [1]: The team consists of Sandra Savaglio (Johns Hopkins University, Baltimore, MD, USA, and Rome Observatory, Italy), Nino Panagia and Paolo Padovani (both European Space Agency and Space Telescope Science Institute, Baltimore) [2]: The measured redshift of MS 1512-cB58 is z = 2.724. In astronomy, the redshift denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant cloud or galaxy gives a direct estimate of the apparent recession velocity as caused by the universal expansion. Since the expansion rate increases with distance, the velocity is itself a function (the Hubble relation) of the distance to the object. The distances indicated in the text are based on an age of the Universe of 15 billion years. At the indicated redshift, the Lyman-alpha line of atomic hydrogen (rest wavelength 121.6 nm) is observed at 452.8 nm, i.e. in the blue spectral region. The Lyman-alpha absorption lines from intergalactic clouds along the line-of-sight (and at lower redshifts) are observed at shorter wavelengths. The lower limit of the UVES spectrum of MS 1512-cB58 (415 nm) corresponds to a Lyman-alpha redshift of 2.41, i.e. a distance of about 7.5 billion light-years. [3]: The importance of the Lyman-alpha line in absorption is that it is exquisitely sensitive to the presence of neutral hydrogen which only constitutes a small fraction of the total amount of hydrogen in the intergalactic medium (about 1/10,000). Still, the observed Ly-alpha forest is extremely rich. What we see is most likely the "tip of the iceberg" only and hydrogen in the intergalactic medium at high redshift is probably the dominant component of baryonic matter in the early Universe. Contact Sandra Savaglio Johns Hopkins University Baltimore, MD, USA Tel.: +1 410 516 8583 email: savaglio@pha.jhu.edu Technical information about the photos PR Photo 08a/02 is a reproduction of a composite image of the field around the distant cluster of galaxies MS 1512+36 (redshift 0.37), obtained with the WFPC2 camera at the NASA/ESA Hubble Space Telescope. It is based on exposures in two filters (F555 + F675). The observations are described in a research paper by Seitz et al. (Monthly Notices of the RAS, August 1998, Vol. 298, p. 945 ff). The lensed image of the galaxy MS 1512-cB58 is seen at an angular distance of about 5 arcsec from the centre of the cluster. The north direction is at about 1 o'clock and east is at 10 o'clock. The field measures approx. 45 x 60 arcsec 2. PR Photo 08b/02 shows the composite spectrum of MS 1512-cB58 in the spectral region of interest (415.0 - 459.5 nm), as obtained with the red and blue arms of UVES. Long and short red vertical lines ("ticks") indicate larger and smaller intergalactic hydrogen clouds, respectively. The overlying, continuous red line is the "best-fit" model to the observed spectrum. Due to the low altitude of the object, the exposures never lasted more than 90 min around the northern meridian. The full spectral coverage is 415 - 500 nm (blue arm) and 524 - 621 nm (red arm). The velocity resolution varies from 29 km/s at the blue end to 19 km/sec at the red limit. The S/N-ratio increases from about 3 (415 nm) to 10 (610 nm). PR Photo 08c/02 reproduces a smaller part of the observed spectral region observed at full resolution (434.8 - 443.0 nm), with two dozen detected clouds indicated.
Galaxy Merger Candidates in High-redshift Cluster Environments
NASA Astrophysics Data System (ADS)
Delahaye, A. G.; Webb, T. M. A.; Nantais, J.; DeGroot, A.; Wilson, G.; Muzzin, A.; Yee, H. K. C.; Foltz, R.; Noble, A. G.; Demarco, R.; Tudorica, A.; Cooper, M. C.; Lidman, C.; Perlmutter, S.; Hayden, B.; Boone, K.; Surace, J.
2017-07-01
We compile a sample of spectroscopically and photometrically selected cluster galaxies from four high-redshift galaxy clusters (1.59< z< 1.71) from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a comparison field sample selected from the UKIDSS Deep Survey. Using near-infrared imaging from the Hubble Space Telescope, we classify potential mergers involving massive ({M}* ≥slant 3× {10}10 {M}⊙ ) cluster members by eye, based on morphological properties such as tidal distortions, double nuclei, and projected near neighbors within 20 kpc. With a catalog of 23 spectroscopic and 32 photometric massive cluster members across the four clusters and 65 spectroscopic and 26 photometric comparable field galaxies, we find that after taking into account contamination from interlopers, {11.0}-5.6+7.0 % of the cluster members are involved in potential mergers, compared to {24.7}-4.6+5.3 % of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani; Ricker, Paul M.
2015-05-01
Ram pressure stripping can remove hot and cold gas from galaxies in the intracluster medium, as shown by observations of X-ray and H I galaxy wakes in nearby clusters of galaxies. However, ram pressure stripping, including pre-processing in group environments, does not remove all the hot coronal gas from cluster galaxies. Recent high-resolution Chandra observations have shown that ˜1-4 kpc extended, hot galactic coronae are ubiquitous in group and cluster galaxies. To better understand this result, we simulate ram pressure stripping of a cosmologically motivated population of galaxies in isolated group and cluster environments. The galaxies and the host group and cluster are composed of collisionless dark matter and hot gas initially in hydrostatic equilibrium with the galaxy and host potentials. We show that the rate at which gas is lost depends on the galactic and host halo mass. Using synthetic X-ray observations, we evaluate the detectability of stripped galactic coronae in real observations by stacking images on the known galaxy centres. We find that coronal emission should be detected within ˜10 arcsec, or ˜5 kpc up to ˜2.3 Gyr in the lowest (0.1-1.2 keV) energy band. Thus, the presence of observed coronae in cluster galaxies significantly smaller than the hot X-ray haloes of field galaxies indicates that at least some gas removal occurs within cluster environments for recently accreted galaxies. Finally, we evaluate the possibility that existing and future X-ray cluster catalogues can be used in combination with optical galaxy positions to detect galactic coronal emission via stacking analysis. We briefly discuss the effects of additional physical processes on coronal survival, and will address them in detail in future papers in this series.
On the occurrence of galaxy harassment
NASA Astrophysics Data System (ADS)
Bialas, D.; Lisker, T.; Olczak, C.; Spurzem, R.; Kotulla, R.
2015-04-01
Context. Tidal interactions of galaxies in galaxy clusters have been proposed as one potential explanation of the morphology-density relation at low masses. Earlier studies have shown that galaxy harassment is a suitable mechanism for inducing a morphological transformation from low-mass late-type disk galaxies to the abundant early-type galaxies. Aims: The efficiency of tidal transformation is expected to depend strongly on the orbit of a galaxy within the cluster halo. The orbit determines both the strength of the cluster's global tidal field and the probability of encounters with other cluster members. Here we aim to explore these dependencies. Methods: We use a combination of N-body simulation and Monte-Carlo method to study the efficiency of the transformation of late-type galaxies by tidal interactions on different orbits in a galaxy cluster. Additionally, we investigate the effect of an inclination between the disk of the infalling galaxy and its orbital plane. We compare our results to observational data to assess the possible relevance of such transformations for the existing cluster galaxy population. Results: We find that galaxies that entered a cluster from the outskirts are unlikely to be significantly transformed (stellar mass loss ≤6%). Closer to the cluster centre, tidal interactions are a more efficient mechanism (stellar mass loss up to 50%) for producing harassed galaxies. The inclination of the disk can reduce the mass loss significantly, yet it amplifies the thickening of the galaxy disk. Galaxies with smaller sizes on intermediate orbits are nearly unaffected by tidal interactions. The tidal influence on an infalling galaxy and the likelihood that it leads to galaxy harassment make a very stochastical process that depends on the galaxy's specific history. Conclusions: We conclude that harassment is a suitable mechanism that could explain the transformation of at least a fraction of galaxies inside galaxy clusters. However, the transformation would have to start at an early epoch in protocluster environments and continue until today, in order to result in a complete morphological transformation. Appendices are available in electronic form at http://www.aanda.org
Resolving the problem of galaxy clustering on small scales: any new physics needed?
NASA Astrophysics Data System (ADS)
Kang, X.
2014-02-01
Galaxy clustering sets strong constraints on the physics governing galaxy formation and evolution. However, most current models fail to reproduce the clustering of low-mass galaxies on small scales (r < 1 Mpc h-1). In this paper, we study the galaxy clusterings predicted from a few semi-analytical models. We first compare two Munich versions, Guo et al. and De Lucia & Blaizot. The Guo11 model well reproduces the galaxy stellar mass function, but overpredicts the clustering of low-mass galaxies on small scales. The DLB07 model provides a better fit to the clustering on small scales, but overpredicts the stellar mass function. These seem to be puzzling. The clustering on small scales is dominated by galaxies in the same dark matter halo, and there is slightly more fraction of satellite galaxies residing in massive haloes in the Guo11 model, which is the dominant contribution to the clustering discrepancy between the two models. However, both models still overpredict the clustering at 0.1 < r < 10 Mpc h-1 for low-mass galaxies. This is because both models overpredict the number of satellites by 30 per cent in massive haloes than the data. We show that the Guo11 model could be slightly modified to simultaneously fit the stellar mass function and clusterings, but that cannot be easily achieved in the DLB07 model. The better agreement of DLB07 model with the data actually comes as a coincidence as it predicts too many low-mass central galaxies which are less clustered and thus brings down the total clustering. Finally, we show the predictions from the semi-analytical models of Kang et al. We find that this model can simultaneously fit the stellar mass function and galaxy clustering if the supernova feedback in satellite galaxies is stronger. We conclude that semi-analytical models are now able to solve the small-scales clustering problem, without invoking of any other new physics or changing the dark matter properties, such as the recent favoured warm dark matter.
Bursting with Stars and Black Holes
NASA Technical Reports Server (NTRS)
2007-01-01
A growing black hole, called a quasar, can be seen at the center of a faraway galaxy in this artist's concept. Astronomers using NASA's Spitzer and Chandra space telescopes discovered swarms of similar quasars hiding in dusty galaxies in the distant universe. The quasar is the orange object at the center of the large, irregular-shaped galaxy. It consists of a dusty, doughnut-shaped cloud of gas and dust that feeds a central supermassive black hole. As the black hole feeds, the gas and dust heat up and spray out X-rays, as illustrated by the white rays. Beyond the quasar, stars can be seen forming in clumps throughout the galaxy. Other similar galaxies hosting quasars are visible in the background. The newfound quasars belong to a long-lost population that had been theorized to be buried inside dusty, distant galaxies, but were never actually seen. While some quasars are easy to detect because they are oriented in such a way that their X-rays point toward Earth, others are oriented with their surrounding doughnut-clouds blocking the X-rays from our point of view. In addition, dust and gas in the galaxy itself can block the X-rays. Astronomers had observed the most energetic of this dusty, or obscured, bunch before, but the 'masses,' or more typical members of the population, remained missing. Using data from Spitzer and Chandra, the scientists uncovered many of these lost quasars in the bellies of massive galaxies between 9 and 11 billion light-years away. Because the galaxies were also busy making stars, the scientists now believe most massive galaxies spent their adolescence building up their stars and black holes simultaneously. The Spitzer observations were made as part of the Great Observatories Origins Deep Survey program, which aims to image the faintest distant galaxies using a variety of wavelengths.RR Lyrae in Sagittarius Dwarf Globular Clusters (Poster abstract)
NASA Astrophysics Data System (ADS)
Pritzl, B. J.; Gehrman, T. J.; Bell, E.; Salinas, R.; Smith, H. A.; Catelan, M.
2016-12-01
(Abstract only) The Milky Way Galaxy was built up in part by the cannibalization of smaller dwarf galaxies. Some of them likely contained globular clusters. The Sagittarius dwarf galaxy provides a unique opportunity to study a system of globular clusters that originated outside the Milky Way. We have investigated the RR Lyrae populations in two Sagittarius globular clusters, Arp 2 and Terzan 8. The RR Lyrae are used to study the properties of the clusters and to compare this system to Milky Way globular clusters. We will discuss whether or not dwarf galaxies similar to the Sagittarius dwarf galaxy could have played a role in the formation of the Milky Way Galaxy.
Globular clusters and environmental effects in galaxy clusters
NASA Astrophysics Data System (ADS)
Sales, Laura
2016-10-01
Globular clusters are old compact stellar systems orbiting around galaxies of all types. Tens of thousands of them can also be found populating the intra-cluster regions of nearby galaxy clusters like Virgo and Coma. Thanks to the HST Frontier Fields program, GCs are starting now to be detected also in intermediate redshift clusters. Yet, despite their ubiquity, a theoretical model for the formation and evolution of GCs is still missing, especially within the cosmological context.Here we propose to use cosmological hydrodynamical simulations of 18 galaxy clusters coupled to a post-processing GC formation model to explore the assembly of galaxies in clusters together with their expected GC population. The method, which has already been implemented and tested, will allow us to characterize for the first time the number, radial distribution and kinematics of GCs in clusters, with products directly comparable to observational maps. We will explore cluster-to-cluster variations and also characterize the build up of the intra-cluster component of GCs with time.As the method relies on a detailed study of the star-formation history of galaxies, we will jointly constrain the predicted quenching time-scales for satellites and the occurrence of starburst events associated to infall and orbital pericenters of galaxies in massive clusters. This will inform further studies on the distribution, velocity and properties of post-starburst galaxies in past, ongoing and future HST programs.
Dynamical evolution of galaxies in dense cluster environment.
NASA Astrophysics Data System (ADS)
Gnedin, O. Y.
1997-12-01
I present the results of study of the dynamics of galaxies in clusters of galaxies. The effects of the galaxy environment could be quite dramatic. The time-varying gravitational potential of the cluster subjects the galaxies to strong tidal effects. The tidal density cutoff effectively strips the dark matter halos and leads to highly concentrated structures in the galactic centers. The fast gravitational tidal shocks raise the random motion of stars in the galaxies, transforming the thin disks into the kinematically hot thick configurations. The tidal shocks also cause relaxation of stellar energies that enhances the rate of accretion onto the galactic centers. These effects of the time-varying cluster potential have not been consistently taken into account before. I present numerical N-body simulations of galaxies using the Self-Consistent Field code with 10(7) - 10(8) particles. The code is coupled with the PM code that provides a fully dynamic simulation of the cluster potential. The tidal field of the cluster along the galaxy trajectories is imposed as an external perturbation on the galaxies in the SCF scheme. Recent HST observations show that the high-redshift (z > 0.4) clusters contain numerous bright blue spirals, often with distorted profiles, whereas the nearby clusters are mostly populated by featureless ellipticals. The goal of my study is to understand whether dynamics is responsible for the observed strong evolution of galaxies in clusters.
IPC two-color analysis of x ray galaxy clusters
NASA Technical Reports Server (NTRS)
White, Raymond E., III
1990-01-01
The mass distributions were determined of several clusters of galaxies by using X ray surface brightness data from the Einstein Observatory Imaging Proportional Counter (IPC). Determining cluster mass distributions is important for constraining the nature of the dark matter which dominates the mass of galaxies, galaxy clusters, and the Universe. Galaxy clusters are permeated with hot gas in hydrostatic equilibrium with the gravitational potentials of the clusters. Cluster mass distributions can be determined from x ray observations of cluster gas by using the equation of hydrostatic equilibrium and knowledge of the density and temperature structure of the gas. The x ray surface brightness at some distance from the cluster is the result of the volume x ray emissivity being integrated along the line of sight in the cluster.
A single population of red globular clusters around the massive compact galaxy NGC 1277
NASA Astrophysics Data System (ADS)
Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia
2018-03-01
Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.
A single population of red globular clusters around the massive compact galaxy NGC 1277.
Beasley, Michael A; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia
2018-03-22
Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277-a nearby, un-evolved example of a high-redshift 'red nugget' galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.
The distribution of early- and late-type galaxies in the Coma cluster
NASA Technical Reports Server (NTRS)
Doi, M.; Fukugita, M.; Okamura, S.; Turner, E. L.
1995-01-01
The spatial distribution and the morohology-density relation of Coma cluster galaxies are studied using a new homogeneous photmetric sample of 450 galaxies down to B = 16.0 mag with quantitative morphology classification. The sample covers a wide area (10 deg X 10 deg), extending well beyond the Coma cluster. Morphological classifications into early- (E+SO) and late-(S) type galaxies are made by an automated algorithm using simple photometric parameters, with which the misclassification rate is expected to be approximately 10% with respect to early and late types given in the Third Reference Catalogue of Bright Galaxies. The flattened distribution of Coma cluster galaxies, as noted in previous studies, is most conspicuously seen if the early-type galaxies are selected. Early-type galaxies are distributed in a thick filament extended from the NE to the WSW direction that delineates a part of large-scale structure. Spiral galaxies show a distribution with a modest density gradient toward the cluster center; at least bright spiral galaxies are present close to the center of the Coma cluster. We also examine the morphology-density relation for the Coma cluster including its surrounding regions.
Dark matter phenomenology of high-speed galaxy cluster collisions
Mishchenko, Yuriy; Ji, Chueng-Ryong
2017-07-29
Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less
Dark matter phenomenology of high-speed galaxy cluster collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishchenko, Yuriy; Ji, Chueng-Ryong
Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less
A blind HI search for galaxies in the northern Zone of Avoidance
NASA Astrophysics Data System (ADS)
Rivers, Andrew James
Searches for galaxies in the nearby and distant universe have long focused in the direction of the Galactic poles, or perpendicular to the plane of the Milky Way. Dust concentrated in the Milky Way's disk absorbs and scatters light and therefore precludes easy optical detection of extragalactic sources in this ``Zone of Avoidance'' (ZOA). The Dwingeloo Obscured Galaxies Survey (DOGS) was a 21-cm blind survey for galaxies hidden in the northern ZOA. Dust is transparent at radio wavelengths and therefore the survey is not biased against detection of galaxies near the Galactic plane. The DOGS project was designed to reveal hidden dynamically important nearby galaxies and to help ``fill in the blanks'' in the local large scale structure. During the survey and subsequent followup observations, 43 galaxies were detected; 28 of these were previously unknown. Obscuration by dust could effectively hide a massive member of the Local Group. This survey rules out the existence of a hidden gas-rich dynamically important source. The possibility of gas-poor elliptical galaxies and low-mass dwarfs remains; the low velocity of one detected dwarf irregular galaxy relative to the Milky Way indicates possible membership in the Local Group. Other nearby galaxies detected by DOGS were linked to the IC 342/Maffei group and to the nearby galaxy NGC 6946. Of the five galaxies in the IC 342/Maffei group, three were unknown at the time of the survey. Derived group properties indicate the group consists of two separate physical groups which appear close together in the sky. The five sources near NGC 6946 support the identification of a new nearby group associated with this large spiral galaxy. The distribution of massive spiral galaxies compared to low-mass dwarf galaxies may be used to test theories of structure formation. In a universe dominated by Cold Dark Matter (CDM) dwarf galaxies are more evenly distributed and are a more accurate tracer of the mass distribution. Open universe models predict approximately equal clustering properties of dwarf and spiral galaxies. A statistical analysis of the DOGS sample argues against the CDM model; no smoothly distributed population of stunted dwarf galaxies is seen.
Stroe, Andra; Oosterloo, Tom; Rottgering, Huub J. A.; ...
2015-07-25
CIZA J2242.8+5301 (z = 0.188, nicknamed ‘Sausage’) is an extremely massive (M 200 ~2.0 × 10 15 M ⊙), merging cluster with shock waves towards its outskirts, which was found to host numerous emission line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope H i observations of the ‘Sausage’ cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission line galaxies in the ‘Sausage’ cluster have, on average, as much H i gas as fieldmore » galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large H i reservoirs are expected to be consumed within ~0.75–1.0 Gyr by the vigorous SF and active galactic nuclei activity and/or driven out by the outflows we observe. We find that the star formation rate (SFR) in a large fraction of H α emission line cluster galaxies correlates well with the radio broad-band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. In conclusion, this fully supports the interpretation proposed by Stroe et al. and Sobral et al. that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock.« less
A History of H i Stripping in Virgo: A Phase-space View of VIVA Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Hyein; Chung, Aeree; Smith, Rory
We investigate the orbital histories of Virgo galaxies at various stages of H i gas stripping. In particular, we compare the location of galaxies with different H i morphology in phase space. This method is a great tool for tracing the gas stripping histories of galaxies as they fall into the cluster. Most galaxies at the early stage of H i stripping are found in the first infall region of Virgo, while galaxies undergoing active H i stripping mostly appear to be falling in or moving out near the cluster core for the first time. Galaxies with severely stripped, yetmore » symmetric, H i disks are found in one of two locations. Some are deep inside the cluster, but others are found in the cluster outskirts with low orbital velocities. We suggest that the latter group of galaxies belong to a “backsplash” population. These present the clearest candidates for backsplashed galaxies observationally identified to date. We further investigate the distribution of a large sample of H i-detected galaxies toward Virgo in phase space, confirming that most galaxies are stripped of their gas as they settle into the gravitational potential of the cluster. In addition, we discuss the impact of tidal interactions between galaxies and group preprocessing on the H i properties of the cluster galaxies, and link the associated star formation evolution to the stripping sequence of cluster galaxies.« less
NASA Astrophysics Data System (ADS)
Miller, Christopher J. Miller
2012-03-01
There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations of galaxy clusters will be at locations of the peaks in the true underlying (mostly) dark matter density field. Kaiser (1984) [19] called this the high-peak model, which we demonstrate in Figure 16.1. We show a two-dimensional representation of a density field created by summing plane-waves with a predetermined power and with random wave-vector directions. In the left panel, we plot only the largest modes, where we see the density peaks (black) and valleys (white) in the combined field. In the right panel, we allow for smaller modes. You can see that the highest density peaks in the left panel contain smaller-scale, but still high-density peaks. These are the locations of future galaxy clusters. The bottom panel shows just these cluster-scale peaks. As you can see, the peaks themselves are clustered, and instead of just one large high-density peak in the original density field (see the left panel), the smaller modes show that six peaks are "born" within the broader, underlying large-scale density modes. This exemplifies the "bias" or amplified structure that is traced by galaxy clusters [19]. Clusters are rare, easy to find, and their member galaxies provide good distance estimates. In combination with their amplified clustering signal described above, galaxy clusters are considered an efficient and precise tracer of the large-scale matter density field in the Universe. Galaxy clusters can also be used to measure the baryon content of the Universe [43]. They can be used to identify gravitational lenses [38] and map the distribution of matter in clusters. The number and spatial distribution of galaxy clusters can be used to constrain cosmological parameters, like the fraction of the energy density in the Universe due to matter (Omega_matter) or the variation in the density field on fixed physical scales (sigma_8) [26,33]. The individual clusters act as “Island Universes” and as such are laboratories here we can study the evolution of the properties of the cluster, like the hot, gaseous intra-cluster medium or shapes, colors, and star-formation histories of the member galaxies [17].
Galaxy clusters in the cosmic web
NASA Astrophysics Data System (ADS)
Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.
2014-12-01
Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4
NASA Astrophysics Data System (ADS)
Huang, Hung-Jin; Mandelbaum, Rachel; Freeman, Peter E.; Chen, Yen-Chi; Rozo, Eduardo; Rykoff, Eli; Baxter, Eric J.
2016-11-01
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes and the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Finally, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hung -Jin; Mandelbaum, Rachel; Freeman, Peter E.
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes andmore » the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Lastly, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.« less
Huang, Hung -Jin; Mandelbaum, Rachel; Freeman, Peter E.; ...
2016-08-11
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes andmore » the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Lastly, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.« less
Star formation and galaxy evolution in different environments, from the field to massive clusters
NASA Astrophysics Data System (ADS)
Tyler, Krystal
This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass-SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray underluminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the distribution of star-forming galaxies with respect to stellar mass varies from cluster to cluster, echoing what we found for Coma and A2029. In other words, while some preprocessing occurs in groups, the cluster environment still contributes to the quenching of star formation.
Spatial distribution of dust in galaxies from the Integral field unit data
NASA Astrophysics Data System (ADS)
Zafar, Tayyaba; Sophie Dubber, Andrew Hopkins
2018-01-01
An important characteristic of the dust is it can be used as a tracer of stars (and gas) and tell us about the composition of galaxies. Sub-mm and infrared studies can accurately determine the total dust mass and its spatial distribution in massive, bright galaxies. However, faint and distant galaxies are hampered by resolution to dust spatial dust distribution. In the era of integral-field spectrographs (IFS), Balmer decrement is a useful quantity to infer the spatial extent of the dust in distant and low-mass galaxies. We conducted a study to estimate the spatial distribution of dust using the Sydney-Australian Astronomical Observatory (AAO) Multi-object Integral field spectrograph (SAMI) galaxies. Our methodology is unique to exploit the potential of IFS and using the spatial and spectral information together to study dust in galaxies of various morphological types. The spatial extent and content of dust are compared with the star-formation rate, reddening, and inclination of galaxies. We find a right correlation of dust spatial extent with the star-formation rate. The results also indicate a decrease in dust extent radius from Late Spirals to Early Spirals.
CANDELS: A Cosmic Quest for Distant Galaxies Offering Live Views of Galaxy Evolution
NASA Astrophysics Data System (ADS)
Koo, David C.; CANDELS
2017-06-01
For decades, the study of distant galaxies has been pushing the frontiers of extra-galactic research, with observations from the best suite of telescopes and instruments and with theory from the most advanced computer simulations. This talk will focus on observations taken within the CANDELS fields to reveal the richness and complexity of this still-growing field. CANDELS (Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey) itself is the largest project ever taken by Hubble and is composed of optical and near-infrared images of five tiny regions of sky containing over 200,000 distant galaxies. All these regions, two of which are GOODS North and South, were already outstanding in possessing years of prior surveys taken by many teams worldwide and have continued to attract more and better spectra and panchromatic images from Keck, Hubble, Chandra, Spitzer, and other telescopes ranging from X-ray to radio. Combined together, the rich data within the CANDELS fields offer live views of galaxy evolution from “Cosmic Dawn” when the first infant galaxies and cosmic black holes were born, through “Cosmic Noon” during the peak of galaxy and black hole growth, and then to “Cosmic Afternoon” when star formation and black hole activities, morphologies, motions, and contents settled to those of our Milky Way and its zoo of cousins today. The talk will highlight some interesting discoveries from the last two periods and close with new mysteries challenging our field in the 21st century and future prospects for solving them.
Strong Lensing Analysis of the Galaxy Cluster MACS J1319.9+7003 and the Discovery of a Shell Galaxy
NASA Astrophysics Data System (ADS)
Zitrin, Adi
2017-01-01
We present a strong-lensing (SL) analysis of the galaxy cluster MACS J1319.9+7003 (z = 0.33, also known as Abell 1722), as part of our ongoing effort to analyze massive clusters with archival Hubble Space Telescope (HST) imaging. We spectroscopically measured with Keck/Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) two galaxies multiply imaged by the cluster. Our analysis reveals a modest lens, with an effective Einstein radius of {θ }e(z=2)=12+/- 1\\prime\\prime , enclosing 2.1+/- 0.3× {10}13 M⊙. We briefly discuss the SL properties of the cluster, using two different modeling techniques (see the text for details), and make the mass models publicly available (ftp://wise-ftp.tau.ac.il/pub/adiz/MACS1319/). Independently, we identified a noteworthy, young shell galaxy (SG) system forming around two likely interacting cluster members, 20″ north of the brightest cluster galaxy. SGs are rare in galaxy clusters, and indeed, a simple estimate reveals that they are only expected in roughly one in several dozen, to several hundred, massive galaxy clusters (the estimate can easily change by an order of magnitude within a reasonable range of characteristic values relevant for the calculation). Taking advantage of our lens model best-fit, mass-to-light scaling relation for cluster members, we infer that the total mass of the SG system is ˜ 1.3× {10}11 {M}⊙ , with a host-to-companion mass ratio of about 10:1. Despite being rare in high density environments, the SG constitutes an example to how stars of cluster galaxies are efficiently redistributed to the intra-cluster medium. Dedicated numerical simulations for the observed shell configuration, perhaps aided by the mass model, might cast interesting light on the interaction history and properties of the two galaxies. An archival HST search in galaxy cluster images can reveal more such systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Nikhel; Saro, A.; Mohr, J. J.
We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg 2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev–Zel’dovich Effect (SZE) signal, whichmore » is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass–observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 per cent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. As a result, allowing for redshift evolution of the form (1 + z) 2.5 increases the incompleteness to 5.6 ± 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.« less
Gupta, Nikhel; Saro, A.; Mohr, J. J.; ...
2017-01-15
We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg 2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev–Zel’dovich Effect (SZE) signal, whichmore » is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass–observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 per cent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. As a result, allowing for redshift evolution of the form (1 + z) 2.5 increases the incompleteness to 5.6 ± 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.« less
Dynamics of cD Clusters of Galaxies. 4; Conclusion of a Survey of 25 Abell Clusters
NASA Technical Reports Server (NTRS)
Oegerle, William R.; Hill, John M.; Fisher, Richard R. (Technical Monitor)
2001-01-01
We present the final results of a spectroscopic study of a sample of cD galaxy clusters. The goal of this program has been to study the dynamics of the clusters, with emphasis on determining the nature and frequency of cD galaxies with peculiar velocities. Redshifts measured with the MX Spectrometer have been combined with those obtained from the literature to obtain typically 50 - 150 observed velocities in each of 25 galaxy clusters containing a central cD galaxy. We present a dynamical analysis of the final 11 clusters to be observed in this sample. All 25 clusters are analyzed in a uniform manner to test for the presence of substructure, and to determine peculiar velocities and their statistical significance for the central cD galaxy. These peculiar velocities were used to determine whether or not the central cD galaxy is at rest in the cluster potential well. We find that 30 - 50% of the clusters in our sample possess significant subclustering (depending on the cluster radius used in the analysis), which is in agreement with other studies of non-cD clusters. Hence, the dynamical state of cD clusters is not different than other present-day clusters. After careful study, four of the clusters appear to have a cD galaxy with a significant peculiar velocity. Dressler-Shectman tests indicate that three of these four clusters have statistically significant substructure within 1.5/h(sub 75) Mpc of the cluster center. The dispersion 75 of the cD peculiar velocities is 164 +41/-34 km/s around the mean cluster velocity. This represents a significant detection of peculiar cD velocities, but at a level which is far below the mean velocity dispersion for this sample of clusters. The picture that emerges is one in which cD galaxies are nearly at rest with respect to the cluster potential well, but have small residual velocities due to subcluster mergers.
NASA Astrophysics Data System (ADS)
Di Stefano, Rosanne
2018-04-01
Gravitational lensing is becoming increasingly important to the study of distant galaxies and dark matter. Two groups have recently detected transient events emanating from far-away lensed galaxies, apparently due to extreme magnification of individual stars.
Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-12-03
Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.
2007-11-14
This image from NASA Galaxy Evolution Explorer shows the galaxy NGC 4569 in the constellation Virgo. It is one of the largest and brightest spiral galaxies found in the Virgo cluster of galaxies, the nearest major galaxy cluster to our Milky Way galaxy.
NASA Astrophysics Data System (ADS)
Stone, Maria Babakhanyan
Ultra-diffuse galaxies are a novel type of galaxies discovered first in the Coma cluster. These objects are characterized simultaneously by large sizes and by very low counts of constituent stars. Conflicting theories have been proposed to explain how these large diffuse galaxies could have survived in the harsh environment of clusters. To date, thousands of these new galaxies have been identified in cluster environments. However, further studies are required to understand their relationship to the known giant and dwarf classes of galaxies. The purpose of this study is to compare the trends of inner and outer populations of normal members of the Coma cluster and ultra-diffuse galaxies in color-magnitude space. The present work used several astronomical catalogs to identify the member galaxies based on the coordinates of their positions and to extract available colors and magnitudes. We obtained correlations to convert colors and magnitudes from different systems into the common Sloan Digital Sky Survey system to facilitate the comparative analysis. We showed the quantitative relations describing the color-magnitude trends of galaxies in the core and the outskirts of the cluster. We confirmed that the inner and outer populations of ultra-diffuse galaxies exhibit an offset similar to the normal red sequence galaxies. We presented an initial assessment of stellar population ages and metallicities which correspond to the obtained color offsets. We surveyed the available images of the cluster for outliers, merger candidates, and candidate ultra-diffuse galaxies. We conclude that ultra-diffuse galaxies are an important part of the Coma cluster evolutionary history and future work is needed especially in obtaining spectroscopic data of a larger number of these dim galaxies.
NASA Astrophysics Data System (ADS)
Hwang, Jeong-Sun; Park, Changbom; Banerjee, Arunima; Hwang, Ho Seong
2018-04-01
Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way–like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15–65 h ‑1 kpc at the relative velocities of 1500–1600 km s‑1. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy–cluster interactions, we claim that the role of the galaxy–galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy–cluster interactions, depending on the dynamical history.
NASA Astrophysics Data System (ADS)
Khan, Mohammad S.; Abdullah, Mohamed H.; Ali, Gamal B.
2014-05-01
We derive analytical expression for the velocity dispersion of galaxy clusters, using the statistical mechanical approach. We compare the observed velocity dispersion profiles for 20 nearby ( z≤0.1) galaxy clusters with the analytical ones. It is interesting to find that the analytical results closely match with the observed velocity dispersion profiles only if the presence of the diffuse matter in clusters is taken into consideration. This takes us to introduce a new approach to detect the ratio of diffuse mass, M diff , within a galaxy cluster. For the present sample, the ratio f= M diff / M, where M the cluster's total mass is found to has an average value of 45±12 %. This leads us to the result that nearly 45 % of the cluster mass is impeded outside the galaxies, while around 55 % of the cluster mass is settled in the galaxies.
Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales
NASA Astrophysics Data System (ADS)
Patej, Anna
2017-01-01
We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We examine how the local dwarfs may have appeared in the past and compare their properties to the detection limits of the upcoming James Webb Space Telescope (JWST), finding that JWST should be able to detect galaxies similar to the progenitors of a few of the brightest of the local galaxies, revealing a hitherto unobserved population of galaxies at high redshifts.
VLT Smashes the Record of the Farthest Known Galaxy
NASA Astrophysics Data System (ADS)
2004-03-01
Redshift 10 Galaxy discovered at the Edge of the Dark Ages [1] Summary Using the ISAAC near-infrared instrument on ESO's Very Large Telescope, and the magnification effect of a gravitational lens, a team of French and Swiss astronomers [2] has found several faint galaxies believed to be the most remote known. Further spectroscopic studies of one of these candidates has provided a strong case for what is now the new record holder - and by far - of the most distant galaxy known in the Universe. Named Abell 1835 IR1916, the newly discovered galaxy has a redshift of 10 [3] and is located about 13,230 million light-years away. It is therefore seen at a time when the Universe was merely 470 million years young, that is, barely 3 percent of its current age. This primeval galaxy appears to be ten thousand times less massive than our Galaxy, the Milky Way. It might well be among the first class of objects which put an end to the Dark Ages of the Universe. This remarkable discovery illustrates the potential of large ground-based telescopes in the near-infrared domain for the exploration of the very early Universe. PR Photo 05a/04: Abell 1835 IR1916 - the Farthest Galaxy - Seen in the Near-Infrared PR Photo 05b/04: Two-dimensional Spectra of Abell 1835 IR1916 Digging into the past Like palaeontologists who dig deeper and deeper to find the oldest remains, astronomers try to look further and further to scrutinise the very young Universe. The ultimate quest? Finding the first stars and galaxies that formed just after the Big Bang. More precisely, astronomers are trying to explore the last "unknown territories", the boundary between the "Dark Ages" and the "Cosmic Renaissance". Rather shortly after the Big Bang, which is now believed to have taken place some 13,700 million years ago, the Universe plunged into darkness. The relic radiation from the primordial fireball had been stretched by the cosmic expansion towards longer wavelengths and neither stars nor quasars had yet been formed which could illuminate the vast space. The Universe was a cold and opaque place. This sombre era is therefore quite reasonably dubbed the "Dark Ages". A few hundred million years later, the first generation of stars and, later still, the first galaxies and quasars, produced intense ultraviolet radiation, gradually lifting the fog over the Universe. This was the end of the Dark Ages and, with a term again taken over from human history, is sometimes referred to as the "Cosmic Renaissance". Astronomers are trying to pin down when - and how - exactly the Dark Ages finished. This requires looking for the remotest objects, a challenge that only the largest telescopes, combined with a very careful observing strategy, can take up. Using a Gravitational Telescope With the advent of 8-10 meter class telescopes spectacular progress has been achieved during the last decade. Indeed it has since become possible to observe with some detail several thousand galaxies and quasars out to distances of nearly 12 billion light-years (i.e. up to a redshift of 3 [3]). In other words astronomers are now able to study individual galaxies, their formation, evolution, and other properties over typically 85 % of the past history of the Universe. Further in the past, however, observations of galaxies and quasars become scarce. Currently, only a handful of very faint galaxies are seen approximately 1,200 to 750 million years after the Big Bang (redshift 5-7). Beyond that, the faintness of these sources and the fact their light is shifted from the optical to the near infrared has so far severely limited the studies. An important breakthrough in this quest for the earliest formed galaxy has now been achieved by a team of French and Swiss astronomers [2] using ESO's Very Large Telescope (VLT) equipped with the near-infrared sensitive instrument ISAAC. To accomplish this, they had to combine the light amplification effect of a cluster of galaxies - a Gravitational Telescope - with the light gathering power of the VLT and the excellent sky conditions prevailing at Paranal. Searching for distant galaxies The hunt for such faint, elusive objects demands a particular approach. First of all, very deep images of a cluster of galaxies named Abell 1835 were taken using the ISAAC near-infrared instrument on the VLT. Such relatively nearby massive clusters are able to bend and amplify the light of background sources - a phenomenon called Gravitational Lensing and predicted by Einstein's theory of General Relativity. This natural amplification allows the astronomers to peer at galaxies which would otherwise be too faint to be seen. In the case of the newly discovered galaxy, the light is amplified approximately 25 to 100 times! Combined with the power of the VLT it has thereby been possible to image and even to take a spectrum of this galaxy. Indeed, the natural amplification effectively increases the aperture of the VLT from 8.2-m to 40-80 m. The deep near-IR images taken at different wavelengths have allowed the astronomers to characterise the properties of a few thousand galaxies in the image and to select a handful of them as potentially very distant galaxies. Using previously obtained images taken at the Canada-France-Hawaii Telescope (CFHT) on Mauna Kea and images from the Hubble Space Telescope, it has then been verified that these galaxies are indeed not seen in the optical. In this way, six candidate high redshift galaxies were recognised whose light may have been emitted when the Universe was less than 700 million years old. To confirm and obtain a more precise determination of the distance of one of these galaxies, the astronomers obtained Director's Discretionary Time to use again ISAAC on the VLT, but this time in its spectroscopic mode. After several months of careful analysis of the data, the astronomers are convinced to have detected a weak but clear spectral feature in the near-infrared domain. The astronomers have made a strong case that this feature is most certainly the Lyman-alpha emission line typical of these objects. This line, which occurs in the laboratory at a wavelength of 0.1216 μm, that is, in the ultraviolet, has been stretched to the near infrared at 1.34 μm, making Abell 1835 IR1916 the first galaxy known to have a redshift as large as 10. The most distant galaxy known to date ESO PR Photo 05a/04 ESO PR Photo 05a/04 ISAAC images of Abell 1835 [Preview - JPEG: 405 x 400 pix - 240k] [Normal - JPEG: 810 x 800 pix - 760k] ESO PR Photo 05b/04 ESO PR Photo 05b/04 Two-dimensional spectra of Abell 1835 IR1936 [Preview - JPEG: 555 x 400 pix - 208k] [Normal - JPEG: 1110 x 800 pix - 570k] Captions: ESO PR Photo 05a/04 shows an ISAAC image in the near-infrared of the core of the lensing cluster Abell 1835 (upper) with the location of the galaxy Abell 1835 IR1916 (white circle). The thumbnail images at the bottom show the images of the remote galaxy in the visible R-band (HST-WPC image) and in the J-, H-, and K-bands. The fact that the galaxy is not detected in the visible image but present in the others - and more so in the H-band - is an indication that this galaxy has a redshift around 10. ESO PR Photo 05b/04 is a reproduction from two-dimensional spectra around the emission line at 1.33745 μm showing the detected emission line of Abell 1835 IR1916 (circle above). If identified as Ly-alpha (0.1216 μm), this leads to a redshift z=10. The line has been observed in two independent spectra corresponding to two different settings of the spectrograph: the right panels show the spectra in the short wavelength setting (centred on 1.315 μm), the long wavelength setting (centred on 1.365 μm), and in the composite, respectively. The line is seen in the dark circles. This is the strongest case for a redshift in excess of the current spectroscopically confirmed record at z=6.6 and the first case of a double-digit redshift. Scaling the age of the Universe to a person's lifetime (80 years, say), the previous confirmed record showed a four-year toddler. With the present observations, we have a picture of the child when he was two and a half years old. From the images of this galaxy obtained in the various wavebands, the astronomers deduce that it is undergoing a period of intense star formation. But the amount of stars formed is estimated to be "only" 10 million times the mass of the sun, approximately ten thousand times smaller than the mass of our Galaxy, the Milky Way. In other words, what the astronomers see is the first building block of the present-day large galaxies. This finding agrees well with our current understanding of the process of galaxy formation corresponding to a successive build-up of the large galaxies seen today through numerous mergers of "building blocks", smaller and younger galaxies formed in the past. It is these building blocks which may have provided the first light sources that lifted the fog over the Universe and put an end to the Dark Ages. For Roser Pelló, from the Observatoire Midi-Pyrénées (France) and co-leader of the team, "these observations show that under excellent sky conditions like those at ESO's Paranal Observatory, and using strong gravitational lensing, direct observations of distant galaxies close to the Dark Ages are feasible with the best ground-based telescopes." The other co-leader of the team, Daniel Schaerer from the Geneva Observatory and University (Switzerland), is excited: "This discovery opens the way to future explorations of the first stars and galaxies in the early Universe."
Brighter galaxy bias: underestimating the velocity dispersions of galaxy clusters
NASA Astrophysics Data System (ADS)
Old, L.; Gray, M. E.; Pearce, F. R.
2013-09-01
We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal ≥ 50 at five low-redshift snapshots from the publicly available De Lucia & Blaziot semi-analytic model galaxy catalogue. Clusters are also selected from the Tempel Sloan Digital Sky Survey Data Release 8 groups and clusters catalogue across the redshift range 0.021 ≤ z ≤ 0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction experienced by the brighter cluster members. The velocity dispersions of the parent dark matter (DM) haloes are compared to the galaxy cluster dispersions and the stacked distribution of DM particle velocities is examined alongside the corresponding galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of σgal/σDM ˜ 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocities distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35 per cent, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass dependent but also that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly magnitude-limited sample should be avoided to ensure an unbiased estimate of the velocity dispersion.
A Very Hot, High Redshift Cluster of Galaxies: More Trouble for Omega(0) = 1
NASA Technical Reports Server (NTRS)
Donahue, Megan; Voit, G. Mark; Gioia, Isabella; Luppino, Gerry; Hughes, John P.; Stocke, John T.
1998-01-01
We have observed the most distant (= 0.829) cluster of galaxies in the Einstein Extended Medium Sensitivity Survey (EMSS), with the ASCA and ROSAT satellites. We find an X-ray temperature of 12.3 (sup +3.1) (sub -2.2)keV for this cluster, and the ROSAT map reveals significant substructure. The high temperature of MS1054-0321 is consistent with both its approximate velocity dispersion, based on the redshifts of 12 cluster members we have obtained at the Keck and the Canada-France-Hawaii telescopes, and with its weak lensing signature. The X-ray temperature of this cluster implies a virial mass approx. 7.4 x 10 (sup 14) h (sup -1) M (circle dot), if the mean matter density in the universe equals the critical value (OMEGA (sub 0) = 1), or larger if OMEGA (sub 0) is less than 1. Finding such a hot, massive cluster in the EMSS is extremely improbable if clusters grew from Gaussian perturbations in an OMEGA (sub 0) = 1 universe. Combining the assumptions that OMEGA (sub 0) = 1 and that the initial perturbations were Gaussian with the observed X-ray temperature function at low redshift, we show that this probability of this cluster occurring in the volume sampled by the EMSS is less than a few times 10 (sup -5). Nor is MS1054-0321 the only hot cluster at high redshift; the only two other z greater than 0.5 EMSS clusters already observed with ASCA also have temperatures exceeding 8 keV. Assuming again that the initial perturbations were Gaussian and OMEGA (sub 0) = 1, we find that each one is improbable at the less than 10 (sup -2) level. These observations, along with the fact that these luminosities and temperatures of the high-z clusters all agree with the low-z L (sub X) - T (sub X) relation, argue strongly that OMEGA (sub 0) less than 1. Otherwise, the initial perturbations must be non-Gaussian, if these clusters' temperatures do indeed reflect their gravitational potentials.
Testing Feedback Models with Nearby Star Forming Regions
NASA Astrophysics Data System (ADS)
Doran, E.; Crowther, P.
2012-12-01
The feedback from massive stars plays a crucial role in the evolution of galaxies. Accurate modelling of this feedback is essential in understanding distant star forming regions. Young nearby, high mass (> 104 M⊙) clusters such as R136 (in the 30 Doradus region) are ideal test beds for population synthesis since they host large numbers of spatially resolved massive stars at a pre-supernovae stage. We present a quantitative comparison of empirical calibrations of radiative and mechanical feedback from individual stars in R136, with instantaneous burst predictions from the popular Starburst99 evolution synthesis code. We find that empirical results exceed predictions by factors of ˜3-9, as a result of limiting simulations to an upper limit of 100 M⊙. 100-300 M⊙ stars should to be incorporated in population synthesis models for high mass clusters to bring predictions into close agreement with empirical results.
Telescope Scientist on the Advanced X-ray Astrophysics Observatory
NASA Technical Reports Server (NTRS)
VanSpeybroeck, L.; Smith, Carl M. (Technical Monitor)
2002-01-01
This period included many scientific observations made with the Chandra Observatory. The results, as is well known, are spectacular. Fortunately, the High Resolution Mirror Assembly (HRMA) performance continues to be essentially identical to that predicted from ground calibration data. The Telescope Scientist Team has improved the mirror model to provide a more accurate description to the Chandra observers and enable them to reduce the systematic errors and uncertainties in their data reduction. We also have made considerable progress in improving the scattering model. There also has been progress in the scientific program. At this time 58 distant clusters of galaxies have been observed. We are performing a systematic analysis of this rather large data set for the purpose of determining absolute distances utilizing the Sunyaev Zel'dovich effect. These observations also have been used to study the evolution of the cluster baryon mass function and the cosmological constraints which result from this evolution.
Stellar Populations and Physical Conditions at 100 pc Resolution in a Lensed Galaxy at z 4
NASA Astrophysics Data System (ADS)
Berg, Danielle
2015-10-01
Large surveys of star-forming galaxies at high redshift (z > 1.5) have provided us with a broad understanding of how galaxies assemble and evolve, but the spatial and spectral limitations inherent in observing faint, distant objects mean that many of the physical processes regulating this dynamic evolution are poorly constrained. Much of our most detailed knowledge of the physical conditions in distant galaxies comes from careful studies of gravitationally lensed sources, few of which are at z>3.5. FOR J0332-3557 is a gravitationally lensed galaxy at z 4 for which we and other groups have obtained a total of 37.3 hours of VLT spectroscopy. The rest-frame UV spectrum is notable for its unusual combination of both strong emission lines in the rest-frame UV and strong Lya and interstellar absorption, and for the unusual spatial variation seen in the nebular emission lines, which are less extended than the underlying stellar continuum. We propose high spatial resolution imaging of FOR J0332-3557 with four broadband filters on WFC3, taking advantage of both the HST resolution and the lensing magnification to study star formation and extinction on 100 pc scales. Because the interpretation of our unusual rest-frame UV and optical spectra requires an accurate reddening estimate, combining these observations with ground-based spectroscopy will give the most complete picture to date of chemical evolution in a distant galaxy.
The Effect of Mergers on Galaxy Cluster Mass Estimates
NASA Astrophysics Data System (ADS)
Johnson, Ryan E.; Zuhone, John A.; Thorsen, Tessa; Hinds, Andre
2015-08-01
At vertices within the filamentary structure that describes the universal matter distribution, clusters of galaxies grow hierarchically through merging with other clusters. As such, the most massive galaxy clusters should have experienced many such mergers in their histories. Though we cannot see them evolve over time, these mergers leave lasting, measurable effects in the cluster galaxies' phase space. By simulating several different galaxy cluster mergers here, we examine how the cluster galaxies kinematics are altered as a result of these mergers. Further, we also examine the effect of our line of sight viewing angle with respect to the merger axis. In projecting the 6-dimensional galaxy phase space onto a 3-dimensional plane, we are able to simulate how these clusters might actually appear to optical redshift surveys. We find that for those optical cluster statistics which are most often used as a proxy for the cluster mass (variants of σv), the uncertainty due to an inprecise or unknown line of sight may alter the derived cluster masses moreso than the kinematic disturbance of the merger itself. Finally, by examining these, and several other clustering statistics, we find that significant events (such as pericentric crossings) are identifiable over a range of merger initial conditions and from many different lines of sight.
Starburst Cluster Shows Celestial Fireworks
2017-12-08
NASA image release June 6, 2010 Like a July 4 fireworks display a young, glittering collection of stars looks like an aerial burst. The cluster is surrounded by clouds of interstellar gas and dust - the raw material for new star formation. The nebula, located 20,000 light-years away in the constellation Carina, contains a central cluster of huge, hot stars, called NGC 3603. This environment is not as peaceful as it looks. Ultraviolet radiation and violent stellar winds have blown out an enormous cavity in the gas and dust enveloping the cluster, providing an unobstructed view of the cluster. Most of the stars in the cluster were born around the same time but differ in size, mass, temperature, and color. The course of a star's life is determined by its mass, so a cluster of a given age will contain stars in various stages of their lives, giving an opportunity for detailed analyses of stellar life cycles. NGC 3603 also contains some of the most massive stars known. These huge stars live fast and die young, burning through their hydrogen fuel quickly and ultimately ending their lives in supernova explosions. Star clusters like NGC 3603 provide important clues to understanding the origin of massive star formation in the early, distant universe. Astronomers also use massive clusters to study distant starbursts that occur when galaxies collide, igniting a flurry of star formation. The proximity of NGC 3603 makes it an excellent lab for studying such distant and momentous events. This Hubble Space Telescope image was captured in August 2009 and December 2009 with the Wide Field Camera 3 in both visible and infrared light, which trace the glow of sulfur, hydrogen, and iron. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C. Credit: NASA, ESA, R. O'Connell (University of Virginia), F. Paresce (National Institute for Astrophysics, Bologna, Italy), E. Young (Universities Space Research Association/Ames Research Center), the WFC3 Science Oversight Committee, and the Hubble Heritage Team (STScI/AURA) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
JELLYFISH: EVIDENCE OF EXTREME RAM-PRESSURE STRIPPING IN MASSIVE GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebeling, H.; Stephenson, L. N.; Edge, A. C.
Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts ofmore » gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M {sub F606W} < –21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters.« less
NASA Astrophysics Data System (ADS)
2006-07-01
If life is like a box of chocolates - you never know what you will get - the Universe, with its immensely large variety of galaxies, must be a real candy store! ESO's Very Large Telescope has taken images of three different 'Island Universes' [1], each amazing in their own way, whose curious shapes testify of a troubled past, and for one, of a foreseeable doomed future. ESO PR Photo 27a/06 ESO PR Photo 27a/06 The Starburst Galaxy NGC 908 The first galaxy pictured is NGC 908, located 65 million light-years towards the constellation of Cetus (the Whale). This spiral galaxy, discovered in 1786 by William Herschel, is a so-called starburst galaxy, that is, a galaxy undergoing a phase where it spawns stars at a frantic rate. Clusters of young and massive stars can be seen in the spiral arms. Two supernovae, the explosions of massive stars, have been recorded in the near past: one in 1994 and another in May of this year. The galaxy, which is about 75 000 light-years long, also clearly presents uneven and thick spiral arms, the one on the left appearing to go upwards, forming a kind of ribbon. These properties indicate that NGC 908 most probably suffered a close encounter with another galaxy, even though none is visible at present. ESO PR Photo 27b/06 ESO PR Photo 27b/06 The Spectacular Spiral Galaxy ESO 269-G57 The second galaxy featured constitutes another wonderful sight yet of a more timid nature: it does not belong to the NGC catalogue [2], like so many of its more famous brethren. Its less well-known designation, ESO 269-G57, refers to the ESO/Uppsala Survey of the Southern Sky in the 1970's during which over 15,000 southern galaxies were found with the ESO Schmidt telescope and catalogued. Located about 155 million light-years away towards the southern constellation Centaurus (the Centaur), ESO 269-G57 is a spectacular spiral galaxy of symmetrical shape that belongs to a well-known cluster of galaxies seen in this direction. An inner 'ring', of several tightly wound spiral arms, surrounded by two outer ones that appear to split into several branches, are clearly visible. Many blue and diffuse objects are seen - most are star-forming regions. ESO 269-G57 extends over about 4 arc minutes in the sky, corresponding to nearly 200,000 light-years across. Resembling a large fleet of spaceships, many other faint, distant galaxies are visible in the background. ESO PR Photo 27c/06 ESO PR Photo 27c/06 The Irregular Galaxy NGC 1427A Finally, ESO 27c/06 provides a view of a more tormented organism, a so-called irregular galaxy, known as NGC 1427A. Located about 60 million light-years away, in the direction of the constellation Fornax (the Furnace), NGC 1427A is about 20,000 light-years long and shares some resemblances with our neighbouring Large Magellanic Cloud. NGC 1427A is in fact plunging into the Fornax cluster of galaxies at a speed of 600 km/s, and takes an arrowhead shape. Moving so rapidly, the galaxy is compressed by the intracluster gas, and this compression gives birth to many new stars. Using these and other VLT observations, astronomer Iskren Y. Georgiev from the Argelander Institute for Astronomy at Bonn (Germany) and his colleagues [3] were able to find 38 candidates globular clusters that are about 10 billion years old. The scientists also inferred that NGC 1427A is about 10 million light-years in front of the central dominant elliptical galaxy in the Fornax cluster of galaxies, NGC 1399. It seems certain that under such circumstances, the future of NGC 1427A looks bleak, as the galaxy will finally be disrupted, dispersing its content of gas and stars in the intracluster regions. Just next to NGC 1427A, but 25 times further away, a more typical, beautiful face-on spiral galaxy is looking rather unperturbed at the dramatic spectacle. The multi-mode FORS instrument, on ESO's Very Large Telescope, was used to take the images of these three galaxies. The observations were done in several filters which were then combined to produce a colour image. More information on each of the images is given in the respective captions.
Enrichment and heating of the intracluster medium by ejection from galaxies
NASA Technical Reports Server (NTRS)
Metzler, Chris; Evrard, August
1993-01-01
Results of N-body + hydrodynamic simulations designed to model the formation and evolution of clusters of galaxies and intracluster gas are presented. Clusters of galaxies are the largest bound, relaxed objects in the universe. They are strong x-ray emitters; this radiation originates through thermal bremsstrahlung from a diffuse plasma filling the space between cluster galaxies, the intracluster medium or ICM. From observations, one can infer that the mass of the ICM is comparable to or greater than the mass of all the galaxies in the cluster, and that the ratio of mass in hot gas to mass in galaxies, M(sub ICM)/M(sub STARS), increases with the richness of the cluster. Spectroscopic studies of cluster x-ray emission show heavy element emission lines. While M(sub ICM)/M(sub STARS) is greater than or equal to 1 implies that most of the ICM is primordial in nature, the discovery of heavy elements indicates that some of the gas must have been processed through galaxies. Galaxy evolution thus directly impacts cluster evolution.
Observational Searches for Star-Forming Galaxies at z > 6
NASA Astrophysics Data System (ADS)
Finkelstein, Steven L.
2016-08-01
Although the universe at redshifts greater than six represents only the first one billion years (< 10%) of cosmic time, the dense nature of the early universe led to vigorous galaxy formation and evolution activity which we are only now starting to piece together. Technological improvements have, over only the past decade, allowed large samples of galaxies at such high redshifts to be collected, providing a glimpse into the epoch of formation of the first stars and galaxies. A wide variety of observational techniques have led to the discovery of thousands of galaxy candidates at z > 6, with spectroscopically confirmed galaxies out to nearly z = 9. Using these large samples, we have begun to gain a physical insight into the processes inherent in galaxy evolution at early times. In this review, I will discuss (i) the selection techniques for finding distant galaxies, including a summary of previous and ongoing ground and space-based searches, and spectroscopic follow-up efforts, (ii) insights into galaxy evolution gleaned from measures such as the rest-frame ultraviolet luminosity function, the stellar mass function, and galaxy star-formation rates, and (iii) the effect of galaxies on their surrounding environment, including the chemical enrichment of the universe, and the reionisation of the intergalactic medium. Finally, I conclude with prospects for future observational study of the distant universe, using a bevy of new state-of-the-art facilities coming online over the next decade and beyond.
Modelling baryonic effects on galaxy cluster mass profiles
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke
2018-06-01
Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.
An Archival Search For Young Globular Clusters in Galaxies
NASA Astrophysics Data System (ADS)
Whitmore, Brad
1995-07-01
One of the most intriguing results from HST has been the discovery of ultraluminous star clusters in interacting and merging galaxies. These clusters have the luminosities, colors, and sizes that would be expected of young globular clusters produced by the interaction. We propose to use the data in the HST Archive to determine how prevalent this phenomena is, and to determine whether similar clusters are produced in other environments. Three samples will be extracted and studied in a systematic and consistent manner: 1} interacting and merging galaxies, 2} starburst galaxies, 3} a control sample of ``normal'' galaxies. A preliminary search of the archives shows that there are at least 20 galaxies in each of these samples, and the number will grow by about 50 observations become available. The data will be used to determine the luminosity function, color histogram , spatial distribution, and structural properties of the clusters using the same techniques employed in our study of NGC 7252 {``Atoms -for-Peace'' galaxy} and NGC 4038/4039 {``The Antennae''}. Our ultimate goals are: 1} to understand how globular clusters form, and 2} to use the clusters as evolutionary tracers to unravel the histories of interacting galaxies.
NASA Astrophysics Data System (ADS)
Burchett, Joseph N.; Tripp, Todd M.; Wang, Q. Daniel; Willmer, Christopher N. A.; Bowen, David V.; Jenkins, Edward B.
2018-04-01
We analyse the intracluster medium (ICM) and circumgalactic medium (CGM) in seven X-ray-detected galaxy clusters using spectra of background quasi-stellar objects (QSOs) (HST-COS/STIS), optical spectroscopy of the cluster galaxies (MMT/Hectospec and SDSS), and X-ray imaging/spectroscopy (XMM-Newton and Chandra). First, we report a very low covering fraction of H I absorption in the CGM of these cluster galaxies, f_c = 25^{+25}_{-15} {per cent}, to stringent detection limits (N(H I) <1013 cm-2). As field galaxies have an H I covering fraction of ˜ 100 per cent at similar radii, the dearth of CGM H I in our data indicates that the cluster environment has effectively stripped or overionized the gaseous haloes of these cluster galaxies. Secondly, we assess the contribution of warm-hot (105-106 K) gas to the ICM as traced by O VI and broad Ly α (BLA) absorption. Despite the high signal-to-noise ratio of our data, we do not detect O VI in any cluster, and we only detect BLA features in the QSO spectrum probing one cluster. We estimate that the total column density of warm-hot gas along this line of sight totals to ˜ 3 per cent of that contained in the hot T > 107 K X-ray emitting phase. Residing at high relative velocities, these features may trace pre-shocked material outside the cluster. Comparing gaseous galaxy haloes from the low-density `field' to galaxy groups and high-density clusters, we find that the CGM is progressively depleted of H I with increasing environmental density, and the CGM is most severely transformed in galaxy clusters. This CGM transformation may play a key role in environmental galaxy quenching.
A correlation between the cosmic microwave background and large-scale structure in the Universe.
Boughn, Stephen; Crittenden, Robert
2004-01-01
Observations of distant supernovae and the fluctuations in the cosmic microwave background (CMB) indicate that the expansion of the Universe may be accelerating under the action of a 'cosmological constant' or some other form of 'dark energy'. This dark energy now appears to dominate the Universe and not only alters its expansion rate, but also affects the evolution of fluctuations in the density of matter, slowing down the gravitational collapse of material (into, for example, clusters of galaxies) in recent times. Additional fluctuations in the temperature of CMB photons are induced as they pass through large-scale structures and these fluctuations are necessarily correlated with the distribution of relatively nearby matter. Here we report the detection of correlations between recent CMB data and two probes of large-scale structure: the X-ray background and the distribution of radio galaxies. These correlations are consistent with those predicted by dark energy, indicating that we are seeing the imprint of dark energy on the growth of structure in the Universe.
NGC 346: Looking in the Cradle of a Massive Star Cluster
NASA Astrophysics Data System (ADS)
Gouliermis, Dimitrios A.; Hony, Sacha
2017-03-01
How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these two parameters with a considerable scatter. The fraction of stellar over the total (gas plus young stars) mass is found to be systematically higher within the central 15 pc (where the young massive cluster is located) than outside, which suggests variations in the star formation efficiency within the same star-forming complex. This trend possibly reflects a change of star formation efficiency in N66 between clustered and non-clustered star formation. Our findings suggest that the formation of NGC 346 is the combined result of star formation regulated by turbulence and of early dynamical evolution induced by the gravitational potential of the dense interstellar medium.
First Results from the ISO-IRAS Faint Galaxy Survey
NASA Technical Reports Server (NTRS)
Wolstencroft, R. D.; Wehrle, A. E.; Levine, D. A.
1997-01-01
We present the first result from the ISO-IRAS Faint Galaxy Survey (IIFGS), a program designed to obtain ISO observations of the most distant and luminous galaxies in the IRAS Faint Source Survey by filling short gaps in the ISO observing schedule with pairs of 12um ISOCAM AND 90um ISOPHOT observation.
An Optical and X-Ray Study of Abell 576, a Galaxy Cluster with a Cold Core
NASA Astrophysics Data System (ADS)
Mohr, Joseph J.; Geller, Margaret J.; Fabricant, Daniel G.; Wegner, Gary; Thorstensen, John; Richstone, Douglas O.
1996-10-01
We analyze the galaxy population and dynamics of the galaxy cluster A576; the observational constraints include 281 redshifts (230 new), R- band CCD galaxy photometry over a 2 h^-1^ Mpc x 2 h^-1^ Mpc region centered on the cluster, an Einstein IPC X-ray image, and an Einstein MPC X-ray spectrum. We focus on an 86% complete magnitude-limited sample (R_23.5_ < 17) of 169 cluster galaxies. The cluster galaxies with emission lines in their spectra have a larger velocity dispersion and are significantly less clustered on this 2 h^-1^ Mpc scale than galaxies without emission lines. We show that excluding the emission-line galaxies from the cluster sample decreases the velocity dispersion by 18% and the virial mass estimate by a factor of 2. The central cluster region contains a nonemission galaxy population and an intracluster medium which is significantly cooler (σ_core_ = 387_-105_^+250^ km s^-1^ and T_x_ = 1.6_-0.3_^+0.4^ keV at 90% confidence) than the global populations (σ = 977_-96_^+124^ km s^- 1^ for the nonemission population and T_X_ > 4 keV at 90% confidence). Because (1) the low-dispersion galaxy population is no more luminous than the global population and (2) the evidence for a cooling flow is weak, we suggest that the core of A576 may contain the remnants of a lower mass subcluster. We examine the cluster mass, baryon fraction, and luminosity function. The cluster virial mass varies significantly depending on the galaxy sample used. Consistency between the hydrostatic and virial estimators can be achieved if (1) the gas temperature at r~1 h^-1^ Mpc is T_X_ ~ 8 keV (the best-fit value) and (2) several velocity outliers are excluded from the virial calculation. Although the best-fit Schechter function parameters and the ratio of galaxy to gas mass in A576 are typical of other clusters, the baryon fraction is relatively low. Using the consistent cluster binding mass, we show that the gas mass fraction is ~3 h^-3/2^% and the baryon fraction is ~4%.
The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey
Bufanda, E.; Hollowood, D.; Jeltema, T. E.; ...
2016-12-13
The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. Here, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 10 43 ergs s -1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.10.7. Our resultmore » is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. But, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.« less
Hubble’s cross-section of the cosmos
2014-04-17
This new Hubble image showcases a remarkable variety of objects at different distances from us, extending back over halfway to the edge of the observable Universe. The galaxies in this image mostly lie about five billion light-years from Earth but the field also contains other objects, both significantly closer and far more distant. Studies of this region of the sky have shown that many of the objects that appear to lie close together may actually be billions of light-years apart. This is because several groups of galaxies lie along our line of sight, creating something of an optical illusion. Hubble’s cross-section of the Universe is completed by distorted images of galaxies in the very distant background. These objects are sometimes distorted due to a process called gravitational lensing, an extremely valuable technique in astronomy for studying very distant objects [1]. This lensing is caused by the bending of the space-time continuum by massive galaxies lying close to our line of sight to distant objects. One of the lens systems visible here is called CLASS B1608+656, which appears as a small loop in the centre of the image. It features two foreground galaxies distorting and amplifying the light of a distant quasar the known as QSO-160913+653228. The light from this bright disc of matter, which is currently falling into a black hole, has taken nine billion years to reach us — two thirds of the age of the Universe. As well as CLASS B1608+656, astronomers have identified two other gravitational lenses within this image. Two galaxies, dubbed Fred and Ginger by the researchers who studied them, contain enough mass to visibly distort the light from objects behind them. Fred, also known more prosaically as [FMK2006] ACS J160919+6532, lies near the lens galaxies in CLASS B1608+656, while Ginger ([FMK2006] ACS J160910+6532) is markedly closer to us. Despite their different distances from us, both can be seen near to CLASS B1608+656 in the central region of this Hubble image. To capture distant and dim objects like these, Hubble required a long exposure. The image is made up of visible and infrared observations with a total exposure time of 14 hours. More info: www.spacetelescope.org/news/heic1408/ Credit: NASA/ESA/Hubble NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
LoCuSS: weak-lensing mass calibration of galaxy clusters
NASA Astrophysics Data System (ADS)
Okabe, Nobuhiro; Smith, Graham P.
2016-10-01
We present weak-lensing mass measurements of 50 X-ray luminous galaxy clusters at 0.15 ≤ z ≤ 0.3, based on uniform high-quality observations with Suprime-Cam mounted on the 8.2-m Subaru telescope. We pay close attention to possible systematic biases, aiming to control them at the ≲4 per cent level. The dominant source of systematic bias in weak-lensing measurements of the mass of individual galaxy clusters is contamination of background galaxy catalogues by faint cluster and foreground galaxies. We extend our conservative method for selecting background galaxies with (V - I') colours redder than the red sequence of cluster members to use a colour-cut that depends on cluster-centric radius. This allows us to define background galaxy samples that suffer ≤1 per cent contamination, and comprise 13 galaxies per square arcminute. Thanks to the purity of our background galaxy catalogue, the largest systematic that we identify in our analysis is a shape measurement bias of 3 per cent, that we measure using simulations that probe weak shears up to g = 0.3. Our individual cluster mass and concentration measurements are in excellent agreement with predictions of the mass-concentration relation. Equally, our stacked shear profile is in excellent agreement with the Navarro Frenk and White profile. Our new Local Cluster Substructure Survey mass measurements are consistent with the Canadian Cluster Cosmology Project and Cluster Lensing And Supernova Survey with Hubble surveys, and in tension with the Weighing the Giants at ˜1σ-2σ significance. Overall, the consensus at z ≤ 0.3 that is emerging from these complementary surveys represents important progress for cluster mass calibration, and augurs well for cluster cosmology.
NASA Astrophysics Data System (ADS)
Moran, Sean M.
Clusters of galaxies represent the largest laboratories in the universe for testing the incredibly chaotic physics governing the collapse of baryons into the stars, galaxies, groups, and diffuse clouds that we see today. Within the cluster environment, there are a wide variety of physical processes that may be acting to transform galaxies.In this thesis, we combine extensive Keck spectroscopy with wide-field HST imaging to perform a detailed case study of two intermediate redshift galaxy clusters, Cl 0024+1654 (z=0.395) and MS 0451-03 (z=0.540). Leveraging a comprehensive multiwavelength data set that spans the X-ray to infrared, and with spectral-line measurements serving as the key to revealing both the recent star-formation histories and kinematics of infalling galaxies, we aim to shed light on the environmental processes that could be acting to transform galaxies in clusters.We adopt a strategy to make maximal use of our HST-based morphologies by splitting our sample of cluster galaxies according to morphological type, characterizing signs of recent evolution in spirals and early types separately. This approach proves to be powerful in identifying galaxies that are currently being altered by an environmental interaction: early-type galaxies that have either been newly transformed or prodded back into an active phase, and spiral galaxies where star formation is being suppressed or enhanced all stand out in our sample.We begin by using variations in the early-type galaxy population as indicators of recent activity. Because ellipticals and S0s form such a homogeneous class in the local universe, we are sensitive to even very subtle signatures of recent and current environmental interactions. This study has yielded two key results: By constructing the Fundamental Plane (FP) of Cl 0024, we observe that elliptical and S0 galaxies exhibit a high scatter in their FP residuals, which occurs only among galaxies in the cluster core, suggesting a turbulent assembly history for Cl 0024 early types. Near the Virial radius of Cl 0024, we observe a number of compact, intermediate-mass ellipticals undergoing a burst of star formation or weak AGN activity, indicated by strong [O II] emission; their locations may mark the minimum radius at which merging is effective in each cluster.While E+S0 galaxies do prove to be sensitive indicators of environmental interaction, it is the spiral galaxies that, of course, host the bulk of star formation within and around these clusters. We therefore probe for kinematic disturbances in spiral disks by measuring resolved rotation curves from optical emission lines, and constructing the Tully-Fisher relation for spirals across Cl 0024 and MS 0451. We find that the cluster Tully-Fisher relation exhibits significantly higher scatter than the field relation. In probing for the origin of this difference, we find that the central mass densities of star-forming spirals exhibit a sharp break near the cluster Virial radius, with spirals in the cluster outskirts exhibiting significantly lower densities. We argue that these results considered together demonstrate that cluster spirals are kinematically disturbed by their environment, likely due to galaxy-galaxy interactions (harassment).We then discuss our most powerful method of tracking galaxy evolution across Cl 0024 and MS 0451: identifying and studying "transition galaxies"-galaxies whose stellar populations or dynamical states indicate a recent or ongoing change in morphology or star formation rate. Such galaxies are often revealed by star formation histories that seem to be at odds with the galaxy morphologies: for example, spiral galaxies with no signs of star formation, or elliptical galaxies that do show signs of star formation.We identify and study one such class of objects, the "passive spirals" in Cl 0024. These objects exhibit no emission lines in their spectra, suggesting a lack of star formation, yet are surprisingly detected in the UV, revealing the presence of young stars. By modeling the different temporal sensitivities of UV and spectroscopic data to recent activity, we show that star formation in Cl 0024 passive spirals has decayed on timescales of less than 1 Gyr, consistent with the action of "gas starvation".We then build on and link together our previous indications of galaxy evolution at work, aiming to piece together a more comprehensive picture of how cluster galaxies are affected by their environment at intermediate redshift. To accomplish this, we document what we believe to be the first direct evidence for the transformation of spirals into S0s: through an analysis of their stellar populations and recent star formation rates, we link the passive spiral galaxies in both clusters to their eventual end states as newly generated cluster S0 galaxies. Differences between the two clusters in both the timescales and spatial location of this conversion process allow us to evaluate the relative importance of several proposed physical mechanisms that could be responsible for the transformation. Combined with other diagnostics that are sensitive to either ICM-driven galaxy evolution or galaxy-galaxy interactions, we describe a self-consistent picture of galaxy evolution in clusters.We find that spiral galaxies within infalling groups have already begun a slow process of conversion into S0s primarily via gentle galaxy-galaxy interactions that act to quench star formation. The fates of spirals upon reaching the core of the cluster depend heavily on the cluster ICM, with rapid conversion of all remaining spirals into S0s via ram-pressure stripping in clusters where the ICM is dense. In the presence of a less-dense ICM, the conversion continues at a slower pace, with galaxy-galaxy interactions continuing to play a role along with "starvation" by the ICM. We conclude that the buildup of the local S0 population through the transformation of spiral galaxies is a heterogeneous process that nevertheless proceeds robustly across a variety of different environments from cluster outskirts to cores.
Globular Clusters Shine in a Galaxy Lacking Dark Matter
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-04-01
You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old ( 9.3 billion years) population and metal-poor.Rethinking Formation TheoriesThe long-standing picture of galaxies has closely connected old, metal-poor globular clusters to the galaxies dark-matter halos. Past studies have found that the ratio between the total globular-cluster mass and the overall mass of a galaxy (i.e., all dark + baryonic matter) holds remarkably constant across galaxies its typically 3 x 10-5. This has led researchers to believe that properties of the dark-matter halo may determine globular-cluster formation.The luminosity function of the compact objects in NGC 1052DF2. The red and blue curves show the luminosity functions of globular clusters in the Milky Way and in the typical ultra-diffuse galaxies of the Coma cluster, respectively. NGC 1052DF2s globular clusters peak at a significantly higher luminosity. [Adapted from van Dokkum et al. 2018]NGC 1052DF2, with a globular-cluster mass thats 3% of the mass of the galaxy ( 1000 times the expected ratio!), defies this picture. This unusual galaxy therefore demonstrates that the usual relation between globular-cluster mass and total galaxy mass probably isnt due to a fundamental connection between the dark-matter halo and globular-cluster formation. Instead, van Dokkum and collaborators suggest, globular-cluster formation may ultimately be a baryon-driven process.As with all unexpected discoveries in astronomy, we must now determine whether NGC 1052DF2 is simply a fluke, or whether it represents a new class of object we can expect to find more of. Either way, this unusual galaxy is forcing us to rethink what we know about galaxies and the star clusters they host.CitationPieter van Dokkum et al 2018 ApJL 856 L30. doi:10.3847/2041-8213/aab60b
Cluster Dynamical Mass from Magellan Multi-Object Spectroscopy for SGAS Clusters
NASA Astrophysics Data System (ADS)
Murray, Katherine; Sharon, Keren; Johnson, Traci; Gifford, Daniel; Gladders, Michael; Bayliss, Matthew; Florian, Michael; Rigby, Jane R.; Miller, Christopher J.
2016-01-01
Galaxy clusters are giant structures in space consisting of hundreds or thousands of galaxies, interstellar matter, and dark matter, all bound together by gravity. We analyze the spectra of the cluster members of several strong lensing clusters from a large program, the Sloan Giant Arcs Survey, to determine the total mass of the lensing clusters. From spectra obtained with the LDSS3 and IMACS cameras on the Magellan 6.5m telescopes, we measure the spectroscopic redshifts of about 50 galaxies in each cluster, and calculate the velocity distributions within the galaxy clusters, as well as their projected cluster-centric radii. From these two pieces of information, we measure the size and total dynamical mass of each cluster. We can combine this calculation with other measurements of mass of the same galaxy clusters (like measurements from strong lensing or X-ray) to determine the spatial distribution of luminous and dark matter out to the virial radius of the cluster.
Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela
Here, we describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (medianmore » $$z\\sim 0.03$$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $$z\\sim 0.6$$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.« less
Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant universe
Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; ...
2017-06-29
Here, we describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (medianmore » $$z\\sim 0.03$$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $$z\\sim 0.6$$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.« less
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
NASA Astrophysics Data System (ADS)
Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; Albareti, Franco D.; Allende Prieto, Carlos; Almeida, Andres; Alonso-García, Javier; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett; Aquino-Ortíz, Erik; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Barger, Kathleen A.; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Bates, Dominic; Baumgarten, Falk; Bautista, Julian; Beaton, Rachael; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Berlind, Andreas A.; Bernardi, Mariangela; Beutler, Florian; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blomqvist, Michael; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; van den Bosch, Remco; Bovy, Jo; Brandt, William N.; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burgasser, Adam J.; Burtin, Etienne; Busca, Nicolás G.; Cappellari, Michele; Delgado Carigi, Maria Leticia; Carlberg, Joleen K.; Carnero Rosell, Aurelio; Carrera, Ricardo; Chanover, Nancy J.; Cherinka, Brian; Cheung, Edmond; Gómez Maqueo Chew, Yilen; Chiappini, Cristina; Doohyun Choi, Peter; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Cirolini, Rafael Fernando; Clerc, Nicolas; Cohen, Roger E.; Comparat, Johan; da Costa, Luiz; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Croft, Rupert A. C.; Cruz-Gonzalez, Irene; Garrido Cuadra, Daniel; Cunha, Katia; Damke, Guillermo J.; Darling, Jeremy; Davies, Roger; Dawson, Kyle; de la Macorra, Axel; Dell'Agli, Flavia; De Lee, Nathan; Delubac, Timothée; Di Mille, Francesco; Diamond-Stanic, Aleks; Cano-Díaz, Mariana; Donor, John; Downes, Juan José; Drory, Niv; du Mas des Bourboux, Hélion; Duckworth, Christopher J.; Dwelly, Tom; Dyer, Jamie; Ebelke, Garrett; Eigenbrot, Arthur D.; Eisenstein, Daniel J.; Emsellem, Eric; Eracleous, Mike; Escoffier, Stephanie; Evans, Michael L.; Fan, Xiaohui; Fernández-Alvar, Emma; Fernandez-Trincado, J. G.; Feuillet, Diane K.; Finoguenov, Alexis; Fleming, Scott W.; Font-Ribera, Andreu; Fredrickson, Alexander; Freischlad, Gordon; Frinchaboy, Peter M.; Fuentes, Carla E.; Galbany, Lluís; Garcia-Dias, R.; García-Hernández, D. A.; Gaulme, Patrick; Geisler, Doug; Gelfand, Joseph D.; Gil-Marín, Héctor; Gillespie, Bruce A.; Goddard, Daniel; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul J.; Grier, Catherine J.; Gunn, James E.; Guo, Hong; Guy, Julien; Hagen, Alex; Hahn, ChangHoon; Hall, Matthew; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne L.; Hearty, Fred; Gonzalez Hernández, Jonay I.; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Holzer, Parker H.; Huehnerhoff, Joseph; Hutchinson, Timothy A.; Hwang, Ho Seong; Ibarra-Medel, Héctor J.; da Silva Ilha, Gabriele; Ivans, Inese I.; Ivory, KeShawn; Jackson, Kelly; Jensen, Trey W.; Johnson, Jennifer A.; Jones, Amy; Jönsson, Henrik; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark; Knapp, Gillian R.; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Law, David R.; Lazarz, Daniel; Lee, Youngbae; Le Goff, Jean-Marc; Liang, Fu-Heng; Li, Cheng; Li, Hongyu; Lian, Jianhui; Lima, Marcos; Lin, Lihwai; Lin, Yen-Ting; Bertran de Lis, Sara; Liu, Chao; de Icaza Lizaola, Miguel Angel C.; Long, Dan; Lucatello, Sara; Lundgren, Britt; MacDonald, Nicholas K.; Deconto Machado, Alice; MacLeod, Chelsea L.; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Maiolino, Roberto; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, Arturo; Mao, Shude; Maraston, Claudia; Marques-Chaves, Rui; Masseron, Thomas; Masters, Karen L.; McBride, Cameron K.; McDermid, Richard M.; McGrath, Brianne; McGreer, Ian D.; Medina Peña, Nicolás; Melendez, Matthew; Merloni, Andrea; Merrifield, Michael R.; Meszaros, Szabolcs; Meza, Andres; Minchev, Ivan; Minniti, Dante; Miyaji, Takamitsu; More, Surhud; Mulchaey, John; Müller-Sánchez, Francisco; Muna, Demitri; Munoz, Ricardo R.; Myers, Adam D.; Nair, Preethi; Nandra, Kirpal; Correa do Nascimento, Janaina; Negrete, Alenka; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; Ntelis, Pierros; O'Connell, Julia E.; Oelkers, Ryan J.; Oravetz, Audrey; Oravetz, Daniel; Pace, Zach; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Alonso Palicio, Pedro; Pan, Kaike; Parejko, John K.; Parikh, Taniya; Pâris, Isabelle; Park, Changbom; Patten, Alim Y.; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc; Pisani, Alice; Poleski, Radosław; Prada, Francisco; Prakash, Abhishek; Queiroz, Anna Bárbara de Andrade; Raddick, M. Jordan; Raichoor, Anand; Barboza Rembold, Sandro; Richstein, Hannah; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodríguez-Torres, Sergio; Roman-Lopes, A.; Román-Zúñiga, Carlos; Rosado, Margarita; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Rykoff, Eli S.; Salazar-Albornoz, Salvador; Salvato, Mara; Sánchez, Ariel G.; Aguado, D. S.; Sánchez-Gallego, José R.; Santana, Felipe A.; Santiago, Basílio Xavier; Sayres, Conor; Schiavon, Ricardo P.; da Silva Schimoia, Jaderson; Schlafly, Edward F.; Schlegel, David J.; Schneider, Donald P.; Schultheis, Mathias; Schuster, William J.; Schwope, Axel; Seo, Hee-Jong; Shao, Zhengyi; Shen, Shiyin; Shetrone, Matthew; Shull, Michael; Simon, Joshua D.; Skinner, Danielle; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Sobeck, Jennifer S.; Sobreira, Flavia; Somers, Garrett; Souto, Diogo; Stark, David V.; Stassun, Keivan; Stauffer, Fritz; Steinmetz, Matthias; Storchi-Bergmann, Thaisa; Streblyanska, Alina; Stringfellow, Guy S.; Suárez, Genaro; Sun, Jing; Suzuki, Nao; Szigeti, Laszlo; Taghizadeh-Popp, Manuchehr; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Teske, Johanna; Thakar, Aniruddha R.; Thomas, Daniel; Thompson, Benjamin A.; Tinker, Jeremy L.; Tissera, Patricia; Tojeiro, Rita; Hernandez Toledo, Hector; de la Torre, Sylvain; Tremonti, Christy; Troup, Nicholas W.; Valenzuela, Octavio; Martinez Valpuesta, Inma; Vargas-González, Jaime; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vivek, M.; Vogt, Nicole; Wake, David; Walterbos, Rene; Wang, Yuting; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wild, Vivienne; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yèche, Christophe; Zakamska, Nadia; Zamora, Olga; Zarrouk, Pauline; Zasowski, Gail; Zhang, Kai; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Xu; Zhou, Zhi-Min; Zhu, Guangtun B.; Zoccali, Manuela; Zou, Hu
2017-07-01
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z˜ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z˜ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.
PRIMUS: Galaxy clustering as a function of luminosity and color at 0.2 < z < 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.
2014-04-01
We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(r{sub p} , π) and w{sub p} (r{sub p} ), using volume-limited samples constructed from a parent sample of over ∼130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg{sup 2} of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1more » Mpc h {sup –1} < r{sub p} < 1 Mpc h {sup –1}) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b {sub gal} ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ∼ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that 'cosmic variance' can be a significant source of uncertainty for high-redshift clustering measurements.« less
PRIMUS: Galaxy Clustering as a Function of Luminosity and Color at 0.2 < z < 1
NASA Astrophysics Data System (ADS)
Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.; Moustakas, John; Aird, James; Blanton, Michael R.; Bray, Aaron D.; Cool, Richard J.; Eisenstein, Daniel J.; Mendez, Alexander J.; Wong, Kenneth C.; Zhu, Guangtun
2014-04-01
We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(rp , π) and wp (rp ), using volume-limited samples constructed from a parent sample of over ~130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg2 of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1 Mpc h -1 < rp < 1 Mpc h -1) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b gal ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ~ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that "cosmic variance" can be a significant source of uncertainty for high-redshift clustering measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Fernandez, Jonathan D.; Iglesias-Paramo, J.; Vilchez, J. M., E-mail: jonatan@iaa.es
2012-03-01
In this paper, we present a sample of cluster galaxies devoted to study the environmental influence on the star formation activity. This sample of galaxies inhabits in clusters showing a rich variety in their characteristics and have been observed by the SDSS-DR6 down to M{sub B} {approx} -18, and by the Galaxy Evolution Explorer AIS throughout sky regions corresponding to several megaparsecs. We assign the broadband and emission-line fluxes from ultraviolet to far-infrared to each galaxy performing an accurate spectral energy distribution for spectral fitting analysis. The clusters follow the general X-ray luminosity versus velocity dispersion trend of L{sub X}more » {proportional_to} {sigma}{sup 4.4}{sub c}. The analysis of the distributions of galaxy density counting up to the 5th nearest neighbor {Sigma}{sub 5} shows: (1) the virial regions and the cluster outskirts share a common range in the high density part of the distribution. This can be attributed to the presence of massive galaxy structures in the surroundings of virial regions. (2) The virial regions of massive clusters ({sigma}{sub c} > 550 km s{sup -1}) present a {Sigma}{sub 5} distribution statistically distinguishable ({approx}96%) from the corresponding distribution of low-mass clusters ({sigma}{sub c} < 550 km s{sup -1}). Both massive and low-mass clusters follow a similar density-radius trend, but the low-mass clusters avoid the high density extreme. We illustrate, with ABELL 1185, the environmental trends of galaxy populations. Maps of sky projected galaxy density show how low-luminosity star-forming galaxies appear distributed along more spread structures than their giant counterparts, whereas low-luminosity passive galaxies avoid the low-density environment. Giant passive and star-forming galaxies share rather similar sky regions with passive galaxies exhibiting more concentrated distributions.« less
Galaxy Infall by Interacting with Its Environment: A Comprehensive Study of 340 Galaxy Clusters
NASA Astrophysics Data System (ADS)
Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak; Inada, Naohisa; Kawaharada, Madoka; Kodama, Tadayuki; Konami, Saori; Nakazawa, Kazuhiro; Xu, Haiguang; Makishima, Kazuo
2016-07-01
To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra/XMM-Newton. For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 1044-45 erg s-1 per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.
Astronomers Discover Most Distant Galaxy Showing Key Evidence For Furious Star Formation
NASA Astrophysics Data System (ADS)
2003-12-01
Astronomers have discovered a key signpost of rapid star formation in a galaxy 11 billion light-years from Earth, seen as it was when the Universe was only 20 percent of its current age. Using the National Science Foundation's Very Large Array (VLA) radio telescope, the scientists found a huge quantity of dense interstellar gas -- the environment required for active star formation -- at the greatest distance yet detected. A furious spawning of the equivalent of 1,000 Suns per year in a distant galaxy dubbed the Cloverleaf may be typical of galaxies in the early Universe, the scientists say. Cloverleaf galaxy VLA image (green) of radio emission from HCN gas, superimposed on Hubble Space Telescope image of the Cloverleaf galaxy. The four images of the Cloverleaf are the result of gravitational lensing. CREDIT: NRAO/AUI/NSF, STScI (Click on Image for Larger Version) "This is a rate of star formation more than 300 times greater than that in our own Milky Way and similar spiral galaxies, and our discovery may provide important information about the formation and evolution of galaxies throughout the Universe," said Philip Solomon, of Stony Brook University in New York. While the raw material for star formation has been found in galaxies at even greater distances, the Cloverleaf is by far the most distant galaxy showing this essential signature of star formation. That essential signature comes in the form of a specific frequency of radio waves emitted by molecules of the gas hydrogen cyanide (HCN). "If you see HCN, you are seeing gas with the high density required to form stars," said Paul Vanden Bout of the National Radio Astronomy Observatory (NRAO). Solomon and Vanden Bout worked with Chris Carilli of NRAO and Michel Guelin of the Institute for Millimeter Astronomy in France. They reported their results in the December 11 issue of the scientific journal Nature. In galaxies like the Milky Way, dense gas traced by HCN but composed mainly of hydrogen molecules is always associated with regions of active star formation. What is different about the Cloverleaf is the huge quantity of dense gas along with very powerful infrared radiation from the star formation. Ten billion times the mass of the Sun is contained in dense, star-forming gas clouds. "At the rate this galaxy is seen to be forming stars, that dense gas will be used up in only about 10 million years," Solomon said. In addition to giving astronomers a fascinating glimpse of a huge burst of star formation in the early Universe, the new information about the Cloverleaf helps answer a longstanding question about bright galaxies of that era. Many distant galaxies have supermassive black holes at their cores, and those black holes power "central engines" that produce bright emission. Astronomers have wondered specifically about those distant galaxies that emit large amounts of infrared light, galaxies like the Cloverleaf which has a black hole and central engine. "Is this bright infrared light caused by the black-hole-powered core of the galaxy or by a huge burst of star formation? That has been the question. Now we know that, in at least one case, much of the infrared light is produced by intense star formation," Carilli said. The rapid star formation, called a starburst, and the black hole are both generating the bright infrared light in the Cloverleaf. The starburst is a major event in the formation and evolution of this galaxy. "This detection of HCN gives us a unique new window through which we can study star formation in the early Universe," Carilli said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Erwin T.; Nagai, Daisuke; Avestruz, Camille
2015-06-10
Galaxy clusters exhibit remarkable self-similar behavior which allows us to establish simple scaling relationships between observable quantities and cluster masses, making galaxy clusters useful cosmological probes. Recent X-ray observations suggested that self-similarity may be broken in the outskirts of galaxy clusters. In this work, we analyze a mass-limited sample of massive galaxy clusters from the Omega500 cosmological hydrodynamic simulation to investigate the self-similarity of the diffuse X-ray emitting intracluster medium (ICM) in the outskirts of galaxy clusters. We find that the self-similarity of the outer ICM profiles is better preserved if they are normalized with respect to the mean densitymore » of the universe, while the inner profiles are more self-similar when normalized using the critical density. However, the outer ICM profiles as well as the location of accretion shock around clusters are sensitive to their mass accretion rate, which causes the apparent breaking of self-similarity in cluster outskirts. We also find that the collisional gas does not follow the distribution of collisionless dark matter (DM) perfectly in the infall regions of galaxy clusters, leading to 10% departures in the gas-to-DM density ratio from the cosmic mean value. Our results have a number implications for interpreting observations of galaxy clusters in X-ray and through the Sunyaev–Zel’dovich effect, and their applications to cosmology.« less
LBT/LUCIFER view of star-forming galaxies in the cluster 7C 1756+6520 at z ˜ 1.4
NASA Astrophysics Data System (ADS)
Magrini, Laura; Sommariva, Veronica; Cresci, Giovanni; Sani, Eleonora; Galametz, Audrey; Mannucci, Filippo; Petropoulou, Vasiliki; Fumana, Marco
2012-10-01
Galaxy clusters are key places to study the contribution of nature (i.e. mass and morphology) and nurture (i.e. environment) in the formation and evolution of galaxies. Recently, a number of clusters at z > 1, i.e. corresponding to the first epochs of the cluster formation, have been discovered and confirmed spectroscopically. We present new observations obtained with the LBT Near Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER) spectrograph at Large Binocular Telescope (LBT) of a sample of star-forming galaxies associated with a large-scale structure around the radio galaxy 7C 1756+6520 at z = 1.42. Combining our spectroscopic data and the literature photometric data, we derived some of the properties of these galaxies: star formation rate, metallicity and stellar mass. With the aim of analysing the effect of the cluster environment on galaxy evolution, we have located the galaxies in the plane of the so-called fundamental metallicity relation (FMR), which is known not to evolve with redshift up to z = 2.5 for field galaxies, but it is still unexplored in rich environments at low and high redshifts. We found that the properties of the galaxies in the cluster 7C 1756+6520 are compatible with the FMR which suggests that the effect of the environment on galaxy metallicity at this early epoch of cluster formation is marginal. As a side study, we also report the spectroscopic analysis of a bright active galactic nucleus, belonging to the cluster, which shows a significant outflow of gas.
Merger driven star-formation activity in Cl J1449+0856 at z=1.99 as seen by ALMA and JVLA
NASA Astrophysics Data System (ADS)
Coogan, R. T.; Daddi, E.; Sargent, M. T.; Strazzullo, V.; Valentino, F.; Gobat, R.; Magdis, G.; Bethermin, M.; Pannella, M.; Onodera, M.; Liu, D.; Cimatti, A.; Dannerbauer, H.; Carollo, M.; Renzini, A.; Tremou, E.
2018-06-01
We use ALMA and JVLA observations of the galaxy cluster Cl J1449+0856 at z=1.99, in order to study how dust-obscured star-formation, ISM content and AGN activity are linked to environment and galaxy interactions during the crucial phase of high-z cluster assembly. We present detections of multiple transitions of 12CO, as well as dust continuum emission detections from 11 galaxies in the core of Cl J1449+0856. We measure the gas excitation properties, star-formation rates, gas consumption timescales and gas-to-stellar mass ratios for the galaxies. We find evidence for a large fraction of galaxies with highly-excited molecular gas, contributing >50% to the total SFR in the cluster core. We compare these results with expectations for field galaxies, and conclude that environmental influences have strongly enhanced the fraction of excited galaxies in this cluster. We find a dearth of molecular gas in the galaxies' gas reservoirs, implying a high star-formation efficiency (SFE) in the cluster core, and find short gas depletion timescales τdep<0.1-0.4 Gyrs for all galaxies. Interestingly, we do not see evidence for increased specific star-formation rates (sSFRs) in the cluster galaxies, despite their high SFEs and gas excitations. We find evidence for a large number of mergers in the cluster core, contributing a large fraction of the core's total star-formation compared with expectations in the field. We conclude that the environmental impact on the galaxy excitations is linked to the high rate of galaxy mergers, interactions and active galactic nuclei in the cluster core.
NASA Technical Reports Server (NTRS)
Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.;
2013-01-01
The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36< or = z< or = 1.5 with H(alpha) SNR > or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.
2018-06-01
Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.
Analysis of RXTE data on Clusters of Galaxies
NASA Technical Reports Server (NTRS)
Petrosian, Vahe
2004-01-01
This grant provided support for the reduction, analysis and interpretation of of hard X-ray (HXR, for short) observations of the cluster of galaxies RXJO658--5557 scheduled for the week of August 23, 2002 under the RXTE Cycle 7 program (PI Vahe Petrosian, Obs. ID 70165). The goal of the observation was to search for and characterize the shape of the HXR component beyond the well established thermal soft X-ray (SXR) component. Such hard components have been detected in several nearby clusters. distant cluster would provide information on the characteristics of this radiation at a different epoch in the evolution of the imiverse and shed light on its origin. We (Petrosian, 2001) have argued that thermal bremsstrahlung, as proposed earlier, cannot be the mechanism for the production of the HXRs and that the most likely mechanism is Compton upscattering of the cosmic microwave radiation by relativistic electrons which are known to be present in the clusters and be responsible for the observed radio emission. Based on this picture we estimated that this cluster, in spite of its relatively large distance, will have HXR signal comparable to the other nearby ones. The planned observation of a relatively The proposed RXTE observations were carried out and the data have been analyzed. We detect a hard X-ray tail in the spectrum of this cluster with a flux very nearly equal to our predicted value. This has strengthen the case for the Compton scattering model. We intend the data obtained via this observation to be a part of a larger data set. We have identified other clusters of galaxies (in archival RXTE and other instrument data sets) with sufficiently high quality data where we can search for and measure (or at least put meaningful limits) on the strength of the hard component. With these studies we expect to clarify the mechanism for acceleration of particles in the intercluster medium and provide guidance for future observations of this intriguing phenomenon by instrument on GLAST. The details of the nonthermal particle population has important implications for the theories of cluster formation, mergers and evolution. The results of this work were first presented at the High Energy Division meeting of the American astronomical Society at Mt. Tremblene, Canada (Petrosian et al. 2003). and in an invited review talk at the General Assembly of the International Astronomical Union at Sydney, Australia (Petrosian, 2003). A paper describe the observations, the data analysis and its implication is being prepared for publication in the Astrophysical Journal.
Galaxy evolution in the densest environments: HST imaging
NASA Astrophysics Data System (ADS)
Jorgensen, Inger
2013-10-01
We propose to process in a consistent fashion all available HST/ACS and WFC3 imaging of seven rich clusters of galaxies at z=1.2-1.6. The clusters are part of our larger project aimed at constraining models for galaxy evolution in dense environments from observations of stellar populations in rich z=1.2-2 galaxy clusters. The main objective is to establish the star formation {SF} history and structural evolution over this epoch during which large changes in SF rates and galaxy structure are expected to take place in cluster galaxies.The observational data required to meet our main objective are deep HST imaging and high S/N spectroscopy of individual cluster members. The HST imaging already exists for the seven rich clusters at z=1.2-1.6 included in this archive proposal. However, the data have not been consistently processed to derive colors, magnitudes, sizes and morphological parameters for all potential cluster members bright enough to be suitable for spectroscopic observations with 8-m class telescopes. We propose to carry out this processing and make all derived parameters publicly available. We will use the parameters derived from the HST imaging to {1} study the structural evolution of the galaxies, {2} select clusters and galaxies for spectroscopic observations, and {3} use the photometry and spectroscopy together for a unified analysis aimed at the SF history and structural changes. The analysis will also utilize data from the Gemini/HST Cluster Galaxy Project, which covers rich clusters at z=0.2-1.0 and for which we have similar HST imaging and high S/N spectroscopy available.
NASA Astrophysics Data System (ADS)
Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre
2012-03-01
This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy, which affects the evolution of structures. Gravitational lensing is the process by which light from distant galaxies is bent by the gravity of intervening mass in the Universe as it travels toward us. This bending causes the images of background galaxies to appear slightly distorted, and can be used to extract important cosmological information. In the beginning of the twentieth century, A. Einstein predicted that massive bodies could be seen as gravitational lenses that bend the path of light rays by creating a local curvature in space time. One of the first confirmations of Einstein's new theory was the observation during the 1919 solar eclipse of the deflection of light from distant stars by the sun. Since then, a wide range of lensing phenomena have been detected. The gravitational deflection of light by mass concentrations along light paths produces magnification, multiplication, and distortion of images. These lensing effects are illustrated by Figure 14.2, which shows one of the strongest lenses observed: Abell 2218, a very massive and distant cluster of galaxies in the constellation Draco. The observed gravitational arcs are actually the magnified and strongly distorted images of galaxies that are about 10 times more distant than the cluster itself. These strong gravitational lensing effects are very impressive but they are very rare. Far more prevalent are weak gravitational lensing effects, which we consider in this chapter, and in which the induced distortion in galaxy images is much weaker. These gravitational lensing effects are now widely used, but the amplitude of the weak lensing signal is so weak that its detection relies on the accuracy of the techniques used to analyze the data. Future weak lensing surveys are already planned in order to cover a large fraction of the sky with high accuracy, such as Euclid [68]. However, improving accuracy also places greater demands on the methods used to extract the available information.
Probing Globular Cluster Formation in Low Metallicity Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Johnson, Kelsey E.; Hunt, Leslie K.; Reines, Amy E.
2008-12-01
The ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.
RX J0848.6+4453: The evolution of galaxy sizes and stellar populations in A z = 1.27 cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jørgensen, Inger; Chiboucas, Kristin; Schiavon, Ricardo P.
2014-12-01
RX J0848.6+4453 (Lynx W) at redshift 1.27 is part of the Lynx Supercluster of galaxies. We present an analysis of the stellar populations and star formation history for a sample of 24 members of the cluster. Our study is based on deep optical spectroscopy obtained with Gemini North combined with imaging data from Hubble Space Telescope. Focusing on the 13 bulge-dominated galaxies for which we can determine central velocity dispersions, we find that these show a smaller evolution with redshift of sizes and velocity dispersions than reported for field galaxies and galaxies in poorer clusters. Our data show that themore » galaxies in RX J0848.6+4453 populate the fundamental plane (FP) similar to that found for lower-redshift clusters. The zero-point offset for the FP is smaller than expected if the cluster's galaxies are to evolve passively through the location of the FP we established in our previous work for z = 0.8-0.9 cluster galaxies and then to the present-day FP. The FP zero point for RX J0848.6+4453 corresponds to an epoch of last star formation at z{sub form}=1.95{sub −0.15}{sup +0.22}. Further, we find that the spectra of the galaxies in RX J0848.6+4453 are dominated by young stellar populations at all galaxy masses and in many cases show emission indicating low-level ongoing star formation. The average age of the young stellar populations as estimated from the strength of the high-order Balmer line Hζ is consistent with a major star formation episode 1-2 Gyr prior, which in turn agrees with z {sub form} = 1.95. These galaxies dominated by young stellar populations are distributed throughout the cluster. We speculate that low-level star formation has not yet been fully quenched in the center of this cluster, possibly because the cluster is significantly poorer than other clusters previously studied at similar redshifts, which appear to have very little ongoing star formation in their centers. The mixture in RX J0848.6+4453 of passive galaxies with young stellar populations and massive galaxies still experiencing some star formation appears similar to the galaxy populations recently identified in two z ≈ 2 clusters.« less
The distant red galaxy neighbour population of 1
NASA Astrophysics Data System (ADS)
Bornancini, C.; García Lambas, D.
We study the Distant Red Galaxy (DRG, J-Ks > 2.3) neighbour population of Quasi Stellar Objects (QSOs) selected from the Sloan Digital Sky Survey (SDSS) in the redshift range 1 < z < 2. We perform a similar analysis for optically obscured AGNs (i.e. with a limiting magnitude I > 24) detected in the mid-infrared (24 microns) with the Spitzer Space Telescope and a mean redshift z~2.2 in the Flamingos Extragalactic Survey (FLAMEX). We present results on the cross-correlation function of DRGs around QSOs and optically faint mid-infrared sources. The corresponding correlation length obtained for the QSO sample targets is r_0=5.4+/-1.6 Mpc. For the optically obscured galaxy sample we find r_0=8.9+/-1.4 Mpc. These results indicate that optically faint obscured sources are located in denser environment of evolved red galaxies compare to QSOs.
A DISTANT QUASAR'S BRILLIANT LIGHT
NASA Technical Reports Server (NTRS)
2002-01-01
The arrow in this image, taken by a ground-based telescope, points to a distant quasar, the brilliant core of an active galaxy residing billions of light-years from Earth. As light from this faraway object travels across space, it picks up information on galaxies and the vast clouds of material between galaxies as it moves through them. The Space Telescope Imaging Spectrograph aboard NASA's Hubble Space Telescope decoded the quasar's light to find the spectral 'fingerprints' of highly ionized (energized) oxygen, which had mixed with invisible clouds of hydrogen in intergalactic space. The quasar's brilliant beam pierced at least four separate filaments of the invisible hydrogen laced with the telltale oxygen. The presence of oxygen between the galaxies implies there are huge quantities of hydrogen in the universe. Credits: WIYN Telescope at Kitt Peak National Observatory in Arizona. The telescope is owned and operated by the University of Wisconsin, Indiana University, Yale University, and the National Optical Astronomy Observatories.
NASA Astrophysics Data System (ADS)
Webb, T. M. A.; O'Donnell, D.; Yee, H. K. C.; Gilbank, David; Coppin, Kristen; Ellingson, Erica; Faloon, Ashley; Geach, James E.; Gladders, Mike; Noble, Allison; Muzzin, Adam; Wilson, Gillian; Yan, Renbin
2013-10-01
We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 1014-15 M ⊙. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 1011 M ⊙, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z)5.1 ± 1.9 over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M cluster). The evolution is similar, with ΣSFR/M cluster ~ (1 + z)5.4 ± 1.9. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M cluster (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M_{cluster} \\sim M_{cluster}^{-1.5+/- 0.4}) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ~5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR-bright galaxies per unit optical galaxy in the cluster cores, confirming star formation continues to avoid the highest density regions of the universe at z ~ 0.75 (the average redshift of the high-redshift clusters). While several previous studies appear to show enhanced star formation in high-redshift clusters relative to the field we note that these papers have not accounted for the overall increase in galaxy or dark matter density at the location of clusters. Once this is done, clusters at z ~ 0.75 have the same or less star formation per unit mass or galaxy as the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, C. P.; Pereira, M. J.; Egami, E.
2013-10-01
We present an analysis of the levels and evolution of star formation activity in a representative sample of 30 massive galaxy clusters at 0.15 < z < 0.30 from the Local Cluster Substructure Survey, combining wide-field Spitzer/MIPS 24 μm data with extensive spectroscopy of cluster members. The specific SFRs of massive (M > or approx. 10{sup 10} M{sub ☉}) star-forming cluster galaxies within r{sub 200} are found to be systematically ∼28% lower than their counterparts in the field at fixed stellar mass and redshift, a difference significant at the 8.7σ level. This is the unambiguous signature of star formation inmore » most (and possibly all) massive star-forming galaxies being slowly quenched upon accretion into massive clusters, their star formation rates (SFRs) declining exponentially on quenching timescales in the range 0.7-2.0 Gyr. We measure the mid-infrared Butcher-Oemler effect over the redshift range 0.0-0.4, finding rapid evolution in the fraction (f{sub SF}) of massive (M{sub K} < – 23.1) cluster galaxies within r{sub 200} with SFRs > 3 M{sub ☉} yr{sup –1}, of the form f{sub SF}∝(1 + z){sup 7.6±1.1}. We dissect the origins of the Butcher-Oemler effect, revealing it to be due to the combination of a ∼3 × decline in the mean specific SFRs of star-forming cluster galaxies since z ∼ 0.3 with a ∼1.5 × decrease in number density. Two-thirds of this reduction in the specific SFRs of star-forming cluster galaxies is due to the steady cosmic decline in the specific SFRs among those field galaxies accreted into the clusters. The remaining one-third reflects an accelerated decline in the star formation activity of galaxies within clusters. The slow quenching of star formation in cluster galaxies is consistent with a gradual shut down of star formation in infalling spiral galaxies as they interact with the intracluster medium via ram-pressure stripping or starvation mechanisms. The observed sharp decline in star formation activity among cluster galaxies since z ∼ 0.4 likely reflects the increased susceptibility of low-redshift spiral galaxies to gas removal mechanisms as their gas surface densities decrease with time. We find no evidence for the build-up of cluster S0 bulges via major nuclear starburst episodes.« less
Galaxy Kinematics and Mass Calibration in Massive SZE Selected Galaxy Clusters to z=1.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capasso, R.; et al.
The galaxy phase-space distribution in galaxy clusters provides insights into the formation and evolution of cluster galaxies, and it can also be used to measure cluster mass profiles. We present a dynamical study based onmore » $$\\sim$$3000 passive, non-emission line cluster galaxies drawn from 110 galaxy clusters. The galaxy clusters were selected using the Sunyaev-Zel'dovich effect (SZE) in the 2500 deg$^2$ SPT-SZ survey and cover the redshift range $0.2 < z < 1.3$. We model the clusters using the Jeans equation, while adopting NFW mass profiles and a broad range of velocity dispersion anisotropy profiles. The data prefer velocity dispersion anisotropy profiles that are approximately isotropic near the center and increasingly radial toward the cluster virial radius, and this is true for all redshifts and masses we study. The pseudo-phase-space density profile of the passive galaxies is consistent with expectations for dark matter particles and subhalos from cosmological $N$-body simulations. The dynamical mass constraints are in good agreement with external mass estimates of the SPT cluster sample from either weak lensing, velocity dispersions, or X-ray $$Y_X$$ measurements. However, the dynamical masses are lower (at the 2.2$$\\sigma$$ level) when compared to the mass calibration favored when fitting the SPT cluster data to a LCDM model with external cosmological priors, including CMB anisotropy data from Planck. The tension grows with redshift, where in the highest redshift bin the ratio of dynamical to SPT+Planck masses is $$\\eta=0.63^{+0.13}_{-0.08}\\pm0.05$$ (statistical and systematic), corresponding to 2.6$$\\sigma$$ tension.« less
A Starburst in the Core of a Galaxy Cluster: the Dwarf Irregular NGC 1427A in Fornax
NASA Astrophysics Data System (ADS)
Mora, Marcelo D.; Chanamé, Julio; Puzia, Thomas H.
2015-09-01
Gas-rich galaxies in dense environments such as galaxy clusters and massive groups are affected by a number of possible types of interactions with the cluster environment, which make their evolution radically different than that of field galaxies. The dwarf irregular galaxy NGC 1427A, presently infalling toward the core of the Fornax galaxy cluster for the first time, offers a unique opportunity to study those processes at a level of detail not possible to achieve for galaxies at higher redshifts, when galaxy-scale interactions were more common. Using the spatial resolution of the Hubble Space Telescope/Advanced Camera for Surveys and auxiliary Very Large Telescope/FORS1 ground-based observations, we study the properties of the most recent episodes of star formation in this gas-rich galaxy, the only one of its type near the core of the Fornax cluster. We study the structural and photometric properties of young star cluster complexes in NGC 1427A, identifying 12 bright such complexes with exceptionally blue colors. The comparison of our broadband near-UV/optical photometry with simple stellar population models yields ages below ˜ 4× {10}6 years and stellar masses from a few 1000 up to ˜ 3× {10}4{M}⊙ , slightly dependent on the assumption of cluster metallicity and initial mass function. Their grouping is consistent with hierarchical and fractal star cluster formation. We use deep Hα imaging data to determine the current star formation rate in NGC 1427A and estimate the ratio, Γ, of star formation occurring in these star cluster complexes to that in the entire galaxy. We find Γ to be among the largest such values available in the literature, consistent with starburst galaxies. Thus a large fraction of the current star formation in NGC 1427A is occurring in star clusters, with the peculiar spatial arrangement of such complexes strongly hinting at the possibility that the starburst is being triggered by the passage of the galaxy through the cluster environment. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 70.B-0695.
A Search for Ram-pressure Stripping in the Hydra I Cluster
NASA Technical Reports Server (NTRS)
Brown, B.
2005-01-01
Ram-pressure stripping is a method by which hot interstellar gas can be removed from a galaxy moving through a group or cluster of galaxies. Indirect evidence of ram-pressure stripping includes lowered X-ray brightness in a galaxy due to less X-ray emitting gas remaining in the galaxy. Here we present the initial results of our program to determine whether cluster elliptical galaxies have lower hot gas masses than their counterparts in less rich environments. This test requires the use of the high-resolution imaging of the Chandra Observatory and we present our analysis of the galaxies in the nearby cluster Hydra I.
A Search for Ram-pressure Stripping in the Hydra I Cluster
NASA Technical Reports Server (NTRS)
Brown, B. A.
2005-01-01
Ram-pressure stripping is a method by which hot interstellar gas can be removed from a galaxy moving through a group or cluster of galaxies. Indirect evidence of ram-pressure stripping includes lowered X- ray brightness in a galaxy due to less X-ray emitting gas remaining in the galaxy. Here we present the initial results of our program to determine whether cluster elliptical galaxies have lower hot gas masses than their counterparts in less rich environments. This test requires the use of the high-resolution imaging of the Chundru Observatory and we present our analysis of the galaxies in the nearby cluster Hydra I.
NASA Astrophysics Data System (ADS)
Yagi, Masafumi; Yoshida, Michitoshi; Komiyama, Yutaka; Kashikawa, Nobunari; Furusawa, Hisanori; Okamura, Sadanori; Graham, Alister W.; Miller, Neal A.; Carter, David; Mobasher, Bahram; Jogee, Shardha
2010-12-01
We present images of extended Hα clouds associated with 14 member galaxies in the Coma cluster obtained from deep narrowband imaging observations with the Suprime-Cam at the Subaru Telescope. The parent galaxies of the extended Hα clouds are distributed farther than 0.2 Mpc from the peak of the X-ray emission of the cluster. Most of the galaxies are bluer than g - r ≈ 0.5 and they account for 57% of the blue (g - r < 0.5) bright (r < 17.8 mag) galaxies in the central region of the Coma cluster. They reside near the red- and blueshifted edges of the radial velocity distribution of Coma cluster member galaxies. Our findings suggest that most of the parent galaxies were recently captured by the Coma cluster potential and are now infalling toward the cluster center with their disk gas being stripped off and producing the observed Hα clouds. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, J.O.; White, R.A.; Hough, D.H.
1981-01-01
VLA radio maps and optical identifications of a sample of sources in the directions of 21 Yerkes poor cluster fields are presented. The majority of the cluster radio sources are associated with the dominant D or cD galaxies (approx.70%). Our analysis of dominant galaxies in rich and poor clusters indicates that these giant galaxies are much more often radio emitters (approx.25% of cD's are radio active in the poor clusters), have steeper radio spectra, and have simpler radio morphologies (i.e., double or other linear structure) than other less bright ellipticals. A strong continuum of radio properties in cD galaxies ismore » seen from rich to poor clusters. We speculate that the location of these dominant galaxies at the cluster centers (i.e., at the bottom of a deep, isolated gravitational potential well) is the crucial factor in explaining their multifrequency activity. We briefly discuss galaxy cannibalism and gas infall models as fueling mechanisms for the observed radio and x-ray emission.« less
Galactic cannibalism. III. The morphological evolution of galaxies and clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausman, M.A.; Ostriker, J.P.
1978-09-01
We present a numerical simulation for the evolution of massive cluster galaxies due to the accretion of other galaxies, finding that after several accretions a bright ''normal'' galaxy begins to resemble a cD giant, with a bright core and large core radius. Observable quantities such as color, scale size, and logarithmic intensity gradient ..cap alpha.. are calculated and are consistent with observations. The multiple nuclei sometimes found in cD galaxies may be understood as the undigested remnants of cannibalized companions. A cluster's bright galaxies are selectively depleted, an effect which can transform the cluster's luminosity function from a power lawmore » to the observed form with a steep high-luminosity falloff and which pushes the turnover point to lower luminosities with time. We suggest that these effects may account for apparent nonstatistical features observed in the luminosity distribution of bright cluster galaxies, and that the sequence of cluster types discovered by Bautz and Morgan and Oemler is essentially one of increasing dynamical evolution, the rate of evolution depending inversely on the cluster's central relaxation time.« less
NASA Technical Reports Server (NTRS)
Burns, J. O.; White, R. A.; Hough, D. H.
1981-01-01
VLA radio maps and optical identifications of a sample of sources in the directions of 21 Yerkes poor cluster fields are presented. The majority of the cluster radio sources are associated with the dominant D or cD galaxies (approximately 70 percent). Our analysis of dominant galaxies in rich and poor clusters indicates that these giant galaxies are much more often radio emitters (approximately 25 percent of cD's are radio active in the poor clusters), have steeper radio spectra, and have simpler radio morphologies (i.e., double or other linear structure) than other less bright ellipticals. A strong continuum of radio properties in cD galaxies is seen from rich to poor clusters. It is speculated that the location of these dominant galaxies at the cluster centers (i.e., at the bottom of a deep, isolated gravitational potential well) is the crucial factor in explaining their multifrequency activity. Galaxy cannibalism and gas infall models as fueling mechanisms for the observed radio and X-ray emission are discussed
Quenching of satellite galaxies at the outskirts of galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, Elad; Dekel, Avishai; Kravtsov, Andrey V.; Nagai, Daisuke
2018-04-01
We find, using cosmological simulations of galaxy clusters, that the hot X-ray emitting intracluster medium (ICM) enclosed within the outer accretion shock extends out to Rshock ˜ (2-3)Rvir, where Rvir is the standard virial radius of the halo. Using a simple analytic model for satellite galaxies in the cluster, we evaluate the effect of ram-pressure stripping on the gas in the inner discs and in the haloes at different distances from the cluster centre. We find that significant removal of star-forming disc gas occurs only at r ≲ 0.5Rvir, while gas removal from the satellite halo is more effective and can occur when the satellite is found between Rvir and Rshock. Removal of halo gas sets the stage for quenching of the star formation by starvation over 2-3 Gyr, prior to the satellite entry to the inner cluster halo. This scenario explains the presence of quenched galaxies, preferentially discs, at the outskirts of galaxy clusters, and the delayed quenching of satellites compared to central galaxies.
Finding SDSS Galaxy Clusters in 4-dimensional Color Space Using the False Discovery Rate
NASA Astrophysics Data System (ADS)
Nichol, R. C.; Miller, C. J.; Reichart, D.; Wasserman, L.; Genovese, C.; SDSS Collaboration
2000-12-01
We describe a recently developed statistical technique that provides a meaningful cut-off in probability-based decision making. We are concerned with multiple testing, where each test produces a well-defined probability (or p-value). By well-known, we mean that the null hypothesis used to determine the p-value is fully understood and appropriate. The method is entitled False Discovery Rate (FDR) and its largest advantage over other measures is that it allows one to specify a maximal amount of acceptable error. As an example of this tool, we apply FDR to a four-dimensional clustering algorithm using SDSS data. For each galaxy (or test galaxy), we count the number of neighbors that fit within one standard deviation of a four dimensional Gaussian centered on that test galaxy. The mean and standard deviation of that Gaussian are determined from the colors and errors of the test galaxy. We then take that same Gaussian and place it on a random selection of n galaxies and make a similar count. In the limit of large n, we expect the median count around these random galaxies to represent a typical field galaxy. For every test galaxy we determine the probability (or p-value) that it is a field galaxy based on these counts. A low p-value implies that the test galaxy is in a cluster environment. Once we have a p-value for every galaxy, we use FDR to determine at what level we should make our probability cut-off. Once this cut-off is made, we have a final sample of galaxies that are cluster-like galaxies. Using FDR, we also know the maximum amount of field contamination in our cluster galaxy sample. We present our preliminary galaxy clustering results using these methods.
NASA Astrophysics Data System (ADS)
Deng, Xin-Fa; Song, Jun; Chen, Yi-Qing; Jiang, Peng; Ding, Ying-Ping
2014-08-01
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters ( n≥200) than the large stellar velocity dispersion subsample.
Cold fronts and shocks formed by gas streams in galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, E.; Dekel, A.; Birnboim, Y.; Nagai, D.; Lau, E.; Kravtsov, A. V.
2018-05-01
Cold fronts (CFs) and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological simulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and CFs in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyr and it could generate a particular pattern of multiple CFs and shocks.
Spiral Arm Morphology in Cluster Environment
NASA Astrophysics Data System (ADS)
Choi, Isaac Yeoun-Gyu; Ann, Hong Bae
2011-10-01
We examine the dependence of the morphology of spiral galaxies on the environment using the KIAS Value Added Galaxy Catalog (VAGC) which is derived from the Sloan Digital Sky Survey (SDSS) DR7. Our goal is to understand whether the local environment or global conditions dominate in determining the morphology of spiral galaxies. For the analysis, we conduct a morphological classification of galaxies in 20 X-ray selected Abell clusters up to z˜0.06, using SDSS color images and the X-ray data from the Northern ROSAT All-Sky (NORAS) catalog. We analyze the distribution of arm classes along the clustercentric radius as well as that of Hubble types. To segregate the effect of local environment from the global environment, we compare the morphological distribution of galaxies in two X-lay luminosity groups, the low-Lx clusters (Lx < 0.15×1044erg/s) and high-Lx clusters (Lx > 1.8×1044erg/s). We find that the morphology-clustercentric relation prevails in the cluster envirnment although there is a brake near the cluster virial radius. The grand design arms comprise about 40% of the cluster spiral galaxies with a weak morphology-clustercentric radius relation for the arm classes, in the sense that flocculent galaxies tend to increase outward, regardless of the X-ray luminosity. From the cumulative radial distribution of cluster galaxies, we found that the low-Lx clusters are fully virialized while the high-Lx clusters are not.
NASA Astrophysics Data System (ADS)
Armitage, Thomas J.; Barnes, David J.; Kay, Scott T.; Bahé, Yannick M.; Dalla Vecchia, Claudio; Crain, Robert A.; Theuns, Tom
2018-03-01
We use the Cluster-EAGLE simulations to explore the velocity bias introduced when using galaxies, rather than dark matter particles, to estimate the velocity dispersion of a galaxy cluster, a property known to be tightly correlated with cluster mass. The simulations consist of 30 clusters spanning a mass range 14.0 ≤ log10(M200 c/M⊙) ≤ 15.4, with their sophisticated subgrid physics modelling and high numerical resolution (subkpc gravitational softening), making them ideal for this purpose. We find that selecting galaxies by their total mass results in a velocity dispersion that is 5-10 per cent higher than the dark matter particles. However, selecting galaxies by their stellar mass results in an almost unbiased (<5 per cent) estimator of the velocity dispersion. This result holds out to z = 1.5 and is relatively insensitive to the choice of cluster aperture, varying by less than 5 per cent between r500 c and r200 m. We show that the velocity bias is a function of the time spent by a galaxy inside the cluster environment. Selecting galaxies by their total mass results in a larger bias because a larger fraction of objects have only recently entered the cluster and these have a velocity bias above unity. Galaxies that entered more than 4 Gyr ago become progressively colder with time, as expected from dynamical friction. We conclude that velocity bias should not be a major issue when estimating cluster masses from kinematic methods.
When clusters collide: constraints on antimatter on the largest scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steigman, Gary, E-mail: steigman@mps.ohio-state.edu
2008-10-15
Observations have ruled out the presence of significant amounts of antimatter in the Universe on scales ranging from the solar system, to the Galaxy, to groups and clusters of galaxies, and even to distances comparable to the scale of the present horizon. Except for the model-dependent constraints on the largest scales, the most significant upper limits to diffuse antimatter in the Universe are those on the {approx}Mpc scale of clusters of galaxies provided by the EGRET upper bounds to annihilation gamma rays from galaxy clusters whose intracluster gas is revealed through its x-ray emission. On the scale of individual clustersmore » of galaxies the upper bounds to the fraction of mixed matter and antimatter for the 55 clusters from a flux-limited x-ray survey range from 5 Multiplication-Sign 10{sup -9} to <1 Multiplication-Sign 10{sup -6}, strongly suggesting that individual clusters of galaxies are made entirely of matter or of antimatter. X-ray and gamma-ray observations of colliding clusters of galaxies, such as the Bullet Cluster, permit these constraints to be extended to even larger scales. If the observations of the Bullet Cluster, where the upper bound to the antimatter fraction is found to be <3 Multiplication-Sign 10{sup -6}, can be generalized to other colliding clusters of galaxies, cosmologically significant amounts of antimatter will be excluded on scales of order {approx}20 Mpc (M{approx}5 Multiplication-Sign 10{sup 15}M{sub sun})« less
The dynamics of z ~ 1 clusters of galaxies from the GCLASS survey
NASA Astrophysics Data System (ADS)
Biviano, A.; van der Burg, R. F. J.; Muzzin, A.; Sartoris, B.; Wilson, G.; Yee, H. K. C.
2016-10-01
Context. The dynamics of clusters of galaxies and its evolution provide information on their formation and growth, on the nature of dark matter and on the evolution of the baryonic components. Poor observational constraints exist so far on the dynamics of clusters at redshift z > 0.8. Aims: We aim to constrain the internal dynamics of clusters of galaxies at redshift z ~ 1, namely their mass profile M(r), velocity anisotropy profile β(r), and pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Methods: We used the spectroscopic and photometric data-set of 10 clusters at 0.87 < z < 1.34 from the Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS). We determined the individual cluster masses from their velocity dispersions, then stack the clusters in projected phase-space. We investigated the internal dynamics of this stack cluster, using the spatial and velocity distribution of its member galaxies. We determined the stack cluster M(r) using the MAMPOSSt method, and its β(r) by direct inversion of the Jeans equation. The procedures used to determine the two aforementioned profiles also allowed us to determine Q(r) and Qr(r). Results: Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The stack cluster total mass concentration, c ≡ r200/r-2 = 4.0-0.6+1.0, is in agreement with theoretical expectations. The total mass distribution is less concentrated than both the cluster stellar-mass and the cluster galaxies distributions. The stack cluster β(r) indicates that galaxy orbits are isotropic near the cluster center and become increasingly radially elongated with increasing cluster-centric distance. Passive and star-forming galaxies have similar β(r). The observed β(r) is similar to that of dark matter particles in simulated cosmological halos. Q(r) and Qr(r) are almost power-law relations with slopes similar to those predicted from numerical simulations of dark matter halos. Conclusions: Comparing our results with those obtained for lower-redshift clusters, we conclude that the evolution of the concentration-total mass relation and pseudo-phase-space density profiles agree with the expectations from ΛCDM cosmological simulations. The fact that Q(r) and Qr(r) already follow the theoretical expectations in z ~ 1 clusters suggest these profiles are the result of rapid dynamical relaxation processes, such as violent relaxation. The different concentrations of the total and stellar mass distribution, and their subsequent evolution, can be explained by merging processes of central galaxies leading to the formation of the brightest cluster galaxy. The orbits of passive cluster galaxies appear to become more isotropic with time, while those of star-forming galaxies do not evolve, presumably because star-formation is quenched on a shorter timescale than that required for orbital isotropization.
GALAXY INFALL BY INTERACTING WITH ITS ENVIRONMENT: A COMPREHENSIVE STUDY OF 340 GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak
To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra / XMM-Newton . For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxymore » number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 10{sup 4445} erg s{sup 1} per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.« less
X-ray archaeology in the Coma cluster
NASA Technical Reports Server (NTRS)
White, Simon D. M.; Briel, Ulrich G.; Henry, J. P.
1993-01-01
We present images of X-ray emission from hot gas within the Coma cluster of galaxies. These maps, made with the ROSAT satellite, have much higher SNR than any previous X-ray image of a galaxy cluster, and allow cluster structure to be analyzed in unprecedented detail. They show greater structural irregularity than might have been anticipated from earlier observations of Coma. Emission is detected from a number of bright cluster galaxies in addition to the two known previously. In four cases, there is evidence that these galaxies lie at the center of an extended subconcentration within the cluster, possibly the remnant of their associated groups. For at least two galaxies, the images show direct evidence for ongoing disruption of their gaseous atmosphere. The luminosity associated with these galaxies is comparable to that detected around similar ellipticals in much poorer environments. Emission is easily detected to the limit of our field, about 1 deg from the cluster center, and appears to become more regular at large radii. The data show clearly that this archetype of a rich and regular galaxy cluster was, in fact, formed by the merging of several distinct subunits which are not yet fully destroyed.
Characterization of Omega-WINGS galaxy clusters. I. Stellar light and mass profiles
NASA Astrophysics Data System (ADS)
Cariddi, S.; D'Onofrio, M.; Fasano, G.; Poggianti, B. M.; Moretti, A.; Gullieuszik, M.; Bettoni, D.; Sciarratta, M.
2018-02-01
Context. Galaxy clusters are the largest virialized structures in the observable Universe. Knowledge of their properties provides many useful astrophysical and cosmological information. Aims: Our aim is to derive the luminosity and stellar mass profiles of the nearby galaxy clusters of the Omega-WINGS survey and to study the main scaling relations valid for such systems. Methods: We merged data from the WINGS and Omega-WINGS databases, sorted the sources according to the distance from the brightest cluster galaxy (BCG), and calculated the integrated luminosity profiles in the B and V bands, taking into account extinction, photometric and spatial completeness, K correction, and background contribution. Then, by exploiting the spectroscopic sample we derived the stellar mass profiles of the clusters. Results: We obtained the luminosity profiles of 46 galaxy clusters, reaching r200 in 30 cases, and the stellar mass profiles of 42 of our objects. We successfully fitted all the integrated luminosity growth profiles with one or two embedded Sérsic components, deriving the main clusters parameters. Finally, we checked the main scaling relation among the clusters parameters in comparison with those obtained for a selected sample of early-type galaxies (ETGs) of the same clusters. Conclusions: We found that the nearby galaxy clusters are non-homologous structures such as ETGs and exhibit a color-magnitude (CM) red-sequence relation very similar to that observed for galaxies in clusters. These properties are not expected in the current cluster formation scenarios. In particular the existence of a CM relation for clusters, shown here for the first time, suggests that the baryonic structures grow and evolve in a similar way at all scales.
EDITORIAL: Focus on Gravitational Lensing
NASA Astrophysics Data System (ADS)
Jain, Bhuvnesh
2007-11-01
Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies or quasars which are strongly magnified and sheared. In the last decade, double and quadruply imaged systems due to galactic lenses have been studied with optical and radio observations. An interesting result obtained from the flux ratio 'anomalies' of quadruply imaged systems is the statistical detection of dark sub-clumps in galaxy halos. More broadly, while we have learned a lot about the mass distribution in lens galaxies and improved time delay constraints on the Hubble constant, the limitations of cosmological studies with strong lensing due to uncertainties in lens mass models have also come to be appreciated. That said, progress will no doubt continue with qualitative advances in observations such as astrometric counterparts to the flux anomalies, clever ideas such as the use of spectroscopic signatures to assemble the SLACS lens sample, and combining optical imaging, spectroscopy and radio data to continue the quest for a set of golden lenses to measure the Hubble constant. Galaxy clusters are a fascinating arena for studying the distribution of dark and baryonic matter. Weak and strong lensing information can be combined with dynamical information from the spectroscopic measurements of member galaxies and x-ray/Sunyaev Zeldovich measurements of the hot ionized gas. Hubble Space Telescope observations have yielded spectacular images of clusters, such as Abell 1689, which has over a hundred multiply imaged arcs. Mass measurements have progressed to the level of 10 percent accuracy for several clusters. Unfortunately, it is unclear if one can do much better for individual clusters given inherent limitations such as unknown projection effects. The statistical study of clusters is likely to remain a promising way to study dark matter, gravity theories, and cosmology. Techniques to combine weak and strong lensing information to obtain the mass distribution of clusters have also advanced, and work continues on parameter-free techniques that are agnostic to the relation of cluster light and mass. An interesting twist in cluster lensing was provided by the post-merger Bullet Cluster (identified as 1E0657-558). In this and other merging clusters, the lensing mass is displaced from the baryonic center of mass, presenting a challenge to theories that attempt to explain away dark matter by positing a modification to the law of gravity. Detailed modeling and multi-wavelength data on these systems will provide interesting limits on dark matter as well as the possibility of a major surprise. Other advances may come from the gravitational telescope effect of galaxy clusters: regions with very high magnification can be used to image proto-galaxies at z ~ 10. Statistical studies of galaxy and cluster lenses and of invisible, diffuse large-scale structures via weak lensing have come into their own in recent years. A census of the mass distribution at low redshift has been made using the technique of galaxy galaxy lensing: the mean mass profiles of galaxies and clusters have been measured using the weak tangential shear imprinted on background galaxies. These can be correlated with a variety of luminous tracers to study galaxy/cluster properties at a level of detail not possible until recently. Equally impressive is the measurement of excess mass correlations out to ~30 Mpc from these halos, requiring measurements of shear signals below 0.01%. These measurements account for the total matter density inferred from the CMB plus other observations, thus providing a direct measure of dark matter in the present day universe. Cosmic shear refers to the more challenging measurement of shear shear correlations without the use of foreground objects to orient the shear. The first detections of such correlations were published in 2001; since then measurements from arcminute to degree scales have been made with much improved accuracy. Theoretical techniques of lensing tomography and advances in analysis methods to eliminate systematic errors have progressed rapidly. That cosmic shear is now regarded as a key element of major missions aimed at probing dark energy is a feat of scientific persuasion—a decade ago not many believed it was realistic to even detect this tiny shear signal, let alone measure it with the percent-level accuracy needed to advance dark energy measurements. If weak lensing measurements deliver on their promise, then, in combination with other imaging and spectroscopic probes, they may well impact fundamental physics and cosmology. For example they may find evidence for an evolving dark energy component or signatures of departures from general relativity. These exciting prospects rest on new optical surveys planned for the next five years which will image a thousand square degrees or more of the sky to redshifts ~1 (compared to about a hundred square degrees imaged currently). Further, through photometric redshifts based on galaxy colors, lensing tomography methods will be applied to learn about the three-dimensional distribution of dark matter. Lensing measurements in other wavelengths, such as planned 21-cm surveys and CMB lensing, would add valuable diversity to measurement techniques. The case for the next generation optical surveys from the ground and space is compelling as well: they will produce another order of magnitude in data quantity and deliver images with minimal distortions due to the atmosphere and telescope optics. The coming decade therefore has the potential for exciting discoveries in gravitational lensing. Focus on Gravitational Lensing Contents A Bayesian approach to strong lensing modelling of galaxy clusters E Jullo, J-P Kneib, M Limousin, Á Elíasdóttir, P J Marshall and T Verdugo Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance Masahiro Takada and Sarah Bridle How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test? Pedro R Capelo and Priyamvada Natarajan Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements Sarah Bridle and Lindsay King An integral-field spectroscopic strong lens survey Adam S Bolton and Scott Burles Is there a quad problem among optical gravitational lenses? Masamune Oguri Cluster mass estimators from CMB temperature and polarization lensing Wayne Hu, Simon DeDeo and Chris Vale
Dwarf galaxies in the coma cluster: Star formation properties and evolution
NASA Astrophysics Data System (ADS)
Hammer, Derek M.
The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely in the process of being quenched or were only recently quenched. We modeled the quenching timescales for transition galaxies, or “green valley” objects, and found that the majority are quenched in less than 1 Gyr. This timescale is consistent with rapid dynamical processes that are active in the cluster environment as opposed to the more gradual quenching mechanisms that exist in the group environment. For the passive galaxy population, we have measured an average stellar age of 6-8 Gyr for the red sequence which is consistent with previous studies based on spectroscopic observations. We note that the star formation properties of Coma member galaxies were established from photometry alone, as opposed to using spectroscopic data which are more challenging to obtain for dwarf galaxies. We have measured the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are 3.5 mag fainter than previous studies in Coma, and are sufficiently deep that we reach the dwarf passive galaxy population for the first time. We have introduced a new technique for measuring the LF which avoids color selection effects associated with previous methods. The UV LFs constructed separately for star-forming and passive galaxies follow a similar distribution at faint magnitudes, which suggests that the recent quenching of infalling dwarf star-forming galaxies is sufficient to build the dwarf passive population in Coma. The Coma UV LFs show a turnover at faint magnitudes as compared to the field, owing to a deficit of dwarf galaxies with stellar masses below M∗ = 108 M⊙ . We show that the UV LFs for the field behind the Coma cluster are nearly identical to the average field environment, and do not show evidence for a turnover at faint magnitudes. We suspect that the missing dwarf galaxies in Coma are severely disrupted by tidal processes as they are accreted onto the cluster, just prior to reaching the infall region studied here.
M87 at 90 Centimeters: A Different Picture
2000-06-15
as is envisioned in the cooling Ñow model. Subject headings : cooling Ñows È galaxies : active È galaxies : clusters : individual ( Virgo ) È galaxies...atmosphere of the Virgo Cluster (Fabricant, Lecar, & Gorenstein 1980). The X-ray atmosphere has a simple, apparently undis- turbed, morphology with a central...of a small set of amorphous central radio galaxies in other, similar, cooling-core clusters ? 4. PHYSICAL PICTURE : THE CLUSTER CORE The Virgo X-ray
Abell 1142 and the Missing Central Galaxy – A Cluster in Transition?
NASA Astrophysics Data System (ADS)
Jones, Alexander; Su, Yuanyuan; Buote, David; Forman, William; van Weeren, Reinout; Jones, Christine; Gastaldello, Fabio; Kraft, Ralph; Randall, Scott
2018-01-01
Two types of galaxy clusters exist: cool core (CC) clusters which exhibit centrally-peaked metallicity and X-ray emission and non-cool core (NCC) clusters, possessing comparably homogeneous metallicity and X-ray emission distributions. However, the origin of this dichotomy is still unknown. The current prevailing theories state that either there is a primordial entropy limit, above which a CC is unable to form, or that clusters can change type through major mergers and radiative cooling. Abell 1142 is a galaxy cluster that can provide a unique probe of the root of this cluster-type division. It is formed of two merging sub-clusters, each with its own brightest cluster galaxies (BCG). Its enriched X-ray centroid (possible CC remnant) lies between these two BCGs. We present the thermal and chemical distributions of this system using deep (180ks) XMM-Newton observations to shed light on the role of mergers in the evolution of galaxy clusters.
Studies in the X-Ray Emission of Clusters of Galaxies and Other Topics
NASA Technical Reports Server (NTRS)
Vrtilek, Jan; Thronson, Harley (Technical Monitor)
2001-01-01
The paper discusses the following: (1) X-ray study of groups of galaxies with Chandra and XMM. (2) X-ray properties of point sources in Chandra deep fields. (3) Study of cluster substructure using wavelet techniques. (4) Combined study of galaxy clusters with X-ray and the S-Z effect. Groups of galaxies are the fundamental building blocks of large scale structure in the Universe. X-ray study of the intragroup medium offers a powerful approach to addressing some of the major questions that still remain about almost all aspects of groups: their ages, origins, importance of composition of various galaxy types, relations to clusters, and origin and enrichment of the intragroup gas. Long exposures with Chandra have opened new opportunities for the study of X-ray background. The presence of substructure within clusters of galaxies has substantial implications for our understanding of cluster evolution as well as fundamental questions in cosmology.
Jellyfish: Evidence of Extreme Ram-pressure Stripping in Massive Galaxy Clusters
NASA Astrophysics Data System (ADS)
Ebeling, H.; Stephenson, L. N.; Edge, A. C.
2014-02-01
Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M F606W < -21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-10491, -10875, -12166, and -12884.
Witnessing the Formation of a Brightest Cluster Galaxy in a Nearby X-ray Cluster
NASA Astrophysics Data System (ADS)
Rasmussen, Jesper; Mulchaey, John S.; Bai, Lei; Ponman, Trevor J.; Raychaudhury, Somak; Dariush, Ali
2010-07-01
The central dominant galaxies in galaxy clusters constitute the most massive and luminous galaxies in the universe. Despite this, the formation of these brightest cluster galaxies (BCGs) and the impact of this on the surrounding cluster environment remain poorly understood. Here we present multiwavelength observations of the nearby poor X-ray cluster MZ 10451, in which both processes can be studied in unprecedented detail. Chandra observations of the intracluster medium (ICM) in the cluster core, which harbors two optically bright early-type galaxies in the process of merging, show that the system has retained a cool core and a central metal excess. This suggests that any merger-induced ICM heating and mixing remain modest at this stage. Tidally stripped stars seen around either galaxy likely represent an emerging intracluster light component, and the central ICM abundance enhancement may have a prominent contribution from in situ enrichment provided by these stars. The smaller of the merging galaxies shows evidence for having retained a hot gas halo, along with tentative evidence for some obscured star formation, suggesting that not all BCG major mergers at low redshift are completely dissipationless. Both galaxies are slightly offset from the peak of the ICM emission, with all three lying on an axis that roughly coincides with the large-scale elongation of the ICM. Our data are consistent with a picture in which central BCGs are built up by mergers close to the cluster core, by galaxies infalling on radial orbits aligned with the cosmological filaments feeding the cluster. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Non Thermal Emission from Clusters of Galaxies: the Importance of a Joint LOFAR/Simbol-X View
NASA Astrophysics Data System (ADS)
Ferrari, C.
2009-05-01
Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources (``halos'' and ``relics'') related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. I will outline our current knowledge about the presence and properties of this non-thermal cluster component. Despite the recent progress made in observational and theoretical studies of the non-thermal emission in galaxy clusters, a number of open questions about its origin and its effects on the thermo-dynamical evolution of galaxy clusters need to be answered. I will show the importance of combining galaxy cluster observations by new-generation instruments such as LOFAR and Simbol-X. A deeper knowledge of the non-thermal cluster component, together with statistical studies of radio halos and relics, will allow to test the current cluster formation scenario and to better constrain the physics of large scale structure evolution.
GALAXY CLUSTERS IN THE LINE OF SIGHT TO BACKGROUND QUASARS. III. MULTI-OBJECT SPECTROSCOPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, H.; Barrientos, L. F.; Padilla, N.
2013-09-01
We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from Lopez et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h{sub 71}{sup -1} Mpc from the QSO sight line (a {sup p}hotometric hit{sup )}. The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 A. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters,more » (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 {<=} z{sub gal} {<=} 1.0955, up to an impact parameter of 142 h{sub 71}{sup -1} kpc and a maximum velocity difference of 280 km s{sup -1}. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within {approx}650 km s{sup -1} from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference {Delta}z = 0.1. The general population of our confirmed absorbing galaxies have luminosities L{sub B}{approx}L{sub B}{sup *} and mean rest-frame colors (R{sub c} - z') typical of S{sub cd} galaxies. From this sample, absorbing cluster galaxies hosting weak absorbers are consistent with lower star formation activity than the rest, which produce strong absorption and agree with typical Mg II absorbing galaxies found in the literature. Our spectroscopic confirmations lend support to the selection of photometric hits made in Lopez et al.« less
Ram Pressure Stripping of Galaxy JO201
NASA Astrophysics Data System (ADS)
Zhong, Greta; Tonnesen, Stephanie; Jaffé, Yara; Bellhouse, Callum; Bianca Poggianti
2017-01-01
Despite the discovery of the morphology-density relation more than 30 years ago, the process driving the evolution of spiral galaxies into S0s in clusters is still widely debated. Ram pressure stripping--the removal of a galaxy's interstellar medium by the pressure of the intracluster medium through which it orbits--may help explain galactic evolution and quenching in clusters. MUSE (Multi Unit Spectroscopic Explorer) observational data of galaxy JO201 in cluster Abell 85 reveal it to be a jellyfish galaxy--one with an H-alpha emitting gas tail on only one side. We model the possible orbits for this galaxy, constrained by the cluster mass profile, line of sight velocity, and projected distance from the cluster center. Using Enzo, an adaptive mesh refinement hydrodynamics code, we simulate effects of ram pressure on this galaxy for a range of possible orbits. We present comparisons of both the morphology and velocity structure of our simulated galaxy to the observations of H-alpha emission.
Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation
NASA Astrophysics Data System (ADS)
Baushev, A. N.
2018-04-01
We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.
THE TEMPERATURE OF HOT GAS IN GALAXIES AND CLUSTERS: BARYONS DANCING TO THE TUNE OF DARK MATTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Steen H.; Maccio, Andrea V.; Romano-Diaz, Emilio
2011-06-10
The temperature profile of hot gas in galaxies and galaxy clusters is largely determined by the depth of the total gravitational potential and thereby by the dark matter (DM) distribution. We use high-resolution hydrodynamical simulations of galaxy formation to derive a surprisingly simple relation between the gas temperature and DM properties. We show that this relation holds not just for galaxy clusters but also for equilibrated and relaxed galaxies at radii beyond the central stellar-dominated region of typically a few kpc. It is then clarified how a measurement of the temperature and density of the hot gas component can leadmore » to an indirect measurement of the DM velocity anisotropy in galaxies. We also study the temperature relation for galaxy clusters in the presence of self-regulated, recurrent active galactic nuclei (AGNs), and demonstrate that this temperature relation even holds outside the inner region of {approx}30 kpc in clusters with an active AGN.« less
Galaxies at the Extremes: Ultradiffuse Galaxies in the Virgo Cluster
NASA Astrophysics Data System (ADS)
Mihos, Chris
2017-08-01
The ultradiffuse galaxies (UDGs) recently discovered in massive galaxy clusters presents both challenges and opportunities for our understanding of galaxy evolution in dense clusters. Such large, low density galaxies should be most vulnerable to gravitational destruction within the cluster environment. Thus their presence in cluster cores argues either that they must be stabilized by massive dark halos or else be short-lived objects undergoing rapid transformation, perhaps leading to the formation of ultracompact dwarf galaxies (UCDs) if their destruction leaves only a compact nucleus behind. We propose deep imaging of four Virgo Cluster UDGs to probe their local environment within Virgo via accurate tip of the red giant branch (TRGB) distances. With a distance precision of 1 Mpc, we will accurately place the objects in the Virgo core, cluster outskirts, or intervening field. When coupled with our extant kinematic data, we can determine whether they are infalling objects or instead have already passed through the cluster core. We will also compare their compact nuclei to Virgo UCDs, and study their globular cluster (GC) populations in detail. Probing three magnitudes beyond the turnover in the GC luminosity function, we will construct larger and cleaner GC samples than possible with ground-based imaging, using the total mass and radial extent of the globular cluster systems to estimate the dark halo mass and tidal radius for each UDG. The new information provided by HST about the local environment and intrinsic properties of these Virgo UDGs will be used in conjunction with simulation data to study cluster-driven evolution and transformation of low density galaxies.
NASA Astrophysics Data System (ADS)
Noble, A. G.; McDonald, M.; Muzzin, A.; Nantais, J.; Rudnick, G.; van Kampen, E.; Webb, T. M. A.; Wilson, G.; Yee, H. K. C.; Boone, K.; Cooper, M. C.; DeGroot, A.; Delahaye, A.; Demarco, R.; Foltz, R.; Hayden, B.; Lidman, C.; Manilla-Robles, A.; Perlmutter, S.
2017-06-01
We present ALMA CO (2-1) detections in 11 gas-rich cluster galaxies at z ˜ 1.6, constituting the largest sample of molecular gas measurements in z > 1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5σ detections of the CO (2-1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z ˜ 1.6 cluster environments. We measure sizable gas reservoirs of 0.5-2 × 1011 M ⊙ in these objects, with high gas fractions (f gas) and long depletion timescales (τ), averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z = 1.6 toward enhanced gas fractions, at a level of ˜4σ, but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Bergh, Sidney
It is widely believed that lenticular (S0) galaxies were initially spirals from which the gas has been removed by interactions with hot cluster gas, or by ram pressure stripping of cool gas from spirals that are orbiting within rich clusters of galaxies. However, problems with this interpretation are that (1) some lenticulars, such as NGC 3115, are isolated field galaxies rather than cluster members. (2) The distribution of flattening values of S0 galaxies in clusters, in groups, and in the field are statistically indistinguishable. This is surprising because one might have expected most of the progenitors of field S0 galaxiesmore » to have been flattened late-type galaxies, whereas lenticulars in clusters are thought to have mostly been derived from bulge-dominated early-type galaxies. (3) It should be hardest for ram pressure to strip massive luminous galaxies with deep potential wells. However, no statistically significant differences are seen between the luminosity distributions of early-type Shapley-Ames galaxies in clusters, groups, and in the field. (4) Finally both ram pressure stripping and evaporation by hot intracluster gas would be most efficient in rich clusters. However, the small number of available data in the Shapley-Ames sample appears to show no statistically significant differences between the relative frequencies of dust-poor S0{sub 1} and dust-rich S0{sub 3} galaxies in clusters, groups, and in the field. It is tentatively concluded that ram pressure stripping and heating by intracluster gas, may not be the only evolutionary channels that lead to the formation of lenticular galaxies. It is speculated that gas starvation, or gas ejection by active nuclei, may have played a major role in the formation of a significant fraction of all S0 galaxies.« less
The case for electron re-acceleration at galaxy cluster shocks
NASA Astrophysics Data System (ADS)
van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; Golovich, Nathan; Lal, Dharam V.; Kang, Hyesung; Ryu, Dongsu; Brìggen, Marcus; Ogrean, Georgiana A.; Forman, William R.; Jones, Christine; Placco, Vinicius M.; Santucci, Rafael M.; Wittman, David; Jee, M. James; Kraft, Ralph P.; Sobral, David; Stroe, Andra; Fogarty, Kevin
2017-01-01
On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2 . Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster-cluster merger events 3 . A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.
NASA Astrophysics Data System (ADS)
Huchtmeier, W. K.; Richter, O. G.; Materne, J.
1981-09-01
The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.
Gas Dynamics in Galaxy Clusters
NASA Astrophysics Data System (ADS)
McCourt, Michael Kingsley, Jr.
Galaxy clusters are the most massive structures in the universe and, in the hierarchical pattern of cosmological structure formation, the largest objects in the universe form last. Galaxy clusters are thus interesting objects for a number of reasons. Three examples relevant to this thesis are: 1. Constraining the properties of dark energy: Due to the hierarchical nature of structure formation, the largest objects in the universe form last. The cluster mass function is thus sensitive to the entire expansion history of the universe and can be used to constrain the properties of dark energy. This constraint complements others derived from the CMB or from Type Ia supernovae and provides an important, independent confirmation of such methods. In particular, clusters provide detailed information about the equation of state parameter w because they sample a large redshift range z ˜ 0 - 1. 2. Probing galaxy formation: Clusters contain the most massive galaxies in the uni- verse, and the most massive black holes; because clusters form so late, we can still witness the assembly of these objects in the nearby universe. Clusters thus provide a more detailed view of galaxy formation than is possible in studies of lower-mass ob- jects. An important example comes from x-ray studies of clusters, which unexpectedly found that star formation in massive galaxies in clusters is closely correlated with the properties of the hot, virialized gas in their halos. This correlation persists despite the enormous separation in temperature, in dynamical time-scales, and in length-scales between the virialized gas in the halo and the star-forming regions in the galaxy. This remains a challenge to interpret theoretically. 3. Developing our knowledge of dilute plasmas: The masses and sizes of galaxy clusters imply that the plasma which permeates them is both very hot (˜ 108 K) and very dilute (˜ 10 -2 cm-3). This plasma is collisional enough to be considered a fluid, but collisionless enough to develop significant anisotropies with respect to the local magnetic field. This interesting regime is one of the frontiers in theoretical studies of fluid dynamics. Unlike other astrophysical environments of similar collisionality (e. g. accretion disk coronae), galaxy clusters are optically thin and subtend large angles on the sky. Thus, they are easily observed in the x-ray (to constrain thermal processes) and in the radio (to constrain non-thermal processes) and provide a wonderful environment to develop our understanding of dilute plasmas. This thesis studies the dynamics of the hot gas in galaxy clusters, which touches on all three of the above topics. Chapter 2 shows that galaxy clusters are likely to be unstable to a new, vigorous form of convection. As a dynamical process which involves thermodynamic and magnetic properties of the gas, this convection bears directly on our understanding of the physics of dilute plas- mas. Furthermore, by moving metals and thermal energy through the cluster, convection may change the cooling rate of the gas and thus significantly impact the process of galaxy formation. Cluster convection also impacts the use of clusters as cosmological probes. Convection may drive turbulence in clusters with mean Mach numbers of order-unity. This changes the force balance in clusters, decreasing the thermal energy of a cluster of a given mass. Current methods for using clusters to constrain dark energy rely on observational probes of the thermal energy as a proxy for total mass. The accuracy of these methods depends on how vigorous cluster convection is. Chapter 3 studies thermal instability in galaxy clusters. I argue that clusters are all likely to be thermally unstable, but that this instability only grows to large amplitude in a subset of systems. Later studies have applied this result to galaxy formation in clusters and shown that one can reproduce some features of the well-known non-self-similarity at the high mass end of the galaxy luminosity function. Chapters 4 and 5 extends my work on convection (and, eventually, thermal instability) to consider the cosmological context of galaxy formation. This work aims to remove any arbitrary initial and boundary conditions from my simulations and is an important step toward a self-consistent model for the plasma physics in clusters.
NASA Astrophysics Data System (ADS)
Secker, Jeffrey Alan
1995-01-01
We have developed a statistically rigorous and automated method to implement the detection, photometry and classification of faint objects on digital images. We use these methods to analyze deep R- and B-band CCD images of the central ~ 700 arcmin ^2 of the Coma cluster core, and an associated control field. We have detected and measured total R magnitudes and (B-R) colors for a sample of 3741 objects on the galaxy cluster fields, and 1164 objects on a remote control field, complete to a limiting magnitude of R = 22.5 mag. The typical uncertainties are +/- 0.06 and +/-0.12 mag in total magnitude and color respectively. The dwarf elliptical (dE) galaxies are confined to a well-defined sequence in the color range given by 0.7<= (B-R)<= 1.9 mag: within this interval there are 2535 dE candidates on our fields in the cluster core, and 694 objects on the control field. With an image scale of 0.53 arcsec/pixel and seeing near 1.2 arcsec, a large fraction of the dE galaxy candidates are resolved. We find a significant metallicity gradient in the radial distribution of the dwarf elliptical galaxies, which goes as Z~ R^{-0.32 } outwards from the cluster center at NGC 4874. As well, there is a strong color-luminosity correlation, in the sense that more luminous dE galaxies are redder in the mean. These effects give rise to a radial variation in the cluster luminosity function. The spatial distribution of the faint dE galaxies is well fit by a standard King model with a central surface density of Sigma _0 = 1.44 dEs arcmin^{ -2}, a core radius R_{ rm c} = 18.7 arcmin (~eq 0.44 Mpc), and a tidal radius of 1.44 deg ( ~eq 2.05 Mpc). This core is significantly larger than R_{rm c} = 12.3 arcmin (~eq 0.29 Mpc) found for the bright cluster galaxies. The composite luminosity function for Coma galaxies is modeled as the sum of a log -normal distribution for the giant galaxies and a Schechter function for the dwarf elliptical galaxies, with a faint -end slope of alpha = -1.41, consistent with known faint-end slopes for the Virgo and Fornax clusters. The early-type dwarf-to-giant ratio for the Coma cluster core is consistent with that of the Virgo cluster, and thus with the rich Coma cluster being formed as the merger of multiple less-rich galaxy clusters.
A Study of the Dependence of the Properties of Galaxy Clusters on Cluster Morphology.
NASA Astrophysics Data System (ADS)
Lugger, Phyllis Minnie
1982-03-01
A quantitative study of the properties of clusters of galaxies as a function of cluster morphology has been carried out using photographic plates obtained with the Palomar 48 inch Schmidt telescope. Surface brightness profiles of 35 first ranked cluster galaxies and luminosity functions of nine clusters are presented and analyzed. The dispersion in the metric magnitudes of first ranked galaxies is quite small ((TURN) 0.4 mag) which is consistent with the results of Kristian, Sandage and Westphal as well as Hoessel, Gunn and Thuan. For the cD (supergiant elliptical) galaxy sample, the mean metric magnitude is (TURN) 0.5 mag brighter than for the non-cD galaxies. The dispersion in the metric magnitudes for the 10 cD galaxies studied is found to be much smaller ((sigma) (TURN) 0.1 mag) than the dispersion in the metric magnitudes of the non-cD first ranked galaxies ((sigma) (TURN) 0.4 mag). The de Vaucouleurs effective radius - magnitude relation determined in the present study for first ranked galaxies (log r(,e) = -0.2 M + const.) is consistent with the extrapolations to brighter magnitudes of the range of relations found by Strom and Strom. The average residuals from the mean radius-magnitude relation for the cD and non-cD galaxy samples were not found to differ at a significant level. Luminosity functions for the region within 0.5 Mpc of the cluster center for three of the clusters studied (A1656, A2147, and A2199) show a deficit of bright galaxies when compared to a concentric annular region with bounds of 0.5 and 1.0 Mpc. Characteristic magnitudes for the nine clusters (determined from square regions 4.6 Mpc on a side) show no significant correlation with cluster morphology, central density, or total magnitude of the first ranked galaxy. The mean values of the Schechter function parameters M('*) and (alpha) are in very good agreement with the previous determinations by Schechter and by Dressler. The differential luminosity functions for A569 and A1656 do not rise monotonically to fainter magnitudes but instead show dips. These data are used to test predictions of several recent theories of the dynamical evolution of clusters of galaxies.
The dwarf galaxy population of nearby galaxy clusters
NASA Astrophysics Data System (ADS)
Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration
2015-01-01
The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass galaxies as probes for external mechanisms. Here we report on recent and ongoing observational studies of the said clusters with imaging and spectroscopy, as well as on the interpretation of present-day cluster galaxy populations with the aid of cosmological simulations.Multicolor imaging data allow us to identify residual star formation in otherwise red early-type dwarf galaxies, which hold clues to the strength of gas stripping processes. Major-axis spectra and 2D kinematical maps provide insight regarding the amount of rotational support and how much dynamical heating a dwarf galaxy may have experienced. To this end, dedicated N-body simulations that follow the evolution of galaxies since early epochs reveal their path through parameter space, and can be compared to observations in order to understand the time-integrated effect of environmental influence.
Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T
2017-07-10
We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r <100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z ∼ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.
Abell 2069 - An X-ray cluster of galaxies with multiple subcondensations
NASA Technical Reports Server (NTRS)
Gioia, I. M.; Maccacaro, T.; Geller, M. J.; Huchra, J. P.; Stocke, J.; Steiner, J. E.
1982-01-01
X-ray and optical observations of the cluster Abell 2069 are presented. The cluster is at a mean redshift of 0.116. The cluster shows multiple condensations in both the X-ray emission and in the galaxy surface density and, thus, does not appear to be relaxed. There is a close correspondence between the gas and galaxy distributions which indicates that the galaxies in this system do map the mass distribution, contrary to what might be expected if low-mass neutrinos dominate the cluster mass.
SEEDisCs: How Clusters Form and Galaxies Transform in the Cosmic Web
NASA Astrophysics Data System (ADS)
Jablonka, P.
2017-08-01
This presentation introduces a new survey, the Spatial Extended EDisCS Survey (SEEDisCS), which aims at understanding how clusters assemble and the level at which galaxies are preprocessed before falling on the cluster cores. I focus on the changes in galaxy properties in the cluster large scale environments, and how we can get constraints on the timescale of star formation quenching. I also discuss new ALMA CO observations, which trace the fate of the galaxy cold gas content along the infalling paths towards the cluster cores.
Order statistics applied to the most massive and most distant galaxy clusters
NASA Astrophysics Data System (ADS)
Waizmann, J.-C.; Ettori, S.; Bartelmann, M.
2013-06-01
In this work, we present an analytic framework for calculating the individual and joint distributions of the nth most massive or nth highest redshift galaxy cluster for a given survey characteristic allowing us to formulate Λ cold dark matter (ΛCDM) exclusion criteria. We show that the cumulative distribution functions steepen with increasing order, giving them a higher constraining power with respect to the extreme value statistics. Additionally, we find that the order statistics in mass (being dominated by clusters at lower redshifts) is sensitive to the matter density and the normalization of the matter fluctuations, whereas the order statistics in redshift is particularly sensitive to the geometric evolution of the Universe. For a fixed cosmology, both order statistics are efficient probes of the functional shape of the mass function at the high-mass end. To allow a quick assessment of both order statistics, we provide fits as a function of the survey area that allow percentile estimation with an accuracy better than 2 per cent. Furthermore, we discuss the joint distributions in the two-dimensional case and find that for the combination of the largest and the second largest observation, it is most likely to find them to be realized with similar values with a broadly peaked distribution. When combining the largest observation with higher orders, it is more likely to find a larger gap between the observations and when combining higher orders in general, the joint probability density function peaks more strongly. Having introduced the theory, we apply the order statistical analysis to the Southpole Telescope (SPT) massive cluster sample and metacatalogue of X-ray detected clusters of galaxies catalogue and find that the 10 most massive clusters in the sample are consistent with ΛCDM and the Tinker mass function. For the order statistics in redshift, we find a discrepancy between the data and the theoretical distributions, which could in principle indicate a deviation from the standard cosmology. However, we attribute this deviation to the uncertainty in the modelling of the SPT survey selection function. In turn, by assuming the ΛCDM reference cosmology, order statistics can also be utilized for consistency checks of the completeness of the observed sample and of the modelling of the survey selection function.
NASA Astrophysics Data System (ADS)
Bower, Richard G.; Balogh, Michael L.
In this review, we take the reader on a journey. We start by looking at the properties of galaxies in the cores of rich clusters. We have focused on the overall picture: star formation in clusters is strongly suppressed relative to field galaxies at the same redshift. We will argue that the increasing activity and blue populations of clusters with redshift results from a greater level of activity in field galaxies rather than a change in the transformation imposed by the cluster environment. With this in mind, we travel out from the cluster, focusing first on the properties of galaxies in the outskirts of clusters and then on galaxies in isolated groups. At low redshift, we are able to efficiently probe these environments using the Sloan Digital Sky Survey and 2dF redshift surveys. These allow an accurate comparison of galaxy star formation rates in different regions. The current results show a strong suppression of star formation above a critical threshold in local density. The threshold seems similar regardless of the overall mass of the system. At low redshift at least, only galaxies in close, isolated pairs have their star formation rate boosted above the global average. At higher redshift, work on constructing homogeneous catalogs of galaxies in groups and in the infall regions of clusters is still at an early stage. In the final section, we draw these strands together, summarizing what we can deduce about the mechanisms that transform star-forming field galaxies into their quiescent cluster counterparts. We discuss what we can learn about the impact of environment on the global star formation history of the Universe.
The Nature and Origin of UCDs in the Coma Cluster
NASA Astrophysics Data System (ADS)
Chiboucas, Kristin; Tully, R. Brent; Madrid, Juan; Phillipps, Steven; Carter, David; Peng, Eric
2018-01-01
UCDs are super massive star clusters found largely in dense regions but have also been found around individual galaxies and in smaller groups. Their origin is still under debate but currently favored scenarios include formation as giant star clusters, either as the brightest globular clusters or through mergers of super star clusters, themselves formed during major galaxy mergers, or as remnant nuclei from tidal stripping of nucleated dwarf ellipticals. Establishing the nature of these enigmatic objects has important implications for our understanding of star formation, star cluster formation, the missing satellite problem, and galaxy evolution. We are attempting to disentangle these competing formation scenarios with a large survey of UCDs in the Coma cluster. Using ACS two-passband imaging from the HST/ACS Coma Cluster Treasury Survey, we are using colors and sizes to identify the UCD cluster members. With a large size limited sample of the UCD population within the core region of the Coma cluster, we are investigating the population size, properties, and spatial distribution, and comparing that with the Coma globular cluster and nuclear star cluster populations to discriminate between the threshing and globular cluster scenarios. In previous work, we had found a possible correlation of UCD colors with host galaxy and a possible excess of UCDs around a non-central giant galaxy with an unusually large globular cluster population, both suggestive of a globular cluster origin. With a larger sample size and additional imaging fields that encompass the regions around these giant galaxies, we have found that the color correlation with host persists and the giant galaxy with unusually large globular cluster population does appear to host a large UCD population as well. We present the current status of the survey.
FAR-FLUNG GALAXY CLUSTERS MAY REVEAL FATE OF UNIVERSE
NASA Technical Reports Server (NTRS)
2002-01-01
A selection of NASA Hubble Space Telescope snapshots of huge galaxy clusters that lie far away and far back in time. These are selected from a catalog of 92 new clusters uncovered during a six-year Hubble observing program known as the Medium Deep Survey. If the distances and masses of the clusters are confirmed by ground based telescopes, the survey may hold clues to how galaxies quickly formed into massive large-scale structures after the big bang, and what that may mean for the eventual fate of the expanding universe. The images are each a combination of two exposures in yellow and deep red taken with Hubble's Wide Field and Planetary Camera 2. Each cluster's distance is inferred from the reddening of the starlight, which is due to the expansion of space. Astronomers assume these clusters all formed early in the history of the universe. HST133617-00529 (left) This collection of spiral and elliptical galaxies lies an estimated 4 to 6 billion light-years away. It is in the constellation of Virgo not far from the 3rd magnitude star Zeta Virginis. The brighter galaxies in this cluster have red magnitudes between 20 and 22 near the limit of the Palomar Sky Survey. The bright blue galaxy (upper left) is probably a foreground galaxy, and not a cluster member. The larger of the galaxies in the cluster are probably about the size of our Milky Way Galaxy. The diagonal line at lower right is an artificial satellite trail. HST002013+28366 (upper right) This cluster of galaxies lies in the constellation of Andromeda a few degrees from the star Alpheratz in the northeast corner of the constellation Pegasus. It is at an estimated distance of 4 billion light-years, which means the light we are seeing from the cluster is as it appeared when the universe was roughly 2/3 of its present age. HST035528+09435 (lower right) At an estimated distance of about 7 to 10 billion light-years (z=1), this is one of the farthest clusters in the Hubble sample. The cluster lies in the constellation of Taurus. Credit: K. Ratnatunga, R. Griffiths (Carnegie Mellon University); and NASA
A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster
NASA Technical Reports Server (NTRS)
McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.;
2012-01-01
In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.
a Snapshot Survey of X-Ray Selected Central Cluster Galaxies
NASA Astrophysics Data System (ADS)
Edge, Alastair
1999-07-01
Central cluster galaxies are the most massive stellar systems known and have been used as standard candles for many decades. Only recently have central cluster galaxies been recognised to exhibit a wide variety of small scale {<100 pc} features that can only be reliably detected with HST resolution. The most intriguing of these are dust lanes which have been detected in many central cluster galaxies. Dust is not expected to survive long in the hostile cluster environment unless shielded by the ISM of a disk galaxy or very dense clouds of cold gas. WFPC2 snapshot images of a representative subset of the central cluster galaxies from an X-ray selected cluster sample would provide important constraints on the formation and evolution of dust in cluster cores that cannot be obtained from ground-based observations. In addition, these images will allow the AGN component, the frequency of multiple nuclei, and the amount of massive-star formation in central cluster galaxies to be ass es sed. The proposed HST observatio ns would also provide high-resolution images of previously unresolved gravitational arcs in the most massive clusters in our sample resulting in constraints on the shape of the gravitational potential of these systems. This project will complement our extensive multi-frequency work on this sample that includes optical spectroscopy and photometry, VLA and X-ray images for the majority of the 210 targets.
Flux enhancement of slow-moving particles by Sun or Jupiter: Can they be detected on Earth?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patla, Bijunath R.; Nemiroff, Robert J.; Hoffmann, Dieter H. H.
Slow-moving particles capable of interacting solely with gravity might be detected on Earth as a result of the gravitational lensing induced focusing action of the Sun. The deflection experienced by these particles is inversely proportional to the square of their velocities, and as a result their focal lengths will be shorter. We investigate the velocity dispersion of these slow-moving particles, originating from distant point-like sources, for imposing upper and lower bounds on the velocities of such particles in order for them to be focused onto Earth. Stars, distant galaxies, and cluster of galaxies, etc., may all be considered as point-likemore » sources. We find that fluxes of such slow-moving and non-interacting particles must have speeds between ∼0.01 and .14 times the speed of light, c. Particles with speeds less than ∼0.01c will undergo way too much deflection to be focused, although such individual particles could be detected. At the caustics, the magnification factor could be as high as ∼10{sup 6}. We impose lensing constraints on the mass of these particles in order for them to be detected with large flux enhancements that are greater than 10{sup –9} eV. An approximate mass density profile for Jupiter is used to constrain particle velocities for lensing by Jupiter. We show that Jupiter could potentially focus particles with speeds as low as ∼0.001c, which the Sun cannot.« less
NASA Astrophysics Data System (ADS)
Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid
2018-02-01
We study surface brightness fluctuations of the cosmic X-ray background (CXB) using Chandra data of XBOOTES. After masking out resolved sources we compute the power spectrum of fluctuations of the unresolved CXB for angular scales from {≈ } 2 arcsec to ≈3°. The non-trivial large-scale structure (LSS) signal dominates over the shot noise of unresolved point sources on angular scales above {˜ } 1 arcmin and is produced mainly by the intracluster medium (ICM) of unresolved clusters and groups of galaxies, as shown in our previous publication. The shot-noise-subtracted power spectrum of CXB fluctuations has a power-law shape with the slope of Γ = 0.96 ± 0.06. Their energy spectrum is well described by the redshifted emission spectrum of optically thin plasma with the best-fitting temperature of T ≈ 1.3 keV and the best-fitting redshift of z ≈ 0.40. These numbers are in good agreement with theoretical expectations based on the X-ray luminosity function and scaling relations of clusters. From these values we estimate the typical mass and luminosity of the objects responsible for CXB fluctuations, M500 ∼ 1013.6 M⊙ h-1 and L0.5-2.0 keV ∼ 1042.5 erg s-1. On the other hand, the flux-weighted mean temperature and redshift of resolved clusters are T ≈ 2.4 keV and z ≈ 0.23 confirming that fluctuations of unresolved CXB are caused by cooler (i.e. less massive) and more distant clusters, as expected. We show that the power spectrum shape is sensitive to the ICM structure all the way to the outskirts, out to ∼few × R500. We also searched for possible contribution of the warm-hot intergalactic medium (WHIM) to the observed CXB fluctuations. Our results underline the significant diagnostic potential of the CXB fluctuation analysis in studying the ICM structure in clusters.
The Nature of Red-Sequence Cluster Spiral Galaxies
NASA Astrophysics Data System (ADS)
Kashur, Lane; Barkhouse, Wayne; Sultanova, Madina; Kalawila Vithanage, Sandanuwa; Archer, Haylee; Foote, Gregory; Mathew, Elijah; Rude, Cody; Lopez-Cruz, Omar
2017-01-01
Preliminary analysis of the red-sequence galaxy population from a sample of 57 low-redshift galaxy clusters observed using the KPNO 0.9m telescope and 74 clusters from the WINGS dataset, indicates that a small fraction of red-sequence galaxies have a morphology consistent with spiral systems. For spiral galaxies to acquire the color of elliptical/S0s at a similar luminosity, they must either have been stripped of their star-forming gas at an earlier epoch, or contain a larger than normal fraction of dust. To test these ideas we have compiled a sample of red-sequence spiral galaxies and examined their infrared properties as measured by 2MASS, WISE, Spitzer, and Herschel. These IR data allows us to estimate the amount of dust in each of our red-sequence spiral galaxies. We compare the estimated dust mass in each of these red-sequence late-type galaxies with spiral galaxies located in the same cluster field but having colors inconsistent with the red-sequence. We thus provide a statistical measure to discriminate between purely passive spiral galaxy evolution and dusty spirals to explain the presence of these late-type systems in cluster red-sequences.
Optical signatures of high-redshift galaxy clusters
NASA Technical Reports Server (NTRS)
Evrard, August E.; Charlot, Stephane
1994-01-01
We combine an N-body and gasdynamic simulation of structure formation with an updated population synthesis code to explore the expected optical characteristics of a high-redshift cluster of galaxies. We examine a poor (2 keV) cluster formed in a biased, cold dark matter cosmology and employ simple, but plausible, threshold criteria to convert gas into stars. At z = 2, the forming cluster appears as a linear chain of very blue (g-r approximately equals 0) galaxies, with 15 objects brighter than r = 25 within a 1 square arcmin field of view. After 2 Gyr of evolution, the cluster viewed at z = 1 displays both freshly infalling blue galaxies and red galaxies robbed of recent accretion by interaction with the hot intracluster medium. The range in G-R colors is approximately 3 mag at z = 1, with the reddest objects lying at sites of highest galaxy density. We suggest that red, high-redshift galaxies lie in the cores of forming clusters and that their existence indicates the presence of a hot intracluster medium at redshifts z approximately equals 2. The simulated cluster viewed at z = 2 has several characteristics similar to the collection of faint, blue objects identified by Dressler et al. in a deep Hubble Space Telescope observation. The similarities provide some support for the interpretation of this collection as a high-redshift cluster of galaxies.
Obituary: Michael James Ledlow, 1964-2004
NASA Astrophysics Data System (ADS)
Puxley, Philip John; Grashuis, Randon M.
2004-12-01
Michael James Ledlow died on 5 June 2004 from a large, unsuspected brain tumor. Since 2000 he had been on the scientific staff of the Gemini Observatory in La Serena, Chile, initially as a Science Fellow and then as a tenure-track astronomer. Michael was born in Bartlesville, Oklahoma on 1 October 1964 to Jerry and Sharon Ledlow. He obtained his Bachelor Degree in astrophysics at the University of Oklahoma in 1987 and attended the University of New Mexico for his graduate work, obtaining his PhD while studying Galaxy Clusters under Frazer Owen in 1994. From 1995-1997 Michael held a postdoctoral position with Jack Burns at New Mexico State University where he used various astronomical facilities including the VLA and Apache Point Observatory to study distant galaxies. From 1998-2000 Michael rejoined the Physics and Astronomy Department at the University of New Mexico where he was a visiting professor until he moved on to Gemini. At the Gemini Observatory, Mike shared in the excitement, hard work and many long days and nights associated with bringing on-line a major new astronomical facility and its instrumentation. Following its commissioning he assisted visiting observers, supported and took data for many more remote users via the queue system, and for each he showed the same care and attention to detail evident in his own research to ensure that all got the best possible data. His research concentrated on the radio and optical properties of galaxy clusters, especially rich Abell clusters such as A2125, on luminous radio galaxies, including the detection of a powerful double radio source in the "wrong sort of galaxy," the spiral system 0313-192, and on EROs (extremely red objects), dusty galaxies barely detectable at optical wavelengths. Michael thoroughly enjoyed living in Chile and enthusiastically immersed himself in the culture of his surroundings. He and his family were actively involved with the International English Spanish Association in La Serena. He had a wide variety of interests including a wonderfully diverse taste in music and an exceptional talent for home brewing beer. Mike was one of those rare individuals, enthusiastic and driven by his work at the Observatory as well as by his personal research, and with the skills to deliver in both aspects. His devotion to the Observatory and to research was surpassed only by that for his family. He is survived by his wife Cheryl, their two children Alexandria ("Andrea") and Abigail ("Abi"), three stepdaughters Mandy, Memoree and Misty and his sister Lisa Gay Gilmore.
Astronomers Discover Spectacular Structure in Distant Galaxy
NASA Astrophysics Data System (ADS)
1999-01-01
Researchers using the National Science Foundation's Very Large Array (VLA) radio telescope have imaged a "spectacular and complex structure" in a galaxy 50 million light-years away. Their work both resolves a decades-old observational mystery and revises current theories about the origin of X-ray emission coming from gas surrounding the galaxy. The new VLA image is of the galaxy M87, which harbors at its core a supermassive black hole spewing out jets of subatomic particles at nearly the speed of light and also is the central galaxy of the Virgo Cluster of galaxies. The VLA image is the first to show detail of a larger structure that originally was detected by radio astronomers more than a half-century ago. Analysis of the new image indicates that astronomers will have to revise their ideas about the physics of what causes X-ray emission in the cores of many galaxy clusters. Frazer Owen of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; Jean Eilek of the New Mexico Institute of Mining and Technology (NM Tech) in Socorro, NM; and Namir Kassim of the Naval Research Laboratory in Washington, DC, announced their discovery at the American Astronomical Society's meeting today in Austin, TX. The new observations show two large, bubble-like lobes, more than 200,000 light-years across, that emit radio waves. These lobes, which are intricately detailed, apparently are powered by gravitational energy released from the black hole at the galaxy's center. "We think that material is flowing outward from the galaxy's core into these large, bright, radio-emitting 'bubbles,'" Owen said. The newly-discovered "bubbles" sit inside a region of the galaxy known to be emitting X-rays. Theorists have speculated that this X-ray emission arises when gas that originally was part of the Virgo Cluster of galaxies, cools and falls inwards onto M87 itself, at the center of the cluster. Such "cooling flows" are commonly thought to be responsible for strong X-ray emission in many galaxy clusters. "The new structures that we found in M87 show that the story is much more complicated," Eilek said. "What we know about radio jets suggests that the energy being pumped into this region from the galaxy's central black hole exceeds the energy being lost in the X-ray emission. This system is more like a heating flow than a cooling flow. We're going to have to revise our ideas about the physics of what's going on in regions like this." M87, discovered by the French astronomer Charles Messier in 1781, is the strongest radio-emitting object in the constellation Virgo. Its jet was described by Lick Observatory astronomer Heber Curtis in 1918 as "a curious straight ray ... apparently connected with the nucleus by a thin line of matter." In 1954, Walter Baade reported that the jet's light is strongly polarized. M87's X-ray emission was discovered in 1966. M87 is the largest of the thousands of galaxies in the Virgo Cluster. The Local Group of galaxies, of which our own Milky Way is one, is part of the Virgo Cluster's outskirts. The galaxy's radio emissions first were observed by Australian astronomers in 1947, but the radio telescopes of that time were unable to discern much detail. They could, however, show that there is a structure more than 100,000 light-years across. Subsequent radio images, particularly those made using the sharp radio "vision" of the VLA, were primarily aimed at studying the inner 10,000 light-years or so, and showed great detail in the galaxy's jet. Astronomers even have followed the motions of concentrations of material within the jet over time. These observations, however, did not show much about the larger structure that was seen by earlier radio astronomers, leaving its details largely a mystery. Radio Images of M87 at Vastly Different Size Scales The mystery was solved by using the VLA to observe at longer radio wavelengths, thus revealing larger-scale structures. The processing speeds of modern computers and recently-developed imaging techniques also were necessary to show the exquisite details seen in the newest VLA image of M87. The result was spectacular. "Not only did we see beautiful details that we hadn't seen before, but we also got a new and more complicated idea of the physics of this region," Owen said. "The theories about cooling flows offered an explanation for the X-ray emission in galaxy clusters, but critics contended that other evidence we should see for this infalling matter, such as new stars forming in the denser parts of the flows, was absent," Owen said. "Now, in this case, we see that the inward flow can be counterbalanced by the energy coming outward from the galaxy's core, so the material may not become dense enough to trigger star formation." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. This is a VLA image of the galaxy M87, showing details of the large-scale, radio-emitting "bubbles" believed to be powered by the black hole at the galaxy's center. The galaxy's center (and the black hole) lie deep within the bright, reddish region in this image. The structure in this image is approximately 200,000 light-years across. This image was made at a radio wavelength of 90 centimeters. CREDIT: F.N. Owen, J.A. Eliek and N.E. Kassim, National Radio Astronomy Observatory, Associated Universities, Inc.
The Secret Lives Of Galaxies Unveiled In Deep Survey
NASA Astrophysics Data System (ADS)
2003-06-01
Two of NASA's Great Observatories, bolstered by the largest ground-based telescopes around the world, are beginning to harvest new clues to the origin and evolution of galaxies. It's a bit like finding a family scrapbook containing snapshots that capture the lives of family members from infancy through adolescence to adulthood. "This is the first time the cosmic tale of how galaxies build themselves has been traced reliably to such early times in the universe's life," said Mauro Giavalisco, head of the Hubble Space Telescope (HST) portion of the survey, and research astronomer at the Space Telescope Science Institute (STScI) in Baltimore. The HST has joined forces with the Chandra X-ray Observatory to survey a relatively broad swath of sky encompassing tens of thousands of galaxies stretching far back into time. The Space Infrared Telescope Facility (SIRTF), scheduled for launch in August, will soon join this unprecedented survey. Called the Great Observatories Origins Deep Survey (GOODS), astronomers are studying galaxy formation and evolution over a wide range of distances and ages. The project is tracing the assembly history of galaxies, the evolution of their stellar populations, and the gusher of energy from star formation and active nuclei powered by immense black holes. HST astronomers report the sizes of galaxies clearly increase continuously from the time the universe was about 1 billion years old to an age of 6 billion years. This is approximately half the current age of the universe, 13.7 billion years. GOODS astronomers also find the star birth rate rose mildly, by about a factor of three, between the time the universe was about one billion years old and 1.5 billion years old, and remained high until about 7 billion years ago, when it quickly dropped to one-tenth the earlier "baby boomer" rate. This is further evidence major galaxy building trailed off when the universe was about half its current age. GOODS Chandra Deep Fields South Chandra Deep Field South This increase in galaxy size is consistent with "bottom-up" models, where galaxies grow hierarchically, through mergers and accretion of smaller satellite galaxies. This is also consistent with the idea the sizes of galaxies match hand-in-glove to a certain fraction of the sizes of their dark-matter halos. Dark matter is an invisible form of mass that comprises most of the matter in the universe. The theory is dark matter essentially pooled into gravitational "puddles" in the early universe, then collected normal gas that quickly contracted to build star clusters and small galaxies. These dwarf galaxies merged piece-by-piece over billions of years to build the immense spiral and elliptical galaxies we see today. The Chandra observations amounted to a "high-energy core sample" of the early universe, allowing us to "study the history of black holes over almost the entire age of the universe," said Niel Brandt of Penn State University, a co-investigator on the Chandra GOODS team. One of the fascinating findings in this deepest X-ray image ever taken is the discovery of mysterious black holes, which have no optical counterparts. "We found seven mysterious sources that are completely invisible in the optical with Hubble," said Anton Koekemoer of the STScI, a co-investigator on both the Hubble and Chandra GOODS teams. "Either they are the most distant black holes ever detected, or they are less distant black holes that are the most dust enshrouded known, a surprising result as well." When comparing the HST and Chandra fields, astronomers also found active black holes in distant, relatively small galaxies were rarer than expected. This may be due to the effects of early generations of massive stars that exploded as supernovae, evacuating galactic gas and thus reducing the supply of gas needed to feed a super massive black hole. These and other results from the GOODS project will be published in a special issue of the Astrophysical Journal Letters, entirely devoted to the team's results. The Chandra results are found in papers led by Koekemoer and Stefano Cristiani of the Trieste Astronomical Observatory. Hubble's findings came from papers led by Giavalisco, Mark Dickinson, and Harry Ferguson of the STScI. The image and additional information are available at: http://chandra.harvard.edu and http://hubblesite.org/newscenter/archive/2003/18/
NASA Astrophysics Data System (ADS)
Deshev, Boris; Finoguenov, Alexis; Verdugo, Miguel; Ziegler, Bodo; Park, Changbom; Hwang, Ho Seong; Haines, Christopher; Kamphuis, Peter; Tamm, Antti; Einasto, Maret; Hwang, Narae; Park, Byeong-Gon
2017-11-01
Aims: The mergers of galaxy clusters are the most energetic events in the Universe after the Big Bang. With the increased availability of multi-object spectroscopy and X-ray data, an ever increasing fraction of local clusters are recognised as exhibiting signs of recent or past merging events on various scales. Our goal is to probe how these mergers affect the evolution and content of their member galaxies. We specifically aim to answer the following questions: is the quenching of star formation in merging clusters enhanced when compared with relaxed clusters? Is the quenching preceded by a (short-lived) burst of star formation? Methods: We obtained optical spectroscopy of >400 galaxies in the field of the merging cluster Abell 520. We combine these observations with archival data to obtain a comprehensive picture of the state of star formation in the members of this merging cluster. Finally, we compare these observations with a control sample of ten non-merging clusters at the same redshift from The Arizona Cluster Redshift Survey (ACReS). We split the member galaxies into passive, star forming or recently quenched depending on their spectra. Results: The core of the merger shows a decreased fraction of star forming galaxies compared to clusters in the non-merging sample. This region, dominated by passive galaxies, is extended along the axis of the merger. We find evidence of rapid quenching of the galaxies during the core passage with no signs of a star burst on the time scales of the merger (≲0.4 Gyr). Additionally, we report the tentative discovery of an infalling group along the main filament feeding the merger, currently at 2.5 Mpc from the merger centre. This group contains a high fraction of star forming galaxies as well as approximately two thirds of all the recently quenched galaxies in our survey. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A131
NASA Astrophysics Data System (ADS)
Martinet, Nicolas; Durret, Florence; Guennou, Loïc; Adami, Christophe; Biviano, Andrea; Ulmer, Melville P.; Clowe, Douglas; Halliday, Claire; Ilbert, Olivier; Márquez, Isabel; Schirmer, Mischa
2015-03-01
Context. There is some disagreement about the abundance of faint galaxies in high-redshift clusters, with contradictory results in the literature arising from studies of the optical galaxy luminosity function (GLF) for small cluster samples. Aims: We compute GLFs for one of the largest medium-to-high-redshift (0.4 ≤ z < 0.9) cluster samples to date in order to probe the abundance of faint galaxies in clusters. We also study how the GLF depends on cluster redshift, mass, and substructure and compare the GLFs of clusters with those of the field. We separately investigate the GLFs of blue and red-sequence (RS) galaxies to understand the evolution of different cluster populations. Methods: We calculated the GLFs for 31 clusters taken from the DAFT/FADA survey in the B,V,R, and I rest-frame bands. We used photometric redshifts computed from BVRIZJ images to constrain galaxy cluster membership. We carried out a detailed estimate of the completeness of our data. We distinguished the red-sequence and blue galaxies using a V - I versus I colour-magnitude diagram. We studied the evolution of these two populations with redshift. We fitted Schechter functions to our stacked GLFs to determine average cluster characteristics. Results: We find that the shapes of our GLFs are similar for the B,V,R, and I bands with a drop at the red GLF faint ends that is more pronounced at high redshift: αred ~ -0.5 at 0.40 ≤ z < 0.65 and αred > 0.1 at 0.65 ≤ z < 0.90. The blue GLFs have a steeper faint end (αblue ~ -1.6) than the red GLFs, which appears to be independent of redshift. For the full cluster sample, blue and red GLFs meet at MV = -20, MR = -20.5, and MI = -20.3. A study of how galaxy types evolve with redshift shows that late-type galaxies appear to become early types between z ~ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Conclusions: Our results indicate that these clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late-type galaxies then appear to evolve into early types, enriching the red sequence between this redshift and today. This effect is consistent with the evolution of the faint-end slope of the red sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field environment at all redshifts might have replaced the blue late-type galaxies that converted into early types, explaining the lack of evolution in the faint-end slopes of the blue GLFs. Appendix is available in electronic form at http://www.aanda.org
Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies
NASA Technical Reports Server (NTRS)
Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.
2013-01-01
Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.
Subaru Weak-Lensing Survey II: Multi-Object Spectroscopy and Cluster Masses
NASA Astrophysics Data System (ADS)
Hamana, Takashi; Miyazaki, Satoshi; Kashikawa, Nobunari; Ellis, Richard S.; Massey, Richard J.; Refregier, Alexandre; Taylor, James E.
2009-08-01
We present the first results of a multi-object spectroscopic campaign to follow up cluster candidates located via weak lensing. Our main goals are to search for spatial concentrations of galaxies that are plausible optical counterparts of the weak-lensing signals, and to determine the cluster redshifts from those of member galaxies. Around each of 36 targeted cluster candidates, we obtained 15-32 galaxy redshifts. For 28 of these targets, we confirmed a secure cluster identification, with more than five spectroscopic galaxies within a velocity of ±3000km s-1. This includes three cases where two clusters at different redshifts are projected along the same line-of-sight. In 6 of the 8 unconfirmed targets, we found multiple small galaxy concentrations at different redshifts, each containing at least three spectroscopic galaxies. The weak-lensing signal around those systems was thus probably created by the projection of groups or small clusters along the same line-of-sight. In both of the remaining two targets, a single small galaxy concentration was found. In some candidate super-cluster systems, we found additional evidence of filaments connecting the main density peak to an additional nearby structure. For a subsample of our most cleanly measured clusters, we investigated the statistical relation between their weak-lensing mass (MNFW, σSIS) and the velocity dispersion of their member galaxies (σv), comparing our sample with optically and X-ray selected samples from the literature. Our lensing-selected clusters are consistent with σv = σSIS, with a similar scatter to that of optically and X-ray selected clusters. We also derived an empirical relation between the cluster mass and the galaxy velocity dispersion, M200E(z) = 11.0 × 1014 × (σv/1000km s-1)3.0 h-1 Modot, which is in reasonable agreement with predictions of N-body simulations in the Λ CDM cosmology.
NASA Astrophysics Data System (ADS)
Moran, Sean; Smith, G.; Haines, C.; Egami, E.; Hardegree-Ullman, E.; Heckman, T.
2010-01-01
We present results from LoCuSS, the Local Cluster Substructure Survey, on the distribution and abundance of cluster galaxies showing signatures of recently quenched star formation, within a sample of 15 z 0.2 clusters. Combining LoCuSS' wide-field UV through NIR photometry with weak-lensing derived mass maps for these clusters, we identify passive galaxies that have undergone recent quenching via both rapid (100Myr) and slow (1Gyr) mechanisms. By studying their abundance in a statistically significant sample of z 0.2 clusters, we explore how the effectiveness of environmental quenching of star formation varies as a function of the level of cluster substructure, in addition to global cluster characteristics such as mass or X-ray luminosity and temperature, with the aim of understanding the role that pre-processing of galaxies within groups and filaments plays in the overall buildup of the morphology-density and SFR-density relations. We find that clusters with large levels of substructure indicative of recent assembly or cluster-cluster mergers host a higher fraction of galaxies with signs of recent ram-pressure stripping by the hot intra-cluster gas. In addition, we find that the fraction of post-starburst galaxies increases with cluster mass (M500), but fractions of optically-selected AGN and GALEX-defined "Green Valley" galaxies show the opposite trend, being most abundant in rather low-mass clusters. These trends suggest a picture where quenching of star formation occurs most vigorously in actively assembling structures, with comparatively little activity in the most massive structures where most of the nearby large-scale structure has already been accreted and Virialized into the main cluster body.
An AzTEC 1.1-mm survey for ULIRGs in the field of the Galaxy Cluster MS0451.6-0305
NASA Astrophysics Data System (ADS)
Wardlow, J. L.; Smail, Ian; Wilson, G. W.; Yun, M. S.; Coppin, K. E. K.; Cybulski, R.; Geach, J. E.; Ivison, R. J.; Aretxaga, I.; Austermann, J. E.; Edge, A. C.; Fazio, G. G.; Huang, J.; Hughes, D. H.; Kodama, T.; Kang, Y.; Kim, S.; Mauskopf, P. D.; Perera, T. A.; Scott, K. S.
2010-02-01
We have undertaken a deep (σ ~ 1.1 mJy) 1.1-mm survey of the z = 0.54 cluster MS0451.6-0305 using the AzTEC camera on the James Clerk Maxwell Telescope. We detect 36 sources with signal-to-noise ratio (S/N) >= 3.5 in the central 0.10 deg2 and present the AzTEC map, catalogue and number counts. We identify counterparts to 18 sources (50 per cent) using radio, mid-infrared, Spitzer InfraRed Array Camera (IRAC) and Submillimetre Array data. Optical, near- and mid-infrared spectral energy distributions are compiled for the 14 of these galaxies with detectable counterparts, which are expected to contain all likely cluster members. We then use photometric redshifts and colour selection to separate background galaxies from potential cluster members and test the reliability of this technique using archival observations of submillimetre galaxies. We find two potential MS0451-03 members, which, if they are both cluster galaxies, have a total star formation rate (SFR) of ~100Msolaryr-1 - a significant fraction of the combined SFR of all the other galaxies in MS0451-03. We also examine the stacked rest-frame mid-infrared, millimetre and radio emission of cluster members below our AzTEC detection limit, and find that the SFRs of mid-IR-selected galaxies in the cluster and redshift-matched field populations are comparable. In contrast, the average SFR of the morphologically classified late-type cluster population is nearly three times less than the corresponding redshift-matched field galaxies. This suggests that these galaxies may be in the process of being transformed on the red sequence by the cluster environment. Our survey demonstrates that although the environment of MS0451-03 appears to suppress star formation in late-type galaxies, it can support active, dust-obscured mid-IR galaxies and potentially millimetre-detected LIRGs.
Bursting with Stars and Black Holes Artist Concept
2007-10-25
A growing black hole, called a quasar, is seen at the center of a faraway galaxy in this artist concept. Astronomers using NASA Spitzer and Chandra space telescopes discovered swarms of similar quasars hiding in dusty galaxies in the distant universe.
A detection of wobbling brightest cluster galaxies within massive galaxy clusters
NASA Astrophysics Data System (ADS)
Harvey, David; Courbin, F.; Kneib, J. P.; McCarthy, Ian G.
2017-12-01
A striking signal of dark matter beyond the standard model is the existence of cores in the centre of galaxy clusters. Recent simulations predict that a brightest cluster galaxy (BCG) inside a cored galaxy cluster will exhibit residual wobbling due to previous major mergers, long after the relaxation of the overall cluster. This phenomenon is absent with standard cold dark matter where a cuspy density profile keeps a BCG tightly bound at the centre. We test this hypothesis using cosmological simulations and deep observations of 10 galaxy clusters acting as strong gravitational lenses. Modelling the BCG wobble as a simple harmonic oscillator, we measure the wobble amplitude, Aw, in the BAHAMAS suite of cosmological hydrodynamical simulations, finding an upper limit for the cold dark matter paradigm of Aw < 2 kpc at the 95 per cent confidence limit. We carry out the same test on the data finding a non-zero amplitude of A_w=11.82^{+7.3}_{-3.0} kpc, with the observations dis-favouring Aw = 0 at the 3σ confidence level. This detection of BCG wobbling is evidence for a dark matter core at the heart of galaxy clusters. It also shows that strong lensing models of clusters cannot assume that the BCG is exactly coincident with the large-scale halo. While our small sample of galaxy clusters already indicates a non-zero Aw, with larger surveys, e.g. Euclid, we will be able to not only confirm the effect but also to use it to determine whether or not the wobbling finds its origin in new fundamental physics or astrophysical process.
STAR FORMATION ACTIVITY IN A YOUNG GALAXY CLUSTER AT Z = 0.866
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laganá, T. F.; Martins, L. P.; Ulmer, M. P.
2016-07-10
The galaxy cluster RX J1257+4738 at z = 0.866 is one of the highest redshift clusters with a richness of multi-wavelength data, and is thus a good target to study the star formation–density relation at early epochs. Using a sample of spectroscopically confirmed cluster members, we derive the star-formation rates (SFRs) of our galaxies using two methods: (1) the relation between SFR and total infrared luminosity extrapolated from the observed Spitzer Multiband Imaging Photometer for Spitzer 24 μ m imaging data; and (2) spectral energy distribution fitting using the MAGPHYS code, including eight different bands. We show that, for thismore » cluster, the SFR–density relation is very weak and seems to be dominated by the two central galaxies and the SFR presents a mild dependence on stellar mass, with more massive galaxies having higher SFR. However, the specific SFR (SSFR) decreases with stellar mass, meaning that more massive galaxies are forming fewer stars per unit of mass, and thus suggesting that the increase in star-forming members is driven by cluster assembly and infall. If the environment is somehow driving the star formation, one would expect a relation between the SSFR and the cluster centric distance, but that is not the case. A possible scenario to explain this lack of correlation is the contamination by infalling galaxies in the inner part of the cluster, which may be on their initial pass through the cluster center. As these galaxies have higher SFRs for their stellar mass, they enhance the mean SSFR in the center of the cluster.« less
A BARYONIC EFFECT ON THE MERGER TIMESCALE OF GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Congyao; Yu, Qingjuan; Lu, Youjun, E-mail: yuqj@pku.edu.cn
2016-04-01
Accurate estimation of the merger timescales of galaxy clusters is important for understanding the cluster merger process and further understanding the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on the merger timescale of galaxy clusters by using hydrodynamical simulations. We find that the baryons play an important role in accelerating the merger process. The merger timescale decreases upon increasing the gas fraction of galaxy clusters. For example, the merger timescale is shortened by a factor of up to 3 for merging clusters with gas fractions of 0.15, compared withmore » the timescale obtained with 0 gas fractions. The baryonic effect is significant for a wide range of merger parameters and is particularly more significant for nearly head-on mergers and high merging velocities. The baryonic effect on the merger timescale of galaxy clusters is expected to have an impact on the structure formation in the universe, such as the cluster mass function and massive substructures in galaxy clusters, and a bias of “no-gas” may exist in the results obtained from the dark matter-only cosmological simulations.« less
The case for electron re-acceleration at galaxy cluster shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.
On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less
The case for electron re-acceleration at galaxy cluster shocks
van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; ...
2017-01-04
On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less
NASA Astrophysics Data System (ADS)
Basu, Aritra; Mao, S. A.; Fletcher, Andrew; Kanekar, Nissim; Shukurov, Anvar; Schnitzeler, Dominic; Vacca, Valentina; Junklewitz, Henrik
2018-06-01
Deriving the Faraday rotation measure (RM) of quasar absorption line systems, which are tracers of high-redshift galaxies intervening background quasars, is a powerful tool for probing magnetic fields in distant galaxies. Statistically comparing the RM distributions of two quasar samples, with and without absorption line systems, allows one to infer magnetic field properties of the intervening galaxy population. Here, we have derived the analytical form of the probability distribution function (PDF) of RM produced by a single galaxy with an axisymmetric large-scale magnetic field. We then further determine the PDF of RM for one random sight line traversing each galaxy in a population with a large-scale magnetic field prescription. We find that the resulting PDF of RM is dominated by a Lorentzian with a width that is directly related to the mean axisymmetric large-scale field strength