Plasma regimes in the deep geomagnetic tail - ISEE 3
NASA Astrophysics Data System (ADS)
Bame, S. J.; Anderson, R. C.; Asbridge, J. R.; Baker, D. N.; Feldman, W. C.; Gosling, J. T.; Hones, E. W., Jr.; McComas, D. J.; Zwickl, R. D.
1983-09-01
The spacecraft remained close to or within a previously unexplored part of the distant (60-220 earth radii) geomagnetic tail nearly continuously from January 1 to March 30, 1983. Analysis of the data reveals that all of the plasma regimes identified previously with near-earth measurements (plasma sheet, low-latitude boundary layer, plasma mantle, lobe, and magnetosheath) remain recognizable in the distant tail. These regimes, however, are found to be intermingled in a more chaotic fashion than near the earth. Within the plasma sheet at approximately 200 earth radii, typical flow velocities are about 500 km/s tailward, considerably higher than in the near-earth plasma sheet. Earthward flow within the plasma sheet is observed occasionally, indicating the temporary presence of a neutral line beyond 220 earth radii. Also found are strong bidirectional electron anisotropies throughout much of the distant plasma sheet, boundary layer, and magnetosheath.
Solar wind-magnetosphere coupling and the distant magnetotail: ISEE-3 observations
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Smith, E. J.; Sibeck, D. G.; Baker, D. N.; Zwickl, R. D.; Akasofu, S. I.; Lepping, R. P.
1985-01-01
ISEE-3 Geotail observations are used to investigate the relationship between the interplanetary magnetic field, substorm activity, and the distant magnetotail. Magnetic field and plasma observations are used to present evidence for the existence of a quasi-permanent, curved reconnection neutral line in the distant tail. The distance to the neutral line varies from absolute value of X = 120 to 140 R/sub e near the center of the tail to beyond absolute value of X = 200 R/sub e at the flanks. Downstream of the neutral line the plasma sheet magnetic field is shown to be negative and directly proportional to negative B/sub z in the solar wind as observed by IMP-8. V/sub x in the distant plasma sheet is also found to be proportional to IMF B/sub z with southward IMF producing the highest anti-solar flow velocities. A global dayside reconnection efficiency of 20 +- 5% is derived from the ISEE-3/IMP-8 magnetic field comparisons. Substorm activity, as measured by the AL index, produces enhanced negative B/sub z and tailward V/sub x in the distant plasma sheet in agreement with the basic predictions of the reconnection-based models of substorms. The rate of magnetic flux transfer out of the tail as a function of AL is found to be consistent with previous near-Earth studies. Similarly, the mass and energy fluxes carried by plasma sheet flow down the tail are consistent with theoretical mass and energy budgets for an open magnetosphere. In summary, the ISEE-3 Geotail observations appear to provide good support for reconnection models of solar wind-magnetosphere coupling and substorm energy rates.
ISEE-1 and 2 observations of field-aligned currents in the distant midnight magnetosphere
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Kelly, T. J.; Russell, C. T.
1985-01-01
Magnetic field measurements obtained in the nightside magnetosphere by the co-orbiting ISEE-1 and 2 spacecraft have been examined for signatures of field-aligned currents (FAC). Such currents are found on the boundary of the plasma sheet both when the plasma sheet is expanding and when it is thinning. Evidence is often found for the existence of waves on the plasma sheet boundary, leading to multiple crossings of the FAC sheet. At times the boundary layer FAC sheet orientation is nearly parallel to the X-Z GSM plane, suggesting 'protrusions' of plasma sheet into the lobes. The boundary layer current polarity is, as expected, into the ionosphere in the midnight to dawn local time sector, and outward near dusk. Current sheet thicknesses and velocities are essentially independent of plasma sheet expansion or thinning, having typical values of 1500 km and 20-40 km/s respectively. Characteristic boundary layer current densities are about 10 nanoamps per square meter.
Anisotropies and flows of suprathermal particles in the distant magnetotail - ISEE 3 observations
NASA Technical Reports Server (NTRS)
Scholer, M.; Hovestadt, D.; Klecker, B.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.
1983-01-01
The ISEE-3 spacecraft has been transferred in 1982 into an earth orbit which brings the satellite close to the tailward Lagrangian point L2 at about 220 R(E) and thus allows exploration of the distant geomagnetic tail. An initial analysis of energetic proton measurements greater than 30 keV from the Max-Planck-Institut/University of Maryland sensor system on ISEE-3 is reported. It has been found that suprathermal protons are a persistent feature of the distant tail. Differential intensitites at 30 keV are essentially constant between the lunar distance and 220 R(E) and about one order of magnitude smaller than in the near earth, or greater than about 20 R(E), plasma sheet. Assuming that these protons are convected with the local plasma flow, it is possible to derive plasma velocities. During time periods where a comparison is possible, these velocities compare favourably well with the velocities derived from the Los Alamos National Laboratory plasma analyzer on board the same spacecraft. The appearance of the plasma sheet, as evidenced by the suprathermal particles, is rather bursty. Anisotropies are large, and predominantly tailward.
Structured plasma sheet thinning observed by Galileo and 1984-129
NASA Technical Reports Server (NTRS)
Reeves, G. D.; Belian, R. D.; Fritz, T. A.; Kivelson, M. G.; Mcentire, R. W.; Roelof, E. C.; Wilken, B.; Williams, D. J.
1993-01-01
On December 8, 1990, the Galileo spacecraft used the Earth for a gravity assist on its way to Jupiter. Its trajectory was such that it crossed geosynchronous orbit at approximately local midnight between 1900 and 2000 UT. At the same time, spacecraft 1984-129 was also located at geosynchronous orbit near local midnight. Several flux dropout events were observed when the two spacecraft were in the near-Earth plasma sheet in the same local time sector. Flux dropout events are associated with plasma sheet thinning in the near-profile of the near-Earth plasma sheet while 1984-129 provided an azimuthal profile. With measurements from these two spacecraft we can distinguish between spatial structures and temporal change. Our observations confirm that the geosynchronous flux dropout events are consistent with plasma sheet thinning which changes the spacecraft's magnetic connection from the trapping region to the more distant plasma sheet. However, for this period, thinning occurred on two spatial and temporal scales. The geosynchronous dropouts were highly localized phenomena of 30 min duration superimposed on a more global reconfiguration of the tail lasting approximately 4 hours.
The Thermal Ion Dynamics Experiment and Plasma Source Instrument
NASA Technical Reports Server (NTRS)
Moore, T. E.; Chappell, C. R.; Chandler, M. O.; Fields, S. A.; Pollock, C. J.; Reasoner, D. L.; Young, D. T.; Burch, J. L.; Eaker, N.; Waite, J. H., Jr.;
1995-01-01
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0-500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of about 1 cm squared effective area each) and angular resolution (6 x 18 degrees) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.
Structured plasma sheet thinning observed by Galileo and 1984-129
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, G.D.; Belian, R.D.; Fritz, T.A.
On December 8, 1990, the Galileo spacecraft used the Earth for a gravity assist on its way to Jupiter. Its trajectory was such that is crossed geosynchronous orbit at approximately local midnight between 1900 and 2000 UT. At the same time, spacecraft 1984-129 was also located at geosynchronous orbit near local midnight. Several flux dropout events were observed when the two spacecraft were in the near-Earth plasma sheet in the same local time sector. Flux dropout events are associated with plasma sheet thinning in the near-Earth tail during the growth phase of substorms. This period is unique in that Galileomore » provided a rapid radial profile of the near-Earth plasma sheet while 1984-129 provided an azimuthal profile. With measurements from these two spacecraft the authors can distinguish between spatial structures and temporal changes. Their observations confirm that the geosynchronous flux dropout events are consistent with plasma sheet thinning which changes the spacecraft`s magnetic connection from the trapping region to the more distant plasma sheet. However, for this period, thinning occurred on two spatial and temporal scales. The geosynchronous dropouts were highly localized phenomena of 30 min duration superimposed on a more global reconfiguration of the tail lasting approximately 4 hours. 28 refs., 10 figs.« less
How northward turnings of the IMF can lead to substorm expansion onsets
NASA Astrophysics Data System (ADS)
Russell, C. T.
2000-10-01
The frequent triggering of the expansion phase of substorms by northward turnings of the interplanetary magnetic field (IMF) can be understood in terms of the existence of two neutral points. The distant neutral point produces a plasma sheet on closed field lines that resupplies the magnetized plasma surrounding the near-Earth neutral point. As long as the near-Earth neutral point reconnects in moderately dense plasma, the reconnection rate is low. When the IMF turns northward, reconnection at the distant neutral point ceases but reconnection at the near-Earth neutral point continues and soon reaches open, low density magnetic field lines where the rate of reconnection is rapid, and a full expansion phase occurs. This model is consistent with the observations of substorms with two onsets: an initial one at low invariant latitudes when reconnection at the near Earth neutral point first begins and the second when reconnection reaches low density field lines at the edge of the plasma sheet and continues into the open flux of the tail lobes. It is also consistent with the occurrence of pseudo breakups in which reconnection at the near Earth neutral point begins but does not proceed to lobe field lines and a full expansion phase.
Plasma entry into the earth's magnetosphere
NASA Technical Reports Server (NTRS)
Frank, L. A.
1972-01-01
Both high- and low-altitude measurements are used to establish the salient features of the three regions presently thought to be the best candidates for the entry of magnetosheath plasma into the magnetosphere, and hence the primal sources of charged particles for the plasma sheet and its earthward termination in the ring current. These three regions are (1) the polar cusps and their extensions into the nighttime magnetosphere, (2) the downstream flanks of the magnetosphere at geocentric radial distances approximately equal to 10 to 50 earth radii along the plasma sheet-magnetosheath interface, and (3) the distant magnetotail at radial distances greater than or approximately equal to 50 earth radii. Present observational knowledge of each of these regions is discussed critically as to evidences for charged particle entry into the magnetosphere from the magnetosheath. The possibility that all three of these magnetospheric domains share an intimate topological relationship is also examined.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Bame, S. J.; Mccomas, D. J.; Zwickl, R. D.; Slavin, J. A.; Smith, E. J.
1987-01-01
Examination of many individual event periods in the ISEE 3 deep-tail data set has suggested that magnetospheric substorms produce a characteristic pattern of effects in the distant magnetotail. During the growth, or tail-energy-storage phase of substorms, the magnetotail appears to grow diametrically in size, often by many earth radii. Subsequently, after the substorm expansive phase onset at earth, the distant tail undergoes a sequence of plasma, field, and energetic-particle variations as large-scale plasmoids move rapidly down the tail following their disconnection from the near-earth plasma sheet. ISEE 3 data are appropriate for the study of these effects since the spacecraft remained fixed within the nominal tail location for long periods. Using newly available auroral electrojet indices (AE and AL) and Geo particle data to time substorm onsets at earth, superposed epoch analyses of ISEE 3 and near-earth data prior to, and following, substorm expansive phase onsets have been performed. These analyses quantify and extend substantially the understanding of the deep-tail pattern of response to global substorm-induced dynamical effects.
Properties of the Equatorial Magnetotail Flanks ˜50-200 RE Downtail
NASA Astrophysics Data System (ADS)
Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Wang, C.-P.; Zelenyi, L. M.
2017-12-01
In space, thin boundaries separating plasmas with different properties serve as a free energy source for various plasma instabilities and determine the global dynamics of large-scale systems. In planetary magnetopauses and shock waves, classical examples of such boundaries, the magnetic field makes a significant contribution to the pressure balance and plasma dynamics. The configuration and properties of such boundaries have been well investigated and modeled. However, much less is known about boundaries that form between demagnetized plasmas where the magnetic field is not important for pressure balance. The most accessible example of such a plasma boundary is the equatorial boundary layer of the Earth's distant magnetotail. Rather, limited measurements since its first encounter in the late 1970s by the International Sun-Earth Explorer-3 spacecraft revealed the basic properties of this boundary, but its statistical properties and structure have not been studied to date. In this study, we use Geotail and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) missions to investigate the equatorial boundary layer from lunar orbit (˜55 Earth radii, RE, downtail) to as far downtail as ˜200 RE. Although the magnetic field has almost no effect on the structure of the boundary layer, the layer separates well the hot, rarefied plasma sheet from dense cold magnetosheath plasmas. We suggest that the most important role in plasma separation is played by polarization electric fields, which modify the efficiency of magnetosheath ion penetration into the plasma sheet. We also show that the total energies (bulk flow plus thermal) of plasma sheet ions and magnetosheath ions are very similar; that is, magnetosheath ion thermalization (e.g., via ion scattering by magnetic field fluctuations) is sufficient to produce hot plasma sheet ions without any additional acceleration.
The mosaic structure of plasma bulk flows in the Earth's magnetotail
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, M.; Richard, R. L.; Zelenyi, L. M.; Peroomian, V.; Bosqued, J. M.
1995-01-01
Moments of plasma distributions observed in the magnetotail vary with different time scales. In this paper we attempt to explain the observed variability on intermediate timescales of approximately 10-20 min that result from the simultaneous energization and spatial structuring of solar wind plasma in the distant magnetotail. These processes stimulate the formation of a system of spatially disjointed. highly accelerated filaments (beamlets) in the tail. We use the results from large-scale kinetic modeling of magnetotail formation from a plasma mantle source to calculate moments of ion distribution functions throughout the tail. Statistical restrictions related to the limited number of particles in our system naturally reduce the spatial resolution of our results, but we show that our model is valid on intermediate spatial scales Delta(x) x Delta(z) equal to approximately 1 R(sub E) x 1000 km. For these spatial scales the resulting pattern, which resembles a mosaic, appears to be quite variable. The complexity of the pattern is related to the spatial interference between beamlets accelerated at various locations within the distant tail which mirror in the strong near-Earth magnetic field. Global motion of the magnetotail results in the displacement of spacecraft with respect to this mosaic pattern and can produce variations in all of the moments (especially the x-component of the bulk velocity) on intermediate timescales. The results obtained enable us to view the magnetotail plasma as consisting of two different populations: a tailward-Earthward system of highly accelerated beamlets interfering with each other, and an energized quasithermal population which gradually builds as the Earth is approached. In the near-Earth tail, these populations merge into a hot quasi-isotropic ion population typical of the near-Earth plasma sheet. The transformation of plasma sheet boundary layer (PSBL) beam energy into central plasma sheet (CPS) quasi-thermal energy occurs in the absence of collisions or noise. This paper also clarifies the relationship between the global scale where an MHD description might be appropriate and the lower intermediate scales where MHD fails and large-scale kinetic theory should be used.
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Coroniti, F. V.
1992-01-01
The firehose marginally stable current sheet, which may model the flow away from the distant reconnection neutral line, assumes that the accelerated particles escape and never return to re-encounter the current region. This assumption fails on the earthward side where the accelerated ions mirror in the geomagnetic dipole field and return to the current sheet at distances up to about 30 R(E) down the tail. Two-dimensional particle simulations are used to demonstrate that the reflected ions drive a 'shock-like' structure in which the incoming flow is decelerated and the Bz field is highly compressed. These effects are similar to those produced by adiabatic choking of steady convection. Possible implications of this interaction for the dynamics of the tail are considered.
Large Alfvén wave power in the plasma sheet boundary layer during the expansion phase of substorms
NASA Astrophysics Data System (ADS)
Keiling, A.; Wygant, J. R.; Cattell, C.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J.; Russell, C. T.; Lotko, W.; Streltsov, A. V.
2000-10-01
Observations by the Polar satellite of large Poynting flux in the plasma sheet boundary layer at geocentric distances of 4 to 6 RE and between 22 and 3 hrs magnetic local time were correlated with H-bay signatures from ground magnetometer records. We provide evidence that large Poynting fluxes occur during the substorm expansion phase. The Poynting fluxes exceeded 1 ergs/cm²s (125 ergs/cm²s when mapped to 100 km), were dominantly directed toward the ionosphere, and were associated with Alfvén waves. These observations demonstrate the importance of Alfvén wave power as a means of energy transport from the distant magnetotail to the ionosphere during the most dynamic phase of substorms.
Thermal and suprathermal protons and alpha particles in the earth's plasma sheet
NASA Technical Reports Server (NTRS)
Ipavich, F. M.; Scholer, M.
1983-01-01
Detailed proton energy spectra in the quasi-stable distant plasma sheet over the energy range from approximately 13 keV to approximately 130 keV are presented. These spectra are compared with spectra of simultaneously measured alpha particles in the energy range from approximately 30 keV/Q to approximately 130 keV/Q. The proton spectra are then extended into the higher energy range up to approximately 1 MeV, thereby supplementing the study of Sarris et al. (1981). The temporal behavior of the spectra in the higher energy range is discussed. It is found that below about 16 keV the proton spectra can be represented by a Maxwellian distribution; above this level, a suprathermal tail is found that cannot be represented by a single power law.
The Onset of Magnetic Reconnection in Tail-Like Equilibria
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, Joachim; Kuznetsova, Masha
1999-01-01
Magnetic reconnection is a fundamental mode of dynamics in the magnetotail, and is recognized as the basic mechanisms converting stored magnetic energy into kinetic energy of plasma particles. The effects of the reconnection process are well documented by spacecraft observations of plasmoids in the distant magnetotail, or bursty bulk flows, and magnetic field dipolarizations in the near Earth region. Theoretical and numerical analyses have, in recent years, shed new light on the way reconnection operates, and, in particular, which microscopic mechanism supports the dissipative electric field in the associated diffusion region. Despite this progress, however. the question of how magnetic reconnection initiates in a tail-like magnetic field with finite flux threading the current i.sheet remains unanswered. Instead, theoretical studies supported by numerical simulations support the point-of-view that such plasma and current sheets are stable with respect to collisionless tearing mode. In this paper, we will further investigate this conclusion, with emphasis on the question whether it remains valid in plasma sheets with embedded thin current sheets. For this purpose, we perform particle-in-cell simulations of the driven formation of thin current sheets, and their subsequent evolution either to equilibrium or to instability of a tearing-type mode. In the latter case we will pay particular attention to the nature of the electric field contribution which unmagnetizes the electrons.
Plasmoid growth and expulsion revealed by two-point ARTEMIS observations
NASA Astrophysics Data System (ADS)
Li, S.; Angelopoulos, V.; Runov, A.; kiehas, S.
2012-12-01
On 12 October 2011, the two ARTEMIS probes, in lunar orbit ~7 RE north of the neutral sheet, sequentially observed a tailward-moving, expanding plasmoid. Their observations reveal a multi-layered plasma sheet composed of tailward-flowing hot plasma within the plasmoid proper enshrouded by earthward-flowing, less energetic plasma. Prior observations of similar earthward flow structures ahead of or behind plasmoids have been interpreted as earthward outflow from a continuously active distant-tail neutral line (DNL) opposite an approaching plasmoid. However, no evidence of active DNL reconnection was observed by the probes as they traversed the plasmoid's leading and trailing edges, penetrating to slightly above its core. We suggest an alternate interpretation: compression of the ambient plasma by the tailward-moving plasmoid propels the plasma lobeward and earthward, i.e., over and above the plasmoid. Using the propagation velocity obtained from timing analysis, we estimate the average plasmoid size to be 9 RE and its expansion rate to be ~ 7 RE/min at the observation locations. The velocity inside the plasmoid proper was found to be non-uniform; the core likely moves as fast as 500 km/s, yet the outer layers move more slowly (and reverse direction), possibly resulting in the observed expansion. The absence of lobe reconnection, in particular on the earthward side, suggests that plasmoid formation and expulsion result from closed plasma sheet field line reconnection.
Dynamics Explorer 1: Energetic Ion Composition Spectrometer (EICS)
NASA Technical Reports Server (NTRS)
Shelley, E. G.; Peterson, W. K.; Collin, H. L.
1994-01-01
The Energetic Ion Composition Spectrometer (EICS) experiment was selected as part of the Dynamics Explorer (DE) Program. One of the primary goals of the DE program was to investigate in detail the plasma physics processes responsible for energizing thermal (approximately 1 eV) ionospheric ions and transporting them to the earth's plasma sheet and distant polar cap. The results of the EICS data analysis (including support of other investigators) and of the archiving efforts supported by this contract are summarized in this document. Also reported are some aspects of our operational support activities.
NASA Technical Reports Server (NTRS)
Christon, S. P.; Gloeckler, G.; Williams, D. J.; Mukai, T.; Mcentire, R. W.; Jacquey, C.; Angelopoulos, V.; Lui, A. T. Y.; Kokubun, S.; Fairfield, D. H.
1994-01-01
Energetic atomic (O(+1) and N(+1)) and molecular (O2(+1), NO(+1), and N2(+1)) ions of ionospheric origin were observed in Earth's magnetotail at X approximately -146 R(sub E) during two plasma sheet sunward/tailward flow-reversal events measured by instruments on the GEOTAIL spacecraft. These events were associated with concurrent ground-measured geomagnetic disturbance intensification at auroral-and mid-latitudes (Kp = 7(-)). Energetic ions in the sunward-component and tailward flows were from both the solar wind and ionosphere. Plasma and energetic ions participated in the flows. During tailward flow, ionospheric origin ion abundance ratios at approximately 200-900 km/s in the rest frame were N(+1)/O(+1) = approximately 25-30% and ((O2(+1), NO(+1), and N2(+1))/O(+1) = approximately 1-2%. We argue that tailward flow most likely initiated approximately 80-100 R(sub E) tailward of Earth and molecular ions were in the plasma sheet prior to geomagnetic intensification onset.
Inferences Concerning the Magnetospheric Source Region for Auroral Breakup
NASA Technical Reports Server (NTRS)
Lyons, L. R.
1992-01-01
It is argued that the magnetospheric source region for auroral arc breakup and substorm initiation is along boundary plasma sheet (BPS) magnetic field lines. This source region lies beyond a distinct central plasma sheet (CPS) region and sufficiently far from the Earth that energetic ion motion violates the guiding center approximation (i.e., is chaotic). The source region is not constrained to any particular range of distances from the Earth, and substorm initiation may be possible over a wide range of distances from near synchronous orbit to the distant tail. It is also argued that the layer of low-energy electrons and velocity dispersed ion beams observed at low altitudes on Aureol 3 is not a different region from the region of auroral arcs. Both comprise the BPS. The two regions occasionally appear distinct at low altitudes because of the effects of arc field-aligned potential drops on precipitating particles.
NASA Technical Reports Server (NTRS)
Maynard, N. C.; Burke, W. J.; Erickson, G. M.; Nakamura, M.; Mukai, T.; Kokubun, S.; Yamamoto, T.; Jacobsen, B.; Egeland, A.; Samson, J. C.;
1997-01-01
Geotail plasma and field measurements at -95 R(sub E) are compared with extensive ground-based, near-Earth, and geosynchronous measurements to study relationships between auroral activity and magnetotail dynamics during the expansion phases of two substorms. The studied intervals are representative of intermittent, moderate activity. The behavior of the aurora and the observed effects at Geotail for both events are harmonized by the concept of the activation of near-Earth X lines (NEXL) after substorm onsets, with subsequent discharges of one or more plasmoids down the magnetotail. The plasmoids must be viewed as three-dimensional structures which are spatially limited in the dawn-dusk direction. Also, reconnection at the NEXL must proceed at variable rates on closed magnetic field lines for significant times before beginning to reconnect lobe flux. This implies that the plasma sheet in the near-Earth magnetotail is relatively thick in comparison with an embedded current sheet and that both the NEXL and distant X line can be active simultaneously. Until reconnection at the NEXL engages lobe flux, the distant X line maintains control of the poleward auroral boundary. If the NEXL remains active after reaching the lobe, the auroral boundary can move poleward explosively. The dynamics of high-latitude aurora in the midnight region thus provides a means for monitoring these processes and indicating when significant lobe flux reconnects at the NEXL.
International cometary explorer encounter with giacobini-zinner: magnetic field observations.
Smith, E J; Tsurutani, B T; Slvain, J A; Jones, D E; Siscoe, G L; Mendis, D A
1986-04-18
The vector helium magnetometer on the International Cometary Explorer observed the magnetic fields induced by the interaction of comet Giacobini-Zinner with the solar wind. A magnetic tail was penetrated approximately 7800 kilometers downstream from the comet and was found to be 10(4) kilometers wide. It consisted of two lobes, containing oppositely directed fields with strengths up to 60 nanoteslas, separated by a plasma sheet approximately 10(3)kilometers thick containing a thin current sheet. The magnetotail was enclosed in an extended ionosheath characterized by intense hydromagnetic turbulene and interplanetary fields draped around the comet. A distant bow wave, which may or may not have been a bow shock, was observed at both edges of the ionosheath. Weak turbulence was observed well upstream of the bow wave.
Cosmic Ray Transport in the Distant Heliosheath
NASA Technical Reports Server (NTRS)
Florinski, V.; Adams, James H.; Washimi, H.
2011-01-01
The character of energetic particle transport in the distant heliosheath and especially in the vicinity of the heliopause could be quite distinct from the other regions of the heliosphere. The magnetic field structure is dominated by a tightly wrapped oscillating heliospheric current sheet which is transported to higher latitudes by the nonradial heliosheath flows. Both Voyagers have, or are expected to enter a region dominated by the sectored field formed during the preceding solar maximum. As the plasma flow slows down on approach to the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of an energetic ion, such as a galactic cosmic ray. Then, a charged particle can effectively drift across a stack of magnetic sectors with a speed comparable with the particle s velocity. Cosmic rays should also be able to efficiently diffuse across the mean magnetic field if the distance between sector boundaries varies. The region of the heliopause could thus be much more permeable to cosmic rays than was previously thought. This new transport proposed mechanism could explain the very high intensities (approaching the model interstellar values) of galactic cosmic rays measured by Voyager 1 during 2010-2011.
Solar wind energy transfer through the magnetopause of an open magnetosphere
NASA Technical Reports Server (NTRS)
Lee, L. C.; Roederer, J. G.
1982-01-01
An expression is derived for the total power, transferred from the solar wind to an open magnetosphere, which consists of the electromagnetic energy rate and the particle kinetic energy rate. The total rate of energy transferred from the solar wind to an open magnetosphere mainly consists of kinetic energy, and the kinetic energy flux is carried by particles, penetrating from the solar wind into the magnetosphere, which may contribute to the observed flow in the plasma mantle and which will eventually be convected slowly toward the plasma sheet by the electric field as they flow down the tail. While the electromagnetic energy rate controls the near-earth magnetospheric activity, the kinetic energy rate should dominate the dynamics of the distant magnetotail.
Quasi-stagnant plasmoid in the middle tail - A new preexpansion phase phenomenon. [in magnetosphere
NASA Technical Reports Server (NTRS)
Nishida, A.; Terasawa, T.; Scholer, M.; Bame, S. J.; Zwickl, R. D.; Gloeckler, G.; Smith, E. J.
1986-01-01
From the analysis of ISEE 3 data it is found that a plasmoid is sometimes formed in the middle tail outside the intervals of the substorm expansion phase. This plasmoid is produced by reconnection at the X-type neutral line, which is located earthward of the distant neutral line but beyond the substorm-associated near-tail neutral line, and it is almost stagnant in that the associated flow speed is less than 300 km/s. The blocking effect of the distant neutral line is the most probable reason for the slow movement. The quasi-stagnant plasmoid is observed at x = -60 to - 100 earth radii for a duration of a few tens of minutes, and in about one half of the cases it is followed by the fast tailward streaming. The onset of this streaming tends to coincide with the onset of the substorm expansion phase, and this probably occurs when the reconnection at the middle-tail neutral line comes close to processing the last closed field line. Intensification of the dawn-to-dusk electric field that causes the mantle plasma to reach the plasma sheet boundary closer to the earth is suggested as the reason for the formation of the middle-tail neutral line earthward of the distant neutral line. The effects on the energetic particle flux and relation to the near-tail reconnection are also discussed.
ISTP observations of plasmoid ejection: IMP 8 and Geotail
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavin, J.A.; Fairfield, D.H.; Kuznetsova, M.M.
1998-01-01
IMP 8 and Geotail observations of traveling compression regions (TCRs) and plasmoids, respectively, are used to investigate plasmoid formation and ejection. One year of IMP 8 magnetometer measurements taken during the distant tail phase of the Geotail mission were searched for TCRs, which signal the release of plasmoids down the tail. A total of 10 such intervals were identified. Examination of the Geotail measurements showed that this spacecraft was in the magnetotail for only three of the events. However, in all three cases, clear plasmoid signatures were observed at Geotail. These plasmoids were observed at distances of X={minus}170 to {minus}197more » R{sub E}. The in situ plasma velocities in these plasmoids are found to exceed the time-of-flight speeds between IMP 8 and Geotail suggesting that some further acceleration may have taken place following release. The inferred lengths of these plasmoids, {approximately}27{endash}40 R{sub E}, are comparable to the downtail distance of IMP 8. This indicates that TCR at IMP 8 can be caused by plasmoids forming not only earthward but also adjacent to or just tailward of the spacecraft. The closeness of IMP 8 to the point of plasmoid formation is confirmed by the small, {approximately}0{endash}3min, time delays between the TCR perturbation and substorm onset. In two of the plasmoid events, high-speed earthward plasma flows and streaming energetic particles were measured in the plasma sheet boundary layer surrounding the plasmoid along with large positive B{sub z} at the leading edge of the plasmoid suggesting that the core of the plasmoid was {open_quotes}snow plowing{close_quotes} into flux tubes recently closed at an active distant neutral line. In summary, these unique two-point measurements clearly show plasmoid ejection near substorm onset, their rapid movement to the distant tail and their further evolution as they encounter preexisting X lines in the distant tail. {copyright} 1998 American Geophysical Union« less
The formation of arcs in the dynamic spectra of Jovian decameter bursts
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Thieman, J. R.
1980-01-01
A model is presented that can account for several features of the dynamic spectral arcs observed at decameter wavelengths by the planetary radio astronomy experiment on Voyagers 1 and 2. It is shown that refraction of an extraordinary mode wave initially excited nearly orthogonal to the local magnetic field is significantly influenced by the local plasma density, being greater the higher the density. It is assumed that the source of the decameter radiation lies along the L = 6 flux tube and that the highest frequencies are produced at the lowest altitudes, where both the plasma density and magnetic field gradients are largest. It is further assumed that the decameter radiation is emitted into a thin conical sheet, consistent with both observation and theory. In the model the emission cone angle of the sheet is chosen to vary with frequency so that it is relatively small at both high and low frequencies, but approximately 80 deg at intermediate frequencies. The resulting emission pattern as seen by a distant observer is shown to resemble the observed arc pattern. The model is compared and contrasted with examples of Voyager radio data.
NASA Technical Reports Server (NTRS)
Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.
1998-01-01
This paper reports a comparison between Geotail observations of plasmas and magnetic fields at 200 R(sub E) in the Earth's magnetotail with results from a time-dependent, global magnetohydrodynamic simulation of the interaction of the solar wind with the magnetosphere. The study focuses on observations from July 7, 1993, during which the Geotail spacecraft crossed the distant tail magnetospheric boundary several times while the interplanetary magnetic field (IMF) was predominantly northward and was marked by slow rotations of its clock angle. Simultaneous IMP 8 observations of solar wind ions and the IMF were used as driving input for the MHD simulation, and the resulting time series were compared directly with those from the Geotail spacecraft. The very good agreement found provided the basis for an investigation of the response of the distant tail associated with the clock angle of the IMF. Results from the simulation show that the stresses imposed by the draping of magnetosheath field lines and the asymmetric removal of magnetic flux tailward of the cusps altered considerably the shape of the distant tail as the solar wind discontinuities convected downstream of Earth. As a result, the cross section of the distant tail was considerably flattened along the direction perpendicular to the IMF clock angle, the direction of the neutral sheet following that of the IMF. The simulation also revealed that the combined action of magnetic reconnection and the slow rotation of the IMF clock angle led to a braiding of the distant tail's magnetic field lines along the axis of the tail, with the plane of the braid lying in the direction of the IMF.
Increases in plasma sheet temperature with solar wind driving during substorm growth phases
NASA Astrophysics Data System (ADS)
Forsyth, C.; Watt, C. E. J.; Rae, I. J.; Fazakerley, A. N.; Kalmoni, N. M. E.; Freeman, M. P.; Boakes, P. D.; Nakamura, R.; Dandouras, I.; Kistler, L. M.; Jackman, C. M.; Coxon, J. C.; Carr, C. M.
2014-12-01
During substorm growth phases, magnetic reconnection at the magnetopause extracts ~1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.
Increases in plasma sheet temperature with solar wind driving during substorm growth phases
Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M
2014-01-01
During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase. PMID:26074645
Increases in plasma sheet temperature with solar wind driving during substorm growth phases.
Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M
2014-12-28
During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼10 15 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.
NASA Astrophysics Data System (ADS)
Lu, Li; Liu, Zhen-Xing; Cao, Jin-Bin
2002-02-01
Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere.
NASA Astrophysics Data System (ADS)
Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R.
2009-12-01
Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM), using the Tsyganenko 96 magnetic field model, to investigate how the earthward penetration of electric field depends on plasma sheet conditions. Outer proton and electron sources at r ~20 RE, are based on 11 years of Geotail data, and realistically represent the mixture of cold and hot plasma sheet population as a function of MLT and interplanetary conditions. We found that shielding of the inner magnetosphere electric field is more efficient for a colder and denser plasma sheet, which is found following northward IMF, than for the hotter and more tenuous plasma sheet found following southward IMF. Our simulation results so far indicate further earthward penetration of plasma sheet particles in response to enhanced convection if the preceding IMF is southward, which leads to weaker electric field shielding. Recently we have integrated the RCM with a magnetic field solver to obtain magnetic fields that are in force balance with given plasma pressures in the equatorial plane. We expect the self-consistent magnetic field to have a pronounced dawn dusk asymmetry due to the asymmetric inner magnetospheric pressure. This should affect the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. We are currently using this force-balanced and self-consistent model with our realistic boundary conditions to evaluate the dependence of the shielding timescale on pre-existing plasma sheet number density and temperature and to more quantitatively determine the correlation between the plasma sheet conditions and spatial distribution of the penetrating particles. Our results are potentially crucial to understanding the contribution of plasma sheet penetration to the development of the storm-time ring current.
Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; ...
2015-04-11
We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less
On the balance of stresses in the plasma sheet.
NASA Technical Reports Server (NTRS)
Rich, F. J.; Wolf, R. A.; Vasyliunas, V. M.
1972-01-01
The stress resulting from magnetic tension on the neutral sheet must, in a steady state, be balanced by any one or a combination of (1) a pressure gradient in the direction along the axis of the tail, (2) a similar gradient of plasma flow kinetic energy, and (3) the tension resulting from a pressure anisotropy within the plasma sheet. Stress balance in the first two cases requires that the ratios h/LX and BZ/BX be of the same order of magnitude, where h is the half-thickness of the neutral sheet, LX is the length scale for variations along the axis of the tail, and BZ and BX are the magnetic field components in the plasma sheet just outside the neutral sheet. The second case requires, in addition, that the plasma flow speed within the neutral sheet be of the order of or larger than the Alfven speed outside the neutral sheet. Stress balance in the third case requires that just outside the neutral sheet the plasma pressure obey the marginal firehose stability condition.
Particle and field characteristics of the high-latitude plasma sheet boundary layer
NASA Technical Reports Server (NTRS)
Parks, G. K.; Mccarthy, M.; Fitzenreiter, R. J.; Ogilvie, K. W.; Etcheto, J.; Anderson, K. A.; Lin, R. P.; Anderson, R. R.; Eastman, T. E.; Frank, L. A.
1984-01-01
Particle and field data obtained by eight ISEE spacecraft experiments are used to define more precisely the characteristics of the high-latitude boundary region of the plasma sheet. A region immediately adjacent to the high-latitude plasma sheet boundary has particle and field characteristics distinctly different from those observed in the lobe and deeper in the central plasma sheet. Electrons over a broad energy interval are 'field-aligned' and bidirectional, whereas in the plasma sheet the distributions are more isotropic. The region supports intense ion flows, large-amplitude electric fields, and enhanced broad-band electrostatic noise.
NASA Astrophysics Data System (ADS)
Nykyri, K.; Chu, C.; Dimmock, A. P.
2017-12-01
Previous studies have shown that plasma sheet in tenuous and hot during southward IMF, whereas northward IMF conditions are associated with cold, dense plasma. The cold, dense plasma sheet (CDPS) has strong influence on magnetospheric dynamics. Closer to Earth, the CDPS could be formed via double high-latitude reconnection, while at increasing tailward distance reconnection, diffusion and kinetic Alfven waves in association with Kelvin-Helmholtz Instability are suggested as dominant source for cold-dense plasma sheet formation. In this paper we present statistical correlation study between Solar Wind, Magnetosheath and Plasma sheet properties using 9+ years of THEMIS data in aberrated GSM frame, and in a normalized coordinate system that takes into account the changes of the magnetopause and bow shock location with respect to changing solar wind conditions. We present statistical results of the plasma sheet density dependence on IMF orientation and other solar wind properties.
Plasma Sheet Circulation Pathways
NASA Technical Reports Server (NTRS)
Moore, Thomas E.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.; Damiano, P.; Lotko, W.
2008-01-01
Global simulations of Earth's magnetosphere in the solar wind compute the pathways of plasma circulation through the plasma sheet. We address the pathways that supply and drain the plasma sheet, by coupling single fluid simulations with Global Ion Kinetic simulations of the outer magnetosphere and the Comprehensive Ring Current Model of the inner magnetosphere, including plasmaspheric plasmas. We find that the plasma sheet is supplied with solar wind plasmas via the magnetospheric flanks, and that this supply is most effective for northward IMF. For southward IMF, the innermost plasma sheet and ring current region are directly supplied from the flanks, with an asymmetry of single particle entry favoring the dawn flank. The central plasma sheet (near midnight) is supplied, as expected, from the lobes and polar cusps, but the near-Earth supply consists mainly of slowly moving ionospheric outflows for typical conditions. Work with the recently developed multi-fluid LFM simulation shows transport via plasma "fingers" extending Earthward from the flanks, suggestive of an interchange instability. We investigate this with solar wind ion trajectories, seeking to understand the fingering mechanisms and effects on transport rates.
Comparing Sources of Storm-Time Ring Current O+
NASA Astrophysics Data System (ADS)
Kistler, L. M.
2015-12-01
The first observations of the storm-time ring current composition using AMPTE/CCE data showed that the O+ contribution to the ring current increases significantly during storms. The ring current is predominantly formed from inward transport of the near-earth plasma sheet. Thus the increase of O+ in the ring current implies that the ionospheric contribution to the plasma sheet has increased. The ionospheric plasma that reaches the plasma sheet can come from both the cusp and the nightside aurora. The cusp outflow moves through the lobe and enters the plasma sheet through reconnection at the near-earth neutral line. The nightside auroral outflow has direct access to nightside plasma sheet. Using data from Cluster and the Van Allen Probes spacecraft, we compare the development of storms in cases where there is a clear input of nightside auroral outflow, and in cases where there is a significant cusp input. We find that the cusp input, which enters the tail at ~15-20 Re becomes isotropized when it crosses the neutral sheet, and becomes part of the hot (>1 keV) plasma sheet population as it convects inward. The auroral outflow, which enters the plasma sheet closer to the earth, where the radius of curvature of the field line is larger, does not isotropize or become significantly energized, but remains a predominantly field aligned low energy population in the inner magnetosphere. It is the hot plasma sheet population that gets accelerated to high enough energies in the inner magnetosphere to contribute strongly to the ring current pressure. Thus it appears that O+ that enters the plasma sheet further down the tail has a greater impact on the storm-time ring current than ions that enter closer to the earth.
Ring current dynamics and plasma sheet sources. [magnetic storms
NASA Technical Reports Server (NTRS)
Lyons, L. R.
1984-01-01
The source of the energized plasma that forms in geomagnetic storm ring currents, and ring current decay are discussed. The dominant loss processes for ring current ions are identified as charge exchange and resonant interactions with ion-cyclotron waves. Ring current ions are not dominated by protons. At L4 and energies below a few tens of keV, O+ is the most abundant ion, He+ is second, and protons are third. The plasma sheet contributes directly or indirectly to the ring current particle population. An important source of plasma sheet ions is earthward streaming ions on the outer boundary of the plasma sheet. Ion interactions with the current across the geomagnetic tail can account for the formation of this boundary layer. Electron interactions with the current sheet are possibly an important source of plasma sheet electrons.
Heating and cooling of the earth's plasma sheet
NASA Technical Reports Server (NTRS)
Goertz, C. K.
1990-01-01
Magnetic-field models based on pressure equilibrium in the quiet magnetotail require nonadiabatic cooling of the plasma as it convects inward or a decrease of the flux tube content. Recent in situ observations of plasma density and temperature indicate that, during quiet convection, the flux tube content may actually increase. Thus the plasma must be cooled during quiet times. The earth plasma sheet is generally significantly hotter after the expansion phase of a substorm than before the plasma sheet thinning begins and cools during the recovery phase. Heating mechanisms such as reconnection, current sheet acceleration, plasma expansion, and resonant absorption of surface waves are discussed. It seems that all mechanisms are active, albeit in different regions of the plasma sheet. Near-earth tail signatures of substorms require local heating as well as a decrease of the flux tube content. It is shown that the resonant absorption of surface waves can provide both.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.
We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less
Survey of the plasma electron environment of Jupiter: A view from Voyager
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Sittler, E. C., Jr.; Bridge, H. S.
1980-01-01
The plasma environment within Jupiter's bow shock is considered in terms of the in situ, calibrated electron plasma measurements made between 10 eV and 5.95 keV by the Voyager plasma science experiment (PLS). Measurements were analyzed and corrected for spacecraft potential variations; the data were reduced to nearly model independent macroscopic parameters of the local electron density and temperature. It is tentatively concluded that the radial temperature profile within the plasma sheet is caused by the intermixing of two different electron populations that probably have different temporal histories and spatial paths to their local observation. The cool plasma source of the plasma sheet and spikes is probably the Io plasma torus and arrives in the plasma sheet as a result of flux tube interchange motions or other generalized transport which can be accomplished without diverting the plasma from the centrifugal equator. The hot suprathermal populations in the plasma sheet have most recently come from the sparse, hot mid-latitude "bath" of electrons which were directly observed juxtaposed to the plasma sheet.
NASA Technical Reports Server (NTRS)
Forbes, T. G.; Hones, E. W., Jr.; Bame, S. J.; Asbridge, J. R.; Paschmann, G.; Sckopke, N.; Russell, C. T.
1981-01-01
From an ISEE survey of substorm dropouts and recoveries during the period February 5 to May 25, 1978, 66 timing events observed by the Los Alamos Scientific Laboratory/Max-Planck-Institut Fast Plasma Experiments were studied in detail. Near substorm onset, both the average timing velocity and the bulk flow velocity at the edge of the plasma sheet are inward, toward the center. Measured normal to the surface of the plasma sheet, the timing velocity is 23 + or - 18 km/s and the proton flow velocity is 20 + or - 8 km/s. During substorm recovery, the plasma sheet reappears moving outward with an average timing velocity of 133 + or - 31 km/s; however, the corresponding proton flow velocity is only 3 + or - 7 km/s in the same direction. It is suggested that the difference between the average timing velocity for the expansion of the plasma sheet and the plasma bulk flow perpendicular to the surface of the sheet during substorm recovery is most likely the result of surface waves moving past the position of the satellites.
NASA Technical Reports Server (NTRS)
Christon, S. P.; Williams, D. J.; Mitchell, D. G.; Frank, L. A.; Huang, C. Y.
1989-01-01
The spectral characteristics of plasma-sheet ion and electron populations during periods of low geomagnetic activity were determined from the analysis of 127 one-hour average samples of central plasma sheet ions and electrons. Particle data from the ISEE-1 low-energy proton and electron differential energy analyzer and medium-energy particle instrument were combined to obtain differential energy spectra in the plasma sheet at geocentric radial distances above 12 earth radii. The relationships between the ion and electron spectral shapes and between the spectral shapes and the geomagnetic activity index were statistically investigated. It was found that the presence of interplanetary particle fluxes does not affect the plasma sheet particle spectral shape.
NASA Astrophysics Data System (ADS)
Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.
2010-12-01
Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore plasma sheet population, depends on plasma sheet boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between plasma pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, plasma pressure, plasma beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar plasma sheet profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher plasma pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. In comparison with results using the T96, plasma transport under self-consistent magnetic field results in proton and electron plasma sheet inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near-Earth convection electric field (since auroral conductance is also confined to higher latitudes). We are currently evaluating the simulated plasma sheet properties by comparing them with statistical results obtained from Geotail and THEMIS observations.
Impact of the storm-time plasma sheet ion composition on the ring current energy density
NASA Astrophysics Data System (ADS)
Mouikis, C.; Kistler, L. M.; Petrinec, S. M.; Fuselier, S. A.; Cohen, I.
2017-12-01
The adiabatic inward transport of the night-side near-earth ( 6 Re) hot plasma sheet is the dominant contributor to the ring current pressure during storm times. During storm times, the plasma sheet composition in the 6 - 12 Re tail region changes due to O+ entry from the lobes (from the cusp) and the direct feeding from the night side auroral region. In addition, at substorm onset the plasma sheet O+ ions can be preferentially accelerated. We use MMS and observations during two magnetic storms, 5/8/2016 and 7/16/2017, to monitor the composition changes and energization in the 6 - 12 Re plasma sheet region. For both storms the MMS apogee was in the tail. In addition, we use subsequent Van Allen Probe observations (with apogee in the dawn and dusk respectively) to test if the 6-12 Re plasma sheet, observed by MMS, is a sufficient source of the O+ in the ring current. For this we will compare the phase space density (PSD) of the plasma sheet source population and the PSD of the inner magnetosphere at constant magnetic moment values as used in Kistler et al., [2016].
Denton, M. H.; Thomsen, M. F.; Reeves, G. D.; ...
2017-10-03
The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H + ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H +, O +, and He + ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux ofmore » each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O + and He +) become increasingly important during such periods as charge-exchange reactions result in faster loss for H + than for O + or He +. Results confirm previous investigations showing that the ion composition of the plasma sheet can be largely understood (and predicted) during calm intervals from knowledge of: (a) the composition of previously injected plasma at the onset of calm conditions, and (b) use of simple drift-physics models combined with calculations of charge-exchange losses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, M. H.; Thomsen, M. F.; Reeves, G. D.
The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H + ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H +, O +, and He + ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux ofmore » each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O + and He +) become increasingly important during such periods as charge-exchange reactions result in faster loss for H + than for O + or He +. Results confirm previous investigations showing that the ion composition of the plasma sheet can be largely understood (and predicted) during calm intervals from knowledge of: (a) the composition of previously injected plasma at the onset of calm conditions, and (b) use of simple drift-physics models combined with calculations of charge-exchange losses.« less
THE DYNAMICAL GENERATION OF CURRENT SHEETS IN ASTROPHYSICAL PLASMA TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howes, Gregory G.
2016-08-20
Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we presentmore » evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.« less
Innovations in compact stellarator coil design
NASA Astrophysics Data System (ADS)
Pomphrey, N.; Berry, L.; Boozer, A.; Brooks, A.; Hatcher, R. E.; Hirshman, S. P.; Ku, L.-P.; Miner, W. H.; Mynick, H. E.; Reiersen, W.; Strickler, D. J.; Valanju, P. M.
2001-03-01
Experimental devices for the study of the physics of high beta (β gtrsim 4%), low aspect ratio (A lesssim 4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, several innovations have been made that may be useful in future stellarator design efforts. These include: the use of singular value decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a control matrix method for identifying which few of the many detailed elements of a stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of a genetic algorithm for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the trade-off between physics objectives and engineering constraints; the development of a new coil optimization code for designing modular coils and the identification of a `natural' basis for describing current sheet distributions.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Mcpherron, R. L.
1990-01-01
A qualitative model of magnetic field reconfiguration as might result from neutral line formation in the central plasma sheet late in a substorm growth phase is considered. It is suggested that magnetic reconnection probably begins before the substorm expansion phase and that cross-tail current is enhanced across the plasma sheet both earthward and tailward of a limited region near the neutral line. Such an enhanced cross-tail current earthward of the original X line region may contribute to thinning the plasma sheet substantially, and this would in turn affect the drift currents in that location, thus enhancing the current even closer toward the earth. In this way a redistribution and progressive diversion of normal cross-tail current throughout much of the inner portion of the plasma sheet could occur. The resulting intensified current, localized at the inner edge of the plasma sheet, would lead to a very thin plasma confinement region. This would explain the very taillike field and extreme particle dropouts often seen late in substorm growth phases.
Structure and Dynamics of Current Sheets in 3D Magnetic Fields with the X-line
NASA Astrophysics Data System (ADS)
Frank, Anna G.; Bogdanov, S. Yu.; Bugrov, S. G.; Markov, V. S.; Dreiden, G. V.; Ostrovskaya, G. V.
2004-11-01
Experimental results are presented on the structure of current sheets formed in 3D magnetic fields with singular lines of the X-type. Two basic diagnostics were used with the device CS - 3D: two-exposure holographic interferometry and magnetic measurements. Formation of extended current sheets and plasma compression were observed in the presence of the longitudinal magnetic field component aligned with the X-line. Plasma density decreased and the sheet thickness increased with an increase of the longitudinal component. We succeeded to reveal formation of the sheets taking unusual shape, namely tilted and asymmetric sheets, in plasmas with the heavy ions. These current sheets were obviously different from the planar sheets formed in 2D magnetic fields, i.e. without longitudinal component. Analysis of typical plasma parameters made it evident that plasma dynamics and current sheet evolution should be treated on the base of the two-fluid approach. Specifically it is necessary to take into account the Hall currents in the plane perpendicular to the X-line, and the dynamic effects resulting from interaction of the Hall currents and the 3D magnetic field. Supported by RFBR, grant 03-02-17282, and ISTC, project 2098.
Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.
Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram
2015-01-01
In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.
Plasma Sheet Velocity Measurement Techniques for the Pulsed Plasma Thruster SIMP-LEX
NASA Technical Reports Server (NTRS)
Nawaz, Anuscheh; Lau, Matthew
2011-01-01
The velocity of the first plasma sheet was determined between the electrodes of a pulsed plasma thruster using three measurement techniques: time of flight probe, high speed camera and magnetic field probe. Further, for time of flight probe and magnetic field probe, it was possible to determine the velocity distribution along the electrodes, as the plasma sheet is accelerated. The results from all three techniques are shown, and are compared for one thruster geometry.
Energetic O+ and H+ Ions in the Plasma Sheet: Implications for the Transport of Ionospheric Ions
NASA Technical Reports Server (NTRS)
Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A. T.
2011-01-01
The present study statistically examines the characteristics of energetic ions in the plasma sheet using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.
Experimental investigation of a 1 kA/cm{sup 2} sheet beam plasma cathode electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Niraj, E-mail: niraj.ceeri@gmail.com; Narayan Pal, Udit; Prajesh, Rahul
In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm{sup 2} from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance inmore » a drift space region maintaining sheet structure without assistance of any external magnetic field.« less
Plasma sheet dynamics observed by the Polar spacecraft in association with substorm onsets
NASA Astrophysics Data System (ADS)
Toivanen, P. K.; Baker, D. N.; Peterson, W. K.; Li, X.; Donovan, E. F.; Viljanen, A.; Keiling, A.; Wygant, J. R.; Kletzing, C. A.
2001-09-01
We present observations of the Polar spacecraft of magnetospheric substorm signatures in the plasma sheet midway along auroral field lines between the ionosphere and the equatorial plasma sheet. On October 17, 1997, Polar was located in the onset meridian in conjunction with the Scandinavian magnetometer chain (International Monitor for Auroral Geomagnetic Effects; IMAGE). In addition, a geostationary spacecraft, LANL-97A, was located near the onset meridian. On August 29, 1997, Polar was magnetically conjugate to the Canadian magnetometer chain (Canadian Auroral Network for the OPEN Program Unified Study; CANOPUS) ~5 hours east of the onset meridian. In both cases, substorm activity was manifested as strong magnetic (20 nT) and electric (40 mVm-1) field variations with bursts of parallel Poynting flux (~1 ergcm-2s-1), predominantly directed toward the ionosphere. In the first event Polar was located in the plasma sheet near the plasma sheet boundary, and the field variations were initiated at the ground onset. In the second event, Polar crossed the plasma sheet boundary to the tail lobes a few minutes prior to a local plasma sheet expansion. As Polar was engulfed by the plasma sheet, the field variations occurred in the previously quiet plasma sheet boundary. This coincided with the auroral bulge reaching the CANOPUS stations. We compare these two events and argue that the field variations were most probably signatures of the reconnection of open field lines and the subsequent enhanced earthward flows. Furthermore, weak flow bursts were observed at Polar in both events ~9 min before the onset. In the first event, a gradual development toward a negative bay and a burst of Pi2 pulsations were associated with the flow bursts. We anticipate that these signatures, often described in terms of pseudobreakups, were a precursor of the substorm onset, the initiation of the reconnection of closed field lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Suresh C.; Gupta, Neha
2015-12-15
A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, numbermore » density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.« less
Preparation of Caco-2 cell sheets using plasma polymerised acrylic acid as a weak boundary layer.
Majani, Ruby; Zelzer, Mischa; Gadegaard, Nikolaj; Rose, Felicity R; Alexander, Morgan R
2010-09-01
The use of cell sheets for tissue engineering applications has considerable advantages over single cell seeding techniques. So far, only thermoresponsive surfaces have been used to manufacture cell sheets without chemically disrupting the cell-surface interactions. Here, we present a new and facile technique to prepare sheets of epithelial cells using plasma polymerised acrylic acid films. The cell sheets are harvested by gentle agitation of the media without the need of any additional external stimulus. We demonstrate that the plasma polymer deposition conditions affect the viability and metabolic activity of the cells in the sheet and relate these effects to the different surface properties of the plasma polymerised acrylic acid films. Based on surface analysis data, a first attempt is made to explain the mechanism behind the cell sheet formation. The advantage of the epithelial cell sheets generated here over single cell suspensions to seed a PLGA scaffold is presented. The scaffold itself, prepared using a mould fabricated via photolithography, exhibits a unique architecture that mimics closely the dimensions of the native tissue (mouse intestine). Copyright 2010 Elsevier Ltd. All rights reserved.
Interpretation of high-speed flows in the plasma sheet
NASA Technical Reports Server (NTRS)
Chen, C. X.; Wolf, R. A.
1993-01-01
Pursuing an idea suggested by Pontius and Wolf (1990), we propose that the `bursty bulk flows' observed by Baumjohann et al. (1990) and Angelopoulos et al. (1992) are `bubbles' in the Earth's plasma sheet. Specifically, they are flux tubes that have lower values of pV(exp 5/3) than their neighbors, where p is the thermal pressure of the particles and V is the volume of a tube containing one unit of magnetic flux. Whether they are created by reconnection or some other mechanism, the bubbles are propelled earthward by a magnetic buoyancy force, which is related to the interchange instability. Most of the major observed characteristics of the bursty bulk flows can be interpreted naturally in terms of the bubble picture. We propose a new `stratified fluid' picture of the plasma sheet, based on the idea that bubbles constitute the crucial transport mechanism. Results from simple mathematical models of plasma sheet transport support the idea that bubbles can resolve the pressure balance inconsistency, particularly in cases where plasma sheet ions are lost by gradient/curvature drift out the sides of the tail or bubbles are generated by reconnection in the middle of plasma sheet.
Cluster Observations of Currents In The Plasma Sheet During Substorm Expansions
NASA Astrophysics Data System (ADS)
McPherron, R. L.; Kivelson, M. G.; Khurana, K.; Balogh, A.; Conners, M.; Creutzberg, F.; Moldwin, M.; Rostoker, G.; Russell, C. T.
From 00 to 12 UT on August 15, 2001 the Cluster spacecraft passed through the plasma sheet at 0100 lt and distance 18 Re. During this passage three substorms with multiple onsets were observed in the magnetic field and plasma. The North American ground sector was well located to provide the context and timing of these substorms. We find that each substorm was initially associated with strong Earthward directed field-aligned current. The first substorm occurred when the Cluster array was at the boundary of the plasma sheet. The effects of the substorm appear at Cluster in associ- ation with an intensification of the expansion into the morning sector and are initiated by a wave of plasma sheet thickening followed by vertical oscillations of the plasma sheet boundary. The third substorm occurred with Cluster at the neutral sheet. It began with a transient pulse of southward Bz followed by a burst of tailward flow. Subse- quently a sequence of bursts of Earthward flow cause stepwise dipolarization of the local magnetic field. Our goal is to present a coherent three-dimensional representa- tion of the Cluster observations for each of these various substorms.
Single clay sheets inside electrospun polymer nanofibers
NASA Astrophysics Data System (ADS)
Sun, Zhaohui
2005-03-01
Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.
A study of the formation and dynamics of the Earth's plasma sheet using ion composition data
NASA Technical Reports Server (NTRS)
Lennartsson, O. W.
1994-01-01
Over two years of data from the Lockheed Plasma Composition Experiment on the ISEE 1 spacecraft, covering ion energies between 100 eV/e and about 16 keV/e, have been analyzed in an attempt to extract new information about three geophysical issues: (1) solar wind penetration of the Earth's magnetic tail; (2) relationship between plasma sheet and tail lobe ion composition; and (3) possible effects of heavy terrestrial ions on plasma sheet stability.
Magnetic reconnection physics in the solar wind with Voyager 2
NASA Astrophysics Data System (ADS)
Stevens, Michael L.
2009-08-01
Magnetic reconnection is the process by which the magnetic topology evolves in collisionless plasmas. This phenomenon is fundamental to a broad range of astrophysical processes such as stellar flares, magnetospheric substorms, and plasma accretion, yet it is poorly understood and difficult to observe in situ . In this thesis, the solar wind plasma permeating interplanetary space is treated as a laboratory for reconnection physics. I present an exhaustive statistical approach to the identification of reconnection outflow jets in turbulent plasma and magnetic field time series data. This approach has been automated and characterized so that the resulting reconnection survey can be put in context with other related studies. The algorithm is shown to perform similarly to ad hoc studies in the inner heliosphere. Based on this technique, I present a survey of 138 outflow jets for the Voyager 2 spacecraft mission, including the most distant in situ evidence of reconnection discovered to date. Reconnection in the solar wind is shown to be strongly correlated with stream interactions and with solar activity. The solar wind magnetic field is found to be reconnecting via large, quasi-steady slow- mode magnetohydrodynamic structures as far out as the orbit of Neptune. The role of slow-mode shocks is explored and, in one instance, a well-developed reconnection structure is shown to be in good agreement with the Petschek theory for fast reconnection. This is the first reported example of a reconnection exhaust that satisfies the full jump conditions for a stationary slow-mode shock pair. A complete investigation into corotating stream interactions over the Voyager 2 mission has revealed that detectable reconnection structure occurs in about 23% of forced, global-scale current sheets. Contrary to previous studies, I find that signatures of this kind are most likely to be observed for current sheets where the magnetic field shear and the plasma-b are high. Evidence has been found of thinning in Kelvin-Helmholtz unstable reconnection structures. I hypothesize that reconnection in turbulent environments occurs predominantly on smaller scales than one can measure with Voyager 2. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617- 253-5668; Fax 617-253-1690.)
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.
2011-01-01
Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration that accompanies the radial compression of the plasma in conical theta pinches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrovskaya, G. V., E-mail: galya-ostr@mail.ru; Markov, V. S.; Frank, A. G., E-mail: annfrank@fpl.gpi.ru
The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.
NASA Astrophysics Data System (ADS)
Gkioulidou, Malamati
The convection electric field resulting from the coupling of the Earth's magnetosphere with the solar wind and interplanetary magnetic field (IMF) drives plasma in the tail plasma sheet earthward. This transport and the resulting energy storage in the near Earth plasma sheet are important for setting up the conditions that lead to major space weather disturbances, such as storms and substorms. Penetration of plasma sheet particles into the near-Earth magnetosphere in response to enhanced convection is crucial to the development of the Region 2 field-aligned current system and large-scale magnetosphere-ionosphere (M-I) coupling, which results in the shielding of the convection electric field. In addition to the electric field, plasma transport is also strongly affected by the magnetic field, which is distinctly different from dipole field in the inner plasma sheet and changes with plasma pressure in maintaining force balance. The goal of this dissertation is to investigate how the plasma transport into the inner magnetosphere is affected by the interplay between plasma, electric field and magnetic field. For this purpose, we conduct simulations using the Rice Convection Model (RCM), which self-consistently calculates the electric field resulting from M-I coupling. In order to quantitatively evaluate the interplay, we improved the RCM simulations by establishing realistic plasma sheet particle sources, by incorporating it with a modified Dungey force balance magnetic field solver (RCM-Dungey runs), and by adopting more realistic electron loss rates. We found that plasma sheet particle sources strongly affect the shielding of the convection electric field, with a hotter and more tenuous plasma sheet resulting in less shielding than a colder and denser one and thus in more earthward penetration of the plasma sheet. The Harang reversal, which is closely associated with the shielding of the convection electric field and the earthward penetration of low-energy protons, is found to be located at lower latitudes and extend more dawnward for a hotter and more tenuous plasma sheet. In comparison with simulation runs under an empirical but not force balance magnetic field from the Tsyganenko 96 model, the simulation results show that transport under force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-earth region, weaker shielding of the penetration electric field and, as a result, more earthward penetration of plasma sheet protons and electrons with their inner edges being closer together and more azimuthally symmetric. To evaluate the effect of electron loss rate on ionospheric conductivity, a major contributing factor to M-I coupling, we run RCM-Dungey with a more realistic, MLT dependent electron loss rate established from observed wave activity. Comparing our results with those using a strong diffusion everywhere rate, we found that under the MLT dependent loss rate, the dawn-dusk asymmetry in the precipitating electron energy fluxes agrees better with statistical DMSP observations. The more realistic loss rate is much weaker than the strong diffusion limit in the inner magnetosphere. This allows high-energy electrons in the inner magnetosphere to remain much longer and produce substantial conductivity at lower latitudes. The higher conductivity at lower latitudes under the MLT dependent loss rate results in less efficient shielding in response to an enhanced convection electric field, and thus to deeper penetration of the ion plasma sheet into the inner magnetosphere than under the strong diffusion everywhere rate.
The Role of Ionospheric O+ in Forming the Storm-time Ring Current
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C.; Menz, A.; Bingham, S.
2017-12-01
During storm times, the particle pressure that creates the storm-time ring current in the inner magnetosphere can be dominated by O+. This is surprising, as the immediate source for the ring current is the nightside plasma sheet, and O+ is usually not the dominant species in the plasma sheet. In this talk we examine the many factors that lead to this result. The O+ outflow is enhanced during geomagnetically active times. The transport paths of O+ and H+ are different, such that the O+ that reaches the near-earth plasma sheet is more energetic than H+. The source spectrum in the near-earth plasma sheet can be harder for O+ than for H+, perhaps due to substorm injections, so that the more energetic plasma has a higher O+/H+ ratio. And finally the plasma sheet O+ can be more abundant towards the beginning of the storm, when the convection is largest, so the enhanced O+ is brought the deepest into the inner magnetosphere. We will discuss the interrelationships between these different effects as well as the ways in which O+ itself may influence the system.
A mechanism for magnetospheric substorms
NASA Technical Reports Server (NTRS)
Erickson, G. M.; Heinemann, M.
1994-01-01
Energy-principle analysis performed on two-dimensional, self-consistent solutions for magnetospheric convection indicates that the magnetosphere is unstable to isobaric (yet still frozen-in) fluctuations of plasma-sheet flux tubes. Normally, pdV work associated with compression maintains stability of the inward/outward oscillating normal mode. However, if Earth's ionosphere can provide sufficient mass flux, isobaric expansion of flux tubes can occur. The growth of a field-aligned potential drop in the near-Earth, midnight portion of the plasma sheet, associated with upward field-aligned currents responsible for the Harang discontinuity, redistributes plasma along field lines in a manner that destabilizes the normal mode. The growth of this unstable mode results in an out-of-equilibrium situation near the inner edge. When this occurs over a downtail extent comparable to the half-thickness of the plasma sheet, collapse ensues and forces thinning of the plasma sheet whereby conditions favorable to reconnection occur. This scenario for substorm onset is consistent with observed upward fluxes of ions, parallel potential drops, and observations of substorm onset. These observations include near Earth onset, pseudobreakups, the substorm current wedge, and local variations of plasma-sheet thickness.
Penetration of the Interplanetary Magnetic Field B(sub y) into Earth's Plasma Sheet
NASA Technical Reports Server (NTRS)
Hau, L.-N.; Erickson, G. M.
1995-01-01
There has been considerable recent interest in the relationship between the cross-tail magnetic field component B(sub y) and tail dynamics. The purpose of this paper is to give an overall description of the penetration of the interplanetary magnetic field (IMF) B(sub y) into the near-Earth plasma sheet. We show that plasma sheet B(sub y) may be generated by the differential shear motion of field lines and enhanced by flux tube compression. The latter mechanism leads to a B(sub y) analogue of the pressure-balance inconsistency as flux tubes move from the far tail toward the Earth. The growth of B(sub y), however, may be limited by the dawn-dusk asymmetry in the shear velocity as a result of plasma sheet tilting. B(sub y) penetration into the plasma sheet implies field-aligned currents flowing between hemispheres. These currents together with the IMF B(sub y) related mantle field-aligned currents effectively shield the lobe from the IMF B(sub y).
Collisionless current sheet equilibria
NASA Astrophysics Data System (ADS)
Neukirch, T.; Wilson, F.; Allanson, O.
2018-01-01
Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.
Impact of Near-Earth Plasma Sheet Dynamics on the Ring Current Composition
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C.; Menz, A.; Spence, H. E.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.; Skoug, R. M.; Larsen, B.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.
2014-12-01
How the dynamics in the near-earth plasma sheet affects the heavy ion content, and therefore the ion pressure, of the ring current in Earth's magnetosphere is an outstanding question. Substorms accelerate plasma in the near-earth region and drive outflow from the aurora, and both these processes can preferentially enhance the population of heavy ions in this region. These heavy ions are then driven into the inner magnetosphere during storms. Thus understanding how the composition of the ring current changes requires simultaneous observations in the near-earth plasma sheet and in the inner magnetosphere. We use data from the CODIF instrument on Cluster and HOPE, RBSPICE, and MagEIS instruments on the Van Allen Probes to study the acceleration and transport of ions from the plasma sheet into the ring current. During the main phase of a geomagnetic storm on Aug 4-6, 2013, the Cluster spacecraft were moving inbound in the midnight central plasma sheet, while the apogees of the two Van Allen Probes were located on the duskside. The Cluster spacecraft measure the composition and spectral changes in the plasma sheet, while the Van Allen Probes measure the ions that reach the inner magnetosphere. A strong increase in 1-40 keV O+ was observed at the Cluster location during the storm main phase, and the Van Allen Probes observed both H+ and O+ being driven deep into the inner magnetosphere. By comparing the variations in phase space density (PSD) vs. magnetic moment at the Cluster and the Van Allen Probes locations, we examine how the composition changes non-adiabatically in the near-earth plasma sheet, and how those changes are propagated into the inner magnetosphere, populating the hto ion ring current.
The Topology and Dynamics of Mercury's Tail Plasma and Current Sheets
NASA Astrophysics Data System (ADS)
Al Asad, M. M.; Johnson, C. J.; Philpott, L. C.
2018-05-01
In Mercury's environment, the tail plasma and current sheets represent an integral part of the dynamic magnetosphere. Our study aims to understand the time-averaged, as well as the dynamic, properties of these "sheets" in 3D space using MAG data.
The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet
NASA Astrophysics Data System (ADS)
Coroniti, F. V.; Pritchett, P. L.
2014-03-01
The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.
Intermittent magnetic reconnection in TS-3 merging experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Y.; Hayashi, Y.; Ii, T.
2011-11-15
Ejection of current sheet with plasma mass causes impulsive and intermittent magnetic reconnection in the TS-3 spherical tokamak (ST) merging experiment. Under high guide toroidal field, the sheet resistivity is almost classical due to the sheet thickness much longer than the ion gyroradius. Large inflow flux and low current-sheet resistivity result in flux and plasma pileup followed by rapid growth of the current sheet. When the pileup exceeds a critical limit, the sheet is ejected mechanically from the squeezed X-point area. The reconnection (outflow) speed is slow during the flux/plasma pileup and is fast during the ejection, suggesting that intermittentmore » reconnection similar to the solar flare increases the averaged reconnection speed. These transient effects enable the merging tokamaks to have the fast reconnection as well as the high-power reconnection heating, even when their current-sheet resistivity is low under high guide field.« less
Henderson, O.A.
1962-07-17
An ion-electron plasma heating apparatus of the pinch tube class was developed wherein a plasma is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a sheet of plasma between two conductive plates disposed parallel and adjacent to the plasma sheet. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat plasma configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)
Plasma convection and ion beam generation in the plasma sheet boundary layer
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Goertz, C. K.; Smith, R. A.
1991-01-01
Because of the dawn-dusk electric field E(dd), plasma in the magnetotail convects from the lobe toward the central plasma sheet (CPS). In the absence of space or velocity diffusion due to plasma turbulence, convection would yield a steady state distribution function f = V exp (-2/3) g(v exp 2 V exp 2/3), where V is the flux tube volume. Starting with such a distribution function and a plasma beta which varies from beta greater than 1 in the CPS to beta much smaller than 1 in the lobe, the evolution of the ion distribution function was studied considering the combined effects of ion diffusion by kinetic Alfven waves (KAW) in the ULF frequency range (1-10 mHz) and convection due to E(dd) x B drift in the plasma sheet boundary layer (PSBL) and outer central plasma sheet (OCPS). The results show that, during the early stages after launching the KAWs, a beamlike ion distribution forms in the PSBL and at the same time the plasma density and temperature decrease in the OCPS. Following this stage, ions in the beams convect toward the CPS resulting in an increase of the plasma temperature in the OCPS.
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
NASA Astrophysics Data System (ADS)
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
On the Magnetospheric Heating Problem
NASA Astrophysics Data System (ADS)
Nykyri, K.; Moore, T.; Dimmock, A. P.; Ma, X.; Johnson, J.; Delamere, P. A.
2016-12-01
In the Earth's magnetosphere the specific entropy, increases by approximately two orders of magnitude when transitioning from the magnetosheath into the magnetosphere. However, the origin of this non-adiabatic heating is not well understood. In addition, there exists a dawn-dusk temperature asymmetry in the flanks of the plasma sheet - the cold component ions are hotter by 30-40% at the dawnside plasma sheet compared to the duskside plasma sheet. Our recent statistical study of magnetosheath temperatures using 7 years of THEMIS data indicates that ion magnetosheath temperatures downstream of quasi-parallel (dawn-flank for the Parker-Spiral IMF) bow shock are only 15 percent higher than downstream of the quasi-perpendicular shock. This magnetosheath temperature asymmetry is therefore inadequate to cause the observed level of the plasma sheet temperature asymmetry. In this presentation we address the origin of non-adiabatic heating from the magnetosheath into the plasma sheet by utilizing small Cluster spacecraft separations, 9 years of statistical THEMIS data as well as Hall-MHD and hybrid simulations. We present evidence of a new physical mechanism capable of cross-scale energy transport at the flank magnetopause with strong contributions to the non-adiabatic heating observed between the magnetosheath and plasma sheet. This same heating mechanism may occur and drive asymmetries also in the magnetospheres of gas giants: Jupiter and Saturn, as well as play role elsewhere in the universe where significant flow shears are present such as in the solar corona, and other astrophysical and laboratory plasmas.
NASA Astrophysics Data System (ADS)
Liu, J.; Angelopoulos, V.; Chu, X.; McPherron, R. L.
2016-12-01
Although Earth's Region 1 and 2 currents are related to activities such as substorm initiation, their magnetospheric origin remains unclear. Utilizing the triangular configuration of THEMIS probes at 8-12 RE downtail, we seek the origin of nightside Region 1 and 2 currents. The triangular configuration allows a curlometer-like technique which do not rely on active-time boundary crossings, so we can examine the current distribution in quiet times as well as active times. Our statistical study reveals that both Region 1 and 2 currents exist in the plasma sheet during quiet and active times. Especially, this is the first unequivocal, in-situ evidence of the existence of Region 2 currents in the plasma sheet. Farther away from the neutral sheet than the Region 2 currents lie the Region 1 currents which extend at least to the plasma sheet boundary layer. At geomagnetic quiet times, the separation between the two currents is located 2.5 RE from the neutral sheet. These findings suggest that the plasma sheet is a source of Region 1 and 2 currents regardless of geomagnetic activity level. During substorms, the separation between Region 1 and 2 currents migrates toward (away from) the neutral sheet as the plasma sheet thins (thickens). This migration indicates that the deformation of Region 1 and 2 currents is associated with redistribution of FAC sources in the magnetotail. In some substorms when the THEMIS probes encounter a dipolarization, a substorm current wedge (SCW) can be inferred from our technique, and it shows a distinctively larger current density than the pre-existing Region 1 currents. This difference suggests that the SCW is not just an enhancement of the pre-existing Region 1 current; the SCW and the Region 1 currents have different sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku
A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness andmore » shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.« less
Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet
NASA Astrophysics Data System (ADS)
Hamrin, M.; Norqvist, P.; Marghitu, O.; Vaivads, A.; Klecker, B.; Kistler, L. M.; Dandouras, I.
2009-11-01
In this article, and in a companion paper by Hamrin et al. (2009) [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data) at the altitude of about 15-20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs) and 35 Concentrated Generator Regions (CGRs). By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1-10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005). The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1-10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.
Nonadiabatic heating of the central plasma sheet at substorm onset
NASA Technical Reports Server (NTRS)
Huang, C. Y.; Frank, L. A.; Rostoker, G.; Fennell, J.; Mitchell, D. G.
1992-01-01
Heating events in the plasma sheet boundary layer and central plasma sheet are found to occur at the onset of expansive phase activity. The main effect is a dramatic increase in plasma temperature, coincident with a partial dipolarization of the magnetic field. Fluxes of energetic particles increase without dispersion during these events which occur at all radial distances up to 23 RE, the apogee of the ISEE spacecraft. A major difference between these heating events and those observed at geosynchronous distances lies in the heating mechanism which is nonadiabatic beyond 10 RE but may be adiabatic closer to earth. The energy required to account for the increase in plasma thermal energy is comparable with that required for Joule heating of the ionosphere. The plasma sheet must be considered as a major sink in the energy balance of a substorm. Lobe magnetic pressures during these events are estimated. Change in lobe pressure are generally not correlated with onsets or intensifications of expansive phase activity.
NASA Astrophysics Data System (ADS)
Harada, Yuki; Futaana, Yoshifumi; Barabash, Stas; Wieser, Martin; Wurz, Peter; Bhardwaj, Anil; Asamura, Kazushi; Saito, Yoshifumi; Yokota, Shoichiro; Tsunakawa, Hideo; Machida, Shinobu
2014-05-01
We present the observations of energetic neutral atoms (ENAs) produced at the lunar surface in the Earth's magnetotail. When the Moon was located in the terrestrial plasma sheet, Chandrayaan-1 Energetic Neutrals Analyzer (CENA) detected hydrogen ENAs from the Moon. Analysis of the data from CENA together with the Solar Wind Monitor (SWIM) onboard Chandrayaan-1 reveals the characteristic energy of the observed ENA energy spectrum (the e-folding energy of the distribution function) ˜100 eV and the ENA backscattering ratio (defined as the ratio of upward ENA flux to downward proton flux) <˜0.1. These characteristics are similar to those of the backscattered ENAs in the solar wind, suggesting that CENA detected plasma sheet particles backscattered as ENAs from the lunar surface. The observed ENA backscattering ratio in the plasma sheet exhibits no significant difference in the Southern Hemisphere, where a large and strong magnetized region exists, compared with that in the Northern Hemisphere. This is contrary to the CENA observations in the solar wind, when the backscattering ratio drops by ˜50% in the Southern Hemisphere. Our analysis and test particle simulations suggest that magnetic shielding of the lunar surface in the plasma sheet is less effective than in the solar wind due to the broad velocity distributions of the plasma sheet protons.
Does Solar Wind also Drive Convection in Jupiter's Magnetosphere?
NASA Astrophysics Data System (ADS)
Khurana, K. K.
2001-05-01
Using a simple model of magnetic field and plasma velocity, Brice and Ioannidis [1970] showed that the corotation electric field exceeds convection electric field throughout the Jovian magnetosphere. Since that time it has been tacitly assumed that Jupiter's magnetosphere is driven from within. If Brice and Ioannidis conjecture is correct then one would not expect major asymmetries in the field and plasma parameters in the middle magnetosphere of Jupiter. Yet, new field and plasma observations from Galileo and simultaneous auroral observations from HST show that there are large dawn/dusk and day/night asymmetries in many magnetospheric parameters. For example, the magnetic observations show that a partial ring current and an associated Region-2 type field-aligned current system exist in the magnetosphere of Jupiter. In the Earth's magnetosphere it is well known that the region-2 current system is created by the asymmetries imposed by a solar wind driven convection. Thus, we are getting first hints that the solar wind driven convection is important in Jupiter's magnetosphere as well. Other in-situ observations also point to dawn-dusk asymmetries imposed by the solar wind. For example, first order anisotropies in the Energetic Particle Detector show that the plasma is close to corotational on the dawn side but lags behind corotation in the dusk sector. Magnetic field data show that the current sheet is thin and highly organized on the dawn side but thick and disturbed on the dusk side. I will discuss the reasons why Brice and Ioannidis calculation may not be valid. I will show that both the magnetic field and plasma velocity estimates used by Brice and Ioannidis were rather excessive. Using more modern estimates of the field and velocity values I show that the solar wind convection can penetrate as deep as 40 RJ on the dawnside. I will present a new model of convection that invokes in addition to a distant neutral line spanning the whole magnetotail, a near-Jupiter neutral line only on the dawnside. I will discuss how the internal and external drivers together set up a convection system and transport plasma and magnetic flux in Jupiter's magnetosphere. I will explore the consequences of this convection system on the flows, current sheet and the Jovian aurorae.
Hot Ion Flows in the Distant Magnetotail: ARTEMIS Observations From Lunar Orbit to ˜-200 RE
NASA Astrophysics Data System (ADS)
Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Vasko, I. Y.
2017-10-01
Plasma energization in Earth's magnetotail is supported by acceleration processes in (and around) magnetic reconnection regions. Hot plasma flows and strong electromagnetic waves, generated by magnetic energy release during reconnection, transport energy necessary for current system intensification and particle acceleration in the inner magnetosphere. Earth's magnetotail configuration includes two main reconnection regions (X lines): the near-Earth X line, which has been well studied by several multispacecraft missions, and the distant X line, which has been much less investigated. In this paper, we utilize the unique data set gathered by two ARTEMIS spacecraft in 2010 at radial distances between lunar orbit and ˜200 RE (Earth radii). We identify an X line at around ˜80 RE and collect statistics on hot plasma flows observed around and beyond this distance. Ion spectra within these flows are well fitted by a power law with the exponential tail starting above an energy ɛ0˜ 2-5 keV. Assuming that these spectra are originated at the distant X line, we examine the characteristics of the acceleration at the distant tail reconnection region.
H+ and O+ dynamics during ultra-low frequency waves in the Earth's magnetotail plasma sheet
NASA Astrophysics Data System (ADS)
De Spiegeleer, Alexandre; Hamrin, Maria; Pitkänen, Timo; Volwerk, Martin; Mouikis, Christopher; Kistler, Lynn; Nilsson, Hans; Norqvist, Patrik; Andersson, Laila
2017-04-01
The concentration of ionospheric oxygen (O^+) in the magnetotail plasma sheet can be relatively elevated depending on, for instance, the geomagnetic activity as well as the solar cycle. The dynamics of the tail plasma sheet can be affected by the presence of O+ via for example the generation of instabilities such as the Kelvin-Helmholtz instability. However, the O+ is not always taken into account when studying the dynamics of the tail plasma sheet. We investigate proton (H^+) and O+ during ultra-low frequency waves (period > 5 min) in the mid-tail plasma sheet (beyond 10R_E) using Cluster data. We observe that the velocity of O+ can be significantly different from that of H^+. When occuring, this velocity difference always seems to be in the direction parallel to the magnetic field. The parallel velocity of the two species can be observed to be somewhat out of phase, meaning that while one species flows in the parallel direction, the other flows in the anti-parallel direction. Possible causes for such large discrepancies between the dynamics of O+ and H+ are discussed.
NASA Astrophysics Data System (ADS)
Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.
2017-12-01
It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.
NASA Technical Reports Server (NTRS)
Lennartsson, W.
1992-01-01
Based on He(2+) and H(-) ion composition data from the Plasma Composition Experiment on ISEE 1, a scenario is proposed for the solar wind penetration of the earth's magnetic tail, which does not require that the solar wind plasma be magnetized. While this study does not take issue with the notion that earth's magnetic field merges with the solar wind magnetic field on a regular basis, it focuses on certain aspects of interaction between the solar wind particles and the earth's field, e.g, the fact that the geomagnetic tail always has a plasma sheet, even during times when the physical signs of magnetic merging are weak or absent. It is argued that the solar plasma enters along slots between the tail lobes and the plasma sheet, even quite close to earth, convected inward along the plasma sheet boundary layer or adjacent to it, by the electric fringe field of the ever present low-latitude magnetopause boundary layer (LLBL). The required E x B drifts are produced by closing LLBL equipotential surfaces through the plasma sheet.
Electromagnetic tornadoes in space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, T.; Crew, G.B.; Retterer, J.M.
1988-01-01
The exotic phenomenon of energetic-ion conic formation by plasma waves in the magnetosphere is considered. Two particular transverse heating mechanisms are reviewed in detail; lower-hybrid energization of ions in the boundary layer of the plasma sheet and electromagnetic ion cyclotron resonance heating in the central region of the plasma sheet. Mean particle calculations, plasma simulations and analytical treatments of the heating processes are described.
Preliminary characterization of a laser-generated plasma sheet
Keiter, P. A.; Malamud, G.; Trantham, M.; ...
2014-12-10
We present the results from recent experiments to create a flowing plasma sheet. Two groups of three laser beams with nominally 1.5 kJ of energy per group were focused to separate pointing locations, driving a shock into a wedge target. As the shock breaks out of the wedge, the plasma is focused on center, creating a sheet of plasma. Measurements at 60 ns indicate the plasma sheet has propagated 2825 microns with an average velocity of 49 microns/ns. These experiments follow previous experiments, which are aimed at studying similar physics as that found in the hot spot region of cataclysmicmore » variables. Krauland et al created a flowing plasma, which represents the flowing plasma from the secondary star. This flow interacted with a stationary object, which represented the disk around the white dwarf. A reverse shock is a shock formed when a freely expanding plasma encounters an obstacle. Reverse shocks can be generated by a blast wave propagating through a medium. As a result, they can also be found in binary star systems where the flowing gas from a companion star interacts with the accretion disk of the primary star.« less
Slow Mode Waves in the Heliospheric Plasma Sheet
NASA Technical Reports Server (NTRS)
Smith, Edward. J.; Zhou, Xiaoyan
2007-01-01
We report the results of a search for waves/turbulence in the Heliospheric Plasma Sheet (HPS) surrounding the Heliospheric Current Sheet (HCS). The HPS is treated as a distinctive heliospheric structure distinguished by relatively high Beta, slow speed plasma. The data used in the investigation are from a previously published study of the thicknesses of the HPS and HCS that were obtained in January to May 2004 when Ulysses was near aphelion at 5 AU. The advantage of using these data is that the HPS is thicker at large radial distances and the spacecraft spends longer intervals inside the plasma sheet. From the study of the magnetic field and solar wind velocity components, we conclude that, if Alfven waves are present, they are weak and are dominated by variations in the field magnitude, B, and solar wind density, NP, that are anti-correlated.
Hierarchical regrowth of flowerlike nanographene sheets on oxygen-plasma-treated carbon nanowalls
NASA Astrophysics Data System (ADS)
Shimoeda, Hironao; Kondo, Hiroki; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru
2014-04-01
Cauliflorous nanographene sheets were hierarchically regrown on the spearlike structures of carbon nanowalls (CNWs) produced by O2-plasma etching. The spears on the CNWs acted as a stem for the growth of flowerlike flaky nanographene sheets, where the root of the nanoflower was located at a defect or disordered site. The defects on the graphitic structures were induced by irradiation with oxygen-related radicals and ions in the O2-based plasmas and acted as sites for the nucleation of flowerlike nanographene. The porous carbon nanostructures regrown after O2-plasma treatment have a relatively higher surface area and are thus promising materials for electrochemical applications.
Consequences of wave-particle interactions on chaotic acceleration
NASA Technical Reports Server (NTRS)
Schriver, David; Ashour-Abdalla, Maha
1991-01-01
The recent model of Ashour-Abdalla et al. (1991) has proposed that the earth's plasma sheet can be formed by chaotic acceleration in a magnetotail-like field configuration. The ion velocity distributions created by chaotic acceleration have unstable features and represent robust free energy sources for kinetic plasma waves that can modify the original distributions. In the plasma sheet boundary layer, field-aligned ion beamlets are formed which drive a host of instabilities creating a broadbanded noise spectrum and cause thermal spreading of the beamlets. In addition, there is strong heating of any cold background plasma that may be present. In the central plasma sheet, ion antiloss cone distributions are created which are unstable to very low frequency waves that saturate by filling the antiloss cone.
Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment
NASA Astrophysics Data System (ADS)
Schaffner, D. A.
2015-12-01
The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.
Can Steady Magnetospheric Convection Events Inject Plasma into the Ring Current?
NASA Astrophysics Data System (ADS)
Lemon, C.; Chen, M. W.; Guild, T. B.
2009-12-01
Steady Magnetospheric Convection (SMC) events are characterized by several-hour periods of enhanced convection that are devoid of substorm signatures. There has long been a debate about whether substorms are necessary to inject plasma into the ring current, or whether enhanced convection is sufficient. If ring current injections occur during SMC intervals, this would suggest that substorms are unnecessary. We use a combination of simulations and data observations to examine this topic. Our simulation model computes the energy-dependent plasma drift in a self-consistent electric and magnetic field, which allows us to accurately model the transport of plasma from the plasma sheet (where the plasma pressure is much larger than the magnetic pressure) into the inner magnetosphere (where plasma pressure is much less than the magnetic pressure). In regions where the two pressures are comparable (i.e. the inner plasma sheet), feedback between the plasma and magnetic field is critical for accurately modeling the physical evolution of the system. Our previous work has suggested that entropy losses in the plasma sheet (such as caused by substorms) may be necessary to inject a ring current. However, it is not yet clear whether other small-scale processes (e.g. bursty bulk flows) can provide sufficient entropy loss in the plasma sheet to allow for the penetration of plasma into the ring current. We combine our simulation results with data observations in order to better understand the physical processes required to inject a ring current.
Reconnection AND Bursty Bulk Flow Associated Turbulence IN THE Earth'S Plasma Sheet
NASA Astrophysics Data System (ADS)
Voros, Z.; Nakamura, R.; Baumjohann, W.; Runov, A.; Volwerk, M.; Jankovicova, D.; Balogh, A.; Klecker, B.
2006-12-01
Reconnection related fast flows in the Earth's plasma sheet can be associated with several accompanying phenomena, such as magnetic field dipolarization, current sheet thinning and turbulence. Statistical analysis of multi-scale properties of turbulence facilitates to understand the interaction of the plasma flow with the dipolar magnetic field and to recognize the remote or nearby temporal and spatial characteristics of reconnection. The main emphasis of this presentation is on differentiating between the specific statistical features of flow associated fluctuations at different distances from the reconnection site.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Mcpherron, R. L.
1990-01-01
A qualitative model of cross-tail current flow is considered. It is suggested that when magnetic reconnection begins, the current effectively flows across the plasma sheet both earthward and tailward of the disruption region near the neutral line. It is shown that an enhanced cross-tail current earthward of this region would thin the plasma sheet substantially due to the magnetic pinch effect. The results explain the very taillike field and extreme particle dropouts often seen late in substorm growth phases.
Cross-tail current - Resonant orbits
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Lu, Chen
1993-01-01
A technique to generate self-consistent 1D current sheets is described. Groups of monoenergetic protons were followed in a modified Harris magnetic field. This sample current sheet is characterized by resonant quasi-adiabatic orbits. The magnetic moment of a quasi-adiabatic ion which is injected from outside a current sheet changes substantially during the orbit but returns to almost its initial value by the time the ion leaves. Several ion and electron groups were combined to produce a plasma sheet in which the charged particles carry the currents needed to generate the magnetic field in which the orbits were traced. An electric field also is required to maintain charge neutrality. Three distinct orbit types, one involving untrapped ions and two composed of trapped ions, were identified. Limitations associated with the use of a 1D model also were investigated; it can provide a good physical picture of an important component of the cross-tail current, but cannot adequately describe any region of the magnetotail in which the principal current sheet is separated from the plasma sheet boundary layer by a nearly isotropic outer position of the central plasma sheet.
Towards a complete conceptual model of substorm onsets and expansions
NASA Technical Reports Server (NTRS)
Erickson, Gary M.; Burke, William J.; Heinemann, Michael; Samson, John C.; Maynard, Nelson C.
1996-01-01
Observational results from the CRRES satellite near times of substorm onsets support the theoretical premise that substorms initiate near the inner edge of the plasma sheet. The region is connected latitudinally to the equatorward-most pre-breakup arc. During the growth phase, the inner edge of the plasma sheet moves towards the earth. This motion is modulated by various cavity oscillations of the magnetosphere-ionosphere coupled magnetosphere. This modulation can locally reverse the background convection electric field. The reversed convection taps energy stored in the inner-edge region of the plasma sheet. The near earth plasma sheet moves out of equilibrium with the lobes, and a rarefaction is launched tailward. This allows current driven dissipation to grow and a near-earth X-line to form. A model is presented which explains the observations of the CRRES satellite, and can account for the behavior associated with auroral intensification and substorm onset.
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Harries, W. L.
1978-01-01
A new staged plasma-focus geometry combining two Mather-type plasma-focus guns was constructed, and the current-sheet dynamics were investigated. The production of simultaneous pairs of plasma foci was achieved. The intensities of X-ray and fusion-neutron emission were measured and found to agree with the scaling law for a plasma focus. Advantages of this new geometry include the possibility of using plasma-focus type pinches in multiple arrays at power levels beyond the validity regime of the current scaling law for a single gun.
Plasma Sheet Injections into the Inner Magnetosphere: Two-way Coupled OpenGGCM-RCM model results
NASA Astrophysics Data System (ADS)
Raeder, J.; Cramer, W. D.; Toffoletto, F.; Gilson, M. L.; Hu, B.
2017-12-01
Plasma sheet injections associated with low flux tube entropy bubbles have been found to be the primary means of mass transport from the plasma sheet to the inner magnetosphere. A two-way coupled global magnetosphere-ring current model, where the magnetosphere is modeled by the OpenGGCM MHD model and the ring current is modeled by the Rice Convection Model (RCM), is used to determine the frequency of association of bubbles with injections and inward plasma transport, as well as typical injection characteristics. Multiple geomagnetic storms and quiet periods are simulated to track and characterize inward flow behavior. Dependence on geomagnetic activity levels or drivers is also examined.
Observations of nonadiabatic acceleration of ions in Earth's magnetotail
NASA Technical Reports Server (NTRS)
Frank, L. A.; Paterson, W. R.; Kivelson, M. G.
1994-01-01
We present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth's magnetotail at geocentric radial distances 35 to 87 R(sub E). These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the 'lima bean' shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, 'lima bean' shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. It is suggested that the colder, lower-speed proton velocity distributions are the result of fractional or few gyromotions before ejection out of the current sheet, but this speculation must be further investigated with appropriate kinetic simulation of trajectories.
Ion precipitation from the inner plasma sheet due to stochastic diffusion
NASA Technical Reports Server (NTRS)
Zelenyi, L.; Galeev, A.; Kennel, C. F.
1990-01-01
Plasma sheet ions do not conserve their first adiabatic invariant when the magnetic field is appreciably tail-like. They do conserve a different adiabatic invariant but only to linear, rather than exponential, accuracy in the appropriate small parameter. Thus significant stochastic diffusion can occur for particles crossing the separatrix dividing the segments of orbits on which the particles cross and do not cross the tail midplane. Such ions can escape the plasma sheet and precipitate into the atmosphere. Stochastic scattering is strongest from those field lines where the ion's Larmor period in the normal component of the neutral sheet magnetic field approximately equals its bounce period. By comparing the rates of stochastic ion loss and convection in the tail, it is possible to estimate the location and thickness of the inner edge of the ion plasma sheet created by stochastic ion loss. Ions of different masses precipitate into the atmosphere at slightly different locations. Since wave particle interactions are not needed, this precipitation will always occur and should be particularly evident during quiet geomagnetic conditions, when it is less likely to be masked by other precipitation mechanisms.
Criticality and turbulence in a resistive magnetohydrodynamic current sheet
NASA Astrophysics Data System (ADS)
Klimas, Alexander J.; Uritsky, Vadim M.
2017-02-01
Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.
Criticality and turbulence in a resistive magnetohydrodynamic current sheet.
Klimas, Alexander J; Uritsky, Vadim M
2017-02-01
Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.
The kappa Distribution as Tool in Investigating Hot Plasmas in the Magnetospheres of Outer Planets
NASA Astrophysics Data System (ADS)
Krimigis, S. M.; Carbary, J. F.
2014-12-01
The first use of a Maxwellian distribution with a high-energy tail (a κ-function) was made by Olbert (1968) and applied by Vasyliunas (1968) in analyzing electron data. The k-function combines aspects of both Maxwellian and power law forms to provide a reasonably complete description of particle density, temperature, pressure and convection velocity, all of which are key parameters of magnetospheric physics. Krimigis et al (1979) used it to describe flowing plasma ions in Jupiter's magnetosphere measured by Voyager 1, and obtained temperatures in the range of 20 to 35 keV. Sarris et al (1981) used the κ-function to describe plasmas in Earth's distant plasma sheet. The κ-function, in various formulations and names (e. g., γ-thermal distribution, Krimigis and Roelof, 1983) has been used routinely to parametrize hot, flowing plasmas in the magnetospheres of the outer planets, with typical kT ~ 10 to 50 keV. Using angular measurements, it has been possible to obtain pitch angle distributions and convective flow directions in sufficient detail for computations of temperatures and densities of hot particle pressures. These 'hot' pressures typically dominate the cold plasma pressures in the high beta (β > 1) magnetospheres of Jupiter and Saturn, but are of less importance in the relatively empty (β < 1) magnetospheres of Uranus and Neptune. Thus, the κ-function represents an effective tool in analyzing plasma behavior in planetary magnetospheres, but it is not applicable in all plasma environments. References Olbert, S., in Physics of the Magnetosphere, (Carovillano, McClay, Radoski, Eds), Springer-Verlag, New York, p. 641-659, 1968 Vasyliunas, V., J. Geophys. Res., 73(9), 2839-2884, 1968 Krimigis, S. M., et al, Science 204, 998-1003, 1979 Sarris, E., et al, Geophys. Res. Lett. 8, 349-352, 1981 Krimigis, S. M., and E. C. Roelof, Physics of the Jovian Magnetosphere, edited by A. J. Dessler, 106-156, Cambridge University Press, New York, 1983
NASA Astrophysics Data System (ADS)
Yoshizumi, M.; Shinohara, I.; Nagai, T.; Kanazawa, K.; Mitani, T.; Kasahara, S.; Kazama, Y.; Wang, B. J.; Wang, S. Y.; Tam, S. W. Y.; Higashio, N.; Matsuoka, A.; Asamura, K.; Yokota, S.; Takashima, T.
2017-12-01
The Arase satellite was successfully launched on Dec. 20, 2016, and it has started the regular mission observation since the end of March, 2017. The orbital inclination of Arase is about 31 degree, so that Arase is possible to observe higher L-value plasma sheet close to the plasma sheet boundary. During this summer, the local time of the apogee is located at near the midnight, and Arase observed the plasma sheet just outside of the outer radiation belt as expected. In these observations, we found that energetic electron bursts up to 500 keV frequently appear in the plasma sheet. Possible sources of these energetic electron bursts of a few hundreds keV near thein higher L-value region are (1) directly accelerated from magnetotail reconnection sites and (2) dispersion-less injections. It is interesting to distinguish the acceleration source of them and address each contribution of the energy input to the outer radiation belt for understanding the relation between magnetotail reconnection and the acceleration of MeV electrons in the radiation belts. We will present the initial results on the characteristics of the observed energetic electron bursts by using the wide-range electron distribution measurements from 10 eV to 20 MeV.
Joule heating and runaway electron acceleration in a solar flare
NASA Technical Reports Server (NTRS)
Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.
1989-01-01
The hard and soft x ray and microwave emissions from a solar flare (May 14, 1980) were analyzed and interpreted in terms of Joule heating and runaway electron acceleration in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft x ray emitting plasma can only be heated by a single current sheet if the resistivity in the sheet is well above the classical, collisional resistivity of 10(exp 7) K, 10(exp 11)/cu cm plasma. If the hard x ray emission is from thermal electrons, anomalous resistivity or densities exceeding 3 x 10(exp 12)/cu cm are required. If the hard x ray emission is from nonthermal electrons, the emissions can be produced with classical resistivity in the current sheets if the heating rate is approximately 4 times greater than that deduced from the soft x ray data (with a density of 10(exp 10)/cu cm in the soft x ray emitting region), if there are at least 10(exp 4) current sheets, and if the plasma properties in the sheets are characteristic of the superhot plasma observed in some flares by Lin et al., and with Hinotori. Most of the released energy goes directly into bulk heating, rather than accelerated particles.
NASA Technical Reports Server (NTRS)
Hwang, K.-J.; Goldstein, M. L.; Moore, T. E.; Walsh, B. M.; Baishev, D. G.; Moiseyev, A. V.; Shevtsov, B. M.; Yumoto, K.
2014-01-01
A case study is presented using measurements from the Cluster spacecraft and ground-based magnetometers that show a substorm onset propagating from the inner to outer plasma sheet. On 3 October 2005, Cluster, traversing an ion-scale current sheet at the near-Earth plasma sheet, detected a sudden enhancement of Bz, which was immediately followed by a series of flux rope structures. Both the local Bz enhancement and flux ropes propagated tailward. Approximately 5 min later, another Bz enhancement, followed by a large density decrease, was observed to rapidly propagate earthward. Between the two Bz enhancements, a significant removal of magnetic flux occurred, possibly resulting from the tailward moving Bz enhancement and flux ropes. In our scenario, this flux removal caused the magnetotail to be globally stretched so that the thinnest sheet formed tailward of Cluster. The thinned current sheet facilitated magnetic reconnection that quickly evolved from plasma sheet to lobe and generated the later earthward moving dipolarization front (DF) followed by a reduction in density and entropy. Ground magnetograms located near the meridian of Cluster's magnetic foot points show two-step bay enhancements. The positive bay associated with the first Bz enhancement indicates that the substorm onset signatures propagated from the inner to the outer plasma sheet, consistent with the Cluster observation. The more intense bay features associated with the later DF are consistent with the earthward motion of the front. The event suggests that current disruption signatures that originated in the near-Earth current sheet propagated tailward, triggering or facilitating midtail reconnection, thereby preconditioning the magnetosphere for a later strong substorm enhancement.
NASA Astrophysics Data System (ADS)
Lemon, C.; Chen, M.; O'Brien, T. P.; Toffoletto, F.; Sazykin, S.; Wolf, R.; Kumar, V.
2006-12-01
We present simulation results of the Rice Convection Model-Equilibrium (RCM-E) that test and compare the effect on the storm time ring current of varying the plasma sheet source population characteristics at 6.6 Re during magnetic storms. Previous work has shown that direct injection of ionospheric plasma into the ring current is not a significant source of ring current plasma, suggesting that the plasma sheet is the only source. However, storm time processes in the plasma sheet and inner magnetosphere are very complex, due in large part to the feedback interactions between the plasma distribution, magnetic field, and electric field. We are particularly interested in understanding the role of the plasma sheet entropy parameter (PV^{5/3}, where V=\\int ds/B) in determining the strength and distribution of the ring current in both the main and recovery phases of a storm. Plasma temperature and density can be measured from geosynchrorous orbiting satellites, and these are often used to provide boundary conditions for ring current simulations. However, magnetic field measurements in this region are less commonly available, and there is a relatively poor understanding of the interplay between the plasma and the magnetic field during magnetic storms. The entropy parameter is a quantity that incorporates both the plasma and the magnetic field, and understanding its role in the ring current injection and recovery is essential to describing the processes that are occuring during magnetic storms. The RCM-E includes the physics of feedback between the plasma and both the electric and magnetic fields, and is therefore a valuable tool for understanding these complex storm-time processes. By contrasting the effects of different plasma boundary conditions at geosynchronous orbit, we shed light on the physical processes involved in ring current injection and recovery.
Plasma Measurements in an Integrated-System FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.
2007-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current sheet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster[1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). A benchtop FARAD thruster was designed following guidelines and similarity performance parameters presented in Refs. [3,4]. This design is described in detail in Ref. [5]. In this paper, we present the temporally and spatially resolved measurements of the preionized plasma and inductively-accelerated current sheet in the FARAD thruster operating with a Vector Inversion Generator (VIG) to preionize the gas and a Bernardes and Merryman circuit topology to provide inductive acceleration. The acceleration stage operates on the order of 100 J/pulse. Fast-framing photography will be used to produce a time-resolved, global view of the evolving current sheet. Local diagnostics used include a fast ionization gauge capable of mapping the gas distribution prior to plasma initiation; direct measurement of the induced magnetic field using B-dot probes, induced azimuthal current measurement using a mini-Rogowski coil, and direct probing of the number density and electron temperature using triple probes.
Two-dimensional potential double layers and discrete auroras
NASA Technical Reports Server (NTRS)
Kan, J. R.; Lee, L. C.; Akasofu, S.-I.
1979-01-01
This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.
Reconnection in Planetary Magnetospheres
NASA Technical Reports Server (NTRS)
Russell, C. T.
2000-01-01
Current sheets in planetary magnetospheres that lie between regions of "oppositely-directed" magnetic field are either magnetopause-like, separating plasmas with different properties, or tail-like, separating plasmas of rather similar properties. The magnetopause current sheets generally have a nearly limitless supply of magnetized plasma that can reconnect, possibly setting up steady-state reconnection. In contrast, the plasma on either side of a tail current sheet is stratified so that, as reconnection occurs, the plasma properties, in particular the Alfven velocity, change. If the density drops and the magnetic field increases markedly perpendicular to the sheet, explosive reconnection can occur. Even though steady state reconnection can take place at magnetopause current sheets, the process often appears to be periodic as if a certain low average rate was demanded by the conditions but only a rapid rate was available. Reconnection of sheared fields has been postulated to create magnetic ropes in the solar corona, at the Earth's magnetopause, and in the magnetotail. However, this is not the only way to produce magnetic ropes as the Venus ionosphere shows. The geometry of the reconnecting regions and the plasma conditions both can affect the rate of reconnection. Sorting out the various controlling factors can be assisted through the examination of reconnection in planetary settings. In particular we observe similar small-scale tearing in the magnetopause current layers of the Earth, Saturn. Uranus and Neptune and the magnetodisk current sheet at Jupiter. These sites may be seeds for rapid reconnection if the reconnection site reaches a high Alfven velocity region. In the Jupiter magnetosphere this appears to be achieved with resultant substorm activity. Similar seeds may be present in the Earth's magnetotail with the first one to reach explosive growth dominating the dynamics of the tail.
NASA Astrophysics Data System (ADS)
Lyons, L. R.; Zou, S.; Heinselman, C. J.; Nicolls, M. J.; Anderson, P. C.
2009-05-01
The plasma sheet moves earthward (equatorward in the ionosphere) after enhancements in convection, and the electrodynamics of this response is strongly influenced by Region 2 magnetosphere-ionosphere coupling. We have used Poker Flat Advanced Modular Incoherent Scatter Radar (PFISR) observations associated with two relatively abrupt southward turnings of the IMF to provide an initial evaluation of aspects of this response. The observations show that strong westward sub-auroral polarization streams (SAPS) flow regions moved equatorward as the plasma sheet electron precipitation (the diffuse aurora) penetrated equatorward following the IMF southward turnings. Consistent with our identification of these flows as SAPS, concurrent DMSP particle precipitation measurements show the equatorial boundary of ion precipitation equatorward of the electron precipitation boundary and that westward flows lie within the low-conductivity region between the two boundaries where the plasma sheet ion pressure gradient is expected to drive downward R2 currents. Evidence for these downward currents is seen in the DMSP magnetometer observations. Preliminary examination indicates that the SAPS response seen in the examples presented here may be common. However, detailed analysis will be required for many more events to reliably determine if this is the case. If so, it would imply that SAPS are frequently an important aspect of the inner magnetospheric electric field distribution, and that they are critical for understanding the response of the magnetosphere-ionosphere system to enhancements in convection, including understanding the earthward penetration of the plasma sheet. This earthward penetration is critical to geomagnetic disturbance phenomena such as the substorm growth phase and the formation of the stormtime ring current. Additionally, for one example, a prompt electric field response to the IMF southward turnings is seen within the inner plasma sheet.
Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.
2004-01-01
Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.
Synthesis of N-graphene using microwave plasma-based methods
NASA Astrophysics Data System (ADS)
Dias, Ana; Tatarova, Elena; Henriques, Julio; Dias, Francisco; Felizardo, Edgar; Abrashev, Miroslav; Bundaleski, Nenad; Cvelbar, Uros
2016-09-01
In this work a microwave atmospheric plasma driven by surface waves is used to produce free-standing graphene sheets (FSG). Carbonaceous precursors are injected into a microwave plasma environment, where decomposition processes take place. The transport of plasma generated gas-phase carbon atoms and molecules into colder zones of plasma reactor results in carbon nuclei formation. The main part of the solid carbon is gradually carried from the ``hot'' plasma zone into the outlet plasma stream where carbon nanostructures assemble and grow. Subsequently, the graphene sheets have been N-doped using a N2-Ar large-scale remote plasma treatment, which consists on placing the FSG on a substrate in a remote zone of the N2-Ar plasma. The samples were treated with different compositions of N2-Ar gas mixtures, while maintaining 1 mbar pressure in the chamber and a power applied of 600 W. The N-doped graphene sheets were characterized by scanning and by high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Plasma characterization was also performed by optical emission spectroscopy. Work partially funded by Portuguese FCT - Fundacao para a Ciencia e a Tecnologia, under grant SFRH/BD/52413/2013 (PD-F APPLAuSE).
Spectroscopic Diagnostics of Electric Fields in the Plasma of Current Sheets
NASA Astrophysics Data System (ADS)
Gavrilenko, Valeri; Kyrie, Natalya P.; Frank, Anna G.; Oks, Eugene
2004-11-01
Spectroscopic measurements of electric fields (EFs) in current sheet plasmas were performed in the CS-3D device. The device is intended to study the evolution of current sheets and the magnetic reconnection phenomena. We used the broadening of spectral lines (SLs) of HeII ions for diagnostics of EFs in the current sheet middle plane, and the broadening of SLs of HeI atoms for detection of EFs in the current sheet peripheral regions. For detection of EFs in current sheet plasma, we used SLs of HeII ions at 468.6; 320.3 and 656.0 nm, as well as SLs of HeI atoms at 667.8; 587.6; 492.2 and 447.1 nm. The latter two lines are of a special interest since their profiles include the dipole-forbidden components along with the allowed components. The experimental data have been analyzed by using the numerical calculations based on the Model Microfield Method. The maximum plasma density in the middle of the sheet was in the range (2-8) × 10^16 cm-3, the density in the peripheral regions was (1-2)×10^15 cm-3, and the strength of the quasi-one-dimensional anomalous electric fields in the peripheral regions reached the value of 100 kV/cm. Supported by CRDF, grant RU-P1-2594-MO-04; by the RFBR, grant 03-02-17282; and by the ISTC, project 2098.
The effects of magnetic B(y) component on geomagnetic tail equilibria
NASA Technical Reports Server (NTRS)
Hilmer, Robert V.; Voigt, Gerd-Hannes
1987-01-01
A two-dimensional linear magnetohydrostatic model of the magnetotail is developed here in order to investigate the effects of a significant B(y) component on the configuration of magnetotail equilibria. It is concluded that the enhanced B(y) values must be an essential part of the quiet magnetotail and do not result from a simple intrusion of the IMF. The B(y) field consists of a constant background component plus a nonuniform field existing only in the plasma sheet, where it is dependent on the plasma paramater beta and the strength of the magnetic B(z) component. B(y) is strongest at the neutral sheet and decreases monotonically in the + or - z direction, reaching a constant tail lobe value at the plasma sheet boundaries. The presence of a significant positive B(y) component produces currents, including field-aligned currents, that flow through the equatorial plane and toward and away from earth in the northern and southern halves of the plasma sheet, respectively.
Observations of ionospheric electron beams in the plasma sheet.
Zheng, H; Fu, S Y; Zong, Q G; Pu, Z Y; Wang, Y F; Parks, G K
2012-11-16
Electrons streaming along the magnetic field direction are frequently observed in the plasma sheet of Earth's geomagnetic tail. The impact of these field-aligned electrons on the dynamics of the geomagnetic tail is however not well understood. Here we report the first detection of field-aligned electrons with fluxes increasing at ~1 keV forming a "cool" beam just prior to the dissipation of energy in the current sheet. These field-aligned beams at ~15 R(E) in the plasma sheet are nearly identical to those commonly observed at auroral altitudes, suggesting the beams are auroral electrons accelerated upward by electric fields parallel (E([parallel])) to the geomagnetic field. The density of the beams relative to the ambient electron density is δn(b)/n(e)~5-13% and the current carried by the beams is ~10(-8)-10(-7) A m(-2). These beams in high β plasmas with large density and temperature gradients appear to satisfy the Bohm criteria to initiate current driven instabilities.
Multi-scale multi-point observation of dipolarization in the near-Earth's magnetotail
NASA Astrophysics Data System (ADS)
Nakamura, R.; Varsani, A.; Genestreti, K.; Nakamura, T.; Baumjohann, W.; Birn, J.; Le Contel, O.; Nagai, T.
2017-12-01
We report on evolution of the dipolarization in the near-Earth plasma sheet during two intense substorms based on observations when the four spacecraft of the Magnetospheric Multiscale (MMS) together with GOES and Geotail were located in the near Earth magnetotail. These multiple spacecraft together with the ground-based magnetogram enabled to obtain the location of the large- scale substorm current wedge (SCW) and overall changes in the plasma sheet configuration. MMS was located in the southern hemisphere at the outer plasma sheet and observed fast flow disturbances associated with dipolarizations. The high time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and the flow disturbances separately and to resolve signatures below the ion-scales. We found small-scale transient field-aligned current sheets associated with upward streaming cold plasmas and Hall-current layers in the fast flow shear region. Observations of these current structures are compared with simulations of reconnection jets.
Simultaneous measurements of magnetotail dynamics by IMP spacecraft
NASA Technical Reports Server (NTRS)
Fairfield, D. H.; Lepping, R. P.; Hones, E. W., Jr.; Bame, S. J.; Asbridge, J. R.
1980-01-01
Changes in tail energy density during substorms in the magnetotail are given. In addition to plasma sheet thinnings seen prior to substorm onsets, a gradual decrease in plasma beta was detected in the deep tail which precedes onset and the more prominent plasma disappearance that typically accompanies it. The frequency of thinnings and the regions over which they occurred indicate that drastic changes in plasma sheet thickness are common features of substorms which occur at all locations across the tail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, T.; Crew, G.B.; Retterer, J.M.
1988-01-01
The exotic phenomenon of energetic ion-conic formation by plasma waves in the magnetosphere is considered. Two particular transverse heating mechanisms are reviewed in detail: lower-hybrid energization of ions in the boundary layer of the plasma sheet, and electromagnetic ion cyclotron resonance heating in the central region of the plasma sheet. Mean particle calculations, plasma simulations, and analytical treatments of the heating processes are described.
NASA Astrophysics Data System (ADS)
Gkioulidou, M.; Wang, C.; Wing, S.; Lyons, L. R.; Wolf, R. A.; Hsu, T.
2012-12-01
Transport of plasma sheet particles into the ring current region is strongly affected by the penetrating convection electric field, which is the result of the large-scale magnetosphere-ionosphere (M-I) electromagnetic coupling. One of the main factors controlling this coupling is the ionospheric conductance. As plasma sheet electrons drift earthward, they get scattered into the loss cone due to wave-particle interactions and precipitate to the ionosphere, producing auroral conductance. Realistic electron loss is thus important for modeling the (M-I) coupling and penetration of plasma sheet into the inner magnetosphere. To evaluate the significance of electron loss rate, we used the Rice Convection Model (RCM) coupled with a force-balanced magnetic field to simulate plasma sheet transport under different electron loss rates and under self-consistent electric and magnetic field. The plasma sheet ion and electron sources for the simulations are based on the Geotail observations. Two major rates are used: different portions of i) strong pitch-angle diffusion everywhere electron loss rate (strong rate) and ii) a more realistic loss rate with its MLT dependence determined by wave activity (MLT rate). We found that the dawn-dusk asymmetry in the precipitating electron energy flux under the MLT rate, with much higher energy flux at dawn than at dusk, agrees better with statistical DMSP observations. Electrons trapped inside L ~ 8 RE can remain there for many hours under the MLT rate, while those under the strong rate get lost within minutes. Compared with the strong rate, the remaining electrons under the MLT rate cause higher conductance at lower latitudes, allowing for less efficient electric field shielding to convection enhancement, thus further earthward penetration of the plasma sheet into the inner magnetosphere. Therefore, our simulation results indicate that the electron loss rate can significantly affect the electrodynamics of the ring current region. Development of a more realistic electron loss rate model for the inner magnetosphere is thus much needed and will become feasible with new observations from the upcoming RBSP mission.
Electric fields in the plasma sheet and plasma sheet boundary layer
NASA Technical Reports Server (NTRS)
Pedersen, A.; Knott, K.; Cattell, C. A.; Mozer, F. S.; Falthammar, C.-G.; Lindqvist, P.-A.; Manka, R. H.
1985-01-01
Results obtained by Forbes et al. (1981) on the basis of time delay measurements between ISEE 1 and ISEE 2 imply that the plasma flow and the boundary contracting velocity were nearly the same, whereas the expanding boundary velocity was not accompanied by any significant plasma sheet plasma motion. In the present study, this observation is discussed in conjunction with electric field data. The study is based on electric field data from the spherical double probe experiment on ISEE 1. Electric field data from GEOS 2 are used to some extent to monitor the electric fields near the geostationary orbit during the considered eve nts. Electric field data during CDAW 6 events are discussed, taking into account positions of ISEE 1/ISEE 2 and GEOS 2; March 22, 0600-1300 UT; and March 22, UT; and March 31, 1400-2400 UT.
Kinetic Studies of Thin Current Sheets at Magnetosheath Jets
NASA Astrophysics Data System (ADS)
Eriksson, E.; Vaivads, A.; Khotyaintsev, Y. V.; Graham, D. B.; Yordanova, E.; Hietala, H.; Markidis, S.; Giles, B. L.; Andre, M.; Russell, C. T.; Le Contel, O.; Burch, J. L.
2017-12-01
In near-Earth space one of the most turbulent plasma environments is the magnetosheath (MSH) downstream of the quasi-parallel shock. The particle acceleration and plasma thermalization processes there are still not fully understood. Regions of strong localized currents are believed to play a key role in those processes. The Magnetospheric Multiscale (MMS) mission has sufficiently high cadence to study these processes in detail. We present details of studies of two different events that contain strong current regions inside the MSH downstream of the quasi-parallel shock. In both cases the shape of the current region is in the form of a sheet, however they show internal 3D structure on the scale of the spacecraft separation (15 and 20 km, respectively). Both current sheets have a normal magnetic field component different from zero indicating that the regions at the different sides of the current sheets are magnetically connected. Both current sheets are boundaries between two different plasma regions. Furthermore, both current sheets are observed at MSH jets. These jets are characterized by localized dynamic pressure being larger than the solar wind dynamic pressure. One current sheet does not seem to be reconnecting while the other shows reconnection signatures. Inside the non-reconnecting current sheet we observe locally accelerated electron beams along the magnetic field. At energies above the beam energy we observe a loss cone consistent with part of the hot MSH-like electrons escaping into the colder solar wind-like plasma. This suggests that the acceleration process within this current sheet is similar to the one that occurs at the bow shock, where electron beams and loss cones are also observed. Therefore, we conclude that electron beams observed in the MSH do not have to originate from the bow shock, but can also be generated locally inside the MSH. The reconnecting current sheet also shows signs of thermalization and electron acceleration processes that are discussed in detail.
Estimates of magnetic flux, and energy balance in the plasma sheet during substorm expansion
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, Joachim; Pulkkinen, Tuija
1996-01-01
The energy and magnetic flux budgets of the magnetotail plasma sheet during substorm expansion are investigated. The possible mechanisms that change the energy content of the closed field line region which contains all the major dissipation mechanisms of relevance during substorms, are considered. The compression of the plasma sheet mechanism and the diffusion mechanism are considered and excluded. It is concluded that the magnetic reconnection mechanism can accomplish the required transport. Data-based empirical magnetic field models are used to investigate the magnetic flux transport required to account for the observed magnetic field dipolarizations in the inner magnetosphere. It is found that the magnetic flux permeating the current sheet is typically insufficient to supply the required magnetic flux. It is concluded that no major substorm-type magnetospheric reconfiguration is possible in the absence of magnetic reconnection.
Sweet's mechanism in the solar wind
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Scudder, J. D.
1974-01-01
Sweet's mechanism occurs in the solar wind, at D-sheets near 1 AU. Conductivities on the order of 10,000 esu are obtained, which is on the order of the local plasma frequency. This implies that the effective collision frequency is on the order of the plasma frequency. The lateral extent of D-sheets is approximately 0.01 AU to 0.001 AU. Hundreds of such D-sheets are probably present between the orbits of Venus and Earth at any instant.
Current sheet collapse in a plasma focus.
NASA Technical Reports Server (NTRS)
Jalufka, N. W.; Lee, J. H.
1972-01-01
Collapse of the current sheets in a plasma focus has been recorded simultaneously through slits parallel and perpendicular to the symmetry axis in the streak mode. The dark period following the collapse is due to the plasma moving out of the field of view. Microdensitometric measurements of intensity variation also support this conclusion. A large anisotropy is also found in the x-ray radiation pattern. Effects of different vacuum vessels were investigated.
NASA Astrophysics Data System (ADS)
Smolanov, N. A.
2016-01-01
The structure of the particles deposited from the plasma arc discharge were studied. The flow of plasma spreading from the cathode spot to the walls of the vacuum chamber. Electric and magnetic fields to influence the plasma flow. The fractal nature of the particles from the plasma identified by small-angle X-ray scattering. Possible cause of their formation is due to the instability of the growth front and nonequilibrium conditions for their production - a high speed transition of the vapor-liquid-solid or vapor - crystal. The hypothesis of a plasma arc containing dust particles current sheets was proposed.
Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators
NASA Technical Reports Server (NTRS)
Markusic, Thomas; Choueiri, E. Y.
2003-01-01
The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.
Onset of magnetic reconnection in a weakly collisional, high- β plasma
NASA Astrophysics Data System (ADS)
Alt, Andrew; Kunz, Matthew
2017-10-01
In a magnetized, weakly collisional plasma, the magnetic moment of the constituent particles is an adiabatic invariant. An increase of the magnetic-field strength in such a plasma thus leads to an increase in the thermal pressure perpendicular to the field lines. Above a β-dependent threshold, this pressure anisotropy drives the mirror instability, which produces strong distortions in the field lines and traps particles on ion-Larmor scales. The impact of this instability on magnetic reconnection is investigated using simple analytical and numerical models for the formation of a current sheet and the associated production of pressure anisotropy. The difficulty in maintaining an isotropic, Maxwellian particle distribution during the formation and subsequent thinning of a current sheet in a weakly collisional plasma, coupled with the low threshold for the mirror instability in a high- β plasma, imply that the topology of reconnecting magnetic fields can radically differ from the standard Harris-sheet profile often used in kinetic simulations of collisionless reconnection. Depending on the rate of current-sheet formation, this mirror-induced disruption may occur before standard tearing modes are able to develop. This work was supported by U.S. DOE contract DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Frank, Anna
Magnetic reconnection is a basis for many impulsive phenomena in space and laboratory plasmas accompanied by effective transformation of magnetic energy. Reconnection processes usually occur in relatively thin current sheets (CSs), which separate magnetic fields of different or opposite directions. We report on recent observations of time dependent bending of CSs, which results from plasma dynamics inside the sheet. The experiments are carried out with the CS-3D laboratory device (Institute of General Physics RAS, Moscow) [1]. The CS magnetic structure with an X line provides excitation of the Hall currents and plasma acceleration from the X line to both side edges [2]. In the presence of the guide field By the Hall currents give rise to bending of the sheet: the peripheral regions located away from the X line are deflected from CS middle plane (z=0) in the opposite directions ±z [3]. We have revealed generation of reverse currents jy near the CS edges, i.e. the currents flowing in the opposite direction to the main current in the sheet [4]. There are strong grounds to believe that reverse currents are generated by the outflow plasma jets [5], accelerated inside the sheet and penetrated into the regions with strong normal magnetic field component Bz [4]. An impressive effect of sudden change in the sign of the CS bend has been disclosed recently, when analyzing distributions of plasma density [6] and current away from the X line, in the presence of the guide field By. The CS configuration suddenly becomes opposite from that observed at the initial stage, and this effect correlates well with generation of reverse currents. Consequently this effect can be related to excitation of the reverse Hall currents owing to generation of reverse currents jy in the CS. Hence it may be concluded that CSs may exhibit time dependent vertical z-displacements, and the sheet geometry depends on excitation of the Hall currents, acceleration of plasma jets and generation of reverse currents. The work was supported in part by the Program (OFN-15) “Plasma Processes in Space and Laboratory” of the Division of Physical Sciences of the Russian Academy of Sciences. 1. Frank A.G., Bogdanov S.Yu., Markov V.S. et al. // Phys. Plasmas 2005. 12, 052316(1-11). 2. Frank A.G., Bugrov S.G., Markov V.S. // Phys. Plasmas 2008. 15, 092102 (1-10). 3. Frank A.G., Bogdanov S.Yu., Dreiden G.V. et al. // Phys. Lett. A 2006. 348, 318-325. 4. Frank A.G., Kyrie N.P., Satunin S.N. // Phys. Plasmas 2011. 18, 111209 (1-9). 5. Kyrie N.P., Markov V.S., Frank A.G. // Plasma Phys. Reports 2010. 36, 357-364; JETP Lett. 2012. 95, 14-19. 6. Ostrovskaya G.V., Frank A.G. // Plasma Phys. Reports 2014. 40, 21-33.
Spontaneous formation of electric current sheets and the origin of solar flares
NASA Technical Reports Server (NTRS)
Low, B. C.; Wolfson, R.
1988-01-01
It is demonstrated that the continuous boundary motion of a sheared magnetic field in a tenuous plasma with an infinite electrical conductivity can induce the formation of multiple electric current sheets in the interior plasma. In response to specific footpoint displacements, the quadrupolar magnetic field considered is shown to require the formation of multiple electric current sheets as it achieves a force-free state. Some of the current sheets are found to be of finite length, running along separatrix lines of force which separate lobes of magnetic flux. It is suggested that current sheets in the form of infinitely thin magnetic shear layers may be unstable to resistive tearing, a process which may have application to solar flares.
NASA Astrophysics Data System (ADS)
Maynard, N. C.; Savin, S.; Erickson, G. M.; Kawano, H.; Němeček, Z.; Peterson, W. K.; Šafránoková, J.; Sandahl, I.; Scudder, J. D.; Siscoe, G. L.; Sonnerup, B. U. Ö.; Weimer, D. R.; White, W. W.; Wilson, G. R.
2001-04-01
Using a unique data set from the Wind, Polar, Interball 1, Magion 4, and Defense Meteorological Satellite Program (DMSP) F11 satellites, comparisons with the Integrated Space Weather Model (ISM) have provided validation of the global structure predicted by the ISM model, which in turn has allowed us to use the model to interpret the data to further understand boundary layers and magnetospheric processes. The comparisons have shown that the magnetospheric ``sash'' [White et al., 1998], a region of low magnetic field discovered by the MHD modeling which extends along the high-latitude flank of the magnetopause, is related to the turbulent boundary layer on the high-latitude magnetopause, recently mapped by Interball 1. The sash in the data and in the model has rotational discontinuity properties, expected for a reconnection site. At some point near or behind the terminator, the sash becomes a site for reconnection of open field lines, which were previously opened by merging on the dayside. This indicates that significant reconnection in the magnetotail occurs on the flanks. Polar mapped to the high-density extension of the sash into the tilted plasma sheet. The source of the magnetosheath plasma observed by Polar on closed field lines behind the terminator was plasma entry through the low field connection of the sash to the central plasma sheet. The Polar magnetic field line footprints in each hemisphere are moving in different directions. Above and below the tilted plasma sheet the flows in the model are consistent with the corresponding flows in the ionosphere. The turbulence in the plasma sheet allows the convection patterns from each hemisphere to adjust. The boundary layer in the equatorial plane on the flank for this interplanetary magnetic field BY condition, which is below the tilted central plasma sheet, is several RE thick and is on tailward flowing open field lines. This thick boundary layer shields the magnetopause from viscous forces and must be driven by magnetic tension. Above the plasma sheet the boundary layer is dominated by the sash, and the model indicates that the open region inside the sash is considerably thinner.
Dynamo-driven plasmoid formation from a current-sheet instability
Ebrahimi, F.
2016-12-15
Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. In this study, we utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from the oppositely directed field lines in the injector region (primary reconnecting current sheet), and the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearingmore » parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. Finally, the plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.« less
Formation of the Sun-aligned arc region and the void (polar slot) under the null-separator structure
NASA Astrophysics Data System (ADS)
Tanaka, T.; Obara, T.; Watanabe, M.; Fujita, S.; Ebihara, Y.; Kataoka, R.
2017-04-01
From the global magnetosphere-ionosphere coupling simulation, we examined the formation of the Sun-aligned arc region and the void (polar slot) under the northward interplanetary magnetic field (IMF) with negative By condition. In the magnetospheric null-separator structure, the separatrices generated from two null points and two separators divide the entire space into four types of magnetic region, i.e., the IMF, the northern open magnetic field, the southern open magnetic field, and the closed magnetic field. In the ionosphere, the Sun-aligned arc region and the void are reproduced in the distributions of simulated plasma pressure and field-aligned current. The outermost closed magnetic field lines on the boundary (separatrix) between the northern open magnetic field and the closed magnetic field are projected to the northern ionosphere at the boundary between the Sun-aligned arc region and the void, both on the morning and evening sides. The magnetic field lines at the plasma sheet inner edge are projected to the equatorward boundary of the oval. Therefore, the Sun-aligned arc region is on the closed magnetic field lines of the plasma sheet. In the plasma sheet, an inflated structure (bulge) is generated at the junction of the tilted plasma sheet in the far-to-middle tail and nontilted plasma sheet in the ring current region. In the Northern Hemisphere, the bulge is on the evening side wrapped by the outermost closed magnetic field lines that are connected to the northern evening ionosphere. This inflated structure (bulge) is associated with shear flows that cause the Sun-aligned arc.
Zhao, Hongzhi; Ning, Jiaolin; Duan, Jiaxiang; Gu, Jianteng; Yi, Bin; Lu, Kaizhi; Mo, Liwen; Lai, Xinan; Hennah, Lindsay; Ma, Daqing
2014-09-01
Blast limb injury was reported to result in distant organ injury including the lungs, which can be attenuated with transient regional hypothermia (RH) to the injured limb. We aimed to further study hepatic and renal injuries following blast limb trauma and also to evaluate the protective effects of regional traumatic limb hypothermia on such injuries in rats. Blast limb trauma (BLT) was created using chartaceous electricity detonators in anesthetized male Sprague-Dawley rats. The BLT rats were randomly allocated to undergo regional traumatic limb hypothermic treatment (RH) for 30 minutes, 60 minutes, or 6 hours immediately after the onset of blast or without RH (n = 8 per group). The severity of hepatic and renal injury was assessed through histologic examination and water content (wet/dry weight) in all animals 6 hours later. The level of plasma tumor necrosis factor α (TNF-α), interleukin 6, hydrogen sulfide (H2S), and myeloperoxidase (MPO) together with hepatic and renal MPO, malondialdehyde (MDA), superoxide dismutase, and total antioxidant capacity were measured 6 hours after the blast injury. Following BLT, hepatic injury was evidenced by histopathologic changes, increased water content, as well as plasma alanine aminotransferase and aspartate aminotransferase. Renal histopathologic but not functional changes were also found. RH treatment for all durations attenuated this distant renal injury, but only RH treatment for 60 minutes and 6 hours attenuated distant hepatic injury following BLT. RH treatment for all durations decreased plasma TNF-α and interleukin 6, reduced liver and kidney MPO activity and kidney MDA, and elevated superoxide dismutase and total antioxidant capacity in both liver and kidneys. RH treatment for 60 minutes is the most effective duration to reduce hepatic MPO activity, plasma TNF-α, and kidney MDA. This study indicates that BLT-induced distant renal and hepatic injury could be attenuated by RH treatment through reduction of cytokine release and inhibition of neutrophil accumulation and oxidative stress.
Substorm Evolution in the Near-Earth Plasma Sheet
NASA Technical Reports Server (NTRS)
Erickson, Gary M.
2004-01-01
This grant represented one-year, phase-out funding for the project of the same name (NAG5-9110 to Boston University) to determine precursors and signatures of local substorm onset and how they evolve in the plasma sheet using the Geotail near-Earth database. We report here on two accomplishments: (1) Completion of an examination of plasma velocity signature at times of local onsets in the current disruption (CD) region. (2) Initial investigation into quantification of near-Earth flux-tube contents of injected plasma at times of substorm injections.
NASA Technical Reports Server (NTRS)
Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.;
2016-01-01
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y
2016-05-28
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
Dynamic Harris current sheet thickness from Cluster current density and plasma measurements
NASA Technical Reports Server (NTRS)
Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; McPherron, R. L.; Weygand, J. M.; Balogh, A.; Reme, H.; Kistler, L. M.
2005-01-01
We use the first accurate measurements of current densities in the plasma sheet to calculate the half-thickness and position of the current sheet as a function of time. Our technique assumes a Harris current sheet model, which is parameterized by lobe magnetic field B(o), current sheet half-thickness h, and current sheet position z(sub o). Cluster measurements of magnetic field, current density, and plasma pressure are used to infer the three parameters as a function of time. We find that most long timescale (6-12 hours) current sheet crossings observed by Cluster cannot be described by a static Harris current sheet with a single set of parameters B(sub o), h, and z(sub o). Noting the presence of high-frequency fluctuations that appear to be superimposed on lower frequency variations, we average over running 6-min intervals and use the smoothed data to infer the parameters h(t) and z(sub o)(t), constrained by the pressure balance lobe magnetic field B(sub o)(t). Whereas this approach has been used in previous studies, the spatial gnuhen& now provided by the Cluster magnetometers were unavailable or not well constrained in earlier studies. We place the calculated hdf&cknessa in a magnetospheric context by examining the change in thickness with substorm phase for three case study events and 21 events in a superposed epoch analysis. We find that the inferred half-thickness in many cases reflects the nominal changes experienced by the plasma sheet during substorms (i.e., thinning during growth phase, thickening following substorm onset). We conclude with an analysis of the relative contribution of (Delta)B(sub z)/(Delta)X to the cross-tail current density during substorms. We find that (Delta)B(sub z)/(Delta)X can contribute a significant portion of the cross-tail c m n t around substorm onset.
Characteristics of ion flow in the quiet state of the inner plasma sheet
NASA Technical Reports Server (NTRS)
Angelopoulos, V.; Kennel, C. F.; Coroniti, F. V.; Pellat, R.; Spence, H. E.; Kivelson, M. G.; Walker, R. J.; Baumjohann, W.; Feldman, W. C.; Gosling, J. T.
1993-01-01
We use AMPTE/IRM and ISEE 2 data to study the properties of the high beta plasma sheet, the inner plasma sheet (IPS). Bursty bulk flows (BBFs) are excised from the two databases, and the average flow pattern in the non-BBF (quiet) IPS is constructed. At local midnight this ensemble-average flow is predominantly duskward; closer to the flanks it is mostly earthward. The flow pattern agrees qualitatively with calculations based on the Tsyganenko (1987) model (T87), where the earthward flow is due to the ensemble-average cross tail electric field and the duskward flow is the diamagnetic drift due to an inward pressure gradient. The IPS is on the average in pressure equilibrium with the lobes. Because of its large variance the average flow does not represent the instantaneous flow field. Case studies also show that the non-BBF flow is highly irregular and inherently unsteady, a reason why earthward convection can avoid a pressure balance inconsistency with the lobes. The ensemble distribution of velocities is a fundamental observable of the quiet plasma sheet flow field.
Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet
NASA Astrophysics Data System (ADS)
Kronberg, E. A.; Grigorenko, E. E.; Haaland, S. E.; Daly, P. W.; Delcourt, D. C.; Luo, H.; Kistler, L. M.; Dandouras, I.
2015-05-01
The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure (Pdyn) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW Pdyn, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of the magnetic field gradient in the near-Earth tail. Higher losses of energetic ions are observed in the dayside plasma sheet under disturbed geomagnetic conditions and enhanced SW Pdyn. These observations are in agreement with theoretical models.
NASA Astrophysics Data System (ADS)
Chu, C. S.; Nykyri, K.; Dimmock, A. P.
2017-12-01
In this paper we test a hypothesis that magnetotail reconnection in the thin current sheet could be initiated by external fluctuations. Kelvin-Helmholtz instability (KHI) has been observed during southward IMF and it can produce, cold, dense plasma transport and compressional fluctuations that can move further into the magnetosphere. The properties of the KHI depend on the magnetosheath seed fluctuation spectrum (Nykyri et al., JGR, 2017). In this paper we present a statistical correlation study between Solar Wind, Magnetosheath and Plasma sheet fluctuation properties using 9+ years of THEMIS data in aberrated GSM frame, and in a normalized coordinate system that takes into account the changes of the magnetopause and bow shock location with respect to changing solar wind conditions. We present statistical results of the plasma sheet fluctuation properties (dn, dV and dB) and their dependence on IMF orientation and fluctuation properties and resulting magnetosheath state. These statistical maps are compared with spatial distribution of magnetotail Bursty Bulk Flows to study possible correlations with magnetotail reconnection and these fluctuations.
NASA Technical Reports Server (NTRS)
Khurana, Krishan K.; Kivelson, Margaret G.
1993-01-01
The averaged angular velocity of plasma from magnetic observations is evaluated using plasma outflow rate as a parameter. New techniques are developed to calculate the normal and azimuthal components of the magnetic field in and near to the plasma sheet in a plasma sheet coordinate system. The revised field components differ substantially from the quantities used in previous analyses. With the revised field values, it appears that during the Voyager 2 flyby for an outflow rate of 2.5 x 10 exp 29 amu/s, the observed magnetic torque may be sufficient to keep the plasma in corotation to radial distances of 50 Rj in the postmidnight quadrant.
Pressure balance inconsistency exhibited in a statistical model of magnetospheric plasma
NASA Astrophysics Data System (ADS)
Garner, T. W.; Wolf, R. A.; Spiro, R. W.; Thomsen, M. F.; Korth, H.
2003-08-01
While quantitative theories of plasma flow from the magnetotail to the inner magnetosphere typically assume adiabatic convection, it has long been understood that these convection models tend to overestimate the plasma pressure in the inner magnetosphere. This phenomenon is called the pressure crisis or the pressure balance inconsistency. In order to analyze it in a new and more detailed manner we utilize an empirical model of the proton and electron distribution functions in the near-Earth plasma sheet (-50 RE < X < -10 RE), which uses the [1989] magnetic field model and a plasma sheet representation based upon several previously published statistical studies. We compare our results to a statistically derived particle distribution function at geosynchronous orbit. In this analysis the particle distribution function is characterized by the isotropic energy invariant λ = EV2/3, where E is the particle's kinetic energy and V is the magnetic flux tube volume. The energy invariant is conserved in guiding center drift under the assumption of strong, elastic pitch angle scattering. If, in addition, loss is negligible, the phase space density f(λ) is also conserved along the same path. The statistical model indicates that f(λ, ?) is approximately independent of X for X ≤ -35 RE but decreases with increasing X for X ≥ -35 RE. The tailward gradient of f(λ, ?) might be attributed to gradient/curvature drift for large isotropic energy invariants but not for small invariants. The tailward gradient of the distribution function indicates a violation of the adiabatic drift condition in the plasma sheet. It also confirms the existence of a "number crisis" in addition to the pressure crisis. In addition, plasma sheet pressure gradients, when crossed with the gradient of flux tube volume computed from the [1989] magnetic field model, indicate Region 1 currents on the dawn and dusk sides of the outer plasma sheet.
The source of O+ in the storm time ring current
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C. G.; Spence, H. E.; Menz, A. M.; Skoug, R. M.; Funsten, H. O.; Larsen, B. A.; Mitchell, D. G.; Gkioulidou, M.; Wygant, J. R.; Lanzerotti, L. J.
2016-06-01
A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, the H+ and O+ ions were significantly enhanced. We show that this enhanced inner magnetosphere ring current population is due to the inward adiabatic convection of the plasma sheet ion population. The energy range of the O+ ion plasma sheet that impacts the ring current most is found to be from ~5 to 60 keV. This is in the energy range of the hot population that increased prior to the start of the storm main phase, and the ion fluxes in this energy range only increase slightly during the extended outflow time interval. Thus, the auroral outflow does not have a significant impact on the ring current during the main phase. The auroral outflow is transported to the inner magnetosphere but does not reach high enough energies to affect the energy density. We conclude that the more energetic O+ that entered the plasma sheet prior to the main phase and that dominates the ring current is likely from the cusp.
An explanation of auroral intensification during the substorm expansion phase
NASA Astrophysics Data System (ADS)
Yao, Zhonghua; Rae, I. J.; Lui, A. T. Y.; Murphy, K. R.; Owen, C. J.; Pu, Z. Y.; Forsyth, C.; Grodent, D.; Zong, Q.-G.; Du, A. M.; Kalmoni, N. M. E.
2017-08-01
A multiple auroral onset substorm on 28 March 2010 provides an opportunity to understand the physical mechanism in generating auroral intensifications during a substorm expansion phase. Conjugate observations of magnetic fields and plasma from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, of field-aligned currents (FACs) from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) satellites, and from ground-based magnetometers and aurora are all available. The comprehensive measurements allow us to further our understanding of the complicated causalities among dipolarization, FAC generation, particle acceleration, and auroral intensification. During the substorm expansion phase, the plasma sheet expanded and was perturbed leading to the generation of a slow mode wave, which modulated electron flux in the outer plasma sheet. During this current sheet expansion, field-aligned currents formed, and geomagnetic perturbations were simultaneously detected by ground-based instruments. However, a magnetic dipolarization did not occur until about 3 min later in the outer plasma sheet observed by THEMIS-A spacecraft (THA). We believe that this dipolarization led to an efficient Fermi acceleration to electrons and consequently the cause of a significant auroral intensification during the expansion phase as observed by the All-Sky Imagers (ASIs). This Fermi acceleration mechanism operating efficiently in the outer plasma sheet during the expansion phase could be a common explanation of the poleward auroral development after substorm onset. These results also show a good agreement between the upward FAC derived from AMPERE measurements and the auroral brightening observed by the ASIs.
One-dimensional Vlasov-Maxwell equilibrium for the force-free Harris sheet.
Harrison, Michael G; Neukirch, Thomas
2009-04-03
In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet.
Properties of large electric fields in the plasma sheet at 4-7RE measured with Polar
NASA Astrophysics Data System (ADS)
Keiling, A.; Wygant, J. R.; Cattell, C.; Johnson, M.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J.; Russell, C. T.
2001-04-01
Measurements from the Polar satellite provide evidence for large electric field structures in the plasma sheet at geocentric distances of 4-7RE. These structures had amplitudes perpendicular to the ambient magnetic field that can exceed 100 mV m-1 (6 s averaged). Two years (from May 1, 1996, to April 30, 1998) of electric field data (EZ component, approximately along GSE z) were surveyed. The distribution in invariant latitude (ILAT) and magnetic local time (MLT) of large perpendicular electric field events (defined as >=20 mV m-1 for a 6-s average) delineates the statistical auroral oval with the majority of events occurring in the nightside centered around midnight and a smaller concentration around 1500 MLT. The magnitude-versus-altitude distribution of the electric fields between 4 and 7RE in the nightside could be explained by models which assume either shear Alfvén waves propagating into regions of larger background magnetic fields or electrostatic structures being mapped quasi-statically along equipotential magnetic field lines. In addition, this survey yielded 24 very large amplitude events with |E⊥|>=100mVm-1 (6 s averaged), all of which occurred in the nightside. In the spacecraft frame, the electric field structures occurred on timescales ranging from 10 to 60 s. About 85% of these events occurred in the vicinity of the outer boundary of the plasma sheet; the rest occurred in the central plasma sheet. The polarity of the electric fields was dominantly perpendicular to the nominal plasma sheet boundary. For a large fraction of events (<=50%) the ratios of electric and magnetic fields in the period range from 10 to 60 s were consistent with Alfvén waves. Large Poynting flux (up to 2.5 ergs cm-2s-1) dominantly directed downward along the background magnetic field was associated with 21 events. All 24 events occurred during geomagnetic disturbances such as magnetic substorms. A conjugate study with ground stations for 14 events (out of the 24 events) showed that these structures occurred during times of rapid changes in the H component (or X component) of magnetometer data. For most events this time corresponded to the expansion phase; two events occurred during a quick recovery of the negative H bay signature. Thus there is evidence that large electromagnetic energy transfer processes in the plasma sheet occur during the most dynamic phase of geomagnetic disturbances. From the statistical analysis it was found that Polar observed events larger than 100 mV m-1 (50 mV m-1) in the plasma sheet between 2100 and 0300 MLT with a 2-4% (15%) probability per crossing. These probabilities will be compared to the probability of substorm occurrence during Polar plasma sheet crossings.
NASA Technical Reports Server (NTRS)
Lee, L. C.; Wang, S.; Wei, C. Q.; Tsurutani, B. T.
1988-01-01
This paper investigates the growth rates and eigenmode structures of the streaming sausage, kink, and tearing instabilities in a current sheet with a super-Alfvenic flow. The growth rates and eigenmode structures are first considered in the ideal incompressible limit by using a four-layer model, as well as a more realistic case in which all plasma parameters and the magnetic field vary continuously along the direction perpendicular to the magnetic field and plasma flow. An initial-value method is applied to obtain the growth rate and eigenmode profiles of the fastest growing mode, which is either the sausage mode or kink mode. It is shown that, in the earth's magnetotail, where super-Alfvenic plasma flows are observed in the plasma sheet and the ratio between the plasma and magnetic pressures far away from the current layer is about 0.1-0.3 in the lobes, the streaming sausage and streaming tearing instabilities, but not kink modes, are likely to occur.
NASA Astrophysics Data System (ADS)
Jiang, F.; Kivelson, M. G.; Walker, R. J.; Khurana, K. K.; Angelopoulos, V.; Hsu, T.
2011-06-01
A widely accepted explanation of the location of the inner edge of the electron plasma sheet and its dependence on electron energy is based on drift motions of individual particles. The boundary is identified as the separatrix between drift trajectories linking the tail to the dayside magnetopause (open paths) and trajectories closed around the Earth. A statistical study of the inner edge of the electron plasma sheet using THEMIS Electrostatic Analyzer plasma data from November 2007 to April 2009 enabled us to examine this model. Using a dipole magnetic field and a Volland-Stern electric field with shielding, we find that a steady state drift boundary model represents the average location of the electron plasma sheet boundary and reflects its variation with the solar wind electric field in the local time region between 21:00 and 06:00, except at high activity levels. However, the model does not reproduce the observed energy dispersion of the boundaries. We have also used the location of the inner edge of the electron plasma sheet to parameterize the potential drop of the tail convection electric field as a function of solar wind electric field (Esw) and geomagnetic activity. The range of Esw examined is small because the data were acquired near solar minimum. For the range of values tested (meaningful statistics only for Esw < 2 mV/m), reasonably good agreement is found between the potential drop of the tail convection electric field inferred from the location of the inner edge and the polar cap potential drop calculated from the model of Boyle et al. (1997).
Acceleration of O+ from the cusp to the plasma sheet
NASA Astrophysics Data System (ADS)
Liao, J.; Kistler, L. M.; Mouikis, C. G.; Klecker, B.; Dandouras, I.
2015-02-01
Heavy ions from the ionosphere that are accelerated in the cusp/cleft have been identified as a direct source for the hot plasma in the plasma sheet. However, the details of the acceleration and transport that transforms the originally cold ions into the hot plasma sheet population are not fully understood. The polar orbit of the Cluster satellites covers the main transport path of the O+ from the cusp to the plasma sheet, so Cluster is ideal for tracking its velocity changes. However, because the cusp outflow is dispersed according to its velocity as it is transported to the tail, due to the velocity filter effect, the observed changes in beam velocity over the Cluster orbit may simply be the result of the spacecraft accessing different spatial regions and not necessarily evidence of acceleration. Using the Cluster Ion Spectrometry/Composition Distribution Function instrument onboard Cluster, we compare the distribution function of streaming O+ in the tail lobes with the initial distribution function observed over the cusp and reveal that the observations of energetic streaming O+ in the lobes around -20 RE are predominantly due to the velocity filter effect during nonstorm times. During storm times, the cusp distribution is further accelerated. In the plasma sheet boundary layer, however, the average O+ distribution function is above the upper range of the outflow distributions at the same velocity during both storm and nonstorm times, indicating that acceleration has taken place. Some of the velocity increase is in the direction perpendicular to the magnetic field, indicating that the E × B velocity is enhanced. However, there is also an increase in the parallel direction, which could be due to nonadiabatic acceleration at the boundary or wave heating.
Temporal Evolution of Ion Spectral Structures During a Geomagnetic Storm: Observations and Modeling
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.
2018-01-01
Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1 to 50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet inner edge exhibits narrow nose spectral structures that vary little in energy across
Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferradas Alva, Cristian Pablo; Zhang, J.-C.; Spence, H. E.
Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1- ~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet innermore » edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. Here, as the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. Lastly, we use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.« less
Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling
Ferradas Alva, Cristian Pablo; Zhang, J.-C.; Spence, H. E.; ...
2017-12-13
Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1- ~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet innermore » edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. Here, as the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. Lastly, we use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.« less
Spatially Localized Particle Energization by Landau Damping in Current Sheets
NASA Astrophysics Data System (ADS)
Howes, G. G.; Klein, K. G.; McCubbin, A. J.
2017-12-01
Understanding the mechanisms of particle energization through the removal of energy from turbulent fluctuations in heliospheric plasmas is a grand challenge problem in heliophysics. Under the weakly collisional conditions typical of heliospheric plasma, kinetic mechanisms must be responsible for this energization, but the nature of those mechanisms remains elusive. In recent years, the spatial localization of plasma heating near current sheets in the solar wind and numerical simulations has gained much attention. Here we show, using the innovative and new field-particle correlation technique, that the spatially localized particle energization occurring in a nonlinear gyrokinetic simulation has the velocity space signature of Landau damping, suggesting that this well-known collisionless damping mechanism indeed actively leads to spatially localized heating in the vicinity of current sheets.
Z mode radiation in Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Chen, R. F.; Moses, S. L.; Coroniti, F.; Kurth, W. S.
1987-01-01
Results of a survey of the Voyager plasma wave instrument wide-band frames that exhibit a narrow-band emission below the low-frequency cutoff of the continuum band are discussed. The analysis of these waves made it possible to identify them as the slow branch of the X mode, the so-called Z mode. As the Voyager 1 spacecraft approached the plasma sheet on March 8, 1979, the Z mode intensified and then disappeared on plasma sheet entry. This observation is interpreted as evidence of local Z mode generation.
Acceleration Modes and Transitions in Pulsed Plasma Accelerators
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Greve, Christine M.
2018-01-01
Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.
NASA Astrophysics Data System (ADS)
Keika, Kunihiro; Seki, Kanako; Nosé, Masahito; Miyoshi, Yoshizumi; Lanzerotti, Louis J.; Mitchell, Donald G.; Gkioulidou, Matina; Manweiler, Jerry W.
2018-01-01
We examine the spatiotemporal variations of the energy density and the energy spectral evolution of energetic ions in the inner magnetosphere during the main phase of the 17 March 2015 storm, using data from the RBSPICE and EMFISIS instruments onboard Van Allen Probes. The storm developed in response to two southward IMF intervals separated by about 3 h. In contrast to two steps seen in the
NASA Technical Reports Server (NTRS)
Pytte, T.; Mcpherron, R. L.; Kivelson, M. G.; West, H. I., Jr.; Hones, E. W., Jr.
1977-01-01
Particle observations from pairs of satellites (Ogo 5, Vela 4A and 5B, Imp 3) during the recovery of plasma sheet thickness late in substorms were examined. Six of the nine events occurred within about 5 min in locations near the estimated position of the neutral sheet, but over wide ranges of east-west and radial separations. The time of occurrence and spatial extent of the recovery were related to the onset (defined by ground Pi 2 pulsations) and approximate location (estimated from ground mid-latitude magnetic signatures) of substorm expansions. It was found that the plasma sheet recovery occurred 10 - 30 min after the last in a series of Pi bursts, which were interpreted to indicate that the recovery was not due directly to a late, high latitude substorm expansion. The recovery was also observed to occur after the substorm current wedge had moved into the evening sector and to extend far to the east of the center of the last preceding substorm expansion.
NASA Astrophysics Data System (ADS)
Soobiah, Y. I. J.; Espley, J. R.; Connerney, J. E. P.; Gruesbeck, J.; DiBraccio, G. A.; Schneider, N. M.; Jain, S.; Mitchell, D. L.; Mazelle, C. X.; Halekas, J. S.; Andersson, L.; Brain, D.; Lillis, R. J.; McFadden, J. P.; Deighan, J.; McClintock, B.; Jakosky, B. M.; Frahm, R.; Winningham, D.; Coates, A. J.; Holmstrom, M.
2017-12-01
NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has observed a variety of distinct auroral types at Mars and related processes relevant to the escape of the Martian atmosphere. MAVEN's Imaging Ultraviolet Spectrograph (IUVS) instrument has measured 1) diffuse aurora over widespread regions of Mars' northern hemisphere, 2) discrete aurora spatially confined to localized patches around regions of strong crustal magnetic field and 3) proton aurora from limb brightening of Lyman-α emission. The processes involved in the occurrence of discrete aurora at Mars are not yet well understood. This study presents MAVEN IUVS and Particle and Fields Package (PFP) observations of contemporaneous particle and field signatures and discrete aurora at Mars. Discrete aurora observed in limb scans occur in association with patches of electrons in the optical shadow of Mars. The electron signatures display a range of field aligned (toward Mars) electron energy spectra, from electrons that are not accelerated (sometimes including photoelectron peaks) to accelerated electrons. These are observed in association with a range of magnetic field orientations, from horizontal to radial magnetic field directions. Observations obtained at low altitude over the nightside by MAVEN and the more distant Mars Express' (MEX) Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) are compared to investigate transport of electrons from plasma sheet and `inverted-V' electron signatures from the magnetotail to low altitudes.
Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, F., E-mail: fw237@st-andrews.ac.uk; Neukirch, T., E-mail: tn3@st-andrews.ac.uk; Harrison, M. G.
Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov–Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and themore » results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.« less
Fluctuation dynamics in reconnecting current sheets
NASA Astrophysics Data System (ADS)
von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas
2015-11-01
During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.
Solar Energetic Particle Transport Near a Heliospheric Current Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battarbee, Markus; Dalla, Silvia; Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk
2017-02-10
Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibitmore » multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.« less
The Jovian magnetotail and its current sheet
NASA Technical Reports Server (NTRS)
Behannon, K. W.; Burlaga, L. F.; Ness, N. F.
1980-01-01
Analyses of Voyager magnetic field measurements have extended the understanding of the structural and temporal characteristics of Jupiter's magnetic tail. The magnitude of the magnetic field in the lobes of the tail is found to decrease with Jovicentric distance approximately as r to he-1.4, compared with the power law exponent of -1.7 found for the rate of decrease along the Pioneer 10 outbound trajectory. Voyager observations of magnetic field component variations with Jovicentric distance in the tail do not support the uniform radial plasma outflow model derived from Pioneer data. Voyager 2 has shown that the azimuthal current sheet which surrounds Jupiter in the inner and middle magnetosphere extends tailward (in the anti-Sun direction) to a distance of at least 100 R sub J. In the tail this current sheet consists of a plasma sheet and embedded neutral sheet. In the region of the tail where the sheet is observed, the variation of the magnetic field as a result of the sheet structure and its 10 hr periodic motion is the dominant variation seen.
NASA Technical Reports Server (NTRS)
Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory
2012-01-01
Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil. geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes.
Plasma observations near Jupiter - Initial results from Voyager 2
NASA Technical Reports Server (NTRS)
Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Sullivan, J. D.; Bagenal, F.; Mcnutt, R. L., Jr.; Ogilvie, K. W.; Scudder, J. D.; Sittler, E. D.; Vasyliunas, V. M.
1979-01-01
A preliminary report is presented of the results obtained by the Voyager 2 plasma experiment during the encounter of Voyager 2 with Jupiter from about 100 Jupiter radii before periapsis to about 300 Jupiter radii after periapsis, the instrument being identical to that on Voyager 1. The discussion covers the following: (1) the crossings of the bow shock and magnetopause observed on the inbound and outbound passes; (2) the radial variation of plasma properties in the magnetosphere; (3) variations in plasma properties near Ganymede; (4) corotation and composition of the plasma in the dayside magnetosphere; and (5) plasma sheet crossings observed on the inbound and outbound passes. From the planetary spin modulation of the plasma-electron intensity it is inferred that the plasma sheet is centered at the dipole magnetic equator out to a distance of 40-50 Jupiter radii and deviates from it toward the rotational equator at larger distances.
The structure of the plasma sheet-lobe boundary in the Earth's magnetotail
NASA Technical Reports Server (NTRS)
Orsini, S.; Candidi, M.; Formisano, V.; Balsiger, H.; Ghielmetti, A.; Ogilvie, K. W.
1982-01-01
The structure of the magnetotail plasma sheet-plasma lobe boundary was studied by observing the properties of tailward flowing O+ ion beams, detected by the ISEE 2 plasma experiment inside the boundary during three time periods. The computed value of the north-south electric field component as well as the O+ parameters are shown to change at the boundary. The results are related to other observations made in this region. The O+ parameters and the Ez component behavior are shown to be consistent with that expected from the topology of the electric field lines in the tail as mapped from the ionosphere.
Fast moving plasma structures in the distant magnetotail
NASA Technical Reports Server (NTRS)
Scholer, M.; Klecker, B.; Hovestadt, D.; Gloeckler, G.; Ipavich, F. M.; Smith, E. J.
1984-01-01
The paper reports for the first time the detailed time behavior of the intensities and the angular distributions of energetic protons and electrons in the distant magnetotail of the earth at 220 earth radii and 110 earth radii. The data have been obtained by the Max-Planck-Institut/University of Maryland sensor system on ISEE 3 during the spacecraft's first deep tail passage. Three energetic particle bursts are studied in detail. It is suggested that the satellite encounters detached plasma structures evidenced by the isotropic electrons. These structures, probably plasmoids, move with high velocities (about 800 km/s) down the tail. The energetic electrons and protons stream ahead of these fast tailward moving plasma structures, which leads to the various time dispersion effects. This allows, in principle, a determination of the source distance from the satellite.
Energy balance in the core of the Saturn plasma sheet: H2O chemistry
NASA Astrophysics Data System (ADS)
Shemansky, D. E.; Yoshii, J.; Liu, X.
2011-10-01
A model of the weakly ionized plasma at Saturn has been developed to investigate the properties of the system. Energy balance is a critical consideration. The present model is based on two sources of mass, H2O, and HI. H2O is a variable. HI is a significant volume of gas flowing through the plasma imposed by the source at Saturn [1,2,3]. The energy sources are solar radiation and heterogeneous magnetosphere electrons. The model calculations produce energy rates, species partitioning, and relaxation lifetimes. For the first time the state of the ambient plasma sheet electrons is directly connected to the energy forcing functions. Within limits of knowledge, the predicted state of the core region of the plasma sheet in neutral and ionized gas corresponds satisfactorily to observation. The dominant ions in these calculations are H2O+ and H3O+ with lifetimes of several days. The lifetime of H2O is roughly 60 days. In calculations carried out so far the predicted source rate for H2O is lower than the rates quoted from the Enceladus encounters.
An RCM-E simulation of a steady magnetospheric convection event
NASA Astrophysics Data System (ADS)
Yang, J.; Toffoletto, F.; Wolf, R.; Song, Y.
2009-12-01
We present simulation results of an idealized steady magnetospheric convection (SMC) event using the Rice Convection Model coupled with an equilibrium magnetic field solver (RCM-E). The event is modeled by placing a plasma distribution with substantially depleted entropy parameter PV5/3 on the RCM's high latitude boundary. The calculated magnetic field shows a highly depressed configuration due to the enhanced westward current around geosynchronous orbit where the resulting partial ring current is stronger and more symmetric than in a typical substorm growth phase. The magnitude of BZ component in the mid plasma sheet is large compared to empirical magnetic field models. Contrary to some previous results, there is no deep BZ minimum in the near-Earth plasma sheet. This suggests that the magnetosphere could transfer into a strong adiabatic earthward convection mode without significant stretching of the plasma-sheet magnetic field, when there are flux tubes with depleted plasma content continuously entering the inner magnetosphere from the mid-tail. Virtual AU/AL and Dst indices are also calculated using a synthetic magnetogram code and are compared to typical features in published observations.
Measurement of tritium with plastic scintillator surface improvement with plasma treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshihara, Y.; Furuta, E.; Ohyama, R.I.
2015-03-15
Tritium is usually measured by using a liquid scintillation counter. However, liquid scintillator used for measurement will become radioactive waste fluid. To solve this issue, we have developed a method of measuring tritium samples with plasma-treated plastic scintillator (PS)sheets (Plasma method). The radioactive sample is held between 2 PS sheets and the whole is enclosed in a a low-potassium glass vial. With the Plasma method of 2-min plasma treatment, we have obtained measurement efficiency of 48 ± 2 % for 2 min measurement of tritium except for tritiated water. The plasma treatment makes the PS surface rough and hydrophilic whichmore » contributes to improve the contact between tritium and PS. On the other hand, it needed almost 6 hours to obtain constant measurement efficiency. The reason was that the dry-up handling in the vial needed longer time to vaporize H{sub 2}O molecules than in the air. We tried putting silica gel beads into vials to remove H{sub 2}O molecules from PS sheet surface quickly. The silica gel beads worked well and we got constant measurement efficiency within 1-3 hours. Also, we tried using other kinds of PS treated with plasma to obtain higher measurement efficiencies of tritium samples.« less
Ganymede's magnetosphere: Magnetometer overview
NASA Astrophysics Data System (ADS)
Kivelson, M. G.; Warnecke, J.; Bennett, L.; Joy, S.; Khurana, K. K.; Linker, J. A.; Russell, C. T.; Walker, R. J.; Polanskey, C.
1998-09-01
Ganymede presents a unique example of an internally magnetized moon whose intrinsic magnetic field excludes the plasma present at its orbit, thereby forming a magnetospheric cavity. We describe some of the properties of this mini-magnetosphere, embedded in a sub-Alfvénic flow and formed within a planetary magnetosphere. A vacuum superposition model (obtained by adding the internal field of Ganymede to the field imposed by Jupiter) organizes the data acquired by the Galileo magnetometer on four close passes in a useful, intuitive fashion. The last field line that links to Ganymede at both ends extends to ~2 Ganymede radii, and the transverse scale of the magnetosphere is ~5.5 Ganymede radii. Departures from this simple model arise from currents flowing in the Alfvén wings and elsewhere on the magnetopause. The four passes give different cuts through the magnetosphere from which we develop a geometric model for the magnetopause surface as a function of the System III location of Ganymede. On one of the passes, Ganymede was located near the center of Jupiter's plasma disk. For this pass we identify probable Kelvin-Helmholtz surface waves on the magnetopause. After entering the relatively low-latitude upstream magnetosphere, Galileo apparently penetrated the region of closed field lines (ones that link to Ganymede at both ends), where we identify predominantly transverse fluctuations at frequencies reasonable for field line resonances. We argue that magnetic field measurements, when combined with flow measurements, show that reconnection is extremely efficient. Downstream reconnection, consequently, may account for heated plasma observed in a distant crossing of Ganymede's wake. We note some of the ways in which Ganymede's unusual magnetosphere corresponds to familiar planetary magnetospheres (viz., the magnetospheric topology and an electron ring current). We also comment on some of the ways in which it differs from familiar planetary magnetospheres (viz., relative stability and predictability of upstream plasma and field conditions, absence of a magnetotail plasma sheet and of a plasmasphere, and probable instability of the ring current).
The impact of finite-area inhomogeneities on resistive and Hall measurement
NASA Astrophysics Data System (ADS)
Koon, Daniel
2013-03-01
I derive an iterative expression for the electric potential in an otherwise homogeneous thin specimen as the result of a finite-area inhomogeneity in either the direct conductance, the Hall conductance, or both. This expression extends to the finite-area regime the calculation of the effect of such inhomogeneities on the measurement error in the sheet resistance and Hall sheet resistance. I then test these results on the exactly-solvable case of a circular inhomogeneity equally distant from the four electrodes of either a square four-point-probe array on an infinitely large conducting specimen or a circular van der Pauw specimen with symmetrically-placed electrodes.
NASA Astrophysics Data System (ADS)
Ishisaka, K.; Okada, T.; Tsuruda, K.; Hayakawa, H.; Mukai, T.; Matsumoto, H.
2001-04-01
The spacecraft potential has been used to derive the electron number density surrounding the spacecraft in the magnetosphere and solar wind. We have investigated the correlation between the spacecraft potential of the Geotail spacecraft and the electron number density derived from the plasma waves in the solar wind and almost all the regions of the magnetosphere, except for the high-density plasmasphere, and obtained an empirical formula to show their relation. The new formula is effective in the range of spacecraft potential from a few volts up to 90 V, corresponding to the electron number density from 0.001 to 50 cm-3. We compared the electron number density obtained by the empirical formula with the density obtained by the plasma wave and plasma particle measurements. On occasions the density determined by plasma wave measurements in the lobe region is different from that calculated by the empirical formula. Using the difference in the densities measured by two methods, we discuss whether or not the lower cutoff frequency of the plasma waves, such as continuum radiation, indicates the local electron density near the spacecraft. Then we applied the new relation to the spacecraft potential measured by the Geotail spacecraft during the period from October 1993 to December 1995, and obtained the electron spatial distribution in the solar wind and magnetosphere, including the distant tail region. Higher electron number density is clearly observed on the dawnside than on the duskside of the magnetosphere in the distant tail beyond 100RE.
NASA Astrophysics Data System (ADS)
Domrin, V. I.; Malova, H. V.; Popov, V. Yu.
2018-04-01
A numerical model is developed that allows tracing the time evolution of a current sheet from a relatively thick current configuration with isotropic distributions of the pressure and temperature in an extremely thin current sheet, which plays a key role in geomagnetic processes. Such a configuration is observed in the Earth's magnetotail in the stage preceding a large-scale geomagnetic disturbance (substorm). Thin current sheets are reservoirs of the free energy released during geomagnetic disturbances. The time evolution of the components of the pressure tensor caused by changes in the structure of the current sheet is investigated. It is shown that the pressure tensor in the current sheet evolves in two stages. In the first stage, a current sheet with a thickness of eight to ten proton Larmor radii forms. This stage is characterized by the plasma drift toward the current sheet and the Earth and can be described in terms of the Chu-Goldberger-Low approximation. In the second stage, an extremely thin current sheet with an anisotropic plasma pressure tensor forms, due to which the system is maintained in an equilibrium state. Estimates of the characteristic time of the system evolution agree with available experimental data.
Magnetic flux pile-up and ion heating in a current sheet formed by colliding magnetized plasma flows
NASA Astrophysics Data System (ADS)
Suttle, L.; Hare, J.; Lebedev, S.; Ciardi, A.; Loureiro, N.; Niasse, N.; Burdiak, G.; Clayson, T.; Lane, T.; Robinson, T.; Smith, R.; Stuart, N.; Suzuki-Vidal, F.
2017-10-01
We present data from experiments carried out at the Magpie pulsed power facility, which show the detailed structure of the interaction of counter-streaming magnetized plasma flows. In our quasi-2D setup, continuous supersonic flows are produced with strong embedded magnetic fields of opposing directions. Their interaction leads to the formation of a dense and long-lasting current sheet, where we observe the pile-up of the magnetic flux at the sheet boundary, as well as the annihilation of field inside, accompanied by an increase in plasma temperature. Spatially resolved measurements with Faraday rotation polarimetry, B-dot probes, XUV imaging, Thomson scattering and laser interferometry diagnostics show the detailed distribution of the magnetic field and other plasma parameters throughout the system. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/G001324/1, and by the U.S. Department of Energy (DOE) Awards No. DE-F03-02NA00057 and No. DE-SC-0001063.
The structure of a cometary type I tail - Ground-based and ICE observations of P/Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Goldberg, B. A.; Smith, E. J.; Mccomas, D. J.; Bame, S. J.
1986-01-01
Comparison of ground-based and in situ observations of P/Giacobini-Zinner are used to investigate the morphology of a type I cometary tail. ICE magnetic field and plasma measurements show a well-defined cometary magnetotail composed of two magnetic lobes in pressure equilibrium with a central plasma sheet. A dependence of ion tail width on IMF direction is found which strongly suggests that the classical type I ion tails observed on the ground consist predominantly of emissions from the slab-shaped plasma sheet separating the magnetic lobes. The width of the G-Z magnetotail is determined to be 9.8 (+ or - 0.5) x 10 to the 3rd km with a quasi-circular cross section. The results of this study also indicate that some of the dynamical thinnings and thickenings observed in long type I tails may be caused by IMF variations changing the angle with which the plasma sheet is viewed at earth.
Operational Characteristics and Plasma Measurements in a Low-Energy FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Best, S.; Rose, M. F.; Miller, R.; Owens, T.
2008-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In this paper, we present measurements aimed at quantifying the thruster's overall operational characteristics and providing additional insight into the nature of operation. Measurements of the terminal current and voltage characteristics during the pulse help quantify the output of the pulsed power train driving the acceleration coil. A fast ionization gauge is used to measure the evolution of the neutral gas distribution in the accelerator prior to a pulse. The preionization process is diagnosed by monitoring light emission from the gas using a photodiode, and a time-resolved global view of the evolving, accelerating current sheet is obtained using a fast-framing camera. Local plasma and field measurements are obtained using an array of intrusive probes. The local induced magnetic field and azimuthal current density are measured using B-dot probes and mini-Rogowski coils, respectively. Direct probing of the number density and electron temperature is performed using a triple probe.
Plasma observations near saturn: initial results from voyager 2.
Bridge, H S; Bagenal, F; Belcher, J W; Lazarus, A J; McNutt, R L; Sullivan, J D; Gazis, P R; Hartle, R E; Ogilvie, K W; Scudder, J D; Sittler, E C; Eviatar, A; Siscoe, G L; Goertz, C K; Vasyliunas, V M
1982-01-29
Results of measurements of plasma electrons and poitive ions made during the Voyager 2 encounter with Saturn have been combined with measurements from Voyager 1 and Pioneer 11 to define more clearly the configuration of plasma in the Saturnian magnetosphere. The general morphology is well represented by four regions: (i) the shocked solar wind plasma in the magnetosheath, observed between about 30 and 22 Saturn radii (RS) near the noon meridian; (ii) a variable density region between approximately 17 RS and the magnetopause; (iii) an extended thick plasma sheet between approximately 17 and approximately 7 RS symmetrical with respect to Saturn's equatorial plane and rotation axis; and (iv) an inner plasma torus that probably originates from local sources and extends inward from L approximately 7 to less than L approximately 2.7 (L is the magnetic shell parameter). In general, the heavy ions, probably O(+), are more closely confined to the equatorial plane than H(+), so that the ratio of heavy to light ions varies along the trajectory according to the distance of the spacecraft from the equatorial plane. The general configuration of the plasma sheet at Saturn found by Voyager 1 is confirmed, with some notable differences and additions. The "extended plasma sheet," observed between L approximately 7 and L approximately 15 by Voyager 1 is considerably thicker as observed by Voyager 2. Inward of L approximately 4, the plasma sheet collapses to a thin region about the equatorial plane. At the ring plane crossing, L approximately 2.7, the observations are consistent with a density of O(+) of approximately 100 per cubic centimeter, with a temperature of approximately 10 electron volts. The location of the bow shock and magnetopause crossings were consistent with those previously observed. The entire magnetosphere was larger during the outbound passage of Voyager 2 than had been previously observed; however, a magnetosphere of this size or larger is expected approximately 3 percent of the time.
TURBULENCE-GENERATED PROTON-SCALE STRUCTURES IN THE TERRESTRIAL MAGNETOSHEATH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vörös, Zoltán; Narita, Yasuhito; Yordanova, Emiliya
2016-03-01
Recent results of numerical magnetohydrodynamic simulations suggest that in collisionless space plasmas, turbulence can spontaneously generate thin current sheets. These coherent structures can partially explain the intermittency and the non-homogenous distribution of localized plasma heating in turbulence. In this Letter, Cluster multi-point observations are used to investigate the distribution of magnetic field discontinuities and the associated small-scale current sheets in the terrestrial magnetosheath downstream of a quasi-parallel bow shock. It is shown experimentally, for the first time, that the strongest turbulence-generated current sheets occupy the long tails of probability distribution functions associated with extremal values of magnetic field partial derivatives.more » During the analyzed one-hour time interval, about a hundred strong discontinuities, possibly proton-scale current sheets, were observed.« less
Latitudinal distribution of the Jovian plasma sheet ions observed by Juno JADE-I
NASA Astrophysics Data System (ADS)
Kim, T. K. H.; Valek, P. W.; McComas, D. J.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Connerney, J. E. P.; Ebert, R. W.; Levin, S.; Louarn, P.; Pollock, C. J.; Ranquist, D. A.; Szalay, J.; Thomsen, M. F.; Wilson, R. J.
2017-12-01
The Jovian plasma sheet is a region where the centrifugal force dominates the heavy ion plasma. Properties of the plasma sheet ions near the equatorial plane have been studied with in-situ measurements from the Pioneer, Voyager, and Galileo spacecraft. However, the ion properties for the off-equator regions are not well known due to the limited measurements. Juno is the first polar orbiting spacecraft that can investigate the high latitude region of the Jovian magnetosphere. With Juno's unique trajectory, we will investigate the latitudinal distribution of the Jovian plasma sheet ions using measurements from the Jovian Auroral Distributions Experiment Ion sensor (JADE-I). JADE-I measures an ion's energy-per-charge (E/Q) from 0.01 keV/q to 46.2 keV/q with an electrostatic analyzer (ESA) and a mass-per-charge (M/Q) up to 64 amu/q with a carbon-foil-based time-of-flight (TOF) mass spectrometer. We have shown that the ambiguity between and (both have M/Q of 16) can be resolved in JADE-I using a semi-empirical simulation tool based on carbon foil effects (i.e., charge state modification, angular scattering, and energy loss) from incident ions passing through the TOF mass spectrometer. Based on the simulation results, we have developed an Ion Composition Analysis Tool (ICAT) that determines ion composition at each energy step of JADE-I (total of 64 steps). The velocity distribution for each ion species can be obtained from the ion composition as a function of each energy step. Since there is an ambipolar electric field due to mobile electrons and equatorially confined heavy ions, we expect to see acceleration along the field line. This study will show the species separated velocity distribution at various latitudes to investigate how the plasma sheet ions evolve along the field line.
2017-08-01
A sheet of plasma blasted out into space from just behind the edge of the sun (July 28, 2017). While some material escaped into space, a portion of it was unable to break the pull of gravity and the magnetic forces nearby and can be seen falling back to the sun. The 3.5 hours of action was captured in a wavelength of extreme ultraviolet light. https://photojournal.jpl.nasa.gov/catalog/PIA21866
Plasma-electric field controlled growth of oriented graphene for energy storage applications
NASA Astrophysics Data System (ADS)
Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya
2018-04-01
It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.
Ion and electron Kappa distribution functions in the plasma sheet.
NASA Astrophysics Data System (ADS)
Moya, P. S.; Stepanova, M. V.; Espinoza, C.; Antonova, E. E.; Valdivia, J. A.
2017-12-01
We present a study of ion and electron flux spectra in the Earth's plasma sheet using kappa distribution functions. Satellite data from the THEMIS mission were collected for thousands of crossings through the plasma sheet, between 7 and 35 Re and during the years 2008-2009. The events were separated according to the geomagnetic activity at the time. Our results show the distribution of the kappa index and characteristic energies across the plasma sheet and its evolution with distance to Earth for quiet times and for the substorm expansion and recovery phases. For the ions, it is observed that the kappa values tend to decrease outwards and that this effect is more significant in the dusk sector, where the smallest values are found for distances beyond 15 Re. The main effect of the substorms appears as an enhancement of this behavior. The electrons show a much more homogeneous distribution in quiet times, with a mild tendency for larger kappa values at larger distances. During substorms, the kappa values tend to equalize and appear very homogenous during expansion. However, they exhibit a significant increase in the dusk sector during the recovery substorm phase. Finally, we observe that the characteristic energy of the particles during substorms increases and concentrate at distances less than 15 Re.
NASA Technical Reports Server (NTRS)
Hartle, R. E.; Ogilvie, K. W.; Scudder, J. D.; Bridge, H. S.; Siscoe, G. L.; Lazarus, A. J.; Vasyliunas, V. M.; Yeates, C. M.
1975-01-01
Plasma electron count observations made during the first and third encounters of Mariner 10 with Mercury (i.e., during Mercury I and III) are reported. They provide detailed information on the magnetosphere of Mercury, especially those from Mercury III. A low-flux region was observed about closest approach (CA) of Mercury III, whereas no such region was detected by the lower-latitude Mercury I; a hot plasma sheet was measured on the outgoing (and near-equator) trajectory of Mercury I, while only cool plasma sheets were observed in the magnetosphere by Mercury III. Findings are similar, on a reduced scale, to models of the earth's magnetosphere and magnetosheath.
Characteristics of high-latitude precursor flows ahead of dipolarization fronts
NASA Astrophysics Data System (ADS)
Li, Jia-Zheng; Zhou, Xu-Zhi; Runov, Andrei; Angelopoulos, Vassilis; Liu, Jiang; Pan, Dong-Xiao; Zong, Qiu-Gang
2017-05-01
Dipolarization fronts (DFs), earthward propagating structures in the magnetotail current sheet characterized by sharp enhancements of northward magnetic field, are capable of converting electromagnetic energy into particle kinetic energy. The ions previously accelerated and reflected at the DFs can contribute to plasma flows ahead of the fronts, which have been identified as DF precursor flows in both the near-equatorial plasma sheet and far from it, near the plasma sheet boundary. Using observations from the THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft, we show that the earthward particle and energy flux enhancements ahead of DFs are statistically larger farther away from the neutral sheet (at high latitudes) than in the near-equatorial region. High-latitude particle and energy fluxes on the DF dawnside are found to be significantly greater than those on the duskside, which is opposite to the dawn-dusk asymmetries previously found near the equatorial region. Using forward and backward tracing test-particle simulations, we then explain and reproduce the observed latitude-dependent characteristics of DF precursor flows, providing a better understanding of ion dynamics associated with dipolarization fronts.
NASA Astrophysics Data System (ADS)
Shimizu, K.; Shinohara, I.; Fujimoto, M.
2016-12-01
Two-dimensional kinetic simulations of compression of thick current sheets are performed to see how it can lead to triggering of explosive magnetic reconnection. The current sheet under study is simply in a Harris-like anti-paralell and symmetric geometry. A one-dimensional pre-study shows that the compression is more effective to make the plasma anisotropy than to thin the current sheet width. When the lobe magnetic field is amplified by a factor of 2, the plasma temperature anisotropy inside the current sheet reaches 2 but the current sheet thickness is reduced only by 1/sqrt(2). If a current sheet thickness needs to be comparable to the ion inertial scale for reconnection triggering take place, as is widely and frequently mentioned in the research community, the initial thickness cannot be more than a few ion scale for reconnection to set-in. On the other hand, the temperature anisotropy of 2 can be significant for the triggering problem. Two-dimensional simulations show explosive magnetic reconnection to take place even when the initial current sheet thickness more than an order of magnitude thicker than the ion scale, indicating the resilient triggering drive supplied by the temperature anisotropy. We also discuss how the reconnection triggering capability of the temperature anisotropy boosted tearing mode for thick current sheets compares with the instabilities in the plane orthogonal to the reconnecting field.
Near-Earth plasma sheet boundary dynamics during substorm dipolarization
NASA Astrophysics Data System (ADS)
Nakamura, Rumi; Nagai, Tsugunobu; Birn, Joachim; Sergeev, Victor A.; Le Contel, Olivier; Varsani, Ali; Baumjohann, Wolfgang; Nakamura, Takuma; Apatenkov, Sergey; Artemyev, Anton; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Russell, Christopher T.; Singer, Howard J.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Bromund, Ken R.; Fischer, David; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Slavin, James A.; Cohen, Ian; Jaynes, Allison; Turner, Drew L.
2017-09-01
We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 R E were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) B z disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another field-aligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Huang, Y. C.; Lyu, L. H.
2014-12-01
Magnetic reconfiguration/reconnection plays an important role on energy and plasma transport in the space plasma. It is known that magnetic field lines on two sides of a tangential discontinuity can connect to each other only at a neutral point, where the strength of the magnetic field is equal to zero. Thus, the standard reconnection picture with magnetic field lines intersecting at the neutral point is not applicable to the component reconnection events observed at the magnetopause and in the solar corona. In our early study (Yu, Lyu, & Wu, 2011), we have shown that annihilation of magnetic field near a thin current sheet can lead to the formation of normal magnetic field component (normal to the current sheet) to break the frozen-in condition and to accelerate the reconnected plasma flux, even without the presence of a neutral point. In this study, we examine whether or not a generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet can also lead to reconnection of plasma flux. Our results indicate that a non-uniform enhancement of electric current can yield formation of field-aligned currents. The normal-component magnetic field generated by the field-aligned currents can yield reconnection of plasma flux just outside the current-enhancement region. The particle motion that can lead to non-uniform enhancement of electric currents will be discussed.
Silicone Coating on Polyimide Sheet
NASA Technical Reports Server (NTRS)
Park, J. J.
1985-01-01
Silicone coatings applied to polyimide sheeting for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, electrons, plasmas, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-sheet products.
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Wiltberger, M. J.; Sitnov, M. I.; Lyon, J.
2016-12-01
Observations show that much of plasma and magnetic flux transport in the magnetotail occurs in the form of discrete activations such as bursty bulk flows (BBFs). These flow structures are typically associated with strong peaks of the Z-component of the magnetic field normal to the magnetotail current sheet (dipolarization fronts, DFs), as well as density and flux tube entropy depletions also called plasma bubbles. Extensive observational analysis of these structures has been carried out using data from Geotail spacecraft and more recently from Cluster, THEMIS, and MMS multi-probe missions. Global magnetohydrodynamic (MHD) simulations of the magnetosphere reveal similar plasma sheet flow bursts, in agreement with regional MHD and particle-in-cell (PIC) models. We present results of high-resolution simulations using the Lyon-Fedder-Mobarry (LFM) global MHD model and analyze the properties of the bursty flows including their structure and evolution as they propagate from the mid-tail region into the inner magnetosphere. We highlight similarities and differences with the corresponding observations and discuss comparative properties of plasma bubbles and DFs in our global MHD simulations with their counterparts in 3D PIC simulations.
A dynamical model of plasma turbulence in the solar wind
Howes, G. G.
2015-01-01
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature. PMID:25848075
An Amino Acid Code for β-sheet Packing Structure
Joo, Hyun; Tsai, Jerry
2014-01-01
To understand the relationship between protein sequence and structure, this work extends the knob-socket model in an investigation of β-sheet packing. Over a comprehensive set of β-sheet folds, the contacts between residues were used to identify packing cliques: sets of residues that all contact each other. These packing cliques were then classified based on size and contact order. From this analysis, the 2 types of 4 residue packing cliques necessary to describe β-sheet packing were characterized. Both occur between 2 adjacent hydrogen bonded β-strands. First, defining the secondary structure packing within β-sheets, the combined socket or XY:HG pocket consists of 4 residues i,i+2 on one strand and j,j+2 on the other. Second, characterizing the tertiary packing between β-sheets, the knob-socket XY:H+B consists of a 3 residue XY:H socket (i,i+2 on one strand and j on the other) packed against a knob B residue (residue k distant in sequence). Depending on the packing depth of the knob B residue, 2 types of knob-sockets are found: side-chain and main-chain sockets. The amino acid composition of the pockets and knob-sockets reveal the sequence specificity of β-sheet packing. For β-sheet formation, the XY:HG pocket clearly shows sequence specificity of amino acids. For tertiary packing, the XY:H+B side-chain and main-chain sockets exhibit distinct amino acid preferences at each position. These relationships define an amino acid code for β-sheet structure and provide an intuitive topological mapping of β-sheet packing. PMID:24668690
Plasma and electric field boundaries at high and low altitudes on July 29, 1977
NASA Technical Reports Server (NTRS)
Fennell, J. F.; Johnson, R. G.; Young, D. T.; Torbert, R. B.; Moore, T. E.
1982-01-01
Hot plasma observations at high and low altitudes were compared. The plasma ion composition at high altitudes outside the plasmasphere was 0+. Heavy ions were also observed at low altitudes outside the plasmasphere. It is shown that at times these ions are found well below the plasmapause inside the plasmasphere. Comparisons of the low altitude plasma and dc electric fields show that the outer limits of the plasmasphere is not always corotating at the low L-shells. The corotation boundary, the estimated plasmapause boundary at the boundary of the inner edge of plasma sheet ions were at the same position. The inner edge of plasma sheet electrons is observed at higher latitudes than the plasmasphere boundary during disturbed times. The inner edge of the plasma sheaths shows a strong dawn to dusk asymmetry. At the same time the inner edge of the ring current and plasma sheath also moves to high latitudes reflecting an apparent inflation of the magnetosphere.
[Oxygen plasma-vulcanized deformable polydimethylsiloxane sheet culture substrates].
Zhang, Yiyi; Tao, Zulai
2003-06-01
A method of preparing deformable polydimethylsiloxane sheet culture substrates by oxygen plasma vulcanization was developed. As compared with the traditional heating vulcanization method, the substrates prepared in this way have hydrophilic surfaces, the adhesion and spreading of cells both occur quickly, and the wrinkling deformation of substrates develops quickly, too. In addition, the changes of wrinkles during treatment of cytochalasin D were observed, and the result shows that this technique has high temporal resolution.
The magnetosphere of Neptune - Its response to daily rotation
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes; Ness, Norman F.
1990-01-01
The Neptunian magnetosphere periodically changes every eight hours between a pole-on magnetosphere with only one polar cusp and an earth-type magnetosphere with two polar cusps. In the pole-on configuration, the tail current sheet has an almost circular shape with plasma currents closing entirely within the magnetosphere. Eight hours later the tail current sheet assumes an almost flat shape with plasma currents touching the magnetotail boundary and closing over the tail magnetopause. Magnetic field and tail current sheet configurations have been calculated in a three-dimensional model, but the plasma- and thermodynamic conditions were investigated in a simplified two-dimensional MHD equilibrium magnetosphere. It was found that the free energy in the tail region of the two-dimensional model becomes independent of the dipole tilt angle. It is conjectured that the Neptunian magnetotail might assume quasi-static equilibrium states that make the free energy of the system independent of its daily rotation.
Analysis of suprathermal electron properties at the magnetic pile-up boundary of Comet P/Halley
NASA Technical Reports Server (NTRS)
Mazelle, C.; Reme, H.; Sauvaud, J. A.; D'Uston, C.; Carlson, C. W.
1989-01-01
Among the plasma discontinuities detected by the Giotto spacecraft around Comet P/Halley, the magnetic pile-up boundary, located at about 135,000 km from the nucleus, has a sharpness which was not foreseen by theoretical models. At this boundary, which marks the beginning of the region where the field lines draped around the nucleus have been piled up, the magnetic field jumps sharply. Electron measurements provided by the RPA experiment show that a clear plasma discontinuity coincides with this magnetic feature. Significant changes occur here in the suprathermal electron distribution function. A magneto-plasma sheet is clearly defined after the boundary. Inside this sheet, close correlations exist between the parameters describing the magnetic field and the electron population. The polytropic equation of state governing the suprathermal electrons in the sheet has been deduced from RPA measurements. Some implications of this law are discussed.
Frequency-dependent absorbance of broadband terahertz wave in dense plasma sheet
NASA Astrophysics Data System (ADS)
Peng, Yan; Qi, Binbin; Jiang, Xiankai; Zhu, Zhi; Zhao, Hongwei; Zhu, Yiming
2018-05-01
Due to the ability of accurate fingerprinting and low-ionization for different substances, terahertz (THz) technology has a lot of crucial applications in material analysis, information transfer, and safety inspection, etc. However, the spectral characteristic of atmospheric gas and ionized gas has not been widely investigated, which is important for the remote sensing application. Here, in this paper, we investigate the absorbance of broadband terahertz wave in dense plasma sheet generated by femtosecond laser pulses. It was found that as the terahertz wave transmits through the plasma sheet formed, respectively, in carbon dioxide, oxygen, argon and nitrogen, spectrum presents completely different and frequency-dependent absorbance. The reasons for these absorption peaks are related to the molecular polarity, electric charge, intermolecular and intramolecular interactions, and collisional absorption of gas molecules. These results have significant implications for the remote sensing of gas medium.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath
NASA Astrophysics Data System (ADS)
Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath.
Phan, T D; Eastwood, J P; Shay, M A; Drake, J F; Sonnerup, B U Ö; Fujimoto, M; Cassak, P A; Øieroset, M; Burch, J L; Torbert, R B; Rager, A C; Dorelli, J C; Gershman, D J; Pollock, C; Pyakurel, P S; Haggerty, C C; Khotyaintsev, Y; Lavraud, B; Saito, Y; Oka, M; Ergun, R E; Retino, A; Le Contel, O; Argall, M R; Giles, B L; Moore, T E; Wilder, F D; Strangeway, R J; Russell, C T; Lindqvist, P A; Magnes, W
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Katharine K.; Freed, Michael S.; McKenzie, David E.
We perform a detailed analysis of the thermal structure of the region above the post-eruption arcade for a flare that occurred on 2011 October 22. During this event, a sheet of hot plasma is visible above the flare loops in the 131 Å bandpass of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory . Supra-arcade downflows (SADs) are observed traveling sunward through the post-eruption plasma sheet. We calculate differential emission measures using the AIA data and derive an emission measure weighted average temperature in the supra-arcade region. In areas where many SADs occur, the temperature of the supra-arcademore » plasma tends to increase, while in areas where no SADs are observed, the temperature tends to decrease. We calculate the plane-of-sky velocities in the supra-arcade plasma and use them to determine the potential heating due to adiabatic compression and viscous heating. Of the 13 SADs studied, 10 have noticeable signatures in both the adiabatic and the viscous terms. The adiabatic heating due to compression of plasma in front of the SADs is on the order of 0.1–0.2 MK/s, which is similar in magnitude to the estimated conductive cooling rate. This result supports the notion that SADs contribute locally to the heating of plasma in the supra-arcade region. We also find that in the region without SADs, the plasma cools at a rate that is slower than the estimated conductive cooling, indicating that additional heating mechanisms may act globally to keep the plasma temperature high.« less
Periodic substorm activity in the geomagnetic tail
NASA Technical Reports Server (NTRS)
Huang, C. Y.; Eastman, T. E.; Frank, L. A.; Williams, D. J.
1983-01-01
On 19 May 1978 an anusual series of events is observed with the Quadrispherical LEPEDEA on board the ISEE-1 satellite in the Earth's geomagnetic tail. For 13 hours periodic bursts of both ions and electrons are seen in all the particle detectors on the spacecraft. On this day periodic activity is also seen on the ground, where multiple intensifications of the electrojets are observed. At the same time the latitudinal component of the interplanetary magnetic field shows a number of strong southward deflections. It is concluded that an extended period of substorm activity is occurring, which causes repeated thinnings and recoveries of the plasma sheet. These are detected by ISEE, which is situated in the plasma sheet boundary layer, as periodic dropouts and reappearances of the plasma. Comparisons of the observations at ISEE with those at IMP-8, which for a time is engulfed by the plasma sheet, indicate that the activity is relatively localized in spatial extent. For this series of events it is clear that a global approach to magnetospheric dynamics, e.g., reconnection, is inappropriate.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Frank, L. A.; Huang, C. Y.
1988-01-01
Plasma data from ISEE-1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electron beam and the ion beam excite ion acoustic waves with a given Doppler-shifted real frequency. However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion bean is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points of the simulations show turbulence generated by growing waves.
Electron Dynamics in a Subproton-Gyroscale Magnetic Hole
NASA Technical Reports Server (NTRS)
Gershman, Daniel J.; Dorelli, John C.; Vinas, Adolfo F.; Avanov, Levon A.; Gliese, Ulrik B.; Barrie, Alexander C.; Coffey, Victoria; Chandler, Michael; Dickson, Charles; MacDonald, Elizabeth A.;
2016-01-01
Magnetic holes are ubiquitous in space plasmas, occurring in the solar wind, downstream of planetary bow shocks, and inside the magnetosphere. Recently, kinetic-scale magnetic holes have been observed near Earth's central plasma sheet. The Fast Plasma Investigation on NASA's Magnetospheric Multiscale (MMS) mission enables measurement of both ions and electrons with 2 orders of magnitude increased temporal resolution over previous magnetospheric instruments. Here we present data from MMS taken in Earth's nightside plasma sheet and use high-resolution particle and magnetometer data to characterize the structure of a subproton-scale magnetic hole. Electrons with gyroradii above the thermal gyroradius but below the current layer thickness carry a current sufficient to account for a 10-20 depression in magnetic field magnitude. These observations suggest that the size and magnetic depth of kinetic-scale magnetic holes is strongly dependent on the background plasma conditions.
Large-Scale Survey of the Structure of the Dayside Magnetopause by MMS
NASA Astrophysics Data System (ADS)
Paschmann, G.; Haaland, S. E.; Phan, T. D.; Sonnerup, B. U. Ö.; Burch, J. L.; Torbert, R. B.; Gershman, D. J.; Dorelli, J. C.; Giles, B. L.; Pollock, C.; Saito, Y.; Lavraud, B.; Russell, C. T.; Strangeway, R. J.; Baumjohann, W.; Fuselier, S. A.
2018-03-01
This paper describes the generation and initial utilization of a database containing 80 vector and scalar quantities, for a total of 8,670 magnetopause and magnetosheath current sheet crossings by MMS1, using plasma and magnetic field data from the Fast Plasma Investigation, Fluxgate Magnetometer, and Hot Plasma Composition Analyzer instruments, augmented by solar wind and interplanetary magnetic field data from CDAWeb. Based on a determination of the current sheet width, measured and calculated vector and scalar quantities are stored for the two sides of the current sheet and for selected times within the current sheet. The only manual operations were the classification of the current sheets according to the type of boundary, the character of the magnetic field transition, and the quality of the current sheet fit. To characterize the database, histograms of selected key quantities are presented. We then give the statistics for the duration, motion, and thicknesses of the magnetopause current sheet, using single-spacecraft techniques for the determination of the normal velocities, obtaining median results of 12.9 s, 38.5 km/s, and 705.4 km, respectively. When scaled to the ion inertial length, the median thickness became 12.6; there were no thicknesses less than one. Next, we apply the Walén relation to find crossings that are rotational discontinuities and thus may indicate ongoing magnetic reconnection. For crossings where the velocities in the outflow region exceed the velocity on the magnetosheath side by at least 250 km/s, 47% meet our rotational discontinuity criteria. If we require the outflow to exceed 250 km/s along the L direction, then the percentage rises to 68%.
New Way of Characterizing the State of the Ring Current
NASA Astrophysics Data System (ADS)
Wolf, R.; Bao, S.; Gkioulidou, M.; Yang, J.; Toffoletto, F.
2017-12-01
The flux tube entropy S is invariant in ideal MHD and is a good way to characterize the degree to which a closed flux tube is loaded with particle energy. Flux tube entropy generally increases with increasing geocentric distance. A flux tube that is injected from the plasma sheet into the ring current tends to be a bubble that has a lower S value than typical plasma sheet flux tubes, and it tends to penetrate to a position where the surroundings matches its S. From this point of view, a good way to characterize the state of the ring current is through the function dF/dS, which specifies how much magnetic flux is occupied by tubes with different degrees of loading. By displaying dF/dS curves before and during storm main phases simulated with the RCM-E code, we determine that, in the model, the injection of the stormtime ring current consists of replacing pre-storm low-S flux tubes with tubes from the plasma sheet that have a certain limited range of S, which is well below typical plasma-sheet values. We also display dF/dS curves for passes by the Van Allen Probes before and during storm main phases, and compare with the RCM-E-derived curves, to gain insight into the nature of the flux tubes that are injected to form the real storm-time ring current.
Two types of energy-dispersed ion structures at the plasma sheet boundary
NASA Astrophysics Data System (ADS)
Sauvaud, J.-A.; Kovrazhkin, R. A.
2004-12-01
We study two main types of ion energy dispersions observed in the energy range ˜1 to 14 keV on board the Interball-Auroral (IA) satellite at altitudes 2-3 RE at the poleward boundary of the plasma sheet. The first type of structure is named velocity dispersed ion structures (VDIS). It is known that VDIS represent a global proton structure with a latitudinal width of ˜0.7-2.5°, where the ion overall energy increases with latitude. IA data allow to show that VDIS are made of substructures lasting for ˜1-3 min. Inside each substructure, high-energy protons arrive first, regardless of the direction of the plasma sheet boundary crossing. A near-continuous rise of the maximal and minimal energies of consecutive substructures with invariant latitude characterizes VDIS. The second type of dispersed structure is named time-of-flight dispersed ion structures (TDIS). TDIS are recurrent sporadic structures in H+ (and also O+) with a quasi-period of ˜3 min and a duration of ˜1-3 min. The maximal energy of TDIS is rather constant and reaches ≥14 keV. During both poleward and equatorward crossings of the plasma sheet boundary, inside each TDIS, high-energy ions arrive first. These structures are accompanied by large fluxes of upflowing H+ and O+ ions with maximal energies up to 5-10 keV. In association with TDIS, bouncing H+ clusters are observed in quasi-dipolar magnetic field tubes, i.e., equatorward from TDIS. The electron populations generally have different properties during observations of VDIS and TDIS. The electron flux accompanying VDIS first increases smoothly and then decreases after Interball-Auroral has passed through the proton structure. The average electron energy in the range ˜0.5-2 keV is typical for electrons from the plasma sheet boundary layer (PSBL). The electron fluxes associated with TDIS increases suddenly at the polar boundary of the auroral zone. Their average energy, reaching ˜5-8 keV, is typical for CPS. A statistical analysis shows that VDIS are observed mainly during magnetically quiet times and during the recovery phase of substorms, while sporadic and recurrent TDIS are observed during the onset and main phases of substorms and magnetic storms and, although less frequently, during substorm recovery phases. From the slope of the (velocity)-1 versus time dispersions of TDIS, we conclude that they have a sporadic source located at the outer boundary of the central plasma sheet, at distances from 8 to 40 RE in the equatorial plane. The disappearance of the PSBL associated with TDIS can be tentatively linked to a reconfiguration of the magnetotail, which disconnects from the Earth the field lines forming the "quiet" PSBL. We show that VDIS consist of ion beams ejected from an extended current sheet at different distances. These ion beams could be formed in the neutral sheet at distance ranging from ˜30 RE to ˜100 RE from the Earth. Inside each substructure the time-of-flight dispersion of ions generally dominate over any latitudinal dispersion induced by a dawn-dusk electric field. These two main types of energy-dispersed ion structures reflect probably two main states of the magnetotail, quiet and active. Finally, it must be stressed that only ˜49% (246 over 501) of the Interball-Auroral auroral zone-polar cap boundary crossings can be described as VDIS or TDIS. On the other 51% of the crossings of the plasma sheet boundary, no well-defined ion dispersed structures were observed.
Electric fields in the plasma sheet and plasma sheet boundary layer
NASA Technical Reports Server (NTRS)
Pedersen, A.; Cattell, C. A.; Faelthammar, C. G.; Knott, K.; Lindqvist, P. A.; Manka, R. H.; Mozer, F. S.
1984-01-01
Data from the spherical double probe electric-field experiment on ISEE-1 were used to study plasmasheet/lobe boundary crossings during substorms, identified by plasma measurements and by using the electric field probes as a reference for measurements of the spacecraft potential. There are strong electric fields, with a dominant dawn-to-dusk component, throughout the boundary layer outside the plasmasheet for contracting and expanding motions of the plasmasheet and for different magnetic field directions. Characteristic amplitudes and durations are 5 to 10 mV/m and 5 to 15 min. The corresponding E x B vectors are always towards the plasmasheet.
The effect of plasma actuator on the depreciation of the aerodynamic drag on box model
NASA Astrophysics Data System (ADS)
Harinaldi, Budiarso, Julian, James; Rabbani M., N.
2016-06-01
Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.
NASA Astrophysics Data System (ADS)
Singh, Gulbagh; Sutar, D. S.; Divakar Botcha, V.; Narayanam, Pavan K.; Talwar, S. S.; Srinivasa, R. S.; Major, S. S.
2013-09-01
Graphene oxide (GO) monolayer sheets, transferred onto Si by the Langmuir-Blodgett technique, were subjected to ammonia plasma treatment at room temperature with the objective of simultaneous reduction and doping. Scanning electron microscopy and atomic force microscopy studies show that plasma treatment at a relatively low power (˜10 W) for up to 15 min does not affect the morphological stability and monolayer character of GO sheets. X-ray photoelectron spectroscopy has been used to study de-oxygenation of GO monolayers and the incorporation of nitrogen in graphitic-N, pyrrolic-N and pyridinic-N forms due to the plasma treatment. The corresponding changes in the valence band electronic structure, density of states at the Fermi level and work function have been investigated by ultraviolet photoelectron spectroscopy. These studies, supported by Raman spectroscopy and electrical conductivity measurements, have shown that a short duration plasma treatment of up to 5 min results in an increase of sp2-C content along with a substantial incorporation of the graphitic-N form, leading to the formation of n-type reduced GO. Prolonged plasma treatment for longer durations results in a decrease of electrical conductivity, which is accompanied by a substantial decrease of sp2-C and an increase in defects and disorder, primarily attributed to the increase in pyridinic-N content.
Magnetic Reconnection in Strongly Magnetized Regions of the Low Solar Chromosphere
NASA Astrophysics Data System (ADS)
Ni, Lei; Lukin, Vyacheslav S.; Murphy, Nicholas A.; Lin, Jun
2018-01-01
Magnetic reconnection in strongly magnetized regions around the temperature minimum region of the low solar atmosphere is studied by employing MHD-based simulations of a partially ionized plasma within a reactive 2.5D multi-fluid model. It is shown that in the absence of magnetic nulls in a low β plasma, the ionized and neutral fluid flows are well-coupled throughout the reconnection region. However, non-equilibrium ionization–recombination dynamics play a critical role in determining the structure of the reconnection region, leading to much lower temperature increases and a faster magnetic reconnection rate as compared to simulations that assume plasma to be in ionization–recombination equilibrium. The rate of ionization of the neutral component of the plasma is always faster than recombination within the current sheet region even when the initial plasma β is as high as {β }0=1.46. When the reconnecting magnetic field is in excess of a kilogauss and the plasma β is lower than 0.0145, the initially weakly ionized plasmas can become fully ionized within the reconnection region and the current sheet can be strongly heated to above 2.5× {10}4 K, even as most of the collisionally dissipated magnetic energy is radiated away. The Hall effect increases the reconnection rate slightly, but in the absence of magnetic nulls it does not result in significant asymmetries or change the characteristics of the reconnection current sheet down to meter scales.
The Giacobini-Zinner magnetotail - Tail configuration and current sheet
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Gosling, J. T.; Bame, S. J.; Slavin, J. A.; Smith, E. J.
1987-01-01
The configuration and properties of the draped Giacobini-Zinner magnetotail and its field-reversing current sheet are studied using the combined magnetic field and plasma electron data sets obtained from the International Cometary Explorer spacecraft when it traversed (in October 1985) the comet 7800 km downstream of the nucleus. The MHD equations are used to derive pressure balance and plasma acceleration conditions. The implications of the various properties derived are examined, particularly with regard to the upstream near-nucleus region where the tail formation process occurs.
Current sheet in plasma as a system with a controlling parameter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fridman, Yu. A., E-mail: yulya-fridman@yandex.ru; Chukbar, K. V., E-mail: Chukbar-KV@nrcki.ru
2015-08-15
A simple kinetic model describing stationary solutions with bifurcated and single-peaked current density profiles of a plane electron beam or current sheet in plasma is presented. A connection is established between the two-dimensional constructions arising in terms of the model and the one-dimensional considerations by Bernstein−Greene−Kruskal facilitating the reconstruction of the distribution function of trapped particles when both the profile of the electric potential and the free particles distribution function are known.
Ion distribution effects of turbulence on a kinetic auroral arc model
NASA Technical Reports Server (NTRS)
Cornwall, J. M.; Chiu, Y. T.
1982-01-01
An inverted-V auroral arc structure plasma-kinetic model is extended to phenomenologically include the effects of electrostatic turbulence, with k-parallel/k-perpendicular being much less than unity. It is shown that, unless plasma sheet ions are very much more energetic than the electrons, anomalous resistivity is not a large contributor to parallel electrostatic potential drops, since the support of the observed potential drop requires a greater dissipation of energy than can be provided by the plasma sheet. Wave turbulence can, however, be present, with the ion cyclotron turbulence levels suggested by the ion resonance broadening saturation mechanism of Dum and Dupree (1970) being comparable to those observed on auroral field lines. The diffusion coefficient and net growth rate are much smaller than estimates based solely on local plasma properties.
Design of a Microwave Assisted Discharge Inductive Plasma Accelerator
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.
2010-01-01
A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.
NASA Technical Reports Server (NTRS)
Lyons, L. R.; Pridmore-Brown, D. C.
1992-01-01
Conditions for which particle motion within the current sheet in the vicinity of an X line can give a current in the direction appropriate for E x J is less than 0. The way in which the balance between gyroviscosity and the electric force along an X line is maintained for any E x J is shown. It is concluded that observational evidence for the occasional existence of E x J is less than 0 along an X line provides support for the suggestion that collisionless graviscosity, rather than resistivity, balances the electric force along an X line. It is found that there is a maximum electric field magnitude for particles to be able to carry a significant current. For parameters typical of the distant magnetotail, the critical electric field magnitude was found to be about 0.15 mV/m, which is of the order of, though somewhat less than, the potential electric field magnitudes expected in the magnetotail. This maximum allowable field magnitude is about the same for protons as it is for electrons in the magnetotail.
Phenomena after meteoroid penetration of a bumper plate
NASA Technical Reports Server (NTRS)
Todd, F. C.
1972-01-01
The results are presented of a study to obtain a computer program for the penetration of a thin plate of aluminum by a sphere of rock. The study was divided into two projects. One project covers the initial impact, the crushing of the sphere of rock, the break up of the aluminum sheet, and the conversion of the sufficiently shock-compressed regions of rock and aluminum into a plasma. The other project considers the ejection of a cone of plasma with entrained particles from the impact zone, its expansion as it traverses a region of free space, and its impact on a stack of paper sheets. The ablation of fragments in penetrating the stack of paper sheets is also considered.
The ISPM unified radio and plasma wave experiment
NASA Technical Reports Server (NTRS)
Stone, R. G.; Caldwell, J.; Deconchy, Y.; Deschanciaux, C.; Ebbett, R.; Epstein, G.; Groetz, K.; Harvey, C. C.; Hoang, S.; Howard, R.
1983-01-01
Hardware for the International Solar Polar Mission (ISPM) Unified Radio and Plasma (URAP) wave experiment is presented. The URAP determines direction and polarization of distant radio sources for remote sensing of the heliosphere, and studies local wave phenomena which determine the transport coefficients of the ambient plasma. Electric and magnetic field antennas and preamplifiers; the electromagnetic compatibility plan and grounding; radio astronomy and plasma frequency receivers; a fast Fourier transformation data processing unit waveform analyzer; dc voltage measurements; a fast envelope sampler for the solar wind, and plasmas near Jupiter; a sounder; and a power converter are described.
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.; Parks, George; Gurgiolo, C.; Fazakerley, Andrew N.
2008-01-01
We present determinations of compressibility and vorticity in the magnetosheath and plasma sheet using moments from the four PEACE thermal electron instruments on CLUSTER. The methodology used assumes a linear variation of the moments throughout the volume defined by the four satellites, which allows spatially independent estimates of the divergence, curl, and gradient. Once the vorticity has been computed, it is possible to estimate directly the Taylor microscale. We have shown previously that the technique works well in the solar wind. Because the background flow speed in the magnetosheath and plasma sheet is usually less than the Alfven speed, the Taylor frozen-in-flow approximation cannot be used. Consequently, this four spacecraft approach is the only viable method for obtaining the wave number properties of the ambient fluctuations. Our results using electron velocity moments will be compared with previous work using magnetometer data from the FGM experiment on Cluster.
Energy dissipation in substorms
NASA Technical Reports Server (NTRS)
Weiss, Loretta A.; Reiff, P. H.; Moses, J. J.; Heelis, R. A.; Moore, B. D.
1992-01-01
The energy dissipated by substorms manifested in several ways is discussed: the Joule dissipation in the ionosphere; the energization of the ring current by the injection of plasma sheet particles; auroral election and ion acceleration; plasmoid ejection; and plasma sheet ion heating during the recovery phase. For each of these energy dissipation mechanisms, a 'rule of thumb' formula is given, and a typical dissipation rate and total energy expenditure is estimated. The total energy dissipated as Joule heat (approximately) 2 x 10(exp 15) is found about twice the ring current injection term, and may be even larger if small scale effects are included. The energy expended in auroral electron precipitation, on the other hand, is smaller than the Joule heating by a factor of five. The energy expended in refilling and heating the plasma sheets is estimated to be approximately 5 x 10(exp 14)J, while the energy lost due to plasmoid ejection is between (approximately) (10 exp 13)(exp 14)J.
The inner edge of the plasma sheet and the diffuse aurora
NASA Technical Reports Server (NTRS)
Fairfield, D. H.; Vinas, A. F.
1983-01-01
Three dimensional measurements from the ISEE-1 low energy electron spectrometer are used to map the location of the inner edge of the plasma sheet and study the anisotropies in the electron distribution function associated with this boundary. Lower energy plasma sheet electrons have inner edges closer to the Earth than higher energies with the separations at different energies being larger near dawn and after dusk than at midnight. Lowest energy inner edges are frequently located adjacent to the plasmapause in the dawn hemisphere but are often separated from it in the dusk hemisphere by a gap of at least several Re. The energy dispersion is minimal in the afternoon quadrant where the inner edge is near the magnetopause and frequently oscillating on a time scale of minutes. The location of the inner edge is probably determined primarily by the motion of electrons in the existing electric and magnetic fields rather than by strong diffusion as has sometimes been supposed.
Magnetotail energy dissipation during an auroral substorm
Panov, E.V.; Baumjohann, W.; Wolf, R.A.; Nakamura, R.; Angelopoulos, V.; Weygand, J. M.; Kubyshkina, M.V.
2016-01-01
Violent releases of space plasma energy from the Earth’s magnetotail during substorms produce strong electric currents and bright aurora. But what modulates these currents and aurora and controls dissipation of the energy released in the ionosphere? Using data from the THEMIS fleet of satellites and ground-based imagers and magnetometers, we show that plasma energy dissipation is controlled by field-aligned currents (FACs) produced and modulated during magnetotail topology change and oscillatory braking of fast plasma jets at 10-14 Earth radii in the nightside magnetosphere. FACs appear in regions where plasma sheet pressure and flux tube volume gradients are non-collinear. Faster tailward expansion of magnetotail dipolarization and subsequent slower inner plasma sheet restretching during substorm expansion and recovery phases cause faster poleward then slower equatorward movement of the substorm aurora. Anharmonic radial plasma oscillations build up displaced current filaments and are responsible for discrete longitudinal auroral arcs that move equatorward at a velocity of about 1km/s. This observed auroral activity appears sufficient to dissipate the released energy. PMID:27917231
Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations
NASA Technical Reports Server (NTRS)
Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.
2001-01-01
The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.
Ion velocity distributions in dipolarization events: Distributions in the central plasma sheet
NASA Astrophysics Data System (ADS)
Birn, J.; Runov, A.; Zhou, X.-Z.
2017-08-01
Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in the central plasma sheet (CPS) in relation to dipolarization events. Distributions in the CPS within the dipolarized flux bundle (DFB) that follows the passage of a dipolarization front typically show two opposing low subthermal-energy beams with a ring-like component perpendicular to the magnetic field at about twice the thermal energy. The dominance of the perpendicular anisotropy and a field-aligned peak at lower energy agree qualitatively with ion distribution functions derived from "Time History of Events and Macroscale Interactions during Substorms" observations. At locations somewhat off the equatorial plane the field-aligned peaks are shifted by a field-aligned component of the bulk flow, such that one peak becomes centered near zero net velocity, which makes it less likely to be observed. The origins of the field-aligned peaks are low-energy lobe (or near plasma sheet boundary layer) regions, while the ring distribution originates mostly from thermal plasma sheet particles on extended field lines. The acceleration mechanisms are also quite different: the beam ions are accelerated first by the E × B drift motion of the DFB and then by a slingshot effect of the earthward convecting DFB (akin to first-order Fermi, type B, acceleration), which causes an increase in field-aligned speed. In contrast, the ring particles are accelerated by successive, betatron-like acceleration after entering the high electric field region of an earthward propagating DFB.
NASA Astrophysics Data System (ADS)
Gkioulidou, Matina; Wang, Chih-Ping; Lyons, Larry R.
2011-12-01
Transport of plasma sheet particles into the inner magnetosphere is crucial to the development of the region 2 (R2) field-aligned current system (FAC), which results in the shielding of the penetration electric field and the formation of subauroral polarization streams (SAPS) and the Harang reversal, phenomena closely associated with storms and substorms. In addition to the electric field, this transport is also strongly affected by the magnetic field, which changes with plasma pressure and is distinctly different from the dipole field in the inner plasma sheet. To determine the feedback of force-balanced magnetic field to the transport, we have integrated the Rice convection model (RCM) with a modified Dungey magnetic field solver to obtain the required force balance in the equatorial plane. Comparing our results with those from a RCM run using a T96 magnetic field, we find that transport under a force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-Earth region and weaker shielding of the penetration electric field. As a result, plasma sheet protons and electrons penetrate farther earthward, and their inner edges become closer together and more azimuthally symmetric than in the T96 case. The Harang reversal extends farther dawnward, and the SAPS become more confined in radial and latitudinal extents. The magnitudes of azimuthal pressure gradient, the inner edges of thermal protons and electrons, the latitudinal range of the Harang reversal, and the radial and latitudinal widths of the SAPS from the force-balanced run are found to be more consistent with observations.
Xu, Qiu; Li, Bei; Yuan, Lin; Dong, Zhiwei; Zhang, Hao; Wang, Han; Sun, Jin; Ge, Song; Jin, Yan
2017-03-01
The longstanding goal of periodontal therapy is to regenerate periodontal tissues. Although platelet-rich plasma (PRP) has been gaining increasing popularity for use in the orofacial region, whether PRP is useful for periodontal regeneration is still unknown. The purpose of this study was to determine whether a mixture of periodontal ligament stem cell (PDLSC) sheets and PRP promoted bone regeneration, one of the most important measurement indices of periodontal tissue regenerative capability in vitro and in vivo. In this study, we evaluated the effects of different doses of PRP on the differentiation of human PDLSCs. Then cell sheet formation, extracellular matrix deposition and osteogenic gene expression in response to different doses of PRP treatment during sheet grafting was investigated. Furthermore, we implanted PDLSC sheets treated with 1% PRP subcutaneously into immunocompromised mice to evaluate their bone-regenerative capability. The results revealed that 1% PRP significantly enhanced the osteogenic differentiation of PDLSCs. Based on the production of extracellular matrix proteins, the results of scanning electron microscopy and the expression of the osteogenic genes ALP, Runx2, Col-1 and OCN, the provision of 1% PRP for PDLSC sheets was the most effective PRP administration mode for cell sheet formation. The results of in vivo transplantation showed that 1% PRP-mediated PDLSC sheets exhibited better periodontal tissue regenerative capability than those obtained without PRP intervention. These data suggest that a suitable concentration of PRP stimulation may enhance extracellular matrix production and positively affect cell behaviour in PDLSC sheets. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Takamoto, M.
2018-05-01
In this paper, the temporal evolution of three-dimensional relativistic current sheets in Poynting-dominated plasma is studied for the first time. Over the past few decades, a lot of efforts have been conducted on studying the evolution of current sheets in two-dimensional space, and concluded that sufficiently long current sheets always evolve into the so-called plasmoid chain, which provides a fast reconnection rate independent of its resistivity. However, it is suspected that plasmoid chain can exist only in the case of two-dimensional approximation, and would show transition to turbulence in three-dimensional space. We performed three-dimensional numerical simulation of relativistic current sheet using resistive relativistic magnetohydrodynamic approximation. The results showed that the three-dimensional current sheets evolve not into plasmoid chain but turbulence. The resulting reconnection rate is 0.004, which is much smaller than that of plasmoid chain. The energy conversion from magnetic field to kinetic energy of turbulence is just 0.01 per cent, which is much smaller than typical non-relativistic cases. Using the energy principle, we also showed that the plasmoid is always unstable for a displacement in the opposite direction to its acceleration, probably interchange-type instability, and this always results in seeds of turbulence behind the plasmoids. Finally, the temperature distribution along the sheet is discussed, and it is found that the sheet is less active than plasmoid chain. Our finding can be applied for many high-energy astrophysical phenomena, and can provide a basic model of the general current sheet in Poynting-dominated plasma.
NASA Astrophysics Data System (ADS)
Xue, Zhike; Yan, Xiaoli; Yang, Liheng; Wang, Jincheng; Feng, Song; Li, Qiaoling; Ji, Kaifan; Zhao, Li
2018-05-01
We report a possible current sheet region associated with a small-scale magnetic reconnection event by using the spectral and imaging observations of the Interface Region Imaging Spectrograph (IRIS) and the magnetograms obtained by the Solar Dynamics Observatory on 2016 August 08. The length and width of the current sheet region are estimated to be from 1.4 ± 0.1 Mm to 3.0 ± 0.3 Mm and from 0.34 ± 0.01 Mm to 0.64 ± 0.09 Mm, respectively. The evolutions of the length of the current sheet region are positively correlated with that of the width. These measurements are among the smallest reported. When the IRIS slit scans the current sheet region, the spectroscopic observations show that the Si IV line is broadened in the current sheet region and the plasma has a blueshifted feature at the middle and a redshifted feature at the ends of the current sheet region. The maximum measured blueshifted and redshifted Doppler velocities are ‑20.8 ± 0.9 and 34.1 ± 0.4 km s‑1, respectively. Additionally, the electron number densities of the plasma in the current sheet region are computed to be around 1011 cm‑3 based on the spectrums of the two O IV lines. The emergence, movement, and cancellation of a small sunspot with negative polarity are observed during the formation and shift of the current sheet region. We suggest that the occurrence and evolution of the magnetic reconnection are driven by the movement of the small sunspot in the photosphere.
Mini-Magnetospheres at the Moon in the Solar Wind and the Earth's Plasma Sheet
NASA Astrophysics Data System (ADS)
Harada, Y.; Futaana, Y.; Barabash, S. V.; Wieser, M.; Wurz, P.; Bhardwaj, A.; Asamura, K.; Saito, Y.; Yokota, S.; Tsunakawa, H.; Machida, S.
2014-12-01
Lunar mini-magnetospheres are formed as a consequence of solar-wind interaction with remanent crustal magnetization on the Moon. A variety of plasma and field perturbations have been observed in a vicinity of the lunar magnetic anomalies, including electron energization, ion reflection/deflection, magnetic field enhancements, electrostatic and electromagnetic wave activities, and low-altitude ion deceleration and electron acceleration. Recent Chandrayaan-1 observations of the backscattered energetic neutral atoms (ENAs) from the Moon in the solar wind revealed upward ENA flux depletion (and thus depletion of the proton flux impinging on the lunar surface) in association with strongly magnetized regions. These ENA observations demonstrate that the lunar surface is shielded from the solar wind protons by the crustal magnetic fields. On the other hand, when the Moon was located in the Earth's plasma sheet, no significant depletion of the backscattered ENA flux was observed above the large and strong magnetic anomaly. It suggests less effective magnetic shielding of the surface from the plasma sheet protons than from the solar wind protons. We conduct test-particle simulations showing that protons with a broad velocity distribution are more likely to reach a strongly magnetized surface than those with a beam-like velocity distribution. The ENA observations together with the simulation results suggest that the lunar crustal magnetic fields are no longer capable of standing off the ambient plasma when the Moon is immersed in the hot magnetospheric plasma.
Thermomechanical processing of plasma sprayed intermetallic sheets
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2001-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Plasmoid formation in the elongated current sheet during transient CHI on HIST
NASA Astrophysics Data System (ADS)
Nagata, Masayoshi; Fujita, Akihiro; Matsui, Takahiro; Kikuchi, Yusuke; Fukumoto, Naoyuki; Kanki, Takashi
2016-10-01
The Transient-Coaxial Helicity Injection (T-CHI) is a promising candidate for the non-inductive plasma start-up on Spherical Torus (ST). The problem of the flux closure in the T-CHI is important and related to understand the physics of fast magnetic reconnection. The recent MHD simulation (F. Ebrahimi and R. Raman, Phys. Rev. Lett. 114, 205003 (2015)) on T-CHI for NSTX predicts the formation and breakup of an elongated Sweet-Parker (S-P) current sheet and a transient to plasmoid instability. According to this simulation, the reconnection rate based on the plasmoid instability is faster than that by S-P model and becomes nearly independent of the Lundquist number S. In this meeting, we will present that the formation of multiple X-points and plasmoids has been observed in T-CHI start-up plasmas on HIST. The stronger external guide (toroidal) magnetic field makes plasma less compressible, leading to slower reconnection time and longer current sheet. The experimental observation shows that 2/3 plasmoids are generated in the elongated current sheet with the narrow width comparable to the ion skin depth or the ion sound gyro-radius. The small plasmoids develop to a large-scale flux structure due to a current inward diffusion during the decay phase.
NASA Technical Reports Server (NTRS)
Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)
1987-01-01
Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.
A kirigami approach to engineering elasticity in nanocomposites through patterned defects.
Shyu, Terry C; Damasceno, Pablo F; Dodd, Paul M; Lamoureux, Aaron; Xu, Lizhi; Shlian, Matthew; Shtein, Max; Glotzer, Sharon C; Kotov, Nicholas A
2015-08-01
Efforts to impart elasticity and multifunctionality in nanocomposites focus mainly on integrating polymeric and nanoscale components. Yet owing to the stochastic emergence and distribution of strain-concentrating defects and to the stiffening of nanoscale components at high strains, such composites often possess unpredictable strain-property relationships. Here, by taking inspiration from kirigami—the Japanese art of paper cutting—we show that a network of notches made in rigid nanocomposite and other composite sheets by top-down patterning techniques prevents unpredictable local failure and increases the ultimate strain of the sheets from 4 to 370%. We also show that the sheets' tensile behaviour can be accurately predicted through finite-element modelling. Moreover, in marked contrast to other stretchable conductors, the electrical conductance of the stretchable kirigami sheets is maintained over the entire strain regime, and we demonstrate their use to tune plasma-discharge phenomena. The unique properties of kirigami nanocomposites as plasma electrodes open up a wide range of novel technological solutions for stretchable electronics and optoelectronic devices, among other application possibilities.
Wu, Angjian; Li, Xiaodong; Yang, Jian; Du, Changming; Shen, Wangjun; Yan, Jianhua
2017-10-12
Vertical graphene (VG) sheets were single-step synthesized via inductively coupled plasma (ICP)-enhanced chemical vapor deposition (PECVD) using waste lard oil as a sustainable and economical carbon source. Interweaved few-layer VG sheets, H₂, and other hydrocarbon gases were obtained after the decomposition of waste lard oil. The influence of parameters such as temperature, gas proportion, ICP power was investigated to tune the nanostructures of obtained VG, which indicated that a proper temperature and H₂ concentration was indispensable for the synthesis of VG sheets. Rich defects of VG were formed with a high I D / I G ratio (1.29), consistent with the dense edges structure observed in electron microscopy. Additionally, the morphologies, crystalline degree, and wettability of nanostructure carbon induced by PECVD and ICP separately were comparatively analyzed. The present work demonstrated the potential of our PECVD recipe to synthesize VG from abundant natural waste oil, which paved the way to upgrade the low-value hydrocarbons into advanced carbon material.
Dewar, R. L.; Hudson, S. R.; Bhattacharjee, A.; ...
2017-04-03
The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, multi-region relaxed magnetohydrodynamics (MRxMHD), is summarized, with special attention to the appropriate definition of a relative magnetic helicity. The formalism is illustrated using a simple two-region, sheared-magnetic-field model similar to the Hahm-Kulsrud-Taylor (HKT) rippled-boundary slab model. In MRxMHD, a linear Grad-Shafranov equation applies, even at finite ripple amplitude. The adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated by invoking the conservation of magnetic helicity in the twomore » regions separated by the current sheet. Here, at low ripple amplitude, "half islands" appear on each side of the current sheet, locking the rotational transform at the resonant value. Beyond a critical amplitude, these islands disappear and the rotational transform develops a discontinuity across the current sheet. Published by AIP Publishing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewar, R. L.; Hudson, S. R.; Bhattacharjee, A.
The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, multi-region relaxed magnetohydrodynamics (MRxMHD), is summarized, with special attention to the appropriate definition of a relative magnetic helicity. The formalism is illustrated using a simple two-region, sheared-magnetic-field model similar to the Hahm-Kulsrud-Taylor (HKT) rippled-boundary slab model. In MRxMHD, a linear Grad-Shafranov equation applies, even at finite ripple amplitude. The adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated by invoking the conservation of magnetic helicity in the twomore » regions separated by the current sheet. Here, at low ripple amplitude, "half islands" appear on each side of the current sheet, locking the rotational transform at the resonant value. Beyond a critical amplitude, these islands disappear and the rotational transform develops a discontinuity across the current sheet. Published by AIP Publishing.« less
Cui, Shaohua; Zhang, Wei; Xiong, Liwen; Pan, Feng; Niu, Yanjie; Chu, Tianqing; Wang, Huimin; Zhao, Yizhuo; Jiang, Liyan
2017-01-10
Capture-based next-generation sequencing (NGS) is a potentially useful diagnostic method to measure tumor tissue DNA in blood as it can identify concordant mutations between cell-free DNA (cfDNA) and primary tumor DNA in lung cancer patients. In this study, the sensitivity, specificity and accuracy of capture-based NGS for detecting ALK fusion in plasma cfDNA was assessed. 24 patients with tissue ALK-positivity and 15 who did not harbor ALK fusion were enrolled. 13 ALK-positive samples were identified by capture-based NGS among the 24 samples with tissue ALK-positivity. In addition to EML4-ALK, 2 rare fusion types (FAM179A-ALK and COL25A1-ALK) were also identified. The overall sensitivity, specificity and accuracy for all cases were 54.2%, 100% and 71.8%, respectively. For patients without distant metastasis (M0-M1a) and patients with distant metastasis (M1b), the sensitivities were 28.6% and 64.7%, respectively. In the 15 patients who received crizotinib, the estimated median PFS was 9.93 months. Thus, captured-based NGS has acceptable sensitivity and excellent specificity for the detection of ALK fusion in plasma cfDNA, especially for patients with distant metastasis. This non-invasive method is clinically feasible for detecting ALK fusion in patients with advanced-stage NSCLC who cannot undergo traumatic examinations or have insufficient tissue samples for molecular tests.
An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allanson, O., E-mail: oliver.allanson@st-andrews.ac.uk; Neukirch, T., E-mail: tn3@st-andrews.ac.uk; Wilson, F., E-mail: fw237@st-andrews.ac.uk
We present a first discussion and analysis of the physical properties of a new exact collisionless equilibrium for a one-dimensional nonlinear force-free magnetic field, namely, the force-free Harris sheet. The solution allows any value of the plasma beta, and crucially below unity, which previous nonlinear force-free collisionless equilibria could not. The distribution function involves infinite series of Hermite polynomials in the canonical momenta, of which the important mathematical properties of convergence and non-negativity have recently been proven. Plots of the distribution function are presented for the plasma beta modestly below unity, and we compare the shape of the distribution functionmore » in two of the velocity directions to a Maxwellian distribution.« less
Multiple-Scale Physics During Magnetic Reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jara-Almonte, Jonathan
Magnetic reconnection is a key fundamental process in magnetized plasmas wherein the global magnetic topology is modified and stored energy is transferred from fields to particles. Reconnection is an inherently local process, and mechanisms to couple global-scale dynamics are not well understood. This dissertation explores two different mechanisms for cross-scale coupling during magnetic reconnection. As one example, we theoretically examine reconnection in a collisionless plasma using particle-in-cell simulations and demonstrate that large scale reconnection physics can couple to and drive microscopic instabilities, even in two-dimensional systems if significant scale separation exists between the Debye length and the electron skin depth.more » The physics underlying these instabilities is explained using simple theoretical models, and their potential connection to existing discrepancies between laboratory experiments and numerical simulations is explored. In three-dimensional systems, these instabilities are shown to generate anomalous resistivity that balances a substantial fraction of the electric field. In contrast, we also use experiments to investigate cross-scale couplings during reconnection in a collisional plasma. A leading candidate for coupling global and local scales is the hierarchical breakdown of elongated, reconnecting current sheets into numerous smaller current sheets -– the plasmoid instability. In the Magnetic Reconnection Experiment (MRX), recent hardware improvements have extended the accessible parameter space allowing for the study of long-lived, elongated current sheets. Moreover, by using Argon, reproducible and collisional plasmas are produced, which allow for a detailed statistical study of collisional reconnection. As a result, we have conclusively measured the onset of sub-ion-scale plasmoids during resistive, anti-parallel reconnection for the first time. The current sheet thickness is intermediate between ion and electron kinetic scales such that the plasma is in the Hall-MHD regime. Surprisingly, plasmoids are observed at Lundquist numbers < 100 well below theoretical predictions (> 10,000). The number of plasmoids scales with both Lundquist number and current sheet aspect ratio. The Hall quadrupolar fields are shown to suppress plasmoids. Finally, plasmoids are shown to couple local and global physics by enhancing the reconnection rate. These results are compared with prior studies of tearing and plasmoid instability, and implications for astrophysical plasmas, laboratory experiments, and theoretical studies of reconnection are discussed.« less
Incorporation of an Energy Equation into a Pulsed Inductive Thruster Performance Model
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Reneau, Jarred P.; Sankaran, Kameshwaran
2011-01-01
A model for pulsed inductive plasma acceleration containing an energy equation to account for the various sources and sinks in such devices is presented. The model consists of a set of circuit equations coupled to an equation of motion and energy equation for the plasma. The latter two equations are obtained for the plasma current sheet by treating it as a one-element finite volume, integrating the equations over that volume, and then matching known terms or quantities already calculated in the model to the resulting current sheet-averaged terms in the equations. Calculations showing the time-evolution of the various sources and sinks in the system are presented to demonstrate the efficacy of the model, with two separate resistivity models employed to show an example of how the plasma transport properties can affect the calculation. While neither resistivity model is fully accurate, the demonstration shows that it is possible within this modeling framework to time-accurately update various plasma parameters.
NASA Astrophysics Data System (ADS)
Poh, Gangkai; Slavin, James A.; Jia, Xianzhe; Raines, Jim M.; Imber, Suzanne M.; Sun, Wei-Jie; Gershman, Daniel J.; DiBraccio, Gina A.; Genestreti, Kevin J.; Smith, Andy W.
2017-08-01
We analyzed MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) magnetic field and plasma measurements taken during 319 crossings of Mercury's cross-tail current sheet. We found that the measured BZ in the current sheet is higher on the dawnside than the duskside by a factor of ≈3 and the asymmetry decreases with downtail distance. This result is consistent with expectations based upon MHD stress balance. The magnetic fields threading the more stretched current sheet in the duskside have a higher plasma beta than those on the dawnside, where they are less stretched. This asymmetric behavior is confirmed by mean current sheet thickness being greatest on the dawnside. We propose that heavy planetary ion (e.g., Na+) enhancements in the duskside current sheet provides the most likely explanation for the dawn-dusk current sheet asymmetries. We also report the direct measurement of Mercury's substorm current wedge (SCW) formation and estimate the total current due to pileup of magnetic flux to be ≈11 kA. The conductance at the foot of the field lines required to close the SCW current is found to be ≈1.2 S, which is similar to earlier results derived from modeling of Mercury's Region 1 field-aligned currents. Hence, Mercury's regolith is sufficiently conductive for the current to flow radially then across the surface of Mercury's highly conductive iron core. Mercury appears to be closely coupled to its nightside magnetosphere by mass loading of upward flowing heavy planetary ions and electrodynamically by field-aligned currents that transfer momentum and energy to the nightside auroral oval crust and interior. Heavy planetary ion enhancements in Mercury's duskside current sheet provide explanation for cross-tail asymmetries found in this study. The total current due to the pileup of magnetic flux and conductance required to close the SCW current is found to be ≈11 kA and 1.2 S. Mercury is coupled to magnetotail by mass loading of heavy ions and field-aligned currents driven by reconnection-related fast plasma flow.
NASA Astrophysics Data System (ADS)
Dargent, J.; Aunai, N.; Belmont, G.; Dorville, N.; Lavraud, B.; Hesse, M.
2016-06-01
> Tangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for a tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic particle-in-cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations on their initial conditions. We show that, as the current sheet evolves from a symmetric to an asymmetric upstream plasma, the reconnection rate is impacted and the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet.
Effect of an MLT dependent electron loss rate on the magnetosphere-ionosphere coupling
NASA Astrophysics Data System (ADS)
Gkioulidou, Matina; Wang, Chih-Ping; Wing, Simon; Lyons, Larry R.; Wolf, Richard A.; Hsu, Tung-Shin
2012-11-01
As plasma sheet electrons drift earthward, they get scattered into the loss cone due to wave-particle interactions and the resulting precipitation produces auroral conductance. Realistic electron loss is thus important for modeling the magnetosphere - ionosphere (M-I) coupling and the degree of plasma sheet electron penetration into the inner magnetosphere. In order to evaluate the significance of electron loss, we used the Rice Convection Model (RCM) coupled with a force-balanced magnetic field to simulate plasma sheet transport under different electron loss rates and under self-consistent electric and magnetic field. We used different magnitudes of i) strong pitch angle diffusion everywhere electron loss rate (strong rate) and ii) a more realistic loss rate with its MLT dependence determined by wave activity (MLT rate). We found that electron pressure under the MLT rate is larger compared to the strong rate inside L ∼ 12 RE. The dawn-dusk asymmetry in the precipitating electron energy flux under the MLT rate, with much higher energy flux at dawn than at dusk, agrees better with statistical DMSP observations. High-energy electrons inside L ∼ 8 RE can remain there for many hours under the MLT rate, while those under the strong rate get lost within minutes. Under the MLT rate, the remaining electrons cause higher conductance at lower latitudes; thus after a convection enhancement, the shielding of the convection electric field is less efficient, and as a result, the ion plasma sheet penetrates further earthward into the inner magnetosphere than under the strong rate.
The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm
NASA Astrophysics Data System (ADS)
Menz, A. M.; Kistler, L. M.; Mouikis, C. G.; Spence, H. E.; Skoug, R. M.; Funsten, H. O.; Larsen, B. A.; Mitchell, D. G.; Gkioulidou, M.
2017-01-01
On 17 March 2013, the Van Allen Probes measured the H+ and O+ fluxes of the ring current during a large geomagnetic storm. Detailed examination of the pressure buildup during the storm shows large differences in the pressure measured by the two spacecraft, with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H+ and O+ pressure contributions are about equal during the main phase in the near-Earth plasma sheet outside L = 5.5, the O+ pressure dominates at lower L values. We test whether adiabatic convective transport from the near-Earth plasma sheet (L > 5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer 1996 electric field we model the drift trajectories to show that the key features can be explained by variation in the near-Earth plasma sheet population and particle access that changes with energy and L shell. Finally, we show that the dominance of O+ at low L shells is due partly to a near-Earth plasma sheet that is preferentially enhanced in O+ at lower energies (5-10 keV) and partly due to the time dependence in the source combined with longer drift times to low L shells. No source of O+ inside L = 5.5 is required to explain the observations at low L shells.
NASA Astrophysics Data System (ADS)
Shojaei Ardakani, A.; Mouikis, C.; Kistler, L. M.; Torbert, R. B.; Roytershteyn, V.; Omelchenko, Y.
2017-12-01
A recent statistical study, using Cluster observations, showed that during substorms, a higher O+ content in the plasma sheet during the substorm growth phase, makes it more difficult to trigger reconnection [Liu et al, 2013]. In addition, they showed that, in contrast to predictions that the reconnection rate during the substorm expansion phase slows down in the presence of O+, the magnetotail unloading rate is actually faster when the O+ content is higher. This could be due to a faster local reconnection rate or due to reconnection occurring over a greater width in the tail when the O+ content of the plasma sheet is high. To address this question, we use reconnection events observed by Cluster that have different densities of O+ and we determine the local reconnection rate. For the calculation of the reconnection rate we use CODIF observations from the boundary layer/lobes around flow reversals where the distribution functions show signatures of the presence of cold plasma convecting towards the current sheet. In addition, we use timing analysis to deduce the movement of the x-line. This methodology will be compared with the estimation of the reconnection rate using results from fully kinetic and hybrid particle-in-cell simulations that model reconnection in the presence of O+ in both local geometry and in a model magnetotail equilibrium. Finally, we use the deduced local reconnection rate together with the total magnetotail pressure rate of change (from Liu et al., [2013]) to estimate the cross-tail extent of the reconnecting plasma sheet.
Polymer based nanocomposites with nanofibers and exfoliated clay
NASA Technical Reports Server (NTRS)
Meador, Michael A.; Reneker, Darrell H.
2005-01-01
Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching clay sheets dispersed in water with electrospun nanofiber mats and by the deliberate removal of most of the polymer in the fibers. Thin, flexible gas barrier films, that are reasonably strong, were assembled from clay sheets and polymer nanofibers. Structure of composite films was characterized with scanning electron microscopy. Continuous film of clay sheets were physically attached to the surface of fiber mats. Spincoating film of polymer and clay sheets was reinforced by electrospun fiber scaffold. Certain alignment of clay sheets was observed in the vicinity of fibers.
Anisotropic magnetotail equilibrium and convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hau, L.N.
This paper reports on self-consistent two-dimensional equilibria with anisotropic plasma pressure for the Earth's magnetotail. These configurations are obtained by numerically solving the generalized Grad-Shafranov equation, describing anisotropic plasmas with p[parallel] [ne] p[perpendicular], including the Earth's dipolar field. Consistency between these new equilibria and the assumption of steady-state, sunward convection, described by the double-adiabatic laws, is examined. As for the case of isotropic pressure [Erickson and Wolf, 1980], there exists a discrepancy between typical quite-time magnetic field models and the assumption of steady-state double-adiabatic lossless plasma sheet convection. However, unlike that case, this inconsistency cannot be removed by the presencemore » of a weak equatorial normal magnetic field strength in the near tail region: magnetic field configurations of this type produce unreasonably large pressure anisotropies, p[parallel] > p[perpendicular], in the plasma sheet. 16 refs., 5 figs.« less
Equilibrium structure of the plasma sheet boundary layer-lobe interface
NASA Technical Reports Server (NTRS)
Romero, H.; Ganguli, G.; Palmadesso, P.; Dusenbery, P. B.
1990-01-01
Observations are presented which show that plasma parameters vary on a scale length smaller than the ion gyroradius at the interface between the plasma sheet boundary layer and the lobe. The Vlasov equation is used to investigate the properties of such a boundary layer. The existence, at the interface, of a density gradient whose scale length is smaller than the ion gyroradius implies that an electrostatic potential is established in order to maintain quasi-neutrality. Strongly sheared (scale lengths smaller than the ion gyroradius) perpendicular and parallel (to the ambient magnetic field) electron flows develop whose peak velocities are on the order of the electron thermal speed and which carry a net current. The free energy of the sheared flows can give rise to a broadband spectrum of electrostatic instabilities starting near the electron plasma frequency and extending below the lower hybrid frequency.
Ultralow frequency waves in the magnetotails of the earth and the outer planets
NASA Technical Reports Server (NTRS)
Khurana, Krishan K.; Chen, Sheng H.; Hammond, C. M.; Kivelson, Margaret G.
1992-01-01
Ultralow frequency waves with periods greater than two minutes are characteristic features of planetary magnetotails. At Jupiter, changes in the wave characteristics across the boundary between the plasma sheet and the lobe have been used to identify this important plasma boundary. In the terrestrial lobes the wave amplitude can be relatively large, especially during intervals of intense geomagnetic activity. The wave power seen in the lobes of the magnetotails of the earth, Jupiter, Saturn and Uranus is evaluated to evaluate a proposal by Smith et al. that the propagating waves generated by the Kelvin-Helmholtz instability on the magnetopause can heat the plasma through a resonant absorption of these waves. The results indicate that the wave power in the lobes is generally small and can be easily understood in the framework of coupled MHD waves generated in the plasma sheet.
2015-01-01
Abstract The basic properties of the near‐Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m2 (1 to 8 nA/m2). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m2. The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE. The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE. High current densities above 4 nA/m2 were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail‐like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets. PMID:27722039
Multi-Component Current Sheets in the Martian Magnetotail. MAVEN Observations
NASA Astrophysics Data System (ADS)
Grigorenko, E.; Zelenyi, L. M.; Vaisberg, O. L.; Ermakov, V.; Dubinin, E.; Malova, H. V.
2016-12-01
Current sheets (CSs) are the wide-spread objects in space and laboratory plasmas. The capability of CSs to maintain their stability, efficiently store and convert energy is a challenge to space physicists for many decades. Extensive studies of the CSs showed that the presence of multi-component plasma distribution can significantly affect the CS structure and dynamics. Such features like CS thinning, embedding and bifurcation are often related to the anisotropy of particle velocity distribution functions and multi-component ion composition, and they can be a source for generation of plasma instabilities and current disruption/reconnection. The MAVEN mission equipped with comprehensive instrument suite allows the observations of plasma and magnetic field characteristics with a high time resolution and provides an opportunity to study different processes in the Martian plasma environment. In this work we present the analysis of the CSs observed by MAVEN in the Martian magnetotail and discuss the peculiarities of their structure in relation to the thermal/energy characteristics of different plasma components. The relation to the existing CS models is also discussed. This work is supported by Russian Science Foundation (grant Nr.16-42-01103)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J. Z. G., E-mail: zma@mymail.ciis.edu; Hirose, A.
By adopting Lembége & Pellat’s 2D plasma-sheet model, we investigate the flankward flapping motion and Sunward ballooning propagation driven by an external source (e.g., magnetic reconnection) produced initially at the sheet center. Within the ideal MHD framework, we adopt the WKB approximation to obtain the Taylor–Goldstein equation of magnetic perturbations. Fourier spectral method and Runge–Kutta method are employed in numerical simulations, respectively, under the flapping and ballooning conditions. Studies expose that the magnetic shears in the sheet are responsible for the flapping waves, while the magnetic curvature and the plasma gradient are responsible for the ballooning waves. In addition, themore » flapping motion has three phases in its temporal development: fast damping phase, slow recovery phase, and quasi-stabilized phase; it is also characterized by two patterns in space: propagating wave pattern and standing wave pattern. Moreover, the ballooning modes are gradually damped toward the Earth, with a wavelength in a scale size of magnetic curvature or plasma inhomogeneity, only 1–7% of the flapping one; the envelops of the ballooning waves are similar to that of the observed bursty bulk flows moving toward the Earth.« less
Sawtooth events and O+ in the plasma sheet and boundary layer: CME- and SIR-driven events
NASA Astrophysics Data System (ADS)
Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Liao, J.
2017-12-01
The role of ionospheric ions in sawtooth events is an open question. Simulations[1,2,3] suggest that O+ from the ionosphere produces a feedback mechanism for driving sawtooth events. However, observational evidence[4,5] suggest that the presence of O+ in the plasma sheet is neither necessary nor sufficient. In this study we investigate whether the solar wind driver of the geomagnetic storm has an effect on the result. Building on an earlier study[4] that used events for which Cluster data is available in the plasma sheet and boundary layer, we perform a superposed epoch analysis for coronal mass ejection (CME) driven storms and streaming interaction region (SIR) driven storms separately, to investigate the hypothesis that ionospheric O+ is an important contributor for CME-driven storms but not SIR-driven storms[2]. [1]O. J. Brambles et al. (2011), Science 332, 1183.[2]O. J. Brambles et al. (2013), JGR 118, 6026.[3]R. H. Varney et al. (2016), JGR 121, 9688.[4]J. Liao et al. (2014), JGR 119, 1572.[5]E. J. Lund et al. (2017), JGR, submitted.
Heavy-ion dominance near Cluster perigees
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.
2015-12-01
Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.
Spheromaks, solar prominences, and Alfvén instability of current sheets
NASA Astrophysics Data System (ADS)
Bellan, P. M.; Yee, J.; Hansen, J. F.
2001-06-01
Three related efforts underway at Caltech are discussed: experimental studies of spheromak formation, experimental simulation of solar prominences, and Alfvén wave instability of current sheets. Spheromak formation has been studied by using a coaxial magnetized plasma gun to inject helicity-bearing plasma into a very large vacuum chamber. The spheromak is formed without a flux conserver and internal λ profiles have been measured. Spheromak-based technology has been used to make laboratory plasmas having the topology and dynamics of solar prominences. The physics of these structures is closely related to spheromaks (low β, force-free, relaxed state equilibrium) but the boundary conditions and symmetry are different. Like spheromaks, the equilibrium involves a balance between hoop forces, pinch forces, and magnetic tension. It is shown theoretically that if a current sheet becomes sufficiently thin (of the order of the ion skin depth or smaller), it becomes kinetically unstable with respect to the emission of Alfvén waves and it is proposed that this wave emission is an important aspect of the dynamics of collisionless reconnection.
NASA Technical Reports Server (NTRS)
Traver, D. P.; Mitchell, D. G.; Williams, D. J.; Frank, L. A.; Huang, C. Y.
1991-01-01
The structure of the flank low-latitude boundary layer (LLBL) is examined through differential energy spectra and particle angular anisotropies for traversals of the dawn flank (December 19, 1977) and dusk flank (July 7, 1978) during periods of predominantly northward magnetosheath field orientation. Spectra are presented that were obtained from combined ISEE 1 low-energy-proton and electron-differential-energy-analyzer and medium-energy-particle-instrument data extending over the 200-eV/q to 2-MeV energy range for the plasma sheet, stagnation region, outer LLBL, and magnetosheath regions. The stagnation region and the outer LLBL are each a mixture of plasma-sheet and magnetosheath populations, but the stagnation region contains a relatively higher fraction of plasma sheet particles, consistent with its placement earthward of the outer LLBL. Evidence for energization of thermal electrons appears during the dusk flank crossing. Bidirectional field-aligned ion distributions are observed with typically 5-to-1 enhancement of the flux along the magnetic field during certain portions of the dusk flank crossing.
NASA Technical Reports Server (NTRS)
Klimas, Alex; Uritsky, Vadim; Donovan, Eric
2010-01-01
We provide indirect evidence for turbulent reconnection in Earth's midtail plasma sheet by reexamining the statistical properties of bright, nightside auroral emission events as observed by the UVI experiment on the Polar spacecraft and discussed previously by Uritsky et al. The events are divided into two groups: (1) those that map to absolute value of (X(sub GSM)) < 12 R(sub E) in the magnetotail and do not show scale-free statistics and (2) those that map to absolute value of (X(sub GSM)) > 12 R(sub E) and do show scale-free statistics. The absolute value of (X(sub GSM)) dependence is shown to most effectively organize the events into these two groups. Power law exponents obtained for group 2 are shown to validate the conclusions of Uritsky et al. concerning the existence of critical dynamics in the auroral emissions. It is suggested that the auroral dynamics is a reflection of a critical state in the magnetotail that is based on the dynamics of turbulent reconnection in the midtail plasma sheet.
Observations of field-aligned currents, waves, and electric fields at substorm onset
NASA Technical Reports Server (NTRS)
Smits, D. P.; Hughes, W. J.; Cattell, C. A.; Russell, C. T.
1986-01-01
Substorm onsets, identified Pi 2 pulsations observed on the Air Force Geophysics Laboratory Magnetometer Network, are studied using magnetometer and electric field data from ISEE 1 as well as magnetometer data from the geosynchronous satellites GOES 2 and 3. The mid-latitude magnetometer data provides the means of both timing and locating the substorm onset so that the spacecraft locations with respect to the substorm current systems are known. During two intervals, each containing several onsets or intensifications, ISEE 1 observed field-aligned current signatures beginning simultaneously with the mid-latitude Pi 2 pulsation. Close to the earth broadband bursts of wave noise were observed in the electric field data whenever field-aligned currents were detected. One onset occurred when ISEE 1 and GOES 2 were on the same field line but in opposite hemispheres. During this onset ISEE 1 and GOES 2 saw magnetic signatures which appear to be due to conjugate field-aligned currents flowing out of the western end of the westward auroral electrojets. The ISEE 1 signature is of a line current moving westward past the spacecraft. During the other interval, ISEE 1 was in the near-tail region near the midnight meridian. Plasma data confirms that the plasma sheet thinned and subsequently expanded at onset. Electric field data shows that the plasma moved in the opposite direction to the plasma sheet boundary as the boundary expanded which implies that there must have been an abundant source of hot plasma present. The plasma motion was towards the center of the plasma sheet and earthwards and consisted of a series of pulses rather than a steady flow.
Open Boundary Particle-in-Cell Simulation of Dipolarization Front Propagation
NASA Technical Reports Server (NTRS)
Klimas, Alex; Hwang, Kyoung-Joo; Vinas, Adolfo F.; Goldstein, Melvyn L.
2014-01-01
First results are presented from an ongoing open boundary 2-1/2D particle-in-cell simulation study of dipolarization front (DF) propagation in Earth's magnetotail. At this stage, this study is focused on the compression, or pileup, region preceding the DF current sheet. We find that the earthward acceleration of the plasma in this region is in general agreement with a recent DF force balance model. A gyrophase bunched reflected ion population at the leading edge of the pileup region is reflected by a normal electric field in the pileup region itself, rather than through an interaction with the current sheet. We discuss plasma wave activity at the leading edge of the pileup region that may be driven by gradients, or by reflected ions, or both; the mode has not been identified. The waves oscillate near but above the ion cyclotron frequency with wavelength several ion inertial lengths. We show that the waves oscillate primarily in the perpendicular magnetic field components, do not propagate along the background magnetic field, are right handed elliptically (close to circularly) polarized, exist in a region of high electron and ion beta, and are stationary in the plasma frame moving earthward. We discuss the possibility that the waves are present in plasma sheet data, but have not, thus far, been discovered.
Two-Dimensional Analysis of Conical Pulsed Inductive Plasma Thruster Performance
NASA Technical Reports Server (NTRS)
Hallock, A. K.; Polzin, K. A.; Emsellem, G. D.
2011-01-01
A model of the maximum achievable exhaust velocity of a conical theta pinch pulsed inductive thruster is presented. A semi-empirical formula relating coil inductance to both axial and radial current sheet location is developed and incorporated into a circuit model coupled to a momentum equation to evaluate the effect of coil geometry on the axial directed kinetic energy of the exhaust. Inductance measurements as a function of the axial and radial displacement of simulated current sheets from four coils of different geometries are t to a two-dimensional expression to allow the calculation of the Lorentz force at any relevant averaged current sheet location. This relation for two-dimensional inductance, along with an estimate of the maximum possible change in gas-dynamic pressure as the current sheet accelerates into downstream propellant, enables the expansion of a one-dimensional circuit model to two dimensions. The results of this two-dimensional model indicate that radial current sheet motion acts to rapidly decouple the current sheet from the driving coil, leading to losses in axial kinetic energy 10-50 times larger than estimations of the maximum available energy in the compressed propellant. The decreased available energy in the compressed propellant as compared to that of other inductive plasma propulsion concepts suggests that a recovery in the directed axial kinetic energy of the exhaust is unlikely, and that radial compression of the current sheet leads to a loss in exhaust velocity for the operating conditions considered here.
A flexible plasma-treated silver-nanowire electrode for organic light-emitting devices.
Li, Jun; Tao, Ye; Chen, Shufen; Li, Huiying; Chen, Ping; Wei, Meng-Zhu; Wang, Hu; Li, Kun; Mazzeo, Marco; Duan, Yu
2017-11-28
Silver nanowires (AgNWs) are a promising candidate to replace indium tin oxide (ITO) as transparent electrode material. However, the loose contact at the junction of the AgNWs and residual surfactant polyvinylpyrrolidone (PVP) increase the sheet resistance of the AgNWs. In this paper, an argon (Ar) plasma treatment method is applied to pristine AgNWs to remove the PVP layer and enhance the contact between AgNWs. By adjusting the processing time, we obtained AgNWs with a sheet resistance of 7.2Ω/□ and a transmittance of 78% at 550 nm. To reduce the surface roughness of the AgNWs, a peel-off process was used to transfer the AgNWs to a flexible NOA63 substrate. Then, an OLED was fabricated with the plasma-treated AgNWs electrode as anode. The highest brightness (27000 cd/m 2 ) and current efficiency (11.8 cd/A) was achieved with a 30 nm thick light emitting layer of tris-(8-hydroxyquinoline) aluminum doped with 1% 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5 H,11H-(1)-benzopyropyrano(6,7-8-I,j)quinolizin-11-one. Compared to thermal annealing, the plasma-treated AgNW film has a lower sheet resistance, a shorter processing time, and a better hole-injection. Our results indicate that plasma treatment is an effective and efficient method to enhance the conductivity of AgNW films, and the plasma-treated AgNW electrode is suitable to manufacture flexible organic optoelectronic devices.
Pulsar current sheet C̆erenkov radiation
NASA Astrophysics Data System (ADS)
Zhang, Fan
2018-04-01
Plasma-filled pulsar magnetospheres contain thin current sheets wherein the charged particles are accelerated by magnetic reconnections to travel at ultra-relativistic speeds. On the other hand, the plasma frequency of the more regular force-free regions of the magnetosphere rests almost precisely on the upper limit of radio frequencies, with the cyclotron frequency being far higher due to the strong magnetic field. This combination produces a peculiar situation, whereby radio-frequency waves can travel at subluminal speeds without becoming evanescent. The conditions are thus conducive to C̆erenkov radiation originating from current sheets, which could plausibly serve as a coherent radio emission mechanism. In this paper we aim to provide a portrait of the relevant processes involved, and show that this mechanism can possibly account for some of the most salient features of the observed radio signals.
Plasma jets in the near-Earth's magnetotail (Julius Bartels Medal Lecture)
NASA Astrophysics Data System (ADS)
Nakamura, Rumi
2014-05-01
The Earth's magnetosphere is formed as a consequence of the interaction between the magnetized solar wind and the terrestrial magnetic field. While the large-scale and average (>hours) properties of the Earth's magnetotail current sheet can be well described by overall solar wind-magnetosphere interaction, the most dramatic energy conversion process takes place in an explosive manner involving transient (up to several minutes) and localized (up to a few RE) phenomena in the plasma sheet/current sheet regions. One of the most clear observables of such processes are the localized and transient plasma jets called Bursty bulk flows (BBF), embedding velocity peaks of 1-min duration, which are called flow bursts. This talk is a review of the current understanding of these plasma jets by highlighting the results from multi-spacecraft observations by the Cluster and THEMIS spacecraft. The first four-spacecraft mission Cluster crossed the near-Earth plasma sheet with inter-spacecraft distance of about 250 km to 10000 km, ideal for studying local structures of the flow bursts. The five-spacecraft THEMIS mission , separated by larger distances , succeeded to monitor the large-scale evolution of the fast flows from the mid-tail to the inner magnetosphere. Multi-point observations of BBFS have established the importance of measuring local gradients of the fields and the plasma to understand the BBF structures such as the spatial scales and 3D structure of localized Earthward convecting flux tubes. Among others the magnetic field disturbance forming at the front of BBF, called dipolarization front (DF), has been intensively studied. From the propagation properties of DF relative to the flows and by comparing with ionospheric data, the evolution of the fast flows in terms of magnetosphere-ionospheric coupling through field-aligned currents are established. An important aspect of BBF is the interaction of the Earthward plasma jets and the Earth's dipole field. Multi-point observations combined with ground-based observations enabled to resolve how the BBFs are braked , diverted, or bounced back at the high-pressure gradient region. The multi-point capabilities in space enabled to study the BBF structure as well as large-scale evolution of BBFs. These processes are also universal processes in space plasmas and are, for example, associated with the reconnection process during the solar flares or leading to auroral phenomena at different planets.
NASA Astrophysics Data System (ADS)
Lee, S.; Shiokawa, K.; McFadden, J. P.
2010-12-01
The magnetospheric electron precipitation along the upward field-aligned currents without the potential difference causes diffuse aurora, and the magnetospheric electrons accelerated by a field-aligned potential difference cause the intense and bright type of aurora, namely discrete aurora. In this study, we are trying to find out when and where the aurora can be caused with or without electron acceleration. We statistically investigate electron density, temperature, thermal current, and conductivity in the plasma sheet using the data from the electrostatic analyzer (ESA) onboard the THEMIS-D satellite launched in 2007. According to Knight (Planet. Space Sci., 1973) and Lyons (JGR, 1980), the thermal current, jth(∝ nT^(1/2) where n is electron density and T is electron temperature in the plasma sheet), represents the upper limit to field aligned current that can be carried by magnetospheric electrons without field-aligned potential difference. The conductivity, K(∝ nT^(-1/2)), represents the efficiency of the upward field-aligned current (j) that the field-aligned potential difference (V) can produce (j=KV). Therefore, estimating jth and K in the plasma sheet is important in understanding the ability of plasma sheet electrons to carry the field-aligned current which is driven by various magnetospheric processes such as flow shear and azimuthal pressure gradient. Similar study was done by Shiokawa et al. (2000) based on the auroral electron data obtained by the DMSP satellites above the auroral oval and the AMPTE/IRM satellite in the near Earth plasma sheet at 10-18 Re on February-June 1985 and March-June 1986 during the solar minimum. The purpose of our study is to examine auroral electrons with pitch angle information inside 12 Re where Shiokawa et al. (2000) did not investigate well. For preliminary result, we found that in the dawn side inner magnetosphere (source of the region 2 current), electrons can make sufficient thermal current without field-aligned potential difference, particularly during active time (AE > 100 nT). On the other hand, in the dusk side outer magnetosphere (source of the region 1), electron density and temperature are small, thus the thermal current is much smaller than the typical auroral current suggested by Iijima and Potemra (JGR, 1976). From this result, we suppose that electron acceleration is necessary on the dusk side region 1 upward field-aligned current. Our preliminary result, however, does not consider contamination of the radiation belt particles into the ESA data that is apparent inside 9 Re. In the presentation, we show the results with removal of the radiation belt particle contamination.
Magnetic reconnection in the low solar chromosphere with a more realistic radiative cooling model
NASA Astrophysics Data System (ADS)
Ni, Lei; Lukin, Vyacheslav S.; Murphy, Nicholas A.; Lin, Jun
2018-04-01
Magnetic reconnection is the most likely mechanism responsible for the high temperature events that are observed in strongly magnetized locations around the temperature minimum in the low solar chromosphere. This work improves upon our previous work [Ni et al., Astrophys. J. 852, 95 (2018)] by using a more realistic radiative cooling model computed from the OPACITY project and the CHIANTI database. We find that the rate of ionization of the neutral component of the plasma is still faster than recombination within the current sheet region. For low β plasmas, the ionized and neutral fluid flows are well-coupled throughout the reconnection region resembling the single-fluid Sweet-Parker model dynamics. Decoupling of the ion and neutral inflows appears in the higher β case with β0=1.46 , which leads to a reconnection rate about three times faster than the rate predicted by the Sweet-Parker model. In all cases, the plasma temperature increases with time inside the current sheet, and the maximum value is above 2 ×104 K when the reconnection magnetic field strength is greater than 500 G. While the more realistic radiative cooling model does not result in qualitative changes of the characteristics of magnetic reconnection, it is necessary for studying the variations of the plasma temperature and ionization fraction inside current sheets in strongly magnetized regions of the low solar atmosphere. It is also important for studying energy conversion during the magnetic reconnection process when the hydrogen-dominated plasma approaches full ionization.
Pressure changes in the plasma sheet during substorm injections
NASA Technical Reports Server (NTRS)
Kistler, L. M.; Moebius, E.; Baumjohann, W.; Paschmann, G.; Hamilton, D. C.
1992-01-01
Data from the CHEM instrument on AMPTE CCE, data from the 3D plasma instrument and the SULEICA instrument on AMPTE IRM, and magnetometer data from both spacecraft are used to determine the particle pressure and total pressure as a function of radial distance in the plasma sheet for periods before and after the onset of substorm-associated ion enhancements over the range 7-19 RE. Events were chosen that occurred during times of increasing magnetospheric activity, as determined by an increasing AE index, in which a sudden increase, or 'injection', of energetic particle flux is observed. It is shown that the simultaneous appearance of energetic particles and changes in the magnetic field results naturally from pressure balance and does not necessarily indicate that the local changing field is accelerating the particles.
Helicon Modes Driven by Ionosheric 0+ Ions in the Plasma Sheet Region
NASA Technical Reports Server (NTRS)
Lakhina, Gurbax S.; Tsurutani, Bruce T.
1996-01-01
It is shown that the precence of ionospheric-origin oxygen ion beams with anisotropic pressure can excite helicon modes in the near-Earth plasma shet region provided their Alfvenic Mach numbers lie in a certain range.
Thin current sheets observation by MMS during a near-Earth's magnetotail reconnection event
NASA Astrophysics Data System (ADS)
Nakamura, R.; Varsani, A.; Nakamura, T.; Genestreti, K.; Plaschke, F.; Baumjohann, W.; Nagai, T.; Burch, J.; Cohen, I. J.; Ergun, R.; Fuselier, S. A.; Giles, B. L.; Le Contel, O.; Lindqvist, P. A.; Magnes, W.; Schwartz, S. J.; Strangeway, R. J.; Torbert, R. B.
2017-12-01
During summer 2017, the four spacecraft of the Magnetospheric Multiscale (MMS) mission traversed the nightside magnetotail current sheet at an apogee of 25 RE. They detected a number of flow reversal events suggestive of the passage of the reconnection current sheet. Due to the mission's unprecedented high-time resolution and spatial separation well below the ion scales, structure of thin current sheets is well resolved both with plasma and field measurements. In this study we examine the detailed structure of thin current sheets during a flow reversal event from tailward flow to Earthward flow, when MMS crossed the center of the current sheet . We investigate the changes in the structure of the thin current sheet relative to the X-point based on multi-point analysis. We determine the motion and strength of the current sheet from curlometer calculations comparing these with currents obtained from the particle data. The observed structures of these current sheets are also compared with simulations.
Computer constructed imagery of distant plasma interaction boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grenstadt, E.W.; Schurr, H.D.; Tsugawa, R.K.
1982-01-01
Computer constructed sketches of plasma boundaries arising from the interaction between the solar wind and the magnetosphere can serve as both didactic and research tools. In particular, the structure of the earth's bow shock can be represented as a nonuniform surfce according to the instantaneous orientation of the IMF, and temporal changes in structural distribution can be modeled as a sequence of sketches based on observed sequences of spacecraft-based measurements. Viewed rapidly, such a sequence of sketches can be the basis for representation of plasma processes by computer animation.
Plasma observations near jupiter: initial results from voyager 2.
Bridge, H S; Belcher, J W; Lazarus, A J; Sullivan, J D; Bagenal, F; McNutt, R L; Ogilvie, K W; Scudder, J D; Sittler, E C; Vasyliunas, V M; Goertz, C K
1979-11-23
The first of at least nine bow shock crossings observed on the inbound pass of Voyager 2 occurred at 98.8 Jupiter radii (R(J)) with final entry into the magnetosphere at 62 R(J). On both the inbound and outbound passes the plasma showed a tendency to move in the direction of corotation, as was observed on the inbound pass of Voyager 1. Positive ion densities and electron intensities observed by Voyager 2 are comparable within a factor of 2 to those seen by Voyager 1 at the same radial distance from Jupiter; the composition of the magnetospheric plasma is again dominated by heavy ions with a ratio of mass density relative to hydrogen of about 100/1. A series of dropouts of plasma intensity near Ganymede may be related to a complex interaction between Ganymede and the magnetospheric plasma. From the planetary spin modulation of the intensity of plasma electrons it is inferred that the plasma sheet is centered at the dipole magnetic equator out to a distance of 40 to 50 R(J) and deviates from it toward the rotational equator at larger distances. The longitudinal excursion of the plasma sheet lags behind the rotating dipole by a phase angle that increases with increasing radial distance.
Plasma Sheet Source and Loss Processes
NASA Technical Reports Server (NTRS)
Lennartsson, O. W.
2000-01-01
Data from the TIMAS ion mass spectrometer on the Polar satellite, covering 15 ev/e to 33 keV/e in energy and essentially 4(pi) in view angles, are used to investigate the properties of earthward (sunward) field-aligned flows of ions, especially protons, in the plasma sheet-lobe transition region near local midnight. A total of 142 crossings of this region are analyzed at 12-sec time resolution, all in the northern hemisphere, at R(SM) approx. 4 - 7 R(sub E), and most (106) in the poleward (sunward) direction. Earthward proton flows are prominent in this transition region (greater than 50% of the time), typically appearing as sudden "blasts" with the most energetic protons (approx. 33 keV) arriving first with weak flux, followed by protons of decreasing energy and increasing flux until either: (1) a new "blast" appears, (2) the flux ends at a sharp boundary, or (3) the flux fades away within a few minutes as the mean energy drops to a few keV. Frequent step-like changes (less than 12 sec) of the flux suggest that perpendicular gradients on the scale of proton gyroradii are common. Peak flux is similar to central plasma sheet proton flux (10(exp 5) - 10(exp 6)/[cq cm sr sec keV/e] and usually occurs at E approx. 4 - 12 keV. Only the initial phase of each "blast" (approx. 1 min) displays pronounced field-alignment of the proton velocity distribution, consistent with the time-of-flight separation of a more or less isotropic source distribution with df/d(nu) less than 0. The dispersive signatures are often consistent with a source at R(SM) less than or equal to 30 R(sub E). No systematic latitudinal velocity dispersion is found, implying that the equatorial plasma source is itself convecting. In short, the proton "blasts" appear as sudden local expansions of central plasma sheet particles along reconfigured ("dipolarized") magnetic field lines.
Onset of fast "ideal" tearing in thin current sheets: Dependence on the equilibrium current profile
NASA Astrophysics Data System (ADS)
Pucci, F.; Velli, M.; Tenerani, A.; Del Sarto, D.
2018-03-01
In this paper, we study the scaling relations for the triggering of the fast, or "ideal," tearing instability starting from equilibrium configurations relevant to astrophysical as well as laboratory plasmas that differ from the simple Harris current sheet configuration. We present the linear tearing instability analysis for equilibrium magnetic fields which (a) go to zero at the boundary of the domain and (b) contain a double current sheet system (the latter previously studied as a Cartesian proxy for the m = 1 kink mode in cylindrical plasmas). More generally, we discuss the critical aspect ratio scalings at which the growth rates become independent of the Lundquist number S, in terms of the dependence of the Δ' parameter on the wavenumber k of unstable modes. The scaling Δ'(k) with k at small k is found to categorize different equilibria broadly: the critical aspect ratios may be even smaller than L/a ˜ Sα with α = 1/3 originally found for the Harris current sheet, but there exists a general lower bound α ≥ 1/4.
New ISTP Solar Max: A Multi-Spacecraft Study of the Flow of Ionospheric Plasma
NASA Technical Reports Server (NTRS)
Chappell, Charles R.
2003-01-01
The unique instrumentation on the Polar satellite combined with the simultaneous measurement of different parts of the magnetosphere with multiple satellites make possible the study of magnetospheric processes in a special way. In particular, the study of the ionospheric supply of plasma to the magnetosphere can by accomplished to give important results on the plasmas which drive the dynamics of the magnetosphere. This study concentrated on the period of September to December, 2001 in which the Polar orbit had precessed to the point that the line of apsides was near the equatorial plane. This unique orbital configuration enabled the TIDE instrument to measure outflowing ions across the polar cap and then transit the magnetotail lobes and observe the dramatic change in plasma characteristics as the satellite entered the plasma sheet. Contact was made with investigators on the Cluster and Geotail satellite missions and corresponding time frames were studied in the data. There were two approximate conjunctions between Polar and Geotail and data were compared to look for features which might be related. The higher energy concentration of the Geotail instrument made direct comparisons with TIDE difficult, and the Cluster measurements did not surface any cases that corresponded closely in space and time. There were, however, many interesting aspects of the Polar orbits which permitted the observation of the changing ionospheric outflowing plasma characteristics. As in earlier measurements, the ionospheric plasma could be seen flowing up the magnetic field lines out of the northern and southern polar caps. Its energy suggested a polar wind origin energized by the centrifugal acceleration of flow through the polar cusp. The roughly 10eV ions then moved out into the lobes of the magnetotail where they could be seen flowing toward the plasma sheet in both the northern and southern magnetotail lobes. There was also a double field-aligned region of warm ions observed just outside the plasmasphere, stretching toward the auroral zone and inner plasma sheet boundary. Upon entering the plasma sheet, the plasma energy jumped from 10 s of eV to greater than 1 keV. The single field aligned flows transitioned to highly variable spatially choppy energized ion distributions with a variety of pitch angle configurations. This pattern was quite repeatable in all of the Polar orbits that were examined and are compatible with the source of ions being the polar wind which is then energized to 10 s of eV by the centrifugal acceleration. These modestly energized polar wind ions are then carried to the magnetotail where they are substantially energized by the curvature drift-induced movement across the cross-tail potential of the magnetotail. This latter drift energizes the ions to the energies typically found in the plasma sheet. Subsequent drift and energization can cause the ions to become part of the ring current. The results of this study were presented at the Spring AGU meeting in 2002 and the GEM meeting in June 2003. They are the foundation for a paper that has been submitted by Matthew Huddleston to the Journal of Geophysical Research in December 2003. This work was part of the thesis that Matthew completed in finishing his Ph.D. in Physics at Vanderbilt University.
Characteristics of DC electric fields in transient plasma sheet events
NASA Astrophysics Data System (ADS)
Laakso, H. E.; Escoubet, C. P.; Masson, A.
2015-12-01
We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.
NASA Astrophysics Data System (ADS)
Sivadas, N.; Semeter, J.; Nishimura, Y.; Kero, A.
2017-10-01
On 26 March 2008, simultaneous measurements of a large substorm were made using the Poker Flat Incoherent Scatter Radar, Time History of Events and Macroscale Interactions during Substorm (THEMIS) spacecraft, and all sky cameras. After the onset, electron precipitation reached energies ≳100 keV leading to intense D region ionization. Identifying the source of energetic precipitation has been a challenge because of lack of quantitative and magnetically conjugate measurements of loss cone electrons. In this study, we use the maximum entropy inversion technique to invert altitude profiles of ionization measured by the radar to estimate the loss cone energy spectra of primary electrons. By comparing them with magnetically conjugate measurements from THEMIS-D spacecraft in the nightside plasma sheet, we constrain the source location and acceleration mechanism of precipitating electrons of different energy ranges. Our analysis suggests that the observed electrons ≳100 keV are a result of pitch angle scattering of electrons originating from or tailward of the inner plasma sheet at 9RE, possibly through interaction with electromagnetic ion cyclotron waves. The electrons of energy 10-100 keV are produced by pitch angle scattering due to a potential drop of ≲10 kV in the auroral acceleration region (AAR) as well as wave-particle interactions in and tailward of the AAR. This work demonstrates the utility of magnetically conjugate ground- and space-based measurements in constraining the source of energetic electron precipitation. Unlike in situ spacecraft measurements, ground-based incoherent scatter radars combined with an appropriate inversion technique can be used to provide remote and continuous-time estimates of loss cone electrons in the plasma sheet.
NASA Astrophysics Data System (ADS)
Potapov, A. S.
2018-04-01
Thirty events of CIR streams (corotating interaction regions between fast and slow solar wind) were analyzed in order to study statistically plasma structure within the CIR shear zones and to examine the interaction of the CIRs with the heliospheric current sheet (HCS) and the Earth's magnetosphere. The occurrence of current layers and high-beta plasma sheets in the CIR structure has been estimated. It was found that on average, each of the CIR streams had four current layers in its structure with a current density of more than 0.12 A/m2 and about one and a half high-beta plasma regions with a beta value of more than five. Then we traced how and how often the high-speed stream associated with the CIR can catch up with the heliospheric current sheet (HCS) and connect to it. The interface of each fourth CIR stream coincided in time within an hour with the HCS, but in two thirds of cases, the CIR connection with the HCS was completely absent. One event of the simultaneous observation of the CIR stream in front of the magnetosphere by the ACE satellite in the vicinity of the L1 libration point and the Wind satellite in the remote geomagnetic tail was considered in detail. Measurements of the components of the interplanetary magnetic field and plasma parameters showed that the overall structure of the stream is conserved. Moreover, some details of the fine structure are also transferred through the magnetosphere. In particular, the so-called "magnetic hole" almost does not change its shape when moving from L1 point to a neighborhood of L2 point.
The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menz, A. M.; Kistler, L. M.; Mouikis, C. G.
We report on 17 March 2013, the Van Allen Probes measured the H + and O + fluxes of the ring current during a large geomagnetic storm. Detailed examination of the pressure buildup during the storm shows large differences in the pressure measured by the two spacecraft, with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H + and O + pressure contributions are about equal during the main phase in the near-Earth plasma sheet outside L = 5.5, the O + pressure dominates at lower Lmore » values. We test whether adiabatic convective transport from the near-Earth plasma sheet (L > 5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer 1996 electric field we model the drift trajectories to show that the key features can be explained by variation in the near-Earth plasma sheet population and particle access that changes with energy and L shell. Finally, we show that the dominance of O + at low L shells is due partly to a near-Earth plasma sheet that is preferentially enhanced in O + at lower energies (5–10 keV) and partly due to the time dependence in the source combined with longer drift times to low L shells. Lastly, no source of O + inside L = 5.5 is required to explain the observations at low L shells.« less
The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm
Menz, A. M.; Kistler, L. M.; Mouikis, C. G.; ...
2017-01-21
We report on 17 March 2013, the Van Allen Probes measured the H + and O + fluxes of the ring current during a large geomagnetic storm. Detailed examination of the pressure buildup during the storm shows large differences in the pressure measured by the two spacecraft, with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H + and O + pressure contributions are about equal during the main phase in the near-Earth plasma sheet outside L = 5.5, the O + pressure dominates at lower Lmore » values. We test whether adiabatic convective transport from the near-Earth plasma sheet (L > 5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer 1996 electric field we model the drift trajectories to show that the key features can be explained by variation in the near-Earth plasma sheet population and particle access that changes with energy and L shell. Finally, we show that the dominance of O + at low L shells is due partly to a near-Earth plasma sheet that is preferentially enhanced in O + at lower energies (5–10 keV) and partly due to the time dependence in the source combined with longer drift times to low L shells. Lastly, no source of O + inside L = 5.5 is required to explain the observations at low L shells.« less
NASA Technical Reports Server (NTRS)
Convery, P. D.; Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.
2002-01-01
Nongyrotropic plasma distribution functions can be formed in regions of space where guiding center motion breaks down as a result of strongly curved and weak ambient magnetic fields. Such are the conditions near the current sheet in the Earth's middle and distant magnetotail, where observations of nongyrotropic ion distributions have been made. Here a systematic parameter study of nongyrotropic proton distributions using electromagnetic hybrid simulations is made. We model the observed nongyrotropic distributions by removing a number of arc length segments from a cold ring distribution and find significant differences with the results of simulations that initially have a gyrotropic ring distribution. Model nongyrotropic distributions with initially small perpendicular thermalization produce growing fluctuations that diffuse the ions into a stable Maxwellian-like distribution within a few proton gyro periods. The growing waves produced by nongyrotropic distributions are similar to the electromagnetic proton cyclotron waves produced by a gyrotropic proton ring distribution in that they propagate parallel to the background magnetic field and occur at frequencies on the order of the proton gyrofrequency, The maximum energy of the fluctuating magnetic field increases as the initial proton distribution is made more nongyrotropic, that is, more highly bunched in perpendicular velocity space. This increase can be as much as twice the energy produced in the gyrotropic case.
Size and Shape of the Distant Magnetotail
NASA Technical Reports Server (NTRS)
Sibeck, D.G.; Lin, R.-Q.
2014-01-01
We employ a global magnetohydrodynamic model to study the effects of the interplanetary magnetic field (IMF) strength and direction upon the cross-section of the magnetotail at lunar distances. The anisotropic pressure of draped magnetosheath magnetic field lines and the inclusion of a reconnection-generated standing slow mode wave fan bounded by a rotational discontinuity within the definition of the magnetotail result in cross-sections elongated in the direction parallel to the component of the IMF in the plane perpendicular to the Sun-Earth line. Tilted cross-tail plasma sheets separate the northern and southern lobes within these cross-sections. Greater fast mode speeds perpendicular than parallel to the draped magnetos heath magnetic field lines result in greater distances to the bow shock in the direction perpendicular than parallel to the component of the IMF in the plane transverse to the Sun-Earth line. The magnetotail cross-section responds rapidly to reconnected magnetic field lines requires no more than the magnetosheath convection time to appear at any distance downstream, and further adjustments of the cross-section in response to the anisotropic pressures of the draped magnetic field lines require no more than 10-20 minutes. Consequently for typical ecliptic IMF orientations and strengths, the magnetotail cross-section is oblate while the bow shock is prolate.
NASA Astrophysics Data System (ADS)
Kronberg, Elena A.; Ashour-Abdalla, Maha; Dandouras, Iannis; Delcourt, Dominique C.; Grigorenko, Elena E.; Kistler, Lynn M.; Kuzichev, Ilya V.; Liao, Jing; Maggiolo, Romain; Malova, Helmi V.; Orlova, Ksenia G.; Peroomian, Vahe; Shklyar, David R.; Shprits, Yuri Y.; Welling, Daniel T.; Zelenyi, Lev M.
2014-11-01
Knowledge of the ion composition in the near-Earth's magnetosphere and plasma sheet is essential for the understanding of magnetospheric processes and instabilities. The presence of heavy ions of ionospheric origin in the magnetosphere, in particular oxygen (O+), influences the plasma sheet bulk properties, current sheet (CS) thickness and its structure. It affects reconnection rates and the formation of Kelvin-Helmholtz instabilities. This has profound consequences for the global magnetospheric dynamics, including geomagnetic storms and substorm-like events. The formation and demise of the ring current and the radiation belts are also dependent on the presence of heavy ions. In this review we cover recent advances in observations and models of the circulation of heavy ions in the magnetosphere, considering sources, transport, acceleration, bulk properties, and the influence on the magnetospheric dynamics. We identify important open questions and promising avenues for future research.
NASA Astrophysics Data System (ADS)
Vallot, Dorothée; Applegate, Patrick; Pettersson, Rickard
2013-04-01
Projecting future climate and ice sheet development requires sophisticated models and extensive field observations. Given the present state of our knowledge, it is very difficult to say what will happen with certainty. Despite the ongoing increase in atmospheric greenhouse gas concentrations, the possibility that a new ice sheet might form over Scandinavia in the far distant future cannot be excluded. The growth of a new Scandinavian Ice Sheet would have important consequences for buried nuclear waste repositories. The Greenland Analogue Project, initiated by the Swedish Nuclear Fuel and Waste Management Company (SKB), is working to assess the effects of a possible future ice sheet on groundwater flow by studying a constrained domain in Western Greenland by field measurements (including deep bedrock drilling in front of the ice sheet) combined with numerical modeling. To address the needs of the GAP project, we interpolated results from an ensemble of ice sheet model runs to the smaller and more finely resolved modeling domain used in the GAP project's hydrologic modeling. Three runs have been chosen with three fairly different positive degree-day factors among those that reproduced the modern ice margin at the borehole position. The interpolated results describe changes in hydrologically-relevant variables over two time periods, 115 ka to 80 ka, and 20 ka to 1 ka. In the first of these time periods, the ice margin advances over the model domain; in the second time period, the ice margin retreats over the model domain. The spatially-and temporally dependent variables that we treated include the ice thickness, basal melting rate, surface mass balance, basal temperature, basal thermal regime (frozen or thawed), surface temperature, and basal water pressure. The melt flux is also calculated.
A current disruption mechanism in the neutral sheet for triggering substorm expansions
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.
1989-01-01
Two main areas were addressed in support of an effort to understand mechanism responsible for the broadband electrostatic noise (BEN) observed in the magnetotail. The first area concerns the generation of BEN in the boundary layer region of the magnetotail whereas the second area concerns the occassional presence of BEN in the neutral sheet region. For the generation of BEN in the boundary layer region, a hybrid simulation code was developed to perform reliable longtime, quiet, highly resolved simulations of field aligned electron and ion beam flow. The result of the simulation shows that broadband emissions cannot be generated by beam-plasma instability if realistic values of the ion beam parameters are used. The waves generated from beam-plasma instability are highly discrete and are of high frequencies. For the plasma sheet boundary layer condition, the wave frequencies are in the kHz range, which is incompatible with the observation that the peak power in BEN occur in the 10's of Hz range. It was found that the BEN characteristics are more consistent with lower hybrid drift instability. For the occasional presence of BEN in the neutral sheet region, a linear analysis of the kinetic cross-field streaming instability appropriate to the neutral sheet condition just prior to onset of substorm expansion was performed. By solving numerically the dispersion relation, it was found that the instability has a growth time comparable to the onset time scale of substorm onset. The excited waves have a mixed polarization in the lower hybrid frequency range. The imposed drift driving the instability corresponds to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is in the 10 mV/m range which is well within the observed electric field values detected in the neutral sheet during substorms. This finding can potentially account for the disruption of cross-tail current and its diversion to the ionosphere to form the substorm current wedge. Furthermore, a number of features associated with substorm expansion onset can be understood based on this substorm onset scenario.
NASA Astrophysics Data System (ADS)
Wygant, J. R.; Thaller, S. A.; Breneman, A. W.; Tian, S.; Cattell, C. A.; Chaston, C. C.; Mozer, F.; Bonnell, J. W.; Kistler, L. M.; Mouikis, C.; Hudson, M. K.; Claudepierre, S. G.; Fennell, J. F.; Reeves, G. D.; Baker, D. N.; Donovan, E.; Spanswick, E.; Kletzing, C.
2015-12-01
We present measurements from the Van Allen Probes, in the near Earth tail, at the outer boundary of the plasma sheet, of a magnetic dipolarization/injection event characterized by unusually strong earthward poynting flux flowing along magnetic field lines with amplitudes of 200 mW/m2 lasting ~ 1 minute. The Poynting flux was conjugate to a 30 km wide discrete auroral arc observed by the THEMIS auroral array. The observations were obtained at 5.8 Re in the pre-midnight sector during the main phase of a geomagnetic storm on 5/01/2013. This brief interval transferred more electromagnetic energy (at the spacecraft position) than that transferred during entire remainder of the main phase of the storm. The parallel Poynting flux coincided with a local section of the "cross tail current sheet" which generated the dipolarization signature. The latitudinal width of the arc, mapped along magnetic field lines, provides an estimate of the spatial scale of the Poynting flux, the electric fields, and the current sheets (parallel and perpendicular). It is estimated that the latitudinal width of the Poynting flux "sheet" was ~600 km or ~1-2 H+ inertial lengths. An estimate of the ∫E·dl across the current sheet along the direction normal to the plasma sheet is ~20-40 kilovolts. The "normal" to the plasma sheet component of the electric field (~70 mV/m) strongly dominated the azimuthal component(which is reponsible for drift energetization). The dipolarization event resulted in the local dispersion-less injection of electrons between 50 keV and ~2 MeV at the Van Allen Probe position. The injection event involved brief (factor of two) local spike in ~2 MeV electron fluxes. Measurements from the Los Alamos geosynchronous spacecraft, displaced eastward from the Van Allen probes, provided evidence for dispersive energy-time electron signatures consistent with injection and energization at the RBSP position. The Poynting flux also coincided with the energy peak in the up-flowing dispersive ion energy-time profile and the onset of earthward ExB convection. A similar injection event during the storm on 6/1/2013 will be discussed.
Dynamical and Physical Properties of a Post-Coronal Mass Ejection Current Sheet
NASA Technical Reports Server (NTRS)
Ko, Yuan-Kuen; Raymond, John C.; Lin, Jun; Lawrence, Gareth; Li, Jing; Fludra, Andrzej
2003-01-01
In the eruptive process of the Kopp-Pneuman type, the closed magnetic field is stretched by the eruption so much that it is usually believed to be " open " to infinity. Formation of the current sheet in such a configuration makes it possible for the energy in the coronal magnetic field to quickly convert into thermal and kinetic energies and cause significant observational consequences, such as growing postflare/CME loop system in the corona, separating bright flare ribbons in the chromosphere, and fast ejections of the plasma and the magnetic flux. An eruption on 2002 January 8 provides us a good opportunity to look into these observational signatures of and place constraints on the theories of eruptions. The event started with the expansion of a magnetic arcade over an active region, developed into a coronal mass ejection (CME), and left some thin streamer-like structures with successively growing loop systems beneath them. The plasma outflow and the highly ionized states of the plasma inside these streamer-like structures, as well as the growing loops beneath them, lead us to conclude that these structures are associated with a magnetic reconnection site, namely, the current sheet, of this eruptive process. We combine the data from the Ultraviolet Coronagraph Spectrometer, Large Angle and Spectrometric Coronagraph Experiment, EUV Imaging Telescope, and Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory, as well is from the Mauna Loa Solar Observatory Mark IV K-coronameter, to investigate the morphological and dynamical properties of this event, as well as the physical properties of the current sheet. The velocity and acceleration of the CME reached up to 1800 km/s and 1 km/sq s, respectively. The acceleration is found to occur mainly at the lower corona (<2.76 Solar Radius). The post-CME loop systems showed behaviors of both postflare loops (upward motion with decreasing speed) and soft X-ray giant arches (upward motion with constant speed, or acceleration) according to the definition of Svestka. In the current sheet, the presence of highly ionized ions, such as Fe(+17) and Ca(+13), suggests temperature as high as (3-4) x 10(exp 6) K, and the plasma outflows have speeds ranging from 300 to 650 km/s. Absolute elemental abundances in the current sheet show a strong first ionization potential effect and have values similar to those found in the active region streamers. The magnetic field strength in the vicinity of the current sheet is found to be of the order of 1 G.
An Intense Excitation Source for High Power (Blue-Green) Laser.
1983-11-22
mild and forms plasma rings near the edges of the center holes as indicated by the circular line in Figure 1. For dye laser pumping, the high pressure... ring formation, and the heavy gas plasmas produce more high-intensity light pulses than light gas. It is also possible to adjust the diameter of plasma ...sheets into the center hole; 5. the formation of plasma rings ; 6. the expansion and radiative cooling of the plasma which results in 7. the intense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Shoko; Weisman, Sarah; Trueman, Holly E.
Aposthonia gurneyi, an Australian webspinner species, is a primitive insect that constructs and lives in a silken tunnel which screens it from the attentions of predators. The insect spins silk threads from many tiny spines on its forelegs to weave a filmy sheet. We found that the webspinner silk fibers have a mean diameter of only 65 nm, an order of magnitude smaller than any previously reported insect silk. The purpose of such fine silk may be to reduce the metabolic cost of building the extensive tunnels. At the molecular level, the A. gurneyi silk has a predominantly beta-sheet proteinmore » structure. The most abundant clone in a cDNA library produced from the webspinner silk glands encoded a protein with extensive glycine-serine repeat regions. The GSGSGS repeat motif of the A. gurneyi silk protein is similar to the well-known GAGAGS repeat motif found in the heavy fibroin of silkworm silk, which also has beta-sheet structure. As the webspinner silk gene is unrelated to the silk gene of the phylogenetically distant silkworm, this is a striking example of convergent evolution.« less
Collisionless reconnection in a quasi-neutral sheet near marginal stability
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Coroniti, F. V.; Pellat, R.; Karimabadi, H.
1989-01-01
Particle simulations are used to investigate the process of collisionless reconnection in a magnetotail configuration which includes a pressure gradient along the tail axis and tail flaring. In the absence of electron stabilization effects, the tearing mode is stabilized when the ion gyrofrequency in the normal field exceeds the growth rate in the corresponding one-dimensional current sheet. The presence of a low-frequency electromagnetic perturbation in the lobes can serve to destabilize a marginally stable current sheet by producing an extended neutral-sheet region which can then undergo reconnection. These results help to explain how X-type neutral lines, such as those associated with the onset of magnetospheric substorms, can be formed in the near-earth plasma sheet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishikawa, K.; Frank, L.A.; Huang, C.Y.
Plasma data from ISEE 1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electronmore » beam and the ion beam excite ion acoustic waves with the Doppler-shifted real frequency ..omega..approx. = +- k/sub parallel/(c/sub s/-V/sub i//sub //sub parallel/). However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion beam is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points for simulations show turbulence generated by growing waves. The frequency of these spectra ranges from ..cap omega../sub i/ to ..omega../sub p//sub e/, which is in qualitative agreement with the satellite data. copyright American Geophysical Union 1988« less
Recent Simulation Results on Ring Current Dynamics Using the Comprehensive Ring Current Model
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Zaharia, Sorin G.; Lui, Anthony T. Y.; Fok, Mei-Ching
2010-01-01
Plasma sheet conditions and electromagnetic field configurations are both crucial in determining ring current evolution and connection to the ionosphere. In this presentation, we investigate how different conditions of plasma sheet distribution affect ring current properties. Results include comparative studies in 1) varying the radial distance of the plasma sheet boundary; 2) varying local time distribution of the source population; 3) varying the source spectra. Our results show that a source located farther away leads to a stronger ring current than a source that is closer to the Earth. Local time distribution of the source plays an important role in determining both the radial and azimuthal (local time) location of the ring current peak pressure. We found that post-midnight source locations generally lead to a stronger ring current. This finding is in agreement with Lavraud et al.. However, our results do not exhibit any simple dependence of the local time distribution of the peak ring current (within the lower energy range) on the local time distribution of the source, as suggested by Lavraud et al. [2008]. In addition, we will show how different specifications of the magnetic field in the simulation domain affect ring current dynamics in reference to the 20 November 2007 storm, which include initial results on coupling the CRCM with a three-dimensional (3-D) plasma force balance code to achieve self-consistency in the magnetic field.
Destruction of {alpha}-synuclein based amyloid fibrils by a low temperature plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakas, Erdinc; Laroussi, Mounir; Munyanyi, Agatha
2010-10-04
Amyloid fibrils are ordered beta-sheet aggregates that are associated with a number of neurodegenerative diseases such as Alzheimer and Parkinson. At present, there is no cure for these progressive and debilitating diseases. Here we report initial studies that indicate that low temperature atmospheric pressure plasma can break amyloid fibrils into smaller units in vitro. The plasma was generated by the 'plasma pencil', a device capable of emitting a long, low temperature plasma plume/jet. This avenue of research may facilitate the development of a plasma-based medical treatment.
Ultralow frequency MHD waves in Jupiter's middle magnetosphere
NASA Technical Reports Server (NTRS)
Khurana, Krishan K.; Kivelson, Margaret G.
1989-01-01
Ultralow frequency (ULF) magnetohydrodynamic pulsations (periods between 10 and 20 min) were observed on July 8-11, 1979 as Voyager 2 traveled through the middle magnetosphere of Jupiter between radial distances of 10 R(J) and 35 R(J). The particle and magnetic pressure perturbations associated with the waves were anticorrelated. The electron and ion perturbations on the dayside were in phase. The pressure perturbations occurred both within and outside of the plasma sheet. Perturbations in the transverse components of the magnetic field were associated with the compressional perturbations but the transverse power peaked within the plasma sheet of Jupiter and diminished rapidly outside of it.
The source of the electric field in the nightside magnetosphere
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.
Magnetospheric Reconnection in Modified Current-Sheet Equilibria
NASA Astrophysics Data System (ADS)
Newman, D. L.; Goldman, M. V.; Lapenta, G.; Markidis, S.
2012-10-01
Particle simulations of magnetic reconnection in Earth's magnetosphere are frequently initialized with a current-carrying Harris equilibrium superposed on a current-free uniform background plasma. The Harris equilibrium satisfies local charge neutrality, but requires that the sheet current be dominated by the hotter species -- often the ions in Earth's magnetosphere. This constraint is not necessarily consistent with observations. A modified kinetic equilibrium that relaxes this constraint on the currents was proposed by Yamada et al. [Phys. Plasmas., 7, 1781 (2000)] with no background population. These modified equilibria were characterized by an asymptotic converging or diverging electrostatic field normal to the current sheet. By reintroducing the background plasma, we have developed new families of equilibria where the asymptotic fields are suppressed by Debye shielding. Because the electrostatic potential profiles of these new equilibria contain wells and/or barriers capable of spatially isolating different populations of electrons and/or ions, these solutions can be further generalized to include classes of asymmetric kinetic equilibria. Examples of both symmetric and asymmetric equilibria will be presented. The dynamical evolution of these equilibria, when perturbed, will be further explored by means of implicit 2D PIC reconnection simulations, including comparisons with simulations employing standard Harris-equilibrium initializations.
Low-Frequency Waves in the Near-Earth Magnetotail before Substorm Expansion Onsets
NASA Astrophysics Data System (ADS)
Miyashita, Y.; Saito, M. H.; Hiraki, Y.; Machida, S.
2013-12-01
Magnetic reconnection and dipolarization, which occur in the near-Earth magnetotail just before substorm expansion onsets, are important processes for the substorm triggering. To understand the triggering of these processes, we have investigated low-frequency waves that were observed in the near-Earth magnetotail before onsets, by performing statistical analysis based on Geotail observations and case studies based on multi-point THEMIS and Geotail observations. Here we focused our examination on ~10 min interval before onsets. We find that small-amplitude Alfven and slow-mode magnetosonic waves with a period of ~1 to 2 min continuously exist for more than 10 min before onsets. Such waves are seen not only in the initial dipolarization region but also midway between the magnetic reconnection and initial dipolarization regions. It seems that the amplitudes of the waves are larger in the off-equator plasma sheet and the plasma sheet boundary layer than at the magnetic equator and in the lobe. After onsets the waves considerably amplify in the plasma sheet. These results may imply that instabilities already begin to grow gradually in a wide region during the substorm growth phase, while their explosive growth begins in localized regions just before onsets.
Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.
2016-03-21
We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10{sup −4}, ∼7 times better than spherical lens focusing. The diverging THz lobes are refocused withmore » a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.« less
Magnetic field line reconnection experiments. V - Current disruptions and double layers
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Gekelman, W.; Wild, N.
1983-01-01
An investigation is conducted of the stability of a large laboratory plasma current sheet, which has been generated in the process of magnetic field line reconnection, with respect to local current increases. Magnetic flux variations in regions remote from the current sheet generate an inductive voltage in the current loop that drops off inside the plasma in the form of a potential double layer, leading to particle acceleration with velocities much larger than those expected from the steady state electric fields in the plasma. A model for the mechanism of the current disruptions is formulated in which the potential structure leads to ion expulsion, creating a localized density drop. The associated current drop in an inductive circuit drives the potential structure, providing feedback for the disruptive instability. Similarities to, and differences from, magnetospheric substorm phenomena are noted.
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Gary, S. P.
1990-01-01
This paper describes ISEE plasma and magnetic fluctuation observations during two crossings of the plasma sheet boundary layer (PSBL) in the earth's magnetotail. Distribution function observations show that the counterstreaming ion components undergo pitch-angle scattering and evolve into a shell distribution in velocity space. This evolution is correlated with the development of low frequency, low amplitude magnetic fluctuations. However, the measured wave amplitudes are insufficient to accomplish the observed degree of ion pitch-angle scatttering locally; the near-earth distributions may be the result of processes occurring much farther down the magnetotail. Results show a clear correlation between the ion component beta and the relative streaming speed of the two components, suggesting that electromagnetic ion/ion instabilities do play an important role in the scattering of PSBL ions.
Design of a High-Energy, Two-Stage Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Markusic, T. E.; Thio, Y. C. F.; Cassibry, J. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Design details of a proposed high-energy (approx. 50 kJ/pulse), two-stage pulsed plasma thruster are presented. The long-term goal of this project is to develop a high-power (approx. 500 kW), high specific impulse (approx. 7500 s), highly efficient (approx. 50%),and mechanically simple thruster for use as primary propulsion in a high-power nuclear electric propulsion system. The proposed thruster (PRC-PPT1) utilizes a valveless, liquid lithium-fed thermal plasma injector (first stage) followed by a high-energy pulsed electromagnetic accelerator (second stage). A numerical circuit model coupled with one-dimensional current sheet dynamics, as well as a numerical MHD simulation, are used to qualitatively predict the thermal plasma injection and current sheet dynamics, as well as to estimate the projected performance of the thruster. A set of further modelling efforts, and the experimental testing of a prototype thruster, is suggested to determine the feasibility of demonstrating a full scale high-power thruster.
NASA Astrophysics Data System (ADS)
Ono, Y.; Tanabe, H.; Yamada, T.; Inomoto, M.; T, Ii; Inoue, S.; Gi, K.; Watanabe, T.; Gryaznevich, M.; Scannell, R.; Michael, C.; Cheng, C. Z.
2012-12-01
Recently, the TS-3 and TS-4 tokamak merging experiments revealed significant plasma heating during magnetic reconnection. A key question is how and where ions and electrons are heated during magnetic reconnection. Two-dimensional measurements of ion and electron temperatures and plasma flow made clear that electrons are heated inside the current sheet mainly by the Ohmic heating and ions are heated in the downstream areas mainly by the reconnection outflows. The outflow kinetic energy is thermalized by the fast shock formation and viscous damping. The magnetic reconnection converts the reconnecting magnetic field energy mostly to the ion thermal energy in the outflow region whose size is much larger than the current sheet size for electron heating. The ion heating energy is proportional to the square of the reconnection magnetic field component B_p^2 . This scaling of reconnection heating indicates the significant ion heating effect of magnetic reconnection, which leads to a new high-field reconnection heating experiment for fusion plasmas.
Teste, Alexandra; Parks, George K
2009-02-20
Relevant new clues to wave-particle interactions have been obtained in Earth's plasma sheet (PS). The plasma measurements made on Cluster spacecraft show that broadband (approximately 2-6 kHz) electrostatic emissions, in the PS boundary layer, are associated with cold counterstreaming electrons flowing at 5-12x10(3) km s(-1) through hot Maxwellian plasma. In the current sheet (CS), electromagnetic whistler mode waves (approximately 10-80 Hz) and compressional Alfvén waves (<2 Hz) are detected with flat-topped electron distributions whose cutoff speeds are approximately 15-17x10(3) km s(-1). These waves are damped in the central CS where |B|
NASA Astrophysics Data System (ADS)
Liu, Shuai; Huang, Yizhi; Guo, Haishan; Lin, Tianyu; Huang, Dong; Yang, Lanjun
2018-05-01
The axial characteristics of a current sheet in a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode are reported. The accelerator is powered by a fourteen stage pulse forming network. The capacitor and inductor in each stage are 1.5 μF and 300 nH, respectively, and yield a damped oscillation square wave of current with a pulse width of 20.6 μs. Magnetic probes and photodiodes are placed at various axial positions to measure the behavior of the current sheet. Both magnetic probe and photodiode signals reveal a secondary breakdown when the current reverses the direction. An increase in the discharge current amplitude and a decrease in pressure lead to a decrease in the current shedding factor. The current sheet velocity and thickness are nearly constant during the run-down phase under the first half-period of the current. The current sheet thicknesses are typically in the range of 25 mm to 40 mm. The current sheet velocities are in the range of 10 km/s to 45 km/s when the discharge current is between 10 kA and 55 kA and the gas prefill pressure is between 30 Pa and 800 Pa. The experimental velocities are about 75% to 90% of the theoretical velocities calculated with the current shedding factor. One reason for this could be that the idealized snowplow analysis model ignores the surface drag force.
New Large Diameter RF Complex Plasma Device
NASA Astrophysics Data System (ADS)
Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus
2016-10-01
The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.
NASA Astrophysics Data System (ADS)
Lamy, L.; Cecconi, B.; Zarka, P.; Canu, P.; Schippers, P.; Kurth, W. S.; Mutel, R. L.; Gurnett, D. A.; Menietti, D.; Louarn, P.
2011-04-01
The Cassini mission crossed the source region of the Saturn kilometric radiation (SKR) on 17 October 2008. On this occasion, the Radio and Plasma Wave Science (RPWS) experiment detected both local and distant radio sources, while plasma parameters were measured in situ by the magnetometer and the Cassini Plasma Spectrometer. A goniopolarimetric inversion was applied to RPWS three-antenna electric measurements to determine the wave vector k and the complete state of polarization of detected waves. We identify broadband extraordinary (X) mode as well as narrowband ordinary (O) mode SKR at low frequencies. Within the source region, SKR is emitted just above the X mode cutoff frequency in a hot plasma, with a typical electron-to-wave energy conversion efficiency of ˜1% (2% peak). The knowledge of the k vector is then used to derive the locus of SKR sources in the kronian magnetosphere, which shows X and O components emanating from the same regions. We also compute the associated beaming angle at the source θ‧ = (k, -B) either from (1) in situ measurements or a model of the magnetic field vector (for local to distant sources) or (2) polarization measurements (for local sources). Obtained results, similar for both modes, suggest quasi-perpendicular emission for local sources, whereas the beaming pattern of distant sources appears as a hollow cone with a frequency-dependent constant aperture angle: θ‧ = 75° ± 15° below 300 kHz, decreasing at higher frequencies to reach θ‧ (1000 kHz) = 50° ± 25°. Finally, we investigate quantitatively the SKR polarization state, observed to be strongly elliptical at the source, and quasi-purely circular for sources located beyond approximately two kronian radii. We show that conditions of weak mode coupling are achieved along the raypath, under which the magnetoionic theory satisfactorily describes the evolution of the observed polarization. These results are analyzed comparatively with the auroral kilometric radiation at Earth.
Near-Earth Reconnection Ejecta at Lunar Distances
NASA Astrophysics Data System (ADS)
Runov, A.; Angelopoulos, V.; Artemyev, A.; Lu, S.; Zhou, X.-Z.
2018-04-01
Near-Earth magnetotail reconnection leads to formation of earthward and tailward directed plasma outflows with an increased north-south magnetic field strength(|Bz|) at their leading edges. We refer to these regions of enhanced |Bz| and magnetic flux transport Ey as reconnection ejecta. They are composed of what have been previously referred to as earthward dipolarizing flux bundles (DFBs) and tailward rapid flux transport (RFT) events. Using two-point observations of magnetic and electric fields and particle fluxes by the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun probes orbiting around Moon at geocentric distances R ˜ 60RE, we statistically studied plasma moments and particle energy spectra in RFTs and compared them with those observed within DFBs in the near-Earth plasma sheet by the Time History of Events and Macroscale Interactions during Substorms probes. We found that the ion average temperatures and spectral slopes in RFTs at R ˜ 60RE are close to those in DFBs observed at 15 < R < 25RE, just earthward of the probable reconnection region location. Assuming plasma sheet pressure balance, the average RFT ion temperature corresponds to a lobe field BL˜20 nT. This leads us to suggest that the ion population within the tailward ejecta originated in the midtail plasma sheet at 20≤R≤30RE and propagated to the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun location without undergoing any further energy gain. Conversely, electron temperatures in DFBs at 15 < R < 25RE are a factor of 2.5 higher than those in RFTs at R ˜ 60RE.
Effects of Energetic Ion Outflow on Magnetospheric Dynamics
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C.; Lund, E. J.; Menz, A.; Nowrouzi, N.
2016-12-01
There are two dominant regions of energetic ion outflow: the nightside auroral region and the dayside cusp. Processes in these regions can accelerate ions up to keV energies. Outflow from the nightside has direct access to the plasma sheet, while outflow from the cusp is convected over the polar cap and into the lobes. The cusp population can enter the plasma sheet from the lobe, with higher energy ions entering further down the tail than lower energy ions. During storm times, the O+ enhanced plasma sheet population is convected into the inner magnetosphere. The plasma that does not get trapped in the inner magnetosphere convects to the magnetopause where reconnection is taking place. An enhanced O+ population can change the plasma mass density, which may have the effect of decreasing the reconnection rate. In addition O+ has a larger gyroradius than H+ at the same velocity or energy. Because of this, there are larger regions where the O+ is demagnetized, which can lead to larger acceleration because the O+ can move farther in the direction of the electric field. In this talk we will review results from Cluster, Van Allen Probes, and MMS, on how outflow from the two locations affects magnetospheric dynamics. We will discuss whether enhanced O+ from either population has an effect on the reconnection rate in the tail or at the magnetopause. We will discuss how the two populations impact the inner magnetosphere during storm times. And finally, we will discuss whether either population plays a role in triggering substorms, particularly during sawtooth events.
X-ray emission from high temperature plasmas
NASA Technical Reports Server (NTRS)
Harries, W. L.
1977-01-01
The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.
NASA Astrophysics Data System (ADS)
Xie, Jingjin; Chen, Qiang; Suresh, Poornima; Roy, Subrata; White, James F.; Mazzeo, Aaron D.
2017-05-01
This work describes disposable plasma generators made from metallized paper. The fabricated plasma generators with layered and patterned sheets of paper provide a simple and flexible format for dielectric barrier discharge to create atmospheric plasma without an applied vacuum. The porosity of paper allows gas to permeate its bulk volume and fuel plasma, while plasma-induced forced convection cools the substrate. When electrically driven with oscillating peak-to-peak potentials of ±1 to ±10 kV, the paper-based devices produced both volume and surface plasmas capable of killing microbes. The plasma sanitizers deactivated greater than 99% of Saccharomyces cerevisiae and greater than 99.9% of Escherichia coli cells with 30 s of noncontact treatment. Characterization of plasma generated from the sanitizers revealed a detectable level of UV-C (1.9 nWṡcm-2ṡnm-1), modest surface temperature (60 °C with 60 s of activation), and a high level of ozone (13 ppm with 60 s of activation). These results deliver insights into the mechanisms and suitability of paper-based substrates for active antimicrobial sanitization with scalable, flexible sheets. In addition, this work shows how paper-based generators are conformable to curved surfaces, appropriate for kirigami-like “stretchy” structures, compatible with user interfaces, and suitable for sanitization of microbes aerosolized onto a surface. In general, these disposable plasma generators represent progress toward biodegradable devices based on flexible renewable materials, which may impact the future design of protective garments, skin-like sensors for robots or prosthetics, and user interfaces in contaminated environments.
Paper-based plasma sanitizers.
Xie, Jingjin; Chen, Qiang; Suresh, Poornima; Roy, Subrata; White, James F; Mazzeo, Aaron D
2017-05-16
This work describes disposable plasma generators made from metallized paper. The fabricated plasma generators with layered and patterned sheets of paper provide a simple and flexible format for dielectric barrier discharge to create atmospheric plasma without an applied vacuum. The porosity of paper allows gas to permeate its bulk volume and fuel plasma, while plasma-induced forced convection cools the substrate. When electrically driven with oscillating peak-to-peak potentials of ±1 to ±10 kV, the paper-based devices produced both volume and surface plasmas capable of killing microbes. The plasma sanitizers deactivated greater than 99% of Saccharomyces cerevisiae and greater than 99.9% of Escherichia coli cells with 30 s of noncontact treatment. Characterization of plasma generated from the sanitizers revealed a detectable level of UV-C (1.9 nW⋅cm -2 ⋅nm -1 ), modest surface temperature (60 °C with 60 s of activation), and a high level of ozone (13 ppm with 60 s of activation). These results deliver insights into the mechanisms and suitability of paper-based substrates for active antimicrobial sanitization with scalable, flexible sheets. In addition, this work shows how paper-based generators are conformable to curved surfaces, appropriate for kirigami-like "stretchy" structures, compatible with user interfaces, and suitable for sanitization of microbes aerosolized onto a surface. In general, these disposable plasma generators represent progress toward biodegradable devices based on flexible renewable materials, which may impact the future design of protective garments, skin-like sensors for robots or prosthetics, and user interfaces in contaminated environments.
A Detection of the Same Hot Plasma in the Corona: During a CME and Later at Ulysses
NASA Technical Reports Server (NTRS)
Suess, S. T.; Poletto, G.
2004-01-01
We show direct evidence for the same very hot plasma being detected remotely from SOHO in the corona and subsequently, at Ulysses in the solar wind. This is, to our knowledge, the first time that such an unambiguous identification has been made in the case of hot plasma. This detection complements studies correlating other plasma and field properties observed to the properties measured at the source in the corona. This observation takes advantage of a SOHO-Sun-Ulysses quadrature, during which the Sun-Ulysses included angle is $90^\\circ$ and it is possible to observe with Ulysses instruments the same plasma that has previously been remotely observed with SOHO instruments in the corona on the limb of the Sun. The identification builds on an existing base of separate SOHO and interplanetary detections of hot plasma. SOHO/UVCS has found evidence for very hot coronal plasma in current sheets in the aftermath of CMEs in the [Fe XVIII] $\\lambda$ \\AA\\ line, implying a temperature on the order of $6\\times 10(exp 6)$ K. This temperature is unusually high even for active regions, but is compatible with the high temperature predicted in current sheets. In the solar wind, ACE data from early 1998 to middle 2000 revealed high frozen-in Fe charge state in many cases to be present in interplanetary plasma.
Magnetic field reconnection. [energy conversion in space plasma
NASA Technical Reports Server (NTRS)
Sonnerup, U. O.
1979-01-01
A reasonably detailed description is obtained of the current status of our understanding of magnetic field reconnection. The picture that emerges is of a process, simple in concept but extremely complicated and multifaceted in detail. Nonlinear MHD processes in the external flow region, governed by distant boundary conditions, are coupled to nonlinear microscopic plasma processes in the diffusion region, in a manner not clearly understood. It appears that reconnection may operate in entirely different ways for different plasma parameters and different external boundary conditions. Steady reconnection may be allowed in some cases, forbidden in others, with intermediate situations involving impulsive or pulsative events.
NASA Technical Reports Server (NTRS)
Gallagher, Dennis
2018-01-01
Outline - Inner Magnetosphere Effects: Historical Background; Main regions and transport processes: Ionosphere, Plasmasphere, Plasma sheet, Ring current, Radiation belt; Geomagnetic Activity: Storms, Substorm; Models.
Structure of the Magnetotail Current Sheet
NASA Technical Reports Server (NTRS)
Larson, Douglas J.; Kaufmann, Richard L.
1996-01-01
An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(sub E) less than x less than - 14 R(sub E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.
Structure of the Magnetotail Current Sheet
NASA Technical Reports Server (NTRS)
Larson, Douglas J.; Kaufmann, Richard L.
1996-01-01
An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(E) less than x less than -14 R(E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.
Megavolt, Multigigawatt Pulsed Plasma Switch
NASA Technical Reports Server (NTRS)
Lee, Ja H.; Choi, Sang H.; Song, Kyo D.
1996-01-01
Plasma switch proposed for use in high-voltage, high-current pulse power system. Designed not only to out-perform conventional spark-gap switch but also relatively compact and lightweight. Features inverse-pinch configuration to prevent constriction of current sheets into filaments, plus multiple-ring-electrode structure to resist high-voltage breakdown.
ASCA Observations of Distant Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Tsuru, T. G.
We present results from ASCA observation of distant clusters of galaxies. The observed clusters are as follows; CL0016+16, A370, A959, AC118, Zw3136, MS1305.4+2941, A1851, A963, A2163, MS0839.8+2938, A665, A1689, A2218, A586 and A1413. The covering range of the redshifts is 0.14-0.55 and their average red-shift is 0.245. The negative correlation between the metal abundance and the plasma temperature seen in near clusters is also detected in the distant clusters. No apparent difference between the two correlation. It suggests no strong metal evolution has been made from z = 0.2-0.3 to z = 0. Data of velocity dispersion is available for seven clusters among our samples. All the betaspec of them are above the average of near clusters. The average betaspec for the distant clusters obtained to be betaspec = 1.85 with an rms scatter of 0.62. The value is significantly higher than the near clusters' value of betaspec = 0.94 plus or minus 0.08 with an rms scatter of 0.46.
On a nonlinear state of the electromagnetic ion/ion cyclotron instability
NASA Astrophysics Data System (ADS)
Cremer, M.; Scholer, M.
We have investigated the nonlinear properties of the electromagnetic ion/ion cyclotron instability (EMIIC) by means of hybrid simulations (macroparticle ions, massless electron fluid). The instability is driven by the relative (super-Alfvénic) streaming of two field-aligned ion beams in a low beta plasma (ion thermal pressure to magnetic field pressure) and may be of importance in the plasma sheet boundary layer. As shown in previously reported simulations the waves propagate obliquely to the magnetic field and heat the ions in the perpendicular direction as the relative beam velocity decreases. By running the simulation to large times it can be shown that the large temperature anisotropy leads to the ion cyclotron instability (IC) with parallel propagating Alfvén ion cyclotron waves. This is confirmed by numerically solving the electromagnetic dispersion relation. An application of this property to the plasma sheet boundary layer is discussed.
NASA Technical Reports Server (NTRS)
Sugiura, M.; Iyemori, T.; Hoffman, R. A.; Maynard, N. C.; Burch, J. L.; Winningham, J. D.
1984-01-01
The relationships between field-aligned currents, electric fields, and particle fluxes are determined using observations from the polar orbiting low-altitude satellite Dynamics Explorer-2. It is shown that the north-south electric field and the east-west magnetic field components are usually highly correlated in the field-aligned current regions. This proportionality observationally proves that the field-aligned current equals the divergence of the height-integrated ionospheric Pedersen current in the meridional plane to a high degree of approximation. As a general rule, in the evening sector the upward field-aligned currents flow in the boundary plasma sheet region and the downward currents flow in the central plasma sheet region. The current densities determined independently from the plasma and magnetic field measurements are compared. Although the current densities deduced from the two methods are in general agreement, the degree and extent of the agreement vary in individual cases.
NASA Technical Reports Server (NTRS)
Sugiura, M.; Iyemori, T.; Hoffman, R. A.; Maynard, N. C.; Burch, J. L.; Winningham, J. D.
1983-01-01
The relationships between field-aligned currents, electric fields, and particle fluxes are determined using observations from the polar orbiting low-altitude satellite Dynamics Explorer-2. It is shown that the north-south electric field and the east-west magnetic field components are usually highly correlated in the field-aligned current regions. This proportionality observationally proves that the field-aligned current equals the divergence of the height-integrated ionospheric Pedersen current in the meridional plane to a high degree of approximation. As a general rule, in the evening sector the upward field-aligned currents flow in the boundary plasma sheet region and the downward currents flow in the central plasma sheet region. The current densities determined independently from the plasma and magnetic field measurements are compared. Although the current densities deduced from the two methods are in general agreement, the degree and extent of the agreement vary in individual cases.
Polar Plasma at Ganymede: Ionospheric outflow and discovery of the plasma sheet
NASA Astrophysics Data System (ADS)
Collinson, G.; Paterson, W.; Dorelli, J.; Glocer, A.; Sarantos, M.; Wilson, R. J.; Bard, C.
2017-12-01
On the 27th of June 1996, the NASA Galileo spacecraft made humanities first flyby of Jupiter's largest moon, Ganymede, discovering that it is unique to science in being the only moon known to possess an internally generated magnetic dynamo field. Although Galileo carried a plasma spectrometer, the Plasma Subsystem (PLS), converting its highly complex raw data stream into meaningful plasma moments (density, temperature, velocity) is extremely challenging, and was only ever performed for the second (out of six) Ganymede flybys. Resurrecting the original Galileo PLS data analysis software, we processed the raw PLS data from G01, and for the first time present the properties of plasmas encountered. Dense, cold ions were observed outflowing from the moon's north pole (presumed to be dominated by H+ from the icy surface), with more diffuse, warmer field-aligned outflows in the lobes. Dropouts in plasma density combined with velocity perturbations either side of this suggest that Galileo briefly crossed the cusps onto closed magnetic field lines. PLS observations show that upon entry into the magnetosphere, Galileo crossed through the plasma sheet, observing plasma flows consistent with reconnection-driven convection, highly energized 105 eV ions, and a reversal in the magnetic field. The densities of plasmas flowing upwards from Ganymede's ionosphere were higher on open "lobe" field lines than on closed field lines, suggesting that the ionospheric source of these plasmas may be denser at the poles, there may be additional acceleration mechanisms at play, or the balance of ions were outside the energy range of PLS.
Self-consistent current sheet structures in the quiet-time magnetotail
NASA Technical Reports Server (NTRS)
Holland, Daniel L.; Chen, James
1993-01-01
The structure of the quiet-time magnetotail is studied using a test particle simulation. Vlasov equilibria are obtained in the regime where v(D) = E(y) c/B(z) is much less than the ion thermal velocity and are self-consistent in that the current and magnetic field satisfy Ampere's law. Force balance between the plasma and magnetic field is satisfied everywhere. The global structure of the current sheet is found to be critically dependent on the source distribution function. The pressure tensor is nondiagonal in the current sheet with anisotropic temperature. A kinetic mechanism is proposed whereby changes in the source distribution results in a thinning of the current sheet.
Spontaneous magnetic fluctuations and collisionless regulation of the Earth's plasma sheet
NASA Astrophysics Data System (ADS)
Moya, P. S.; Espinoza, C.; Stepanova, M. V.; Antonova, E. E.; Valdivia, J. A.
2017-12-01
Even in the absence of instabilities, plasmas often exhibit inherent electromagnetic fluctuations which are present due to the thermal motion of charged particles, sometimes called thermal (quasi-thermal) noise. One of the fundamental and challenging problems of laboratory, space, and astrophysical plasma physics is the understanding of the relaxation processes of nearly collisionless plasmas, and the resultant state of electromagnetic plasma turbulence. The study of thermal fluctuations can be elegantly addressed by using the Fluctuation-Dissipation Theorem that describes the average amplitude of the fluctuations through correlations of the linear response of the media with the perturbations of the equilibrium state (the dissipation). Recently, it has been shown that solar wind plasma beta and temperature anisotropy observations are bounded by kinetic instabilities such as the ion cyclotron, mirror, and firehose instabilities. The magnetic fluctuations observed within the bounded area are consistent with the predictions of the Fluctuation-Dissipation theorem even far below the kinetic instability thresholds, with an enhancement of the fluctuation level near the thresholds. Here, for the very first time, using in-situ magnetic field and plasma data from the THEMIS spacecraft, we show that such regulation also occurs in the Earth's plasma sheet at the ion scales and that, regardless of the clear differences between the solar wind and the magnetosphere environments, spontaneous fluctuation and their collisionless regulation seem to be fundamental features of space and astrophysical plasmas, suggesting the universality of the processes.
Bundaleska, N; Tsyganov, D; Dias, A; Felizardo, E; Henriques, J; Dias, F M; Abrashev, M; Kissovski, J; Tatarova, E
2018-05-23
An experimental and theoretical study on microwave (2.45 GHz) plasma enabled assembly of carbon nanostructures, such as multilayer graphene sheets and nanoparticles, was performed. The carbon nanostructures were fabricated at different Ar-CH4 gas mixture composition and flows at atmospheric pressure conditions. The synthesis method is based on decomposition of the carbon-containing precursor (CH4) in the "hot" microwave plasma environment into carbon atoms and molecules, which are further converted into solid carbon nuclei in the "colder" plasma zones. By tailoring of the plasma environment, a controlled synthesis of graphene sheets and diamond-like nanoparticles was achieved. Selective synthesis of graphene flakes was achieved at a microwave power of 1 kW, Ar and methane flow rates of 600 sccm and 2 sccm respectively, while the predominant synthesis of diamond-like nanoparticles was obtained at the same power, but with higher flow rates, i.e. 1000 and 7.5 sccm, respectively. Optical emission spectroscopy was applied to detect the plasma emission related to carbon species from the 'hot' plasma zone and to determine the main plasma parameters. Raman spectroscopy and scanning electron microscopy have been applied to characterize the synthesized nanostructures. A previously developed theoretical model was further updated and employed to understand the mechanism of CH4 decomposition and formation of the main building units, i.e. C and C2, of the carbon nanostructures. An insight into the physical chemistry of carbon nanostructure formation in a high energy density microwave plasma environment is presented.
Formation of a dual-stage pinch-accelerator in a Z-pinch (plasma focus) device
NASA Astrophysics Data System (ADS)
Behbahani, R. A.; Hirose, A.; Xiao, C.
2018-01-01
A novel dense plasma focus configuration with two separate concentric current sheet run-down regions has been demonstrated to produce several consecutive plasma focusing events. In a proof-of-principle experiment on a low-energy plasma focus device, the measured tube voltages and discharge current have been explained by using circuit analyses of the device. Based on the calculated plasma voltages the occurrence of flash-over phase, axial phase, and compression phase has been discussed. The electrical signals along with the calculated plasma voltages suggest the occurrence of several focusing events in the new structure.
Predicting pulsar scintillation from refractive plasma sheets
NASA Astrophysics Data System (ADS)
Simard, Dana; Pen, Ue-Li
2018-07-01
The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line of sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parametrized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.
Predicting Pulsar Scintillation from Refractive Plasma Sheets
NASA Astrophysics Data System (ADS)
Simard, Dana; Pen, Ue-Li
2018-05-01
The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line-of-sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parameterized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: Only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.
Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loizu, J.; Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543; Hudson, S. R.
2015-09-15
We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at themore » resonant surface.« less
Treatment of Second-Order Structures of Proteins Using Oxygen Radio Frequency Plasma
NASA Astrophysics Data System (ADS)
Hayashi, Nobuya; Nakahigashi, Akari; Liu, Hao; Goto, Masaaki
2010-08-01
Decomposition characteristics of second-order structures of proteins are determined using an oxygen radio frequency (RF) plasma sterilizer in order to prevent infectious proteins from contaminating medical equipment in hospitals. The removal of casein protein as a test protein with a concentration of 50 mg/cm2 on the plane substrate requires approximately 8 h when singlet atomic oxygen is irradiated. The peak intensity of Fourier transform infrared spectroscopy (FTIR) spectra of the β-sheet structures decreases at approximately the same rate as those of the α-helix and first-order structures of proteins. Active oxygen has a sufficient oxidation energy to dissociate hydrogen bonds within the β-sheet structure.
Electron distributions in the plasma sheet boundary layer - Time-of-flight effects
NASA Technical Reports Server (NTRS)
Onsager, T. G.; Thomsen, M. F.; Gosling, J. T.; Bame, S. J.
1990-01-01
The electron edge of the plasma sheet boundary layer lies lobeward of the ion edge. Measurements obtained near the electron edge of the boundary layer reveal low-speed cutoffs for earthward and tailward-flowing electrons. These cutoffs progress to lower speeds with deeper penetration into the boundary layer, and are consistently lower for the earthward-directed electrons than for the tailward-direction electrons. The cutoffs and their variation with distance from the edge of the boundary layer can be consistently interpreted in terms of a time-of-flight effect on recently reconnected magnetic field lines. The observed cutoff speeds are used to estimate the downtail location of the reconnection site.
Temporal Characteristics of Electron Flux Events at Geosynchronous Orbit
NASA Astrophysics Data System (ADS)
Olson, D. K.; Larsen, B.; Henderson, M. G.
2017-12-01
Geosynchronous satellites such as the LANL-GEO fleet are exposed to hazardous conditions when they encounter regions of hot, intense plasma such as that from the plasma sheet. These conditions can lead to the build-up of charge on the surface of a spacecraft, with undesired, and often dangerous, side effects. Observation of electron flux levels at geosynchronous orbit (GEO) with multiple satellites provides a unique view of plasma sheet access to that region. Flux "events", or periods when fluxes are elevated continuously above the LANL-GEO spacecraft charging threshold, can be characterized by duration in two dimensions: a spatial dimension of local time, describing the duration of an event from the perspective of a single spacecraft, and a temporal dimension describing the duration in time in which high energy plasma sheet particles have access to geosynchronous orbit. We examine the statistical properties of the temporal duration of 8 keV electron flux events at geosynchronous orbit over a twelve-year period. These results, coupled with the spatial duration characteristics, provide the key information needed to formulate a statistical model for forecasting the electron flux conditions at GEO that are correlated with LANL-GEO surface charging. Forecasting models are an essential component to understanding space weather and mitigating the dangers of surface charging on our satellites. We also examine the correlation of flux event durations with solar wind parameters and geomagnetic indices, identifying the data needed to improve upon a statistical forecasting model
Heliospheric current sheet and effects of its interaction with solar cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malova, H. V., E-mail: hmalova@yandex.ru; Popov, V. Yu.; Grigorenko, E. E.
2016-08-15
The effects of interaction of solar cosmic rays (SCRs) with the heliospheric current sheet (HCS) in the solar wind are analyzed. A self-consistent kinetic model of the HCS is developed in which ions with quasiadiabatic dynamics can present. The HCS is considered an equilibrium embedded current structure in which two main plasma species with different temperatures (the low-energy background plasma of the solar wind and the higher energy SCR component) contribute to the current. The obtained results are verified by comparing with the results of numerical simulations based on solving equations of motion by the particle tracing method in themore » given HCS magnetic field with allowance for SCR particles. It is shown that the HCS is a relatively thin multiscale current configuration embedded in a thicker plasma layer. In this case, as a rule, the shear (tangential to the sheet current) component of the magnetic field is present in the HCS. Taking into account high-energy SCR particles in the HCS can lead to a change of its configuration and the formation of a multiscale embedded structure. Parametric family of solutions is considered in which the current balance in the HCS is provided at different SCR temperatures and different densities of the high-energy plasma. The SCR densities are determined at which an appreciable (detectable by satellites) HCS thickening can occur. Possible applications of this modeling to explain experimental observations are discussed.« less
Pulsed Electromagnetic Acceleration of Plasma: A Review
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Turchi, Peter J.; Markusic, Thomas E.; Cassibry, Jason T.; Sommer, James; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Much have been learned in the acceleration mechanisms involved in accelerating a plasma electromagnetically in the laboratory over the last 40 years since the early review by Winston Bostik of 1963, but the accumulated understanding is very much scattered throughout the literature. This literature extends back at least to the early sixties and includes Rosenbluth's snowplow model, discussions by Ralph Lovberg, Colgate's boundary-layer model of a current sheet, many papers from the activity at Columbia by Robert Gross and his colleagues, and the relevant, 1-D unsteady descriptions developed from the U. of Maryland theta-pinch studies. Recent progress on the understanding of the pulsed penetration of magnetic fields into collisionless or nearly collisionless plasmas are also be reviewed. Somewhat more recently, we have the two-dimensional, unsteady results in the collisional regime associated with so-called wall-instability in large radius pinch discharges and also in coaxial plasma guns (e.g., Plasma Flow Switch). Among other things, for example, we have the phenomenon of a high- density plasma discharge propagating in a cooaxial gun as an apparently straight sheet (vs paraboloid) because mass re-distribution (on a microsecond timescale) compensates for the 1/r- squared variation of magnetic pressure. We will attempt to collate some of this vast material and bring some coherence tc the development of the subject.
NASA Astrophysics Data System (ADS)
Song, Wanjun; Zhang, Hou
2017-11-01
Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.
Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas
NASA Astrophysics Data System (ADS)
Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.
2016-12-01
It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)
Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations
NASA Astrophysics Data System (ADS)
Makwana, Kirit; Li, Hui; Guo, Fan; Li, Xiaocan
2017-05-01
We simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope between {k}\\perp -1.3 and {k}\\perp -1.1, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. Heating by the parallel E∥ · J∥ term dominates the perpendicular E⊥ · J⊥ term. Regions of strong E∥ · J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.
Understanding the ion distributions near the boundaries of reconnection outflow region
NASA Astrophysics Data System (ADS)
Zhou, X.; Pan, D.; Angelopoulos, V.; Runov, A.; Zong, Q.; Pu, Z.
2016-12-01
An interesting signature observed shortly after the onset of magnetotail reconnection is the gradual appearance of a local peak of ion phase space density (PSD) in the duskward and downstream direction separated from the colder, nearly-isotropic ion population. Such characteristic ion distributions, well reproduced by a particle-tracing Liouville simulation, are found to appear only near the off-equatorial boundaries of the reconnection outflow region. Further analysis on ion trajectories suggests that the ions at the local peak and at the neighboring PSD cleft both belong to the outflowing population; they both meander across the neutral sheet to exhibit duskward velocities near the off-equatorial boundaries of their trajectories. The difference between them is that the local peak originates from ions previously constituting the pre-onset plasma sheet, whereas the cleft corresponds to the inflowing lobe ions before they are repelled in the downstream direction. As reconnection proceeds, the local PSD peak attenuates and then disappears, which indicates the eventual depletion of thermal ions in the pre-onset plasma sheet.
Bursting reconnection of the two co-rotating current loops
NASA Astrophysics Data System (ADS)
Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi
2000-10-01
Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.
Transparent conducting thin films for spacecraft applications
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Malave-Sanabria, Tania; Hambourger, Paul; Rutledge, Sharon K.; Roig, David; Degroh, Kim K.; Hung, Ching-Cheh
1994-01-01
Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10(exp 2) to 10(exp 11) ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10(exp 7) to 10(exp 11) ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.
Transparent conducting thin films for spacecraft applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Davis, M.E.; Malave-Sanabria, T.; Hambourger, P.
1994-01-01
Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10[sup 2] to 10[sup 11] ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10[sup 7] to 10[sup 11] ohms/square with transmittances from 84 to 91 percent. It was found thatmore » in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.« less
The Plasma Sheet as Natural Symmetry Plane for Dipolarization Fronts in the Earth's Magnetotail
NASA Astrophysics Data System (ADS)
Frühauff, D.; Glassmeier, K.-H.
2017-11-01
In this work, observations of multispacecraft mission Time History of Events and Macroscale Interactions during Substorms are used for statistical investigation of dipolarization fronts in the near-Earth plasma sheet of the magnetotail. Using very stringent criteria, 460 events are detected in almost 10 years of mission data. Minimum variance analysis is used to determine the normal directions of the phase fronts, providing evidence for the existence of a natural symmetry of these phenomena, given by the neutral sheet of the magnetotail. This finding enables the definition of a local coordinate system based on the Tsyganenko model, reflecting the intrinsic orientation of the neutral sheet and, therefore, the dipolarization fronts. In this way, the comparison of events with very different background conditions is improved. Through this study, the statistical results of Liu, Angelopoulos, Runov, et al. (2013) are both confirmed and extended. In a case study, the knowledge of this plane of symmetry helps to explain the concave curvature of dipolarization fronts in the XZ plane through phase propagation speeds of magnetoacoustic waves. A second case study is presented to determine the central current system of a passing dipolarization front through a constellation of three spacecraft. With this information, a statistical analysis of spacecraft observations above and below the neutral sheet is used to provide further evidence for the neutral sheet as the symmetry plane and the central current system. Furthermore, it is shown that the signatures of dipolarization fronts are under certain conditions closely related to that of flux ropes, indicating a possible relationship between these two transient phenomena.
NASA Technical Reports Server (NTRS)
Ho, C. M.; Tsurutani, B. T.; Smith, E. J.; Feldman, W. C.
1994-01-01
We report an observation of Petschek-type magnetic reconnection at a distant neutral line (X = -230 R(sub e)) with a full set of signatures of the magnetic merging process. These features include a reversal of plasma flows from earthward to tailward, a pair of slow shocks and the magnetic field X-type line. These two slow shocks are shown to satisfy the shock criteria used by Feldman et al. (1987). The spacecraft first crosses a slow shock to enter the earthward flowing plasmasheet with velocity of about 440 km/s. The embedded magnetic field has a positive B(sub z) component. The spacecraft next enters a region of tailward plasma flow with speed approximately 670 km/s and an embedded negative B(sub z), indicating entry into the plasmasheet tailward of the X-line. These observed velocities are comparable to calculated velocities based on Rankine-Hugoniot conservation relationships. The spacecraft subsequently returns into the south tail lobe by crossing another slow shock. Coplanarity analyses shows that the two slow shocks have orientations consistent with that predicted by the Petschek reconnection model. We note that this event occurs during northward interplanetary magnetic fields. Thus, a magnetic stress built-up in the distant tail may be responsible for this reconnection process.
NASA Technical Reports Server (NTRS)
Klimas, Alex J.; Valdivia, J. A.; Vassiliadis, D.; Baker, D. N.; Hesse, M.; Takalo, J.
1999-01-01
Evidence is presented that suggests there is a significant self-organized criticality (SOC) component in the dynamics of substorms in the magnetosphere. Observations of BBFs, fast flows, localized dipolarizations, plasma turbulence, etc. are taken to show that multiple localized reconnection sites provide the basic avalanche phenomenon in the establishment of SOC in the plasma sheet. First results are presented from a continuing plasma physical study of this avalanche process. A one-dimensional resistive MHD model of a magnetic field reversal is discussed. Resistivity, in this model, is self-consistently generated in response to the excitation of an idealized current-driven instability. When forced by convection of magnetic flux into the field reversal region, the model yields rapid magnetic field annihilation through a dynamic behavior that is shown to exhibit many of the characteristics of SOC. Over a large range of forcing strengths, the annihilation rate is shown to self-adjust to balance the rate at which flux is convected into the reversal region. Several analogies to magnetotail dynamics are discussed: (1) It is shown that the presence of a localized criticality in the model produces a remarkable stability in the global configuration of the field reversal while simultaneously exciting extraordinarily dynamic internal evolution. (2) Under steady forcing, it is shown that a loading-unloading cycle may arise that, as a consequence of the global stability, is quasi-periodic and, therefore, predictable despite the presence of internal turbulence in the field distribution. Indeed, it is shown that the global loading-unloading cycle is a consequence of the internal turbulence. (3) It is shown that, under steady, strong forcing the loading-unloading cycle vanishes. Instead, a recovery from a single unloading persists indefinitely. The field reversal is globally very steady while internally it is very dynamic as field annihilation goes on at the rate necessary to match the strong forcing. From this result we speculate that steady magnetospheric convection events result when the plasma sheet has been driven close to criticality over an extended spatial domain. During these events, we would expect to find localized reconnection sites distributed over the spatial domain of near criticality and we would expect to find plasma sheet transport in that domain to be closely related to that of BBF and fast flow events.
Turbulent magnetic fluctuations in laboratory reconnection
NASA Astrophysics Data System (ADS)
Von Stechow, Adrian; Grulke, Olaf; Klinger, Thomas
2016-07-01
The role of fluctuations and turbulence is an important question in astrophysics. While direct observations in space are rare and difficult dedicated laboratory experiments provide a versatile environment for the investigation of magnetic reconnection due to their good diagnostic access and wide range of accessible plasma parameters. As such, they also provide an ideal chance for the validation of space plasma reconnection theories and numerical simulation results. In particular, we studied magnetic fluctuations within reconnecting current sheets for various reconnection parameters such as the reconnection rate, guide field, as well as plasma density and temperature. These fluctuations have been previously interpreted as signatures of current sheet plasma instabilities in space and laboratory systems. Especially in low collisionality plasmas these may provide a source of anomalous resistivity and thereby contribute a significant fraction of the reconnection rate. We present fluctuation measurements from two complementary reconnection experiments and compare them to numerical simulation results. VINETA.II (Greifswald, Germany) is a cylindrical, high guide field reconnection experiment with an open field line geometry. The reconnecting current sheet has a three-dimensional structure that is predominantly set by the magnetic pitch angle which results from the superposition of the guide field and the in-plane reconnecting field. Within this current sheet, high frequency magnetic fluctuations are observed that correlate well with the local current density and show a power law spectrum with a spectral break at the lower hybrid frequency. Their correlation lengths are found to be extremely short, but propagation is nonetheless observed with high phase velocities that match the Whistler dispersion. To date, the experiment has been run with an external driving field at frequencies higher than the ion cyclotron frequency f_{ci}, which implies that the EMHD framework applies. Recent machine upgrades allow the inclusion of ion dynamics by reducing the drive frequency below f_{ci}. Two numerical codes (EMHD and hybrid, respectively) have been developed at the Max Planck Institute for solar physics and are used to investigate instability mechanisms and scaling laws for the observed results. MRX (PPPL. Princeton) is a zero to medium guide field, toroidal reconnection experiment. Despite the differing plasma parameters, the qualitative magnetic fluctuation behavior (amplitude profiles, spectra and propagation properties) is comparable to VINETA.II. Results from a new measurement campaign at several different guide fields provides partial overlap with VINETA.II guide field ratios and thereby extends the accessible parameter space of our studies.
NASA Astrophysics Data System (ADS)
Ohtani, S.; Nose, M.; Miyashita, Y.; Lui, A.
2014-12-01
We investigate the responses of different ion species (H+, He+, He++, and O+) to fast plasma flows and local dipolarization in the plasma sheet in terms of energy density. We use energetic (9-210 keV) ion composition measurements made by the Geotail satellite at r = 10~31 RE. The results are summarized as follows: (1) whereas the O+-to-H+ ratio decreases with earthward flow velocity, it increases with tailward flow velocity with Vx dependence steeper for perpendicular flows than for parallel flows; (2) for fast earthward flows, the energy density of each ion species increases without any clear preference for heavy ions; (3) for fast tailward flows the ion energy density increases initially, then it decreases to below pre-flow levels except for O+; (4) the O+-to-H+ ratio does not increase through local dipolarization irrespective of dipolarization amplitude, background BZ, X distance, and VX; (5) in general, the H+ and He++ ions behave similarly. Result (1) can be attributed to radial transport along with the earthward increase of the background O+-to-H+ ratio. Results (2) and (4) indicate that ion energization associated with local dipolarization is not mass-dependent possibly because in the energy range of our interest the ions are not magnetized irrespective of species. In the tailward outflow region of reconnection, where the plasma sheet becomes thinner, the H+ ions escape along the field line more easily than the O+ ions, which possibly explains result (3). Result (5) suggests that the solar wind is the primary source of the high-energy H+ ions.
Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL
NASA Astrophysics Data System (ADS)
Furno, I.; Intrator, T.; Hemsing, E.; Hsu, S.; Lapenta, G.; Abbate, S.
2004-12-01
Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (Bθ ≤ 100 Gauss, L=90 cm, r≤3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / Bθ > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t≤ 20 τ Alfv´ {e}n), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.
Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL
NASA Astrophysics Data System (ADS)
Furno, Ivo
2004-11-01
Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (B_pol < 100 Gauss, L=90 cm, r < 3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / B_pol > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t < 20τ_Alfven), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.
HEATING MECHANISMS IN THE LOW SOLAR ATMOSPHERE THROUGH MAGNETIC RECONNECTION IN CURRENT SHEETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Lei; Lin, Jun; Roussev, Ilia I.
2016-12-01
We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 10{sup 4} K) and low temperature (∼10{sup 4} K) magnetic reconnection events can happen in the low solar atmosphere (100–600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the mainmore » mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 10{sup 4} K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (∼10{sup 4} K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 10{sup 4}) in the future.« less
NASA Astrophysics Data System (ADS)
Gordeev, Evgeny; Sergeev, Victor; Tsyganenko, Nikolay; Kuznetsova, Maria; Rastaetter, Lutz; Raeder, Joachim; Toth, Gabor; Lyon, John; Merkin, Vyacheslav; Wiltberger, Michael
2017-04-01
In this study we investigate how well the three community-available global MHD models, supported by the Community Coordinated Modeling Center (CCMC NASA), reproduce the global magnetospheric dynamics, including the loading-unloading substorm cycle. We found that in terms of global magnetic flux transport CCMC models display systematically different response to idealized 2-hour north then 2-hour south IMF Bz variation. The LFM model shows a depressed return convection in the tail plasma sheet and high rate of magnetic flux loading into the lobes during the growth phase, as well as enhanced return convection and high unloading rate during the expansion phase, with the amount of loaded/unloaded magnetotail flux and the growth phase duration being the closest to their observed empirical values during isolated substorms. BATSRUS and Open GGCM models exhibit drastically different behavior. In the BATS-R-US model the plasma sheet convection shows a smooth transition to the steady convection regime after the IMF southward turning. In the Open GGCM a weak plasma sheet convection has comparable intensities during both the growth phase and the following slow unloading phase. Our study shows that different CCMC models under the same solar wind conditions (north to south IMF variation) produce essentially different solutions in terms of global magnetospheric convection.
Effects of auroral potential drops on plasma sheet dynamics
NASA Astrophysics Data System (ADS)
Xi, Sheng; Lotko, William; Zhang, Binzheng; Wiltberger, Michael; Lyon, John
2016-11-01
The reaction of the magnetosphere-ionosphere system to dynamic auroral potential drops is investigated using the Lyon-Fedder-Mobarry global model including, for the first time in a global simulation, the dissipative load of field-aligned potential drops in the low-altitude boundary condition. This extra load reduces the field-aligned current (j||) supplied by nightside reconnection dynamos. The system adapts by forcing the nightside X line closer to Earth, with a corresponding reduction in current lensing (j||/B = constant) at the ionosphere and additional contraction of the plasma sheet during substorm recovery and steady magnetospheric convection. For steady and moderate solar wind driving and with constant ionospheric conductance, the cross polar cap potential and hemispheric field-aligned current are lower by approximately the ratio of the peak field-aligned potential drop to the cross polar cap potential (10-15%) when potential drops are included. Hemispheric ionospheric Joule dissipation is less by 8%, while the area-integrated, average work done on the fluid by the reconnecting magnetotail field increases by 50% within |y| < 8 RE. Effects on the nightside plasma sheet include (1) an average X line 4 RE closer to Earth; (2) a 12% higher mean reconnection rate; and (3) dawn-dusk asymmetry in reconnection with a 17% higher rate in the premidnight sector.
Asymmetry of the Martian Current Sheet in a Multi-fluid MHD Model
NASA Astrophysics Data System (ADS)
Panoncillo, S. G.; Egan, H. L.; Dong, C.; Connerney, J. E. P.; Brain, D. A.; Jakosky, B. M.
2017-12-01
The solar wind carries interplanetary magnetic field (IMF) lines toward Mars, where they drape around the planet's conducting ionosphere, creating a current sheet behind the planet where the magnetic field has opposite polarity on either side. In its simplest form, the current sheet is often thought of as symmetric, extending behind the planet along the Mars-Sun line. Observations and model simulations, however, demonstrate that this idealized representation is only an approximation, and the actual scenario is much more complex. The current sheet can have 3D structure, move back and forth, and be situated dawnward or duskward of the Mars-Sun line. In this project, we utilized a library of global plasma model results for Mars consisting of a collection of multi-fluid MHD simulations where solar max/min, sub-solar longitude, and the orbital position of Mars are varied individually. The model includes Martian crustal fields, and was run for identical steady solar wind conditions. This library was created for the purpose of comparing model results to MAVEN data; we looked at the results of this model library to investigate current sheet asymmetries. By altering one variable at a time we were able to measure how these variables influence the location of the current sheet. We found that the current sheet is typically shifted toward the dusk side of the planet, and that modeled asymmetries are especially prevalent during solar min. Previous model studies that lack crustal fields have found that, for a Parker spiral IMF, the current sheet will shift dawnward, while our results typically show the opposite. This could expose certain limitations in the models used, or it could reveal an interaction between the solar wind and the plasma environment of Mars that has not yet been explored. MAVEN data may be compared to the model results to confirm the sense of the modeled asymmetry. These results help us to probe the physics controlling the Martian magnetotail and atmospheric escape from Mars.
Xie, Jingjin; Chen, Qiang; Suresh, Poornima; Roy, Subrata; White, James F.
2017-01-01
This work describes disposable plasma generators made from metallized paper. The fabricated plasma generators with layered and patterned sheets of paper provide a simple and flexible format for dielectric barrier discharge to create atmospheric plasma without an applied vacuum. The porosity of paper allows gas to permeate its bulk volume and fuel plasma, while plasma-induced forced convection cools the substrate. When electrically driven with oscillating peak-to-peak potentials of ±1 to ±10 kV, the paper-based devices produced both volume and surface plasmas capable of killing microbes. The plasma sanitizers deactivated greater than 99% of Saccharomyces cerevisiae and greater than 99.9% of Escherichia coli cells with 30 s of noncontact treatment. Characterization of plasma generated from the sanitizers revealed a detectable level of UV-C (1.9 nW⋅cm−2⋅nm−1), modest surface temperature (60 °C with 60 s of activation), and a high level of ozone (13 ppm with 60 s of activation). These results deliver insights into the mechanisms and suitability of paper-based substrates for active antimicrobial sanitization with scalable, flexible sheets. In addition, this work shows how paper-based generators are conformable to curved surfaces, appropriate for kirigami-like “stretchy” structures, compatible with user interfaces, and suitable for sanitization of microbes aerosolized onto a surface. In general, these disposable plasma generators represent progress toward biodegradable devices based on flexible renewable materials, which may impact the future design of protective garments, skin-like sensors for robots or prosthetics, and user interfaces in contaminated environments. PMID:28461476
Case study of small scale polytropic index in the central plasma sheet
NASA Astrophysics Data System (ADS)
Peng, XueXia; Cao, JinBin; Liu, WenLen; Ma, YuDuan; Lu, HaiYu; Yang, JunYing; Liu, LiuYuan; Liu, Xu; Wang, Jing; Wang, TieYan; Yu, Jiang
2015-11-01
This paper studies the effective polytropic index in the central plasma sheet (CPS) by using the method of Kartalev et al. (2006), which adopts the denoising technique of Haar wavelet to identify the homogeneous MHD Bernoulli integral (MBI) and has been frequently used to study the polytropic relation in the solar wind. We chose the quiet CPS crossing by Cluster C1 during the interval 08:51:00-09:19:00 UT on 03 August 2001. In the central plasma sheet, thermal pressure energy per unit mass is the most important part in MBI, and kinetic energy of fluid motion and electromagnetic energy per unit mass are less important. In the MBI, there are many peaks, which correspond to isothermal or near isothermal processes. The interval lengths of homogenous MBI regions are generally less than 1 min. The polytropic indexes are calculated by linearly fitting the data of lnp and lnn within a 16 s window, which is shifted forward by 8 s step length. Those polytropic indexes with |R|≥ 0.8 (R is the correlation coefficient between lnp and lnn) and p-value≤0.1 in the homogeneous regions are almost all in the range of [0, 1]. The mean and median effective polytropic indexes with high R and low p-value in homogeneous regions are 0.34 and 0.32 respectively, which are much different from the polytropic index obtained by traditional method (αtrad=-0.15). This result indicates that the CPS is not uniform even during quiet time and the blanket applications of polytropic law to plasma sheet may return misleading value of polytropic index. The polytropic indexes in homogeneous regions with a high correlation coefficient basically have good regression significance and are thus credible. These results are very important to understand the energy transport in magnetotail in the MHD frame.
Spatial Distribution and Semiannual Variation of Cold-Dense Plasma Sheet
NASA Astrophysics Data System (ADS)
Bai, Shichen; Shi, Quanqi; Tian, Anmin; Nowada, Motoharu; Degeling, Alexander W.; Zhou, Xu-Zhi; Zong, Qiu-Gang; Rae, I. Jonathan; Fu, Suiyan; Zhang, Hui; Pu, Zuyin; Fazakerly, Andrew N.
2018-01-01
The cold-dense plasma sheet (CDPS) plays an important role in the entry process of the solar wind plasma into the magnetosphere. Investigating the seasonal variation of CDPS occurrences will help us better understand the long-term variation of plasma exchange between the solar wind and magnetosphere, but any seasonal variation of CDPS occurrences has not yet been reported in the literature. In this paper, we investigate the seasonal variation of the occurrence rate of CDPS using Geotail data from 1996 to 2015 and find a semiannual variation of the CDPS occurrences. Given the higher probability of solar wind entry under stronger northward interplanetary magnetic field (IMF) conditions, 20 years of IMF data (1996-2015) are used to investigate the seasonal variation of IMF
Problems with mapping the auroral oval and magnetospheric substorms
NASA Astrophysics Data System (ADS)
Antonova, E. E.; Vorobjev, V. G.; Kirpichev, I. P.; Yagodkina, O. I.; Stepanova, M. V.
2015-10-01
Accurate mapping of the auroral oval into the equatorial plane is critical for the analysis of aurora and substorm dynamics. Comparison of ion pressure values measured at low altitudes by Defense Meteorological Satellite Program (DMSP) satellites during their crossings of the auroral oval, with plasma pressure values obtained at the equatorial plane from Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite measurements, indicates that the main part of the auroral oval maps into the equatorial plane at distances between 6 and 12 Earth radii. On the nightside, this region is generally considered to be a part of the plasma sheet. However, our studies suggest that this region could form part of the plasma ring surrounding the Earth. We discuss the possibility of using the results found here to explain the ring-like shape of the auroral oval, the location of the injection boundary inside the magnetosphere near the geostationary orbit, presence of quiet auroral arcs in the auroral oval despite the constantly high level of turbulence observed in the plasma sheet, and some features of the onset of substorm expansion.
Problems with mapping the auroral oval and magnetospheric substorms.
Antonova, E E; Vorobjev, V G; Kirpichev, I P; Yagodkina, O I; Stepanova, M V
Accurate mapping of the auroral oval into the equatorial plane is critical for the analysis of aurora and substorm dynamics. Comparison of ion pressure values measured at low altitudes by Defense Meteorological Satellite Program (DMSP) satellites during their crossings of the auroral oval, with plasma pressure values obtained at the equatorial plane from Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite measurements, indicates that the main part of the auroral oval maps into the equatorial plane at distances between 6 and 12 Earth radii. On the nightside, this region is generally considered to be a part of the plasma sheet. However, our studies suggest that this region could form part of the plasma ring surrounding the Earth. We discuss the possibility of using the results found here to explain the ring-like shape of the auroral oval, the location of the injection boundary inside the magnetosphere near the geostationary orbit, presence of quiet auroral arcs in the auroral oval despite the constantly high level of turbulence observed in the plasma sheet, and some features of the onset of substorm expansion.
Design of a Microwave Assisted Discharge Inductive Plasma Accelerator
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.
2010-01-01
The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.
Magnetospheric Multiscale Mission Observations of Magnetic Flux Ropes in the Earth's Plasma Sheet
NASA Astrophysics Data System (ADS)
Slavin, J. A.; Akhavan-Tafti, M.; Poh, G.; Le, G.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Gershman, D. J.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Burch, J. L.
2017-12-01
A major discovery by the Cluster mission and the previous generation of science missions is the presence of earthward and tailward moving magnetic flux ropes in the Earth's plasma sheet. However, the lack of high-time resolution plasma measurements severely limited progress concerning the formation and evolution of these reconnection generated structures. We use high-time resolution magnetic and electric field and plasma measurements from the Magnetospheric Multiscale mission's first tail season to investigate: 1) the distribution of flux rope diameters relative to the local ion and electron inertial lengths; 2) the internal force balance sustaining these structures; and 3) the magnetic connectivity of the flux ropes to the Earth and/or the interplanetary medium; 4) the specific entropy of earthward moving flux ropes and the possible effect of "buoyancy" on how deep they penetrate into the inner magnetosphere; and 5) evidence for coalescence of adjacent flux ropes and/or the division of existing flux ropes through the formation of secondary X-lines. The results of these initial analyses will be discussed in terms of their implications for reconnection-driven magnetospheric dynamics and substorms.
Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide
NASA Astrophysics Data System (ADS)
Hajipour, Mohammad Javad; Raheb, Jamshid; Akhavan, Omid; Arjmand, Sareh; Mashinchian, Omid; Rahman, Masoud; Abdolahad, Mohammad; Serpooshan, Vahid; Laurent, Sophie; Mahmoudi, Morteza
2015-05-01
The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the `personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different biological responses in the presence of coronas obtained from various types of diseases. GO sheets were incubated with plasma from human subjects with different diseases/conditions, including hypofibrinogenemia, blood cancer, thalassemia major, thalassemia minor, rheumatism, fauvism, hypercholesterolemia, diabetes, and pregnancy. Identical sheets coated with varying protein corona decorations exhibited significantly different cellular toxicity, apoptosis, and uptake, reactive oxygen species production, lipid peroxidation and nitrogen oxide levels. The results of this report will help researchers design efficient and safe, patient-specific nano biomaterials in a disease type-specific manner for clinical and biological applications.The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the `personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different biological responses in the presence of coronas obtained from various types of diseases. GO sheets were incubated with plasma from human subjects with different diseases/conditions, including hypofibrinogenemia, blood cancer, thalassemia major, thalassemia minor, rheumatism, fauvism, hypercholesterolemia, diabetes, and pregnancy. Identical sheets coated with varying protein corona decorations exhibited significantly different cellular toxicity, apoptosis, and uptake, reactive oxygen species production, lipid peroxidation and nitrogen oxide levels. The results of this report will help researchers design efficient and safe, patient-specific nano biomaterials in a disease type-specific manner for clinical and biological applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00520e
Pioneer 7 observations of plasma flow and field reversal regions in the distant geomagnetic tail
NASA Technical Reports Server (NTRS)
Walker, R. C.; Lazarus, A. J.; Villante, U.
1975-01-01
The present paper gives the results of an extensive analysis of plasma and magnetic-field data from Pioneer 7 taken in the geomagnetic tail approximately 1000 earth radii downstream from earth. The principal observations are: (1) measurable fluxes of protons in the tail, flowing away from earth, sometimes with a double-peaked velocity distribution; (2) field reversal regions in which the field changes from radial to antiradial by a vector rotation in the north-south plane; and (3) general characteristics of the tail similar to those observed near earth with good correlation between taillike magnetic fields and plasma.
Nearby Hot Stars May Change Our View of Distant Sources
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
As if it werent enough that quasars distant and bright nuclei of galaxies twinkle of their own accord due to internal processes, nature also provides another complication: these distant radio sources can also appear to twinkle because of intervening material between them and us. A new study has identified a possible source for the material getting in the way.Unexplained VariabilityA Spitzer infrared view of the Helix nebula, which contains ionized streamers of gas extending radially outward from the central star. [NASA/JPL-Caltech/Univ. of Ariz.]Distant quasars occasionally display extreme scintillation, twinkling with variability timescales shorter than a day. This intra-day variability is much greater than we can account for with standard models of the interstellar medium lying between the quasar and us. So what could cause this extreme scattering instead?The first clue to this mystery came from the discovery of strong variability in the radio source PKS 1322110. In setting up follow-up observations of this object, Mark Walker (Manly Astrophysics, Australia) and collaborators noticed that, in the plane of the sky, PKS 1322110 lies very near the bright star Spica. Could this be coincidence, or might this bright foreground star have something to do with the extreme scattering observed?Diagram explaining the source of the intra-day radio source variability as intervening filaments surrounding a hot star. [M. Walker/CSIRO/Manly Astrophysics]Swarms of ClumpsWalker and collaborators put forward a hypothesis: perhaps the ultraviolet photons of nearby hot stars ionize plasma around them, which in turn causes the extreme scattering of the distant background sources.As a model, the authors consider the Helix Nebula, in which a hot, evolved star is surrounded by cool globules of molecular hydrogen gas. The radiation from the star hits these molecular clumps, dragging them into long radial streamers and ionizing their outer skins.Though the molecular clumps in the Helix Nebula were thought to have formed only as the star evolved late into its lifetime, Walker and collaborators are now suggesting that all stars regardless of spectral type or evolutionary stage may be surrounded by swarms of tiny molecular clumps. Aroundstars that are hot enough, these clumps become the ionized plasma streamers that can cause interference with the light traveling to us from distant sources.Significant MassTo test this theory, Walker and collaborators explore observations of two distant radio quasars that have both exhibited intra-day variability over many years of observations. The team identified a hot A-type star near each of these two sources: J1819+3845 has Vega nearby, and PKS 1257326 has Alhakim.Locations of stars along the line of site to two distant quasars, J1819+3845 (top panel) and PKS 1257326 (bottom panel). Both have a nearby, hot star (blue markers) radially within 2 pc: Vega (z = 7.7 pc) and Alhakim (z = 18 pc), respectively. [Walker et al. 2017]By modeling the systems of the sources and stars, the authors show that the size, location, orientation, and numbers of plasma concentrations necessary to explain observations are all consistent with an environment similar to that of the Helix Nebula. Walker and collaborators find that the total mass in the molecular clumps surrounding the two stars would need to be comparable to the mass of the stars themselves.If this picture is correct, and if all stars are indeed surrounded by molecular clumps like these, then a substantial fraction of the mass of ourgalaxy could be contained in these clumps. Besides explaining distant quasar scintillation, this idea would therefore have a significant impact on our overall understanding of how mass in galaxies is distributed. More observations of twinkling quasars are the next step toward confirming this picture.CitationMark A. Walker et al 2017 ApJ 843 15. doi:10.3847/1538-4357/aa705c
Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets
Tilka, J. A.; Park, J.; Ahn, Y.; ...
2018-02-26
A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less
Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilka, J. A.; Park, J.; Ahn, Y.
A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less
Carrascal, Montserrat; Gay, Marina; Ovelleiro, David; Casas, Vanessa; Gelpí, Emilio; Abian, Joaquin
2010-02-05
Major plasma protein families play different roles in blood physiology and hemostasis and in immunodefense. Other proteins in plasma can be involved in signaling as chemical messengers or constitute biological markers of the status of distant tissues. In this respect, the plasma phosphoproteome holds potentially relevant information on the mechanisms modulating these processes through the regulation of protein activity. In this work we describe for the first time a collection of phosphopeptides identified in human plasma using immunoaffinity separation of the seven major serum protein families from other plasma proteins, SCX fractionation, and TiO(2) purification prior to LC-MS/MS analysis. One-hundred and twenty-seven phosphosites in 138 phosphopeptides mapping 70 phosphoproteins were identified with FDR < 1%. A high-confidence collection of phosphosites was obtained using a combined search with the OMSSA, SEQUEST, and Phenyx search engines.
Survey of EBW Mode-Conversion Characteristics for Various Boundary Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, H.; Maekawa, T.; Igami, H.
2005-09-26
A survey of linear mode-conversion characteristics between external transverse electromagnetic (TEM) waves and electron Bernstein waves (EBW) for various plasma and wave parameters has been presented. It is shown that if the wave propagation angle and polarization are adjusted appropriately for each individual case of the plasma parameters, efficient mode conversion occur for wide range of plasma parameters where the conventional 'XB' and 'OXB' scheme cannot cover. It is confirmed that the plasma parameters just at the upper hybrid resonance (UHR) layer strongly affect the mode conversion process and the influence of the plasma profiles distant from the UHR layermore » is not so much. The results of this survey is useful enough to examine wave injection/detection condition for efficient ECH/ECCD or measurement of emissive TEM waves for each individual experimental condition of overdense plasmas.« less
NASA Astrophysics Data System (ADS)
Kronberg, E. A.; Welling, D.; Kistler, L. M.; Mouikis, C.; Daly, P. W.; Grigorenko, E. E.; Klecker, B.; Dandouras, I.
2017-09-01
Magnetospheric plasma sheet ions drift toward the Earth and populate the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field at the surface, and this disturbance strongly affects the strength of a magnetic storm. The contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure in the near-Earth plasma sheet is not always considered. In this study, we evaluate the contribution of low-energy and energetic ions of different species to the total plasma pressure for the storm observed by the Cluster mission from 27 September until 3 October 2002. We show that the contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure is ≃76-98.6% in the ring current and ≃14-59% in the magnetotail. The main source of oxygen ions, responsible for ≃56% of the plasma pressure of the ring current, is located at distances earthward of XGSE ≃ -13.5 RE during the main phase of the storm. The contribution of the ring current particles agrees with the observed Dst index. We model the magnetic storm using the Space Weather Modeling Framework (SWMF). We assess the plasma pressure output in the ring current for two different ion outflow models in the SWMF through comparison with observations. Both models yield reasonable results. The model which produces the most heavy ions agrees best with the observations. However, the data suggest that there is still potential for refinement in the simulations.
The double layers in the plasma sheet boundary layer during magnetic reconnection
NASA Astrophysics Data System (ADS)
Guo, J.; Yu, B.
2014-11-01
We studied the evolutions of double layers which appear after the magnetic reconnection through two-dimensional electromagnetic particle-in-cell simulation. The simulation results show that the double layers are formed in the plasma sheet boundary layer after magnetic reconnection. At first, the double layers which have unipolar structures are formed. And then the double layers turn into bipolar structures, which will couple with another new weak bipolar structure. Thus a new double layer or tripolar structure comes into being. The double layers found in our work are about several ten Debye lengths, which accords with the observation results. It is suggested that the electron beam formed during the magnetic reconnection is responsible for the production of the double layers.
Four large-scale field-aligned current systmes in the dayside high-latitude region
NASA Technical Reports Server (NTRS)
Ohtani, S.; Potemra, T. A.; Newell, P.T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Blomberg, L. G.; Elphinstone, R. D.; Murphree, J. S.; Yamauchi, M.
1995-01-01
A system of four current sheets of large-scale field-aligned currents (FACs) was discovered in the data set of simultaneous Viking and Defense Meteorological Satellire Program-F7 (DMSP-F7) crossing of the dayside high-latitude region. This paper reports four examples of this system that were observed in the prenoon sector. The flow polarities of FACs are upward, downward, upward, and downward, from equatorward to poleward. The lowest-latitude upward current is flowing mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPS) at its poleward edge, andis interpreted as a region 2 current. The pair of downward and upward FACs in the middle of te structure are collocated with structured electron precipitation. The precipitation of high-energy (greater than 1 keV) electrons is more intense in the lower-latitude downward current sheet. The highest-latitude downward flowing current sheet is located in a weak, low-energy particle precipitation region, suggesting that this current is flowing on open field lines. Simulaneous observations in the postnoon local time sector reveal the standard three-sheet structure of FACs, sometimes described as region 2, region 1, and mantle (referred to the midday region O) currents. A high correlation was found between the occurrence of the four FAC sheet structure and negative interplanetary magnetic field (IMF) B(sub Y). We discuss the FAC structurein terms of three types of convection cells: the merging, viscous, andlobe cells. During strongly negative IMF B(sub Y), two convection reversals exist in the prenoon sector; one is inside the viscous cell, and the other is between the viscous cell and the lobe cell. This structure of convection flow is supported by the Viking electric field and auroral UV image data. Based on the convection pattern, the four FAC sheet structure is interpreted as the latitude overlap of midday and morning FAC systems. We suggest that the for-current sheet structure is common in a certain prenoon localtime sector during strongly negative IMF B(sub Y).
Intrinsic Dawn-Dusk Asymmetry of Magnetotail Thin Current Sheet
NASA Astrophysics Data System (ADS)
Lu, S.; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A.
2017-12-01
Magnetic reconnection and its related phenomena (flux ropes, dipolarization fronts, bursty bulk flows, particle injections, etc.) occur more frequently on the duskside in the Earth's magnetotail. Magnetohydrodynamic simulations attributed the asymmetry to the nonuniform ionospheric conductance through global scale magnetosphere-ionosphere interaction. Hybrid simulations, on the other hand, found an alternative responsible mechanism: the Hall effect in the magnetotail thin current sheet, but left an open question: What is the physical origin of the asymmetric Hall effect? The answer could be the temperature difference on the two sides and/or the dawn-dusk transportation of magnetic flux and plasmas. In this work, we use 3-D particle-in-cell simulations to further explore the magnetotail dawn-dusk asymmetry. The magnetotail equilibrium contains a dipole magnetic field and a current sheet region. The simulation is driven by a symmetric and localized (in the y direction) high-latitude electric field, under which the current sheet thins with a decrease of Bz. During the same time, a dawn-dusk asymmetry is formed intrinsically in the thin current sheet, with a smaller Bz, a stronger Hall effect (indicated by the Hall electric field Ez), and a stronger cross-tail current jy on the duskside. The deep origin of the asymmetry is also shown to be dominated by the dawnward E×B drift of magnetic flux and plasmas. A direct consequence of this intrinsic dawn-dusk asymmetry is that it favors magnetotail reconnection and related phenomena to preferentially occur on the duskside.
Reconnection at three dimensional magnetic null points: Effect of current sheet asymmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyper, P. F.; Jain, Rekha
2013-05-15
Asymmetric current sheets are likely to be prevalent in both astrophysical and laboratory plasmas with complex three dimensional (3D) magnetic topologies. This work presents kinematic analytical models for spine and fan reconnection at a radially symmetric 3D null (i.e., a null where the eigenvalues associated with the fan plane are equal) with asymmetric current sheets. Asymmetric fan reconnection is characterized by an asymmetric reconnection of flux past each spine line and a bulk flow of plasma across the null point. In contrast, asymmetric spine reconnection is characterized by the reconnection of an equal quantity of flux across the fan planemore » in both directions. The higher modes of spine reconnection also include localized wedges of vortical flux transport in each half of the fan. In this situation, two definitions for reconnection rate become appropriate: a local reconnection rate quantifying how much flux is genuinely reconnected across the fan plane and a global rate associated with the net flux driven across each semi-plane. Through a scaling analysis, it is shown that when the ohmic dissipation in the layer is assumed to be constant, the increase in the local rate bleeds from the global rate as the sheet deformation is increased. Both models suggest that asymmetry in the current sheet dimensions will have a profound effect on the reconnection rate and manner of flux transport in reconnection involving 3D nulls.« less
biologically relevant effects of dipentyl phthalate
metadata sheet, data sheet for each table and figure in the published manuscriptThis dataset is associated with the following publication:Gray , E., J. Furr , K. Tatum-Gibbs, C. Lambright , H. Sampson, B. Hannas, V. Wilson , A. Hotchkiss , and P. Foster. Establishing the Biological Relevance of Dipentyl Phthalate Reductions in Fetal Rat Testosterone Production and Plasma and Testis Testosterone Levels. TOXICOLOGICAL SCIENCES. Society of Toxicology, 149(1): 178-91, (2016).
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Steinolfson, R. S.
1993-01-01
2D electromagnetic particle simulations are used to investigate the dynamics of the tail during development of substorms under the influence of the pressure in the magnetospheric boundary layer and the dawn-to-dusk electric field. It is shown that pressure pulses result in thinning of the tail current sheet as the magnetic field becomes pinched near the region where the pressure pulse is applied. The pinching leads to the tailward flow of the current sheet plasma and the eventual formation and injection of a plasmoid. Surges in the dawn-to-dusk electric field cause plasma on the flanks to convect into the center of the current sheet, thereby thinning the current sheet. The pressure in the magnetospheric boundary laser is coupled to the dawn-to-dusk electric field through the conductivity of the tail. Changes in the predicted evolution of the magnetosphere during substorms due to changes in the resistivity are investigated under the assumption that MHD theory provides a suitable representation of the global or large-scale evolution of the magnetotail to changes in the solar wind and to reconnection at the dayside magnetopause. It is shown that the overall evolution of the magnetosphere is about the same for three different resistivity distributions with plasmoid formation and ejection in each case.
Shin, Soojeong; Shin, Jeong Eun; Yoo, Young Je
2013-01-01
Although transplantation of microencapsulated islets has been proposed as a therapy for the treatment of diabetes mellitus, limited retrievability of the cells has impeded its medical usage. To achieve retrieval of microencapsulated islets, capsules were attached to polydimethylsiloxane (PDMS) with a biocompatible adhesive. Because the hydrophobic nature of the PDMS surface prevents attachment, surface modification is essential. Alginate microcapsules were attached to modified PDMS sheets, and the mechanical stability of the resulting constructs was determined. Acrylic acid (AA) and acrylamide (AM) mixtures were grafted on the surfaces of PDMS sheets using a two-step oxygen plasma treatment (TSPT). TSPT-PDMS was characterized according to water contact angle and zeta-potential measurements. The contact angle was altered by changing the ratio of AM to AA to generate hydrophilic surface. Evaluation of the surface charge at pH 2, 7, and 12 confirmed the presence of polar groups on the modified surface. Microcapsules were attached to TSPT-PDMS using Histoacryl® and shown to be in a monolayered and half-exposed state. The shear stress resistance of alginate capsules attached to the PDMS sheet indicates the possibility of transplantation of encapsulated cells without scattering in vivo. This method is applicable to retrieve microencapsulated porcine islets when required. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Current Sheet Properties and Dynamics During Sympathetic Breakout Eruptions
NASA Astrophysics Data System (ADS)
Lynch, B. J.; Edmondson, J. K.
2013-12-01
We present the continued analysis of the high-resolution 2.5D MHD simulations of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the generation of X- and O-type null points during the current sheet tearing and track the magnetic island formation and evolution during periods of reconnection. The magnetic breakout eruption scenario forms an overlying 'breakout' current sheet that evolves slowly and removes restraining flux from above the sheared field core that will eventually become the center of the erupting flux rope-like structure. The runaway expansion from the expansion-breakout reconnection positive feedback enables the formation of the second, vertical/radial current sheet underneath the rising sheared field core as in the standard CHSKP eruptive flare scenario. We will examine the flux transfer rates through the breakout and flare current sheets and compare the properties of the field and plasma inflows into the current sheets and the reconnection jet outflows into the flare loops and flux rope ejecta.
On the Acceleration and Anisotropy of Ions Within Magnetotail Dipolarizing Flux Bundles
NASA Astrophysics Data System (ADS)
Zhou, Xu-Zhi; Runov, Andrei; Angelopoulos, Vassilis; Artemyev, Anton V.; Birn, Joachim
2018-01-01
Dipolarizing flux bundles (DFBs), earthward propagating structures with enhanced northward magnetic field Bz, are usually believed to carry a distinctly different plasma population from that in the ambient magnetotail plasma sheet. The ion distribution functions within the DFB, however, have been recently found to be largely controlled by the ion adiabaticity parameter κ in the ambient plasma sheet outside the DFB. According to these observations, the ambient κ values of 2-3 usually correspond to a strong perpendicular anisotropy of suprathermal ions within the DFB, whereas for lower κ values the DFB ions become more isotropic. Here we utilize a simple, test particle model to explore the nature of the anisotropy and its dependence on the ambient κ values. We find that the anisotropy originates from successive ion reflections and reentries to the DFB, during which the ions are consecutively accelerated in the perpendicular direction by the DFB-associated electric field. This consecutive acceleration may be interrupted, however, when magnetic field lines are highly curved in the ambient plasma sheet. In this case, the ion trajectories become stochastic outside the DFB, which makes the reflected ions less likely to return to the DFB for another cycle of acceleration; as a consequence, the perpendicular ion anisotropy does not appear. Given that the DFB ions are a free energy source for instabilities when they are injected toward Earth, our simple model (that reproduces most observational features on the anisotropic DFB ion distributions) may shed new lights on the coupling process between magnetotail and inner magnetosphere.
Multiscale Currents Observed by MMS in the Flow Braking Region
NASA Astrophysics Data System (ADS)
Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.
2018-02-01
We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.
NASA Astrophysics Data System (ADS)
Moore, T. W.; Nykyri, K.; Dimmock, A. P.
2017-11-01
In the Earth's magnetosphere, the magnetotail plasma sheet ions are much hotter than in the shocked solar wind. On the dawn sector, the cold-component ions are more abundant and hotter by 30-40% when compared to the dusk sector. Recent statistical studies of the flank magnetopause and magnetosheath have shown that the level of temperature asymmetry of the magnetosheath is unable to account for this, so additional physical mechanisms must be at play, either at the magnetopause or plasma sheet that contributes to this asymmetry. In this study, we perform a statistical analysis on the ion-scale wave properties in the three main plasma regimes common to flank magnetopause boundary crossings when the boundary is unstable to Kelvin-Helmholtz instability (KHI): hot and tenuous magnetospheric, cold and dense magnetosheath, and mixed (Hasegawa et al., 2004). These statistics of ion-scale wave properties are compared to observations of fast magnetosonic wave modes that have recently been linked to Kelvin-Helmholtz (KH) vortex centered ion heating (Moore et al., 2016). The statistical analysis shows that during KH events there is enhanced nonadiabatic heating calculated during ion scale wave intervals when compared to non-KH events. This suggests that during KH events there is more free energy for ion-scale wave generation, which in turn can heat ions more effectively when compared to cases when KH waves are absent. This may contribute to the dawn favored temperature asymmetry of the plasma sheet; recent studies suggest KH waves favor the dawn flank during Parker-Spiral interplanetary magnetic field.
Large-current-controllable carbon nanotube field-effect transistor in electrolyte solution
NASA Astrophysics Data System (ADS)
Myodo, Miho; Inaba, Masafumi; Ohara, Kazuyoshi; Kato, Ryogo; Kobayashi, Mikinori; Hirano, Yu; Suzuki, Kazuma; Kawarada, Hiroshi
2015-05-01
Large-current-controllable carbon nanotube field-effect transistors (CNT-FETs) were fabricated with mm-long CNT sheets. The sheets, synthesized by remote-plasma-enhanced CVD, contained both single- and double-walled CNTs. Titanium was deposited on the sheet as source and drain electrodes, and an electrolyte solution was used as a gate electrode (solution gate) to apply a gate voltage to the CNTs through electric double layers formed around the CNTs. The drain current came to be well modulated as electrolyte solution penetrated into the sheets, and one of the solution gate CNT-FETs was able to control a large current of over 2.5 A. In addition, we determined the transconductance parameter per tube and compared it with values for other CNT-FETs. The potential of CNT sheets for applications requiring the control of large current is exhibited in this study.
Development of plasma assisted thermal vapor deposition technique for high-quality thin film.
Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae
2016-12-01
The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10 -3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq -1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.
Development of plasma assisted thermal vapor deposition technique for high-quality thin film
NASA Astrophysics Data System (ADS)
Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae
2016-12-01
The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10-3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq-1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.
NASA Astrophysics Data System (ADS)
Kafle, Madhav; Kapadi, Ramesh K.; Joshi, Leela Pradhan; Rajbhandari, Armila; Subedi, Deepak P.; Gyawali, Gobinda; Lee, Soo W.; Adhikari, Rajendra; Kafle, Bhim P.
2017-07-01
The dependence of the structural, optical and electrical properties of the FTO thin films on the film thickness (276 nm - 546 nm), calcination environment, and low temperature plasma treatment were examined. The FTO thin films, prepared by spray pyrolysis, were calcinated under air followed by either further heat treatment under N2 gas or treatment in low temperature atmospheric plasma. The samples before and after calcination under N2, and plasma treatment will be represented by Sair, SN2 and SPl, respectively, hereafter. The thin films were characterized by measuring the XRD spectra, SEM images, optical transmittance and reflectance, and sheet resistance of the films before and after calcination in N2 environment or plasma treatment. The presence of sharp and narrow multiple peaks in XRD spectra hint us that the films were highly crystalline (polycrystalline). The samples Sair with the thickness of 471 nm showed as high as 92 % transmittance in the visible range. Moreover, from the tauc plot, the optical bandgap Eg values of the Sair found to be noticeably lower than that of the samples SN2. Very surprisingly, the electrical sheet resistance (Rsh) found to decrease following the trend as Rshair > RshN2 > RshPl. The samples exposed to plasma found to possess the lowest RshPl (for film with thickness 546 nm, the RshPl was 17 Ω /sq.).
Dawn-dusk asymmetries in rotating magnetospheres: Lessons from modeling Saturn
NASA Astrophysics Data System (ADS)
Jia, Xianzhe; Kivelson, Margaret G.
2016-02-01
Spacecraft measurements reveal perplexing dawn-dusk asymmetries of field and plasma properties in the magnetospheres of Saturn and Jupiter. Here we describe a previously unrecognized source of dawn-dusk asymmetry in a rapidly rotating magnetosphere. We analyze two magnetohydrodynamic simulations, focusing on how flows along and across the field vary with local time in Saturn's dayside magnetosphere. As plasma rotates from dawn to noon on a dipolarizing flux tube, it flows away from the equator along the flux tube at roughly half of the sound speed (Cs), the maximum speed at which a bulk plasma can flow along a flux tube into a lower pressure region. As plasma rotates from noon to dusk on a stretching flux tube, the field-aligned component of its centripetal acceleration decreases and it flows back toward the equator at speeds typically smaller than 1/2 Cs. Correspondingly, the plasma sheet remains far thicker and the field less stretched in the afternoon than in the morning. Different radial force balance in the morning and afternoon sectors produce asymmetry in the plasma sheet thickness and a net dusk-to-dawn flow inside of L = 15 or equivalently, a large-scale electric field (E) oriented from postnoon to premidnight, as reported from observations. Morning-afternoon asymmetry analogous to that found at Saturn has been observed at Jupiter, and a noon-midnight component of E cannot be ruled out.
NASA Technical Reports Server (NTRS)
Sato, T.; Walker, R. J.; Ashour-Abdalla, M.
1984-01-01
The energy conversion processes occurring in three-dimensional driven reconnection is analyzed. In particular, the energy conversion processes during localized reconnection in a taillike magnetic configuration are studied. It is found that three-dimensional driven reconnection is a powerful energy converter which transforms magnetic energy into plasma bulk flow and thermal energy. Three-dimensional driven reconnection is an even more powerful energy converter than two-dimensional reconnection, because in the three-dimensional case, plasmas were drawn into the reconnection region from the sides as well as from the top and bottom. Field-aligned currents are generated by three-dimensional driven reconnection. The physical mechanism responsible for these currents which flow from the tail toward the ionosphere on the dawnside of the reconnection region and from the ionosphere toward the tail on the duskside is identified. The field-aligned currents form as the neutral sheet current is diverted through the slow shocks which form on the outer edge of the reconnected field lines (outer edge of the plasma sheet).
NASA Technical Reports Server (NTRS)
Huba, J. D.; Chen, J.; Anderson, R. R.
1992-01-01
Attention is given to a mechanism to generate a broad spectrum of electrostatic turbulence in the quiet time central plasma sheet (CPS) plasma. It is shown theoretically that multiple-ring ion distributions can generate short-wavelength (less than about 1), electrostatic turbulence with frequencies less than about kVj, where Vj is the velocity of the jth ring. On the basis of a set of parameters from measurements made in the CPS, it is found that electrostatic turbulence can be generated with wavenumbers in the range of 0.02 and 1.0, with real frequencies in the range of 0 and 10, and with linear growth rates greater than 0.01 over a broad range of angles relative to the magnetic field (5-90 deg). These theoretical results are compared with wave data from ISEE 1 using an ion distribution function exhibiting multiple-ring structures observed at the same time. The theoretical results in the linear regime are found to be consistent with the wave data.
NASA Astrophysics Data System (ADS)
Keika, K.; Kistler, L. M.; Brandt, P. C.
2014-12-01
In-situ observations and modeling work have confirmed that singly-charged oxygen ions, O+, which are of Earth's ionospheric origin, are heated/accelerated up to >100 keV in the magnetosphere. The energetic O+ population makes a significant contribution to the plasma pressure in the Earth's inner magnetosphere during magnetic storms, although under quiet conditions H+ dominates the plasma pressure. The pressure enhancements, which we term energization, are caused by adiabatic heating through earthward transport of source population in the plasma sheet, local acceleration in the inner magnetosphere and near-Earth plasma sheet, and enhanced ion supply from the topside ionosphere. The key issues regarding stronger O+ energization than H+ are non-adiabatic local acceleration, responsible for increase in O+ temperature, and more significant O+ supply than H+, responsible for increase in O+ density. Although several acceleration mechanisms and O+ supply processes have been proposed, it remains an open question what mechanism(s)/process(es) play the dominant role in stronger O+ energization. In this paper we summarize important spacecraft observations including those from Van Allen Probes, introduces the proposed mechanisms/processes that generate O+-rich energetic plasma population, and outlines possible scenarios of O+ pressure abundance in the Earth's inner magnetosphere.
Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations
Makwana, Kirit; Li, Hui; Guo, Fan; ...
2017-05-30
Here, we simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope betweenmore » $${k}_{\\perp }^{-1.3}$$ and $${k}_{\\perp }^{-1.1}$$, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. By heating the parallel E∥ centerdot J∥ term dominates the perpendicular E⊥ centerdot J⊥ term. Regions of strong E∥ centerdot J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.« less
Krager, Kimberly J.; Sarkar, Mitul; Twait, Erik C.; Lill, Nancy L.; Koland, John G.
2012-01-01
The submicroscopic spatial organization of cell surface receptors and plasma membrane signaling molecules is readily characterized by electron microscopy (EM) via immunogold labeling of plasma membrane sheets. Although various signaling molecules have been seen to segregate within plasma membrane microdomains, the biochemical identity of these microdomains and the factors affecting their formation are largely unknown. Lipid rafts are envisioned as submicron membrane subdomains of liquid ordered structure with differing lipid and protein constituents that define their specific varieties. To facilitate EM investigation of inner leaflet lipid rafts and the localization of membrane proteins therein, a unique genetically encoded reporter with the dually acylated raft-targeting motif of the Lck kinase was developed. This reporter, designated Lck-BAP-GFP, incorporates green fluorescent protein (GFP) and biotin acceptor peptide (BAP) modules, with the latter allowing its single-step labeling with streptavidin-gold. Lck-BAP-GFP was metabolically biotinylated in mammalian cells, distributed into low-density detergent-resistant membrane fractions, and was readily detected with avidin-based reagents. In EM images of plasma membrane sheets, the streptavidin-gold-labeled reporter was clustered in 20–50 nm microdomains, presumably representative of inner leaflet lipid rafts. The utility of the reporter was demonstrated in an investigation of the potential lipid raft localization of the epidermal growth factor receptor. PMID:22822037
Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makwana, Kirit; Li, Hui; Guo, Fan
Here, we simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope betweenmore » $${k}_{\\perp }^{-1.3}$$ and $${k}_{\\perp }^{-1.1}$$, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. By heating the parallel E∥ centerdot J∥ term dominates the perpendicular E⊥ centerdot J⊥ term. Regions of strong E∥ centerdot J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shou, Y.; Combi, M.; Gombosi, T.
2015-08-20
On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006more » P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses.« less
NASA Astrophysics Data System (ADS)
Sergis, N.
2012-12-01
Saturn orbits the Sun with a period of nearly 29.5 years and has an obliquity of 26.73°. As a result, Saturn presents seasonal variations similar to Earth's, but with much longer seasons, as the tilt between the planet's spin axis and the solar wind vary (approximately sinusoidally) with time between solstices. Saturn was close to its equinox (tilt below 8.1°) during the Pioneer 11 and Voyager 1 and 2 flybys that took place between September 1979 and August 1981, so any seasonal effects would have been relatively hard to see in the limited data from these missions. More than 2 decades later, on July 4, 2004, Cassini began orbiting Saturn, returning a variety of in situ and remote measurements. During the last 8 years, Cassini covered a large part of the Saturnian system and offered the opportunity of sampling the planetary magnetosphere not just at different seasons, but also at seasonal phases that are symmetric to the Saturnian equinox (August 2009). In this talk, we focus on the seasonal effects seen in the magnetosphere of Saturn as the angle between the solar wind flow and the Saturn-Sun direction changes from +23.7° (northern hemisphere winter) at the arrival of Cassini, to -14.9° (northern hemisphere summer) on July 2012. Particle and magnetic field data taken from a extensive set of equatorial and high latitude orbits of Cassini, at various distances and local times, show that: (a) the plasma sheet of Saturn has the form of a magnetodisk, with an energy-dependent vertical structure, being thicker by a factor of ~2 in the energetic particle range than in the electron plasma, and (b) it exhibits intense dynamical behavior, evident in in-situ particle measurements but also in energetic neutral atom (ENA) emissions. The study of the pre-equinox high latitude orbits revealed that the night side plasma sheet was tilted northward beyond a radial distance of ~15 Rs (1Rs=60,258 km). As equinox approached, Cassini observed a clear decrease in the tilt of the planetary plasma sheet, which was progressively becoming aligned to the solar wind direction, while temperature, pressure and number density remained essentially unaffected by the seasonal change. Saturn's magnetospheric tilt is not seen only in the tail, but is also observable on the dayside (unlike the Jovian and the terrestrial magnetosphere), at least for the thermal plasma and the magnetic field, so that the magnetodisk adopts the shape of a bowl or basin, when observed on either side of the equinox. Moreover, magnetic field and particle data have shown that the plasma sheet oscillates normal to the rotational plane with an amplitude that is generally comparable to or larger than its thickness and a period very close to that of the planetary sidereal rotation (~10.6 hr). The shape, the seasonal changes and the short period motion (flapping) of the plasma sheet have now been successfully reproduced by the models of Arridge et al. 2008 and 2011. The anticipated orbits in 2013 and 2014 will hopefully provide a more complete seasonal overview, with available data from half a Saturnian year.
NASA Technical Reports Server (NTRS)
Slavin, James A.; Boardsen, S. A.; Sarantos, M.; Acuna, M. H.; Anderson, B. J.; Barabash, S.; Benna, M.; Fraenz, M.; Gloeckler, G.; Gold, R. E.;
2008-01-01
At 23:08 UT on 5 June 2007 the MESSENGER spacecraft reached its closest approach altitude (338 km) during its second flyby of Venus en route to its 2011 orbit insertion at Mercury. Whereas no measurements were collected during MESSENGER'S first Venus flyby in October 2006, the Magnetometer (MAG) and the Energetic Particle and Plasma Spectrometer (EPPS) operated successfully throughout this second encounter. Venus provides the solar system's best example to date of a solar wind - ionosphere planetary interaction. We present MESSENGER observations of the near-tail of Venus with emphasis on determining the time scales for magnetic flux transport, the structure of the cross-tail current sheet at very low altitudes (approx. 300 to 1000 km), and the nature and origin of a magnetic flux rope observed in the current sheet. The availability of the simultaneous Venus Express upstream measurements provides a unique opportunity to examine the influence of solar wind plasma and interplanetary magnetic field conditions on this planet's solar wind interaction at solar minimum.
Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets
NASA Astrophysics Data System (ADS)
Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo
2017-11-01
The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.
Numerical study of the current sheet and PSBL in a magnetotail model
NASA Technical Reports Server (NTRS)
Doxas, I.; Horton, W.; Sandusky, K.; Tajima, T.; Steinolfson, R.
1989-01-01
The current sheet and plasma sheet boundary layer (PSBL) in a magnetotail model are discussed. A test particle code is used to study the response of ensembles of particles to a two-dimensional, time-dependent model of the geomagnetic tail, and test the proposition (Coroniti, 1985a, b; Buchner and Zelenyi, 1986; Chen and Palmadesso, 1986; Martin, 1986) that the stochasticity of the particle orbits in these fields is an important part of the physical mechanism for magnetospheric substorms. The realistic results obtained for the fluid moments of the particle distribution with this simple model, and their insensitivity to initial conditions, is consistent with this hypothesis.
Surface Dielectric Barrier Discharge Jet for Skin Disinfection
NASA Astrophysics Data System (ADS)
Creyghton, Yves; Meijer, Rogier; Verweij, Paul; van der Zanden, Frank; Leenders, Paul
A consortium consisting of the research institute TNO, the medical university and hospital St Radboud and two industrial enterprises is working on a non-thermal plasma treatment method for hand disinfection. The group is seeking for cooperation, in particular in the field of validation methods and potential standardization for plasma based disinfection procedures. The present paper describes technical progress in plasma source development together with initial microbiological data. Particular properties of the sheet shaped plasma volume are the possibility of treating large irregular surfaces in a short period of time, effective plasma produced species transfer to the surface together with high controllability of the nature of plasma species by means of temperature conditioning.
A small-scale plasmoid formed during the May 13, 1985, AMPTE magnetotail barium release
NASA Technical Reports Server (NTRS)
Baker, D. N.; Fritz, T. A.; Bernhardt, P. A.
1989-01-01
Plasmoids are closed magnetic-loop structures with entrained hot plasma which are inferred to occur on large spatial scales in space plasma systems. A model is proposed here to explain the brightening and rapid tailward movement of the barium cloud released by the AMPTE IRM spacecraft on May 13, 1985. The model suggests that a small-scale plasmoid was formed due to a predicted development of heavy-ion-induced tearing in the thinned near-tail plasma sheet. Thus, a plasmoid may actually have been imaged due to the emissions of the entrained plasma ions within the plasma bubble.
Formation of current singularity in a topologically constrained plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yao; Huang, Yi-Min; Qin, Hong
2016-02-01
Recently a variational integrator for ideal magnetohydrodynamics in Lagrangian labeling has been developed. Its built-in frozen-in equation makes it optimal for studying current sheet formation. We use this scheme to study the Hahm-Kulsrud-Taylor problem, which considers the response of a 2D plasma magnetized by a sheared field under sinusoidal boundary forcing. We obtain an equilibrium solution that preserves the magnetic topology of the initial field exactly, with a fluid mapping that is non-differentiable. Unlike previous studies that examine the current density output, we identify a singular current sheet from the fluid mapping. These results are benchmarked with a constrained Grad-Shafranovmore » solver. The same signature of current singularity can be found in other cases with more complex magnetic topologies.« less
Magnetic field and particle pressure in the plasma sheet of Jupiter
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Maclennan, C. G.; Broughton, J. N.; Venkatesan, D.; Lepping, R. P.
1987-01-01
The results of an analysis of the energetic particle and magnetic field data acquired by the Voyager 2 spacecraft at distances of about 40-70 Jupiter radii on the nightside of the planet are reported. As in a previous study of similar data at distances of greater than about 80 Jupiter radii, the energy densities of ions (primarily protons) is found to be sufficient to provide the diamagnetic depressions measured in the magnetic field intensity as the spacecraft made successive encounters with the nightside plasma sheet. There is some evidence that the percent contribution of the protons to the energy balance decreases with increasing distance from the planet over this radial interval, although this conclusion is dependent upon the assumption that the proton and heavier ion (oxygen) energy spectra are similar.
NASA Astrophysics Data System (ADS)
Kozyra, J. U.; Liemohn, M. W.; Clauer, C. R.; Ridley, A. J.; Thomsen, M. F.; Borovsky, J. E.; Roeder, J. L.; Jordanova, V. K.; Gonzalez, W. D.
2002-08-01
The 4-6 June 1991 magnetic storm, which occurred during solar maximum conditions, is analyzed to investigate two observed features of magnetic storms that are not completely understood: (1) the mass-dependent decay of the ring current during the early recovery phase and (2) the role of preconditioning in multistep ring current development. A kinetic ring current drift-loss model, driven by dynamic fluxes at the nightside outer boundary, was used to simulate this storm interval. A strong partial ring current developed and persisted throughout the main and early recovery phases. The majority of ions in the partial ring current make one pass through the inner magnetosphere on open drift paths before encountering the dayside magnetopause. The ring current exhibited a three-phase decay in this storm. A short interval of charge-exchange loss constituted the first phase of the decay followed by a classical two-phase decay characterized by an abrupt transition between two very different decay timescales. The short interval dominated by charge-exchange loss occurred because an abrupt northward turning of the interplanetary magnetic field (IMF) trapped ring current ions on closed trajectories, and turned-off sources and ``flow-out'' losses. If this had been the end of the solar wind disturbance, decay timescales would have gradually lengthened as charge exchange preferentially removed the short-lived species; a distinctive two-phase decay would not have resulted. However, the IMF turned weakly southward, drift paths became open, and a standard two-phase decay ensued as the IMF rotated slowly northward again. As has been shown before, a two-phase decay is produced as open drift paths are converted to closed in a weakening convection electric field, driving a transition from the fast flow-out losses associated with the partial ring current to the slower charge-exchange losses associated with the trapped ring current. The open drift path geometry during the main phase and during phase 1 of the two-phase decay has important consequences for the evolution of ring current composition and for preconditioning issues. In this particular storm, ring current composition changes measured by the Combined Release and Radiation Effects Satellite (CRRES) during the main and recovery phase of the storm resulted largely from composition changes in the plasma sheet transmitted into the inner magnetosphere along open drift paths as the magnetic activity declined. Possible preconditioning elements were investigated during the multistep development of this storm, which was driven by the sequential arrival of three southward IMF Bz intervals of increasing peak strength. In each case, previous intensifications (preexisting ring currents) were swept out of the magnetosphere by the enhanced convection associated with the latest intensification and did not act as a significant preconditioning element. However, plasma sheet characteristics varied significantly between subsequent intensifications, altering the response of the magnetosphere to the sequential solar wind drivers. A denser plasma sheet (ring current source population) appeared during the second intensification, compensating for the weaker IMF Bz at this time and producing a minimum pressure-corrected Dst* value comparable to the third intensification (driven by stronger IMF Bz but a lower density plasma sheet source). The controlling influence of the plasma sheet dynamics on the ring current dynamics and its role in altering the inner magnetospheric response to solar wind drivers during magnetic storms adds a sense of urgency to understanding what processes produce time-dependent responses in the plasma sheet density, composition, and temperature.
Low-temperature graphene synthesis using microwave plasma CVD
NASA Astrophysics Data System (ADS)
Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka
2013-02-01
The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 105 Ω/sq.
NASA Astrophysics Data System (ADS)
Kimura, T.; Yoshioka, K.; Tsuchiya, F.; Hiraki, Y.; Tao, C.; Murakami, G.; Yamazaki, A.; Fujimoto, M.; Badman, S. V.; Delamere, P. A.; Bagenal, F.
2016-12-01
Plasma production and transfer processes in the planetary and stellar magnetospheres are essential for understanding the space environments around the celestial bodies. It is hypothesized that the mass of plasma loaded from Io's volcano to Jupiter's rotating magnetosphere is recurrently ejected as blobs from the distant tail region of the magnetosphere. The plasma ejections are possibly triggered by the magnetic reconnections, which are followed by the particle energization, bursty planetward plasma flow, and resultant auroral emissions. They are referred to as the 'energetic events'. However, there has been no evidence that the plasma mass loading actually causes the energetic events because of lack of the simultaneous observation of them. This study presents that the recurrent transient auroras, which are possibly representative for the energetic events, are closely associated with the mass loading. Continuous monitoring of the aurora and Io plasma torus indicates onset of the recurrent auroras when accumulation of the loaded plasma mass reaches the canonical total mass of the magnetosphere. This onset condition implies that the fully filled magnetosphere overflows the plasma mass accompanying the energetic events.
Inertial Currents in Isotropic Plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1993-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Laboratory-Model Integrated-System FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K.A.; Best, S.; Miller, R.; Rose, M.F.; Owens, T.
2008-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster [1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In a previous paper [3], the authors presented a basic design for a 100 J/pulse FARAD laboratory-version thruster. The design was based upon guidelines and performance scaling parameters presented in Refs. [4, 5]. In this paper, we expand upon the design presented in Ref. [3] by presenting a fully-assembled and operational FARAD laboratory-model thruster and addressing system and subsystem-integration issues (concerning mass injection, preionization, and acceleration) that arose during assembly. Experimental data quantifying the operation of this thruster, including detailed internal plasma measurements, are presented by the authors in a companion paper [6]. The thruster operates by first injecting neutral gas over the face of a flat, inductive acceleration coil and at some later time preionizing the gas. Once the gas is preionized current is passed through the acceleration coil, inducing a plasma current sheet in the propellant that is accelerated away from the coil through electromagnetic interaction with the time-varying magnetic field. Neutral gas is injected over the face of the acceleration coil through a fast-acting valve that feeds a central distribution manifold. The thruster is designed to preionize the gas using an RF-frequency ringing signal produced by a discharging Vector Inversion Generator (VIG). The acceleration stage consists of a multiple-turn, multiple-strand spiral induction coil (see Fig. 1, left panel) and is designed for operation at discharge energies on the order of 100 J/pulse. Several different pulsed power train modules can be used to drive current through the acceleration coil. One such power train is based upon the Bernardes and Merryman circuit topology, which restricts voltage reversal on the capacitor banks and can be clamped to eliminate current reversal in the coil. A second option is a pulse-compression-ring power train (see Fig. 1, right panel), which takesa temporally broad, low current pulse and transforms it into a short, high current pulse.
NASA Technical Reports Server (NTRS)
Spence, Harlan E.
1996-01-01
This section outlines those tasks undertaken in the final year that contribute integrally to the overarching project goals. Fast, during the final year, it is important to note that the project benefited greatly with the addition of a Boston University graduate student, Ms. Karen Hirsch. Jointly, we made substantial progress on the development of and improvements to magnetotail magnetic field and plasma models. The ultimate aim of this specific task was to assess critically the utility of such models for mapping low-altitude phenomena into the magnetotail (and vice-versa). The bulk of this effort centered around the finite-width- magnetotail convection model developed by and described by Spence and Kivelson (J. Geophys. Res., 98, 15,487, 1993). This analytic, theoretical model specifies the bulk plasma characteristics of the magnetotail plasma sheet (number density, temperature, pressure) across the full width of the tail from the inner edge of the plasma sheet to lunar distances. Model outputs are specified by boundary conditions of the source particle populations as well as the magnetic and electric field configuration. During the reporting period, we modified this code such that it can be interfaced with the auroral particle precipitation model developed by Dr. Terry Onsager. Together, our models provide a simple analytic specification of the equatorial distribution of fields and plasma along with their low-altitude consequences. Specifically, we have built a simple, yet powerful tool which allows us to indirectly 'map' auroral precipitation signatures (VDIS, inverted-V's, etc.) measured by polar orbiting spacecraft in the ionosphere, to the magnetospheric equatorial plane. The combined models allow us to associate latitudinal gradients measured in the ion energy fluxes at low-altitudes with the large-scale pressure gradients in the equatorial plane. Given this global, quasi-static association, we can then make fairly strong statements regarding the location of discrete features in the context of the global picture. We reported on our initial study at national and international meetings and published the results of our predictions of the low-altitude signatures of the plasma sheet. In addition, the PI was invited to contribute a publication to the so-called 'Great Debate in Space Physics' series that is a feature of EOS. The topic was on the nature of magnetospheric substorms. Specific questions of the when and where a substorm occurs and the connection between the auroral and magnetospheric components were discussed in that paper. This paper therefore was derived exclusively from the research supported by this grant. Attachment: Empirical modeling of the quite time nightside magnetosphere.' 'CRRES observations of particle flux dropout event.' The what, where, when, and why of magnetospheric substorm triggers'. and 'Low altitude signature of the plasma sheet: model prediction of local time dependence'.
Storage and release of organic carbon from glaciers and ice sheets
NASA Astrophysics Data System (ADS)
Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.
2015-02-01
Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change -- equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.
Storage and release of organic carbon from glaciers and ice sheets
Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.
2015-01-01
Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.
NASA Astrophysics Data System (ADS)
Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki
2017-03-01
Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.
Treatment Characteristics of Second Order Structure of Proteins Using Low-Pressure Oxygen RF Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Nobuya; Nakahigashi, Akari; Kawaguchi, Ryutaro
2010-10-13
Removal of proteins from the surface of medical equipments is attempted using oxygen plasma produced by RF discharge. FTIR spectra indicate that the bonding of C-H and N-H in the casein protein is reduced after irradiation of oxygen plasma. Also, the second order structure of a protein such as {alpha}-helix and {beta}-sheet are modified by the oxygen plasma. Complete removal of casein protein with the concentration of 0.016 mg/cm{sup 2} that is equivalent to remnants on the medical equipment requires two hours avoiding the damage to medical equipments.
NASA Astrophysics Data System (ADS)
Takai, Eisuke; Ohashi, Gai; Yoshida, Tomonori; Margareta Sörgjerd, Karin; Zako, Tamotsu; Maeda, Mizuo; Kitano, Katsuhisa; Shiraki, Kentaro
2014-01-01
Low-temperature atmospheric-pressure plasma was applied to degenerate amyloid-ß (Aß) fibrils, which are a major component of neuritic plaque associated with Alzheimer's disease (AD). We showed that an Aß fibril exposed to a low-frequency (LF) plasma jet in aqueous solution retained its morphology, molecular weight, and cytotoxicity, but, intriguingly, decreased in protease resistance and ß-sheet content. These results suggested that an LF plasma jet could be utilized for the treatment of AD to eliminate neuritic plaque by accelerating the proteolysis of Aß fibrils.
Multiscale Currents Observed by MMS in the Flow Braking Region.
Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A; Apatenkov, Sergey; Ergun, Robert E; Fuselier, Stephen A; Gershman, Daniel J; Giles, Barbara J; Khotyaintsev, Yuri V; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T; Stawarz, Julia; Strangeway, Robert J; Anderson, Brian; Burch, James L; Bromund, Ken R; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J; Slavin, James A; Torbert, Roy B; Turner, Drew L
2018-02-01
We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.
Properties of the Plasma Mantle in the Earth's Magnetotail
NASA Astrophysics Data System (ADS)
Shodhan-Shah, Sheela
1998-04-01
The plasma mantle is the site where the solar wind enters the Earth's magnetosphere. As yet, the mantle in the magnetotail (downstream part of the magnetosphere) has remained an enigma, for this region is remote and inaccessible. However, new results from the GEOTAIL spacecraft have yielded data on the mantle, making its study possible. The research reported in this dissertation uses the measurements made by the GEOTAIL spacecraft when it was beyond 100 Re (1 Re = Earth radius) in the magnetotail to determine the global geometrical and dynamical properties of the mantle. The model and the data together provide a cross-sectional picture of the mantle, as well as its extent into the tail and along the circumference of the tail. The model assesses the mass and momentum flux flowing through the mantle and merging with the plasma sheet (a relatively dense region that separates the oppositely directed fields of the tail lobes). In this way, the thesis examines the importance of the mantle as a source that replenishes and moves the plasma sheet. Moreover, it addresses the relative importance of the global dynamical modes of the tail. The analysis finds that the tail's 'breathing' mode, of shape change, occurs on a timescale of tens of minutes while a windsock-type motion, responding to changes in the solar wind direction, occurs on a scale of hours. The mantle extends about 140o around the circumference of the tail rather than 90o as previously thought and is about 20 ± 9 Re thick. It is capable of feeding the plasma sheet with sufficient particles to make up for those lost and can drag it away with a force that compares with the Earthward force on it. The rate at which the energy flows through the tail at 100 Re is about 10% of that in the solar wind and is a factor of 10 higher than the energy dissipated.
Asymmetric Magnetic Reconnection in the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.
2013-12-01
Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasmoid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.
Asymmetric Magnetic Reconnection in the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S. C.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.
2013-12-01
Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasm! oid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.
Laboratory reconnection experiments
NASA Astrophysics Data System (ADS)
Grulke, Olaf
Laboratory experiments dedicated for the study of magnetic reconnection have been contributed considerably to a more detailed understanding of the involved processes. Their strength is to disentangle parameter dependencies, to diagnose in detail the plasma and field response, and to form an excellent testbed for the validation of numerical simulations. In the present paper recent results obtained from the new cylindrical reconnection experiment VINETA II are presented. The experimental setup allows to independently vary plasma parameters, reconnection drive strength/timescale, and current sheet amplitude. Current research objectives focus on two major scientific issues: Guide field effects on magnetic reconnection and the evolution of electromagnetic fluctuations. The superimposed homogeneous magnetic guide field has a strong influence on the spatiotemporal evolution of the current sheet, predominantly due to magnetic pitch angle effects, which leads to a strong elongation of the sheet along the separatrices and results in axial gradients of the reconnection rates. Within the current sheet, incoherent electromagnetic fluctuations are observed. Their magnetic signature is characterized by a broad spectrum somewhat centered around the lower-hybrid frequency and extremely short spatial correlation lengths being typically smaller than the local ion sound radius. The fluctuation amplitude correlates with the local current density and, thus, for low guide fields, displays also axial gradients. Despite the quantitatively different parameter regime and geometry the basic fluctuation properties are in good agreement with studies conducted at the MRX experiment (PPPL).
NASA Astrophysics Data System (ADS)
Mishin, V. M.; Mishin, V. V.; Lunyushkin, S. B.; Wang, J. Y.; Moiseev, A. V.
2017-05-01
We supplement the results of the 27 August 2001 substorm studied earlier in the series of papers. Described is the plasma flow in the nightside ionosphere from the near-polar region from the polar cap to the auroral oval during the substorm preonset phase and two expansion onsets, EO1 and EO2, produced by reconnection in the closed tail (magnetic reconnection (MR1) and in the open tail lobes (MR2), respectively. We discuss the location of the MR2 region (is it near, middle, and/or distant tail?) and the EO2 trigger mechanism. The upward substorm current wedge field-aligned current (FAC) and the downward FAC in the polar cap dusk sector that were both produced by different types of magnetosphere-ionosphere feedback instability are found to provide the main contribution to the system of FACs during EO1 and EO2. Also, we obtain the estimates for the EO1 and EO2 power and energy. Addressed are the variations in the tail lobe magnetic flux and their (variations) association with EO2. In addition, we describe a 3-D system of mesoscale cells, each of which involves a plasma vortex and a local FAC maximum. The cells of this system in the inner magnetosphere and in the tail lobes intensify one after other within 2 min interval. At last, we substantiate the assumption that the fast plasma flow recorded by the Cluster satellites 7 min prior to EO1 was a bursty bulk flow from the most distant tail.
Mukai, Yosuke; Yamada, Daisaku; Eguchi, Hidetoshi; Iwagami, Yoshifumi; Asaoka, Tadafumi; Noda, Takehiro; Kawamoto, Koichi; Gotoh, Kunihito; Kobayashi, Shogo; Takeda, Yutaka; Tanemura, Masahiro; Mori, Masaki; Doki, Yuichiro
2018-04-19
The cancer-associated fibroblasts (CAFs) in pancreatic ductal adenocarcinoma (PDAC) are well known to play a dominant role in distant metastasis. Nevertheless, the effect on CAFs with current chemoradiation therapies remains uncertain. This study aimed to reveal the role of CAFs under current chemoradiation therapy (CRT) and investigate the factors regulating CAFs. α-SMA-positive cells in 86 resected PDAC specimens with/without preoperative CRT were evaluated by immunohistochemistry. Various factors, including the plasma levels of vitamin D, were investigated for association with the number of CAFs or distant metastasis-free survival (DMFS). Human pancreatic satellite cells (hPSCs) extracted from clinical specimens were used to validate the factors. All PDAC samples contained CAFs but the number varied widely. Multivariate analysis for DMFS indicated a larger number of CAFs was a significant risk factor. Univariate analysis for the number of CAFs identified two clinical factors: preoperative CRT and lower plasma levels of vitamin D. In subgroup analysis, the higher plasma level of vitamin D was a dominant factor for longer DMFS in PDAC patients after preoperative CRT. These results were validated by using extracted hPSCs. Irradiation activated stromal cells into CAFs facilitating malignant characteristics of PDAC and the change was inhibited by vitamin D supplementation in vitro. In conjunction with established current therapies, vitamin D supplementation may be an effective treatment for PDAC patients by inactivating CAFs.
Siow, Yaw L.; Isaak, Cara K.
2016-01-01
Ischemia-reperfusion is a common cause for acute kidney injury and can lead to distant organ dysfunction. Glutathione is a major endogenous antioxidant and its depletion directly correlates to ischemia-reperfusion injury. The liver has high capacity for producing glutathione and is a key organ in modulating local and systemic redox balance. In the present study, we investigated the mechanism by which kidney ischemia-reperfusion led to glutathione depletion and oxidative stress. The left kidney of Sprague-Dawley rats was subjected to 45 min ischemia followed by 6 h reperfusion. Ischemia-reperfusion impaired kidney and liver function. This was accompanied by a decrease in glutathione levels in the liver and plasma and increased hepatic lipid peroxidation and plasma homocysteine levels. Ischemia-reperfusion caused a significant decrease in mRNA and protein levels of hepatic glutamate-cysteine ligase mediated through the inhibition of transcription factor Nrf2. Ischemia-reperfusion inhibited hepatic expression of cystathionine γ-lyase, an enzyme responsible for producing cysteine (an essential precursor for glutathione synthesis) through the transsulfuration pathway. These results suggest that inhibition of glutamate-cysteine ligase expression and downregulation of the transsulfuration pathway lead to reduced hepatic glutathione biosynthesis and elevation of plasma homocysteine levels, which, in turn, may contribute to oxidative stress and distant organ injury during renal ischemia-reperfusion. PMID:27872680
Current sheet formation in a sheared force-free-magnetic field. [in sun
NASA Technical Reports Server (NTRS)
Wolfson, Richard
1989-01-01
This paper presents the results of a study showing how continuous shearing motion of magnetic footpoints in a tenuous, infinitely conducting plasma can lead to the development of current sheets, despite the absence of such sheets or even of neutral points in the initial state. The calculations discussed here verify the earlier suggestion by Low and Wolfson (1988) that extended current sheets should form due to the shearing of a force-free quadrupolar magnetic field. More generally, this work augments earlier studies suggesting that the appearance of discontinuities - current sheets - may be a necessary consequence of the topological invariance imposed on the magnetic field geometry of an ideal MHD system by virtue of its infinite conductivity. In the context of solar physics, the work shows how the gradual and continuous motion of magnetic footpoints at the solar photosphere may lead to the buildup of magnetic energy that can then be released explosively when finite conductivity effects become important and lead to the rapid dissipation of current sheets. Such energy release may be important in solar flares, coronal mass ejections, and other eruptive events.
Electron beam transport analysis of W-band sheet beam klystron
NASA Astrophysics Data System (ADS)
Wang, Jian-Xun; Barnett, Larry R.; Luhmann, Neville C.; Shin, Young-Min; Humphries, Stanley
2010-04-01
The formation and transport of high-current density electron beams are of critical importance for the success of a number of millimeter wave and terahertz vacuum devices. To elucidate design issues and constraints, the electron gun and periodically cusped magnet stack of the original Stanford Linear Accelerator Center designed W-band sheet beam klystron circuit, which exhibited poor beam transmission (≤55%), have been carefully investigated through theoretical and numerical analyses taking advantage of three-dimensional particle tracking solvers. The re-designed transport system is predicted to exhibit 99.76% (cold) and 97.38% (thermal) beam transmission, respectively, under space-charge-limited emission simulations. The optimized design produces the required high aspect ratio (10:1) sheet beam with 3.2 A emission current with highly stable propagation. In the completely redesigned model containing all the circuit elements, more than 99% beam transmission is experimentally observed at the collector located about 160 mm distant from the cathode surface. Results are in agreement of the predictions of two ray-tracing simulators, CST PARTICLE STUDIO and OMNITRAK which also predict the observed poor transmission in the original design. The quantitative analysis presents practical factors in the modeling process to design a magnetic lens structure to stably transport the elliptical beam along the long drift tube.
NASA Astrophysics Data System (ADS)
Collinson, Glyn; Paterson, William R.; Bard, Christopher; Dorelli, John; Glocer, Alex; Sarantos, Menelaos; Wilson, Rob
2018-04-01
On 27 June 1996, the NASA Galileo spacecraft made humanity's first flyby of Jupiter's largest moon, Ganymede, discovering that it is the only moon known to possess an internally generated magnetic field. Resurrecting the original Galileo Plasma Subsystem (PLS) data analysis software, we processed the raw PLS data from G01 and for the first time present the properties of plasmas encountered. Entry into the magnetosphere of Ganymede occurred near the confluence of the magnetopause and plasma sheet. Reconnection-driven plasma flows were observed (consistent with an Earth-like Dungey cycle), which may be a result of reconnection in the plasma sheet, magnetopause, or might be Ganymede's equivalent of a Low-Latitude Boundary Layer. Dropouts in plasma density combined with velocity perturbations afterward suggest that Galileo briefly crossed the cusps into closed magnetic field lines. Galileo then crossed the cusps, where field-aligned precipitating ions were observed flowing down into the surface, at a location consistent with observations by the Hubble Space Telescope. The density of plasma outflowing from Ganymede jumped an order of magnitude around closest approach over the north polar cap. The abrupt increase may be a result of crossing the cusp or may represent an altitude-dependent boundary such as an ionopause. More diffuse, warmer field-aligned outflows were observed in the lobes. Fluxes of particles near the moon on the nightside were significantly lower than on the dayside, possibly resulting from a diurnal cycle of the ionosphere and/or neutral atmosphere.
Characteristics of the tail of Comet Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1986-01-01
The physical structure and characteristics of the Comet Giacobini-Zinner tail are described. Variations in the vector B-field configuration, the electron distribution function, the energetic ion population, and the electromagnetic and electrostatic plasma wave spectra are analyzed. The ICE detected a two-lobe magnetic field configuration and a narrow central plasma sheet. Additional analyses proposed for the Giacobini-Zinner tail data are discussed.
NASA Technical Reports Server (NTRS)
Stover, E. K.; York, T. M.
1971-01-01
The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with several plasma diagnostics; they were: a rapid response pressure transducer, a magnetic field probe, a voltage probe, and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior: (1) strong axial pressure asymmetry noted early in plasma column lifetime, (2) followed by plasma heating in which there is a rapid rise in static pressure, and (3) a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating could be attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity.
NASA Astrophysics Data System (ADS)
Zhao, Duo; Fu, Suiyan; Parks, George K.; Sun, Weijie; Zong, Qiugang; Pan, Dongxiao; Wu, Tong
2017-08-01
We present new observations of electron distributions and the accompanying waves during the current sheet activities at ˜60 RE in the geomagnetic tail detected by the ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft. We find that electron flat-top distribution is a common feature near the neutral sheet of the tailward flowing plasmas, consistent with the electron distributions that are shaped in the reconnection region. Whistler mode waves are generated by the anisotropic electron temperature associated with the electron flat-top distributions. These whistler mode waves are modulated by low frequency ion scale waves that are possibly excited by the high-energy ions injected during the current sheet instability. The magnetic and electric fields of the ion scale waves are in phase with electron density variations, indicating that they are compressional ion cyclotron waves. Our observations present examples of the dynamical processes occurring during the current sheet activities far downstream of the geomagnetic tail.
Plasma flow disturbances in the magnetospheric plasma sheet during substorm activations
NASA Astrophysics Data System (ADS)
Kozelova, T. V.; Kozelov, B. V.; Turyanskii, V. A.
2017-11-01
We have considered variations in fields and particle fluxes in the near-Earth plasma sheet on the THEMIS-D satellite together with the auroral dynamics in the satellite-conjugate ionospheric part during two substorm activations on December 19, 2014 with K p = 2. The satellite was at 8.5 R E and MLT = 21.8 in the outer region of captured energetic particles with isotropic ion fluxes near the convection boundary of electrons with an energy of 10 keV. During substorm activations, the satellite recorded energetic particle injections and magnetic field oscillations with a period of 90 s. In the satellite-conjugate ionospheric part, the activations were preceded by wavelike disturbances of auroral brightness along the southern azimuthal arc. In the expansion phase of activations, large-scale vortex structures appeared in the structure of auroras. The sudden enhancements of auroral activity (brightening of arcs, auroral breakup, and appearance of NS forms) coincided with moments of local magnetic field dipolarization and an increase in the amplitude Pi2 of pulsations of the B z component of the magnetic field on the satellite. Approximately 30-50 s before these moments, the magnetosphere was characterized by an increased rate of plasma flow in the radial direction, which initiated the formation of plasma vortices. The auroral activation delays relative to the times when plasma vortices appear in the magnetosphere decreased with decreasing latitude of the satellite projection. The plasma vortices in the magnetosphere are assumed to be responsible for the observed auroral vortex structures and the manifestation of the hybrid vortex instability (or shear flow ballooning instability) that develops in the equatorial magnetospheric plane in the presence of a shear plasma flow in the region of strong pressure gradients in the Earthward direction.
NASA Astrophysics Data System (ADS)
Nishi, K.; Kazuo, S.
2017-12-01
The auroral finger-like structures appear in the equatorward part of the auroral oval in the diffuse auroral region, and contribute to the auroral fragmentation into patches during substorm recovery phase. In our previous presentations, we reported the first conjugate observation of auroral finger-like structures using the THEMIS GBO cameras and the THEMIS satellites, which was located at a radial distance of 9 Re in the dawnside plasma sheet. In this conjugate event, we found anti-phase fluctuation of plasma pressure and magnetic pressure with a time scale of 5-20 min in the plasma sheet. This observational fact is consistent with the idea that the finger-like structures are caused by a pressure-driven instability in the balance of plasma and magnetic pressures in the magnetosphere. Then we also searched simultaneous observation events of auroral finger-like structures with the RBSP satellites which have an apogee of 5.8 Re in the inner magnetosphere. Contrary to the first result, the observed variation of plasma and magnetic pressures do not show systematic phase relationship. In order to investigate these phase relationships between plasma and magnetic pressures in the magnetosphere, we statistically analyzed these pressure data using the THEMIS-E satellite for one year in 2011. In the preliminary analysis of pressure variation spectra, we found that out of phase relationship between magnetic and plasma pressures occupied 40 % of the entire period of study. In the presentation, we will discuss these results in the context of relationships between the pressure fluctuations and the magnetospheric instabilities that can cause auroral finger-like structures.
The 2010 Polar Aeronomy and Radio Science (PARS) Summer School
2011-12-30
Ionospheric Plasma ........................................................................26 3.7. Measurements of HF Wave-Induced Micropulsations Using GMOS ...facility‟s most distant diagnostic pad. This instrument, called the Geomagnetic Observatory System ( GMOS ) is capable of measuring very small...angles 3.7. Measurements of HF Wave-Induced Micropulsations Using GMOS 3.7.1. Investigators J. Gancarz, R. Pradipta, and Min-Chang Lee (Mentor
NASA Astrophysics Data System (ADS)
Kocharovsky, V. V.; Kocharovsky, Vl V.; Martyanov, V. Yu; Nechaev, A. A.
2017-12-01
We derive and describe analytically a new wide class of self-consistent magnetostatic structures with sheared field lines and arbitrary energy distributions of particles. To do so we analyze superpositions of two planar current sheets with orthogonal magnetic fields and cylindrically symmetric momentum distribution functions, such that the magnetic field of one of them is directed along the symmetry axis of the distribution function of the other. These superpositions satisfy the pressure balance equation and allow one to construct configurations with an almost arbitrarily sheared magnetic field. We show that most of previously known current sheet families with sheared magnetic field lines are included in this novel class.
Detection of oppositely directed reconnection jets in a solar wind current sheet
NASA Astrophysics Data System (ADS)
Davis, M. S.; Phan, T. D.; Gosling, J. T.; Skoug, R. M.
2006-10-01
We report the first two-spacecraft (Wind and ACE) detection of oppositely directed plasma jets within a bifurcated current sheet in the solar wind. The event occurred on January 3, 2003 and provides further direct evidence that such jets result from reconnection. The magnetic shear across the bifurcated current sheet at both Wind and ACE was ~150°, indicating that the magnetic shear must have been the same at the reconnection site located between the two spacecraft. These observations thus provide strong evidence for component merging with a guide field ~ 30% of the antiparallel field. The dimensionless reconnection rate based on the measured inflow was 0.03, implying fast reconnection.
Detection of oppositely directed reconnection jets in a solar wind current sheet
NASA Astrophysics Data System (ADS)
Davis, M. S.; Phan, T. D.; Gosling, J. T.; Skoug, R. M.
2006-12-01
We report the first two-spacecraft (Wind and ACE) detection of oppositely directed plasma jets within a bifurcated current sheet in the solar wind. The event occurred on January 3, 2003 and provides further direct evidence that such jets result from reconnection. The magnetic shear across the bifurcated current sheet at both Wind and ACE was approximately 150 degrees, indicating that the magnetic shear must have been the same at the reconnection site located between the two spacecraft. These observations thus provide strong evidence for component merging with a guide field approximately 30% of the antiparallel field. The dimensionless reconnection rate based on the measured inflow was 0.03, implying fast reconnection.
Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate
NASA Astrophysics Data System (ADS)
Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng
2016-07-01
We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.
ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Nicholas A.; Lukin, Vyacheslav S., E-mail: namurphy@cfa.harvard.edu
2015-06-01
Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection,more » the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase.« less
A hydromagnetic vortex seen by ISEE-1 and 2
NASA Technical Reports Server (NTRS)
Saunders, M. A.; Southwood, D. J.; Hones, E. W., Jr.; Russell, C. T.
1981-01-01
Magnetometer and plasma data from the dual ISEE spacecraft are combined in a study of the initial plasma vortex event reported by Hones et al. (1978) in the dawn plasma sheet. The event is a transient hydromagnetic wave of two cycles duration with a six minute period. Large amplitude compressional and transverse magnetic components were present. Particle and magnetic pressure oscillations were in strict antiphase, but did not balance. When combined with the plasma velocity data these properties show that substantial Earthward field-aligned flows of electromagnetic energy and heat flux occurred during the vortex. The net energy flow perpendicular to B was in the antisolar direction. This event possesses hydromagnetic features unique to a hot plasma environment.
The low energy plasma in the Uranian magnetosphere
NASA Technical Reports Server (NTRS)
Mcnutt, R. L., Jr.; Belcher, J.; Bridge, H.; Lazarus, A. J.; Richardson, J.; Sands, M.; Bagenal, F.; Eviatar, A.; Goertz, C.; Ogilvie, K.
1987-01-01
The Plasma Science experiment on Voyager 2 detected a magnetosphere filled with a tenuous plasma, rotating with the planet. Temperatures of the plasma, composed of protons and electrons, ranged from 10 eV to about 1 keV. The sources of these protons and electrons are probably the ionosphere of Uranus or the extended neutral hydrogen cloud surrounding the planet. As at earth, Jupiter, and Saturn, there is an extended magnetotail with a central plasma sheet. Although similar in global structure to the magnetospheres of these planets, the large angle between the rotation and magnetic axes of the planet and the orientation of the rotation axis with respect to the solar wind flow make the Uranian magnetosphere unique.
Magnetic Field Generation During the Collision of Narrow Plasma Clouds
NASA Astrophysics Data System (ADS)
Sakai, Jun-ichi; Kazimura, Yoshihiro; Haruki, Takayuki
1999-06-01
We investigate the dynamics of the collision of narrow plasma clouds,whose transverse dimension is on the order of the electron skin depth.A 2D3V (two dimensions in space and three dimensions in velocity space)particle-in-cell (PIC) collisionless relativistic code is used toshow the generation of a quasi-staticmagnetic field during the collision of narrow plasma clouds both inelectron-ion and electron-positron (pair) plasmas. The localizedstrong magnetic fluxes result in the generation of the charge separationwith complicated structures, which may be sources of electromagneticas well as Langmuir waves. We also present one applicationof this process, which occurs during coalescence of magnetic islandsin a current sheet of pair plasmas.
Electric potential of the moon in the magnetosheath and in the geomagnetic tail
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskalenko, A.M.
1995-03-01
A layer of charged particles near the lunar surface is investigated. It is shown that in the magnetosheath and in the tail lobes, where secondary electronic emission of lunar soil in the plasma sheet is low, the electrostatic potential as a function of the height over the subsolar region of the surface is nonmonotone. As the terminator is approached, the potential becomes a negative monotone function. For most temperatures of the primary electrons that exist in the plasma sheet, secondary electron emission is high. In the case of high secondary electron emission, the electric potential is nonmonotone, and the variationmore » of the potential in the double layer is determined by the secondary electron emission and varies weakly in the passage from the dark side to the bright side.« less
Magnetospheric ray tracing studies. [Jupiter's decametric radiation
NASA Technical Reports Server (NTRS)
Six, N. F.
1982-01-01
Using a model of Jupiter's magnetized plasma environment, radiation raypaths were calculated with a three-dimension ray tracing program. It is assumed that energetic particles produce the emission in the planet's auroral zone at frequencies just above the electron gyrofrequencies. This radiation is generated in narrow sheets defined by the angle of a ray with respect to the magnetic field line. By specifying the source position: latitude, longitude, and radial distance from the planet, signatures in the spectrum of frequency versus time seen by Voyager 1 and 2 were duplicated. The frequency range and the curvature of the decametric arcs in these dynamic spectra are the result of the geometry of the radiation sheets (imposed by the plasma and by the B-field) and illumination of Voyager 1 and 2 as the rotating magnetosphere mimics a pulsar.
A System Scale Theory for Fast Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Knoll, D.; Chacon, L.; Lapenta, G.
2005-12-01
Magnetic reconnection is at the root of explosive phenomena such as solar flares, coronal mass ejections, plasmoid ejection from earth's magnetotail and major disruptions in magnetic fusion energy experiments. Plasmas in all the above mentioned cases are known to have negligible electric resistivity. This small resistivity can not explain the reconnection time scales observed in nature, when using the resistive MHD model. Recently much progress has been made considering the Hall MHD model. Hall physics has been shown to facility fast reconnection when the magnetic field shear scale length is in the order of the ion inertial length. However, in many systems of interest the initial scale lengths of the problem can not justify the use of Hall MHD. Thus a successful system scale theory must involve a current sheet thinning mechanism which brings the relevant scales down to the Hall scales. In this presentation we give examples of how naturally occurring hydrodynamic flows can provide such current sheet thinning [1,2,3] and where these occur in solar [4] and magnetosphere application [5]. We also discuss the primary obstacle for such flow to drive current sheet thinning, the build up of magnetic pressure, and how Hall MHD may overcome this obstacle. [1] Knoll and Brackbill, Phys. Plasmas, vol. 9, 2002 [2] Knoll and Chacon, PRL, vol. 88, 2002 [3] Knoll and Chacon, Phys. Plasmas, 2005 (submitted) [4] Lapenta and Knoll, ApJ, vol. 624, 2005 [5] Brackbill and Knoll, PRL, vol. 86, 2001
Occurrence rate of dipolarization fronts in the plasma sheet: Cluster observations
NASA Astrophysics Data System (ADS)
Xiao, Sudong; Zhang, Tielong; Wang, Guoqiang; Volwerk, Martin; Ge, Yasong; Schmid, Daniel; Nakamura, Rumi; Baumjohann, Wolfgang; Plaschke, Ferdinand
2017-08-01
We investigate the occurrence rate of dipolarization fronts (DFs) in the plasma sheet by taking full advantage of all four Cluster satellites (C1-4) from years 2001 to 2009. In total, we select 466 joint-observation DF events, in which 318, 282, 254, and 236 DFs are observed by C1, C2, C3, and C4, respectively. Our findings are as follows: (1) the maximum occurrence rate is ˜ 15.3 events per day at X ˜ 15 RE in the XY plane, and the average occurrence rate is ˜ 5.4 events per day over the whole observation period; (2) the occurrence rate on the dusk side of the plasma sheet is larger and decreases with increasing BXY/BLobe; (3) the occurrence rate within |Y| < 6 RE increases gradually from X ≈ -19 to -15 RE and then decreases from X ≈ -15 to -10 RE; (4) the occurrence rate when AE > 200 nT is much larger than that when AE < 200 nT, indicating that DFs preferentially occur during high geomagnetic activity. The magnetic pileup and earthward and duskward ion flows could contribute to the increases in the occurrence rate from X ≈ -19 to -15 RE. We suggest that both geomagnetic activity and multiple DFs contribute to the high occurrence rate of the DFs. In addition, the finite length of the DF in the dawn-dusk direction can affect the chance that a satellite observes the DF.
NASA Astrophysics Data System (ADS)
Srinivas, P. G.; Spencer, E. A.; Vadepu, S. K.; Horton, W., Jr.
2017-12-01
We compare satellite observations of substorm electric fields and magnetic fields to the output of a low dimensional nonlinear physics model of the nightside magnetosphere called WINDMI. The electric and magnetic field satellite data are used to calculate the E X B drift, which is one of the intermediate variables of the WINDMI model. The model uses solar wind and IMF measurements from the ACE spacecraft as input into a system of 8 nonlinear ordinary differential equations. The state variables of the differential equations represent the energy stored in the geomagnetic tail, central plasma sheet, ring current and field aligned currents. The output from the model is the ground based geomagnetic westward auroral electrojet (AL) index, and the Dst index.Using ACE solar wind data, IMF data and SuperMAG identification of substorm onset times up to December 2015, we constrain the WINDMI model to trigger substorm events, and compare the model intermediate variables to THEMIS and GEOTAIL satellite data in the magnetotail. By forcing the model to be consistent with satellite electric and magnetic field observations, we are able to track the magnetotail energy dynamics, the field aligned current contributions, energy injections into the ring current, and ensure that they are within allowable limts. In addition we are able to constrain the physical parameters of the model, in particular the lobe inductance, the plasma sheet capacitance, and the resistive and conductive parameters in the plasma sheet and ionosphere.
NASA Astrophysics Data System (ADS)
Noborisaka, Mayui; Hirako, Tomoaki; Shirakura, Akira; Watanabe, Toshiyuki; Morikawa, Masashi; Seki, Masaki; Suzuki, Tetsuya
2012-09-01
Diamond-like carbon (DLC) films were synthesized by the dielectric barrier discharge-based plasma deposition at atmospheric pressure and their hardness and gas barrier properties were measured. A decrease in size of grains and heating substrate temperature improved nano-hardness up to 3.3 GPa. The gas barrier properties of DLC-coated poly(ethylene terephthalate) (PET) sheets were obtained by 3-5 times of non-coated PET with approximately 0.5 µm in film thickness. The high-gas-barrier DLC films deposited on PET sheets are expected to wrap elevated bridge of the super express and prevent them from neutralization of concrete. We also deposited DLC films inside PET bottles by the microwave surface-wave plasma chemical vapor deposition (CVD) method at near-atmospheric pressure. Under atmospheric pressure, the films were coated uniformly inside the PET bottles, but did not show high gas barrier properties. In this paper, we summarize recent progress of DLC films synthesized at atmospheric pressure with the aimed of food packaging and concrete pillar.
Understanding the ion distributions near the boundaries of reconnection outflow region
NASA Astrophysics Data System (ADS)
Zhou, Xu-Zhi; Pan, Dong-Xiao; Angelopoulos, Vassilis; Runov, Andrei; Zong, Qiu-Gang; Pu, Zu-Yin
2016-10-01
An interesting signature observed shortly after the onset of magnetotail reconnection is the gradual appearance of a local peak of ion phase space density (PSD) in the duskward and downstream direction separated from the colder, nearly isotropic ion population. Such a characteristic ion distribution, served as a diagnostic signature of magnetotail reconnection and well reproduced by a particle-tracing Liouville simulation, are found to appear only near the off-equatorial boundaries of the reconnection outflow region. Further analysis on ion trajectories suggests that the ions within the local peak and within the neighboring PSD cleft both belong to the outflowing population; on top of their outflowing motion, they both meander across the neutral sheet to exhibit duskward velocities near the off-equatorial edges of their trajectories. The difference between them is that the local peak originates from ions previously constituting the preonset plasma sheet, whereas the cleft corresponds to the inflowing lobe ions before they are repelled in the downstream direction. As reconnection proceeds, the local PSD peak gradually attenuates and then disappears, which is a signature of reconnection flushing effect that depletes the ions in the preonset plasma sheet and eventually replaces them by lobe ions.
Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide.
Hajipour, Mohammad Javad; Raheb, Jamshid; Akhavan, Omid; Arjmand, Sareh; Mashinchian, Omid; Rahman, Masoud; Abdolahad, Mohammad; Serpooshan, Vahid; Laurent, Sophie; Mahmoudi, Morteza
2015-05-21
The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the 'personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different biological responses in the presence of coronas obtained from various types of diseases. GO sheets were incubated with plasma from human subjects with different diseases/conditions, including hypofibrinogenemia, blood cancer, thalassemia major, thalassemia minor, rheumatism, fauvism, hypercholesterolemia, diabetes, and pregnancy. Identical sheets coated with varying protein corona decorations exhibited significantly different cellular toxicity, apoptosis, and uptake, reactive oxygen species production, lipid peroxidation and nitrogen oxide levels. The results of this report will help researchers design efficient and safe, patient-specific nano biomaterials in a disease type-specific manner for clinical and biological applications.
A numerical simulation of magnetic reconnection and radiative cooling in line-tied current sheets
NASA Technical Reports Server (NTRS)
Forbes, T. G.; Malherbe, J. M.
1991-01-01
Radiative MHD equations are used for an optically thin plasma to carry out a numerical experiment related to the formation of 'postflare' loops. The numerical experiment starts with a current sheet that is in mechanical and thermal equilibrium but is unstable to both tearing-mode and thermal-condensation instabilities. The current sheet is line-tied at one end to a photospheric-like boundary and evolves asymmetrically. The effects of thermal conduction, resistivity variation, and gravity are ignored. In general, reconnection in the nonlinear stage of the tearing-mode instability can strongly affect the onset of condensations unless the radiative-cooling time scale is much smaller than the tearing-mode time scale. When the ambient plasma is less than 0.2, the reconnection enters a regime where the outflow from the reconnection region is supermagnetosonic with respect to the fast-mode wave speed. In the supermagnetosonic regime the most rapidly condensing regions occur downstream of a fast-mode shock that forms where the outflow impinges on closed loops attached to the photospheric-like boundary. A similar shock-induced condensation might occur during the formation of 'postflare' loops.
Relations Between vz and Bx Components in Solar Wind and their Effect on Substorm Onset
NASA Astrophysics Data System (ADS)
Kubyshkina, Marina; Semenov, Vladimir; Erkaev, Nikolay; Gordeev, Evgeny; Dubyagin, Stepan; Ganushkina, Natalia; Shukhtina, Maria
2018-05-01
We analyze two substorm onset lists, produced by different methods, and show that the (Bx·vz) product of the solar wind (SW) velocity and interplanetary magnetic field (IMF) components for two thirds of all substorm onsets has the same sign as IMF Bz. The explanation we suggest is the efficient displacement of the magnetospheric plasma sheet due to IMF Bx and SW flow vz, which both force the plasma sheet moving in one direction if the sign of (Bx·vz) correlates with the sign Bz. The displacement of the current sheet, in its turn, increases the asymmetry of the magnetotail and can alter the threshold of substorm instabilities. We study the SW and IMF data for the 15-year period (which comprises two substorm lists periods and the whole solar cycle) and reveal the similar asymmetry in the SW, so that the sign of (Bx·vz) coincides with the sign of IMF Bz during about two thirds of all the time. This disproportion can be explained if we admit that about 66% of IMF Bz component is transported to the Earth's orbit by the Alfvén waves with antisunward velocities.
Magnetic field dissipation in D-sheets
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Scudder, J. D.
1973-01-01
The effects of magnetic field annihilation at a tangential or rotational discontinuity in a resistive plasma are examined. The magnetic field intensity profile depends on (1) the field intensities far from the current sheet (+ and - infinity), (2) the angle between the two intensities, and (3) the electrical resistivity. For a tangential discontinuity, the theory predicts a depression in B, centered at the discontinuity, and it predicts a monotonic transition. The theory provides satisfactory fits to the magnetic field intensity and proton temperature profiles observed for two extremely broad D-sheets in the solar wind. Assuming a diffusion time 10 days, one obtains effective resistivities or approximately = 3 x 10 to the 12th power and 2 x 10 to the 13th power emu for the D-sheets. Either resistivity at directional discontinuities is much lower than 10 to the 12th power emu or annihilation does not always occur at discontinuities.
Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.
Ryu, Jeongeun; Kim, Kiwoong; Park, JooYoung; Hwang, Bae Geun; Ko, YoungChul; Kim, HyunJoo; Han, JeongSu; Seo, EungRyeol; Park, YongJong; Lee, Sang Joon
2017-05-16
Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.
NASA Technical Reports Server (NTRS)
Siregar, Edouard; Roberts, D. A.; Goldstein, Melvyn L.
1993-01-01
We study a transverse plasma flow induced by the evolution of a Karman vortex street using a Chebyshev-Fourier spectral algorithm to solve both the compressible Navier-Stokes and MHD equations. The evolving vortex street is formed by the nonlinear interaction of two vortex sheets initially in equilibrium. We study spatial profiles of the total plasma velocity, the density, the meridional flow angle and the location of sector boundaries and find generally good agreement with Voyager 2 measurements of quasi-periodic transverse flow in the outer heliosphere. The pressure pulses associated with the meridional flows in the simulation are too small, although they are correctly located, and this may be due to the lack of any 'warp' in the current sheet in this model. A strong, flow-aligned magnetic field, such as would occur in the inner heliosphere, is shown to lead to weak effects that would be masked by the background interplanetary turbulence. We also study the plasma and magnetic transport resulting from the meridional flow and find that deficits of magnetic quantities do occur near the ecliptic. While the effect is relatively small, it is in general agreement with the most recent analysis of 'flux deficit' in the outer heliosphere.
Ionosphere-Magnetosphere Energy Interplay in the Regions of Diffuse Aurora
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Glocer, A.; Sibeck, D. G.; Tripathi, A. K.; Detweiler, L.G.; Avanov, L. A.; Singhal, R. P.
2016-01-01
Both electron cyclotron harmonic (ECH) waves and whistler mode chorus waves resonate with electrons of the Earths plasma sheet in the energy range from tens of eV to several keV and produce the electron diffuse aurora at ionospheric altitudes. Interaction of these superthermal electrons with the neutral atmosphere leads to the production of secondary electrons (E500600 eV) and, as a result, leads to the activation of lower energy superthermal electron spectra that can escape back to the magnetosphere and contribute to the thermal electron energy deposition processes in the magnetospheric plasma. The ECH and whistler mode chorus waves, however, can also interact with the secondary electrons that are coming from both of the magnetically conjugated ionospheres after they have been produced by initially precipitated high-energy electrons that came from the plasma sheet. After their degradation and subsequent reflection in magnetically conjugate atmospheric regions, both the secondary electrons and the precipitating electrons with high (E600 eV) initial energies will travel back through the loss cone, become trapped in the magnetosphere, and redistribute the energy content of the magnetosphere-ionosphere system. Thus, scattering of the secondary electrons by ECH and whistler mode chorus waves leads to an increase of the fraction of superthermal electron energy deposited into the core magnetospheric plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandahl, I.; Eliasson, L.; Pellinen-Wannberg, A.
On the night of November 4, 1986, a very complex precipitation pattern was observed by Viking in the magnetic midnight sector over Scandinavia and Svalbard. The pass took place during a magnetic storm, and during substorm recovery phase. Going from north to south, the satellite first encountered a plasma region of BPS-type (name derived from boundary plasma sheet) and then a region of CPS type (derived from central plasma sheet). Then, however, a new region of BPS-type was traversed. The quite intense, most equatorward aurora corresponded to a plasma region which was not of ordinary CPS type but contained sharpmore » quasi-monoenergetic peaks. The high-latitude midnight sector was totally dominated by eastward convection. The Harang discontinuity had passed northern Scandinavia the first time as early as 17 to 20 MLT, more than three house before the Viking pass. It is suggested that the particle precipitation pattern and the general shape of the aurora as observed by the Viking imager can be explained in a natural way by the convection pattern. The northernmost BPS- and CPS-type regions originated in the morningside convection cell, while the more equatorward population of BPS type had drifted in from the eveningside. The interpretation is supported by ground-based measurements by EISCAT and magnetometers.« less
NASA Astrophysics Data System (ADS)
2010-12-01
A scientific session of the Physical Sciences Division, Russian Academy of Sciences (RAS), was held on 26 May 2010 at the conference hall of the Lebedev Physical Institute, RAS. The session was devoted to the 85th birthday of S I Syrovatskii. The program announced on the web page of the RAS Physical Sciences Division (www.gpad.ac.ru) contained the following reports: (1) Zelenyi L M (Space Research Institute, RAS, Moscow) "Current sheets and reconnection in the geomagnetic tail"; (2) Frank A G (Prokhorov General Physics Institute, RAS, Moscow) "Dynamics of current sheets as the cause of flare events in magnetized plasmas"; (3) Kuznetsov V D (Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, RAS, Troitsk, Moscow region) "Space research on the Sun"; (4) Somov B V (Shternberg Astronomical Institute, Lomonosov Moscow State University, Moscow) "Strong shock waves and extreme plasma states"; (5) Zybin K P (Lebedev Physical Institute, RAS, Moscow) "Structure functions for developed turbulence"; (6) Ptuskin V S (Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, RAS, Troitsk, Moscow region) "The origin of cosmic rays." Papers based on reports 1-4 and 6 are published in what follows. • Metastability of current sheets, L M Zelenyi, A V Artemyev, Kh V Malova, A A Petrukovich, R Nakamura Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 933-941 • Dynamics of current sheets underlying flare-type events in magnetized plasmas, A G Frank Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 941-947 • Space research of the Sun, V D Kuznetsov Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 947-954 • Magnetic reconnection in solar flares, B V Somov Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 954-958 • The origin of cosmic rays, V S Ptuskin Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 958-961
NASA Technical Reports Server (NTRS)
Ohtani, S.; Potemra, T. A.; Newell, P. T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Yamauchi, M.; Elphinstone, R. D.; De La Beauijardie, O.; Blomberg, L. G.
1995-01-01
The spatial structure of dayside large-scale field-aligned current (FAC) systems is examined by using Viking and Defense Meteorological Satellite Program-F7 (DMSP-F7) data. We focus on four events in which the satellites simultaneously observed postnoon and prenoon three FAC systems: the region 2, the region 1, and the mantle (referred to as midday region O) systems, from equatorward to poleward. These events provide the most solid evidence to date that the midday region O system is a separate and unique FAC system, and is not an extension of the region 1 system from other local times. The events are examined comprehensively by making use of a mulit-instrumental data set, which includes magnetic field, particle flux, electric field, auroral UV image data from the satellites, and the Sondrestrom convection data. The results are summarized as follows: (1) Region 2 currents flow mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPD) at their poleward edge. (2) The region 1 system is located in the core part of the auroral oval and is confined in a relatively narrow range in latitude which includes the convection reversal. The low-latitude boundary layer, possibly including the outer part of the plasma sheet, and the external cusp are the major source regions of dayside region 1 currents. (2) Midday region O currents flow on open field lines and are collocated with the shear of antisunward convection flows with velocites decreasing poleward. On the basis of these results we support the view that both prenoon and postnoon current systems consist of the three-sheet structure when the disctortion ofthe convection pattern associated with interplanetary magnetic field (IMF) B(sub Y) is small and both morningside and eveningside convection cells are crescent-shaped. We also propose that the midday region O and a part of the region 1 systems are closely coupled to the same source.
NASA Astrophysics Data System (ADS)
Petrukovich, A.; Artemyev, A.; Nakamura, R.
Reconnection is the key process responsible for the magnetotail dynamics. Driven reconnection in the distant tail is not sufficient to support global magnetospheric convection and the near Earth neutral line spontaneously forms to restore the balance. Mechanisms of initiation of such near-Earth magnetotail reconnection still represent one of major unresolved issues in space physics. We review the progress in this topic during the last decade. Recent theoretical advances suggest several variants of overcoming the famous tearing stability problem. Multipoint spacecraft observations reveal detailed structure of pre-onset current sheet of and reconnection zone down to ion larmor scale, supporting the importance of unstable state development through internal magnetotail reconfiguration.
Effect of dialyzer geometry on granulocyte and complement activation.
Schaefer, R M; Heidland, A; Hörl, W H
1987-01-01
During hemodialysis with cuprophan membranes, the complement system as well as leukocytes become activated. In order to clarify the role of dialyzer geometry, the effect of hollow-fiber versus flat-sheet dialyzers and of different surface areas on C3a generation and leukocyte degranulation was investigated. Plasma levels of leukocyte elastase in complex with alpha 1-proteinase inhibitor were significantly increased after 1 h (+55%) and 3 h (+62%) of hemodialysis with flat-sheet dialyzers as compared to hollow-fiber devices. In addition, plasma levels of lactoferrin, released from the specific granules of leukocytes during activation, were significantly higher (+42%) 3 h after the onset of dialysis treatment with flat-sheet than with hollow-fiber dialyzers. With respect to surface area, larger dialyzers tended to cause more release of leukocyte elastase as compared to dialyzers with smaller surface areas, irrespectively of the configuration of the dialyzer used. On the other hand, activation of the complement system, as measured by the generation of C3a-desarg, did not differ with both types of configurations. The same held true for leukopenia, which was almost identical for hollow-fiber and flat-sheet dialyzers. From these findings two lines of evidence emerge: First, not only the type of membrane material used in a dialyzer may influence its biocompatibility, but the geometry of the extracorporeal device also determines the degree of compatibility. Hence, the extent of leukocyte activation correlated with both configuration of the dialyzer and surface area of the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Hybird state of the tail mangetic configuration during steady convection events
NASA Technical Reports Server (NTRS)
Sergeev, V. A.; Pulkkinen, T. I.; Pellinen, T. I.; Tsyganenko, N. A.
1994-01-01
Previous observations have shown that during periods of steady magnetospheric convection (SMC) a large amount of magnetic flux crosses the plasma sheet (corresponding to approximately 10 deg wide auroral oval at the nightside) and that the magnetic configuration in the midtail is relaxed (the curent sheet is thick and contains enhanced B(sub Z). These signatures are typical for the substorm recovery phase. Using near-geostationary magnetic field data, magnetic field modeling and a noval diagostic technique (isotropic boundary algorithm), we show that in the near-Earth tail the magnetic confirguration is very stretched during the SMC events. This stretching is caused by an intense, thin westward current. Because of the srongly depressed B(sub Z), there is a large radial gradient in the near-tail magetic field. These signatures have been peviously associated only with the substorm growth phase. Our results indicate that during the SMC periods the magnetic configuration is very peculiar, with co-existing thin near-Earth current sheet and thick midtail plasma sheet. The deep local minimum of the equatorial B(sub Z) that devleops at R approximately 12 R(sub E) is consistent with steady, adiabatic, Earthward convection in the midtail. These results impose contraints on the existing substorm theories, and call for an explanation of how such a stressed configuration can persist for such a long time without tail current disruptions that occur at the end of a substorm growth phase.
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.
2011-01-01
A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.
2008-01-01
Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Withers, Paul; Vogt, Marissa F.
Properties of planetary atmospheres, ionospheres, and magnetospheres are difficult to measure from Earth. Radio occultations are a common method for measuring these properties, but they traditionally rely on radio transmissions from a spacecraft near the planet. Here, we explore whether occultations of radio emissions from a distant astrophysical radio source can be used to measure magnetic field strength, plasma density, and neutral density around planets. In a theoretical case study of Jupiter, we find that significant changes in polarization angle due to Faraday rotation occur for radio signals that pass within 10 Jupiter radii of the planet and that significantmore » changes in frequency and power occur from radio signals that pass through the neutral atmosphere. There are sufficient candidate radio sources, such as pulsars, active galactic nuclei, and masers, that occultations are likely to occur at least once per year. For pulsars, time delays in the arrival of their emitted pulses can be used to measure plasma density. Exoplanets, whose physical properties are very challenging to observe, may also occult distant astrophysical radio sources, such as their parent stars.« less
Plasma observations near saturn: initial results from voyager 1.
Bridge, H S; Belcher, J W; Lazarus, A J; Olbert, S; Sullivan, J D; Bagenal, F; Gazis, P R; Hartle, R E; Ogilvie, K W; Scudder, J D; Sittler, E C; Eviatar, A; Siscoe, G L; Goertz, C K; Vasyliunas, V M
1981-04-10
Extensive measurements of low-energy plasma electrons and positive ions were made during the Voyager 1 encounter with Saturn and its satellites. The magnetospheric plasma contains light and heavy ions, probably hydrogen and nitrogen or oxygen; at radial distances between 15 and 7 Saturn-radii (Rs) on the inbound trajectory, the plasma appears to corotate with a velocity within 20 percent of that expected for rigid corotation. The general morphology of Saturn's magnetosphere is well represented by a plasma sheet that extends from at least 5 to 17 Rs, is symmetrical with respect to Saturn's equatorial plane and rotation axis, and appears to be well ordered by the magnetic shell parameter L (which represents the equatorial distance of a magnetic field line measured in units of Rs). Within this general configuration, two distinct structures can be identified: a central plasma sheet observed from L = 5 to L = 8 in which the density decreases rapidly away from the equatorial plane, and a more extended structure from L = 7 to beyond 18 Rs in which the density profile is nearly flat for a distance +/- 1.8 Rs off the plane and falls rapidly thereafter. The encounter with Titan took place inside the magnetosphere. The data show a clear signature characteristic of the interaction between a subsonic corotating magnetospheric plasma and the atmospheric or ionospheric exosphere of Titan. Titan appears to be a significant source of ions for the outer magnetosphere. The locations of bow shock crossings observed inbound and outbound indicate that the shape of the Saturnian magnetosphere is similar to that of Earth and that the position of the stagnation point scales approximately as the inverse one-sixth power of the ram pressure.
UCLA IGPP Space Plasma Simulation Group
NASA Technical Reports Server (NTRS)
1998-01-01
During the past 10 years the UCLA IGPP Space Plasma Simulation Group has pursued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: the solar wind, the low- and high-latitude magnetospheric boundary, the near-Earth and distant magnetotail, and the auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations.
Midtail plasma flows and the relationship to near-Earth substorm activity: A case study
NASA Technical Reports Server (NTRS)
Lopez, R. E.; Goodrich, C. C.; Reeves, G. D.; Belian, R. D.; Taktakishvili, A.
1994-01-01
Recent simulations of magnetotail reconnection have pointed to a link between plasma flows, dipolarization, and the substorm current wedge. In particular, Hesse and Birn (1991) have proposed that earthward jetting of plasma from the reconnection region transports flux into the near-Earth region. At the inner edge of the plasma sheet this flux piles up, producing a dipolarization of the magnetic field. The vorticity produced by the east-west deflection of the flow at the inner edge of the plasma sheet gives rise to field-aligned currents that have region 1 polarity. Thus in this scenario the earthward flow from the reconnection region produces the dipolarization ad the current wedge in a self-consistent fashion. In this study we examine observations made on April 8, 1985 by the Active Magnetospheric Particle Tracer Explorers (AMPTE)/Ion Release Module (IRM), the geosynchronous satellites 1979-053, 1983-019, and 1984-037, and Syowa station, as well as AE. This event is unique because IRM was located near the neutral sheet in the midnight sector for am extended period of time. Ground data show that there was ongoing activity in the IRM local time sector for several hours, beginning at 1800 UT and reaching a crescendo at 2300 UT. This activity was also accompanied by energetic particle variations, including injections, at geosynchronous orbit in the nighttime sector. Significantly, there were no fast flows at the neutral sheet until the great intensification of activity at 2300 UT. At that time, IRM recorded fast eartheard flow simultaneous with a dipolatization of the magetic field. We conclude that while the aforementioned scenario for the creation of the current wedge encounters serious problems explaining the earlier activity, the observations at 2300 UT are consistent with the scenario of Hesse and Birn (1191). On that basis it is argued that the physics of substorms is not exclusively rooted in the development of a global tearing mode. Processes at the inner edge of the cross-tail current that cause a disruption of the current and a consequent dipolarization and current wedge may be unrelated to the formation of a macroscale reconnection region. Thus the global evolution of a substorm is probably a complicated superposition of such processes operating on a very localized scale and a global macroscale process that allows for such things as releasing te energy stored in lobe flux and creation of plasmoids.
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.; Le, G.; Strangeway, R. J.
1995-01-01
We review our current knowledge of ULF waves in planetary foreshocks. Most of this knowledge comes from observations taken within a few Earth radii of the terrestrial bow shock. Terrestrial foreshock ULF waves can be divided into three types, large amplitude low frequency waves (approximately 30-s period), upstream propagating whistlers (1-Hz waves), and 3-s waves. The 30-s waves are apparently generated by back-streaming ion beams, while the 1-Hz waves are generated at the bow shock. The source of the 3-s waves has yet to be determined. In addition to issues concerning the source of ULF waves in the foreshock, the waves present a number of challenges, both in terms of data acquisition, and comparison with theory. The various waves have different coherence scales, from approximately 100 km to approximately 1 Earth radius. Thus multi-spacecraft separation strategies must be tailored to the phenomenon of interest. From a theoretical point of view, the ULF waves are observed in a plasma in which the thermal pressure is comparable to the magnetic pressure, and the rest-frame wave frequency can be moderate fraction of the proton gyro-frequency. This requires the use of kinetic plasma wave dispersion relations, rather than multi-fluid MHD. Lastly, and perhaps most significantly, ULF waves are used to probe the ambient plasma, with inferences being drawn concerning the types of energetic ion distributions within the foreshock. However, since most of the data were acquired close to the bow shock, the properties of the more distant foreshock have to be deduced mainly through extrapolation of the near-shock results. A general understanding of the wave and plasma populations within the foreshock, their interrelation, and evolution, requires additional data from the more distant foreshock.
Liu, Xia; Chen, Xiaogang; Yang, Jiezuan; Guo, Renyong
2017-09-01
Coagulative and fibrinolytic disorders appear to be associated with the development of lung cancer. The aim of the present study was to determine plasma levels of von Willebrand factor (VWF) and a disintegrin and metalloproteinase with a thrombospondin type 1 motif 13 (ADAMTS-13), and factor VIII (FVIII) activity, in association with O and non-O blood groups in patients with lung cancer. Plasma levels of VWF and ADAMTS-13, and FVIII activity were measured in 115 patients with lung cancer and 98 healthy subjects. Phenotyping of the ABO blood groups was also performed for the two groups. Significantly increased VWF levels and FVIII activity, as well as significantly decreased ADAMTS-13 levels, were observed in patients with distant metastasis as compared with those without distant metastasis and the healthy controls. Plasma VWF levels and FVIII activity were significantly increased in subjects with non-O type blood compared with those with type O blood in the two groups. However, a significant decrease in ADAMTS-13 levels was observed only in the control group among those with non-O type blood, compared with those with type O blood. The results of the present study indicate that increased VWF and decreased ADAMTS-13 levels facilitate the invasiveness and metastasis of lung cancer. Non-O blood groups constitute a risk factor for increased VWF and FVIII in plasma. Continued monitoring of VWF and ADAMTS-13 levels, and of FVIII activity in patients with lung cancer with distinct blood groups may help to minimize the incidence of thrombotic events and improve assessment of disease progression.
NASA Astrophysics Data System (ADS)
Du, S.; Guo, F.; Zank, G. P.; Li, X.; Stanier, A.
2017-12-01
The interaction between magnetic flux ropes has been suggested as a process that leads to efficient plasma energization and particle acceleration (e.g., Drake et al. 2013; Zank et al. 2014). However, the underlying plasma dynamics and acceleration mechanisms are subject to examination of numerical simulations. As a first step of this effort, we carry out 2D fully kinetic simulations using the VPIC code to study the plasma energization and particle acceleration during coalescence of two magnetic flux ropes. Our analysis shows that the reconnection electric field and compression effect are important in plasma energization. The results may help understand the energization process associated with magnetic flux ropes frequently observed in the solar wind near the heliospheric current sheet.
A study of field-aligned currents observed at high and low altitudes in the nightside magnetosphere
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Craven, J. D.; Frank, L. A.; Sugiura, M.
1988-01-01
Field-aligned current structures on auroral field lines observed at low and high altitudes using DE 1 and ISEE 2 magnetometer, and particle data observed when the spacecraft are in magnetic conjunction in the near-midnight magnetosphere, are investigated. To minimize latitudinal ambiguity, the plasma-sheet boundary layer observed with ISEE 2 and the discrete aurora at the poleward edge of the auroral oval with DE 1 are studied. The overall current observed at highest latitudes is flowing into the ionosphere, and is likely to be carried by ionospheric electrons flowing upward. There are, however, smaller-scale current structures within this region. The sense and magnitude of the field-aligned currents agree at the two sites. The ISEE 2 data suggests that the high-latitude downward current corresponds to the high-latitude boundary of the plasma-sheet boundary layer, and may be associated with the ion beams observed there.
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.
2016-11-01
We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.M.; School of Materials Science and Engineering, The University of New South Wales, NSW 2052; Yang, C.C., E-mail: ccyang@unsw.edu.a
2009-12-15
In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheetmore » density. - Graphical abstract: Tree-like carbon nanotubes (CNTs) with branches and the wing-like CNTs with graphitic-sheets were synthesized by using plasma enhanced chemical vapor deposition. The structural dependence of field electron emission property was also investigated.« less
Suprathermal O(+) and H(+) ion behavior during the March 22, 1979 (CDAW 6), substorms
NASA Technical Reports Server (NTRS)
Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Scholer, M.; Hovestadt, D.; Klecker, B.
1985-01-01
The present investigation has the objective to report on the behavior of energetic (approximately 130 keV) O(+) ions in the earth's plasma sheet, taking into account observations by the ISEE 1 spacecraft during a magnetically active time interval encompassing two major substorms on March 22, 1979. Attention is also given to suprathermal H(+) and He(++) ions. ISEE 1 plasma sheet observations of the proton and alpha particle phase space densities as a function of energy per charge during the time interval 0933-1000 UT on March 22, 1979 are considered along with the proton phase space density versus energy in the energy interval approximately 10 to 70 keV for the selected time periods 0933-1000 UT (presubstorm) and 1230-1243 UT (recovery phase) during the 1055 substorm on March 22, 1979. A table listing the proton energy density for presubstorm and recovery periods is also provided.
Muñoz, R.; Munuera, C.; Martínez, J. I.; Azpeitia, J.; Gómez-Aleixandre, C.; García-Hernández, M.
2016-01-01
Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650°C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω·sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies. PMID:28070341
Global Hybrid Simulation of Alfvenic Waves Associated with Magnetotail Reconnection and Fast Flows
NASA Astrophysics Data System (ADS)
Cheng, L.; Lin, Y.; Wang, X.; Perez, J. D.
2017-12-01
Alfvenic fluctuations have been observed near the magnetotail plasma sheet boundary layer associated with fast flows. In this presentation, we use the Auburn 3-D Global Hybrid code (ANGIE3D) to investigate the generation and propagation of Alfvenic waves in the magnetotail. Shear Alfven waves and kinetic Alfven waves (KAWs) are found to be generated in magnetic reconnection in the plasma sheet as well as in the dipole-like field region of the magnetosphere, carrying Poynting flux along magnetic field lines toward the ionosphere, and the wave structure is strongly altered by the flow braking in the tail. The 3-D structure of the wave electromagnetic field and the associated parallel currents in reconnection and the dipole-like field region is presented. The Alfvenic waves exhibit a turbulence spectrum. The roles of these Alfvenic waves in ion heating is discussed.
Sakurai, Manabu; Satoh, Toyomi; Matsumoto, Koji; Michikami, Hiroo; Nakamura, Yuko; Nakao, Sari; Ochi, Hiroyuki; Onuki, Mamiko; Minaguchi, Takeo; Yoshikawa, Hiroyuki
2015-05-01
Elevated plasma D-dimer (DD) is associated with decreased survival among patients with breast, lung, and colon cancers. The present study clarifies the prognostic significance of pretreatment plasma DD levels in patients with epithelial ovarian cancer (EOC). We investigated pretreatment DD levels and other variables for overall survival using univariate and multivariate analyses in 134 consecutive patients with EOC stages II to IV who were initially treated between November 2004 and December 2010. The median follow-up period was 53 (7-106) months. Univariate analysis significantly associated elevated pretreatment DD (≥2.0 μg/mL) levels to poor 5-year overall survival rates irrespective of previously treated venous thromboembolism (72.2% vs 52.6%, P = 0.039). Cancer antigen 125 levels of 200 U/mL or higher (P = 0.011), distant metastases (P = 0.0004), residual tumors (P < 0.0001), and International Federation of Gynecology and Obstetrics stage III/IV (P = 0.0033) were also poor prognostic factors. Multivariate analysis independently associated DD levels of 2.0 μg/mL or higher (P = 0.041), distant metastases (P = 0.013), and residual tumors (P < 0.0001) with poor overall survival. High pretreatment DD levels are associated with poor overall survival in patients with EOC independently of venous thromboembolism and tumor extension and might comprise a promising prognostic biomarker for patients with EOC.
Wave number determination of Pc 1-2 mantle waves considering He++ ions: A Cluster study
NASA Astrophysics Data System (ADS)
Grison, B.; Escoubet, C. P.; Santolík, O.; Cornilleau-Wehrlin, N.; Khotyaintsev, Y.
2014-09-01
The present case study concerns narrowband electromagnetic emission detected in the distant cusp region simultaneously with upgoing plasma flows. The wave properties match the usual properties of the Pc 1-2 mantle waves: small angle between the wave vector and the magnetic field line, left-hand polarization, and propagation toward the ionosphere. We report here the first direct wave vector measurement of these waves (about 1.2 × 10- 2 rad/km) through multi spacecraft analysis using the three magnetic components and, at the same time, through single spacecraft analysis based on the refractive index analysis using the three magnetic components and two electric components. The refractive index analysis offers a simple way to estimate wave numbers in this frequency range. Numerical calculations are performed under the observed plasma conditions. The obtained results show that the ion distribution functions are unstable to ion cyclotron instability at the observed wave vector value, due to the large ion temperature anisotropy. We thus show that these electromagnetic ion cyclotron (EMIC) waves are amplified in the distant cusp region. The Poynting flux of the waves is counterstreaming with respect to the plasma flow. This sense of propagation is consistent with the time necessary to amplify the emissions to the observed level. We point out the role of the wave damping at the He++ gyrofrequency to explain that such waves cannot be observed from the ground at the cusp foot print location.
Non-thermal Power-Law Distributions in Solar and Space Plasmas
NASA Astrophysics Data System (ADS)
Oka, M.; Battaglia, M.; Birn, J.; Chaston, C. C.; Effenberger, F.; Eriksson, E.; Fletcher, L.; Hatch, S.; Imada, S.; Khotyaintsev, Y. V.; Kuhar, M.; Livadiotis, G.; Miyoshi, Y.; Retino, A.
2017-12-01
Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated particles often exhibit a power-law and are characterized by the power-law index δ, it remains unclear how particles are accelerated to high energies and how δ is determined. Here, we review previous observations of the power-law index δ in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the "above-the-looptop" solar hard X-ray source and the plasma sheet in Earth's magnetotail), the spectra are typically soft (δ> 4). This is in contrast to the typically hard spectra (δ< 4) that are observed in coincidence with shocks. The difference implies that shocks are more efficient in producing a larger fraction of non-thermal electron energies than magnetic reconnection. A caveat is that during active times in Earth's magnetotail, δ values seem spatially uniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.
Computer simulation of a geomagnetic substorm
NASA Technical Reports Server (NTRS)
Lyon, J. G.; Brecht, S. H.; Huba, J. D.; Fedder, J. A.; Palmadesso, P. J.
1981-01-01
A global two-dimensional simulation of a substormlike process occurring in earth's magnetosphere is presented. The results are consistent with an empirical substorm model - the neutral-line model. Specifically, the introduction of a southward interplanetary magnetic field forms an open magnetosphere. Subsequently, a substorm neutral line forms at about 15 earth radii or closer in the magnetotail, and plasma sheet thinning and plasma acceleration occur. Eventually the substorm neutral line moves tailward toward its presubstorm position.
Jang, Chul Ho; Ahn, Seung Hyun; Kim, Geun Hyung
2016-12-01
Silicone sheet is a material which is commonly used in middle ear surgery to prevent the formation of adhesions between the tympanic membrane and the medial bony wall of the middle ear cavity. However, silicone sheet can induce a tight and hard fibrous capsule in the region of the stapes, and this is particularly common in cases of eustachian tube dysfunction. As a result of the fibrous encapsulation around the silicone sheet, postoperative aeration of the stapes can be interrupted causing poor hearing gain. In this study, we performed an in vitro and in vivo evaluation of the antifibrotic effects of a dexamethasone and alginate (Dx/alginate) coating on silicone sheet. The Dx/alginate-coated silicone sheets were fabricated using a plasma-treatment and coating method. The Dx/alginate-coated silicone sheets effectively limited in vitro fibroblast attachment and proliferation due to the controlled release of Dx, which can be modified by manipulation of the alginate coating. For the in-vivo evaluation, guinea pigs (albino, male, weighing 250g) were divided into two groups, with the control group (n=5) implanted with silicone sheet and the test group (n=5) receiving Dx/alginate-coated silicone sheet. Animals were sacrificed 3 weeks after implantation, and histological analysis was performed using hematoxylin and eosin (H&E) and immunohistochemical staining techniques. Dx/alginate-coated silicone sheets showed marked inhibition of fibrosis in both the in vitro and in vivo studies. Silicone sheet that incorporates a Dx/alginate coating can release Dx and inhibit fibrosis in the middle ear. This material could be utilized in middle ear surgery as a means of preserving proper aeration and hearing gain following ossiculoplasty. Copyright © 2016 Elsevier B.V. All rights reserved.
Titan's Variable Plasma Interaction
NASA Astrophysics Data System (ADS)
Ledvina, S. A.; Brecht, S. H.
2015-12-01
Cassini observations have found that the plasma and magnetic field conditions upstream of Titan are far more complex than they were thought to be after the Voyager encounter. Rymer et al., (2009) used the Cassini Plasma Spectrometer (CAPS) electron observations to classify the plasma conditions along Titan's orbit into 5 types (Plasma Sheet, Lobe, Mixed, Magnetosheath and Misc.). Nemeth et al., (2011) found that the CAPS ion observations could also be separated into the same plasma regions as defined by Rymer et al. Additionally the T-96 encounter found Titan in the solar wind adding a sixth classification. Understanding the effects of the variable upstream plasma conditions on Titan's plasma interaction and the evolution of Titan's ionosphere/atmosphere is one of the main objectives of the Cassini mission. To compliment the mission we perform hybrid simulations of Titan's plasma interaction to examine the effects of the incident plasma distribution function and the flow velocity. We closely examine the results on Titan's induced magnetosphere and the resulting pickup ion properties.
An investigation of transient pressure and plasma properties in a pinched plasma column. M.S. Thesis
NASA Technical Reports Server (NTRS)
Stover, E. K.; York, T. M.
1971-01-01
The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with the following plasma diagnostics: a special rapid response pressure transducer, a magnetic field probe, a voltage probe and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior; they were in temporal sequence: strong axial pressure asymmetry noted early in plasma column lifetime followed by plasma heating in which there is a rapid rise in static pressure and a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating is attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity. Turbulent heating arising from discharge current excitation of the ion acoustic wave instability is also considered a possible heating mechanism.
Origin of low proton-to-electron temperature ratio in the Earth's plasma sheet
NASA Astrophysics Data System (ADS)
Grigorenko, E. E.; Kronberg, E. A.; Daly, P. W.; Ganushkina, N. Yu.; Lavraud, B.; Sauvaud, J.-A.; Zelenyi, L. M.
2016-10-01
We study the proton-to-electron temperature ratio (Tp/Te) in the plasma sheet (PS) of the Earth's magnetotail using 5 years of Cluster observations (2001-2005). The PS intervals are searched within a region defined with -19 < X ≤ -7 RE and |Y| < 15 RE (GSM) under the condition |BX| ≤ 10 nT. One hundred sixty PS crossings are identified. We find an average value of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Alexander Y.; Beloborodov, Andrei M., E-mail: amb@phys.columbia.edu
2014-11-01
We present the first self-consistent global simulations of pulsar magnetospheres with operating e {sup ±} discharge. We focus on the simple configuration of an aligned or anti-aligned rotator. The star is spun up from a zero (vacuum) state to a high angular velocity, and we follow the coupled evolution of its external electromagnetic field and plasma particles using the ''particle-in-cell'' method. A plasma magnetosphere begins to form through the extraction of particles from the star; these particles are accelerated by the rotation-induced electric field, producing curvature radiation and igniting e {sup ±} discharge. We follow the system evolution for severalmore » revolution periods, longer than required to reach a quasi-steady state. Our numerical experiment puts to test previous ideas for the plasma flow and gaps in the pulsar magnetosphere. We first consider rotators capable of producing pairs out to the light cylinder through photon-photon collisions. We find that their magnetospheres are similar to the previously obtained force-free solutions with a Y-shaped current sheet. The magnetosphere continually ejects e {sup ±} pairs and ions. Pair creation is sustained by a strong electric field along the current sheet. We observe powerful curvature and synchrotron emission from the current sheet, consistent with Fermi observations of gamma-ray pulsars. We then study pulsars that can only create pairs in the strong-field region near the neutron star, well inside the light cylinder. We find that both aligned and anti-aligned rotators relax to the ''dead'' state with suppressed pair creation and electric currents, regardless of the discharge voltage.« less
NASA Astrophysics Data System (ADS)
Alejandro Munoz Sepulveda, Patricio; Buechner, Joerg
2017-04-01
The effects of kinetic instabilities on the solar wind electron velocity distribution functions (eVDFs) are mostly well understood under local homogeneous and stationary conditions. But the solar wind also contains current sheets, which affect the local properties of instabilities, turbulence and thus the observed non-maxwellian features in the eVDFs. Those processes are vastly unexplored. Therefore, we aim to investigate the influence of self-consistently generated turbulence via electron-scale instabilities in reconnecting current sheets on the formation of suprathermal features in the eVDFs. For this sake, we carry out 3D fully-kinetic Particle-in-Cell code numerical simulations of force free current sheets with a guide magnetic field. We find extended tails, anisotropic plateaus and non-gyrotropic features in the eVDFs, correlated with the locations and time where micro-turbulence is enhanced in the current sheet due to current-aligned streaming instabilities. We also discuss the influence of the plasma parameters, such as the ion to electron temperature ratio, on the excitation of current sheet instabilities and their effect on the properties of the eVDFs.
2010-12-27
z are aligned with those of the usual Geocentric Sun - Earth (aSE) coordinates. In this frame, +x points from the Earth to the Sun , +y points out of...current sheet (box) in the solar wind. x, y, and z are aligned with the aSE coordinates, with +X pointing from the Earth toward the Sun , +y out of the...account the exact ion orbits and such properties as the anisotropic and nondiagonal pressure tensor and sheared ion flows. Figure 1a shows a schematic
The Physical Elements of Onset of the Magnetospheric Substorm
NASA Technical Reports Server (NTRS)
Erickson, Gary M.
1997-01-01
During this reporting period effort continued in the areas: (1) understanding the mechanisms responsible for substorm onset, and (2) application of a fundamental description of field-aligned currents and parallel electric fields to the plasma-sheet boundary layer.
Opioid Titration Order Sheet or Standard Care in Treating Patients With Cancer Pain
2012-08-04
Brain and Central Nervous System Tumors; Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Lymphoproliferative Disorder; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Pain; Precancerous Condition; Unspecified Adult Solid Tumor, Protocol Specific
The Skylab barium plasma injection experiments. II - Evidence for a double layer
NASA Technical Reports Server (NTRS)
Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Davis, T. N.; Peek, H. M.
1976-01-01
Television observations of a barium-plasma flux tube extending from near 4500 km to near 10,000 km during a magnetic substorm and dawn-sector auroral display indicated several interesting anomalous events. Beyond 5500 km, there was a rapid increase in brightness accompanied by flux-tube splitting and diffusion, leaving behind a truncated single flux tube. From the orientation of the flux tube compared with theoretical field models, the presence of a substantial field-aligned current sheet is deduced. A suggested explanation of these phenomena is given in terms of a plasma potential double layer.
Theory of relativistic radiation reflection from plasmas
NASA Astrophysics Data System (ADS)
Gonoskov, Arkady
2018-01-01
We consider the reflection of relativistically strong radiation from plasma and identify the physical origin of the electrons' tendency to form a thin sheet, which maintains its localisation throughout its motion. Thereby, we justify the principle of relativistic electronic spring (RES) proposed in [Gonoskov et al., Phys. Rev. E 84, 046403 (2011)]. Using the RES principle, we derive a closed set of differential equations that describe the reflection of radiation with arbitrary variation of polarization and intensity from plasma with an arbitrary density profile for an arbitrary angle of incidence. We confirm with ab initio PIC simulations that the developed theory accurately describes laser-plasma interactions in the regime where the reflection of relativistically strong radiation is accompanied by significant, repeated relocation of plasma electrons. In particular, the theory can be applied for the studies of plasma heating and coherent and incoherent emissions in the RES regime of high-intensity laser-plasma interaction.
Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felten, A.; Nittler, L.; Pireaux, J.-J.
2014-11-03
Plasma hydrogenation of graphene has been proposed as a tool to modify the properties of graphene. However, hydrogen plasma is a complex system and controlled hydrogenation of graphene suffers from a lack of understanding of the plasma chemistry. Here, we correlate the modifications induced on monolayer graphene studied by Raman spectroscopy with the hydrogen ions energy distributions obtained by mass spectrometry. We measure the energy distribution of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} ions for different plasma conditions showing that their energy strongly depends on the sample position, pressure, and plasma power and can reach values asmore » high as 45 eV. Based on these measurements, we speculate that under specific plasma parameters, protons should possess enough energy to penetrate the graphene sheet. Therefore, a graphene membrane could become, under certain conditions, transparent to both protons and electrons.« less
Production of dense plasmas in a hypocycloidal pinch apparatus
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1977-01-01
A high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production have been made. The collapse fronts of the current sheets are well organized, and dense plasma foci are produced on the axis with radial stability in excess of 5 microsec. A plasma density greater than 10 to the 18th power per cu cm is determined with Stark broadening and CO2 laser absorption. Essentially complete absorption of a high-energy CO2 laser beam has been observed. A plasma temperature of approximately 1 keV is measured with differential transmission of soft X-rays through thin foils. The advantages of this apparatus over the coaxial plasma focus are improvements in (1) plasma volume, (2) stability, (3) containment time, (4) access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
Dense plasma focus production in a hypocycloidal pinch
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1975-01-01
A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
A New Understanding of the Europa Atmosphere and Limits on Geophysical Activity
NASA Astrophysics Data System (ADS)
Shemansky, D. E.; Yung, Y. L.; Liu, X.; Yoshii, J.; Hansen, C. J.; Hendrix, A. R.; Esposito, L. W.
2014-12-01
Deep extreme ultraviolet spectrograph exposures of the plasma sheet at the orbit of Europa, obtained in 2001 using the Cassini Ultraviolet Imaging Spectrograph experiment, have been analyzed to determine the state of the gas. The results are in basic agreement with earlier results, in particular with Voyager encounter measurements of electron density and temperature. Mass loading rates and lack of detectable neutrals in the plasma sheet, however, are in conflict with earlier determinations of atmospheric composition and density at Europa. A substantial fraction of the plasma species at the Europa orbit are long-lived sulfur ions originating at Io, with ~25% derived from Europa. During the outward radial diffusion process to the Europa orbit, heat deposition forces a significant rise in plasma electron temperature and latitudinal size accompanied with conversion to higher order ions, a clear indication that mass loading from Europa is very low. Analysis of far ultraviolet spectra from exposures on Europa leads to the conclusion that earlier reported atmospheric measurements have been misinterpreted. The results in the present work are also in conflict with a report that energetic neutral particles imaged by the Cassini ion and neutral camera experiment originate at the Europa orbit. An interpretation of persistent energetic proton pitch angle distributions near the Europa orbit as an effect of a significant population of neutral gas is also in conflict with the results of the present work. The general conclusion drawn here is that Europa is geophysically far less active than inferred in previous research, with mass loading of the plasma sheet <=4.5 × 1025 atoms s-1 two orders of magnitude below earlier published calculations. Temporal variability in the region joining the Io and Europa orbits, based on the accumulated evidence, is forced by the response of the system to geophysical activity at Io. No evidence for the direct injection of H2O into the Europa atmosphere or from Europa into the magnetosphere system, as has been observed at Enceladus in the Saturn system, is obtained in the present investigation.
Electromagnetic and Radiative Properties of Neutron Star Magnetospheres
NASA Astrophysics Data System (ADS)
Li, Jason G.
2014-05-01
Magnetospheres of neutron stars are commonly modeled as either devoid of plasma in "vacuum'' models or filled with perfectly conducting plasma with negligible inertia in "force-free'' models. While numerically tractable, neither of these idealized limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. In this work we improve upon these models by considering the structure of magnetospheres filled with resistive plasma. We formulate Ohm's Law in the minimal velocity fluid frame and implement a time-dependent numerical code to construct a family of resistive solutions that smoothly bridges the gap between the vacuum and force-free magnetosphere solutions. We further apply our method to create a self-consistent model for the recently discovered intermittent pulsars that switch between two distinct states: an "on'', radio-loud state, and an "off'', radio-quiet state with lower spin-down luminosity. Essentially, we allow plasma to leak off open field lines in the absence of pair production in the "off'' state, reproducing observed differences in spin-down rates. Next, we examine models in which the high-energy emission from gamma-ray pulsars comes from reconnecting current sheets and layers near and beyond the light cylinder. The reconnected magnetic field provides a reservoir of energy that heats particles and can power high-energy synchrotron radiation. Emitting particles confined to the sheet naturally result in a strong caustic on the skymap and double peaked light curves for a broad range of observer angles. Interpulse bridge emission likely arises from interior to the light cylinder, along last open field lines that traverse the space between the polar caps and the current sheet. Finally, we apply our code to solve for the magnetospheric structure of merging neutron star binaries. We find that the scaling of electromagnetic luminosity with orbital angular velocity varies between the power 4 for nonspinning stars and the power 1.5 for rapidly spinning millisecond pulsars near contact. Our derived scalings and magnetospheres can be used to help understand electromagnetic signatures from merging neutron stars to be observed by Advanced LIGO.
A NEW UNDERSTANDING OF THE EUROPA ATMOSPHERE AND LIMITS ON GEOPHYSICAL ACTIVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemansky, D. E.; Liu, X.; Yoshii, J.
2014-12-20
Deep extreme ultraviolet spectrograph exposures of the plasma sheet at the orbit of Europa, obtained in 2001 using the Cassini Ultraviolet Imaging Spectrograph experiment, have been analyzed to determine the state of the gas. The results are in basic agreement with earlier results, in particular with Voyager encounter measurements of electron density and temperature. Mass loading rates and lack of detectable neutrals in the plasma sheet, however, are in conflict with earlier determinations of atmospheric composition and density at Europa. A substantial fraction of the plasma species at the Europa orbit are long-lived sulfur ions originating at Io, with ∼25%more » derived from Europa. During the outward radial diffusion process to the Europa orbit, heat deposition forces a significant rise in plasma electron temperature and latitudinal size accompanied with conversion to higher order ions, a clear indication that mass loading from Europa is very low. Analysis of far ultraviolet spectra from exposures on Europa leads to the conclusion that earlier reported atmospheric measurements have been misinterpreted. The results in the present work are also in conflict with a report that energetic neutral particles imaged by the Cassini ion and neutral camera experiment originate at the Europa orbit. An interpretation of persistent energetic proton pitch angle distributions near the Europa orbit as an effect of a significant population of neutral gas is also in conflict with the results of the present work. The general conclusion drawn here is that Europa is geophysically far less active than inferred in previous research, with mass loading of the plasma sheet ≤4.5 × 10{sup 25} atoms s{sup –1} two orders of magnitude below earlier published calculations. Temporal variability in the region joining the Io and Europa orbits, based on the accumulated evidence, is forced by the response of the system to geophysical activity at Io. No evidence for the direct injection of H{sub 2}O into the Europa atmosphere or from Europa into the magnetosphere system, as has been observed at Enceladus in the Saturn system, is obtained in the present investigation.« less
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.
1983-01-01
Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.
The 3-D description of vertical current sheets with application to solar flares
NASA Technical Reports Server (NTRS)
Fontenla, Juan M.; Davis, J. M.
1991-01-01
Following a brief review of the processes which have been suggested for explaining the occurrence of solar flares we suggest a new scenario which builds on the achievements of the previous suggestion that the current sheets, which develop naturally in 3-D cases with gravity from impacting independent magnetic structures (i.e., approaching current systems), do not consist of horizontal currents but are instead predominantly vertical current systems. This suggestion is based on the fact that as the subphotospheric sources of the magnetic field displace the upper photosphere and lower chromosphere regions, where plasma beta is near unity, will experience predominantly horizontal mass motions which will lead to a distorted 3-D configurations of the magnetic field having stored free energy. In our scenario, a vertically flowing current sheet separates the plasma regions associated with either of the subphotospheric sources. This reflects the balanced tension of the two stressed fields which twist around each other. This leads naturally to a metastable or unstable situation as the twisted field emerges into a low beta region where vertical motions are not inhibited by gravity. In our flare scenario the impulsive energy release occurs, initially, not by reconnection but mainly by the rapid change of the magnetic field which has become unstable. During the impulsive phase the field lines contort in such way as to realign the electric current sheet into a minimum energy horizontal flow. This contortion produces very large electric fields which will accelerate particles. As the current evolves to a horizontal configuration the magnetic field expands vertically, which can be accompanied by eruptions of material. The instability of a horizontal current is well known and causes the magnetic field to undergo a rapid outward expansion. In our scenario, fast reconnection is not necessary to trigger the flare, however, slow reconnection would occur continuously in the current layer at the locations of potential flaring. During the initial rearrangement of the field strong plasma turbulence develops. Following the impulsive phase, the final current sheet will experience faster reconnection which we believe responsible for the gradual phase of the flare. The reconnection will dissipate part of the current and will produce sustained and extended heating in the flare region and in the postflare loops.
Numerical Simulation on a Possible Formation Mechanism of Interplanetary Magnetic Cloud Boundaries
NASA Astrophysics Data System (ADS)
Fan, Quan-Lin; Wei, Feng-Si; Feng, Xue-Shang
2003-08-01
The formation mechanism of the interplanetary magnetic cloud (MC) boundaries is numerically investigated by simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet. The compressible 2.5D MHD equations are solved. Results show that the magnetic reconnection process is a possible formation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features are found. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by a driven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flow as a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these two boundaries appear large value of the plasma parameter β, clear increase of plasma temperature and density, distinct decrease of magnetic magnitude, and a transition of magnetic field direction of about 180 degrees. The outcome of the present simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc. The project supported by National Natural Science Foundation of China under Grant Nos. 40104006, 49925412, and 49990450
Origins and Transport of Ions during Magnetospheric Substorms
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, Maha; El-Alaoui, Mostafa; Peroomian, Vahe; Raeder, Joachim; Walker, Ray J.; Frank, L. A.; Paterson, W. R.
1999-01-01
We investigate the origins and the transport of ions observed in the near-Earth plasma sheet during the growth and expansion phases of a magnetospheric substorm that occurred on November 24, 1996. Ions observed at Geotail were traced backward in time in time-dependent magnetic and electric fields to determine their origins and the acceleration mechanisms responsible for their energization. Results from this investigation indicate that, during the growth phase of the substorm, most of the ions reaching Geotail had origins in the low latitude boundary layer (LLBL) and had alread@, entered the magnetosphere when the growth phase began. Late in the growth phase and in the expansion phase a higher proportion of the ions reaching Geotail had their origin in the plasma mantle. Indeed, during the expansion phase more than 90% of the ions seen by Geotail were from the mantle. The ions were accelerated enroute to the spacecraft; however, most of the ions' energy gain was achieved by non-adiabatic acceleration while crossing the equatorial current sheet just prior to their detection by Geotail. In general, the plasma mantle from both southern and northern hemispheres supplied non-adiabatic ions to Geotail, whereas the LLBL supplied mostly adiabatic ions to the distributions measured by the spacecraft.
NASA Astrophysics Data System (ADS)
Nykyri, K.; Moore, T.; Dimmock, A. P.
2017-12-01
In the Earth's magnetosphere, the magnetotail plasma sheet ions are much hotter than in the shocked solar wind. On the dawn-sector, the cold-component ions are more abundant and hotter by 30-40 percent when compared to the dusk sector. Recent statistical studies of the flank magnetopause and magnetosheath have shown that the level of temperature asymmetry of the magnetosheath is unable to account for this, so additional physical mechanisms must be at play, either at the magnetopause or plasma sheet that contribute to this asymmetry. In this study, we perform a statistical analysis on the ion-scale wave properties in the three main plasma regimes common to flank magnetopause boundary crossings when the boundary is unstable to KHI: hot and tenuous magnetospheric, cold and dense magnetosheath and mixed [Hasegawa 2004 et al., 2004]. These statistics of ion-scale wave properties are compared to observations of fast magnetosonic wave modes that have recently been linked to Kelvin-Helmholtz vortex centered ion heating [Moore et al., 2016]. The statistical analysis shows that during KH events there is enhanced non-adiabatic heating calculated during (temporal) ion scale wave intervals when compared to non-KH events.
Caltech water-ice dusty plasma: preliminary results
NASA Astrophysics Data System (ADS)
Bellan, Paul; Chai, Kilbyoung
2013-10-01
A water-ice dusty plasma laboratory experiment has begun operation at Caltech. As in Ref., a 1-5 watt parallel-plate 13.56 MHz rf discharge plasma has LN2-cooled electrodes that cool the neutral background gas to cryogenic temperatures. However, instead of creating water vapor by in-situ deuterium-oxygen bonding, here the neutral gas is argon and water vapor is added in a controlled fashion. Ice grains spontaneously form after a few seconds. Photography with a HeNe line filter of a sheet of HeNe laser light sheet illuminating a cross section of dust grains shows a large scale whorl pattern composed of concentric sub-whorls having wave-like spatially varying intensity. Each sub-whorl is composed of very evenly separated fine-scale stream-lines indicating that the ice grains move in self-organized lanes like automobiles on a multi-line highway. HeNe laser extinction together with an estimate of dust density from the intergrain spacing in photographs indicates a 5 micron nominal dust grain radius. HeNe laser diffraction patterns indicate the ice dust grains are large and ellipsoidal at low pressure (200 mT) but small and spheroidal at high pressure (>600 mT). Supported by USDOE.