Sample records for distant regulatory elements

  1. Conserved Noncoding Elements in the Most Distant Genera of Cephalochordates: The Goldilocks Principle

    PubMed Central

    Yue, Jia-Xing; Kozmikova, Iryna; Ono, Hiroki; Nossa, Carlos W.; Kozmik, Zbynek; Putnam, Nicholas H.; Yu, Jr-Kai; Holland, Linda Z.

    2016-01-01

    Cephalochordates, the sister group of vertebrates + tunicates, are evolving particularly slowly. Therefore, genome comparisons between two congeners of Branchiostoma revealed so many conserved noncoding elements (CNEs), that it was not clear how many are functional regulatory elements. To more effectively identify CNEs with potential regulatory functions, we compared noncoding sequences of genomes of the most phylogenetically distant cephalochordate genera, Asymmetron and Branchiostoma, which diverged approximately 120–160 million years ago. We found 113,070 noncoding elements conserved between the two species, amounting to 3.3% of the genome. The genomic distribution, target gene ontology, and enriched motifs of these CNEs all suggest that many of them are probably cis-regulatory elements. More than 90% of previously verified amphioxus regulatory elements were re-captured in this study. A search of the cephalochordate CNEs around 50 developmental genes in several vertebrate genomes revealed eight CNEs conserved between cephalochordates and vertebrates, indicating sequence conservation over >500 million years of divergence. The function of five CNEs was tested in reporter assays in zebrafish, and one was also tested in amphioxus. All five CNEs proved to be tissue-specific enhancers. Taken together, these findings indicate that even though Branchiostoma and Asymmetron are distantly related, as they are evolving slowly, comparisons between them are likely optimal for identifying most of their tissue-specific cis-regulatory elements laying the foundation for functional characterizations and a better understanding of the evolution of developmental regulation in cephalochordates. PMID:27412606

  2. DiRE: identifying distant regulatory elements of co-expressed genes

    PubMed Central

    Gotea, Valer; Ovcharenko, Ivan

    2008-01-01

    Regulation of gene expression in eukaryotic genomes is established through a complex cooperative activity of proximal promoters and distant regulatory elements (REs) such as enhancers, repressors and silencers. We have developed a web server named DiRE, based on the Enhancer Identification (EI) method, for predicting distant regulatory elements in higher eukaryotic genomes, namely for determining their chromosomal location and functional characteristics. The server uses gene co-expression data, comparative genomics and profiles of transcription factor binding sites (TFBSs) to determine TFBS-association signatures that can be used for discriminating specific regulatory functions. DiRE's unique feature is its ability to detect REs outside of proximal promoter regions, as it takes advantage of the full gene locus to conduct the search. DiRE can predict common REs for any set of input genes for which the user has prior knowledge of co-expression, co-function or other biologically meaningful grouping. The server predicts function-specific REs consisting of clusters of specifically-associated TFBSs and it also scores the association of individual transcription factors (TFs) with the biological function shared by the group of input genes. Its integration with the Array2BIO server allows users to start their analysis with raw microarray expression data. The DiRE web server is freely available at http://dire.dcode.org. PMID:18487623

  3. Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements.

    PubMed

    Kyrchanova, Olga; Chetverina, Darya; Maksimenko, Oksana; Kullyev, Andrey; Georgiev, Pavel

    2008-12-01

    Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs-scs, scs'-scs', 1A2-1A2 and Wari-Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5-Su(Hw), dCTCF-Su(Hw), or dCTCF-Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements.

  4. Identification of a distant cis-regulatory element controlling pharyngeal arch-specific expression of zebrafish gdf6a/radar

    PubMed Central

    Reed, Nykolaus P.; Mortlock, Douglas P.

    2011-01-01

    Skeletal formation is an essential and intricately regulated part of vertebrate development. Humans and mice deficient in Growth and Differentiation Factor 6 (Gdf6) have numerous skeletal abnormalities including joint fusions and cartilage reductions. The expression of Gdf6 is dynamic and in part regulated by distant evolutionarily conserved cis-regulatory elements. radar/gdf6a is a zebrafish ortholog of Gdf6 and has an essential role in embryonic patterning. Here we show that radar is transcribed in the cells surrounding and between the developing cartilages of the ventral pharyngeal arches, similar to mouse Gdf6. A 312 bp evolutionarily conserved region (ECR5), 122 kilobases downstream, drives expression in a pharyngeal arch-specific manner similar to endogenous radar/gdf6a. Deletion analysis identified a 78 bp region within ECR5 that is essential for transgene activity. This work illustrates that radar is regulated in the pharyngeal arches by a distant conserved element and suggests radar has similar functions in skeletal development in fish and mammals. PMID:20201106

  5. Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements

    PubMed Central

    Kyrchanova, Olga; Chetverina, Darya; Maksimenko, Oksana; Kullyev, Andrey; Georgiev, Pavel

    2008-01-01

    Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs–scs, scs’–scs’, 1A2–1A2 and Wari–Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5–Su(Hw), dCTCF–Su(Hw), or dCTCF–Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements. PMID:18987002

  6. Genomic deletion of a long-range bone enhancer misregulatessclerostin in Van Buchem disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loots, Gabriela G.; Kneissel, Michaela; Keller, Hansjoerg

    2005-04-15

    Mutations in distant regulatory elements can negatively impact human development and health, yet due to the difficulty of detecting these critical sequences we predominantly focus on coding sequences for diagnostic purposes. We have undertaken a comparative sequence-based approach to characterize a large noncoding region deleted in patients affected by Van Buchem disease (VB), a severe sclerosing bone dysplasia. Using BAC recombination and transgenesis we characterized the expression of human sclerostin (sost) from normal (hSOSTwt) or Van Buchem(hSOSTvb D) alleles. Only the hSOSTwt allele faithfully expressed high levels of human sost in the adult bone and impacted bone metabolism, consistent withmore » the model that the VB noncoding deletion removes a sost specific regulatory element. By exploiting cross-species sequence comparisons with in vitro and in vivo enhancer assays we were able to identify a candidate enhancer element that drives human sost expression in osteoblast-like cell lines in vitro and in the skeletal anlage of the E14.5 mouse embryo, and discovered a novel function for sclerostin during limb development. Our approach represents a framework for characterizing distant regulatory elements associated with abnormal human phenotypes.« less

  7. Potential Novel Mechanism for Axenfeld-Rieger Syndrome: Deletion of a Distant Region Containing Regulatory Elements of PITX2

    PubMed Central

    Volkmann, Bethany A.; Zinkevich, Natalya S.; Mustonen, Aki; Schilter, Kala F.; Bosenko, Dmitry V.; Reis, Linda M.; Broeckel, Ulrich; Link, Brian A.

    2011-01-01

    Purpose. Mutations in PITX2 are associated with Axenfeld-Rieger syndrome (ARS), which involves ocular, dental, and umbilical abnormalities. Identification of cis-regulatory elements of PITX2 is important to better understand the mechanisms of disease. Methods. Conserved noncoding elements surrounding PITX2/pitx2 were identified and examined through transgenic analysis in zebrafish; expression pattern was studied by in situ hybridization. Patient samples were screened for deletion/duplication of the PITX2 upstream region using arrays and probes. Results. Zebrafish pitx2 demonstrates conserved expression during ocular and craniofacial development. Thirteen conserved noncoding sequences positioned within a gene desert as far as 1.1 Mb upstream of the human PITX2 gene were identified; 11 have enhancer activities consistent with pitx2 expression. Ten elements mediated expression in the developing brain, four regions were active during eye formation, and two sequences were associated with craniofacial expression. One region, CE4, located approximately 111 kb upstream of PITX2, directed a complex pattern including expression in the developing eye and craniofacial region, the classic sites affected in ARS. Screening of ARS patients identified an approximately 7600-kb deletion that began 106 to 108 kb upstream of the PITX2 gene, leaving PITX2 intact while removing regulatory elements CE4 to CE13. Conclusions. These data suggest the presence of a complex distant regulatory matrix within the gene desert located upstream of PITX2 with an essential role in its activity and provides a possible mechanism for the previous reports of ARS in patients with balanced translocations involving the 4q25 region upstream of PITX2 and the current patient with an upstream deletion. PMID:20881290

  8. Mapping cis-Regulatory Domains in the Human Genome UsingMulti-Species Conservation of Synteny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahituv, Nadav; Prabhakar, Shyam; Poulin, Francis

    2005-06-13

    Our inability to associate distant regulatory elements with the genes that they regulate has largely precluded their examination for sequence alterations contributing to human disease. One major obstacle is the large genomic space surrounding targeted genes in which such elements could potentially reside. In order to delineate gene regulatory boundaries we used whole-genome human-mouse-chicken (HMC) and human-mouse-frog (HMF) multiple alignments to compile conserved blocks of synteny (CBS), under the hypothesis that these blocks have been kept intact throughout evolution at least in part by the requirement of regulatory elements to stay linked to the genes that they regulate. A totalmore » of 2,116 and 1,942 CBS>200 kb were assembled for HMC and HMF respectively, encompassing 1.53 and 0.86 Gb of human sequence. To support the existence of complex long-range regulatory domains within these CBS we analyzed the prevalence and distribution of chromosomal aberrations leading to position effects (disruption of a genes regulatory environment), observing a clear bias not only for mapping onto CBS but also for longer CBS size. Our results provide a genome wide data set characterizing the regulatory domains of genes and the conserved regulatory elements within them.« less

  9. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involvedmore » in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.« less

  10. Primate-Specific Evolution of an LDLR Enhancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian-fei; Prabhakar, Shyam; Wang, Qianben

    2006-06-28

    Sequence changes in regulatory regions have often beeninvoked to explain phenotypic divergence among species, but molecularexamples of this have been difficult to obtain. In this study, weidentified an anthropoid primate specific sequence element thatcontributed to the regulatory evolution of the LDL receptor. Using acombination of close and distant species genomic sequence comparisonscoupled with in vivo and in vitro studies, we show that a functionalcholesterol-sensing sequence motif arose and was fixed within apre-existing enhancer in the common ancestor of anthropoid primates. Ourstudy demonstrates one molecular mechanism by which ancestral mammalianregulatory elements can evolve to perform new functions in the primatelineage leadingmore » to human.« less

  11. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence

    PubMed Central

    Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya

    2015-01-01

    Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930

  12. Functional autonomy of distant-acting human enhancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visel, Axel; Akiyama, Jennifer A.; Shoukry, Malak

    2009-02-19

    Many human genes are associated with dispersed arrays of transcriptional enhancers that regulate their expression in time and space. Studies in invertebrate model systems have suggested that these elements function as discrete and independent regulatory units, but the in vivo combinatorial properties of vertebrate enhancers remain poorly understood. To explore the modularity and regulatory autonomy of human developmental enhancers, we experimentally concatenated up to four enhancers from different genes and used a transgenic mouse assay to compare the in vivo activity of these compound elements with that of the single modules. In all of the six different combinations of elementsmore » tested, the reporter gene activity patterns were additive without signs of interference between the individual modules, indicating that regulatory specificity was maintained despite the presence of closely-positioned heterologous enhancers. Even in cases where two elements drove expression in close anatomical proximity, such as within neighboring subregions of the developing limb bud, the compound patterns did not show signs of cross-inhibition between individual elements or novel expression sites. These data indicate that human developmental enhancers are highly modular and functionally autonomous and suggest that genomic enhancer shuffling may have contributed to the evolution of complex gene expression patterns in vertebrates« less

  13. Gene transfer strategies in animal transgenesis.

    PubMed

    Montoliu, Lluís

    2002-01-01

    Position effects in animal transgenesis have prevented the reproducible success and limited the initial expectations of this technique in many biotechnological projects. Historically, several strategies have been devised to overcome such position effects, including the progressive addition of regulatory elements belonging to the same or to a heterologous expression domain. An expression domain is thought to contain all regulatory elements that are needed to specifically control the expression of a given gene in time and space. The lack of profound knowledge on the chromatin structure of expression domains of biotechnological interest, such as mammary gland-specific genes, explains why most standard expression vectors have failed to drive high-level, position-independent, and copy-number-dependent expression of transgenes in a reproducible manner. In contrast, the application of artificial chromosome-type constructs to animal transgenesis usually ensures optimal expression levels. YACs, BACs, and PACs have become crucial tools in animal transgenesis, allowing the inclusion of distant key regulatory sequences, previously unknown, that are characteristic for each expression domain. These elements contribute to insulating the artificial chromosome-type constructs from chromosomal position effects and are fundamental in order to guarantee the correct expression of transgenes.

  14. Primate-specific evolution of an LDLR enhancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian-Fei; Prabhakar, Shyam; Wang, Qianben

    2005-12-01

    Sequence changes in regulatory regions have often been invoked to explain phenotypic divergence among species, but molecular examples of this have been difficult to obtain. In this study we identified an anthropoid primate-specific sequence element that contributed to the regulatory evolution of the low-density lipoprotein receptor. Using a combination of close and distant species genomic sequence comparisons coupled with in vivo and in vitro studies, we found that a functional cholesterol-sensing sequence motif arose and was fixed within a pre-existing enhancer in the common ancestor of anthropoid primates. Our study demonstrates one molecular mechanism by which ancestral mammalian regulatory elementsmore » can evolve to perform new functions in the primate lineage leading to human.« less

  15. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution

    NASA Technical Reports Server (NTRS)

    Hinman, Veronica F.; Nguyen, Albert T.; Cameron, R. Andrew; Davidson, Eric H.

    2003-01-01

    Evolutionary change in morphological features must depend on architectural reorganization of developmental gene regulatory networks (GRNs), just as true conservation of morphological features must imply retention of ancestral developmental GRN features. Key elements of the provisional GRN for embryonic endomesoderm development in the sea urchin are here compared with those operating in embryos of a distantly related echinoderm, a starfish. These animals diverged from their common ancestor 520-480 million years ago. Their endomesodermal fate maps are similar, except that sea urchins generate a skeletogenic cell lineage that produces a prominent skeleton lacking entirely in starfish larvae. A relevant set of regulatory genes was isolated from the starfish Asterina miniata, their expression patterns determined, and effects on the other genes of perturbing the expression of each were demonstrated. A three-gene feedback loop that is a fundamental feature of the sea urchin GRN for endoderm specification is found in almost identical form in the starfish: a detailed element of GRN architecture has been retained since the Cambrian Period in both echinoderm lineages. The significance of this retention is highlighted by the observation of numerous specific differences in the GRN connections as well. A regulatory gene used to drive skeletogenesis in the sea urchin is used entirely differently in the starfish, where it responds to endomesodermal inputs that do not affect it in the sea urchin embryo. Evolutionary changes in the GRNs since divergence are limited sharply to certain cis-regulatory elements, whereas others have persisted unaltered.

  16. Conserved regulatory elements of the promoter sequence of the gene rpoH of enteric bacteria

    PubMed Central

    Ramírez-Santos, Jesús; Collado-Vides, Julio; García-Varela, Martin; Gómez-Eichelmann, M. Carmen

    2001-01-01

    The rpoH regulatory region of different members of the enteric bacteria family was sequenced or downloaded from GenBank and compared. In addition, the transcriptional start sites of rpoH of Yersinia frederiksenii and Proteus mirabilis, two distant members of this family, were determined. Sequences similar to the σ70 promoters P1, P4 and P5, to the σE promoter P3 and to boxes DnaA1, DnaA2, cAMP receptor protein (CRP) boxes CRP1, CRP2 and box CytR present in Escherichia coli K12, were identified in sequences of closely related bacteria such as: E.coli, Shigella flexneri, Salmonella enterica serovar Typhimurium, Citrobacter freundii, Enterobacter cloacae and Klebsiella pneumoniae. In more distant bacteria, Y.frederiksenii and P.mirabilis, the rpoH regulatory region has a distal P1-like σ70 promoter and two proximal promoters: a heat-induced σE-like promoter and a σ70 promoter. Sequences similar to the regulatory boxes were not identified in these bacteria. This study suggests that the general pattern of transcription of the rpoH gene in enteric bacteria includes a distal σ70 promoter, >200 nt upstream of the initiation codon, and two proximal promoters: a heat-induced σE-like promoter and a σ70 promoter. A second proximal σ70 promoter under catabolite-regulation is probably present only in bacteria closely related to E.coli. PMID:11139607

  17. A novel approach to identifying regulatory motifs in distantly related genomes

    PubMed Central

    Van Hellemont, Ruth; Monsieurs, Pieter; Thijs, Gert; De Moor, Bart; Van de Peer, Yves; Marchal, Kathleen

    2005-01-01

    Although proven successful in the identification of regulatory motifs, phylogenetic footprinting methods still show some shortcomings. To assess these difficulties, most apparent when applying phylogenetic footprinting to distantly related organisms, we developed a two-step procedure that combines the advantages of sequence alignment and motif detection approaches. The results on well-studied benchmark datasets indicate that the presented method outperforms other methods when the sequences become either too long or too heterogeneous in size. PMID:16420672

  18. A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates.

    PubMed

    Parker, Hugo J; Bronner, Marianne E; Krumlauf, Robb

    2014-10-23

    A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code.

  19. The chaperone-like activity of the hepatitis C virus IRES and CRE elements regulates genome dimerization.

    PubMed

    Romero-López, Cristina; Barroso-delJesus, Alicia; Berzal-Herranz, Alfredo

    2017-02-24

    The RNA genome of the hepatitis C virus (HCV) establishes a network of long-distance RNA-RNA interactions that direct the progression of the infective cycle. This work shows that the dimerization of the viral genome, which is initiated at the dimer linkage sequence (DLS) within the 3'UTR, is promoted by the CRE region, while the IRES is a negative regulatory partner. Using differential 2'-acylation probing (SHAPE-dif) and molecular interference (HMX) technologies, the CRE activity was found to mainly lie in the critical 5BSL3.2 domain, while the IRES-mediated effect is dependent upon conserved residues within the essential structural elements JIIIabc, JIIIef and PK2. These findings support the idea that, along with the DLS motif, the IRES and CRE are needed to control HCV genome dimerization. They also provide evidences of a novel function for these elements as chaperone-like partners that fine-tune the architecture of distant RNA domains within the HCV genome.

  20. The chaperone-like activity of the hepatitis C virus IRES and CRE elements regulates genome dimerization

    PubMed Central

    Romero-López, Cristina; Barroso-delJesus, Alicia; Berzal-Herranz, Alfredo

    2017-01-01

    The RNA genome of the hepatitis C virus (HCV) establishes a network of long-distance RNA-RNA interactions that direct the progression of the infective cycle. This work shows that the dimerization of the viral genome, which is initiated at the dimer linkage sequence (DLS) within the 3′UTR, is promoted by the CRE region, while the IRES is a negative regulatory partner. Using differential 2′-acylation probing (SHAPE-dif) and molecular interference (HMX) technologies, the CRE activity was found to mainly lie in the critical 5BSL3.2 domain, while the IRES-mediated effect is dependent upon conserved residues within the essential structural elements JIIIabc, JIIIef and PK2. These findings support the idea that, along with the DLS motif, the IRES and CRE are needed to control HCV genome dimerization. They also provide evidences of a novel function for these elements as chaperone-like partners that fine-tune the architecture of distant RNA domains within the HCV genome. PMID:28233845

  1. Phylogenetic shadowing of primate sequences to find functional regions of the human genome.

    PubMed

    Boffelli, Dario; McAuliffe, Jon; Ovcharenko, Dmitriy; Lewis, Keith D; Ovcharenko, Ivan; Pachter, Lior; Rubin, Edward M

    2003-02-28

    Nonhuman primates represent the most relevant model organisms to understand the biology of Homo sapiens. The recent divergence and associated overall sequence conservation between individual members of this taxon have nonetheless largely precluded the use of primates in comparative sequence studies. We used sequence comparisons of an extensive set of Old World and New World monkeys and hominoids to identify functional regions in the human genome. Analysis of these data enabled the discovery of primate-specific gene regulatory elements and the demarcation of the exons of multiple genes. Much of the information content of the comprehensive primate sequence comparisons could be captured with a small subset of phylogenetically close primates. These results demonstrate the utility of intraprimate sequence comparisons to discover common mammalian as well as primate-specific functional elements in the human genome, which are unattainable through the evaluation of more evolutionarily distant species.

  2. Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex

    PubMed Central

    Savitsky, Mikhail; Kim, Maria; Kravchuk, Oksana; Schwartz, Yuri B.

    2016-01-01

    Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer–promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and “bridging” proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior–posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains. PMID:26715665

  3. Genome-wide identification of conserved intronic non-coding sequences using a Bayesian segmentation approach.

    PubMed

    Algama, Manjula; Tasker, Edward; Williams, Caitlin; Parslow, Adam C; Bryson-Richardson, Robert J; Keith, Jonathan M

    2017-03-27

    Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences. We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which 22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26 of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of transcription factors. This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-coding sequences. Our results complement previous findings that these sequences are enriched in transcription factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory factor binding sites, the majority of conserved sequences identified using our approach contain evidence of conserved RNA secondary structures, and our laboratory results suggest most are expressed. Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of the pathway-focussed analysis compared to the genome-wide analysis to improved alignment quality, suggesting that enhanced genomic alignments may reveal many more conserved intronic sequences.

  4. 77 FR 16021 - Reissuance of Nationwide Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... or access the U.S. Army Corps of Engineers Regulatory Home Page at http://www.usace.army.mil/Missions/CivilWorks/RegulatoryProgramandPermits.aspx . Corrections In the Federal Register of February 21, 2012... generally considered to be linear projects and each separate and distant crossing of a waterbody is eligible...

  5. Unusual Properties of Regulatory DNA from the Drosophila Engrailed Gene: Three ``pairing-Sensitive'' Sites within a 1.6-Kb Region

    PubMed Central

    Kassis, J. A.

    1994-01-01

    We have previously shown that a 2-kb fragment of engrailed DNA can suppress expression of a linked marker gene, white, in the P element vector CaSpeR. This suppression is dependent on the presence of two copies of engrailed DNA-containing P elements (P[en]) in proximity in the Drosophila genome (either in cis or in trans). In this study, the 2-kb fragment was dissected and found to contain three fragments of DNA which could mediate white suppression [called ``pairing-sensitive sites'' (PS)]. A PS site was also identified in regulatory DNA from the Drosophila escargot gene. The eye colors of six different P[en] insertions in the escargot gene suggest an interaction between P[en]-encoded and genome-encoded PS sites. I hypothesize that white gene expression from P[en] is repressed by the formation of a protein complex which is initiated at the engrailed PS sites and also requires interactions with flanking genomic DNA. Genes were sought which influence the function of PS sites. Mutations in some Polycomb and trithorax group genes were found to affect the eye color from some P[en] insertion sites. However, different mutations affected expression from different P[en] insertion sites and no one mutation was found to affect expression from all P[en] insertion sites examined. These results suggest that white expression from P[en] is not directly regulated by members of the Polycomb and trithorax group genes, but in some cases can be influenced by them. I propose that engrailed PS sites normally act to promote interactions between distantly located engrailed regulatory sites and the engrailed promoter. PMID:8005412

  6. Regulatory RNAs and chromatin modification in dosage compensation: a continuous path from flies to humans?

    PubMed

    Angelopoulou, Roxani; Lavranos, Giagkos; Manolakou, Panagiota

    2008-03-20

    Chromosomal sex determination is a widely distributed strategy in nature. In the most classic scenario, one sex is characterized by a homologue pair of sex chromosomes, while the other includes two morphologically and functionally distinct gonosomes. In mammalian diploid cells, the female is characterized by the presence of two identical X chromosomes, while the male features an XY pair, with the Y bearing the major genetic determinant of sex, i.e. the SRY gene. In other species, such as the fruitfly, sex is determined by the ratio of autosomes to X chromosomes. Regardless of the exact mechanism, however, all these animals would exhibit a sex-specific gene expression inequality, due to the different number of X chromosomes, a phenomenon inhibited by a series of genetic and epigenetic regulatory events described as "dosage compensation". Since adequate available data is currently restricted to worms, flies and mammals, while for other groups of animals, such as reptiles, fish and birds it is very limited, it is not yet clear whether this is an evolutionary conserved mechanism. However certain striking similarities have already been observed among evolutionary distant species, such as Drosophila melanogaster and Mus musculus. These mainly refer to a) the need for a counting mechanism, to determine the chromosomal content of the cell, i.e. the ratio of autosomes to gonosomes (a process well understood in flies, but still hypothesized in mammals), b) the implication of non-translated, sex-specific, regulatory RNAs (roX and Xist, respectively) as key elements in this process and the location of similar mediators in the Z chromosome of chicken c) the inclusion of a chromatin modification epigenetic final step, which ensures that gene expression remains stably regulated throughout the affected area of the gonosome. This review summarizes these points and proposes a possible role for comparative genetics, as they seem to constitute proof of maintained cell economy (by using the same basic regulatory elements in various different scenarios) throughout numerous centuries of evolutionary history.

  7. Nonclassical Regulation of Transcription: Interchromosomal Interactions at the Malic enzyme Locus of Drosophila melanogaster

    PubMed Central

    Lum, Thomas E.; Merritt, Thomas J. S.

    2011-01-01

    Regulation of transcription can be a complex process in which many cis- and trans-interactions determine the final pattern of expression. Among these interactions are trans-interactions mediated by the pairing of homologous chromosomes. These trans-effects are wide ranging, affecting gene regulation in many species and creating complex possibilities in gene regulation. Here we describe a novel case of trans-interaction between alleles of the Malic enzyme (Men) locus in Drosophila melanogaster that results in allele-specific, non-additive gene expression. Using both empirical biochemical and predictive bioinformatic approaches, we show that the regulatory elements of one allele are capable of interacting in trans with, and modifying the expression of, the second allele. Furthermore, we show that nonlocal factors—different genetic backgrounds—are capable of significant interactions with individual Men alleles, suggesting that these trans-effects can be modified by both locally and distantly acting elements. In sum, these results emphasize the complexity of gene regulation and the need to understand both small- and large-scale interactions as more complete models of the role of trans-interactions in gene regulation are developed. PMID:21900270

  8. Functional Evolution of a cis-Regulatory Module

    PubMed Central

    Palsson, Arnar; Alekseeva, Elena; Bergman, Casey M; Nathan, Janaki; Kreitman, Martin

    2005-01-01

    Lack of knowledge about how regulatory regions evolve in relation to their structure–function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module—the even-skipped stripe 2 enhancer—from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure–function, mechanisms of speciation and computational identification of regulatory modules. PMID:15757364

  9. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    PubMed

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Transcription factor trapping by RNA in gene regulatory elements.

    PubMed

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  11. Characterization of noncoding regulatory DNA in the human genome.

    PubMed

    Elkon, Ran; Agami, Reuven

    2017-08-08

    Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.

  12. In silico analysis of cis-acting regulatory elements in 5' regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana.

    PubMed

    Ibraheem, Omodele; Botha, Christiaan E J; Bradley, Graeme

    2010-12-01

    The regulation of gene expression involves a multifarious regulatory system. Each gene contains a unique combination of cis-acting regulatory sequence elements in the 5' regulatory region that determines its temporal and spatial expression. Cis-acting regulatory elements are essential transcriptional gene regulatory units; they control many biological processes and stress responses. Thus a full understanding of the transcriptional gene regulation system will depend on successful functional analyses of cis-acting elements. Cis-acting regulatory elements present within the 5' regulatory region of the sucrose transporter gene families in rice (Oryza sativa Japonica cultivar-group) and Arabidopsis thaliana, were identified using a bioinformatics approach. The possible cis-acting regulatory elements were predicted by scanning 1.5kbp of 5' regulatory regions of the sucrose transporter genes translational start sites, using Plant CARE, PLACE and Genomatix Matinspector professional databases. Several cis-acting regulatory elements that are associated with plant development, plant hormonal regulation and stress response were identified, and were present in varying frequencies within the 1.5kbp of 5' regulatory region, among which are; A-box, RY, CAT, Pyrimidine-box, Sucrose-box, ABRE, ARF, ERE, GARE, Me-JA, ARE, DRE, GA-motif, GATA, GT-1, MYC, MYB, W-box, and I-box. This result reveals the probable cis-acting regulatory elements that possibly are involved in the expression and regulation of sucrose transporter gene families in rice and Arabidopsis thaliana during cellular development or environmental stress conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Deciphering RNA Regulatory Elements Involved in the Developmental and Environmental Gene Regulation of Trypanosoma brucei.

    PubMed

    Gazestani, Vahid H; Salavati, Reza

    2015-01-01

    Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.

  14. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks

    PubMed Central

    2018-01-01

    Abstract Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element–target gene pairs (E–G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. PMID:29140525

  15. A High-Resolution Enhancer Atlas of the Developing Telencephalon

    PubMed Central

    Visel, Axel; Taher, Leila; Girgis, Hani; May, Dalit; Golonzhka, Olga; Hoch, Renee; McKinsey, Gabriel L.; Pattabiraman, Kartik; Silberberg, Shanni N.; Blow, Matthew J.; Hansen, David V.; Nord, Alex S.; Akiyama, Jennifer A.; Holt, Amy; Hosseini, Roya; Phouanenavong, Sengthavy; Plajzer-Frick, Ingrid; Shoukry, Malak; Afzal, Veena; Kaplan, Tommy; Kriegstein, Arnold R.; Rubin, Edward M.; Ovcharenko, Ivan; Pennacchio, Len A.; Rubenstein, John L. R.

    2013-01-01

    Summary The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. While many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified over 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising over 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders. PMID:23375746

  16. NF-κB-Dependent Lymphoid Enhancer Co-option Promotes Renal Carcinoma Metastasis.

    PubMed

    Rodrigues, Paulo; Patel, Saroor A; Harewood, Louise; Olan, Ioana; Vojtasova, Erika; Syafruddin, Saiful E; Zaini, M Nazhif; Richardson, Emma K; Burge, Johanna; Warren, Anne Y; Stewart, Grant D; Saeb-Parsy, Kourosh; Samarajiwa, Shamith A; Vanharanta, Sakari

    2018-06-06

    Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states. SIGNIFICANCE: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 1-16. ©2018 AACR. ©2018 American Association for Cancer Research.

  17. Extracting PICO Sentences from Clinical Trial Reports using Supervised Distant Supervision

    PubMed Central

    Wallace, Byron C.; Kuiper, Joël; Sharma, Aakash; Zhu, Mingxi (Brian); Marshall, Iain J.

    2016-01-01

    Systematic reviews underpin Evidence Based Medicine (EBM) by addressing precise clinical questions via comprehensive synthesis of all relevant published evidence. Authors of systematic reviews typically define a Population/Problem, Intervention, Comparator, and Outcome (a PICO criteria) of interest, and then retrieve, appraise and synthesize results from all reports of clinical trials that meet these criteria. Identifying PICO elements in the full-texts of trial reports is thus a critical yet time-consuming step in the systematic review process. We seek to expedite evidence synthesis by developing machine learning models to automatically extract sentences from articles relevant to PICO elements. Collecting a large corpus of training data for this task would be prohibitively expensive. Therefore, we derive distant supervision (DS) with which to train models using previously conducted reviews. DS entails heuristically deriving ‘soft’ labels from an available structured resource. However, we have access only to unstructured, free-text summaries of PICO elements for corresponding articles; we must derive from these the desired sentence-level annotations. To this end, we propose a novel method – supervised distant supervision (SDS) – that uses a small amount of direct supervision to better exploit a large corpus of distantly labeled instances by learning to pseudo-annotate articles using the available DS. We show that this approach tends to outperform existing methods with respect to automated PICO extraction. PMID:27746703

  18. Disease-Causing 7.4 kb Cis-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the FOXL2 Promotor: Implications for Mutation Screening

    PubMed Central

    Dostie, Josée; Lemire, Edmond; Bouchard, Philippe; Field, Michael; Jones, Kristie; Lorenz, Birgit; Menten, Björn; Buysse, Karen; Pattyn, Filip; Friedli, Marc; Ucla, Catherine; Rossier, Colette; Wyss, Carine; Speleman, Frank; De Paepe, Anne; Dekker, Job; Antonarakis, Stylianos E.; De Baere, Elfride

    2009-01-01

    To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as small as 7.4 kb was found at 283 kb 5′ to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular. PMID:19543368

  19. Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in blepharophimosis syndrome.

    PubMed

    Beysen, D; Raes, J; Leroy, B P; Lucassen, A; Yates, J R W; Clayton-Smith, J; Ilyina, H; Brooks, S Sklower; Christin-Maitre, S; Fellous, M; Fryns, J P; Kim, J R; Lapunzina, P; Lemyre, E; Meire, F; Messiaen, L M; Oley, C; Splitt, M; Thomson, J; Van de Peer, Y; Veitia, R A; De Paepe, A; De Baere, E

    2005-08-01

    The expression of a gene requires not only a normal coding sequence but also intact regulatory regions, which can be located at large distances from the target genes, as demonstrated for an increasing number of developmental genes. In previous mutation studies of the role of FOXL2 in blepharophimosis syndrome (BPES), we identified intragenic mutations in 70% of our patients. Three translocation breakpoints upstream of FOXL2 in patients with BPES suggested a position effect. Here, we identified novel microdeletions outside of FOXL2 in cases of sporadic and familial BPES. Specifically, four rearrangements, with an overlap of 126 kb, are located 230 kb upstream of FOXL2, telomeric to the reported translocation breakpoints. Moreover, the shortest region of deletion overlap (SRO) contains several conserved nongenic sequences (CNGs) harboring putative transcription-factor binding sites and representing potential long-range cis-regulatory elements. Interestingly, the human region orthologous to the 12-kb sequence deleted in the polled intersex syndrome in goat, which is an animal model for BPES, is contained in this SRO, providing evidence of human-goat conservation of FOXL2 expression and of the mutational mechanism. Surprisingly, in a fifth family with BPES, one rearrangement was found downstream of FOXL2. In addition, we report nine novel rearrangements encompassing FOXL2 that range from partial gene deletions to submicroscopic deletions. Overall, genomic rearrangements encompassing or outside of FOXL2 account for 16% of all molecular defects found in our families with BPES. In summary, this is the first report of extragenic deletions in BPES, providing further evidence of potential long-range cis-regulatory elements regulating FOXL2 expression. It contributes to the enlarging group of developmental diseases caused by defective distant regulation of gene expression. Finally, we demonstrate that CNGs are candidate regions for genomic rearrangements in developmental genes.

  20. Deletions Involving Long-Range Conserved Nongenic Sequences Upstream and Downstream of FOXL2 as a Novel Disease-Causing Mechanism in Blepharophimosis Syndrome

    PubMed Central

    Beysen, D.; Raes, J.; Leroy, B. P.; Lucassen, A.; Yates, J. R. W.; Clayton-Smith, J.; Ilyina, H.; Brooks, S. Sklower; Christin-Maitre, S.; Fellous, M.; Fryns, J. P.; Kim, J. R.; Lapunzina, P.; Lemyre, E.; Meire, F.; Messiaen, L. M.; Oley, C.; Splitt, M.; Thomson, J.; Peer, Y. Van de; Veitia, R. A.; De Paepe, A.; De Baere, E.

    2005-01-01

    The expression of a gene requires not only a normal coding sequence but also intact regulatory regions, which can be located at large distances from the target genes, as demonstrated for an increasing number of developmental genes. In previous mutation studies of the role of FOXL2 in blepharophimosis syndrome (BPES), we identified intragenic mutations in 70% of our patients. Three translocation breakpoints upstream of FOXL2 in patients with BPES suggested a position effect. Here, we identified novel microdeletions outside of FOXL2 in cases of sporadic and familial BPES. Specifically, four rearrangements, with an overlap of 126 kb, are located 230 kb upstream of FOXL2, telomeric to the reported translocation breakpoints. Moreover, the shortest region of deletion overlap (SRO) contains several conserved nongenic sequences (CNGs) harboring putative transcription-factor binding sites and representing potential long-range cis-regulatory elements. Interestingly, the human region orthologous to the 12-kb sequence deleted in the polled intersex syndrome in goat, which is an animal model for BPES, is contained in this SRO, providing evidence of human-goat conservation of FOXL2 expression and of the mutational mechanism. Surprisingly, in a fifth family with BPES, one rearrangement was found downstream of FOXL2. In addition, we report nine novel rearrangements encompassing FOXL2 that range from partial gene deletions to submicroscopic deletions. Overall, genomic rearrangements encompassing or outside of FOXL2 account for 16% of all molecular defects found in our families with BPES. In summary, this is the first report of extragenic deletions in BPES, providing further evidence of potential long-range cis-regulatory elements regulating FOXL2 expression. It contributes to the enlarging group of developmental diseases caused by defective distant regulation of gene expression. Finally, we demonstrate that CNGs are candidate regions for genomic rearrangements in developmental genes. PMID:15962237

  1. De novo mutations in regulatory elements in neurodevelopmental disorders

    PubMed Central

    Short, Patrick J.; McRae, Jeremy F.; Gallone, Giuseppe; Sifrim, Alejandro; Won, Hyejung; Geschwind, Daniel H.; Wright, Caroline F.; Firth, Helen V; FitzPatrick, David R.; Barrett, Jeffrey C.; Hurles, Matthew E.

    2018-01-01

    We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders. PMID:29562236

  2. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.

    PubMed

    Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C

    2017-11-10

    Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases. © 2017 American Heart Association, Inc.

  3. A high-resolution enhancer atlas of the developing telencephalon.

    PubMed

    Visel, Axel; Taher, Leila; Girgis, Hani; May, Dalit; Golonzhka, Olga; Hoch, Renee V; McKinsey, Gabriel L; Pattabiraman, Kartik; Silberberg, Shanni N; Blow, Matthew J; Hansen, David V; Nord, Alex S; Akiyama, Jennifer A; Holt, Amy; Hosseini, Roya; Phouanenavong, Sengthavy; Plajzer-Frick, Ingrid; Shoukry, Malak; Afzal, Veena; Kaplan, Tommy; Kriegstein, Arnold R; Rubin, Edward M; Ovcharenko, Ivan; Pennacchio, Len A; Rubenstein, John L R

    2013-02-14

    The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. Though many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here, we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified more than 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising more than 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Using FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) to isolate active regulatory DNA

    PubMed Central

    Simon, Jeremy M.; Giresi, Paul G.; Davis, Ian J.; Lieb, Jason D.

    2013-01-01

    Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements of the eukaryotic genome. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are crosslinked briefly with formaldehyde, lysed, and sonicated. Sheared chromatin is subjected to phenol-chloroform extraction and the isolated DNA, typically encompassing 1–3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays, or next-generation sequencing. Regulatory elements enriched by FAIRE display high concordance with those identified by nuclease hypersensitivity or ChIP, and the entire procedure can be completed in three days. FAIRE exhibits low technical variability, which allows its use in large-scale studies of chromatin from normal or diseased tissues. PMID:22262007

  5. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute significantly to the fatty acid regulation of these transcription factors and their corresponding regulatory networks. PMID:18460914

  6. A HLA class I cis-regulatory element whose activity can be modulated by hormones.

    PubMed

    Sim, B C; Hui, K M

    1994-12-01

    To elucidate the basis of the down-regulation in major histocompatibility complex (MHC) class I gene expression and to identify possible DNA-binding regulatory elements that have the potential to interact with class I MHC genes, we have studied the transcriptional regulation of class I HLA genes in human breast carcinoma cells. A 9 base pair (bp) negative cis-regulatory element (NRE) has been identified using band-shift assays employing DNA sequences derived from the 5'-flanking region of HLA class I genes. This 9-bp element, GTCATGGCG, located within exon I of the HLA class I gene, can potently inhibit the expression of a heterologous thymidine kinase (TK) gene promoter and the HLA enhancer element. Furthermore, this regulatory element can exert its suppressive function in either the sense or anti-sense orientation. More interestingly, NRE can suppress dexamethasone-mediated gene activation in the context of the reported glucocorticoid-responsive element (GRE) in MCF-7 cells but has no influence on the estrogen-mediated transcriptional activation of MCF-7 cells in the context of the reported estrogen-responsive element (ERE). Furthermore, the presence of such a regulatory element within the HLA class I gene whose activity can be modulated by hormones correlates well with our observation that the level of HLA class I gene expression can be down-regulated by hormones in human breast carcinoma cells. Such interactions between negative regulatory elements and specific hormone trans-activators are novel and suggest a versatile form of transcriptional control.

  7. Uncovering drug-responsive regulatory elements

    PubMed Central

    Luizon, Marcelo R; Ahituv, Nadav

    2015-01-01

    Nucleotide changes in gene regulatory elements can have a major effect on interindividual differences in drug response. For example, by reviewing all published pharmacogenomic genome-wide association studies, we show here that 96.4% of the associated single nucleotide polymorphisms reside in noncoding regions. We discuss how sequencing technologies are improving our ability to identify drug response-associated regulatory elements genome-wide and to annotate nucleotide variants within them. We highlight specific examples of how nucleotide changes in these elements can affect drug response and illustrate the techniques used to find them and functionally characterize them. Finally, we also discuss challenges in the field of drug-responsive regulatory elements that need to be considered in order to translate these findings into the clinic. PMID:26555224

  8. Differential Regulation of Native Estrogen Receptor-Regulatory Elements by Estradiol, Tamoxifen, and Raloxifene

    PubMed Central

    Levy, Nitzan; Tatomer, Dierdre; Herber, Candice B.; Zhao, Xiaoyue; Tang, Hui; Sargeant, Toby; Ball, Lonnele J.; Summers, Jonathan; Speed, Terence P.; Leitman, Dale C.

    2008-01-01

    Estrogen receptors (ERs) regulate gene transcription by interacting with regulatory elements. Most information regarding how ER activates genes has come from studies using a small set of target genes or simple consensus sequences such as estrogen response element, activator protein 1, and Sp1 elements. However, these elements cannot explain the differences in gene regulation patterns and clinical effects observed with estradiol (E2) and selective estrogen receptor modulators. To obtain a greater understanding of how E2 and selective estrogen receptor modulators differentially regulate genes, it is necessary to investigate their action on a more comprehensive set of native regulatory elements derived from ER target genes. Here we used chromatin immunoprecipitation-cloning and sequencing to isolate 173 regulatory elements associated with ERα. Most elements were found in the introns (38%) and regions greater than 10 kb upstream of the transcription initiation site (38%); 24% of the elements were found in the proximal promoter region (<10 kb). Only 11% of the elements contained a classical estrogen response element; 23% of the elements did not have any known response elements, including one derived from the naked cuticle homolog gene, which was associated with the recruitment of p160 coactivators. Transfection studies found that 80% of the 173 elements were regulated by E2, raloxifene, or tamoxifen with ERα or ERβ. Tamoxifen was more effective than raloxifene at activating the elements with ERα, whereas raloxifene was superior with ERβ. Our findings demonstrate that E2, tamoxifen, and raloxifene differentially regulate native ER-regulatory elements isolated by chromatin immunoprecipitation with ERα and ERβ. PMID:17962382

  9. Evolutionary rewiring of bacterial regulatory networks

    PubMed Central

    Taylor, Tiffany B.; Mulley, Geraldine; McGuffin, Liam J.; Johnson, Louise J.; Brockhurst, Michael A.; Arseneault, Tanya; Silby, Mark W.; Jackson, Robert W.

    2015-01-01

    Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks - homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015), 347(6225)] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs. PMID:28357301

  10. Foxl2 function in ovarian development.

    PubMed

    Uhlenhaut, Nina Henriette; Treier, Mathias

    2006-07-01

    Foxl2 is a forkhead transcription factor essential for proper reproductive function in females. Human patients carrying mutations in the FOXL2 gene display blepharophimosis/ptosis/epicanthus inversus syndrome (BPES), an autosomal dominant disease associated with eyelid defects and premature ovarian failure in females. Recently, animal models for BPES have been developed that in combination with a catalogue of human FOXL2 mutations provide further insight into its molecular function. Mice homozygous mutant for Foxl2 display craniofacial malformations and female infertility. The analysis of the murine phenotype has revealed that Foxl2 is required for granulosa cell function. These ovarian somatic cells surround and nourish the oocyte and play an important role in follicle formation and activation. Mutations upstream of FOXL2 in humans, not affecting the coding sequence itself, have also been shown to cause BPES, which points to the existence of a distant regulatory element necessary for proper gene expression. The same regulatory sequences may be deleted in the goat polled intersex syndrome (PIS), in which FoxL2 expression is severely reduced. Sequence comparison of FoxL2 from several vertebrate species has shown that it is a highly conserved gene involved in ovary development. Thus, the detailed understanding of Foxl2 function and regulation and the identification of its transcriptional targets may open new avenues for the treatment of female infertility in the future.

  11. Scan for Motifs: a webserver for the analysis of post-transcriptional regulatory elements in the 3' untranslated regions (3' UTRs) of mRNAs.

    PubMed

    Biswas, Ambarish; Brown, Chris M

    2014-06-08

    Gene expression in vertebrate cells may be controlled post-transcriptionally through regulatory elements in mRNAs. These are usually located in the untranslated regions (UTRs) of mRNA sequences, particularly the 3'UTRs. Scan for Motifs (SFM) simplifies the process of identifying a wide range of regulatory elements on alignments of vertebrate 3'UTRs. SFM includes identification of both RNA Binding Protein (RBP) sites and targets of miRNAs. In addition to searching pre-computed alignments, the tool provides users the flexibility to search their own sequences or alignments. The regulatory elements may be filtered by expected value cutoffs and are cross-referenced back to their respective sources and literature. The output is an interactive graphical representation, highlighting potential regulatory elements and overlaps between them. The output also provides simple statistics and links to related resources for complementary analyses. The overall process is intuitive and fast. As SFM is a free web-application, the user does not need to install any software or databases. Visualisation of the binding sites of different classes of effectors that bind to 3'UTRs will facilitate the study of regulatory elements in 3' UTRs.

  12. 75 FR 57063 - Distribution of the 2004 and 2005 Cable Royalty Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... right to retransmit such programming is not determined in a free market, but rather is determined... would be valued in a hypothetical free market that would exist but for the regulatory regime currently in place. However, such a hypothetical free market value for non-network distant signal programming...

  13. Deciphering the transcriptional cis-regulatory code.

    PubMed

    Yáñez-Cuna, J Omar; Kvon, Evgeny Z; Stark, Alexander

    2013-01-01

    Information about developmental gene expression resides in defined regulatory elements, called enhancers, in the non-coding part of the genome. Although cells reliably utilize enhancers to orchestrate gene expression, a cis-regulatory code that would allow their interpretation has remained one of the greatest challenges of modern biology. In this review, we summarize studies from the past three decades that describe progress towards revealing the properties of enhancers and discuss how recent approaches are providing unprecedented insights into regulatory elements in animal genomes. Over the next years, we believe that the functional characterization of regulatory sequences in entire genomes, combined with recent computational methods, will provide a comprehensive view of genomic regulatory elements and their building blocks and will enable researchers to begin to understand the sequence basis of the cis-regulatory code. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Characterization of new regulatory elements within the Drosophila bithorax complex.

    PubMed

    Pérez-Lluch, Sílvia; Cuartero, Sergi; Azorín, Fernando; Espinàs, M Lluïsa

    2008-12-01

    The homeotic Abdominal-B (Abd-B) gene expression depends on a modular cis-regulatory region divided into discrete functional domains (iab) that control the expression of the gene in a particular segment of the fly. These domains contain regulatory elements implicated in both initiation and maintenance of homeotic gene expression and elements that separate the different domains. In this paper we have performed an extensive analysis of the iab-6 regulatory region, which regulates Abd-B expression at abdominal segment A6 (PS11), and we have characterized two new polycomb response elements (PREs) within this domain. We report that PREs at Abd-B cis-regulatory domains present a particular chromatin structure which is nuclease accessible all along Drosophila development and both in active and repressed states. We also show that one of these regions contains a dCTCF and CP190 dependent activity in transgenic enhancer-blocking assays, suggesting that it corresponds to the Fab-6 boundary element of the Drosophila bithorax complex.

  15. Evidence of tRNA cleavage in apicomplexan parasites: half-tRNAs as new potential regulatory molecules of Toxoplasma gondii and Plasmodium berghei

    USDA-ARS?s Scientific Manuscript database

    Several lines of evidence demonstrated that organisms ranging from bacteria to higher animals possess a regulated endonucleolytic cleavage pathway producing half-tRNA fragments. In the present study, we investigated the occurrence of this phenomenon in two distantly related apicomplexan parasites, T...

  16. Multiple cis-regulatory elements are involved in the complex regulation of the sieve element-specific MtSEO-F1 promoter from Medicago truncatula.

    PubMed

    Bucsenez, M; Rüping, B; Behrens, S; Twyman, R M; Noll, G A; Prüfer, D

    2012-09-01

    The sieve element occlusion (SEO) gene family includes several members that are expressed specifically in immature sieve elements (SEs) in the developing phloem of dicotyledonous plants. To determine how this restricted expression profile is achieved, we analysed the SE-specific Medicago truncatula SEO-F1 promoter (PMtSEO-F1) by constructing deletion, substitution and hybrid constructs and testing them in transgenic tobacco plants using green fluorescent protein as a reporter. This revealed four promoter regions, each containing cis-regulatory elements that activate transcription in SEs. One of these segments also contained sufficient information to suppress PMtSEO-F1 transcription in the phloem companion cells (CCs). Subsequent in silico analysis revealed several candidate cis-regulatory elements that PMtSEO-F1 shares with other SEO promoters. These putative sieve element boxes (PSE boxes) are promising candidates for cis-regulatory elements controlling the SE-specific expression of PMtSEO-F1. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Regulatory activities of transposable elements: from conflicts to benefits

    PubMed Central

    Chuong, Edward B.; Elde, Nels C.; Feschotte, Cédric

    2017-01-01

    Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor binding sites and non-coding RNAs. A wealth of recent studies reinvigorates the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalyzed the evolution of gene regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic impact of regulatory activities encoded by TEs in health and disease. PMID:27867194

  18. Genome-Wide Identification of Regulatory Elements and Reconstruction of Gene Regulatory Networks of the Green Alga Chlamydomonas reinhardtii under Carbon Deprivation

    PubMed Central

    Vischi Winck, Flavia; Arvidsson, Samuel; Riaño-Pachón, Diego Mauricio; Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran; Urbina Gomez, David Alejandro; Rupprecht, Jens; Mueller-Roeber, Bernd

    2013-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1) and Lcr2 (Low-CO 2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas. PMID:24224019

  19. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    PubMed

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  20. A novel regulatory element (E77) isolated from CHO-K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells.

    PubMed

    Kang, Shin-Young; Kim, Yeon-Gu; Kang, Seunghee; Lee, Hong Weon; Lee, Eun Gyo

    2016-05-01

    Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO-K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO-K1 genomic DNA fragments with a CMV promoter-driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements

    PubMed Central

    Tharakaraman, Kannan; Mariño-Ramírez, Leonardo; Sheetlin, Sergey L; Landsman, David; Spouge, John L

    2006-01-01

    Background Many DNA regulatory elements occur as multiple instances within a target promoter. Gibbs sampling programs for finding DNA regulatory elements de novo can be prohibitively slow in locating all instances of such an element in a sequence set. Results We describe an improvement to the A-GLAM computer program, which predicts regulatory elements within DNA sequences with Gibbs sampling. The improvement adds an optional "scanning step" after Gibbs sampling. Gibbs sampling produces a position specific scoring matrix (PSSM). The new scanning step resembles an iterative PSI-BLAST search based on the PSSM. First, it assigns an "individual score" to each subsequence of appropriate length within the input sequences using the initial PSSM. Second, it computes an E-value from each individual score, to assess the agreement between the corresponding subsequence and the PSSM. Third, it permits subsequences with E-values falling below a threshold to contribute to the underlying PSSM, which is then updated using the Bayesian calculus. A-GLAM iterates its scanning step to convergence, at which point no new subsequences contribute to the PSSM. After convergence, A-GLAM reports predicted regulatory elements within each sequence in order of increasing E-values, so users have a statistical evaluation of the predicted elements in a convenient presentation. Thus, although the Gibbs sampling step in A-GLAM finds at most one regulatory element per input sequence, the scanning step can now rapidly locate further instances of the element in each sequence. Conclusion Datasets from experiments determining the binding sites of transcription factors were used to evaluate the improvement to A-GLAM. Typically, the datasets included several sequences containing multiple instances of a regulatory motif. The improvements to A-GLAM permitted it to predict the multiple instances. PMID:16961919

  2. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity

    PubMed Central

    Song, Lingyun; Zhang, Zhancheng; Grasfeder, Linda L.; Boyle, Alan P.; Giresi, Paul G.; Lee, Bum-Kyu; Sheffield, Nathan C.; Gräf, Stefan; Huss, Mikael; Keefe, Damian; Liu, Zheng; London, Darin; McDaniell, Ryan M.; Shibata, Yoichiro; Showers, Kimberly A.; Simon, Jeremy M.; Vales, Teresa; Wang, Tianyuan; Winter, Deborah; Zhang, Zhuzhu; Clarke, Neil D.; Birney, Ewan; Iyer, Vishwanath R.; Crawford, Gregory E.; Lieb, Jason D.; Furey, Terrence S.

    2011-01-01

    The human body contains thousands of unique cell types, each with specialized functions. Cell identity is governed in large part by gene transcription programs, which are determined by regulatory elements encoded in DNA. To identify regulatory elements active in seven cell lines representative of diverse human cell types, we used DNase-seq and FAIRE-seq (Formaldehyde Assisted Isolation of Regulatory Elements) to map “open chromatin.” Over 870,000 DNaseI or FAIRE sites, which correspond tightly to nucleosome-depleted regions, were identified across the seven cell lines, covering nearly 9% of the genome. The combination of DNaseI and FAIRE is more effective than either assay alone in identifying likely regulatory elements, as judged by coincidence with transcription factor binding locations determined in the same cells. Open chromatin common to all seven cell types tended to be at or near transcription start sites and to be coincident with CTCF binding sites, while open chromatin sites found in only one cell type were typically located away from transcription start sites and contained DNA motifs recognized by regulators of cell-type identity. We show that open chromatin regions bound by CTCF are potent insulators. We identified clusters of open regulatory elements (COREs) that were physically near each other and whose appearance was coordinated among one or more cell types. Gene expression and RNA Pol II binding data support the hypothesis that COREs control gene activity required for the maintenance of cell-type identity. This publicly available atlas of regulatory elements may prove valuable in identifying noncoding DNA sequence variants that are causally linked to human disease. PMID:21750106

  3. An internal regulatory element controls troponin I gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yutzey, K.E.; Kline, R.L.; Konieczmy, S.F.

    1989-04-01

    During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein genemore » has not been identified. In contrast to the results of these earlier studies, the authors have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene.« less

  4. An internal regulatory element controls troponin I gene expression.

    PubMed Central

    Yutzey, K E; Kline, R L; Konieczny, S F

    1989-01-01

    During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein gene has not been identified. In contrast to the results of these earlier studies, we have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene. Images PMID:2725509

  5. Genomic identification of regulatory elements by evolutionary sequence comparison and functional analysis.

    PubMed

    Loots, Gabriela G

    2008-01-01

    Despite remarkable recent advances in genomics that have enabled us to identify most of the genes in the human genome, comparable efforts to define transcriptional cis-regulatory elements that control gene expression are lagging behind. The difficulty of this task stems from two equally important problems: our knowledge of how regulatory elements are encoded in genomes remains elementary, and there is a vast genomic search space for regulatory elements, since most of mammalian genomes are noncoding. Comparative genomic approaches are having a remarkable impact on the study of transcriptional regulation in eukaryotes and currently represent the most efficient and reliable methods of predicting noncoding sequences likely to control the patterns of gene expression. By subjecting eukaryotic genomic sequences to computational comparisons and subsequent experimentation, we are inching our way toward a more comprehensive catalog of common regulatory motifs that lie behind fundamental biological processes. We are still far from comprehending how the transcriptional regulatory code is encrypted in the human genome and providing an initial global view of regulatory gene networks, but collectively, the continued development of comparative and experimental approaches will rapidly expand our knowledge of the transcriptional regulome.

  6. Understanding α-globin gene regulation and implications for the treatment of β-thalassemia.

    PubMed

    Mettananda, Sachith; Gibbons, Richard J; Higgs, Douglas R

    2016-03-01

    Over the past three decades, a vast amount of new information has been uncovered describing how the globin genes are regulated. This knowledge has provided significant insights into the general understanding of the regulation of human genes. It is now known that molecular defects within and around the α- and β-globin genes, as well as in the distant regulatory elements, can cause thalassemia. Unbalanced production of globin chains owing to defective synthesis of one, and the continued unopposed synthesis of another, is the central causative factor in the cellular pathology and pathophysiology of thalassemia. A large body of clinical, genetic, and experimental evidence suggests that altering globin chain imbalance by reducing the production of α-globin synthesis ameliorates the disease severity in patients with β-thalassemia. With the development of new genetic-based therapeutic tools that have a potential to decrease the expression of a selected gene in a tissue-specific manner, the possibility of decreasing expression of the α-globin gene to improve the clinical severity of β-thalassemia could become a reality. © 2015 New York Academy of Sciences.

  7. Sterol regulatory element binding protein-1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer.

    PubMed

    Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William

    2017-05-01

    Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p < 0.0001). Sterol regulatory element binding protein-1 gene expression was positively correlated with body mass index (r = 0.017, p = 0.921) and waist-hip ratio (r = 0.023, p = 0.544) in polycystic ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression was significantly positively correlated with triglyceride in both polycystic ovary syndrome and endometrial cancer (p = 0.028 and p = 0.027, respectively). Quantitative serum sterol regulatory element binding protein-1 gene correlated with endometrial gene expression (p < 0.05). Sterol regulatory element binding protein-1 gene expression is significantly increased in the endometrium of women with polycystic ovary syndrome and women with endometrial cancer compared with controls and positively correlates with serum triglyceride in both polycystic ovary syndrome and endometrial cancer. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  8. Opposite Effects of Coinjection and Distant Injection of Mesenchymal Stem Cells on Breast Tumor Cell Growth.

    PubMed

    Zheng, Huilin; Zou, Weibin; Shen, Jiaying; Xu, Liang; Wang, Shu; Fu, Yang-Xin; Fan, Weimin

    2016-09-01

    : Mesenchymal stem cells (MSCs) usually promote tumor growth and metastasis. By using a breast tumor 4T1 cell-based animal model, this study determined that coinjection and distant injection of allogeneic bone marrow-derived MSCs with tumor cells could exert different effects on tumor growth. Whereas the coinjection of MSCs with 4T1 cells promoted tumor growth, surprisingly, the injection of MSCs at a site distant from the 4T1 cell inoculation site suppressed tumor growth. We further observed that, in the distant injection model, MSCs decreased the accumulation of myeloid-derived suppressor cells and regulatory T cells in tumor tissues by enhancing proinflammatory factors such as interferon-γ, tumor necrosis factor-α, Toll-like receptor (TLR)-3, and TLR-4, promoting host antitumor immunity and inhibiting tumor growth. Unlike previous reports, this is the first study reporting that MSCs may exert opposite roles on tumor growth in the same animal model by modulating the host immune system, which may shed light on the potential application of MSCs as vehicles for tumor therapy and other clinical applications. Mesenchymal stem cells (MSCs) have been widely investigated for their potential roles in tissue engineering, autoimmune diseases, and tumor therapeutics. This study explored the impact of coinjection and distant injection of allogeneic bone marrow-derived MSCs on mouse 4T1 breast cancer cells. The results showed that the coinjection of MSCs and 4T1 cells promoted tumor growth. MSCs might act as the tumor stromal precursors and cause immunosuppression to protect tumor cells from immunosurveillance, which subsequently facilitated tumor metastasis. Interestingly, the distant injection of MSCs and 4T1 cells suppressed tumor growth. Together, the results of this study revealed the dual functions of MSCs in immunoregulation. ©AlphaMed Press.

  9. Increased FOXP3 expression in tumour-associated tissues of horses affected with equine sarcoid disease.

    PubMed

    Mählmann, K; Hamza, E; Marti, E; Dolf, G; Klukowska, J; Gerber, V; Koch, C

    2014-12-01

    Recent studies suggest that regulatory T cells (Tregs) are associated with disease severity and progression in papilloma virus induced neoplasia. Bovine papilloma virus (BPV) is recognised as the most important aetiological factor in equine sarcoid (ES) disease. The aim of this study was to compare expression levels of Treg markers and associated cytokines in tissue samples of ES-affected equids with skin samples of healthy control horses. Eleven ES-affected, and 12 healthy horses were included in the study. Expression levels of forkhead box protein 3 (FOXP3), interleukin 10 (IL10), interleukin 4 (IL4) and interferon gamma (IFNG) mRNA in lesional and tumour-distant samples from ES-affected horses, as well as in dermal samples of healthy control horses were measured using quantitative reverse transcription polymerase chain reaction (PCR). Expression levels were compared between lesional and tumour-distant as well as between tumour-distant and control samples. Furthermore, BPV-1 E5 DNA in samples of ES-affected horses was quantified using quantitative PCR, and possible associations of viral load, disease severity and gene expression levels were evaluated. Expression levels of FOXP3, IL10 and IFNG mRNA and BPV-1 E5 copy numbers were significantly increased in lesional compared to tumour-distant samples. There was no difference in FOXP3 and cytokine expression in tumour-distant samples from ES- compared with control horses. In tumour-distant samples viral load was positively correlated with IL10 expression and severity score. The increased expression of Treg markers in tumour-associated tissues of ES-affected equids indicates a local, Treg-induced immune suppression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The Regulatory Properties of Autonomous Subtelomeric P Elements Are Sensitive to a Suppressor of Variegation in Drosophila Melanogaster

    PubMed Central

    Ronsseray, S.; Lehmann, M.; Nouaud, D.; Anxolabehere, D.

    1996-01-01

    Genetic recombination was used in Drosophila melanogaster to isolate P elements, inserted at the telomeres of X chromosomes (cytological site 1A) from natural populations, in a genetic background devoid of other P elements. We show that complete maternally inherited P repression in the germline (P cytotype) can be elicited by only two autonomous P elements at 1A and that a single element at this site has partial regulatory properties. The analysis of the surrounding chromosomal regions of the P elements at 1A shows that in all cases these elements are flanked by Telomeric Associated Sequences, tandemly repetitive noncoding sequences that have properties of heterochromatin. In addition, we show that the regulatory properties of P elements at 1A can be inhibited by some of the mutant alleles of the Su(var)205 gene and by a deficiency of this gene. However, the regulatory properties of reference P strains (Harwich and Texas 007) are not impaired by Su(var)205 mutations. Su(var)205 encodes Heterochromatin Protein 1 (HP1). These results suggest that the HP1 dosage effect on the P element properties is site-dependent and could involve the structure of the chromatin. PMID:8844154

  11. Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells

    PubMed Central

    Freire-Pritchett, Paula; Schoenfelder, Stefan; Várnai, Csilla; Wingett, Steven W; Cairns, Jonathan; Collier, Amanda J; García-Vílchez, Raquel; Furlan-Magaril, Mayra; Osborne, Cameron S; Fraser, Peter; Rugg-Gunn, Peter J; Spivakov, Mikhail

    2017-01-01

    Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells. DOI: http://dx.doi.org/10.7554/eLife.21926.001 PMID:28332981

  12. A conserved RNA structural element within the hepatitis B virus post-transcriptional regulatory element enhance nuclear export of intronless transcripts and repress the splicing mechanism.

    PubMed

    Visootsat, Akasit; Payungporn, Sunchai; T-Thienprasert, Nattanan P

    2015-12-01

    Hepatitis B virus (HBV) infection is a primary cause of hepatocellular carcinoma and liver cirrhosis worldwide. To develop novel antiviral drugs, a better understanding of HBV gene expression regulation is vital. One important aspect is to understand how HBV hijacks the cellular machinery to export unspliced RNA from the nucleus. The HBV post-transcriptional regulatory element (HBV PRE) has been proposed to be the HBV RNA nuclear export element. However, the function remains controversial, and the core element is unclear. This study, therefore, aimed to identify functional regulatory elements within the HBV PRE and investigate their functions. Using bioinformatics programs based on sequence conservation and conserved RNA secondary structures, three regulatory elements were predicted, namely PRE 1151-1410, PRE 1520-1620 and PRE 1650-1684. PRE 1151-1410 significantly increased intronless and unspliced luciferase activity in both HepG2 and COS-7 cells. Likewise, PRE 1151-1410 significantly elevated intronless and unspliced HBV surface transcripts in liver cancer cells. Moreover, motif analysis predicted that PRE 1151-1410 contains several regulatory motifs. This study reported the roles of PRE 1151-1410 in intronless transcript nuclear export and the splicing mechanism. Additionally, these results provide knowledge in the field of HBV RNA regulation. Moreover, PRE 1151-1410 may be used to enhance the expression of other mRNAs in intronless reporter plasmids.

  13. Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data

    PubMed Central

    2011-01-01

    Background Phytohormones organize plant development and environmental adaptation through cell-to-cell signal transduction, and their action involves transcriptional activation. Recent international efforts to establish and maintain public databases of Arabidopsis microarray data have enabled the utilization of this data in the analysis of various phytohormone responses, providing genome-wide identification of promoters targeted by phytohormones. Results We utilized such microarray data for prediction of cis-regulatory elements with an octamer-based approach. Our test prediction of a drought-responsive RD29A promoter with the aid of microarray data for response to drought, ABA and overexpression of DREB1A, a key regulator of cold and drought response, provided reasonable results that fit with the experimentally identified regulatory elements. With this succession, we expanded the prediction to various phytohormone responses, including those for abscisic acid, auxin, cytokinin, ethylene, brassinosteroid, jasmonic acid, and salicylic acid, as well as for hydrogen peroxide, drought and DREB1A overexpression. Totally 622 promoters that are activated by phytohormones were subjected to the prediction. In addition, we have assigned putative functions to 53 octamers of the Regulatory Element Group (REG) that have been extracted as position-dependent cis-regulatory elements with the aid of their feature of preferential appearance in the promoter region. Conclusions Our prediction of Arabidopsis cis-regulatory elements for phytohormone responses provides guidance for experimental analysis of promoters to reveal the basis of the transcriptional network of phytohormone responses. PMID:21349196

  14. Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells

    PubMed Central

    Leddin, Mathias; Perrod, Chiara; Hoogenkamp, Maarten; Ghani, Saeed; Assi, Salam; Heinz, Sven; Wilson, Nicola K.; Follows, George; Schönheit, Jörg; Vockentanz, Lena; Mosammam, Ali M.; Chen, Wei; Tenen, Daniel G.; Westhead, David R.; Göttgens, Berthold

    2011-01-01

    The transcription factor PU.1 occupies a central role in controlling myeloid and early B-cell development, and its correct lineage-specific expression is critical for the differentiation choice of hematopoietic progenitors. However, little is known of how this tissue-specific pattern is established. We previously identified an upstream regulatory cis element whose targeted deletion in mice decreases PU.1 expression and causes leukemia. We show here that the upstream regulatory cis element alone is insufficient to confer physiologic PU.1 expression in mice but requires the cooperation with other, previously unidentified elements. Using a combination of transgenic studies, global chromatin assays, and detailed molecular analyses we present evidence that PU.1 is regulated by a novel mechanism involving cross talk between different cis elements together with lineage-restricted autoregulation. In this model, PU.1 regulates its expression in B cells and macrophages by differentially associating with cell type–specific transcription factors at one of its cis-regulatory elements to establish differential activity patterns at other elements. PMID:21239694

  15. Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology

    PubMed Central

    Chappell, James; Jensen, Kirsten; Freemont, Paul S.

    2013-01-01

    A bottleneck in our capacity to rationally and predictably engineer biological systems is the limited number of well-characterized genetic elements from which to build. Current characterization methods are tied to measurements in living systems, the transformation and culturing of which are inherently time-consuming. To address this, we have validated a completely in vitro approach for the characterization of DNA regulatory elements using Escherichia coli extract cell-free systems. Importantly, we demonstrate that characterization in cell-free systems correlates and is reflective of performance in vivo for the most frequently used DNA regulatory elements. Moreover, we devise a rapid and completely in vitro method to generate DNA templates for cell-free systems, bypassing the need for DNA template generation and amplification from living cells. This in vitro approach is significantly quicker than current characterization methods and is amenable to high-throughput techniques, providing a valuable tool for rapidly prototyping libraries of DNA regulatory elements for synthetic biology. PMID:23371936

  16. Identification of Regulatory DNA Elements Using Genome-wide Mapping of DNase I Hypersensitive Sites during Tomato Fruit Development.

    PubMed

    Qiu, Zhengkun; Li, Ren; Zhang, Shuaibin; Wang, Ketao; Xu, Meng; Li, Jiayang; Du, Yongchen; Yu, Hong; Cui, Xia

    2016-08-01

    Development and ripening of tomato fruit are precisely controlled by transcriptional regulation, which depends on the orchestrated accessibility of regulatory proteins to promoters and other cis-regulatory DNA elements. This accessibility and its effect on gene expression play a major role in defining the developmental process. To understand the regulatory mechanism and functional elements modulating morphological and anatomical changes during fruit development, we generated genome-wide high-resolution maps of DNase I hypersensitive sites (DHSs) from the fruit tissues of the tomato cultivar "Moneymaker" at 20 days post anthesis as well as break stage. By exploring variation of DHSs across fruit development stages, we pinpointed the most likely hypersensitive sites related to development-specific genes. By detecting binding motifs on DHSs of these development-specific genes or genes in the ascorbic acid biosynthetic pathway, we revealed the common regulatory elements contributing to coordinating gene transcription of plant ripening and specialized metabolic pathways. Our results contribute to a better understanding of the regulatory dynamics of genes involved in tomato fruit development and ripening. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  17. Inference of Expanded Lrp-Like Feast/Famine Transcription Factor Targets in a Non-Model Organism Using Protein Structure-Based Prediction

    PubMed Central

    Ashworth, Justin; Plaisier, Christopher L.; Lo, Fang Yin; Reiss, David J.; Baliga, Nitin S.

    2014-01-01

    Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer. PMID:25255272

  18. Inference of expanded Lrp-like feast/famine transcription factor targets in a non-model organism using protein structure-based prediction.

    PubMed

    Ashworth, Justin; Plaisier, Christopher L; Lo, Fang Yin; Reiss, David J; Baliga, Nitin S

    2014-01-01

    Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer.

  19. Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia.

    PubMed Central

    Castresana, C; Garcia-Luque, I; Alonso, E; Malik, V S; Cashmore, A R

    1988-01-01

    We have analyzed promoter regulatory elements from a photoregulated CAB gene (Cab-E) isolated from Nicotiana plumbaginifolia. These studies have been performed by introducing chimeric gene constructs into tobacco cells via Agrobacterium tumefaciens-mediated transformation. Expression studies on the regenerated transgenic plants have allowed us to characterize three positive and one negative cis-acting elements that influence photoregulated expression of the Cab-E gene. Within the upstream sequences we have identified two positive regulatory elements (PRE1 and PRE2) which confer maximum levels of photoregulated expression. These sequences contain multiple repeated elements related to the sequence-ACCGGCCCACTT-. We have also identified within the upstream region a negative regulatory element (NRE) extremely rich in AT sequences, which reduces the level of gene expression in the light. We have defined a light regulatory element (LRE) within the promoter region extending from -396 to -186 bp which confers photoregulated expression when fused to a constitutive nopaline synthase ('nos') promoter. Within this region there is a 132-bp element, extending from -368 to -234 bp, which on deletion from the Cab-E promoter reduces gene expression from high levels to undetectable levels. Finally, we have demonstrated for a full length Cab-E promoter conferring high levels of photoregulated expression, that sequences proximal to the Cab-E TATA box are not replaceable by corresponding sequences from a 'nos' promoter. This contrasts with the apparent equivalence of these Cab-E and 'nos' TATA box-proximal sequences in truncated promoters conferring low levels of photoregulated expression. Images PMID:2901343

  20. Decoding the role of regulatory element polymorphisms in complex disease.

    PubMed

    Vockley, Christopher M; Barrera, Alejandro; Reddy, Timothy E

    2017-04-01

    Genetic variation in gene regulatory elements contributes to diverse human diseases, ranging from rare and severe developmental defects to common and complex diseases such as obesity and diabetes. Early examples of regulatory mechanisms of human diseases involve large chromosomal rearrangements that change the regulatory connections within the genome. Single nucleotide variants in regulatory elements can also contribute to disease, potentially via demonstrated associations with changes in transcription factor binding, enhancer activity, post-translational histone modifications, long-range enhancer-promoter interactions, or RNA polymerase recruitment. Establishing causality between non-coding genetic variants, gene regulation, and disease has recently become more feasible with advances in genome-editing and epigenome-editing technologies. As establishing causal regulatory mechanisms of diseases becomes routine, functional annotation of target genes is likely to emerge as a major bottleneck for translation into patient benefits. In this review, we discuss the history and recent advances in understanding the regulatory mechanisms of human disease, and new challenges likely to be encountered once establishing those mechanisms becomes rote. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Feather Development Genes and Associated Regulatory Innovation Predate the Origin of Dinosauria

    PubMed Central

    Lowe, Craig B.; Clarke, Julia A.; Baker, Allan J.; Haussler, David; Edwards, Scott V.

    2015-01-01

    The evolution of avian feathers has recently been illuminated by fossils and the identification of genes involved in feather patterning and morphogenesis. However, molecular studies have focused mainly on protein-coding genes. Using comparative genomics and more than 600,000 conserved regulatory elements, we show that patterns of genome evolution in the vicinity of feather genes are consistent with a major role for regulatory innovation in the evolution of feathers. Rates of innovation at feather regulatory elements exhibit an extended period of innovation with peaks in the ancestors of amniotes and archosaurs. We estimate that 86% of such regulatory elements and 100% of the nonkeratin feather gene set were present prior to the origin of Dinosauria. On the branch leading to modern birds, we detect a strong signal of regulatory innovation near insulin-like growth factor binding protein (IGFBP) 2 and IGFBP5, which have roles in body size reduction, and may represent a genomic signature for the miniaturization of dinosaurian body size preceding the origin of flight. PMID:25415961

  2. Genome-wide colonization of gene regulatory elements by G4 DNA motifs

    PubMed Central

    Du, Zhuo; Zhao, Yiqiang; Li, Ning

    2009-01-01

    G-quadruplex (or G4 DNA), a stable four-stranded structure found in guanine-rich regions, is implicated in the transcriptional regulation of genes involved in growth and development. Previous studies on the role of G4 DNA in gene regulation mostly focused on genomic regions proximal to transcription start sites (TSSs). To gain a more comprehensive understanding of the regulatory role of G4 DNA, we examined the landscape of potential G4 DNA (PG4Ms) motifs in the human genome and found that G4 motifs, not restricted to those found in the TSS-proximal regions, are bias toward gene-associated regions. Significantly, analyses of G4 motifs in seven types of well-known gene regulatory elements revealed a constitutive enrichment pattern and the clusters of G4 motifs tend to be colocalized with regulatory elements. Considering our analysis from a genome evolutionary perspective, we found evidence that the occurrence and accumulation of certain progenitors and canonical G4 DNA motifs within regulatory regions were progressively favored by natural selection. Our results suggest that G4 DNA motifs are ‘colonized’ in regulatory regions, supporting a likely genome-wide role of G4 DNA in gene regulation. We hypothesize that G4 DNA is a regulatory apparatus situated in regulatory elements, acting as a molecular switch that can modulate the role of the host functional regions, by transition in DNA structure. PMID:19759215

  3. Rapid evolution of regulatory element libraries for tunable transcriptional and translational control of gene expression.

    PubMed

    Jin, Erqing; Wong, Lynn; Jiao, Yun; Engel, Jake; Holdridge, Benjamin; Xu, Peng

    2017-12-01

    Engineering cell factories for producing biofuels and pharmaceuticals has spurred great interests to develop rapid and efficient synthetic biology tools customized for modular pathway engineering. Along the way, combinatorial gene expression control through modification of regulatory element offered tremendous opportunity for fine-tuning gene expression and generating digital-like genetic circuits. In this report, we present an efficient evolutionary approach to build a range of regulatory control elements. The reported method allows for rapid construction of promoter, 5'UTR, terminator and trans -activating RNA libraries. Synthetic overlapping oligos with high portion of degenerate nucleotides flanking the regulatory element could be efficiently assembled to a vector expressing fluorescence reporter. This approach combines high mutation rate of the synthetic DNA with the high assembly efficiency of Gibson Mix. Our constructed library demonstrates broad range of transcriptional or translational gene expression dynamics. Specifically, both the promoter library and 5'UTR library exhibits gene expression dynamics spanning across three order of magnitude. The terminator library and trans -activating RNA library displays relatively narrowed gene expression pattern. The reported study provides a versatile toolbox for rapidly constructing a large family of prokaryotic regulatory elements. These libraries also facilitate the implementation of combinatorial pathway engineering principles and the engineering of more efficient microbial cell factory for various biomanufacturing applications.

  4. Unraveling transcriptional control and cis-regulatory codes using the software suite GeneACT

    PubMed Central

    Cheung, Tom Hiu; Kwan, Yin Lam; Hamady, Micah; Liu, Xuedong

    2006-01-01

    Deciphering gene regulatory networks requires the systematic identification of functional cis-acting regulatory elements. We present a suite of web-based bioinformatics tools, called GeneACT , that can rapidly detect evolutionarily conserved transcription factor binding sites or microRNA target sites that are either unique or over-represented in differentially expressed genes from DNA microarray data. GeneACT provides graphic visualization and extraction of common regulatory sequence elements in the promoters and 3'-untranslated regions that are conserved across multiple mammalian species. PMID:17064417

  5. Computational methods in sequence and structure prediction

    NASA Astrophysics Data System (ADS)

    Lang, Caiyi

    This dissertation is organized into two parts. In the first part, we will discuss three computational methods for cis-regulatory element recognition in three different gene regulatory networks as the following: (a) Using a comprehensive "Phylogenetic Footprinting Comparison" method, we will investigate the promoter sequence structures of three enzymes (PAL, CHS and DFR) that catalyze sequential steps in the pathway from phenylalanine to anthocyanins in plants. Our result shows there exists a putative cis-regulatory element "AC(C/G)TAC(C)" in the upstream of these enzyme genes. We propose this cis-regulatory element to be responsible for the genetic regulation of these three enzymes and this element, might also be the binding site for MYB class transcription factor PAP1. (b) We will investigate the role of the Arabidopsis gene glutamate receptor 1.1 (AtGLR1.1) in C and N metabolism by utilizing the microarray data we obtained from AtGLR1.1 deficient lines (antiAtGLR1.1). We focus our investigation on the putatively co-regulated transcript profile of 876 genes we have collected in antiAtGLR1.1 lines. By (a) scanning the occurrence of several groups of known abscisic acid (ABA) related cisregulatory elements in the upstream regions of 876 Arabidopsis genes; and (b) exhaustive scanning of all possible 6-10 bps motif occurrence in the upstream regions of the same set of genes, we are able to make a quantative estimation on the enrichment level of each of the cis-regulatory element candidates. We finally conclude that one specific cis-regulatory element group, called "ABRE" elements, are statistically highly enriched within the 876-gene group as compared to their occurrence within the genome. (c) We will introduce a new general purpose algorithm, called "fuzzy REDUCE1", which we have developed recently for automated cis-regulatory element identification. In the second part, we will discuss our newly devised protein design framework. With this framework we have developed a software package which is capable of designing novel protein structures at the atomic resolution. This software package allows us to perform protein structure design with a flexible backbone. The backbone flexibility includes loop region relaxation as well as a secondary structure collective mode relaxation scheme. (Abstract shortened by UMI.)

  6. Jittery, a Mutator Distant Relative with a Paradoxical Mobile Behavior: Excision without Reinsertion

    PubMed Central

    Xu, Zhennan; Yan, Xianghe; Maurais, Steve; Fu, Huihua; O'Brien, David G.; Mottinger, John; Dooner, Hugo K.

    2004-01-01

    The unstable mutation bz-m039 arose in a maize (Zea mays) stock that originated from a plant infected with barley stripe mosaic virus. The instability of the mutation is caused by a 3.9-kb mobile element that has been named Jittery (Jit). Jit has terminal inverted repeats (TIRs) of 181 bp, causes a 9-bp direct duplication of the target site, and appears to excise autonomously. It is predicted to encode a single 709–amino acid protein, JITA, which is distantly related to the MURA transposase protein of the Mutator system but is more closely related to the MURA protein of Mutator-like elements (MULEs) from Arabidopsis thaliana and rice (Oryza sativa). Like MULEs, Jit resembles Mutator in the length of the element's TIRs, the size of the target site duplication, and in the makeup of its transposase but differs from the autonomous element Mutator–Don Robertson in that it encodes a single protein. Jit also differs from Mutator elements in the high frequency with which it excises to produce germinal revertants and in its copy number in the maize genome: Jit-like TIRs are present at low copy number in all maize lines and teosinte accessions examined, and JITA sequences occur in only a few maize inbreds. However, Jit cannot be considered a bona fide transposon in its present host line because it does not leave footprints upon excision and does not reinsert in the genome. These unusual mobile element properties are discussed in light of the structure and gene organization of Jit and related elements. PMID:15075398

  7. Feather development genes and associated regulatory innovation predate the origin of Dinosauria.

    PubMed

    Lowe, Craig B; Clarke, Julia A; Baker, Allan J; Haussler, David; Edwards, Scott V

    2015-01-01

    The evolution of avian feathers has recently been illuminated by fossils and the identification of genes involved in feather patterning and morphogenesis. However, molecular studies have focused mainly on protein-coding genes. Using comparative genomics and more than 600,000 conserved regulatory elements, we show that patterns of genome evolution in the vicinity of feather genes are consistent with a major role for regulatory innovation in the evolution of feathers. Rates of innovation at feather regulatory elements exhibit an extended period of innovation with peaks in the ancestors of amniotes and archosaurs. We estimate that 86% of such regulatory elements and 100% of the nonkeratin feather gene set were present prior to the origin of Dinosauria. On the branch leading to modern birds, we detect a strong signal of regulatory innovation near insulin-like growth factor binding protein (IGFBP) 2 and IGFBP5, which have roles in body size reduction, and may represent a genomic signature for the miniaturization of dinosaurian body size preceding the origin of flight. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.

    2003-06-01

    OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally importantmore » for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.« less

  9. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics

    PubMed Central

    Liberman, Joseph A.; Suddala, Krishna C.; Aytenfisu, Asaminew; Chan, Dalen; Belashov, Ivan A.; Salim, Mohammad; Mathews, David H.; Spitale, Robert C.; Walter, Nils G.; Wedekind, Joseph E.

    2015-01-01

    PreQ1-III riboswitches are newly identified RNA elements that control bacterial genes in response to preQ1 (7-aminomethyl-7-deazaguanine), a precursor to the essential hypermodified tRNA base queuosine. Although numerous riboswitches fold as H-type or HLout-type pseudoknots that integrate ligand-binding and regulatory sequences within a single folded domain, the preQ1-III riboswitch aptamer forms a HLout-type pseudoknot that does not appear to incorporate its ribosome-binding site (RBS). To understand how this unusual organization confers function, we determined the crystal structure of the class III preQ1 riboswitch from Faecalibacterium prausnitzii at 2.75 Å resolution. PreQ1 binds tightly (KD,app 6.5 ± 0.5 nM) between helices P1 and P2 of a three-way helical junction wherein the third helix, P4, projects orthogonally from the ligand-binding pocket, exposing its stem-loop to base pair with the 3′ RBS. Biochemical analysis, computational modeling, and single-molecule FRET imaging demonstrated that preQ1 enhances P4 reorientation toward P1–P2, promoting a partially nested, H-type pseudoknot in which the RBS undergoes rapid docking (kdock ∼0.6 s−1) and undocking (kundock ∼1.1 s−1). Discovery of such dynamic conformational switching provides insight into how a riboswitch with bipartite architecture uses dynamics to modulate expression platform accessibility, thus expanding the known repertoire of gene control strategies used by regulatory RNAs. PMID:26106162

  10. Disease-associated variants in different categories of disease located in distinct regulatory elements.

    PubMed

    Ma, Meng; Ru, Ying; Chuang, Ling-Shiang; Hsu, Nai-Yun; Shi, Li-Song; Hakenberg, Jörg; Cheng, Wei-Yi; Uzilov, Andrew; Ding, Wei; Glicksberg, Benjamin S; Chen, Rong

    2015-01-01

    The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression. In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects. We further found that regulatory regions are located within over 50% coding exon regions. Transcription promoters, methylation regions, and transcription insulators have the highest density of disease variants, with 472, 239, and 72 disease variants per one million base pairs, respectively. Disease-associated variants in different disease categories are preferentially located in particular regulatory elements. These results will be useful for an overall understanding about the differences among the pathogenic mechanisms of various disease-associated variants.

  11. Disease-associated variants in different categories of disease located in distinct regulatory elements

    PubMed Central

    2015-01-01

    Background The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression. Results In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects. We further found that regulatory regions are located within over 50% coding exon regions. Transcription promoters, methylation regions, and transcription insulators have the highest density of disease variants, with 472, 239, and 72 disease variants per one million base pairs, respectively. Conclusions Disease-associated variants in different disease categories are preferentially located in particular regulatory elements. These results will be useful for an overall understanding about the differences among the pathogenic mechanisms of various disease-associated variants. PMID:26110593

  12. Exploring the read-write genome: mobile DNA and mammalian adaptation.

    PubMed

    Shapiro, James A

    2017-02-01

    The read-write genome idea predicts that mobile DNA elements will act in evolution to generate adaptive changes in organismal DNA. This prediction was examined in the context of mammalian adaptations involving regulatory non-coding RNAs, viviparous reproduction, early embryonic and stem cell development, the nervous system, and innate immunity. The evidence shows that mobile elements have played specific and sometimes major roles in mammalian adaptive evolution by generating regulatory sites in the DNA and providing interaction motifs in non-coding RNA. Endogenous retroviruses and retrotransposons have been the predominant mobile elements in mammalian adaptive evolution, with the notable exception of bats, where DNA transposons are the major agents of RW genome inscriptions. A few examples of independent but convergent exaptation of mobile DNA elements for similar regulatory rewiring functions are noted.

  13. Extensive Evolutionary Changes in Regulatory Element Activity during Human Origins Are Associated with Altered Gene Expression and Positive Selection

    PubMed Central

    Fedrigo, Olivier; Babbitt, Courtney C.; Wortham, Matthew; Tewari, Alok K.; London, Darin; Song, Lingyun; Lee, Bum-Kyu; Iyer, Vishwanath R.; Parker, Stephen C. J.; Margulies, Elliott H.; Wray, Gregory A.; Furey, Terrence S.; Crawford, Gregory E.

    2012-01-01

    Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species. PMID:22761590

  14. The identification of cis-regulatory elements: A review from a machine learning perspective.

    PubMed

    Li, Yifeng; Chen, Chih-Yu; Kaye, Alice M; Wasserman, Wyeth W

    2015-12-01

    The majority of the human genome consists of non-coding regions that have been called junk DNA. However, recent studies have unveiled that these regions contain cis-regulatory elements, such as promoters, enhancers, silencers, insulators, etc. These regulatory elements can play crucial roles in controlling gene expressions in specific cell types, conditions, and developmental stages. Disruption to these regions could contribute to phenotype changes. Precisely identifying regulatory elements is key to deciphering the mechanisms underlying transcriptional regulation. Cis-regulatory events are complex processes that involve chromatin accessibility, transcription factor binding, DNA methylation, histone modifications, and the interactions between them. The development of next-generation sequencing techniques has allowed us to capture these genomic features in depth. Applied analysis of genome sequences for clinical genetics has increased the urgency for detecting these regions. However, the complexity of cis-regulatory events and the deluge of sequencing data require accurate and efficient computational approaches, in particular, machine learning techniques. In this review, we describe machine learning approaches for predicting transcription factor binding sites, enhancers, and promoters, primarily driven by next-generation sequencing data. Data sources are provided in order to facilitate testing of novel methods. The purpose of this review is to attract computational experts and data scientists to advance this field. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Comparing anterior and posterior Hox complex formation reveals guidelines for predicting cis-regulatory elements

    PubMed Central

    Uhl, Juli D.; Cook, Tiffany A.; Gebelein, Brian

    2010-01-01

    Hox transcription factors specify numerous cell fates along the anterior-posterior axis by regulating the expression of downstream target genes. While expression analysis has uncovered large numbers of de-regulated genes in cells with altered Hox activity, determining which are direct versus indirect targets has remained a significant challenge. Here, we characterize the DNA binding activity of Hox transcription factor complexes on eight experimentally verified cis-regulatory elements. Hox factors regulate the activity of each element by forming protein complexes with two cofactor proteins, Extradenticle (Exd) and Homothorax (Hth). Using comparative DNA binding assays, we found that a number of flexible arrangements of Hox, Exd, and Hth binding sites mediate cooperative transcription factor complexes. Moreover, analysis of a Distal-less regulatory element (DMXR) that is repressed by abdominal Hox factors revealed that suboptimal binding sites can be combined to form high affinity transcription complexes. Lastly, we determined that the anterior Hox factors are more dependent upon Exd and Hth for complex formation than posterior Hox factors. Based upon these findings, we suggest a general set of guidelines to serve as a basis for designing bioinformatics algorithms aimed at identifying Hox regulatory elements using the wealth of recently sequenced genomes. PMID:20398649

  16. Transterm: a database to aid the analysis of regulatory sequences in mRNAs

    PubMed Central

    Jacobs, Grant H.; Chen, Augustine; Stevens, Stewart G.; Stockwell, Peter A.; Black, Michael A.; Tate, Warren P.; Brown, Chris M.

    2009-01-01

    Messenger RNAs, in addition to coding for proteins, may contain regulatory elements that affect how the protein is translated. These include protein and microRNA-binding sites. Transterm (http://mRNA.otago.ac.nz/Transterm.html) is a database of regions and elements that affect translation with two major unique components. The first is integrated results of analysis of general features that affect translation (initiation, elongation, termination) for species or strains in Genbank, processed through a standard pipeline. The second is curated descriptions of experimentally determined regulatory elements that function as translational control elements in mRNAs. Transterm focuses on protein binding sites, particularly those in 3′-untranslated regions (3′-UTR). For this release the interface has been extensively updated based on user feedback. The data is now accessible by strain rather than species, for example there are 10 Escherichia coli strains (genomes) analysed separately. In addition to providing a repository of data, the database also provides tools for users to query their own mRNA sequences. Users can search sequences for Transterm or user defined regulatory elements, including protein or miRNA targets. Transterm also provides a central core of links to related resources for complementary analyses. PMID:18984623

  17. Do convergent developmental mechanisms underlie convergent phenotypes?

    NASA Technical Reports Server (NTRS)

    Wray, Gregory A.

    2002-01-01

    Convergence is a pervasive evolutionary process, affecting many aspects of phenotype and even genotype. Relatively little is known about convergence in developmental processes, however, nor about the degree to which convergence in development underlies convergence in anatomy. A switch in the ecology of sea urchins from feeding to nonfeeding larvae illustrates how convergence in development can be associated with convergence in anatomy. Comparisons to more distantly related taxa, however, suggest that this association may be limited to relatively close phylogenetic comparisons. Similarities in gene expression during development provide another window into the association between convergence in developmental processes and convergence in anatomy. Several well-studied transcription factors exhibit likely cases of convergent gene expression in distantly related animal phyla. Convergence in regulatory gene expression domains is probably more common than generally acknowledged, and can arise for several different reasons. Copyright 2002 S. Karger AG, Basel.

  18. Identification of high-confidence RNA regulatory elements by combinatorial classification of RNA-protein binding sites.

    PubMed

    Li, Yang Eric; Xiao, Mu; Shi, Binbin; Yang, Yu-Cheng T; Wang, Dong; Wang, Fei; Marcia, Marco; Lu, Zhi John

    2017-09-08

    Crosslinking immunoprecipitation sequencing (CLIP-seq) technologies have enabled researchers to characterize transcriptome-wide binding sites of RNA-binding protein (RBP) with high resolution. We apply a soft-clustering method, RBPgroup, to various CLIP-seq datasets to group together RBPs that specifically bind the same RNA sites. Such combinatorial clustering of RBPs helps interpret CLIP-seq data and suggests functional RNA regulatory elements. Furthermore, we validate two RBP-RBP interactions in cell lines. Our approach links proteins and RNA motifs known to possess similar biochemical and cellular properties and can, when used in conjunction with additional experimental data, identify high-confidence RBP groups and their associated RNA regulatory elements.

  19. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin

    PubMed Central

    Giresi, Paul G.; Kim, Jonghwan; McDaniell, Ryan M.; Iyer, Vishwanath R.; Lieb, Jason D.

    2007-01-01

    DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered in the aqueous phase is fluorescently labeled and hybridized to a DNA microarray. FAIRE performed in human cells strongly enriches DNA coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, and active promoters. Evidence for cell-type–specific patterns of FAIRE enrichment is also presented. FAIRE has utility as a positive selection for genomic regions associated with regulatory activity, including regions traditionally detected by nuclease hypersensitivity assays. PMID:17179217

  20. Genetic and epigenetic variation in the lineage specification of regulatory T cells

    PubMed Central

    Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y

    2015-01-01

    Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease. DOI: http://dx.doi.org/10.7554/eLife.07571.001 PMID:26510014

  1. Conserved Non-Coding Regulatory Signatures in Arabidopsis Co-Expressed Gene Modules

    PubMed Central

    Spangler, Jacob B.; Ficklin, Stephen P.; Luo, Feng; Freeling, Michael; Feltus, F. Alex

    2012-01-01

    Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome. PMID:23024789

  2. Conserved non-coding regulatory signatures in Arabidopsis co-expressed gene modules.

    PubMed

    Spangler, Jacob B; Ficklin, Stephen P; Luo, Feng; Freeling, Michael; Feltus, F Alex

    2012-01-01

    Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome.

  3. Two regulatory RNA elements affect TisB-dependent depolarization and persister formation.

    PubMed

    Berghoff, Bork A; Hoekzema, Mirthe; Aulbach, Lena; Wagner, E Gerhart H

    2017-03-01

    Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity. © 2016 John Wiley & Sons Ltd.

  4. Regulatory principles governing Salmonella and Yersinia virulence

    PubMed Central

    Erhardt, Marc; Dersch, Petra

    2015-01-01

    Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process. PMID:26441883

  5. Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites.

    PubMed

    Falandysz, Jerzy; Frankowska, Aneta; Jarzynska, Grazyna; Dryzałowska, Anna; Kojta, Anna K; Zhang, Dan

    2011-01-01

    This paper provides data on baseline concentrations, interrelationships and bioconcentration potential of 12 metallic elements by King Bolete collected from 11 spatially distant sites across Poland. There are significant differences in concentrations of metals (Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr, Zn) and their bioconcentration potential in King Bolete Boletus edulis at 11 spatially distant sites surveyed across Poland. These have resulted from significant geographical differences in trace metal concentrations in a layer (0-10 cm) of organic and mineral soil underneath to fruiting bodies and possible local bioavailabilities of macro- (Ca, K, Mg, Na) and trace metals (Al, Ba, Cd, Cu, Fe, Mn, Sr, Zn) to King Bolete. The use of highly appreciated wild-grown edible King Bolete mushroom has established a baseline measure of regional minerals status, heavy metals pollution and assessment of intake rates for wild mushroom dish fanciers against which future changes can be compared. Data on Cd, Cu and Zn from this study and from literature search can be useful to set the maximum limit of these metals in King Bolete collected from uncontaminated (background) areas. In this report also reviewed are data on Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr and Zn accumulation in King Bolete.

  6. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements)

    PubMed Central

    Giresi, Paul G.; Lieb, Jason D.

    2009-01-01

    The binding of sequence-specific regulatory factors and the recruitment of chromatin remodeling activities cause nucleosomes to be evicted from chromatin in eukaryotic cells. Traditionally, these active sites have been identified experimentally through their sensitivity to nucleases. Here we describe the details of a simple procedure for the genome-wide isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). We also provide protocols for different methods of detecting FAIRE-enriched DNA, including use of PCR, DNA microarrays, and next-generation sequencing. FAIRE works on all eukaryotic chromatin tested to date. To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared by sonication, and phenol-chloroform extracted. Most genomic DNA is crosslinked to nucleosomes and is sequestered to the interphase, whereas DNA recovered in the aqueous phase corresponds to nucleosome-depleted regions of the genome. The isolated regions are largely coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, enhancers, insulators, and active promoters. Given its speed and simplicity, FAIRE has utility in establishing chromatin profiles of diverse cell types in health and disease, isolating DNA regulatory elements en masse for further characterization, and as a screening assay for the effects of small molecules on chromatin organization. PMID:19303047

  7. Chromosomal position effects in chicken lysozyme gene transgenic mice are correlated with suppression of DNase I hypersensitive site formation.

    PubMed Central

    Huber, M C; Bosch, F X; Sippel, A E; Bonifer, C

    1994-01-01

    The complete chicken lysozyme gene locus is expressed copy number dependently and at a high level in macrophages of transgenic mice. Gene expression independent of genomic position can only be achieved by the concerted action of all cis regulatory elements located on the lysozyme gene domain. Position independency of expression is lost if one essential cis regulatory region is deleted. Here we compared the DNase I hypersensitive site (DHS) pattern formed on the chromatin of position independently and position dependently expressed transgenes in order to assess the influence of deletions within the gene domain on active chromatin formation. We demonstrate, that in position independently expressed transgene all DHSs are formed with the authentic relative frequency on all genes. This is not the case for position dependently expressed transgenes. Our results show that the formation of a DHS during cellular differentiation does not occur autonomously. In case essential regulatory elements of the chicken lysozyme gene domain are lacking, the efficiency of DHS formation on remaining cis regulatory elements during myeloid differentiation is reduced and influenced by the chromosomal position. Hence, no individual regulatory element on the lysozyme domain is capable of organizing the chromatin structure of the whole locus in a dominant fashion. Images PMID:7937145

  8. DNaseI Hypersensitivity and Ultraconservation Reveal Novel, Interdependent Long-Range Enhancers at the Complex Pax6 Cis-Regulatory Region

    PubMed Central

    McBride, David J.; Buckle, Adam; van Heyningen, Veronica; Kleinjan, Dirk A.

    2011-01-01

    The PAX6 gene plays a crucial role in development of the eye, brain, olfactory system and endocrine pancreas. Consistent with its pleiotropic role the gene exhibits a complex developmental expression pattern which is subject to strict spatial, temporal and quantitative regulation. Control of expression depends on a large array of cis-elements residing in an extended genomic domain around the coding region of the gene. The minimal essential region required for proper regulation of this complex locus has been defined through analysis of human aniridia-associated breakpoints and YAC transgenic rescue studies of the mouse smalleye mutant. We have carried out a systematic DNase I hypersensitive site (HS) analysis across 200 kb of this critical region of mouse chromosome 2E3 to identify putative regulatory elements. Mapping the identified HSs onto a percent identity plot (PIP) shows many HSs correspond to recognisable genomic features such as evolutionarily conserved sequences, CpG islands and retrotransposon derived repeats. We then focussed on a region previously shown to contain essential long range cis-regulatory information, the Pax6 downstream regulatory region (DRR), allowing comparison of mouse HS data with previous human HS data for this region. Reporter transgenic mice for two of the HS sites, HS5 and HS6, show that they function as tissue specific regulatory elements. In addition we have characterised enhancer activity of an ultra-conserved cis-regulatory region located near Pax6, termed E60. All three cis-elements exhibit multiple spatio-temporal activities in the embryo that overlap between themselves and other elements in the locus. Using a deletion set of YAC reporter transgenic mice we demonstrate functional interdependence of the elements. Finally, we use the HS6 enhancer as a marker for the migration of precerebellar neuro-epithelium cells to the hindbrain precerebellar nuclei along the posterior and anterior extramural streams allowing visualisation of migratory defects in both pathways in Pax6Sey/Sey mice. PMID:22220192

  9. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.

    PubMed

    Mikkelsen, Michael D; Thomashow, Michael F

    2009-10-01

    The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold- and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome.

  10. Broadband ground motion simulation using a paralleled hybrid approach of Frequency Wavenumber and Finite Difference method

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wei, S.

    2016-12-01

    The serious damage of Mexico City caused by the 1985 Michoacan earthquake 400 km away indicates that urban areas may be affected by remote earthquakes. To asses earthquake risk of urban areas imposed by distant earthquakes, we developed a hybrid Frequency Wavenumber (FK) and Finite Difference (FD) code implemented with MPI, since the computation of seismic wave propagation from a distant earthquake using a single numerical method (e.g. Finite Difference, Finite Element or Spectral Element) is very expensive. In our approach, we compute the incident wave field (ud) at the boundaries of the excitation box, which surrounding the local structure, using a paralleled FK method (Zhu and Rivera, 2002), and compute the total wave field (u) within the excitation box using a parallelled 2D FD method. We apply perfectly matched layer (PML) absorbing condition to the diffracted wave field (u-ud). Compared to previous Generalized Ray Theory and Finite Difference (Wen and Helmberger, 1998), Frequency Wavenumber and Spectral Element (Tong et al., 2014), and Direct Solution Method and Spectral Element hybrid method (Monteiller et al., 2013), our absorbing boundary condition dramatically suppress the numerical noise. The MPI implementation of our method can greatly speed up the calculation. Besides, our hybrid method also has a potential use in high resolution array imaging similar to Tong et al. (2014).

  11. Parallel evolution of chordate cis-regulatory code for development.

    PubMed

    Doglio, Laura; Goode, Debbie K; Pelleri, Maria C; Pauls, Stefan; Frabetti, Flavia; Shimeld, Sebastian M; Vavouri, Tanya; Elgar, Greg

    2013-11-01

    Urochordates are the closest relatives of vertebrates and at the larval stage, possess a characteristic bilateral chordate body plan. In vertebrates, the genes that orchestrate embryonic patterning are in part regulated by highly conserved non-coding elements (CNEs), yet these elements have not been identified in urochordate genomes. Consequently the evolution of the cis-regulatory code for urochordate development remains largely uncharacterised. Here, we use genome-wide comparisons between C. intestinalis and C. savignyi to identify putative urochordate cis-regulatory sequences. Ciona conserved non-coding elements (ciCNEs) are associated with largely the same key regulatory genes as vertebrate CNEs. Furthermore, some of the tested ciCNEs are able to activate reporter gene expression in both zebrafish and Ciona embryos, in a pattern that at least partially overlaps that of the gene they associate with, despite the absence of sequence identity. We also show that the ability of a ciCNE to up-regulate gene expression in vertebrate embryos can in some cases be localised to short sub-sequences, suggesting that functional cross-talk may be defined by small regions of ancestral regulatory logic, although functional sub-sequences may also be dispersed across the whole element. We conclude that the structure and organisation of cis-regulatory modules is very different between vertebrates and urochordates, reflecting their separate evolutionary histories. However, functional cross-talk still exists because the same repertoire of transcription factors has likely guided their parallel evolution, exploiting similar sets of binding sites but in different combinations.

  12. The 3’-Jα Region of the TCRα Locus Bears Gene Regulatory Activity in Thymic and Peripheral T Cells

    PubMed Central

    Kučerová-Levisohn, Martina; Knirr, Stefan; Mejia, Rosa I.; Ortiz, Benjamin D.

    2015-01-01

    Much progress has been made in understanding the important cis-mediated controls on mouse TCRα gene function, including identification of the Eα enhancer and TCRα locus control region (LCR). Nevertheless, previous data have suggested that other cis-regulatory elements may reside in the locus outside of the Eα/LCR. Based on prior findings, we hypothesized the existence of gene regulatory elements in a 3.9-kb region 5’ of the Cα exons. Using DNase hypersensitivity assays and TCRα BAC reporter transgenes in mice, we detected gene regulatory activity within this 3.9-kb region. This region is active in both thymic and peripheral T cells, and selectively affects upstream, but not downstream, gene expression. Together, these data indicate the existence of a novel cis-acting regulatory complex that contributes to TCRα transgene expression in vivo. The active chromatin sites we discovered within this region would remain in the locus after TCRα gene rearrangement, and thus may contribute to endogenous TCRα gene activity, particularly in peripheral T cells, where the Eα element has been found to be inactive. PMID:26177549

  13. Long-Range Control of Gene Expression: Emerging Mechanisms and Disruption in Disease

    PubMed Central

    Kleinjan, Dirk A.; van Heyningen, Veronica

    2005-01-01

    Transcriptional control is a major mechanism for regulating gene expression. The complex machinery required to effect this control is still emerging from functional and evolutionary analysis of genomic architecture. In addition to the promoter, many other regulatory elements are required for spatiotemporally and quantitatively correct gene expression. Enhancer and repressor elements may reside in introns or up- and downstream of the transcription unit. For some genes with highly complex expression patterns—often those that function as key developmental control genes—the cis-regulatory domain can extend long distances outside the transcription unit. Some of the earliest hints of this came from disease-associated chromosomal breaks positioned well outside the relevant gene. With the availability of wide-ranging genome sequence comparisons, strong conservation of many noncoding regions became obvious. Functional studies have shown many of these conserved sites to be transcriptional regulatory elements that sometimes reside inside unrelated neighboring genes. Such sequence-conserved elements generally harbor sites for tissue-specific DNA-binding proteins. Developmentally variable chromatin conformation can control protein access to these sites and can regulate transcription. Disruption of these finely tuned mechanisms can cause disease. Some regulatory element mutations will be associated with phenotypes distinct from any identified for coding-region mutations. PMID:15549674

  14. Cis-regulatory RNA elements that regulate specialized ribosome activity.

    PubMed

    Xue, Shifeng; Barna, Maria

    2015-01-01

    Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.

  15. A 3.0-kb deletion including an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene in an individual with the Bm phenotype.

    PubMed

    Sano, R; Kuboya, E; Nakajima, T; Takahashi, Y; Takahashi, K; Kubo, R; Kominato, Y; Takeshita, H; Yamao, H; Kishida, T; Isa, K; Ogasawara, K; Uchikawa, M

    2015-04-01

    We developed a sequence-specific primer PCR (SSP-PCR) for detection of a 5.8-kb deletion (B(m) 5.8) involving an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene. Using this SSP-PCR, we performed genetic analysis of 382 individuals with Bm or ABm. The 5.8-kb deletion was found in 380 individuals, and disruption of the GATA motif in the regulatory element was found in one individual. Furthermore, a novel 3.0-kb deletion involving the element (B(m) 3.0) was demonstrated in the remaining individual. Comparisons of single-nucleotide polymorphisms and microsatellites in intron 1 between B(m) 5.8 and B(m) 3.0 suggested that these deletions occurred independently. © 2014 International Society of Blood Transfusion.

  16. Identification of germline transcriptional regulatory elements in Aedes aegypti.

    PubMed

    Akbari, Omar S; Papathanos, Philippos A; Sandler, Jeremy E; Kennedy, Katie; Hay, Bruce A

    2014-02-04

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UD(MEL), and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  17. Identification of germline transcriptional regulatory elements in Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

    2014-02-01

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  18. Consumer acceptance and travel behavior : impacts of automated vehicles : final report.

    DOT National Transportation Integrated Search

    2016-01-01

    This study provides a glimpse into the not-too-distant future by asking people in the general population how they would respond to the availability of self-driving vehicles, which might be on Texas roadways within a few years. Some elements of the te...

  19. Releasing Reservations from Isolation.

    ERIC Educational Resources Information Center

    Ambler, Marjane

    1994-01-01

    Discusses the role of the emerging tribal libraries, designed to serve as repositories of Native American history and knowledge. Indicates that the tribal libraries and archives have provided a means for recentralizing documents important to Native American history that had previously been moved to distant repositories by outside elements. (MAB)

  20. Evolutionary growth process of highly conserved sequences in vertebrate genomes.

    PubMed

    Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi

    2012-08-01

    Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Structural analysis of a class III preQ 1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics

    DOE PAGES

    Liberman, Joseph A.; Suddala, Krishna C.; Aytenfisu, Asaminew; ...

    2015-06-23

    PreQ 1-III riboswitches are newly identified RNA elements that control bacterial genes in response to preQ 1 (7-aminomethyl-7-deazaguanine), a precursor to the essential hypermodified tRNA base queuosine. Although numerous riboswitches fold as H-type or HL out-type pseudoknots that integrate ligand-binding and regulatory sequences within a single folded domain, the preQ 1-III riboswitch aptamer forms a HL out-type pseudoknot that does not appear to incorporate its ribosome-binding site (RBS). To understand how this unusual organization confers function, in this paper we determined the crystal structure of the class III preQ 1 riboswitch from Faecalibacterium prausnitzii at 2.75 Å resolution. PreQ 1more » binds tightly (K D,app 6.5 ± 0.5 nM) between helices P1 and P2 of a three-way helical junction wherein the third helix, P4, projects orthogonally from the ligand-binding pocket, exposing its stem-loop to base pair with the 3' RBS. Biochemical analysis, computational modeling, and single-molecule FRET imaging demonstrated that preQ 1 enhances P4 reorientation toward P1–P2, promoting a partially nested, H-type pseudoknot in which the RBS undergoes rapid docking (k dock ~0.6 s -1) and undocking (k undock ~1.1 s -1). Finally, discovery of such dynamic conformational switching provides insight into how a riboswitch with bipartite architecture uses dynamics to modulate expression platform accessibility, thus expanding the known repertoire of gene control strategies used by regulatory RNAs.« less

  2. Characterization of promoter of EgPAL1, a novel PAL gene from the oil palm Elaeis guineensis Jacq.

    PubMed

    Yusuf, Chong Yu Lok; Abdullah, Janna Ong; Shaharuddin, Noor Azmi; Abu Seman, Idris; Abdullah, Mohd Puad

    2018-02-01

    The oil palm EgPAL1 gene promoter and its regulatory region were functional as a promoter in the heterologous system of Arabidopsis according to the cis-acting elements present in that region. The promoter was developmentally regulated, vascular tissue specific and responsive to water stress agents. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the key enzyme of the phenylpropanoid pathway which plays important roles in plant development and adaptation. To date, there is no report on the study of PAL from oil palm (Elaeis guineensis), an economically important oil crop. In this study, the 5' regulatory sequence of a highly divergent oil palm PAL gene (EgPAL1) was isolated and fused with GUS in Arabidopsis to create two transgenic plants carrying the minimal promoter with (2302 bp) and without its regulatory elements (139 bp). The regulatory sequence contained cis-acting elements known to be important for plant development and stress response including the AC-II element for lignin biosynthesis and several stress responsive elements. The promoter and its regulatory region were fully functional in Arabidopsis. Its activities were characterised by two common fundamental features of PAL which are responsive to plant internal developmental programme and external factors. The promoter was developmentally regulated in certain organs; highly active in young organs but less active or inactive in mature organs. The presence of the AC elements and global activity of the EgPAL1 promoter in all organs resembled the property of lignin-related genes. The existence of the MBS element and enhancement of the promoter activity by PEG reflected the behaviour of drought-responsive genes. Our findings provide a platform for evaluating oil palm gene promoters in the heterologous system of Arabidopsis and give insights into the activities of EgPAL1 promoter in oil palm.

  3. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis).

    PubMed

    Zhang, Li-Feng; Li, Wan-Feng; Han, Su-Ying; Yang, Wen-Hua; Qi, Li-Wang

    2013-10-15

    A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis. © 2013.

  4. Multiplexed memory-insensitive quantum repeaters.

    PubMed

    Collins, O A; Jenkins, S D; Kuzmich, A; Kennedy, T A B

    2007-02-09

    Long-distance quantum communication via distant pairs of entangled quantum bits (qubits) is the first step towards secure message transmission and distributed quantum computing. To date, the most promising proposals require quantum repeaters to mitigate the exponential decrease in communication rate due to optical fiber losses. However, these are exquisitely sensitive to the lifetimes of their memory elements. We propose a multiplexing of quantum nodes that should enable the construction of quantum networks that are largely insensitive to the coherence times of the quantum memory elements.

  5. Early Evolution of Conserved Regulatory Sequences Associated with Development in Vertebrates

    PubMed Central

    McEwen, Gayle K.; Goode, Debbie K.; Parker, Hugo J.; Woolfe, Adam; Callaway, Heather; Elgar, Greg

    2009-01-01

    Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA. PMID:20011110

  6. 41 CFR 102-2.140 - What elements of plain language appear in the FMR?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... language appear in the FMR? 102-2.140 Section 102-2.140 Public Contracts and Property Management Federal... MANAGEMENT REGULATION SYSTEM Plain Language Regulatory Style § 102-2.140 What elements of plain language appear in the FMR? The FMR is written in a “plain language” regulatory style. This style is easy to read...

  7. Negative and positive regulation by a short segment in the 5'-flanking region of the human cytomegalovirus major immediate-early gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, J.A.; Reynolds-Kohler, C.; Smith, B.A.

    1987-11-01

    To analyze the significance of inducible DNase I-hypersensitive sites occurring in the 5'-flanking sequence of the major immediate-early gene of human cytomegalovirus (HCMV), various deleted portions of the HCMV immediate-early promoter regulatory region were attached to the chloramphenicol acetyltransferase (CAT) gene and assayed for activity in transiently transfected undifferentiated and differentiated human teratocarcinoma cells, Tera-2. Assays of progressive deletions in the promoter regulatory region indicated that removal of a 395-base-pair portion of this element (nucleotides -750 to -1145) containing two inducible DNase I sites which correlate with gene expression resulted in a 7.5-fold increase in CAT activity in undifferentiated cells.more » However, in permissive differentiated Tera-2, human foreskin fibroblast, and HeLa cells, removal of this regulatory region resulted in decreased activity. In addition, attachment of this HCMV upstream element to a homologous or heterologous promoter increased activity three-to fivefold in permissive cells. Therefore, a cis regulatory element exists 5' to the enhancer of the major immediate-early gene of HCMV. This element negatively modulates expression in nonpermissive cells but positively influences expression in permissive cells.« less

  8. A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design.

    PubMed

    Smith, Robin P; Riesenfeld, Samantha J; Holloway, Alisha K; Li, Qiang; Murphy, Karl K; Feliciano, Natalie M; Orecchia, Lorenzo; Oksenberg, Nir; Pollard, Katherine S; Ahituv, Nadav

    2013-07-18

    Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences. We describe a comprehensive promoter extension assay in which the regulatory potential of all 6 base-pair (bp) sequences was tested in the context of a minimal promoter. To enable this large-scale screen, we developed algorithms that use a reverse-complement aware decomposition of the de Bruijn graph to design a library of DNA oligomers incorporating every 6-bp sequence exactly once. Our library multiplexes all 4,096 unique 6-mers into 184 double-stranded 15-bp oligomers, which is sufficiently compact for in vivo testing. We injected each multiplexed construct into zebrafish embryos and scored GFP expression in 15 tissues at two developmental time points. Twenty-seven constructs produced consistent expression patterns, with the majority doing so in only one tissue. Functional sequences are enriched near biologically relevant genes, match motifs for developmental transcription factors, and are required for enhancer activity. By concatenating tissue-specific functional sequences, we generated completely synthetic enhancers for the notochord, epidermis, spinal cord, forebrain and otic lateral line, and show that short regulatory sequences do not always function modularly. This work introduces a unique in vivo catalog of short, functional regulatory sequences and demonstrates several important principles of regulatory element organization. Furthermore, we provide resources for designing compact, reverse-complement aware k-mer libraries.

  9. Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach.

    PubMed

    Freyre-González, Julio A; Alonso-Pavón, José A; Treviño-Quintanilla, Luis G; Collado-Vides, Julio

    2008-10-27

    Previous studies have used different methods in an effort to extract the modular organization of transcriptional regulatory networks. However, these approaches are not natural, as they try to cluster strongly connected genes into a module or locate known pleiotropic transcription factors in lower hierarchical layers. Here, we unravel the transcriptional regulatory network of Escherichia coli by separating it into its key elements, thus revealing its natural organization. We also present a mathematical criterion, based on the topological features of the transcriptional regulatory network, to classify the network elements into one of two possible classes: hierarchical or modular genes. We found that modular genes are clustered into physiologically correlated groups validated by a statistical analysis of the enrichment of the functional classes. Hierarchical genes encode transcription factors responsible for coordinating module responses based on general interest signals. Hierarchical elements correlate highly with the previously studied global regulators, suggesting that this could be the first mathematical method to identify global regulators. We identified a new element in transcriptional regulatory networks never described before: intermodular genes. These are structural genes that integrate, at the promoter level, signals coming from different modules, and therefore from different physiological responses. Using the concept of pleiotropy, we have reconstructed the hierarchy of the network and discuss the role of feedforward motifs in shaping the hierarchical backbone of the transcriptional regulatory network. This study sheds new light on the design principles underpinning the organization of transcriptional regulatory networks, showing a novel nonpyramidal architecture composed of independent modules globally governed by hierarchical transcription factors, whose responses are integrated by intermodular genes.

  10. Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development

    PubMed Central

    Sanges, Remo; Hadzhiev, Yavor; Gueroult-Bellone, Marion; Roure, Agnes; Ferg, Marco; Meola, Nicola; Amore, Gabriele; Basu, Swaraj; Brown, Euan R.; De Simone, Marco; Petrera, Francesca; Licastro, Danilo; Strähle, Uwe; Banfi, Sandro; Lemaire, Patrick; Birney, Ewan; Müller, Ferenc; Stupka, Elia

    2013-01-01

    Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as ‘Olfactores conserved non-coding elements’. PMID:23393190

  11. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis.

    PubMed

    Kuwabara, Tomoko; Hsieh, Jenny; Muotri, Alysson; Yeo, Gene; Warashina, Masaki; Lie, Dieter Chichung; Moore, Lynne; Nakashima, Kinichi; Asashima, Makoto; Gage, Fred H

    2009-09-01

    In adult hippocampus, new neurons are continuously generated from neural stem cells (NSCs), but the molecular mechanisms regulating adult neurogenesis remain elusive. We found that Wnt signaling, together with the removal of Sox2, triggered the expression of NeuroD1 in mice. This transcriptional regulatory mechanism was dependent on a DNA element containing overlapping Sox2 and T-cell factor/lymphoid enhancer factor (TCF/LEF)-binding sites (Sox/LEF) in the promoter. Notably, Sox/LEF sites were also found in long interspersed nuclear element 1 (LINE-1) elements, consistent with their critical roles in the transition of NSCs to proliferating neuronal progenitors. Our results describe a previously unknown Wnt-mediated regulatory mechanism that simultaneously coordinates activation of NeuroD1 and LINE-1, which is important for adult neurogenesis and survival of neuronal progenitors. Moreover, the discovery that LINE-1 retro-elements embedded in the mammalian genome can function as bi-directional promoters suggests that Sox/LEF regulatory sites may represent a general mechanism, at least in part, for relaying environmental signals to other nearby loci to promote adult hippocampal neurogenesis.

  12. Identification of an evolutionarily conserved regulatory element of the zebrafish col2a1a gene.

    PubMed

    Dale, Rodney M; Topczewski, Jacek

    2011-09-15

    Zebrafish (Danio rerio) is an excellent model organism for the study of vertebrate development including skeletogenesis. Studies of mammalian cartilage formation were greatly advanced through the use of a cartilage specific regulatory element of the Collagen type II alpha 1 (Col2a1) gene. In an effort to isolate such an element in zebrafish, we compared the expression of two col2a1 homologues and found that expression of col2a1b, a previously uncharacterized zebrafish homologue, only partially overlaps with col2a1a. We focused our analysis on col2a1a, as it is expressed in both the stacked chondrocytes and the perichondrium. By comparing the genomic sequence surrounding the predicted transcriptional start site of col2a1a among several species of teleosts we identified a small highly conserved sequence (R2) located 1.7 kb upstream of the presumptive transcriptional initiation site. Interestingly, neither the sequence nor location of this element is conserved between teleost and mammalian Col2a1. We generated transient and stable transgenic lines with just the R2 element or the entire 1.7 kb fragment 5' of the transcriptional initiation site. The identified regulatory elements enable the tracking of cellular development in various tissues by driving robust reporter expression in craniofacial cartilage, ear, notochord, floor plate, hypochord and fins in a pattern similar to the expression of endogenous col2a1a. Using a reporter gene driven by the R2 regulatory element, we analyzed the morphogenesis of the notochord sheath cells as they withdraw from the stack of initially uniform cells and encase the inflating vacuolated notochord cells. Finally, we show that like endogenous col2a1a, craniofacial expression of these reporter constructs depends on Sox9a transcription factor activity. At the same time, notochord expression is maintained after Sox9a knockdown, suggesting that other factors can activate expression through the identified regulatory element in this tissue. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Identification of an evolutionarily conserved regulatory element of the zebrafish col2a1a gene

    PubMed Central

    Dale, Rodney M.; Topczewski, Jacek

    2011-01-01

    Zebrafish (Danio rerio) is an excellent model organism for the study of vertebrate development including skeletogenesis. Studies of mammalian cartilage formation were greatly advanced through the use of a cartilage specific regulatory element of the Collagen type II alpha 1 (Col2a1) gene. In an effort to isolate such an element in zebrafish, we compared the expression of two col2a1 homologues and found that expression of col2a1b, a previously uncharacterized zebrafish homologue, only partially overlaps with col2a1a. We focused our analysis on col2a1a, as it is expressed in both the stacked chondrocytes and the perichondrium. By comparing the genomic sequence surrounding the predicted transcriptional start site of col2a1a among several species of teleosts we identified a small highly conserved sequence (R2) located 1.7 kb upstream of the presumptive transcriptional initiation site. Interestingly, neither the sequence nor location of this element is conserved between teleost and mammalian Col2a1. We generated transient and stable transgenic lines with just the R2 element or the entire 1.7 kb fragment 5’ of the transcriptional initiation site. The identified regulatory elements enable the tracking of cellular development in various tissues by driving robust reporter expression in craniofacial cartilage, ear, notochord, floor plate, hypochord and fins in a pattern similar to the expression of endogenous col2a1a. Using a reporter gene driven by the R2 regulatory element, we analyzed the morphogenesis of the notochord sheath cells as they withdraw from the stack of initially uniform cells and encase the inflating vacuolated notochord cells. Finally, we show that like endogenous col2a1a, craniofacial expression of these reporter constructs depends on Sox9a transcription factor activity. At the same time, notochord expression is maintained after Sox9a knockdown, suggesting that other factors can activate expression through the identified regulatory element in this tissue. PMID:21723274

  14. Chromatin Accessibility Mapping Identifies Mediators of Basal Transcription and Retinoid-Induced Repression of OTX2 in Medulloblastoma

    PubMed Central

    Zhang, Monica; Song, Lingyun; Lee, Bum-Kyu; Iyer, Vishwanath R.; Furey, Terrence S.; Crawford, Gregory E.; Yan, Hai; He, Yiping

    2014-01-01

    Despite an emerging understanding of the genetic alterations giving rise to various tumors, the mechanisms whereby most oncogenes are overexpressed remain unclear. Here we have utilized an integrated approach of genomewide regulatory element mapping via DNase-seq followed by conventional reporter assays and transcription factor binding site discovery to characterize the transcriptional regulation of the medulloblastoma oncogene Orthodenticle Homeobox 2 (OTX2). Through these studies we have revealed that OTX2 is differentially regulated in medulloblastoma at the level of chromatin accessibility, which is in part mediated by DNA methylation. In cell lines exhibiting chromatin accessibility of OTX2 regulatory regions, we found that autoregulation maintains OTX2 expression. Comparison of medulloblastoma regulatory elements with those of the developing brain reveals that these tumors engage a developmental regulatory program to drive OTX2 transcription. Finally, we have identified a transcriptional regulatory element mediating retinoid-induced OTX2 repression in these tumors. This work characterizes for the first time the mechanisms of OTX2 overexpression in medulloblastoma. Furthermore, this study establishes proof of principle for applying ENCODE datasets towards the characterization of upstream trans-acting factors mediating expression of individual genes. PMID:25198066

  15. Modular arrangement of regulatory RNA elements.

    PubMed

    Roßmanith, Johanna; Narberhaus, Franz

    2017-03-04

    Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed.

  16. Investigating the transcriptional control of cardiovascular development

    PubMed Central

    Kathiriya, Irfan S.; Nora, Elphege P.; Bruneau, Benoit G.

    2015-01-01

    Transcriptional regulation of thousands of genes instructs complex morphogenetic and molecular events for heart development. Cardiac transcription factors (TFs) choreograph gene expression at each stage of differentiation by interacting with co-factors, including chromatin-modifying enzymes, and by binding to a constellation of regulatory DNA elements. Here, we present salient examples relevant to cardiovascular development and heart disease and review techniques that can sharpen our understanding of cardiovascular biology. We discuss the interplay between cardiac TFs, cis-regulatory elements and chromatin as dynamic regulatory networks, to orchestrate sequential deployment of the cardiac gene expression program. PMID:25677518

  17. Dynamics and function of distal regulatory elements during neurogenesis and neuroplasticity

    PubMed Central

    Thakurela, Sudhir; Sahu, Sanjeeb Kumar; Garding, Angela; Tiwari, Vijay K.

    2015-01-01

    Gene regulation in mammals involves a complex interplay between promoters and distal regulatory elements that function in concert to drive precise spatiotemporal gene expression programs. However, the dynamics of the distal gene regulatory landscape and its function in the transcriptional reprogramming that underlies neurogenesis and neuronal activity remain largely unknown. Here, we performed a combinatorial analysis of genome-wide data sets for chromatin accessibility (FAIRE-seq) and the enhancer mark H3K27ac, revealing the highly dynamic nature of distal gene regulation during neurogenesis, which gets progressively restricted to distinct genomic regions as neurons acquire a post-mitotic, terminally differentiated state. We further find that the distal accessible and active regions serve as target sites for distinct transcription factors that function in a stage-specific manner to contribute to the transcriptional program underlying neuronal commitment and maturation. Mature neurons respond to a sustained activity of NMDA receptors by epigenetic reprogramming at a large number of distal regulatory regions as well as dramatic reorganization of super-enhancers. Such massive remodeling of the distal regulatory landscape in turn results in a transcriptome that confers a transient loss of neuronal identity and gain of cellular plasticity. Furthermore, NMDA receptor activity also induces many novel prosurvival genes that function in neuroprotective pathways. Taken together, these findings reveal the dynamics of the distal regulatory landscape during neurogenesis and uncover novel regulatory elements that function in concert with epigenetic mechanisms and transcription factors to generate the transcriptome underlying neuronal development and activity. PMID:26170447

  18. Etonogestrel implant migration to the vasculature, chest wall, and distant body sites: cases from a pharmacovigilance database.

    PubMed

    Kang, Sarah; Niak, Ali; Gada, Neha; Brinker, Allen; Jones, S Christopher

    2017-12-01

    To describe clinical outcomes of etonogestrel implant patients with migration to the vasculature, chest wall and other distant body sites spontaneously reported to the US Food and Drug Administration Adverse Event Reporting System (FAERS) database. We performed a standardized Medical Dictionary for Regulatory Activities (MedDRA) query in the FAERS database (through November 15, 2015), with reports coded with one or more MedDRA preferred terms that indicate complications with device placement or migration of the device from the original site of insertion to the vasculature, chest wall and other distant body sites. We excluded any cases previously described in the medical literature. We identified 38 cases of pronounced etonogestrel implant migration. Migration locations included the lung/pulmonary artery (n=9), chest wall (n=1), vasculature at locations other than the lung/pulmonary artery (n=14) and extravascular migrations (n=14) to other body sites (e.g., the axilla and clavicle/neck line/shoulder). The majority of cases were asymptomatic and detected when the patient desired implant removal; however, seven cases reported symptoms such as pain, discomfort and dyspnea in association with implant migration. Three cases also describe pulmonary fibrosis and skin reactions as a result of implant migration to the vasculature, chest wall and other distant body sites. Sixteen cases reported surgical removal in an operating room setting. Our FAERS case series demonstrates etonogestrel implant migration to the vasculature, chest wall and other body sites distant from the site of original insertion. As noted by the sponsor in current prescribing information, a key determinant in the risk for etonogestrel contraceptive implant migration appears to be improper insertion technique. Although migration of etonogestrel implants to the vasculature is rare, awareness of migration and education on proper insertion technique may reduce the risk. Published by Elsevier Inc.

  19. Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny

    PubMed Central

    Gaudry, Michael J.; Campbell, Kevin L.

    2017-01-01

    Uncoupling protein 1 (UCP1) permits non-shivering thermogenesis (NST) when highly expressed in brown adipose tissue (BAT) mitochondria. Exclusive to placental mammals, BAT has commonly been regarded to be advantageous for thermoregulation in hibernators, small-bodied species, and the neonates of larger species. While numerous regulatory control motifs associated with UCP1 transcription have been proposed for murid rodents, it remains unclear whether these are conserved across the eutherian mammal phylogeny and hence essential for UCP1 expression. To address this shortcoming, we conducted a broad comparative survey of putative UCP1 transcriptional regulatory elements in 139 mammals (135 eutherians). We find no evidence for presence of a UCP1 enhancer in monotremes and marsupials, supporting the hypothesis that this control region evolved in a stem eutherian ancestor. We additionally reveal that several putative promoter elements (e.g., CRE-4, CCAAT) identified in murid rodents are not conserved among BAT-expressing eutherians, and together with the putative regulatory region (PRR) and CpG island do not appear to be crucial for UCP1 expression. The specificity and importance of the upTRE, dnTRE, URE1, CRE-2, RARE-2, NBRE, BRE-1, and BRE-2 enhancer elements first described from rats and mice are moreover uncertain as these motifs differ substantially—but generally remain highly conserved—in other BAT-expressing eutherians. Other UCP1 enhancer motifs (CRE-3, PPRE, and RARE-3) as well as the TATA box are also highly conserved in nearly all eutherian lineages with an intact UCP1. While these transcriptional regulatory motifs are generally also maintained in species where this gene is pseudogenized, the loss or degeneration of key basal promoter (e.g., TATA box) and enhancer elements in other UCP1-lacking lineages make it unlikely that the enhancer region is pleiotropic (i.e., co-regulates additional genes). Importantly, differential losses of (or mutations within) putative regulatory elements among the eutherian lineages with an intact UCP1 suggests that the transcriptional control of gene expression is not highly conserved in this mammalian clade. PMID:28979209

  20. Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA

    PubMed Central

    Fu, Yan; Bannach, Oliver; Chen, Hao; Teune, Jan-Hendrik; Schmitz, Axel; Steger, Gerhard; Xiong, Liming; Barbazuk, W. Brad

    2009-01-01

    Identifying conserved alternative splicing (AS) events among evolutionarily distant species can prioritize AS events for functional characterization and help uncover relevant cis- and trans-regulatory factors. A genome-wide search for conserved cassette exon AS events in higher plants revealed the exonization of 5S ribosomal RNA (5S rRNA) within the gene of its own transcription regulator, TFIIIA (transcription factor for polymerase III A). The 5S rRNA-derived exon in TFIIIA gene exists in all representative land plant species but not in green algae and nonplant species, suggesting it is specific to land plants. TFIIIA is essential for RNA polymerase III-based transcription of 5S rRNA in eukaryotes. Integrating comparative genomics and molecular biology revealed that the conserved cassette exon derived from 5S rRNA is coupled with nonsense-mediated mRNA decay. Utilizing multiple independent Arabidopsis overexpressing TFIIIA transgenic lines under osmotic and salt stress, strong accordance between phenotypic and molecular evidence reveals the biological relevance of AS of the exonized 5S rRNA in quantitative autoregulation of TFIIIA homeostasis. Most significantly, this study provides the first evidence of ancient exaptation of 5S rRNA in plants, suggesting a novel gene regulation model mediated by the AS of an anciently exonized noncoding element. PMID:19211543

  1. Intrinsic limits to gene regulation by global crosstalk

    PubMed Central

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  2. PROSPECT improves cis-acting regulatory element prediction by integrating expression profile data with consensus pattern searches

    PubMed Central

    Fujibuchi, Wataru; Anderson, John S. J.; Landsman, David

    2001-01-01

    Consensus pattern and matrix-based searches designed to predict cis-acting transcriptional regulatory sequences have historically been subject to large numbers of false positives. We sought to decrease false positives by incorporating expression profile data into a consensus pattern-based search method. We have systematically analyzed the expression phenotypes of over 6000 yeast genes, across 121 expression profile experiments, and correlated them with the distribution of 14 known regulatory elements over sequences upstream of the genes. Our method is based on a metric we term probabilistic element assessment (PEA), which is a ranking of potential sites based on sequence similarity in the upstream regions of genes with similar expression phenotypes. For eight of the 14 known elements that we examined, our method had a much higher selectivity than a naïve consensus pattern search. Based on our analysis, we have developed a web-based tool called PROSPECT, which allows consensus pattern-based searching of gene clusters obtained from microarray data. PMID:11574681

  3. Regulatory element-based prediction identifies new susceptibility regulatory variants for osteoporosis.

    PubMed

    Yao, Shi; Guo, Yan; Dong, Shan-Shan; Hao, Ruo-Han; Chen, Xiao-Feng; Chen, Yi-Xiao; Chen, Jia-Bin; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2017-08-01

    Despite genome-wide association studies (GWASs) have identified many susceptibility genes for osteoporosis, it still leaves a large part of missing heritability to be discovered. Integrating regulatory information and GWASs could offer new insights into the biological link between the susceptibility SNPs and osteoporosis. We generated five machine learning classifiers with osteoporosis-associated variants and regulatory features data. We gained the optimal classifier and predicted genome-wide SNPs to discover susceptibility regulatory variants. We further utilized Genetic Factors for Osteoporosis Consortium (GEFOS) and three in-house GWASs samples to validate the associations for predicted positive SNPs. The random forest classifier performed best among all machine learning methods with the F1 score of 0.8871. Using the optimized model, we predicted 37,584 candidate SNPs for osteoporosis. According to the meta-analysis results, a list of regulatory variants was significantly associated with osteoporosis after multiple testing corrections and contributed to the expression of known osteoporosis-associated protein-coding genes. In summary, combining GWASs and regulatory elements through machine learning could provide additional information for understanding the mechanism of osteoporosis. The regulatory variants we predicted will provide novel targets for etiology research and treatment of osteoporosis.

  4. Understanding Kidney Disease: Toward the Integration of Regulatory Networks Across Species

    PubMed Central

    Ju, Wenjun; Brosius, Frank C.

    2010-01-01

    Animal models have long been useful in investigating both normal and abnormal human physiology. Systems biology provides a relatively new set of approaches to identify similarities and differences between animal models and humans that may lead to a more comprehensive understanding of human kidney pathophysiology. In this review, we briefly describe how genome-wide analyses of mouse models have helped elucidate features of human kidney diseases, discuss strategies to achieve effective network integration, and summarize currently available web-based tools that may facilitate integration of data across species. The rapid progress in systems biology and orthology, as well as the advent of web-based tools to facilitate these processes, now make it possible to take advantage of knowledge from distant animal species in targeted identification of regulatory networks that may have clinical relevance for human kidney diseases. PMID:21044762

  5. In silico analysis of high affinity potassium transporter (HKT) isoforms in different plants

    PubMed Central

    2014-01-01

    Background High affinity potassium transporters (HKTs) are located in the plasma membrane of the vessels and have significant influence on salt tolerance in some plants. They exclude Na+ from the parenchyma cells to reduce Na+ concentration. Despite many studies, the underlying regulatory mechanisms and the exact functions of HKTs within different genomic backgrounds are relatively unknown. In this study, various bioinformatics techniques, including promoter analysis, identification of HKT-surrounding genes, and construction of gene networks, were applied to investigate the HKT regulatory mechanism. Results Promoter analysis showed that rice HKTs carry ABA response elements. Additionally, jasmonic acid response elements were detected on promoter region of TmHKT1;5. In silico synteny highlighted several unknown and new loci near rice, Arabidopsis thaliana and Physcomitrella patent HKTs, which may play a significant role in salt stress tolerance in concert with HKTs. Gene network prediction unravelled that crosstalk between jasmonate and ethylene reduces AtHKT1;1 expression. Furthermore, antiporter and transferase proteins were found in AtHKT1;1 gene network. Interestingly, regulatory elements on the promoter region of HKT in wild genotype (TmHKT1;5) were more frequent and variable than the ones in cultivated wheat (TaHKT1;5) which provides the possibility of rapid response and better understanding of environmental conditions for wild genotype. Conclusion Detecting ABA and jasmonic acid response elements on promoter regions of HKTs provide valuable clues on underlying regulatory mechanisms of HKTs. In silico synteny and pathway discovery indicated several candidates which act in concert with HKTs in stress condition. We highlighted different arrangement of regulatory elements on promoter region of wild wheat (TmHKT1;5) compared to bread wheat (TaHKT1;5) in this study. PMID:25279141

  6. Regulation of acrosomal exocytosis. II. The zona pellucida-induced acrosome reaction of bovine spermatozoa is controlled by extrinsic positive regulatory elements.

    PubMed

    Florman, H M; First, N L

    1988-08-01

    The effects of accessory sex gland secretions on the zona pellucida-induced acrosome reaction of bovine spermatozoa were investigated. Soluble extracts of zonae pellucidae initiated exocytosis in ejaculated spermatozoa. This process had an ED50 of 20 ng/microliter zona pellucida protein and saturated at 50 ng/microliter (Florman and First, 1988. Dev. Biol. 128, 453-463). In epididymal sperm this dose-response relationship was shifted toward greater agonist concentrations by at least a factor of 10(3). Reconstitution of high potency agonist response was achieved in vitro by incubation of epididymal sperm with bovine seminal plasma. Reconstitution was dependent on the seminal plasma protein concentration. The ED50 of this process was 62 micrograms protein/10(8) sperm and saturation was observed with 124 micrograms protein/10(8) sperm. Agonist responses in reconstituted epididymal sperm and in ejaculated sperm were indistinguishable with regard to dependence on the zona pellucida protein concentration and the kinetics of induced acrosome reactions. Kinetic studies suggest that reconstitution is due to adsorption of regulatory factors from seminal plasma. In addition to the positive regulatory elements responsible for reconstituting activity, seminal plasma also contains negative regulatory elements which inhibit agonist response. These negative factors are inactivated during sperm capacitation, permitting the expression of positive regulators. Acting together, these regulatory elements could coordinate high affinity agonist response with the availability of eggs in vivo.

  7. Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana.

    PubMed

    Zhang, Weixiong; Ruan, Jianhua; Ho, Tuan-Hua David; You, Youngsook; Yu, Taotao; Quatrano, Ralph S

    2005-07-15

    A fundamental problem of computational genomics is identifying the genes that respond to certain endogenous cues and environmental stimuli. This problem can be referred to as targeted gene finding. Since gene regulation is mainly determined by the binding of transcription factors and cis-regulatory DNA sequences, most existing gene annotation methods, which exploit the conservation of open reading frames, are not effective in finding target genes. A viable approach to targeted gene finding is to exploit the cis-regulatory elements that are known to be responsible for the transcription of target genes. Given such cis-elements, putative target genes whose promoters contain the elements can be identified. As a case study, we apply the above approach to predict the genes in model plant Arabidopsis thaliana which are inducible by a phytohormone, abscisic acid (ABA), and abiotic stress, such as drought, cold and salinity. We first construct and analyze two ABA specific cis-elements, ABA-responsive element (ABRE) and its coupling element (CE), in A.thaliana, based on their conservation in rice and other cereal plants. We then use the ABRE-CE module to identify putative ABA-responsive genes in A.thaliana. Based on RT-PCR verification and the results from literature, this method has an accuracy rate of 67.5% for the top 40 predictions. The cis-element based targeted gene finding approach is expected to be widely applicable since a large number of cis-elements in many species are available.

  8. Decoding a Signature-Based Model of Transcription Cofactor Recruitment Dictated by Cardinal Cis-Regulatory Elements in Proximal Promoter Regions

    PubMed Central

    Benner, Christopher; Hutt, Kasey R.; Stunnenberg, Rieka; Garcia-Bassets, Ivan

    2013-01-01

    Genome-wide maps of DNase I hypersensitive sites (DHSs) reveal that most human promoters contain perpetually active cis-regulatory elements between −150 bp and +50 bp (−150/+50 bp) relative to the transcription start site (TSS). Transcription factors (TFs) recruit cofactors (chromatin remodelers, histone/protein-modifying enzymes, and scaffold proteins) to these elements in order to organize the local chromatin structure and coordinate the balance of post-translational modifications nearby, contributing to the overall regulation of transcription. However, the rules of TF-mediated cofactor recruitment to the −150/+50 bp promoter regions remain poorly understood. Here, we provide evidence for a general model in which a series of cis-regulatory elements (here termed ‘cardinal’ motifs) prefer acting individually, rather than in fixed combinations, within the −150/+50 bp regions to recruit TFs that dictate cofactor signatures distinctive of specific promoter subsets. Subsequently, human promoters can be subclassified based on the presence of cardinal elements and their associated cofactor signatures. In this study, furthermore, we have focused on promoters containing the nuclear respiratory factor 1 (NRF1) motif as the cardinal cis-regulatory element and have identified the pervasive association of NRF1 with the cofactor lysine-specific demethylase 1 (LSD1/KDM1A). This signature might be distinctive of promoters regulating nuclear-encoded mitochondrial and other particular genes in at least some cells. Together, we propose that decoding a signature-based, expanded model of control at proximal promoter regions should lead to a better understanding of coordinated regulation of gene transcription. PMID:24244184

  9. First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar.

    PubMed

    DeRuiter, Stacy L; Southall, Brandon L; Calambokidis, John; Zimmer, Walter M X; Sadykova, Dinara; Falcone, Erin A; Friedlaender, Ari S; Joseph, John E; Moretti, David; Schorr, Gregory S; Thomas, Len; Tyack, Peter L

    2013-08-23

    Most marine mammal- strandings coincident with naval sonar exercises have involved Cuvier's beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89-127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78-106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.

  10. The impact of transposable elements on mammalian development

    PubMed Central

    Garcia-Perez, Jose L.; Widmann, Thomas J.; Adams, Ian R.

    2018-01-01

    Summary Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that significantly impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and how the somatic activity of TEs can influence gene regulatory networks. PMID:27875251

  11. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro–costo–mandibular syndrome

    PubMed Central

    Lynch, Danielle C.; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J.; Innes, A. Micheil; Lamont, Ryan E.; Lemire, Edmond G.; Chodirker, Bernard N.; Taylor, Juliet P.; Zackai, Elaine H.; McLeod, D. Ross; Kirk, Edwin P.; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Boycott, Kym; MacKenzie, Alex; Brudno, Michael; Bulman, Dennis; Dyment, David; Majewski, Jacek; Jerome-Majewska, Loydie A.; Parboosingh, Jillian S.; Bernier, Francois P.

    2014-01-01

    Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro–costo–mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development. PMID:25047197

  12. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome.

    PubMed

    Lynch, Danielle C; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J; Innes, A Micheil; Lamont, Ryan E; Lemire, Edmond G; Chodirker, Bernard N; Taylor, Juliet P; Zackai, Elaine H; McLeod, D Ross; Kirk, Edwin P; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Majewski, Jacek; Jerome-Majewska, Loydie A; Parboosingh, Jillian S; Bernier, Francois P

    2014-07-22

    Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro-costo-mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.

  13. In vivo and in vitro characterization of σ70 constitutive promoters by real-time PCR and fluorescent measurements.

    PubMed

    Chappell, James; Freemont, Paul

    2013-01-01

    The characterization of DNA regulatory elements such as ribosome binding sites and transcriptional promoters is a fundamental aim of synthetic biology. Characterization of such DNA regulatory elements by monitoring the synthesis of fluorescent proteins is a commonly used technique to resolve the relative or absolute strengths. These measurements can be used in combination with mathematical models and computer simulation to rapidly assess performance of DNA regulatory elements both in isolation and in combination, to assist predictable and efficient engineering of complex novel biological devices and systems. Here we describe the construction and relative characterization of Escherichia coli (E. coli) σ(70) transcriptional promoters by monitoring the synthesis of green fluorescent protein (GFP) both in vivo in E. coli and in vitro in a E. coli cell-free transcription and translation reaction.

  14. Defective distal regulatory element at the 5' upstream of rat prolactin gene of steroid-nonresponsive GH-subclone.

    PubMed

    Kumar, V; Wong, D T; Pasion, S G; Biswas, D K

    1987-12-08

    The prolactin-nonproducing (PRL-) GH cell strains (rat pituitary tumor cells in culture). GH12C1 and F1BGH12C1, do not respond to steroid hormones estradiol or hydrocortisone (HC). However, the stimulatory effect of estradiol and the inhibitory effect of hydrocortisone on prolactin synthesis can be demonstrated in the prolactin-producing GH cell strain, GH4C1. In this investigation we have examined the 5' end flanking region of rat prolactin (rat PRL) gene of steroid-responsive, GH4C1 cells to identify the positive and negative regulatory elements and to verify the status of these elements in steroid-nonresponsive F1BGH12C1 cells. Results presented in this report demonstrate that the basel level expression of the co-transferred Neo gene (neomycin phosphoribosyl transferase) is modulated by the distal upstream regulatory elements of rat PRL gene in response to steroid hormones. The expression of adjacent Neo gene is inhibited by dexamethasone and is stimulated by estradiol in transfectants carrying distal regulatory elements (SRE) of steroid-responsive cells. These responses are not observed in transfectants with the rat PRL upstream sequences derived from steroid-nonresponsive cells. The basal level expression of the host cell alpha-2 tubulin gene is not affected by dexamethasone. We report here the identification of the distal steroid regulatory element (SRE) located between 3.8 and 7.8 kb upstream of the transcription initiation site of rat PRL gene. Both the positive and the negative effects of steroid hormones can be identified within this upstream sequence. This distal SRE appears to be nonfunctional in steroid-nonresponsive cells. Though the proximal SRE is functional, the defect in the distal SRE makes the GH substrain nonresponsive to steroid hormones. These results suggest that both the proximal and the distal SREs are essential for the mediation of action of steroid hormones in GH cells.

  15. Identification of cis-elements and evaluation of upstream regulatory region of a rice anther-specific gene, OSIPP3, conferring pollen-specific expression in Oryza sativa (L.) ssp. indica.

    PubMed

    Manimaran, P; Raghurami Reddy, M; Bhaskar Rao, T; Mangrauthia, Satendra K; Sundaram, R M; Balachandran, S M

    2015-12-01

    Pollen-specific expression. Promoters comprise of various cis-regulatory elements which control development and physiology of plants by regulating gene expression. To understand the promoter specificity and also identification of functional cis-acting elements, progressive 5' deletion analysis of the promoter fragments is widely used. We have evaluated the activity of regulatory elements of 5' promoter deletion sequences of anther-specific gene OSIPP3, viz. OSIPP3-∆1 (1504 bp), OSIPP3-∆2 (968 bp), OSIPP3-∆3 (388 bp) and OSIPP3-∆4 (286 bp) through the expression of transgene GUS in rice. In silico analysis of 1504-bp sequence harboring different copy number of cis-acting regulatory elements such as POLLENLELAT52, GTGANTG10, enhancer element of LAT52 and LAT56 indicated that they were essential for high level of expression in pollen. Histochemical GUS analysis of the transgenic plants revealed that 1504- and 968-bp fragments directed GUS expression in roots and anthers, while the 388- and 286-bp fragments restricted the GUS expression to only pollen, of which 388 bp conferred strong GUS expression. Further, GUS staining analysis of different panicle development stages (P1-P6) confirmed that the GUS gene was preferentially expressed only at P6 stage (late pollen stage). The qRT-PCR analysis of GUS transcript revealed 23-fold higher expression of GUS transcript in OSIPP3-Δ1 followed by OSIPP3-Δ2 (eightfold) and OSIPP3-Δ3 (threefold) when compared to OSIPP3-Δ4. Based on our results, we proposed that among the two smaller fragments, the 388-bp upstream regulatory region could be considered as a promising candidate for pollen-specific expression of agronomically important transgenes in rice.

  16. AFO Manure Management - Minnesota: Feedlot Registration

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  17. Deciphering RNA regulatory elements in trypanosomatids: one piece at a time or genome-wide?

    PubMed

    Gazestani, Vahid H; Lu, Zhiquan; Salavati, Reza

    2014-05-01

    Morphological and metabolic changes in the life cycle of Trypanosoma brucei are accomplished by precise regulation of hundreds of genes. In the absence of transcriptional control, RNA-binding proteins (RBPs) shape the structure of gene regulatory maps in this organism, but our knowledge about their target RNAs, binding sites, and mechanisms of action is far from complete. Although recent technological advances have revolutionized the RBP-based approaches, the main framework for the RNA regulatory element (RRE)-based approaches has not changed over the last two decades in T. brucei. In this Opinion, after highlighting the current challenges in RRE inference, we explain some genome-wide solutions that can significantly boost our current understanding about gene regulatory networks in T. brucei. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Cooperative action of multiple cis-acting elements is required for N-myc expression in branchial arches: specific contribution of GATA3.

    PubMed

    Potvin, Eric; Beuret, Laurent; Cadrin-Girard, Jean-François; Carter, Marcelle; Roy, Sophie; Tremblay, Michel; Charron, Jean

    2010-11-01

    The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.

  19. Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins.

    PubMed

    Zerenturk, Eser J; Sharpe, Laura J; Brown, Andrew J

    2012-10-01

    3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. 12 CFR 324.63 - Disclosures by FDIC-supervised institutions described in § 324.61.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., tier 2 capital, tier 1 and total capital ratios, including the regulatory capital elements and all the regulatory adjustments and deductions needed to calculate the numerator of such ratios; (2) Total risk... risk-weighted assets; (3) Regulatory capital ratios during any transition periods, including a...

  1. 12 CFR 217.63 - Disclosures by Board-regulated institutions described in § 217.61.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and total capital ratios, including the regulatory capital elements and all the regulatory adjustments and deductions needed to calculate the numerator of such ratios; (2) Total risk-weighted assets...; (3) Regulatory capital ratios during any transition periods, including a description of all the...

  2. A cis-regulatory logic simulator.

    PubMed

    Zeigler, Robert D; Gertz, Jason; Cohen, Barak A

    2007-07-27

    A major goal of computational studies of gene regulation is to accurately predict the expression of genes based on the cis-regulatory content of their promoters. The development of computational methods to decode the interactions among cis-regulatory elements has been slow, in part, because it is difficult to know, without extensive experimental validation, whether a particular method identifies the correct cis-regulatory interactions that underlie a given set of expression data. There is an urgent need for test expression data in which the interactions among cis-regulatory sites that produce the data are known. The ability to rapidly generate such data sets would facilitate the development and comparison of computational methods that predict gene expression patterns from promoter sequence. We developed a gene expression simulator which generates expression data using user-defined interactions between cis-regulatory sites. The simulator can incorporate additive, cooperative, competitive, and synergistic interactions between regulatory elements. Constraints on the spacing, distance, and orientation of regulatory elements and their interactions may also be defined and Gaussian noise can be added to the expression values. The simulator allows for a data transformation that simulates the sigmoid shape of expression levels from real promoters. We found good agreement between sets of simulated promoters and predicted regulatory modules from real expression data. We present several data sets that may be useful for testing new methodologies for predicting gene expression from promoter sequence. We developed a flexible gene expression simulator that rapidly generates large numbers of simulated promoters and their corresponding transcriptional output based on specified interactions between cis-regulatory sites. When appropriate rule sets are used, the data generated by our simulator faithfully reproduces experimentally derived data sets. We anticipate that using simulated gene expression data sets will facilitate the direct comparison of computational strategies to predict gene expression from promoter sequence. The source code is available online and as additional material. The test sets are available as additional material.

  3. Structure and Genetic Content of the Megaplasmids of Neurotoxigenic Clostridium butyricum Type E Strains from Italy

    PubMed Central

    Iacobino, Angelo; Scalfaro, Concetta; Franciosa, Giovanna

    2013-01-01

    We determined the genetic maps of the megaplasmids of six neutoroxigenic Clostridium butyricum type E strains from Italy using molecular and bioinformatics techniques. The megaplasmids are circular, not linear as we had previously proposed. The differently-sized megaplasmids share a genetic region that includes structural, metabolic and regulatory genes. In addition, we found that a 168 kb genetic region is present only in the larger megaplasmids of two tested strains, whereas it is absent from the smaller megaplasmids of the four remaining strains. The genetic region unique to the larger megaplasmids contains, among other features, a locus for clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated (cas) genes, i.e. a bacterial adaptive immune system providing sequence-specific protection from invading genetic elements. Some CRISPR spacer sequences of the neurotoxigenic C. butyricum type E strains showed homology to prophage, phage and plasmid sequences from closely related clostridia species or from distant species, all sharing the intestinal habitat, suggesting that the CRISPR locus might be involved in the microorganism adaptation to the human or animal intestinal environment. Besides, we report here that each of four distinct CRISPR spacers partially matched DNA sequences of different prophages and phages, at identical nucleotide locations. This suggests that, at least in neurotoxigenic C. butyricum type E, the CRISPR locus is potentially able to recognize the same conserved DNA sequence of different invading genetic elements, besides targeting sequences unique to previously encountered invading DNA, as currently predicted for a CRISPR locus. Thus, the results of this study introduce the possibility that CRISPR loci can provide resistance to a wider range of invading DNA elements than previously appreciated. Whether it is more advantageous for the peculiar neurotoxigenic C. butyricum type E strains to maintain or to lose the CRISPR-cas system remains an open question. PMID:23967192

  4. AFO Manure Management - Michigan: Manure Transfer Requirements

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  5. Shared Enhancer Activity in the Limbs and Phallus and Functional Divergence of a Limb-Genital cis-Regulatory Element in Snakes.

    PubMed

    Infante, Carlos R; Mihala, Alexandra G; Park, Sungdae; Wang, Jialiang S; Johnson, Kenji K; Lauderdale, James D; Menke, Douglas B

    2015-10-12

    The amniote phallus and limbs differ dramatically in their morphologies but share patterns of signaling and gene expression in early development. Thus far, the extent to which genital and limb transcriptional networks also share cis-regulatory elements has remained unexplored. We show that many limb enhancers are retained in snake genomes, suggesting that these elements may function in non-limb tissues. Consistent with this, our analysis of cis-regulatory activity in mice and Anolis lizards reveals that patterns of enhancer activity in embryonic limbs and genitalia overlap heavily. In mice, deletion of HLEB, an enhancer of Tbx4, produces defects in hindlimbs and genitalia, establishing the importance of this limb-genital enhancer for development of these different appendages. Further analyses demonstrate that the HLEB of snakes has lost hindlimb enhancer function while retaining genital activity. Our findings identify roles for Tbx4 in genital development and highlight deep similarities in cis-regulatory activity between limbs and genitalia. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Screening of MITF and SOX10 regulatory regions in Waardenburg syndrome type 2.

    PubMed

    Baral, Viviane; Chaoui, Asma; Watanabe, Yuli; Goossens, Michel; Attie-Bitach, Tania; Marlin, Sandrine; Pingault, Veronique; Bondurand, Nadege

    2012-01-01

    Waardenburg syndrome (WS) is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2) can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE) and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy.

  7. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging

    PubMed Central

    Pocock, Ginger M.; Zimdars, Laraine L.; Yuan, Ming; Eliceiri, Kevin W.; Ahlquist, Paul; Sherer, Nathan M.

    2017-01-01

    Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include “burst” RNA nuclear export dynamics regulated by HIV-1’s Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element–specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation. PMID:27903772

  8. Comparison of Ultra-Conserved Elements in Drosophilids and Vertebrates

    PubMed Central

    Makunin, Igor V.; Shloma, Viktor V.; Stephen, Stuart J.; Pheasant, Michael; Belyakin, Stepan N.

    2013-01-01

    Metazoan genomes contain many ultra-conserved elements (UCEs), long sequences identical between distant species. In this study we identified UCEs in drosophilid and vertebrate species with a similar level of phylogenetic divergence measured at protein-coding regions, and demonstrated that both the length and number of UCEs are larger in vertebrates. The proportion of non-exonic UCEs declines in distant drosophilids whilst an opposite trend was observed in vertebrates. We generated a set of 2,126 Sophophora UCEs by merging elements identified in several drosophila species and compared these to the eutherian UCEs identified in placental mammals. In contrast to vertebrates, the Sophophora UCEs are depleted around transcription start sites. Analysis of 52,954 P-element, piggyBac and Minos insertions in the D. melanogaster genome revealed depletion of the P-element and piggyBac insertions in and around the Sophophora UCEs. We examined eleven fly strains with transposon insertions into the intergenic UCEs and identified associated phenotypes in five strains. Four insertions behave as recessive lethals, and in one case we observed a suppression of the marker gene within the transgene, presumably by silenced chromatin around the integration site. To confirm the lethality is caused by integration of transposons we performed a phenotype rescue experiment for two stocks and demonstrated that the excision of the transposons from the intergenic UCEs restores viability. Sequencing of DNA after the transposon excision in one fly strain with the restored viability revealed a 47 bp insertion at the original transposon integration site suggesting that the nature of the mutation is important for the appearance of the phenotype. Our results suggest that the UCEs in flies and vertebrates have both common and distinct features, and demonstrate that a significant proportion of intergenic drosophila UCEs are sensitive to disruption. PMID:24349264

  9. Deep conservation of cis-regulatory elements in metazoans

    PubMed Central

    Maeso, Ignacio; Irimia, Manuel; Tena, Juan J.; Casares, Fernando; Gómez-Skarmeta, José Luis

    2013-01-01

    Despite the vast morphological variation observed across phyla, animals share multiple basic developmental processes orchestrated by a common ancestral gene toolkit. These genes interact with each other building complex gene regulatory networks (GRNs), which are encoded in the genome by cis-regulatory elements (CREs) that serve as computational units of the network. Although GRN subcircuits involved in ancient developmental processes are expected to be at least partially conserved, identification of CREs that are conserved across phyla has remained elusive. Here, we review recent studies that revealed such deeply conserved CREs do exist, discuss the difficulties associated with their identification and describe new approaches that will facilitate this search. PMID:24218633

  10. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades

    PubMed Central

    2009-01-01

    Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences. PMID:19821996

  11. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades.

    PubMed

    Förster, Frank; Liang, Chunguang; Shkumatov, Alexander; Beisser, Daniela; Engelmann, Julia C; Schnölzer, Martina; Frohme, Marcus; Müller, Tobias; Schill, Ralph O; Dandekar, Thomas

    2009-10-12

    Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.

  12. Genome-Wide Profiling of p63 DNA–Binding Sites Identifies an Element that Regulates Gene Expression during Limb Development in the 7q21 SHFM1 Locus

    PubMed Central

    Oti, Martin; Dutilh, Bas E.; Alonso, M. Eva; de la Calle-Mustienes, Elisa; Smeenk, Leonie; Rinne, Tuula; Parsaulian, Lilian; Bolat, Emine; Jurgelenaite, Rasa; Huynen, Martijn A.; Hoischen, Alexander; Veltman, Joris A.; Brunner, Han G.; Roscioli, Tony; Oates, Emily; Wilson, Meredith; Manzanares, Miguel; Gómez-Skarmeta, José Luis; Stunnenberg, Hendrik G.; Lohrum, Marion; van Bokhoven, Hans; Zhou, Huiqing

    2010-01-01

    Heterozygous mutations in p63 are associated with split hand/foot malformations (SHFM), orofacial clefting, and ectodermal abnormalities. Elucidation of the p63 gene network that includes target genes and regulatory elements may reveal new genes for other malformation disorders. We performed genome-wide DNA–binding profiling by chromatin immunoprecipitation (ChIP), followed by deep sequencing (ChIP–seq) in primary human keratinocytes, and identified potential target genes and regulatory elements controlled by p63. We show that p63 binds to an enhancer element in the SHFM1 locus on chromosome 7q and that this element controls expression of DLX6 and possibly DLX5, both of which are important for limb development. A unique micro-deletion including this enhancer element, but not the DLX5/DLX6 genes, was identified in a patient with SHFM. Our study strongly indicates disruption of a non-coding cis-regulatory element located more than 250 kb from the DLX5/DLX6 genes as a novel disease mechanism in SHFM1. These data provide a proof-of-concept that the catalogue of p63 binding sites identified in this study may be of relevance to the studies of SHFM and other congenital malformations that resemble the p63-associated phenotypes. PMID:20808887

  13. AFO Manure Management - Nevada: CAFO Drainage Collection Requirements

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  14. AFO Manure Management - Virginia: Nutrient Management Inspector Qualifications

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  15. AFO Manure Management - California: Implementing TMDL Wasteload Allocations

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  16. The impact of transposable elements on mammalian development.

    PubMed

    Garcia-Perez, Jose L; Widmann, Thomas J; Adams, Ian R

    2016-11-15

    Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that have a significant impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and discuss how the somatic activity of TEs can influence gene regulatory networks. © 2016. Published by The Company of Biologists Ltd.

  17. An Autonomous BMP2 Regulatory Element in Mesenchymal Cells

    PubMed Central

    Kruithof, Boudewijn P.T.; Fritz, David T.; Liu, Yijun; Garsetti, Diane E.; Frank, David B.; Pregizer, Steven K.; Gaussin, Vinciane; Mortlock, Douglas P.; Rogers, Melissa B.

    2014-01-01

    BMP2 is a morphogen that controls mesenchymal cell differentiation and behavior. For example, BMP2 concentration controls the differentiation of mesenchymal precursors into myocytes, adipocytes, chondrocytes, and osteoblasts. Sequences within the 3′untranslated region (UTR) of the Bmp2 mRNA mediate a post-transcriptional block of protein synthesis. Interaction of cell and developmental stage-specific trans-regulatory factors with the 3′UTR is a nimble and versatile mechanism for modulating this potent morphogen in different cell types. We show here, that an ultra-conserved sequence in the 3′UTR functions independently of promoter, coding region, and 3′UTR context in primary and immortalized tissue culture cells and in transgenic mice. Our findings indicate that the ultra-conserved sequence is an autonomously functioning post-transcriptional element that may be used to modulate the level of BMP2 and other proteins while retaining tissue specific regulatory elements. PMID:21268088

  18. 12 CFR 3.63 - Disclosures by national banks or Federal savings associations described in § 3.61.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tier 1 capital, tier 2 capital, tier 1 and total capital ratios, including the regulatory capital elements and all the regulatory adjustments and deductions needed to calculate the numerator of such ratios... to calculate total risk-weighted assets; (3) Regulatory capital ratios during any transition periods...

  19. Structure of the 5' region of the Hst70 gene transcription unit: presence of an intron and multiple transcription initiation sites.

    PubMed Central

    Scieglinska, D; Widłak, W; Konopka, W; Poutanen, M; Rahman, N; Huhtaniemi, I; Krawczyk, Z

    2001-01-01

    The rat Hst70 gene and its mouse counterpart Hsp70.2 belong to the family of Hsp70 heat shock genes and are specifically expressed in male germ cells. Previous studies regarding the structure of the 5' region of the transcription unit of these genes as well as localization of the 'cis' elements conferring their testis-specific expression gave contradictory results [Widlak, Markkula, Krawczyk, Kananen and Huhtaniemi (1995) Biochim. Biophys. Acta 1264, 191-200; Dix, Rosario-Herrle, Gotoh, Mori, Goulding, Barret and Eddy (1996) Dev. Biol. 174, 310-321]. In the present paper we solve these controversies and show that the 5' untranslated region (UTR) of the Hst70 gene contains an intron which is localized similar to that of the mouse Hsp70.2 gene. Reverse transcriptase-mediated PCR, Northern blotting and RNase protection analysis revealed that the transcription initiation of both genes starts at two main distant sites, and one of them is localized within the intron. As a result two populations of Hst70 gene transcripts with similar sizes but different 5' UTR structures can be detected in total testicular RNA. Functional analysis of the Hst70 gene promoter in transgenic mice and transient transfection assays proved that the DNA fragment of approx. 360 bp localized upstream of the ATG transcription start codon is the minimal promoter required for testis-specific expression of the HST70/chloramphenicol acetyltransferase transgene. These experiments also suggest that the expression of the gene may depend on 'cis' regulatory elements localized within exon 1 and the intron sequences. PMID:11563976

  20. Immortalization-susceptible elements and their binding factors mediate rejuvenation of regulation of the type I collagenase gene in simian virus 40 large T antigen-transformed immortal human fibroblasts.

    PubMed Central

    Imai, S; Fujino, T; Nishibayashi, S; Manabe, T; Takano, T

    1994-01-01

    Dramatic changes occur in expression of the type I collagenase gene during the process of immortalization in simian virus 40 large T antigen-transformed human fibroblasts (S. Imai and T. Takano, Biochem. Biophys. Res. Commun. 189:148-153, 1992). From transient transfection assays, it was determined that these changes involved the functions of two immortalization-susceptible cis-acting elements, ISE1 and ISE2, located in a 100-bp region about 1.7 kb upstream. The profiles of binding of an activator, Proserpine, to the enhancer ISE1 were similar in the extracts of young, senescent preimmortalized and immortalized cells. ISE2 contained both negative and positive regulatory elements located adjacent to each other. The positive regulatory element consisted of a tandem array of putative Ets family- and AP-1-binding sites. An activator, Pluto, interacted with this positive regulatory element and had an AP-1-related component as a complex. The binding activity of Pluto was predominantly detected only in the extract from senescent preimmortalized cells. In contrast, a repressor, Orpheus, which bound to the ATG-rich negative regulatory element of ISE2, was prominently detected in extracts from both young preimmortalized and immortalized cells and appeared to suppress transcription in an orientation-dependent manner. Thus, the interplay of Pluto and Orpheus was suggested to be crucial for regulation of the collagenase gene accompanying in vitro aging and immortalization. Proserpine seemed to interact with Pluto to mediate strong expression of the collagenase gene in cellular senescence. On the basis of these results, we propose a model for regulation of the collagenase gene during in vitro aging and immortalization. Images PMID:7935433

  1. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes.

    PubMed

    Delage, Elise; Cervantes, Diégo Cordero; Pénard, Esthel; Schmitt, Christine; Syan, Sylvie; Disanza, Andrea; Scita, Giorgio; Zurzolo, Chiara

    2016-12-23

    Tunneling Nanotubes (TNTs) are actin enriched filopodia-like protrusions that play a pivotal role in long-range intercellular communication. Different pathogens use TNT-like structures as "freeways" to propagate across cells. TNTs are also implicated in cancer and neurodegenerative diseases, making them promising therapeutic targets. Understanding the mechanism of their formation, and their relation with filopodia is of fundamental importance to uncover their physiological function, particularly since filopodia, differently from TNTs, are not able to mediate transfer of cargo between distant cells. Here we studied different regulatory complexes of actin, which play a role in the formation of both these structures. We demonstrate that the filopodia-promoting CDC42/IRSp53/VASP network negatively regulates TNT formation and impairs TNT-mediated intercellular vesicle transfer. Conversely, elevation of Eps8, an actin regulatory protein that inhibits the extension of filopodia in neurons, increases TNT formation. Notably, Eps8-mediated TNT induction requires Eps8 bundling but not its capping activity. Thus, despite their structural similarities, filopodia and TNTs form through distinct molecular mechanisms. Our results further suggest that a switch in the molecular composition in common actin regulatory complexes is critical in driving the formation of either type of membrane protrusion.

  2. Abasy Atlas: a comprehensive inventory of systems, global network properties and systems-level elements across bacteria

    PubMed Central

    Ibarra-Arellano, Miguel A.; Campos-González, Adrián I.; Treviño-Quintanilla, Luis G.; Tauch, Andreas; Freyre-González, Julio A.

    2016-01-01

    The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy (Across-bacteria systems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them. Database URL: http://abasy.ccg.unam.mx PMID:27242034

  3. Cloning and Characterization of 5′ Flanking Regulatory Sequences of AhLEC1B Gene from Arachis Hypogaea L.

    PubMed Central

    Tang, Guiying; Xu, Pingli; Liu, Wei; Liu, Zhanji; Shan, Lei

    2015-01-01

    LEAFY COTYLEDON1 (LEC1) is a B subunit of Nuclear Factor Y (NF-YB) transcription factor that mainly accumulates during embryo development. We cloned the 5′ flanking regulatory sequence of AhLEC1B gene, a homolog of Arabidopsis LEC1, and analyzed its regulatory elements using online software. To identify the crucial regulatory region, we generated a series of GUS expression frameworks driven by different length promoters with 5′ terminal and/or 3′ terminal deletion. We further characterized the GUS expression patterns in the transgenic Arabidopsis lines. Our results show that both the 65bp proximal promoter region and the 52bp 5′ UTR of AhLEC1B contain the key motifs required for the essential promoting activity. Moreover, AhLEC1B is preferentially expressed in the embryo and is co-regulated by binding of its upstream genes with both positive and negative corresponding cis-regulatory elements. PMID:26426444

  4. Activation and synchronization of the oscillatory morphodynamics in multicellular monolayer

    PubMed Central

    Lin, Shao-Zhen; Li, Bo; Lan, Ganhui; Feng, Xi-Qiao

    2017-01-01

    Oscillatory morphodynamics provides necessary mechanical cues for many multicellular processes. Owing to their collective nature, these processes require robustly coordinated dynamics of individual cells, which are often separated too distantly to communicate with each other through biomaterial transportation. Although it is known that the mechanical balance generally plays a significant role in the systems’ morphologies, it remains elusive whether and how the mechanical components may contribute to the systems’ collective morphodynamics. Here, we study the collective oscillations in the Drosophila amnioserosa tissue to elucidate the regulatory roles of the mechanical components. We identify that the tensile stress is the key activator that switches the collective oscillations on and off. This regulatory role is shown analytically using the Hopf bifurcation theory. We find that the physical properties of the tissue boundary are directly responsible for synchronizing the oscillatory intensity and polarity of all inner cells and for orchestrating the spatial oscillation patterns inthe tissue. PMID:28716911

  5. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.

    PubMed

    Glinsky, Gennadi V

    2018-03-01

    Transposable elements have made major evolutionary impacts on creation of primate-specific and human-specific genomic regulatory loci and species-specific genomic regulatory networks (GRNs). Molecular and genetic definitions of human-specific changes to GRNs contributing to development of unique to human phenotypes remain a highly significant challenge. Genome-wide proximity placement analysis of diverse families of human-specific genomic regulatory loci (HSGRL) identified topologically associating domains (TADs) that are significantly enriched for HSGRL and designated rapidly evolving in human TADs. Here, the analysis of HSGRL, hESC-enriched enhancers, super-enhancers (SEs), and specific sub-TAD structures termed super-enhancer domains (SEDs) has been performed. In the hESC genome, 331 of 504 (66%) of SED-harboring TADs contain HSGRL and 68% of SEDs co-localize with HSGRL, suggesting that emergence of HSGRL may have rewired SED-associated GRNs within specific TADs by inserting novel and/or erasing existing non-coding regulatory sequences. Consequently, markedly distinct features of the principal regulatory structures of interphase chromatin evolved in the hESC genome compared to mouse: the SED quantity is 3-fold higher and the median SED size is significantly larger. Concomitantly, the overall TAD quantity is increased by 42% while the median TAD size is significantly decreased (p = 9.11E-37) in the hESC genome. Present analyses illustrate a putative global role for transposable elements and HSGRL in shaping the human-specific features of the interphase chromatin organization and functions, which are facilitated by accelerated creation of novel transcription factor binding sites and new enhancers driven by targeted placement of HSGRL at defined genomic coordinates. A trend toward the convergence of TAD and SED architectures of interphase chromatin in the hESC genome may reflect changes of 3D-folding patterns of linear chromatin fibers designed to enhance both regulatory complexity and functional precision of GRNs by creating predominantly a single gene (or a set of functionally linked genes) per regulatory domain structures. Collectively, present analyses reveal critical evolutionary contributions of transposable elements and distal enhancers to creation of thousands primate- and human-specific elements of a chromatin folding code, which defines the 3D context of interphase chromatin both restricting and facilitating biological functions of GRNs.

  6. AFO Manure Management - Oregon: Plan Review and Public Notice of Substantial Changes

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  7. Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus

    PubMed Central

    Smith, Emily M.; Lajoie, Bryan R.; Jain, Gaurav; Dekker, Job

    2016-01-01

    Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. PMID:26748519

  8. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes.

    PubMed

    Parker, Brian J; Moltke, Ida; Roth, Adam; Washietl, Stefan; Wen, Jiayu; Kellis, Manolis; Breaker, Ronald; Pedersen, Jakob Skou

    2011-11-01

    Regulatory RNA structures are often members of families with multiple paralogous instances across the genome. Family members share functional and structural properties, which allow them to be studied as a whole, facilitating both bioinformatic and experimental characterization. We have developed a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein-coding regions comprising 725 individual structures, including 48 families with known structural RNA elements. Known families identified include both noncoding RNAs, e.g., miRNAs and the recently identified MALAT1/MEN β lincRNA family; and cis-regulatory structures, e.g., iron-responsive elements. We also identify tens of new families supported by strong evolutionary evidence and other statistical evidence, such as GO term enrichments. For some of these, detailed analysis has led to the formulation of specific functional hypotheses. Examples include two hypothesized auto-regulatory feedback mechanisms: one involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we identify potential new regulatory networks, including large families of short hairpins enriched in immunity-related genes, e.g., TNF, FOS, and CTLA4, which include known transcript destabilizing elements. Our findings exemplify the diversity of post-transcriptional regulation and provide a resource for further characterization of new regulatory mechanisms and families of noncoding RNAs.

  9. Prokaryotic regulatory systems biology: Common principles governing the functional architectures of Bacillus subtilis and Escherichia coli unveiled by the natural decomposition approach.

    PubMed

    Freyre-González, Julio A; Treviño-Quintanilla, Luis G; Valtierra-Gutiérrez, Ilse A; Gutiérrez-Ríos, Rosa María; Alonso-Pavón, José A

    2012-10-31

    Escherichia coli and Bacillus subtilis are two of the best-studied prokaryotic model organisms. Previous analyses of their transcriptional regulatory networks have shown that they exhibit high plasticity during evolution and suggested that both converge to scale-free-like structures. Nevertheless, beyond this suggestion, no analyses have been carried out to identify the common systems-level components and principles governing these organisms. Here we show that these two phylogenetically distant organisms follow a set of common novel biologically consistent systems principles revealed by the mathematically and biologically founded natural decomposition approach. The discovered common functional architecture is a diamond-shaped, matryoshka-like, three-layer (coordination, processing, and integration) hierarchy exhibiting feedback, which is shaped by four systems-level components: global transcription factors (global TFs), locally autonomous modules, basal machinery and intermodular genes. The first mathematical criterion to identify global TFs, the κ-value, was reassessed on B. subtilis and confirmed its high predictive power by identifying all the previously reported, plus three potential, master regulators and eight sigma factors. The functionally conserved cores of modules, basal cell machinery, and a set of non-orthologous common physiological global responses were identified via both orthologous genes and non-orthologous conserved functions. This study reveals novel common systems principles maintained between two phylogenetically distant organisms and provides a comparison of their lifestyle adaptations. Our results shed new light on the systems-level principles and the fundamental functions required by bacteria to sustain life. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Ancient Regulatory Role of Lysine Acetylation in Central Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Burnet, Meagan C.; Walukiewicz, Hanna E.

    ABSTRACT Lysine acetylation is a common protein post-translational modification in bacteria and eukaryotes. Unlike phosphorylation, whose functional role in signaling has been established, it is unclear what regulatory mechanism acetylation plays and whether it is conserved across evolution. By performing a proteomic analysis of 48 phylogenetically distant bacteria, we discovered conserved acetylation sites on catalytically essential lysine residues that are invariant throughout evolution. Lysine acetylation removes the residue’s charge and changes the shape of the pocket required for substrate or cofactor binding. Two-thirds of glycolytic and tricarboxylic acid (TCA) cycle enzymes are acetylated at these critical sites. Our data suggestmore » that acetylation may play a direct role in metabolic regulation by switching off enzyme activity. We propose that protein acetylation is an ancient and widespread mechanism of protein activity regulation. IMPORTANCEPost-translational modifications can regulate the activity and localization of proteins inside the cell. Similar to phosphorylation, lysine acetylation is present in both eukaryotes and prokaryotes and modifies hundreds to thousands of proteins in cells. However, how lysine acetylation regulates protein function and whether such a mechanism is evolutionarily conserved is still poorly understood. Here, we investigated evolutionary and functional aspects of lysine acetylation by searching for acetylated lysines in a comprehensive proteomic data set from 48 phylogenetically distant bacteria. We found that lysine acetylation occurs in evolutionarily conserved lysine residues in catalytic sites of enzymes involved in central carbon metabolism. Moreover, this modification inhibits enzymatic activity. Our observations suggest that lysine acetylation is an evolutionarily conserved mechanism of controlling central metabolic activity by directly blocking enzyme active sites.« less

  11. Ancient Regulatory Role of Lysine Acetylation in Central Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Burnet, Meagan C.; Walukiewicz, Hanna E.

    ABSTRACT Lysine acetylation is a common protein post-translational modification in bacteria and eukaryotes. Unlike phosphorylation, whose functional role in signaling has been established, it is unclear what regulatory mechanism acetylation plays and whether it is conserved across evolution. By performing a proteomic analysis of 48 phylogenetically distant bacteria, we discovered conserved acetylation sites on catalytically essential lysine residues that are invariant throughout evolution. Lysine acetylation removes the residue’s charge and changes the shape of the pocket required for substrate or cofactor binding. Two-thirds of glycolytic and tricarboxylic acid (TCA) cycle enzymes are acetylated at these critical sites. Our data suggestmore » that acetylation may play a direct role in metabolic regulation by switching off enzyme activity. We propose that protein acetylation is an ancient and widespread mechanism of protein activity regulation. IMPORTANCE Post-translational modifications can regulate the activity and localization of proteins inside the cell. Similar to phosphorylation, lysine acetylation is present in both eukaryotes and prokaryotes and modifies hundreds to thousands of proteins in cells. However, how lysine acetylation regulates protein function and whether such a mechanism is evolutionarily conserved is still poorly understood. Here, we investigated evolutionary and functional aspects of lysine acetylation by searching for acetylated lysines in a comprehensive proteomic data set from 48 phylogenetically distant bacteria. We found that lysine acetylation occurs in evolutionarily conserved lysine residues in catalytic sites of enzymes involved in central carbon metabolism. Moreover, this modification inhibits enzymatic activity. Our observations suggest that lysine acetylation is an evolutionarily conserved mechanism of controlling central metabolic activity by directly blocking enzyme active sites.« less

  12. Ancient Regulatory Role of Lysine Acetylation in Central Metabolism

    DOE PAGES

    Nakayasu, Ernesto S.; Burnet, Meagan C.; Walukiewicz, Hanna E.; ...

    2017-11-28

    ABSTRACT Lysine acetylation is a common protein post-translational modification in bacteria and eukaryotes. Unlike phosphorylation, whose functional role in signaling has been established, it is unclear what regulatory mechanism acetylation plays and whether it is conserved across evolution. By performing a proteomic analysis of 48 phylogenetically distant bacteria, we discovered conserved acetylation sites on catalytically essential lysine residues that are invariant throughout evolution. Lysine acetylation removes the residue’s charge and changes the shape of the pocket required for substrate or cofactor binding. Two-thirds of glycolytic and tricarboxylic acid (TCA) cycle enzymes are acetylated at these critical sites. Our data suggestmore » that acetylation may play a direct role in metabolic regulation by switching off enzyme activity. We propose that protein acetylation is an ancient and widespread mechanism of protein activity regulation. IMPORTANCE Post-translational modifications can regulate the activity and localization of proteins inside the cell. Similar to phosphorylation, lysine acetylation is present in both eukaryotes and prokaryotes and modifies hundreds to thousands of proteins in cells. However, how lysine acetylation regulates protein function and whether such a mechanism is evolutionarily conserved is still poorly understood. Here, we investigated evolutionary and functional aspects of lysine acetylation by searching for acetylated lysines in a comprehensive proteomic data set from 48 phylogenetically distant bacteria. We found that lysine acetylation occurs in evolutionarily conserved lysine residues in catalytic sites of enzymes involved in central carbon metabolism. Moreover, this modification inhibits enzymatic activity. Our observations suggest that lysine acetylation is an evolutionarily conserved mechanism of controlling central metabolic activity by directly blocking enzyme active sites.« less

  13. [Bacteriophage λ: electrostatic properties of the genome and its elements].

    PubMed

    Krutinina, G G; Krutinin, E A; Kamzolova, S G; Osypov, A A

    2015-01-01

    Bacteriophage λ is a classical model object in molecular biology, but little is still known on the physical properties of its DNA and regulatory elements. A study was made of the electrostatic properties of phage λ DNA and regulatory elements. A global electrostatic potential distribution along the phage genome was found to be nonuniform with main regulatory elements being located in a limited region with a high potential. The RNA polymerase binding frequency on the linearized phage chromosome directly correlates with its local potential. Strong promoters of the phage and its host Escherichia coli have distinct electrostatic upstream elements, which differ in nucleotide sequence. Attachment and recombination sites of phage λ and its host have a higher potential, which possibly facilitates their recognition by integrase. Phage λ and host Rho-independent terminators have a symmetrical M-shaped potential profile, which only slightly depends on the annotated terminator palindrome length, and occur in a region with a substantially higher potential, which may cause polymerase retention, facilitating the formation of a terminator hairpin in RNA. It was concluded that virtually all elements of phage λ genome have potential distribution specifics, which are related to their structural properties and may play a role in their biological function. The global potential distribution along the phage genome reflects the architecture of the regulation of its transcription and integration in the host genome.

  14. Computational Approaches to Identify Promoters and cis-Regulatory Elements in Plant Genomes1

    PubMed Central

    Rombauts, Stephane; Florquin, Kobe; Lescot, Magali; Marchal, Kathleen; Rouzé, Pierre; Van de Peer, Yves

    2003-01-01

    The identification of promoters and their regulatory elements is one of the major challenges in bioinformatics and integrates comparative, structural, and functional genomics. Many different approaches have been developed to detect conserved motifs in a set of genes that are either coregulated or orthologous. However, although recent approaches seem promising, in general, unambiguous identification of regulatory elements is not straightforward. The delineation of promoters is even harder, due to its complex nature, and in silico promoter prediction is still in its infancy. Here, we review the different approaches that have been developed for identifying promoters and their regulatory elements. We discuss the detection of cis-acting regulatory elements using word-counting or probabilistic methods (so-called “search by signal” methods) and the delineation of promoters by considering both sequence content and structural features (“search by content” methods). As an example of search by content, we explored in greater detail the association of promoters with CpG islands. However, due to differences in sequence content, the parameters used to detect CpG islands in humans and other vertebrates cannot be used for plants. Therefore, a preliminary attempt was made to define parameters that could possibly define CpG and CpNpG islands in Arabidopsis, by exploring the compositional landscape around the transcriptional start site. To this end, a data set of more than 5,000 gene sequences was built, including the promoter region, the 5′-untranslated region, and the first introns and coding exons. Preliminary analysis shows that promoter location based on the detection of potential CpG/CpNpG islands in the Arabidopsis genome is not straightforward. Nevertheless, because the landscape of CpG/CpNpG islands differs considerably between promoters and introns on the one side and exons (whether coding or not) on the other, more sophisticated approaches can probably be developed for the successful detection of “putative” CpG and CpNpG islands in plants. PMID:12857799

  15. Genome-Wide Discovery of Drug-Dependent Human Liver Regulatory Elements

    PubMed Central

    Morrissey, Kari M.; Luizon, Marcelo R.; Hoffmann, Thomas J.; Sun, Xuefeng; Jones, Stacy L.; Force Aldred, Shelley; Ramamoorthy, Anuradha; Desta, Zeruesenay; Liu, Yunlong; Skaar, Todd C.; Trinklein, Nathan D.; Giacomini, Kathleen M.; Ahituv, Nadav

    2014-01-01

    Inter-individual variation in gene regulatory elements is hypothesized to play a causative role in adverse drug reactions and reduced drug activity. However, relatively little is known about the location and function of drug-dependent elements. To uncover drug-associated elements in a genome-wide manner, we performed RNA-seq and ChIP-seq using antibodies against the pregnane X receptor (PXR) and three active regulatory marks (p300, H3K4me1, H3K27ac) on primary human hepatocytes treated with rifampin or vehicle control. Rifampin and PXR were chosen since they are part of the CYP3A4 pathway, which is known to account for the metabolism of more than 50% of all prescribed drugs. We selected 227 proximal promoters for genes with rifampin-dependent expression or nearby PXR/p300 occupancy sites and assayed their ability to induce luciferase in rifampin-treated HepG2 cells, finding only 10 (4.4%) that exhibited drug-dependent activity. As this result suggested a role for distal enhancer modules, we searched more broadly to identify 1,297 genomic regions bearing a conditional PXR occupancy as well as all three active regulatory marks. These regions are enriched near genes that function in the metabolism of xenobiotics, specifically members of the cytochrome P450 family. We performed enhancer assays in rifampin-treated HepG2 cells for 42 of these sequences as well as 7 sequences that overlap linkage-disequilibrium blocks defined by lead SNPs from pharmacogenomic GWAS studies, revealing 15/42 and 4/7 to be functional enhancers, respectively. A common African haplotype in one of these enhancers in the GSTA locus was found to exhibit potential rifampin hypersensitivity. Combined, our results further suggest that enhancers are the predominant targets of rifampin-induced PXR activation, provide a genome-wide catalog of PXR targets and serve as a model for the identification of drug-responsive regulatory elements. PMID:25275310

  16. An ant colony optimization based algorithm for identifying gene regulatory elements.

    PubMed

    Liu, Wei; Chen, Hanwu; Chen, Ling

    2013-08-01

    It is one of the most important tasks in bioinformatics to identify the regulatory elements in gene sequences. Most of the existing algorithms for identifying regulatory elements are inclined to converge into a local optimum, and have high time complexity. Ant Colony Optimization (ACO) is a meta-heuristic method based on swarm intelligence and is derived from a model inspired by the collective foraging behavior of real ants. Taking advantage of the ACO in traits such as self-organization and robustness, this paper designs and implements an ACO based algorithm named ACRI (ant-colony-regulatory-identification) for identifying all possible binding sites of transcription factor from the upstream of co-expressed genes. To accelerate the ants' searching process, a strategy of local optimization is presented to adjust the ants' start positions on the searched sequences. By exploiting the powerful optimization ability of ACO, the algorithm ACRI can not only improve precision of the results, but also achieve a very high speed. Experimental results on real world datasets show that ACRI can outperform other traditional algorithms in the respects of speed and quality of solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Screening of MITF and SOX10 Regulatory Regions in Waardenburg Syndrome Type 2

    PubMed Central

    Baral, Viviane; Chaoui, Asma; Watanabe, Yuli; Goossens, Michel; Attie-Bitach, Tania; Marlin, Sandrine; Pingault, Veronique; Bondurand, Nadege

    2012-01-01

    Waardenburg syndrome (WS) is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2) can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE) and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy. PMID:22848661

  18. 77 FR 16868 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide describes... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). DATES: Submit...

  19. Retroviruses facilitate the rapid evolution of the mammalian placenta

    PubMed Central

    Chuong, Edward B.

    2015-01-01

    The mammalian placenta exhibits elevated expression of endogenous retroviruses (ERVs), but the evolutionary significance of this feature remains unclear. I propose that ERV-mediated regulatory evolution was, and continues to be, an important mechanism underlying the evolution of placenta development. Many recent studies have focused on the co-option of ERV-derived genes for specific functional adaptations in the placenta. However, the co-option of ERV-derived regulatory elements has the potential to co-opt entire gene regulatory networks, which, I argue, would facilitate relatively rapid developmental evolution of the placenta. I suggest a model in which an ancient retroviral infection led to the establishment of the ancestral placental developmental gene network through the co-option of ERV-derived regulatory elements. Consequently, placenta development would require elevated tolerance to ERV activity, which in turn would expose a continuous stream of novel ERV mutations that may have catalyzed the developmental diversification of the mammalian placenta. PMID:23873343

  20. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds.

    PubMed

    Naval-Sanchez, Marina; Nguyen, Quan; McWilliam, Sean; Porto-Neto, Laercio R; Tellam, Ross; Vuocolo, Tony; Reverter, Antonio; Perez-Enciso, Miguel; Brauning, Rudiger; Clarke, Shannon; McCulloch, Alan; Zamani, Wahid; Naderi, Saeid; Rezaei, Hamid Reza; Pompanon, Francois; Taberlet, Pierre; Worley, Kim C; Gibbs, Richard A; Muzny, Donna M; Jhangiani, Shalini N; Cockett, Noelle; Daetwyler, Hans; Kijas, James

    2018-02-28

    Domestication fundamentally reshaped animal morphology, physiology and behaviour, offering the opportunity to investigate the molecular processes driving evolutionary change. Here we assess sheep domestication and artificial selection by comparing genome sequence from 43 modern breeds (Ovis aries) and their Asian mouflon ancestor (O. orientalis) to identify selection sweeps. Next, we provide a comparative functional annotation of the sheep genome, validated using experimental ChIP-Seq of sheep tissue. Using these annotations, we evaluate the impact of selection and domestication on regulatory sequences and find that sweeps are significantly enriched for protein coding genes, proximal regulatory elements of genes and genome features associated with active transcription. Finally, we find individual sites displaying strong allele frequency divergence are enriched for the same regulatory features. Our data demonstrate that remodelling of gene expression is likely to have been one of the evolutionary forces that drove phenotypic diversification of this common livestock species.

  1. An ancient trans-kingdom horizontal transfer of Penelope -like retroelements from arthropods to conifers

    Treesearch

    Xuan Lin; Nurul Faridi; Claudio Casola

    2016-01-01

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In  eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to  move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively  ...

  2. Genomic Identification and Analysis of Shared Cis-regulator Elements in a Developmentally Critical homeobox Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chris Amemiya

    2003-04-01

    The goals of this project were to isolate, characterize, and sequence the Dlx3/Dlx7 bigene cluster from twelve different species of mammals. The Dlx3 and Dlx7 genes are known to encode homeobox transcription factors involved in patterning of structures in the vertebrate jaw as well as vertebrate limbs. Genomic sequences from the respective taxa will subsequently be compared in order to identify conserved non-coding sequences that are potential cis-regulatory elements. Based on the comparisons they will fashion transgenic mouse experiments to functionally test the strength of the potential cis-regulatory elements. A goal of the project is to attempt to identify thosemore » elements that may function in coordinately regulating both Dlx3 and Dlx7 functions.« less

  3. 76 FR 38213 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... quality standards for using Portland Cement grout to protect prestressing steel from corrosion. The prestressing tendon system of a prestressed concrete containment structure is a principal strength element of... strength elements. Thus, any significant deterioration of the prestressing elements caused by corrosion may...

  4. THE ROLES OF METAL IONS IN REGULATION BY RIBOSWITCHES

    PubMed Central

    2012-01-01

    Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metalloregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs. PMID:22010271

  5. Favorable genomic environments for cis-regulatory evolution: A novel theoretical framework.

    PubMed

    Maeso, Ignacio; Tena, Juan J

    2016-09-01

    Cis-regulatory changes are arguably the primary evolutionary source of animal morphological diversity. With the recent explosion of genome-wide comparisons of the cis-regulatory content in different animal species is now possible to infer general principles underlying enhancer evolution. However, these studies have also revealed numerous discrepancies and paradoxes, suggesting that the mechanistic causes and modes of cis-regulatory evolution are still not well understood and are probably much more complex than generally appreciated. Here, we argue that the mutational mechanisms and genomic regions generating new regulatory activities must comply with the constraints imposed by the molecular properties of cis-regulatory elements (CREs) and the organizational features of long-range chromatin interactions. Accordingly, we propose a new integrative evolutionary framework for cis-regulatory evolution based on two major premises for the origin of novel enhancer activity: (i) an accessible chromatin environment and (ii) compatibility with the 3D structure and interactions of pre-existing CREs. Mechanisms and DNA sequences not fulfilling these premises, will be less likely to have a measurable impact on gene expression and as such, will have a minor contribution to the evolution of gene regulation. Finally, we discuss current comparative cis-regulatory data under the light of this new evolutionary model, and propose that the two most prominent mechanisms for the evolution of cis-regulatory changes are the overprinting of ancestral CREs and the exaptation of transposable elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Coordinated transcriptional regulation of two key genes in the lignin branch pathway - CAD and CCR - is mediated through MYB- binding sites

    PubMed Central

    2010-01-01

    Background Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the final steps in the biosynthesis of monolignols, the monomeric units of the phenolic lignin polymers which confer rigidity, imperviousness and resistance to biodegradation to cell walls. We have previously shown that the Eucalyptus gunnii CCR and CAD2 promoters direct similar expression patterns in vascular tissues suggesting that monolignol production is controlled, at least in part, by the coordinated transcriptional regulation of these two genes. Although consensus motifs for MYB transcription factors occur in most gene promoters of the whole phenylpropanoid pathway, functional evidence for their contribution to promoter activity has only been demonstrated for a few of them. Here, in the lignin-specific branch, we studied the functional role of MYB elements as well as other cis-elements identified in the regulatory regions of EgCAD2 and EgCCR promoters, in the transcriptional activity of these gene promoters. Results By using promoter deletion analysis and in vivo footprinting, we identified an 80 bp regulatory region in the Eucalyptus gunnii EgCAD2 promoter that contains two MYB elements, each arranged in a distinct module with newly identified cis-elements. A directed mutagenesis approach was used to introduce block mutations in all putative cis-elements of the EgCAD2 promoter and in those of the 50 bp regulatory region previously delineated in the EgCCR promoter. We showed that the conserved MYB elements in EgCAD2 and EgCCR promoters are crucial both for the formation of DNA-protein complexes in EMSA experiments and for the transcriptional activation of EgCAD2 and EgCCR promoters in vascular tissues in planta. In addition, a new regulatory cis-element that modulates the balance between two DNA-protein complexes in vitro was found to be important for EgCAD2 expression in the cambial zone. Conclusions Our assignment of functional roles to the identified cis-elements clearly demonstrates the importance of MYB cis-elements in the transcriptional regulation of two genes of the lignin-specific pathway and support the hypothesis that MYB elements serve as a common means for the coordinated regulation of genes in the entire lignin biosynthetic pathway. PMID:20584286

  7. Cis-regulatory Elements and Human Evolution

    PubMed Central

    Siepel, Adam

    2014-01-01

    Modification of gene regulation has long been considered an important force in human evolution, particularly through changes to cis-regulatory elements (CREs) that function in transcriptional regulation. For decades, however, the study of cis-regulatory evolution was severely limited by the available data. New data sets describing the locations of CREs and genetic variation within and between species have now made it possible to study CRE evolution much more directly on a genome-wide scale. Here, we review recent research on the evolution of CREs in humans based on large-scale genomic data sets. We consider inferences based on primate divergence, human polymorphism, and combinations of divergence and polymorphism. We then consider “new frontiers” in this field stemming from recent research on transcriptional regulation. PMID:25218861

  8. When do I wear me out? Mental simulation and the diminution of self-control.

    PubMed

    Macrae, C Neil; Christian, Brittany M; Golubickis, Marius; Karanasiou, Magdalene; Troksiarova, Lenka; McNamara, Diana L; Miles, Lynden K

    2014-08-01

    Exerting self-control can diminish people's capacity to engage in subsequent acts of behavioral regulation, a phenomenon termed ego depletion. But what of imaginary regulatory experiences-does simulated restraint elicit comparable lapses in self-control? Here we demonstrate such effects under theoretically tractable imagery conditions. Across 3 experiments, temporal, structural, and spatial components of mental simulation were observed to drive the efficacy of imaginary self-control. In Experiment 1, lapses in restraint (i.e., financial impulsivity) were more pronounced when imaginary regulation (i.e., dietary restraint) focused on an event in the near versus distant future. In Experiment 2, comparable effects (i.e., increased stereotyping) emerged when simulated self-control (i.e., emotional suppression) was imagined from a first-person (cf. third-person) visual perspective. In Experiment 3, restraint was diminished (i.e., increased risk taking) when self-regulation (i.e., action control) centered on an event at a near versus distant location. These findings further delineate the conditions under which mental simulation impacts core aspects of social-cognitive functioning. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Lactase non-persistence is directed by DNA variation-dependent epigenetic aging

    PubMed Central

    Labrie, Viviane; Buske, Orion J; Oh, Edward; Jeremian, Richie; Ptak, Carolyn; Gasiūnas, Giedrius; Maleckas, Almantas; Petereit, Rūta; Žvirbliene, Aida; Adamonis, Kęstutis; Kriukienė, Edita; Koncevičius, Karolis; Gordevičius, Juozas; Nair, Akhil; Zhang, Aiping; Ebrahimi, Sasha; Oh, Gabriel; Šikšnys, Virginijus; Kupčinskas, Limas; Brudno, Michael; Petronis, Arturas

    2016-01-01

    Inability to digest lactose due to lactase non-persistence is a common trait in adult mammals, with the exception of certain human populations that exhibit lactase persistence. It is not clear how the lactase gene can be dramatically downregulated with age in most individuals, but remains active in some. We performed a comprehensive epigenetic study of the human and mouse intestine using chromosome-wide DNA modification profiling and targeted bisulfite sequencing. Epigenetically-controlled regulatory elements were found to account for the differences in lactase mRNA levels between individuals, intestinal cell types and species. The importance of these regulatory elements in modulating lactase mRNA levels was confirmed by CRISPR-Cas9-induced deletions. Genetic factors contribute to epigenetic changes occurring with age at the regulatory elements, as lactase persistence- and non-persistence-DNA haplotypes demonstrated markedly different epigenetic aging. Thus, genetic factors facilitate a gradual accumulation of epigenetic changes with age to affect phenotypic outcome. PMID:27159559

  10. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells.

    PubMed

    Laurette, Patrick; Strub, Thomas; Koludrovic, Dana; Keime, Céline; Le Gras, Stéphanie; Seberg, Hannah; Van Otterloo, Eric; Imrichova, Hana; Siddaway, Robert; Aerts, Stein; Cornell, Robert A; Mengus, Gabrielle; Davidson, Irwin

    2015-03-24

    Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.

  11. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  12. Elements in the transcriptional regulatory region flanking herpes simplex virus type 1 oriS stimulate origin function.

    PubMed

    Wong, S W; Schaffer, P A

    1991-05-01

    Like other DNA-containing viruses, the three origins of herpes simplex virus type 1 (HSV-1) DNA replication are flanked by sequences containing transcriptional regulatory elements. In a transient plasmid replication assay, deletion of sequences comprising the transcriptional regulatory elements of ICP4 and ICP22/47, which flank oriS, resulted in a greater than 80-fold decrease in origin function compared with a plasmid, pOS-822, which retains these sequences. In an effort to identify specific cis-acting elements responsible for this effect, we conducted systematic deletion analysis of the flanking region with plasmid pOS-822 and tested the resulting mutant plasmids for origin function. Stimulation by cis-acting elements was shown to be both distance and orientation dependent, as changes in either parameter resulted in a decrease in oriS function. Additional evidence for the stimulatory effect of flanking sequences on origin function was demonstrated by replacement of these sequences with the cytomegalovirus immediate-early promoter, resulting in nearly wild-type levels of oriS function. In competition experiments, cotransfection of cells with the test plasmid, pOS-822, and increasing molar concentrations of a competitor plasmid which contained the ICP4 and ICP22/47 transcriptional regulatory regions but lacked core origin sequences resulted in a significant reduction in the replication efficiency of pOS-822, demonstrating that factors which bind specifically to the oriS-flanking sequences are likely involved as auxiliary proteins in oriS function. Together, these studies demonstrate that trans-acting factors and the sites to which they bind play a critical role in the efficiency of HSV-1 DNA replication from oriS in transient-replication assays.

  13. Adeno-associated virus type 2 rep gene-mediated inhibition of basal gene expression of human immunodeficiency virus type 1 involves its negative regulatory functions.

    PubMed Central

    Oelze, I; Rittner, K; Sczakiel, G

    1994-01-01

    Adeno-associated virus type 2 (AAV-2), a human parvovirus which is apathogenic in adults, inhibits replication and gene expression of human immunodeficiency virus type 1 (HIV-1) in human cells. The rep gene of AAV-2, which was shown earlier to be sufficient for this negative interference, also down-regulated the expression of heterologous sequences driven by the long terminal repeat (LTR) of HIV-1. This effect was observed in the absence of the HIV-1 transactivator Tat, i.e., at basal levels of LTR-driven transcription. In this work, we studied the involvement of functional subsequences of the HIV-1 LTR in rep-mediated inhibition in the absence of Tat. Mutated LTRs driving an indicator gene (cat) were cointroduced into human SW480 cells together with rep alone or with double-stranded DNA fragments or RNA containing sequences of the HIV-1 LTR. The results indicate that rep strongly enhances the function of negative regulatory elements of the LTR. In addition, the experiments revealed a transcribed sequence element located within the TAR-coding sequence termed AHHH (AAV-HIV homology element derived from HIV-1) which is involved in rep-mediated inhibition. The AHHH element is also involved in down-regulation of basal expression levels in the absence of rep, suggesting that AHHH also contributes to negative regulatory functions of the LTR of HIV-1. In contrast, positive regulatory elements of the HIV-1 LTR such as the NF kappa B and SP1 binding sites have no significant influence on the rep-mediated inhibition. Images PMID:8289357

  14. Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus.

    PubMed

    Smith, Emily M; Lajoie, Bryan R; Jain, Gaurav; Dekker, Job

    2016-01-07

    Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Eolian additions to late Quaternary alpine soils, Indian Peaks Wilderness Area, Colorado Front Range

    USGS Publications Warehouse

    Muhs, D.R.; Benedict, J.B.

    2006-01-01

    Surface horizons of many alpine soils on Quaternary deposits in high-mountain settings are enriched in silt. The origin of these particles has been debated, particularly in the Rocky Mountain region of North America. The most common explanations are frost shattering of coarser particles and eolian additions from distant sources. We studied soil A horizons on alpine moraines of late-glacial (Satanta Peak) age in the Colorado Front Range. Surface horizons of soils on these moraines are enriched in silt and have a particle size distribution that resembles loess and dust deposits found elsewhere. The compositions of sand and silt fractions of the soils were compared to possible local source rocks, using immobile trace elements Ti, Nb, Zr, Ce, and Y. The sand fractions of soils have a wide range of trace element ratios, similar to the range of values in the local biotite gneiss bedrock. In contrast, silt fractions have narrower ranges of trace element ratios that do not overlap the range of these ratios in biotite gneiss. The particle size and geochemical results support an interpretation that silts in these soils are derived from airborne dust. Eolian silts were most likely derived from distant sources, such as the semiarid North Park and Middle Park basins to the west. We hypothesize that much of the eolian influx to soils of the Front Range occurred during an early to mid-Holocene warm period, when sediment availability in semiarid source basins was at a maximum.

  16. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging.

    PubMed

    Pocock, Ginger M; Zimdars, Laraine L; Yuan, Ming; Eliceiri, Kevin W; Ahlquist, Paul; Sherer, Nathan M

    2017-02-01

    Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include "burst" RNA nuclear export dynamics regulated by HIV-1's Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element-specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation. © 2017 Pocock et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Evolutionary divergence of vertebrate Hoxb2 expression patterns and transcriptional regulatory loci.

    PubMed

    Scemama, Jean-Luc; Hunter, Michael; McCallum, Jeff; Prince, Victoria; Stellwag, Edmund

    2002-10-15

    Hox gene expression is regulated by a complex array of cis-acting elements that control spatial and temporal gene expression in developing embryos. Here, we report the isolation of the striped bass Hoxb2a gene, comparison of its expression to the orthologous gene from zebrafish, and comparative genomic analysis of the upstream regulatory region to that of other vertebrates. Comparison of the Hoxb2a gene expression patterns from striped bass to zebrafish revealed similar expression patterns within rhombomeres 3, 4, and 5 of the hindbrain but a notable absence of expression in neural crest tissues of striped bass while neural crest expression is observed in zebrafish and common to other vertebrates. Comparative genomic analysis of the striped bass Hoxb2a-b3a intergenic region to those from zebrafish, pufferfish, human, and mouse demonstrated the presence of common Meis, Hox/Pbx, Krox-20, and Box 1 elements, which are necessary for rhombomere 3, 4, and 5 expression. Despite their common occurrence, the location and orientation of these transcription elements differed among the five species analyzed, such that Krox-20 and Box 1 elements are located 3' to the Meis, Hox/Pbx elements in striped bass, pufferfish, and human while they are located 5' of this r4 enhancer in zebrafish and mouse. Our results suggest that the plasticity exhibited in the organization of key regulatory elements responsible for rhombomere-specific Hoxb2a expression may reflect the effects of stabilizing selection in the evolution cis-acting elements. Copyright 2002 Wiley-Liss, Inc.

  18. Chaotic Dynamics of Trans-Neptunian Objects Perturbed by Planet Nine

    NASA Astrophysics Data System (ADS)

    Hadden, Sam; Li, Gongjie; Payne, Matthew J.; Holman, Matthew J.

    2018-06-01

    Observations of clustering among the orbits of the most distant trans-Neptunian objects (TNOs) has inspired interest in the possibility of an undiscovered ninth planet lurking in the outskirts of the solar system. Numerical simulations by a number of authors have demonstrated that, with appropriate choices of planet mass and orbit, such a planet can maintain clustering in the orbital elements of the population of distant TNOs, similar to the observed sample. However, many aspects of the rich underlying dynamical processes induced by such a distant eccentric perturber have not been fully explored. We report the results of our investigation of the dynamics of coplanar test-particles that interact with a massive body on an circular orbit (Neptune) and a massive body on a more distant, highly eccentric orbit (the putative Planet Nine). We find that a detailed examination of our idealized simulations affords tremendous insight into the rich test-particle dynamics that are possible. In particular, we find that chaos and resonance overlap plays an important role in particles’ dynamical evolution. We develop a simple mapping model that allows us to understand, in detail, the web of overlapped mean-motion resonances explored by chaotically evolving particles. We also demonstrate that gravitational interactions with Neptune can have profound effects on the orbital evolution of particles. Our results serve as a starting point for a better understanding of the dynamical behavior observed in more complicated simulations that can be used to constrain the mass and orbit of Planet Nine.

  19. ESPERR: learning strong and weak signals in genomic sequence alignments to identify functional elements.

    PubMed

    Taylor, James; Tyekucheva, Svitlana; King, David C; Hardison, Ross C; Miller, Webb; Chiaromonte, Francesca

    2006-12-01

    Genomic sequence signals - such as base composition, presence of particular motifs, or evolutionary constraint - have been used effectively to identify functional elements. However, approaches based only on specific signals known to correlate with function can be quite limiting. When training data are available, application of computational learning algorithms to multispecies alignments has the potential to capture broader and more informative sequence and evolutionary patterns that better characterize a class of elements. However, effective exploitation of patterns in multispecies alignments is impeded by the vast number of possible alignment columns and by a limited understanding of which particular strings of columns may characterize a given class. We have developed a computational method, called ESPERR (evolutionary and sequence pattern extraction through reduced representations), which uses training examples to learn encodings of multispecies alignments into reduced forms tailored for the prediction of chosen classes of functional elements. ESPERR produces a greatly improved Regulatory Potential score, which can discriminate regulatory regions from neutral sites with excellent accuracy ( approximately 94%). This score captures strong signals (GC content and conservation), as well as subtler signals (with small contributions from many different alignment patterns) that characterize the regulatory elements in our training set. ESPERR is also effective for predicting other classes of functional elements, as we show for DNaseI hypersensitive sites and highly conserved regions with developmental enhancer activity. Our software, training data, and genome-wide predictions are available from our Web site (http://www.bx.psu.edu/projects/esperr).

  20. Abasy Atlas: a comprehensive inventory of systems, global network properties and systems-level elements across bacteria.

    PubMed

    Ibarra-Arellano, Miguel A; Campos-González, Adrián I; Treviño-Quintanilla, Luis G; Tauch, Andreas; Freyre-González, Julio A

    2016-01-01

    The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy ( A: cross- BA: cteria SY: stems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them.Database URL: http://abasy.ccg.unam.mx. © The Author(s) 2016. Published by Oxford University Press.

  1. Recovering Neptune 170 Years After its Initial Discovery

    NASA Astrophysics Data System (ADS)

    Myles, Justin

    2017-01-01

    Recent work by Trujillo and Shephard (2014) and Batygin and Brown (2016) has shown an as-yet unexplained clustering of the periapse vectors of the most distant Kuiper Belt objects. This unusual clustering has motivated the search for an unseen perturbing planet that is responsible for maintaining the alignment. As a proof of concept of a technique for locating unseen solar system planets, we use dynamical N-body integrations to simulate the orbital dynamics of distant Kuiper Belt objects, with the aim of determining the orbital parameters of Neptune (which, for the sake of exercise, we assume is, as-yet, undiscovered). In this poster, we determine the accuracy with which the perturbing planet’s orbital elements and sky location can be determined, and we show how the lessons learned can improve the search strategy for potentially undiscovered trans-Neptunian planets.

  2. [The ENCODE project and functional genomics studies].

    PubMed

    Ding, Nan; Qu, Hongzhu; Fang, Xiangdong

    2014-03-01

    Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and analyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identified methylation and histone modification of DNA sequences and their regulatory effects on gene expression through altering chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases. These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re-viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve-ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.

  3. Informing the homeopathic practice for Turkish pharmacists: reviewing the example of Portuguese community pharmacies.

    PubMed

    Cavaco, Afonso Miguel; Arslan, Miray; Şar, Sevgi

    2017-05-01

    Alternative and complementary therapy systems, such as homeopathy, have long been used around the world. Since 1995 homeopathy has been officially recognized in Europe as a system of medicine or a medical specialty. Portuguese community pharmacists have long-standing experience with homeopathic products. By contrast, healthcare professionals in Turkey are less experienced with homeopathic practice although there is a new regulatory setting in place. There are a limited number of studies addressing pharmacists' role within the homeopathic system. To investigate the attitudes (knowledge, feelings and behaviour) of experienced Portuguese pharmacy practitioners who deal with homeopathy, and thus to inform Turkish pharmacy practice and policy on homeopathy-related success factors. A qualitative cross-sectional design was followed, using semi-structured and face-to-face individual interviews with purposively selected Portuguese pharmacists experienced with homeopathic medicines. Audio-recordings were transcribed verbatim and the transcriptions imported into QSR NVivo v10 software for qualitative coding and analysis. Using a thematic content approach, the extracted codes were grouped and indexed by recurrent themes through a reflective procedure and constant comparison. Six general themes emerged, the most relevant being participants' feelings of gratitude for the ability to work in homeopathy; other themes were a helpful regulatory body, clear practice boundaries, scientific support and product quality assurance. Specialized homeopathic education was considered the most important factor for success. This was related to patients' positive perceptions and acceptance, suggesting an increase in public awareness through the pharmacy network. Portuguese pharmacists' attitudes towards their homeopathic practices highlighted the key elements for success in a field that is usually distant from traditional pharmaceutical education and practice. The present findings provide guidance for Turkish pharmacists willing to expand their professional scope and to embrace complementary medicines. Copyright © 2017 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  4. The dorsoventral patterning of Musca domestica embryos: insights into BMP/Dpp evolution from the base of the lower cyclorraphan flies.

    PubMed

    Hodar, Christian; Cambiazo, Verónica

    2018-01-01

    In the last few years, accumulated information has indicated that the evolution of an extra-embryonic membrane in dipterans was accompanied by changes in the gene regulatory network controlled by the BMP/Dpp pathway, which is responsible for dorsal patterning in these insects. However, only comparative analysis of gene expression levels between distant species with two extra-embryonic membranes, like A. gambiae or C. albipunctata , and D. melanogaster, has been conducted. Analysis of gene expression in ancestral species, which evolved closer to the amnioserosa origin, could provide new insights into the evolution of dorsoventral patterning in dipterans. Here we describe the spatial expression of several key and downstream elements of the Dpp pathway and show the compared patterns of expression between Musca and Drosophila embryos, both dipterans with amnioserosa. Most of the analyzed gene showed a high degree of expression conservation, however, we found several differences in the gene expression pattern of M. domestica orthologs for sog and tolloid . Bioinformatics analysis of the promoter of both genes indicated that the variations could be related to the gain of several binding sites for the transcriptional factor Dorsal in the Md.tld promoter and Snail in the Md.sog enhancer . These altered expressions could explain the unclear formation of the pMad gradient in the M. domestica embryo, compared to the formation of the gradient in D. melanogaster. Gene expression changes during the dorsal-ventral patterning in insects contribute to the differentiation of extra-embryonic tissues as a consequence of changes in the gene regulatory network controlled by BMP/Dpp. In this work, in early M. domestica embryos, we identified the expression pattern of several genes members involved in the dorsoventral specification of the embryo. We believe that these data can contribute to understanding the evolution of the BMP/Dpp pathway, the regulation of BMP ligands, and the formation of a Dpp gradient in higher cyclorraphan flies.

  5. Repression of enhancer II activity by a negative regulatory element in the hepatitis B virus genome.

    PubMed Central

    Lo, W Y; Ting, L P

    1994-01-01

    Enhancer II of human hepatitis B virus has dual functions in vivo. Located at nucleotides (nt) 1646 to 1741, it can stimulate the surface and X promoters from a downstream position. Moreover, the same sequence can also function as upstream regulatory element that activates the core promoter in a position- and orientation-dependent manner. In this study, we report the identification and characterization of a negative regulatory element (NRE) upstream of enhancer II (nt 1613 to 1636) which can repress both the enhancer and upstream stimulatory function of the enhancer II sequence in differentiated liver cells. This NRE has marginal inhibitory effect by itself but a strong repressive function in the presence of a functional enhancer II. Mutational analysis reveals that sequence from nt 1616 to 1621 is required for repression of enhancer activity by the NRE. Gel shift analysis reveals that this negative regulatory region can be recognized by a specific protein factor(s) present at the 0.4 M NaCl fraction of HepG2 nuclear extracts. The discovery of the NRE indicates that HBV gene transcription is controlled by combined effects of both positive and negative regulation. It also provides a unique system with which to study the mechanism of negative regulation of gene expression. Images PMID:8107237

  6. Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence

    PubMed Central

    Gordon, Christopher T.; Attanasio, Catia; Bhatia, Shipra; Benko, Sabina; Ansari, Morad; Tan, Tiong Y.; Munnich, Arnold; Pennacchio, Len A.; Abadie, Véronique; Temple, I. Karen; Goldenberg, Alice; van Heyningen, Veronica; Amiel, Jeanne; FitzPatrick, David; Kleinjan, Dirk A.; Visel, Axel; Lyonnet, Stanislas

    2015-01-01

    Mutations in the coding sequence of SOX9 cause campomelic dysplasia (CD), a disorder of skeletal development associated with 46,XY disorders of sex development (DSDs). Translocations, deletions and duplications within a ~2 Mb region upstream of SOX9 can recapitulate the CD-DSD phenotype fully or partially, suggesting the existence of an unusually large cis-regulatory control region. Pierre Robin sequence (PRS) is a craniofacial disorder that is frequently an endophenotype of CD and a locus for isolated PRS at ~1.2-1.5 Mb upstream of SOX9 has been previously reported. The craniofacial regulatory potential within this locus, and within the greater genomic domain surrounding SOX9, remains poorly defined. We report two novel deletions upstream of SOX9 in families with PRS, allowing refinement of the regions harbouring candidate craniofacial regulatory elements. In parallel, ChIP-Seq for p300 binding sites in mouse craniofacial tissue led to the identification of several novel craniofacial enhancers at the SOX9 locus, which were validated in transgenic reporter mice and zebrafish. Notably, some of the functionally validated elements fall within the PRS deletions. These studies suggest that multiple non-coding elements contribute to the craniofacial regulation of SOX9 expression, and that their disruption results in PRS. PMID:24934569

  7. Functional conservation between rodents and chicken of regulatory sequences driving skeletal muscle gene expression in transgenic chickens

    PubMed Central

    2010-01-01

    Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species. PMID:20184756

  8. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression.

    PubMed

    Mars, Ruben A T; Nicolas, Pierre; Denham, Emma L; van Dijl, Jan Maarten

    2016-12-01

    Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression

    PubMed Central

    Mars, Ruben A. T.; Nicolas, Pierre; Denham, Emma L.

    2016-01-01

    SUMMARY Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5′ untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5′ ends of mRNA molecules. These can include 5′ secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. PMID:27784798

  10. Towards the identification of the common features of bacterial biofilm development.

    PubMed

    Lasa, Iñigo

    2006-03-01

    Microorganisms can live and proliferate as individual cells swimming freely in the environment, or they can grow as highly organized, multicellular communities encased in a self-produced polymeric matrix in close association with surfaces and interfaces. This microbial lifestyle is referred to as biofilms. The intense search over the last few years for factors involved in biofilm development has revealed that distantly related bacterial species recurrently make use of the same elements to produce biofilms. These common elements include a group of proteins containing GGDEF/EAL domains, surface proteins homologous to Bap of Staphylococcus aureus, and some types of exopolysaccharides, such as cellulose and the poly-beta-1,6-N-acetylglucosamine. This review summarizes current knowledge about these three common elements and their role in biofilm development.

  11. 77 FR 8072 - Semiannual Regulatory Flexibility Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... six months. ADDRESSES: Comments should be addressed to Jennifer J. Johnson, Secretary of the Board... Regulatory and Deregulatory Actions, which is coordinated by the Office of Management and Budget under... pledged; and certain other elements including a strategic analysis of the company's plans for maintaining...

  12. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci.

    PubMed

    Canver, Matthew C; Lessard, Samuel; Pinello, Luca; Wu, Yuxuan; Ilboudo, Yann; Stern, Emily N; Needleman, Austen J; Galactéros, Frédéric; Brugnara, Carlo; Kutlar, Abdullah; McKenzie, Colin; Reid, Marvin; Chen, Diane D; Das, Partha Pratim; A Cole, Mitchel; Zeng, Jing; Kurita, Ryo; Nakamura, Yukio; Yuan, Guo-Cheng; Lettre, Guillaume; Bauer, Daniel E; Orkin, Stuart H

    2017-04-01

    Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.

  13. Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis.

    PubMed

    Woznica, Arielle; Haeussler, Maximilian; Starobinska, Ella; Jemmett, Jessica; Li, Younan; Mount, David; Davidson, Brad

    2012-08-01

    The complex, partially redundant gene regulatory architecture underlying vertebrate heart formation has been difficult to characterize. Here, we dissect the primary cardiac gene regulatory network in the invertebrate chordate, Ciona intestinalis. The Ciona heart progenitor lineage is first specified by Fibroblast Growth Factor/Map Kinase (FGF/MapK) activation of the transcription factor Ets1/2 (Ets). Through microarray analysis of sorted heart progenitor cells, we identified the complete set of primary genes upregulated by FGF/Ets shortly after heart progenitor emergence. Combinatorial sequence analysis of these co-regulated genes generated a hypothetical regulatory code consisting of Ets binding sites associated with a specific co-motif, ATTA. Through extensive reporter analysis, we confirmed the functional importance of the ATTA co-motif in primary heart progenitor gene regulation. We then used the Ets/ATTA combination motif to successfully predict a number of additional heart progenitor gene regulatory elements, including an intronic element driving expression of the core conserved cardiac transcription factor, GATAa. This work significantly advances our understanding of the Ciona heart gene network. Furthermore, this work has begun to elucidate the precise regulatory architecture underlying the conserved, primary role of FGF/Ets in chordate heart lineage specification. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Coordinately Co-opted Multiple Transposable Elements Constitute an Enhancer for wnt5a Expression in the Mammalian Secondary Palate

    PubMed Central

    Kimura-Yoshida, Chiharu; Yan, Kuo; Bormuth, Olga; Ding, Qiong; Nakanishi, Akiko; Sasaki, Takeshi; Hirakawa, Mika; Sumiyama, Kenta; Furuta, Yasuhide; Tarabykin, Victor; Matsuo, Isao; Okada, Norihiro

    2016-01-01

    Acquisition of cis-regulatory elements is a major driving force of evolution, and there are several examples of developmental enhancers derived from transposable elements (TEs). However, it remains unclear whether one enhancer element could have been produced via cooperation among multiple, yet distinct, TEs during evolution. Here we show that an evolutionarily conserved genomic region named AS3_9 comprises three TEs (AmnSINE1, X6b_DNA and MER117), inserted side-by-side, and functions as a distal enhancer for wnt5a expression during morphogenesis of the mammalian secondary palate. Functional analysis of each TE revealed step-by-step retroposition/transposition and co-option together with acquisition of a binding site for Msx1 for its full enhancer function during mammalian evolution. The present study provides a new perspective suggesting that a huge variety of TEs, in combination, could have accelerated the diversity of cis-regulatory elements involved in morphological evolution. PMID:27741242

  15. High copy number of highly similar mariner-like transposons in planarian (Platyhelminthe): evidence for a trans-phyla horizontal transfer.

    PubMed

    Garcia-Fernàndez, J; Bayascas-Ramírez, J R; Marfany, G; Muñoz-Mármol, A M; Casali, A; Baguñà, J; Saló, E

    1995-05-01

    Several DNA sequences similar to the mariner element were isolated and characterized in the platyhelminthe Dugesia (Girardia) tigrina. They were 1,288 bp long, flanked by two 32 bp-inverted repeats, and contained a single 339 amino acid open-reading frame (ORF) encoding the transposase. The number of copies of this element is approximately 8,000 per haploid genome, constituting a member of the middle-repetitive DNA of Dugesia tigrina. Sequence analysis of several elements showed a high percentage of conservation between the different copies. Most of them presented an intact ORF and the standard signals of actively expressed genes, which suggests that some of them are or have recently been functional transposons. The high degree of similarity shared with other mariner elements from some arthropods, together with the fact that this element is undetectable in other planarian species, strongly suggests a case of horizontal transfer between these two distant phyla.

  16. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    PubMed Central

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-01-01

    Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Results Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be needed to test whether the observed differences are extrapolatable to monocots and dicots in general, and to understand how they contribute to the fine-tuning of the hormonal response. The outcome of our investigation can now be used to direct future experimentation designed to further dissect the ABA-dependent regulatory networks. PMID:17672917

  17. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice.

    PubMed

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-08-01

    In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be needed to test whether the observed differences are extrapolatable to monocots and dicots in general, and to understand how they contribute to the fine-tuning of the hormonal response. The outcome of our investigation can now be used to direct future experimentation designed to further dissect the ABA-dependent regulatory networks.

  18. Characterization of "cis"-regulatory elements ("c"RE) associated with mammary gland function

    USDA-ARS?s Scientific Manuscript database

    The Bos taurus genome assembly has propelled dairy science into a new era; still, most of the information encoded in the genome has not yet been decoded. The human Encyclopedia of DNA Elements (ENCODE) project has spearheaded the identification and annotation of functional genomic elements in the hu...

  19. Isolation of Persicaria minor sesquiterpene synthase promoter and its deletions for transgenic Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Omar, Aimi Farehah; Ismail, Ismanizan

    2016-11-01

    Sesquiterpene synthase (SS) catalyzes the formation of sesquiterpenes from farnesyl diphosphate (FDP) via carbocation intermediates. In this study, the promoter region of sesquiterpene synthase was isolated from Persicaria minor to identify possible cis-acting elements in the promoter. The full-length PmSS promoter of P. minor is 1824-bp sequences. The sequence was analyzed and several putative cis-acting regulatory elements were identified. Three cis-acting regulatory elements were selected for deletion analysis which are cis-acting element involved in wound responsiveness (WUN), cis - acting element involved in defense and stress responsiveness (TC) and cis-acting element involved in ABA responsiveness (ABRE). Series of deletions were conducted to assess the promoter activity producing three truncated fragments promoter; Prom 2 1606-bp, Prom 3 1144- bp, and Prom 4 921-bp. The full-length promoter and its deletion series were cloned into the pBGWFS7 vector which contain β-glucuronidase (GUS) gene and green fluorescent protein (GFP) as the reporter gene. All constructs were successfully transformed into Arabidopsis thaliana based on PCR of positive BASTA resistance plants.

  20. The fickle finger of fate

    PubMed Central

    de la Fuente, Luis; Helms, Jill A.

    2005-01-01

    In this issue of the JCI, Niedermaier and colleagues demonstrate that a chromosomal inversion in mice results in dysregulation of Sonic hedgehog (Shh), such that Shh is ectopically expressed in a skeletogenic domain typically occupied by Indian hedgehog (Ihh). This molecular reversal eliminates phalangeal joint spaces, and consequently, Short digits (Dsh) heterozygotes (Dsh/+) have brachydactyly (shortened digits). Ihh is normally downregulated in regions that will become the joint space, but in Dsh/+ mice, Shh bypasses this regulatory control and persists; accordingly, cells maintain their chondrogenic fate and the developed digits are shorter than normal. The significance of these data extends far beyond the field of skeletal biology: they hint at the very real possibility that the endogenous Shh regulatory region contains a repressor designed to segregate the activity of Shh from Ihh. The existence of such a repressor provides a window into the distant past, revealing that Shh and Ihh must once have shared responsibilities in establishing tissue boundaries and orchestrating vertebrate tissue morphogenesis. PMID:15841172

  1. Testing the simplex assumption underlying the Sport Motivation Scale: a structural equation modeling analysis.

    PubMed

    Li, F; Harmer, P

    1996-12-01

    Self-determination theory (Deci & Ryan, 1985) suggests that motivational orientation or regulatory styles with respect to various behaviors can be conceptualized along a continuum ranging from low (a motivation) to high (intrinsic motivation) levels of self-determination. This pattern is manifested in the rank order of correlations among these regulatory styles (i.e., adjacent correlations are expected to be higher than those more distant) and is known as a simplex structure. Using responses from the Sport Motivation Scale (Pelletier et al., 1995) obtained from a sample of 857 college students (442 men, 415 women), the present study tested the simplex structure underlying SMS subscales via structural equation modeling. Results confirmed the simplex model structure, indicating that the various motivational constructs are empirically organized from low to high self-determination. The simplex pattern was further found to be invariant across gender. Findings from this study support the construct validity of the SMS and have important implications for studies focusing on the influence of motivational orientation in sport.

  2. An anti-silencer– and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during thymocyte development

    PubMed Central

    Hao, Bingtao; Naik, Abani Kanta; Watanabe, Akiko; Tanaka, Hirokazu; Chen, Liang; Richards, Hunter W.; Kondo, Motonari; Taniuchi, Ichiro; Kohwi, Yoshinori; Kohwi-Shigematsu, Terumi

    2015-01-01

    Rag1 and Rag2 gene expression in CD4+CD8+ double-positive (DP) thymocytes depends on the activity of a distant anti-silencer element (ASE) that counteracts the activity of an intergenic silencer. However, the mechanistic basis for ASE activity is unknown. Here, we show that the ASE physically interacts with the distant Rag1 and Rag2 gene promoters in DP thymocytes, bringing the two promoters together to form an active chromatin hub. Moreover, we show that the ASE functions as a classical enhancer that can potently activate these promoters in the absence of the silencer or other locus elements. In thymocytes lacking the chromatin organizer SATB1, we identified a partial defect in Tcra gene rearrangement that was associated with reduced expression of Rag1 and Rag2 at the DP stage. SATB1 binds to the ASE and Rag promoters, facilitating inclusion of Rag2 in the chromatin hub and the loading of RNA polymerase II to both the Rag1 and Rag2 promoters. Our results provide a novel framework for understanding ASE function and demonstrate a novel role for SATB1 as a regulator of Rag locus organization and gene expression in DP thymocytes. PMID:25847946

  3. Evolution of Hsp70 Gene Expression: A Role for Changes in AT-Richness within Promoters

    PubMed Central

    Ma, Ronghui; Zhang, Bo; Kang, Le

    2011-01-01

    In disparate organisms adaptation to thermal stress has been linked to changes in the expression of genes encoding heat-shock proteins (Hsp). The underlying genetics, however, remain elusive. We show here that two AT-rich sequence elements in the promoter region of the hsp70 gene of the fly Liriomyza sativae that are absent in the congeneric species, Liriomyza huidobrensis, have marked cis-regulatory consequences. We studied the cis-regulatory consequences of these elements (called ATRS1 and ATRS2) by measuring the constitutive and heat-shock-induced luciferase luminescence that they drive in cells transfected with constructs carrying them modified, deleted, or intact, in the hsp70 promoter fused to the luciferase gene. The elements affected expression level markedly and in different ways: Deleting ATRS1 augmented both the constitutive and the heat-shock-induced luminescence, suggesting that this element represses transcription. Interestingly, replacing the element with random sequences of the same length and A+T content delivered the wild-type luminescence pattern, proving that the element's high A+T content is crucial for its effects. Deleting ATRS2 decreased luminescence dramatically and almost abolished heat-shock inducibility and so did replacing the element with random sequences matching the element's length and A+T content, suggesting that ATRS2's effects on transcription and heat-shock inducibility involve a common mechanism requiring at least in part the element's specific primary structure. Finally, constitutive and heat-shock luminescence were reduced strongly when two putative binding sites for the Zeste transcription factor identified within ATRS2 were altered through site-directed mutagenesis, and the heat-shock-induced luminescence increased when Zeste was over-expressed, indicating that Zeste participates in the effects mapped to ATRS2 at least in part. AT-rich sequences are common in promoters and our results suggest that they should play important roles in regulatory evolution since they can affect expression markedly and constrain promoter DNA in at least two different ways. PMID:21655251

  4. De novo design of a synthetic riboswitch that regulates transcription termination

    PubMed Central

    Wachsmuth, Manja; Findeiß, Sven; Weissheimer, Nadine; Stadler, Peter F.; Mörl, Mario

    2013-01-01

    Riboswitches are regulatory RNA elements typically located in the 5′-untranslated region of certain mRNAs and control gene expression at the level of transcription or translation. These elements consist of a sensor and an adjacent actuator domain. The sensor usually is an aptamer that specifically interacts with a ligand. The actuator contains an intrinsic terminator or a ribosomal binding site for transcriptional or translational regulation, respectively. Ligand binding leads to structural rearrangements of the riboswitch and to presentation or masking of these regulatory elements. Based on this modular organization, riboswitches are an ideal target for constructing synthetic regulatory systems for gene expression. Although riboswitches for translational control have been designed successfully, attempts to construct synthetic elements regulating transcription have failed so far. Here, we present an in silico pipeline for the rational design of synthetic riboswitches that regulate gene expression at the transcriptional level. Using the well-characterized theophylline aptamer as sensor, we designed the actuator part as RNA sequences that can fold into functional intrinsic terminator structures. In the biochemical characterization, several of the designed constructs show ligand-dependent control of gene expression in Escherichia coli, demonstrating that it is possible to engineer riboswitches not only for translational but also for transcriptional regulation. PMID:23275562

  5. A novel E2 box-GATA element modulates Cdc6 transcription during human cells polyploidization

    PubMed Central

    Vilaboa, Nuria; Bermejo, Rodrigo; Martinez, Pilar; Bornstein, Rafael; Calés, Carmela

    2004-01-01

    Cdc6 is a key regulator of the strict alternation of S and M phases during the mitotic cell cycle. In mammalian and plant cells that physiologically become polyploid, cdc6 is transcriptionally and post-translationally regulated. We have recently reported that Cdc6 levels are maintained in megakaryoblastic HEL cells, but severely downregulated by ectopic expression of transcriptional repressor Drosophila melanogaster escargot. Here, we show that cdc6 promoter activity is upregulated during megakaryocytic differentiation of HEL endoreplicating cells, and that Escargot interferes with such activation. Transactivation experiments showed that a 1.7 kb region located at 2800 upstream cdc6 transcription initiation site behaved as a potent enhancer in endoreplicating cells only. This activity was mainly dependent on a novel cis-regulatory element composed by an E2 box overlapping a GATA motif. Ectopic Escargot could bind this regulatory element in vitro and endogenous GATA-1 and E2A formed specific complexes in megakaryoblastic cells as well as in primary megakaryocytes. Chromatin Immunoprecipitation analysis revealed that both transcription factors were occupying the E2 box/GATA site in vivo. Altogether, these data suggest that cdc6 expression could be actively maintained during megakaryocytic differentiation through transcriptional mechanisms involving specific cis- and trans-regulatory elements. PMID:15590906

  6. Pan-cancer analysis of somatic copy number alterations implicates IRS4 and IGF2 in enhancer hijacking

    PubMed Central

    Weischenfeldt, Joachim; Dubash, Taronish; Drainas, Alexandros P.; Mardin, Balca R.; Chen, Yuanyuan; Stütz, Adrian M.; Waszak, Sebastian M.; Bosco, Graziella; Halvorsen, Ann Rita; Raeder, Benjamin; Efthymiopoulos, Theocharis; Erkek, Serap; Siegl, Christine; Brenner, Hermann; Brustugun, Odd Terje; Dieter, Sebastian M.; Northcott, Paul A.; Petersen, Iver; Pfister, Stefan M.; Schneider, Martin; Solberg, Steinar K.; Thunissen, Erik; Weichert, Wilko; Zichner, Thomas; Thomas, Roman; Peifer, Martin; Helland, Aslaug; Ball, Claudia R.; Jechlinger, Martin; Sotillo, Rocio; Glimm, Hanno; Korbel, Jan O.

    2018-01-01

    Extensive prior research has focused on somatic copy-number alterations (SCNAs) affecting cancer genes, yet the extent to which recurrent SCNAs exert their influence through rearranging cis-regulatory elements remains unclear. Here, we present a framework for inferring cancer-related gene overexpression resulting from cis-regulatory element reorganization (e.g., enhancer hijacking), by integrating SCNAs, gene expression data, and information on chromatin interaction domains. Analysis of 7,416 cancer genomes uncovered several pan-cancer candidate genes, including IRS4, SMARCA1 and TERT. We demonstrate that IRS4 overexpression in lung cancer associates with recurrent deletions in cis, and present evidence supporting a tumor-promoting role. We additionally pursued cancer type-specific analyses, uncovering IGF2 as a target for enhancer hijacking in colorectal cancer. IGF2-containing tandem duplications result in the de novo formation of a 3D contact domain comprising IGF2 and a lineage-specific super-enhancer, which mediates high-level gene activation. Our framework enables systematic inference of cis-regulatory element rearrangements mediating dysregulation in cancer. PMID:27869826

  7. Retinal Expression of the Drosophila eyes absent Gene Is Controlled by Several Cooperatively Acting Cis-regulatory Elements

    PubMed Central

    Neuman, Sarah D.; Bashirullah, Arash; Kumar, Justin P.

    2016-01-01

    The eyes absent (eya) gene of the fruit fly, Drosophila melanogaster, is a member of an evolutionarily conserved gene regulatory network that controls eye formation in all seeing animals. The loss of eya leads to the complete elimination of the compound eye while forced expression of eya in non-retinal tissues is sufficient to induce ectopic eye formation. Within the developing retina eya is expressed in a dynamic pattern and is involved in tissue specification/determination, cell proliferation, apoptosis, and cell fate choice. In this report we explore the mechanisms by which eya expression is spatially and temporally governed in the developing eye. We demonstrate that multiple cis-regulatory elements function cooperatively to control eya transcription and that spacing between a pair of enhancer elements is important for maintaining correct gene expression. Lastly, we show that the loss of eya expression in sine oculis (so) mutants is the result of massive cell death and a progressive homeotic transformation of retinal progenitor cells into head epidermis. PMID:27930646

  8. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.

    PubMed

    Jin, Jinpu; Tian, Feng; Yang, De-Chang; Meng, Yu-Qi; Kong, Lei; Luo, Jingchu; Gao, Ge

    2017-01-04

    With the goal of providing a comprehensive, high-quality resource for both plant transcription factors (TFs) and their regulatory interactions with target genes, we upgraded plant TF database PlantTFDB to version 4.0 (http://planttfdb.cbi.pku.edu.cn/). In the new version, we identified 320 370 TFs from 165 species, presenting a more comprehensive genomic TF repertoires of green plants. Besides updating the pre-existing abundant functional and evolutionary annotation for identified TFs, we generated three new types of annotation which provide more directly clues to investigate functional mechanisms underlying: (i) a set of high-quality, non-redundant TF binding motifs derived from experiments; (ii) multiple types of regulatory elements identified from high-throughput sequencing data; (iii) regulatory interactions curated from literature and inferred by combining TF binding motifs and regulatory elements. In addition, we upgraded previous TF prediction server, and set up four novel tools for regulation prediction and functional enrichment analyses. Finally, we set up a novel companion portal PlantRegMap (http://plantregmap.cbi.pku.edu.cn) for users to access the regulation resource and analysis tools conveniently. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Design and testing of regulatory cassettes for optimal activity in skeletal and cardiac muscles.

    PubMed

    Himeda, Charis L; Chen, Xiaolan; Hauschka, Stephen D

    2011-01-01

    Gene therapy for muscular dystrophies requires efficient gene delivery to the striated musculature and specific, high-level expression of the therapeutic gene in a physiologically diverse array of muscles. This can be achieved by the use of recombinant adeno-associated virus vectors in conjunction with muscle-specific regulatory cassettes. We have constructed several generations of regulatory cassettes based on the enhancer and promoter of the muscle creatine kinase gene, some of which include heterologous enhancers and individual elements from other muscle genes. Since the relative importance of many control elements varies among different anatomical muscles, we are aiming to tailor these cassettes for high-level expression in cardiac muscle, and in fast and slow skeletal muscles. With the achievement of efficient intravascular gene delivery to isolated limbs, selected muscle groups, and heart in large animal models, the design of cassettes optimized for activity in different muscle types is now a practical goal. In this protocol, we outline the key steps involved in the design of regulatory cassettes for optimal activity in skeletal and cardiac muscle, and testing in mature muscle fiber cultures. The basic principles described here can also be applied to engineering tissue-specific regulatory cassettes for other cell types.

  10. Vision though afocal instruments: generalized magnification and eye-instrument interaction

    NASA Astrophysics Data System (ADS)

    Harris, William F.; Evans, Tanya

    2018-04-01

    In Gaussian optics all observers experience the same magnification, the instrument's angular magnification, when viewing distant objects though a telescope or other afocal instruments. However, analysis in linear optics shows that this is not necessarily so in the presence of astigmatism. Because astigmatism may distort and rotate images it is appropriate to work with generalized angular magnification represented by a 2 × 2 matrix. An expression is derived for the generalized magnification for an arbitrary eye looking through an arbitrary afocal instrument. With afocal instruments containing astigmatic refracting elements not all eyes experience the same generalized magnification; there is interaction between eye and instrument. Eye-instrument interaction may change as the instrument is rotated about its longitudinal axis, there being no interaction in particular orientations. A simple numerical example is given. For sake of completeness, expressions for generalized magnification are also presented in the case of instruments that are not afocal and objects that are not distant.

  11. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response.

    PubMed

    Negi, Pooja; Rai, Archana N; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.

  12. Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster.

    PubMed

    Slattery, Matthew; Ma, Lijia; Spokony, Rebecca F; Arthur, Robert K; Kheradpour, Pouya; Kundaje, Anshul; Nègre, Nicolas; Crofts, Alex; Ptashkin, Ryan; Zieba, Jennifer; Ostapenko, Alexander; Suchy, Sarah; Victorsen, Alec; Jameel, Nader; Grundstad, A Jason; Gao, Wenxuan; Moran, Jennifer R; Rehm, E Jay; Grossman, Robert L; Kellis, Manolis; White, Kevin P

    2014-07-01

    Annotation of regulatory elements and identification of the transcription-related factors (TRFs) targeting these elements are key steps in understanding how cells interpret their genetic blueprint and their environment during development, and how that process goes awry in the case of disease. One goal of the modENCODE (model organism ENCyclopedia of DNA Elements) Project is to survey a diverse sampling of TRFs, both DNA-binding and non-DNA-binding factors, to provide a framework for the subsequent study of the mechanisms by which transcriptional regulators target the genome. Here we provide an updated map of the Drosophila melanogaster regulatory genome based on the location of 84 TRFs at various stages of development. This regulatory map reveals a variety of genomic targeting patterns, including factors with strong preferences toward proximal promoter binding, factors that target intergenic and intronic DNA, and factors with distinct chromatin state preferences. The data also highlight the stringency of the Polycomb regulatory network, and show association of the Trithorax-like (Trl) protein with hotspots of DNA binding throughout development. Furthermore, the data identify more than 5800 instances in which TRFs target DNA regions with demonstrated enhancer activity. Regions of high TRF co-occupancy are more likely to be associated with open enhancers used across cell types, while lower TRF occupancy regions are associated with complex enhancers that are also regulated at the epigenetic level. Together these data serve as a resource for the research community in the continued effort to dissect transcriptional regulatory mechanisms directing Drosophila development. © 2014 Slattery et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Equity Access Plans: A Regulatory and Educational State Response Model.

    ERIC Educational Resources Information Center

    DeLisle, James

    1984-01-01

    Introduces the basic notion of equity access plans as property-based solutions to the cash flow needs of elderly homeowners and then proposes a normative response model that states can adopt to help manage the risk exposures. The recommended model incorporates regulatory, information dissemination, and educational elements. (BH)

  14. 78 FR 35078 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... circumstances where dissemination may mislead or confuse investors and other market participants. In addition... data elements are updated.\\12\\ In disseminated data, market participants will cross-reference the RDID... are rounded or truncated. The dissemination protocol to provide an RDID that market participants will...

  15. AP1 Keeps Chromatin Poised for Action | Center for Cancer Research

    Cancer.gov

    The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins called chromatin that compacts the DNA in the nucleus, strongly restricting access to DNA sequences. As a result, regulatory factors only interact with a small subset of their potential binding elements in a given cell to regulate genes. How factors recognize and select sites in chromatin across the genome is not well understood -- but several discoveries in CCR’s Laboratory of Receptor Biology and Gene Expression (LRBGE) have shed light on the mechanisms that direct factors to DNA.

  16. Gene expression systems in corynebacteria.

    PubMed

    Srivastava, Preeti; Deb, J K

    2005-04-01

    Corynebacterium belongs to a group of gram-positive bacteria having moderate to high G+C content, the other members being Mycobacterium, Nocardia, and Rhodococcus. Considerable information is now available on the plasmids, gene regulatory elements, and gene expression in corynebacteria, especially in soil corynebacteria such as Corynebacterium glutamicum. These bacteria are non-pathogenic and, unlike Bacillus and Streptomyces, are low in proteolytic activity and thus have the potential of becoming attractive systems for expression of heterologous proteins. This review discusses recent advances in our understanding of the organization of various regulatory elements, such as promoters, transcription terminators, and development of vectors for cloning and gene expression.

  17. Diverse Forms of RPS9 Splicing Are Part of an Evolving Autoregulatory Circuit

    PubMed Central

    Plocik, Alex M.; Guthrie, Christine

    2012-01-01

    Ribosomal proteins are essential to life. While the functions of ribosomal protein-encoding genes (RPGs) are highly conserved, the evolution of their regulatory mechanisms is remarkably dynamic. In Saccharomyces cerevisiae, RPGs are unusual in that they are commonly present as two highly similar gene copies and in that they are over-represented among intron-containing genes. To investigate the role of introns in the regulation of RPG expression, we constructed 16 S. cerevisiae strains with precise deletions of RPG introns. We found that several yeast introns function to repress rather than to increase steady-state mRNA levels. Among these, the RPS9A and RPS9B introns were required for cross-regulation of the two paralogous gene copies, which is consistent with the duplication of an autoregulatory circuit. To test for similar intron function in animals, we performed an experimental test and comparative analyses for autoregulation among distantly related animal RPS9 orthologs. Overexpression of an exogenous RpS9 copy in Drosophila melanogaster S2 cells induced alternative splicing and degradation of the endogenous copy by nonsense-mediated decay (NMD). Also, analysis of expressed sequence tag data from distantly related animals, including Homo sapiens and Ciona intestinalis, revealed diverse alternatively-spliced RPS9 isoforms predicted to elicit NMD. We propose that multiple forms of splicing regulation among RPS9 orthologs from various eukaryotes operate analogously to translational repression of the alpha operon by S4, the distant prokaryotic ortholog. Thus, RPS9 orthologs appear to have independently evolved variations on a fundamental autoregulatory circuit. PMID:22479208

  18. Regulatory analysis of the mouse Hoxb3 gene: multiple elements work in concert to direct temporal and spatial patterns of expression.

    PubMed

    Kwan, C T; Tsang, S L; Krumlauf, R; Sham, M H

    2001-04-01

    The expression pattern of the mouse Hoxb3 gene is exceptionally complex and dynamic compared with that of other members of the Hoxb cluster. There are multiple types of transcripts for Hoxb3 gene, and the anterior boundaries of its expression vary at different stages of development. Two enhancers flanking Hoxb3 on the 3' and 5' sides regulate Hoxb2 and Hoxb4, respectively, and these control regions define the two ends of a 28-kb interval in and around the Hoxb3 locus. To assay the regulatory potential of DNA fragments in this interval we have used transgenic analysis with a lacZ reporter gene to locate cis-elements for directing the dynamic patterns of Hoxb3 expression. Our detailed analysis has identified four new and widely spaced cis-acting regulatory regions that can together account for major aspects of the Hoxb3 expression pattern. Elements Ib, IIIa, and IVb control gene expression in neural and mesodermal tissues; element Va controls mesoderm-specific gene expression. The most anterior neural expression domain of Hoxb3 is controlled by an r5 enhancer (element IVa); element IIIa directs reporter expression in the anterior spinal cord and hindbrain up to r6, and the region A enhancer (in element I) mediates posterior neural expression. Hence, the regulation of segmental expression of Hoxb3 in the hindbrain is different from that of Hoxa3, as two separate enhancer elements contribute to expression in r5 and r6. The mesoderm-specific element (Va) directs reporter expression to prevertebra C1 at 12.5 dpc, which is the anterior limit of paraxial mesoderm expression for Hoxb3. When tested in combinations, these cis-elements appear to work as modules in an additive manner to recapitulate the major endogenous expression patterns of Hoxb3 during embryogenesis. Together our study shows that multiple control elements direct reporter gene expression in diverse tissue-, temporal-, and spatially restricted subset of the endogenous Hoxb3 expression domains and work in concert to control the neural and mesodermal patterns of expression. Copyright 2001 Academic Press.

  19. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Research and Test Reactors.'' This guide describes a method that the staff of the NRC considers acceptable... assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used in research...

  20. 77 FR 21125 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... allocates market data fees among Subscribers based on the data elements consumed, including top-of-book,\\3... apply to any Subscriber that accesses any data elements included in the TotalView entitlement, including the TotalView, OpenView, or Level 2 data elements. Professional Subscribers that access Depth-of-Book...

  1. 41 CFR 102-2.140 - What elements of plain language appear in the FMR?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT REGULATION SYSTEM Plain Language Regulatory Style § 102-2.140 What elements of plain language... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What elements of plain language appear in the FMR? 102-2.140 Section 102-2.140 Public Contracts and Property Management Federal...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Deug-Nam; Park, Mi-Ryung; Park, Jong-Yi

    Highlights: {yields} The sequences of -604 to -84 bp of the pUPII promoter contained the region of a putative negative cis-regulatory element. {yields} The core promoter was located in the 5F-1. {yields} Transcription factor HNF4 can directly bind in the pUPII core promoter region, which plays a critical role in controlling promoter activity. {yields} These features of the pUPII promoter are fundamental to development of a target-specific vector. -- Abstract: Uroplakin II (UPII) is a one of the integral membrane proteins synthesized as a major differentiation product of mammalian urothelium. UPII gene expression is bladder specific and differentiation dependent, butmore » little is known about its transcription response elements and molecular mechanism. To identify the cis-regulatory elements in the pig UPII (pUPII) gene promoter region, we constructed pUPII 5' upstream region deletion mutants and demonstrated that each of the deletion mutants participates in controlling the expression of the pUPII gene in human bladder carcinoma RT4 cells. We also identified a new core promoter region and putative negative cis-regulatory element within a minimal promoter region. In addition, we showed that hepatocyte nuclear factor 4 (HNF4) can directly bind in the pUPII core promoter (5F-1) region, which plays a critical role in controlling promoter activity. Transient cotransfection experiments showed that HNF4 positively regulates pUPII gene promoter activity. Thus, the binding element and its binding protein, HNF4 transcription factor, may be involved in the mechanism that specifically regulates pUPII gene transcription.« less

  3. Regulation of expression of transgenes in developing fish.

    PubMed

    Moav, B; Liu, Z; Caldovic, L D; Gross, M L; Faras, A J; Hackett, P B

    1993-05-01

    The transcriptional regulatory elements of the beta-actin gene of carp (Cyprinus carpio) have been examined in zebrafish and goldfish harbouring transgenes. The high sequence conservation of the putative regulatory elements in the beta-actin genes of animals suggested that their function would be conserved, so that transgenic constructs with the same transcriptional control elements would promote similar levels of transgene expression in different species of transgenic animals. To test this assumption, we analysed the temporal expression of a reporter gene under the control of transcriptional control sequences from the carp beta-actin gene in zebrafish (Brachydanio rerio) and goldfish (Carrasius auratus). Our results indicated that, contrary to expectations, combinations of different transcriptional control elements affected the level, duration, and onset of gene expression differently in developing zebrafish and goldfish. The major differences in expression of beta-actin/CAT (chloramphenicol acetyltransferase) constructs in zebrafish and goldfish were: (1) overall expression was almost 100-fold higher in goldfish than in zebrafish embryos, (2) the first intron had an enhancing effect on gene expression in zebrafish but not in goldfish, and (3) the serum-responsive/CArG-containing regulatory element in the proximal promoter was not always required for maximal CAT activity in goldfish, but was required in zebrafish. These results suggest that in the zebrafish, but not in the goldfish, there may be interactions between motifs in the proximal promoter and the first intron which appear to be required for maximal enhancement of transcription.

  4. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates

    PubMed Central

    Kikuta, Hiroshi; Laplante, Mary; Navratilova, Pavla; Komisarczuk, Anna Z.; Engström, Pär G.; Fredman, David; Akalin, Altuna; Caccamo, Mario; Sealy, Ian; Howe, Kerstin; Ghislain, Julien; Pezeron, Guillaume; Mourrain, Philippe; Ellingsen, Staale; Oates, Andrew C.; Thisse, Christine; Thisse, Bernard; Foucher, Isabelle; Adolf, Birgit; Geling, Andrea; Lenhard, Boris; Becker, Thomas S.

    2007-01-01

    We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated “bystander” genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns that are different from those of the target genes. Reporter insertions distal to zebrafish developmental regulatory genes pax6.1/2, rx3, id1, and fgf8 and miRNA genes mirn9-1 and mirn9-5 recapitulate the expression patterns of these genes even if located inside or beyond bystander genes, suggesting that the regulatory domain of a developmental regulatory gene can extend into and beyond adjacent transcriptional units. We termed these chromosomal segments genomic regulatory blocks (GRBs). After whole genome duplication in teleosts, GRBs, including HCNEs and target genes, were often maintained in both copies, while bystander genes were typically lost from one GRB, strongly suggesting that evolutionary pressure acts to keep the single-copy GRBs of higher vertebrates intact. We show that loss of bystander genes and other mutational events suffered by duplicated GRBs in teleost genomes permits target gene identification and HCNE/target gene assignment. These findings explain the absence of evolutionary breakpoints from large vertebrate chromosomal segments and will aid in the recognition of position effect mutations within human GRBs. PMID:17387144

  5. Isolation and analysis of a multifunctional triterpene synthase KcMS promoter region from mangrove plant kandelia candel

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wati, R.; Sulistiyono, N.; Sumardi; Oku, H.; Baba, S.; Sagami, H.

    2018-03-01

    Molecular cloning of Kandelia candel KcMS gene has previously been cloned and encoded a multifunctional triterpene synthase. In this study, the KcMS gene promoter was cloned through Genome walking, sequenced, and analyzed. A 1,358 bp genomic DNA fragment of KcMS promoter was obtained. PLACE and PlantCARE analysis of the KcMS promoter revealed that there was some regulatory elements in response to environmental signals and involved in the regulation of gene expression. Results showed that four kinds of elements are regulated by hormone binding, namely 2 MeJA-responsiveness elements (CGTCA-motif and TGACG-motif), the ABRE (TACGTG) involved in abscisic acid responsiveness, gibberellin-related GARE-motif (AAACAGA), and the TGA-element (AACGAC) as an auxin-responsive element. Several elements in the KcMS have been shown in other plants to be responsive to abiotic stress. These motifs were MBS (CAACTG), TC-rich repeats, and eight light responsive elements. The KcMS promoter was also involved in the activation of defense genes in plants such as HSE (AAAAAATTC) and four circadian control elements (CAANNNNATC). The presence of multipotential regulatory motifs suggested that KcMS may be involved in regulation of plant tolerance to several types of stresses.

  6. Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice.

    PubMed

    Wang, Rui; Zhu, Menglin; Ye, Rongjian; Liu, Zuoxiong; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2015-12-11

    As an important part of synthetic biology, synthetic promoter has gradually become a hotspot in current biology. The purposes of the present study were to synthesize green tissue-specific promoters and to discover green tissue-specific cis-elements. We first assembled several regulatory sequences related to tissue-specific expression in different combinations, aiming to obtain novel green tissue-specific synthetic promoters. GUS assays of the transgenic plants indicated 5 synthetic promoters showed green tissue-specific expression patterns and different expression efficiencies in various tissues. Subsequently, we scanned and counted the cis-elements in different tissue-specific promoters based on the plant cis-elements database PLACE and the rice cDNA microarray database CREP for green tissue-specific cis-element discovery, resulting in 10 potential cis-elements. The flanking sequence of one potential core element (GEAT) was predicted by bioinformatics. Then, the combination of GEAT and its flanking sequence was functionally identified with synthetic promoter. GUS assays of the transgenic plants proved its green tissue-specificity. Furthermore, the function of GEAT flanking sequence was analyzed in detail with site-directed mutagenesis. Our study provides an example for the synthesis of rice tissue-specific promoters and develops a feasible method for screening and functional identification of tissue-specific cis-elements with their flanking sequences at the genome-wide level in rice.

  7. Functional analysis of a large set of BRCA2 exon 7 variants highlights the predictive value of hexamer scores in detecting alterations of exonic splicing regulatory elements.

    PubMed

    Di Giacomo, Daniela; Gaildrat, Pascaline; Abuli, Anna; Abdat, Julie; Frébourg, Thierry; Tosi, Mario; Martins, Alexandra

    2013-11-01

    Exonic variants can alter pre-mRNA splicing either by changing splice sites or by modifying splicing regulatory elements. Often these effects are difficult to predict and are only detected by performing RNA analyses. Here, we analyzed, in a minigene assay, 26 variants identified in the exon 7 of BRCA2, a cancer predisposition gene. Our results revealed eight new exon skipping mutations in this exon: one directly altering the 5' splice site and seven affecting potential regulatory elements. This brings the number of splicing regulatory mutations detected in BRCA2 exon 7 to a total of 11, a remarkably high number considering the total number of variants reported in this exon (n = 36), all tested in our minigene assay. We then exploited this large set of splicing data to test the predictive value of splicing regulator hexamers' scores recently established by Ke et al. (). Comparisons of hexamer-based predictions with our experimental data revealed high sensitivity in detecting variants that increased exon skipping, an important feature for prescreening variants before RNA analysis. In conclusion, hexamer scores represent a promising tool for predicting the biological consequences of exonic variants and may have important applications for the interpretation of variants detected by high-throughput sequencing. © 2013 WILEY PERIODICALS, INC.

  8. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment

    PubMed Central

    Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Louise Meyer, Rikke; Peter Revsbech, Niels; Schramm, Andreas; Peter Nielsen, Lars; Risgaard-Petersen, Nils

    2014-01-01

    Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4–6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed. PMID:24577351

  9. A new captorhinid reptile from the Lower Permian of Oklahoma showing remarkable dental and mandibular convergence with microsaurian tetrapods

    NASA Astrophysics Data System (ADS)

    Reisz, R. R.; LeBlanc, Aaron R. H.; Sidor, Christian A.; Scott, Diane; May, William

    2015-10-01

    The Lower Permian fossiliferous infills of the Dolese Brothers Limestone Quarry, near Richards Spur, Oklahoma, have preserved the most diverse assemblage of Paleozoic terrestrial vertebrates, including small-bodied reptiles and lepospondyl anamniotes. Many of these taxa were previously known only from fragmentary remains, predominantly dentigerous jaw elements and numerous isolated skeletal elements. The recent discovery of articulated skulls and skeletons of small reptiles permits the recognition that dentigerous elements, previously assigned at this locality to the anamniote lepospondyl Euryodus primus, belong to a new captorhinid eureptile, Opisthodontosaurus carrolli gen. et sp. nov. This mistaken identity points to a dramatic level of convergence in mandibular and dental anatomy in two distantly related and disparate clades of terrestrial tetrapods and sheds light on the earliest instance of durophagy in eureptiles.

  10. A new captorhinid reptile from the Lower Permian of Oklahoma showing remarkable dental and mandibular convergence with microsaurian tetrapods.

    PubMed

    Reisz, R R; LeBlanc, Aaron R H; Sidor, Christian A; Scott, Diane; May, William

    2015-10-01

    The Lower Permian fossiliferous infills of the Dolese Brothers Limestone Quarry, near Richards Spur, Oklahoma, have preserved the most diverse assemblage of Paleozoic terrestrial vertebrates, including small-bodied reptiles and lepospondyl anamniotes. Many of these taxa were previously known only from fragmentary remains, predominantly dentigerous jaw elements and numerous isolated skeletal elements. The recent discovery of articulated skulls and skeletons of small reptiles permits the recognition that dentigerous elements, previously assigned at this locality to the anamniote lepospondyl Euryodus primus, belong to a new captorhinid eureptile, Opisthodontosaurus carrolli gen. et sp. nov. This mistaken identity points to a dramatic level of convergence in mandibular and dental anatomy in two distantly related and disparate clades of terrestrial tetrapods and sheds light on the earliest instance of durophagy in eureptiles.

  11. Parallel genetic origins of pelvic reduction in vertebrates

    PubMed Central

    Shapiro, Michael D.; Bell, Michael A.; Kingsley, David M.

    2006-01-01

    Despite longstanding interest in parallel evolution, little is known about the genes that control similar traits in different lineages of vertebrates. Pelvic reduction in stickleback fish (family Gasterosteidae) provides a striking example of parallel evolution in a genetically tractable system. Previous studies suggest that cis-acting regulatory changes at the Pitx1 locus control pelvic reduction in a population of threespine sticklebacks (Gasterosteus aculeatus). In this study, progeny from intergeneric crosses between pelvic-reduced threespine and ninespine (Pungitius pungitius) sticklebacks also showed severe pelvic reduction, implicating a similar genetic origin for this trait in both genera. Comparative sequencing studies in complete and pelvic-reduced Pungitius revealed no differences in the Pitx1 coding sequences, but Pitx1 expression was absent from the prospective pelvic region of larvae from pelvic-reduced parents. A much more phylogenetically distant example of pelvic reduction, loss of hindlimbs in manatees, shows a similar left–right size bias that is a morphological signature of Pitx1-mediated pelvic reduction in both sticklebacks and mice. These multiple lines of evidence suggest that changes in Pitx1 may represent a key mechanism of morphological evolution in multiple populations, species, and genera of sticklebacks, as well as in distantly related vertebrate lineages. PMID:16945911

  12. Identification of N-Terminal Lobe Motifs that Determine the Kinase Activity of the Catalytic Domains and Regulatory Strategies of Src and Csk Protein Tyrosine Kinases†

    PubMed Central

    Huang, Kezhen; Wang, Yue-Hao; Brown, Alex; Sun, Gongqin

    2009-01-01

    Csk and Src protein tyrosine kinases are structurally homologous, but use opposite regulatory strategies. The isolated catalytic domain of Csk is intrinsically inactive and is activated by interactions with the regulatory SH3 and SH2 domains, while the isolated catalytic domain of Src is intrinsically active and is suppressed by interactions with the regulatory SH3 and SH2 domains. The structural basis for why one isolated catalytic domain is intrinsically active while the other is inactive is not clear. In this current study, we identify the structural elements in the N-terminal lobe of the catalytic domain that render the Src catalytic domain active. These structural elements include the α-helix C region, a β-turn between the β-4 and β-5 strands, and an Arg residue at the beginning of the catalytic domain. These three motifs interact with each other to activate the Src catalytic domain, but the equivalent motifs in Csk directly interact with the regulatory domains that are important for Csk activation. The Src motifs can be grafted to the Csk catalytic domain to obtain an active Csk catalytic domain. These results, together with available Src and Csk tertiary structures, reveal an important structural switch that determines the kinase activity of a catalytic domain and dictates the regulatory strategy of a kinase. PMID:19244618

  13. Regulatory T cells in the control of host-microorganism interactions (*).

    PubMed

    Belkaid, Yasmine; Tarbell, Kristin

    2009-01-01

    Each microenvironment requires a specific set of regulatory elements that are finely and constantly tuned to maintain local homeostasis. Various populations of regulatory T cells contribute to the maintenance of this equilibrium and establishment of controlled immune responses. In particular, regulatory T cells limit the magnitude of effector responses, which may result in failure to adequately control infection. However, regulatory T cells also help limit collateral tissue damage caused by vigorous antimicrobial immune responses against pathogenic microbes as well as commensals. In this review, we describe various situations in which the balance between regulatory T cells and effector immune functions influence the outcome of host-microorganism coexistence and discuss current hypotheses and points of polemic associated with the origin, target, and antigen specificity of both endogenous and induced regulatory T cells during these interactions.

  14. Dual RNA regulatory control of a Staphylococcus aureus virulence factor.

    PubMed

    Chabelskaya, Svetlana; Bordeau, Valérie; Felden, Brice

    2014-04-01

    In pathogens, the accurate programming of virulence gene expression is essential for infection. It is achieved by sophisticated arrays of regulatory proteins and ribonucleic acids (sRNAs), but in many cases their contributions and connections are not yet known. Based on genetic, biochemical and structural evidence, we report that the expression pattern of a Staphylococcus aureus host immune evasion protein is enabled by the collaborative actions of RNAIII and small pathogenicity island RNA D (SprD). Their combined expression profiles during bacterial growth permit early and transient synthesis of Sbi to avoid host immune responses. Together, these two sRNAs use antisense mechanisms to monitor Sbi expression at the translational level. Deletion analysis combined with structural analysis of RNAIII in complex with its novel messenger RNA (mRNA) target indicate that three distant RNAIII domains interact with distinct sites of the sbi mRNA and that two locations are deep in the sbi coding region. Through distinct domains, RNAIII lowers production of two proteins required for avoiding innate host immunity, staphylococcal protein A and Sbi. Toeprints and in vivo mutational analysis reveal a novel regulatory module within RNAIII essential for attenuation of Sbi translation. The sophisticated translational control of mRNA by two differentially expressed sRNAs ensures supervision of host immune escape by a major pathogen.

  15. Chinese Methods of Interpersonal Conflict Management

    DTIC Science & Technology

    2007-05-24

    Cross-National Differences,” 734. 77Fan and Zigang, “Cross-Cultural Challenges when Doing Business in China,” 87. 78Kwang- Kuo Hwang, “Guanzi and...abandons what is nearby to plan for what is distant will labor without success.” from Huang Shih -kung; “being victorious in battle is easy, but...cultural elements presented in chapter 4 and reflect the differences between relationship types. Recently Ting- Toomey, Oetzel, and Yee- Jung identified

  16. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  17. PM2.5 aerosols collected in the Antarctic Peninsula with a solar powered sampler during austral summer periods

    NASA Astrophysics Data System (ADS)

    Préndez, M.; Wachter, J.; Vega, C.; Flocchini, R. G.; Wakayabashi, P.; Morales, J. R.

    Collection of PM2.5 particles was carried out in Antarctica in the summer periods of years 2006 and 2007 using solar panels to operate the sampling unit. The unit was installed 2.5 km from the B. O'Higgins Chilean base to avoid possible air contamination from oil or gas burning electric power stations. The aerosols were analyzed by XRF identifying twenty elements between Na and Sr. Results showed the presence of elements of typical Earth crust and seawater origins. In addition, considerable amounts of non-sea sulfur together with traces of Pb and Se from probable long distant anthropogenic activities were observed.

  18. Deletion of an enhancer near DLX5 and DLX6 in a family with hearing loss, craniofacial defects, and an inv(7)(q21.3q35)

    PubMed Central

    Brown, Kerry K.; Reiss, Jacob A.; Crow, Kate; Ferguson, Heather L.; Kelly, Chantal; Fritzsch, Bernd; Morton, Cynthia C.

    2010-01-01

    Precisely regulated temporal and spatial patterns of gene expression are essential for proper human development. Cis-acting regulatory elements, some located at large distances from their corresponding genes, play a critical role in transcriptional control of key developmental genes and disruption of these regulatory elements can lead to disease. We report a three generation family with five affected members, all of whom have hearing loss, craniofacial defects, and a paracentric inversion of the long arm of chromosome 7, inv(7)(q21.3q35). High resolution mapping of the inversion showed that the 7q21.3 breakpoint is located 65 and 80 kb centromeric of DLX6 and DLX5, respectively. Further analysis revealed a 5115 bp deletion at the 7q21.3 breakpoint. While the breakpoint does not disrupt either DLX5 or DLX6, the syndrome present in the family is similar to that observed in Dlx5 knockout mice and includes a subset of the features observed in individuals with DLX5 and DLX6 deletions, implicating dysregulation of DLX5 and DLX6 in the family’s phenotype. Bioinformatic analysis indicates that the 5115 bp deletion at the 7q21.3 breakpoint could contain regulatory elements necessary for DLX5 and DLX6 expression. Using a transgenic mouse reporter assay, we show that the deleted sequence can drive expression in the ear and developing bones of E12.5 embryos. Consequently, the observed familial syndrome is likely caused by dysregulation of DLX5 and/or DLX6 in specific tissues due to deletion of an enhancer and possibly separation from other regulatory elements by the chromosomal inversion. PMID:19707792

  19. 75 FR 62893 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... for using portland cement grout to protect prestressing steel from corrosion. The prestressing tendon system of a prestressed concrete containment structure is a principal strength element of the structure... of the structure depends on the functional reliability of the structure's principal strength elements...

  20. 78 FR 53812 - Self-Regulatory Organizations; BOX Options Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... Organizations; BOX Options Exchange LLC; Notice of Filing and Immediate Effectiveness of a Proposed Rule Change... Proprietary Trader Program (S501) Continuing Education Regulatory Element Session on the BOX Market LLC (``BOX'') options facility. While changes to the fee schedule pursuant to this proposal will be effective upon...

  1. 75 FR 76496 - Nuclear Fuel Services, Inc.; Environmental Assessment and Finding of No Significant Impact for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-143; NRC-2010-0379] Nuclear Fuel Services, Inc.; Environmental Assessment and Finding of No Significant Impact for Proposed Exemption From a Requirement To Measure the Uranium Element and Isotopic Content of Special Nuclear Material AGENCY: Nuclear Regulatory Commission. ACTION: Environmental...

  2. 78 FR 55766 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... Change To Amend Rule 640, Continuing Education for Registered Persons and Adopt a Corresponding Fee... Substance of the Proposed Rule Change The Exchange proposes to amend Rule 640, Continuing Education for... 640. Continuing Education for Registered Persons (a) Regulatory Element (1) Requirements--No member...

  3. Defining Transcriptional Regulatory Mechanisms for Primary let-7 miRNAs

    PubMed Central

    Gaeta, Xavier; Le, Luat; Lin, Ying; Xie, Yuan; Lowry, William E.

    2017-01-01

    The let-7 family of miRNAs have been shown to control developmental timing in organisms from C. elegans to humans; their function in several essential cell processes throughout development is also well conserved. Numerous studies have defined several steps of post-transcriptional regulation of let-7 production; from pri-miRNA through pre-miRNA, to the mature miRNA that targets endogenous mRNAs for degradation or translational inhibition. Less-well defined are modes of transcriptional regulation of the pri-miRNAs for let-7. let-7 pri-miRNAs are expressed in polycistronic fashion, in long transcripts newly annotated based on chromatin-associated RNA-sequencing. Upon differentiation, we found that some let-7 pri-miRNAs are regulated at the transcriptional level, while others appear to be constitutively transcribed. Using the Epigenetic Roadmap database, we further annotated regulatory elements of each polycistron identified putative promoters and enhancers. Probing these regulatory elements for transcription factor binding sites identified factors that regulate transcription of let-7 in both promoter and enhancer regions, and identified novel regulatory mechanisms for this important class of miRNAs. PMID:28052101

  4. A system-level model for the microbial regulatory genome.

    PubMed

    Brooks, Aaron N; Reiss, David J; Allard, Antoine; Wu, Wei-Ju; Salvanha, Diego M; Plaisier, Christopher L; Chandrasekaran, Sriram; Pan, Min; Kaur, Amardeep; Baliga, Nitin S

    2014-07-15

    Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Analysis of a SNP linked to lactase persistence: An exercise for teaching molecular biology techniques to undergraduates.

    PubMed

    Schultheis, Patrick J; Bowling, Bethany V

    2011-01-01

    Recent experimental evidence indicates that the ability of adults to tolerate milk, cheese, and other lactose-containing dairy products is an autosomal dominant trait that co-evolved with dairy farming in Central Europe about 7,500 years ago. Among persons of European descent, this trait is strongly associated with a C to T substitution at a polymorphic site 13,910 bp upstream of the lactase gene. This mutation results in the persistent expression of lactase into adulthood enabling individuals carrying a T(-13,910) allele to digest lactose as adults. In this report, we describe a laboratory exercise for an undergraduate molecular biology course in which students determine their own genotype at the -13,910 polymorphic site and correlate this with their ability to tolerate dairy products. The exercise is used as a tool to teach basic molecular biology procedures such as agarose gel electrophoresis, PCR1, and DNA sequencing. Students are actively engaged in the learning process, not only by analyzing their own DNA but also by applying their knowledge and skills to answer an authentic question. The exercise is also integrated with lecture material on the control of gene expression at the transcriptional level, in particular, how transcription factors can influence the activity of a promoter by binding to cis-acting DNA regulatory elements located within the proximal promoter of a gene or distant enhancer regions. Copyright © 2010 Wiley Periodicals, Inc.

  6. Discovery of functional non-coding conserved regions in the α-synuclein gene locus

    PubMed Central

    Sterling, Lori; Walter, Michael; Ting, Dennis; Schüle, Birgitt

    2014-01-01

    Several single nucleotide polymorphisms (SNPs) and the Rep-1 microsatellite marker of the α-synuclein ( SNCA) gene have consistently been shown to be associated with Parkinson’s disease, but the functional relevance is unclear. Based on these findings we hypothesized that conserved cis-regulatory elements in the SNCA genomic region regulate expression of SNCA, and that SNPs in these regions could be functionally modulating the expression of SNCA, thus contributing to neuronal demise and predisposing to Parkinson’s disease. In a pair-wise comparison of a 206kb genomic region encompassing the SNCA gene, we revealed 34 evolutionary conserved DNA sequences between human and mouse. All elements were cloned into reporter vectors and assessed for expression modulation in dual luciferase reporter assays.  We found that 12 out of 34 elements exhibited either an enhancement or reduction of the expression of the reporter gene. Three elements upstream of the SNCA gene displayed an approximately 1.5 fold (p<0.009) increase in expression. Of the intronic regions, three showed a 1.5 fold increase and two others indicated a 2 and 2.5 fold increase in expression (p<0.002). Three elements downstream of the SNCA gene showed 1.5 fold and 2.5 fold increase (p<0.0009). One element downstream of SNCA had a reduced expression of the reporter gene of 0.35 fold (p<0.0009) of normal activity. Our results demonstrate that the SNCA gene contains cis-regulatory regions that might regulate the transcription and expression of SNCA. Further studies in disease-relevant tissue types will be important to understand the functional impact of regulatory regions and specific Parkinson’s disease-associated SNPs and its function in the disease process. PMID:25566351

  7. Identification of trans-acting factors regulating SamDC expression in Oryza sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Supratim, E-mail: supratim_genetics@yahoo.co.in; Division of Plant Biology, Bose Institute, Kolkata; Roychoudhury, Aryadeep

    2014-03-07

    Highlights: • Identification of cis elements responsible for SamDC expression by in silico analysis. • qPCR analysis of SamDC expression to abiotic and biotic stress treatments. • Detection of SamDC regulators using identified cis-elements as probe by EMSA. • Southwestern Blot analysis to predict the size of the trans-acting factors. - Abstract: Abiotic stress affects the growth and productivity of crop plants; to cope with the adverse environmental conditions, plants have developed efficient defense machinery comprising of antioxidants like phenolics and flavonoids, and osmolytes like polyamines. SamDC is a key enzyme in the polyamine biosynthesis pathway in plants. In ourmore » present communication we have done in silico analysis of the promoter region of SamDC to look for the presence of different cis-regulatory elements contributing to its expression. Based on the presence of different cis-regulatory elements we completed comparative analysis of SamDC gene expression in rice lamina of IR-29 and Nonabokra by qPCR in response to the abiotic stress treatments of salinity, drought, cold and the biotic stress treatments of ABA and light. Additionally, to explore the role of the cis-regulatory elements in regulating the expression of SamDC gene in plants we comparatively analyzed the binding of rice nuclear proteins prepared from IR-29 and Nonabokra undergoing various stress treatments. The intensity of the complex formed was low and inducible in IR-29 in contrast to Nonabokra. Southwestern blot analysis helped in predicting the size of the trans-acting factors binding to these cis-elements. To our knowledge this is the first report on the comprehensive analysis of SamDC gene expression in rice and identification of the trans-acting factors regulating its expression.« less

  8. Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules.

    PubMed

    Turatsinze, Jean-Valery; Thomas-Chollier, Morgane; Defrance, Matthieu; van Helden, Jacques

    2008-01-01

    This protocol shows how to detect putative cis-regulatory elements and regions enriched in such elements with the regulatory sequence analysis tools (RSAT) web server (http://rsat.ulb.ac.be/rsat/). The approach applies to known transcription factors, whose binding specificity is represented by position-specific scoring matrices, using the program matrix-scan. The detection of individual binding sites is known to return many false predictions. However, results can be strongly improved by estimating P value, and by searching for combinations of sites (homotypic and heterotypic models). We illustrate the detection of sites and enriched regions with a study case, the upstream sequence of the Drosophila melanogaster gene even-skipped. This protocol is also tested on random control sequences to evaluate the reliability of the predictions. Each task requires a few minutes of computation time on the server. The complete protocol can be executed in about one hour.

  9. Transposable elements and G-quadruplexes.

    PubMed

    Kejnovsky, Eduard; Tokan, Viktor; Lexa, Matej

    2015-09-01

    A significant part of eukaryotic genomes is formed by transposable elements (TEs) containing not only genes but also regulatory sequences. Some of the regulatory sequences located within TEs can form secondary structures like hairpins or three-stranded (triplex DNA) and four-stranded (quadruplex DNA) conformations. This review focuses on recent evidence showing that G-quadruplex-forming sequences in particular are often present in specific parts of TEs in plants and humans. We discuss the potential role of these structures in the TE life cycle as well as the impact of G-quadruplexes on replication, transcription, translation, chromatin status, and recombination. The aim of this review is to emphasize that TEs may serve as vehicles for the genomic spread of G-quadruplexes. These non-canonical DNA structures and their conformational switches may constitute another regulatory system that, together with small and long non-coding RNA molecules and proteins, contribute to the complex cellular network resulting in the large diversity of eukaryotes.

  10. Promote Health or Prevent Disease? The Effects of Health-Related Advertising on Eating Behavior Intention

    PubMed Central

    Lin, Chia-Yen

    2015-01-01

    The health medical costs of colorectal cancer are increasingly higher in Taiwan. The National Health Insurance Administration (NHI) and The Health Promotion Administration of the Ministry of Health and Welfare (MOHW) in Taiwan encourage individuals to adopt an earnest approach to healthy behavior through advocacy advertising. However, the number of colorectal cancer patients continues to increase annually. Our study explored the effects of health-related advertisements (ads) on healthy behavior intentions as influenced by regulatory focus theory (RFT) and construal level theory (CLT). We conducted an experiment with different public health advocacy ads. A 2 (regulatory focus: promotion vs. prevention) × 2 (temporal distance: one month vs. one year) × 2 (graphics-text ratio: more pictures and less text vs. fewer pictures and more text) three-factor experiment was adopted. The multiple analysis of variance (MANOVA) results revealed that ads with higher construal levels (i.e., more text) had greater effects with a promotion-oriented regulatory focus. However, no significant differences were found in either attitude toward the ads or behavior intention when the regulatory focus was prevention. In addition, according to the young testers and those who were psychologically distant from colorectal cancer, different temporal distances and different construal levels had no statistically significantly effects on attitudes toward advertising or on behavior intentions. The results revealed that viewers found the information easier to understand when the ads triggered the regulatory focuses of the viewers and applied an appropriate graphics-text ratio, which resulted in favorable health-related advertising effectiveness. Thus, we provide two suggestions regarding the use of health-related advertising for MOHW in the future. PMID:25826394

  11. Promote health or prevent disease? The effects of health-related advertising on eating behavior intention.

    PubMed

    Lin, Chia-Yen

    2015-03-27

    The health medical costs of colorectal cancer are increasingly higher in Taiwan. The National Health Insurance Administration (NHI) and The Health Promotion Administration of the Ministry of Health and Welfare (MOHW) in Taiwan encourage individuals to adopt an earnest approach to healthy behavior through advocacy advertising. However, the number of colorectal cancer patients continues to increase annually. Our study explored the effects of health-related advertisements (ads) on healthy behavior intentions as influenced by regulatory focus theory (RFT) and construal level theory (CLT). We conducted an experiment with different public health advocacy ads. A 2 (regulatory focus: promotion vs. prevention) × 2 (temporal distance: one month vs. one year) × 2 (graphics-text ratio: more pictures and less text vs. fewer pictures and more text) three-factor experiment was adopted. The multiple analysis of variance (MANOVA) results revealed that ads with higher construal levels (i.e., more text) had greater effects with a promotion-oriented regulatory focus. However, no significant differences were found in either attitude toward the ads or behavior intention when the regulatory focus was prevention. In addition, according to the young testers and those who were psychologically distant from colorectal cancer, different temporal distances and different construal levels had no statistically significantly effects on attitudes toward advertising or on behavior intentions. The results revealed that viewers found the information easier to understand when the ads triggered the regulatory focuses of the viewers and applied an appropriate graphics-text ratio, which resulted in favorable health-related advertising effectiveness. Thus, we provide two suggestions regarding the use of health-related advertising for MOHW in the future.

  12. Functional analysis of a WRKY transcription factor involved in transcriptional activation of the DBAT gene in Taxus chinensis.

    PubMed

    Li, S; Zhang, P; Zhang, M; Fu, C; Yu, L

    2013-01-01

    Although the regulation of taxol biosynthesis at the transcriptional level remains unclear, 10-deacetylbaccatin III-10 β-O-acetyl transferase (DBAT) is a critical enzyme in the biosynthesis of taxol. The 1740 bp fragment 5'-flanking sequence of the dbat gene was cloned from Taxus chinensis cells. Important regulatory elements needed for activity of the dbat promoter were located by deletion analyses in T. chinensis cells. A novel WRKY transcription factor, TcWRKY1, was isolated with the yeast one-hybrid system from a T. chinensis cell cDNA library using the important regulatory elements as bait. The gene expression of TcWRKY1 in T. chinensis suspension cells was specifically induced by methyl jasmonate (MeJA). Biochemical analysis indicated that TcWRKY1 protein specifically interacts with the two W-box (TGAC) cis-elements among the important regulatory elements. Overexpression of TcWRKY1 enhanced dbat expression in T. chinensis suspension cells, and RNA interference (RNAi) reduced the level of transcripts of dbat. These results suggest that TcWRKY1 participates in regulation of taxol biosynthesis in T. chinensis cells, and that dbat is a target gene of this transcription factor. This research also provides a potential candidate gene for engineering increased taxol accumulation in Taxus cell cultures. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    PubMed Central

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Hubisz, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Zhang, Peili; Liu, Jing; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catharine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenée; Verduzco, Daniel; Clerc-Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2005-01-01

    We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25–55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species—but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila. PMID:15632085

  14. Structural and functional analysis of mouse Msx1 gene promoter: sequence conservation with human MSX1 promoter points at potential regulatory elements.

    PubMed

    Gonzalez, S M; Ferland, L H; Robert, B; Abdelhay, E

    1998-06-01

    Vertebrate Msx genes are related to one of the most divergent homeobox genes of Drosophila, the muscle segment homeobox (msh) gene, and are expressed in a well-defined pattern at sites of tissue interactions. This pattern of expression is conserved in vertebrates as diverse as quail, zebrafish, and mouse in a range of sites including neural crest, appendages, and craniofacial structures. In the present work, we performed structural and functional analyses in order to identify potential cis-acting elements that may be regulating Msx1 gene expression. To this end, a 4.9-kb segment of the 5'-flanking region was sequenced and analyzed for transcription-factor binding sites. Four regions showing a high concentration of these sites were identified. Transfection assays with fragments of regulatory sequences driving the expression of the bacterial lacZ reporter gene showed that a region of 4 kb upstream of the transcription start site contains positive and negative elements responsible for controlling gene expression. Interestingly, a fragment of 130 bp seems to contain the minimal elements necessary for gene expression, as its removal completely abolishes gene expression in cultured cells. These results are reinforced by comparison of this region with the human Msx1 gene promoter, which shows extensive conservation, including many consensus binding sites, suggesting a regulatory role for them.

  15. Discovery, Orbit and Orbital Evolution of the Distant Object (463368) 2012 VU85

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, I.; Černis, K.; Boyle, R. P.

    2017-03-01

    We present the discovery and time evolution of orbital elements of the distant Centaur-type object (463368) 2012 VU85. From all 2135 distant objects listed in the Minor Planet Center we select all 347 numbered distant object and integrate their equations of motion in the 1 Gyr forward and backward integration. The asteroid (463368) 2012 VU85 lies on the border of the group of 347 distant objects, which have a semimajor axis about 44 a.u., eccentricity 0.1 and inclination between 0° and 30°. We show that after 1 Gyr of forward integration, about half of the objects are expelled from the Solar System, \\ie their median lifetime is about 1 Gyr. We note that the long-lived distant objects are mainly located between the regions where Neptune controls aphelia of asteroids and the asteroids are in the mean motion resonance 2/3 with Neptune. We find eight almost regular approaches of clones of the asteroid (463368) 2012 VU85 to Neptune and several generally shorter in time regular approaches to Uranus. For other outer planets we did not detect any approaches below 5 a.u. for a period of 15 000 yr in forward and backward integrations. In our calculations we find eight episodes, each lasting about 3000 yr when the value of inclination oscillates around its average. These changes look similar to the changes of semimajor axis during the occurrence of orbital mean motion resonance with a planet. We find that half of the clones of the asteroid (463368) 2012 VU85 remain in the Solar System for a forward integration of 44 Myr, and for a backward integration of 34 Myr. This is a significantly shorter escape time as compared to the group of distant objects. Almost all long-lived clones have value of Tisserand parameter with respect to Neptune smaller than 3 during the whole 1 Gyr forward and backward integrations. This implies that there are several clones of the asteroid (463368) 2012 VU85 that cross the orbits of Neptune and Uranus. We find many orbital mean motion resonances lasting up to several Myr in the motion of the asteroid (463368) 2012 VU85. According to our computations the presence of the Kozai resonance protects the asteroid from the close approaches with Uranus and Neptune. The Lyapunov time for the asteroid (463368) 2012 VU85 is equal to 4260 years.

  16. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    PubMed

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Changes in cis-regulatory elements of a key floral regulator are associated with divergence of inflorescence architectures.

    PubMed

    Kusters, Elske; Della Pina, Serena; Castel, Rob; Souer, Erik; Koes, Ronald

    2015-08-15

    Higher plant species diverged extensively with regard to the moment (flowering time) and position (inflorescence architecture) at which flowers are formed. This seems largely caused by variation in the expression patterns of conserved genes that specify floral meristem identity (FMI), rather than changes in the encoded proteins. Here, we report a functional comparison of the promoters of homologous FMI genes from Arabidopsis, petunia, tomato and Antirrhinum. Analysis of promoter-reporter constructs in petunia and Arabidopsis, as well as complementation experiments, showed that the divergent expression of leafy (LFY) and the petunia homolog aberrant leaf and flower (ALF) results from alterations in the upstream regulatory network rather than cis-regulatory changes. The divergent expression of unusual floral organs (UFO) from Arabidopsis, and the petunia homolog double top (DOT), however, is caused by the loss or gain of cis-regulatory promoter elements, which respond to trans-acting factors that are expressed in similar patterns in both species. Introduction of pUFO:UFO causes no obvious defects in Arabidopsis, but in petunia it causes the precocious and ectopic formation of flowers. This provides an example of how a change in a cis-regulatory region can account for a change in the plant body plan. © 2015. Published by The Company of Biologists Ltd.

  18. GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach.

    PubMed

    Schmidt, Ellen M; Zhang, Ji; Zhou, Wei; Chen, Jin; Mohlke, Karen L; Chen, Y Eugene; Willer, Cristen J

    2015-08-15

    The majority of variation identified by genome wide association studies falls in non-coding genomic regions and is hypothesized to impact regulatory elements that modulate gene expression. Here we present a statistically rigorous software tool GREGOR (Genomic Regulatory Elements and Gwas Overlap algoRithm) for evaluating enrichment of any set of genetic variants with any set of regulatory features. Using variants from five phenotypes, we describe a data-driven approach to determine the tissue and cell types most relevant to a trait of interest and to identify the subset of regulatory features likely impacted by these variants. Last, we experimentally evaluate six predicted functional variants at six lipid-associated loci and demonstrate significant evidence for allele-specific impact on expression levels. GREGOR systematically evaluates enrichment of genetic variation with the vast collection of regulatory data available to explore novel biological mechanisms of disease and guide us toward the functional variant at trait-associated loci. GREGOR, including source code, documentation, examples, and executables, is available at http://genome.sph.umich.edu/wiki/GREGOR. cristen@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. G-quadruplex prediction in E. coli genome reveals a conserved putative G-quadruplex-Hairpin-Duplex switch.

    PubMed

    Kaplan, Oktay I; Berber, Burak; Hekim, Nezih; Doluca, Osman

    2016-11-02

    Many studies show that short non-coding sequences are widely conserved among regulatory elements. More and more conserved sequences are being discovered since the development of next generation sequencing technology. A common approach to identify conserved sequences with regulatory roles relies on topological changes such as hairpin formation at the DNA or RNA level. G-quadruplexes, non-canonical nucleic acid topologies with little established biological roles, are increasingly considered for conserved regulatory element discovery. Since the tertiary structure of G-quadruplexes is strongly dependent on the loop sequence which is disregarded by the generally accepted algorithm, we hypothesized that G-quadruplexes with similar topology and, indirectly, similar interaction patterns, can be determined using phylogenetic clustering based on differences in the loop sequences. Phylogenetic analysis of 52 G-quadruplex forming sequences in the Escherichia coli genome revealed two conserved G-quadruplex motifs with a potential regulatory role. Further analysis revealed that both motifs tend to form hairpins and G quadruplexes, as supported by circular dichroism studies. The phylogenetic analysis as described in this work can greatly improve the discovery of functional G-quadruplex structures and may explain unknown regulatory patterns. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Functional elements in the minimal promoter of the human proton-coupled folate transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Michal; Gonen, Nitzan; Assaraf, Yehuda G., E-mail: assaraf@tx.technion.ac.il

    2009-10-09

    The proton-coupled folate transporter (PCFT) is the dominant intestinal folate transporter, however, its promoter has yet to be revealed. Hence, we here cloned a 3.1 kb fragment upstream to the first ATG of the human PCFT gene and generated sequential deletion constructs evaluated in luciferase reporter assay. This analysis mapped the minimal promoter to 157 bp upstream to the first ATG. Crucial GC-box sites were identified within the minimal promoter and in its close vicinity which substantially contribute to promoter activity, as their disruption resulted in 94% loss of luciferase activity. We also identified upstream enhancer elements including YY1 andmore » AP1 which, although distantly located, prominently transactivated the minimal promoter, as their inactivation resulted in 50% decrease in reporter activity. This is the first functional identification of the minimal PCFT promoter harboring crucial GC-box elements that markedly contribute to its transcriptional activation via putative interaction with distal YY1 and AP1 enhancer elements.« less

  1. Different Mechanisms Regulate Productive Herpes Simplex Virus 1 (HSV-1) and HSV-2 Infections in Adult Trigeminal Neurons

    PubMed Central

    Ma, AyeAye; Margolis, Mathew S.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in different neuronal subtypes (A5+ and KH10+) in murine trigeminal ganglia, results which correlate with restricted productive infection in these neurons in vitro. HSV-2 latency-associated transcript (LAT) contains a cis-acting regulatory element near the transcription start site that promotes productive infection in A5+ neurons and a second element in exon 1 that inhibits productive infection in KH10+ neurons. HSV-1 contains no such regulatory sequences, demonstrating different mechanisms for regulating productive HSV infection in neurons. PMID:23514893

  2. ABO alleles are linked with haplotypes of an erythroid cell-specific regulatory element in intron 1 with a few exceptions attributable to genetic recombination.

    PubMed

    Nakajima, T; Sano, R; Takahashi, Y; Watanabe, K; Kubo, R; Kobayashi, M; Takahashi, K; Takeshita, H; Kominato, Y

    2016-01-01

    Recent investigation of transcriptional regulation of the ABO genes has identified a candidate erythroid cell-specific regulatory element, named the +5·8-kb site, in the first intron of ABO. Six haplotypes of the site have been reported previously. The present genetic population study demonstrated that each haplotype was mostly linked with specific ABO alleles with a few exceptions, possibly as a result of hybrid formation between common ABO alleles. Thus, investigation of these haplotypes could provide a clue to further elucidation of ABO alleles. © 2015 International Society of Blood Transfusion.

  3. Functional dissection of drought-responsive gene expression patterns in Cynodon dactylon L.

    PubMed

    Kim, Changsoo; Lemke, Cornelia; Paterson, Andrew H

    2009-05-01

    Water deficit is one of the main abiotic factors that affect plant productivity in subtropical regions. To identify genes induced during the water stress response in Bermudagrass (Cynodon dactylon), cDNA macroarrays were used. The macroarray analysis identified 189 drought-responsive candidate genes from C. dactylon, of which 120 were up-regulated and 69 were down-regulated. The candidate genes were classified into seven groups by cluster analysis of expression levels across two intensities and three durations of imposed stress. Annotation using BLASTX suggested that up-regulated genes may be involved in proline biosynthesis, signal transduction pathways, protein repair systems, and removal of toxins, while down-regulated genes were mostly related to basic plant metabolism such as photosynthesis and glycolysis. The functional classification of gene ontology (GO) was consistent with the BLASTX results, also suggesting some crosstalk between abiotic and biotic stress. Comparative analysis of cis-regulatory elements from the candidate genes implicated specific elements in drought response in Bermudagrass. Although only a subset of genes was studied, Bermudagrass shared many drought-responsive genes and cis-regulatory elements with other botanical models, supporting a strategy of cross-taxon application of drought-responsive genes, regulatory cues, and physiological-genetic information.

  4. Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis.

    PubMed

    Liu, Chune; Yang, Zhihong; Wu, Jianguo; Zhang, Li; Lee, Sangmin; Shin, Dong-Ju; Tran, Melanie; Wang, Li

    2018-05-01

    H19 is an imprinted long noncoding RNA abundantly expressed in embryonic liver and repressed after birth. We show that H19 serves as a lipid sensor by synergizing with the RNA-binding polypyrimidine tract-binding protein 1 (PTBP1) to modulate hepatic metabolic homeostasis. H19 RNA interacts with PTBP1 to facilitate its association with sterol regulatory element-binding protein 1c mRNA and protein, leading to increased stability and nuclear transcriptional activity. H19 and PTBP1 are up-regulated by fatty acids in hepatocytes and in diet-induced fatty liver, which further augments lipid accumulation. Ectopic expression of H19 induces steatosis and pushes the liver into a "pseudo-fed" state in response to fasting by promoting sterol regulatory element-binding protein 1c protein cleavage and nuclear translocation. Deletion of H19 or knockdown of PTBP1 abolishes high-fat and high-sucrose diet-induced steatosis. Our study unveils an H19/PTBP1/sterol regulatory element-binding protein 1 feedforward amplifying signaling pathway to exacerbate the development of fatty liver. (Hepatology 2018;67:1768-1783). © 2017 by the American Association for the Study of Liver Diseases.

  5. OTX2 activity at distal regulatory elements shapes the chromatin landscape of Group 3 medulloblastoma

    PubMed Central

    Boulay, Gaylor; Awad, Mary E.; Riggi, Nicolo; Archer, Tenley C.; Iyer, Sowmya; Boonseng, Wannaporn E.; Rossetti, Nikki E; Naigles, Beverly; Rengarajan, Shruthi; Volorio, Angela; Kim, James C.; Mesirov, Jill P.; Tamayo, Pablo; Pomeroy, Scott L.; Aryee, Martin J.; Rivera, Miguel N.

    2017-01-01

    Medulloblastoma is the most frequent malignant pediatric brain tumor and is divided into at least four subgroups known as Wnt, SHH, Group 3 and Group 4. Here we characterized gene regulation mechanisms in the most aggressive subtype, Group 3 tumors, through genome-wide chromatin and expression profiling. Our results show that most active distal sites in these tumors are occupied by the transcription factor OTX2. Highly active OTX2 bound enhancers are often arranged as clusters of adjacent peaks and are also bound by the transcription factor NEUROD1. These sites are responsive to OTX2 and NEUROD1 knockdown and could also be generated de novo upon ectopic OTX2 expression in primary cells, showing that OTX2 cooperates with NEUROD1 and plays a major role in maintaining and possibly establishing regulatory elements as a pioneer factor. Among OTX2 target genes we identified the kinase NEK2, whose knockdown and pharmacological inhibition decreased cell viability. Our studies thus show that OTX2 controls the regulatory landscape of Group 3 medulloblastoma through cooperative activity at enhancer elements and contributes to the expression of critical target genes. PMID:28213356

  6. [Main regulatory element (MRE) of the Danio rerio α/β-globin gene domain exerts enhancer activity toward the promoters of the embryonic-larval and adult globin genes].

    PubMed

    Kovina, A P; Petrova, N V; Razin, S V; Yarovaia, O V

    2016-01-01

    In warm-blooded vertebrates, the α- and β-globin genes are organized in domains of different types and are regulated in different fashion. In cold-blooded vertebrates and, in particular, the tropical fish Danio rerio, the α- and β-globin genes form two gene clusters. A major D. rerio globin gene cluster is in chromosome 3 and includes the α- and β-globin genes of embryonic-larval and adult types. The region upstream of the cluster contains c16orf35, harbors the main regulatory element (MRE) of the α-globin gene domain in warm-blooded vertebrates. In this study, transient transfection of erythroid cells with genetic constructs containing a reporter gene under the control of potential regulatory elements of the domain was performed to characterize the promoters of the embryonic-larval and adult α- and β-globin genes of the major cluster. Also, in the 5th intron of c16orf35 in Danio reriowas detected a functional analog of the warm-blooded vertebrate MRE. This enhancer stimulated activity of the promoters of both adult and embryonic-larval α- and β-globin genes.

  7. Genetic evidence for conserved non-coding element function across species–the ears have it

    PubMed Central

    Turner, Eric E.; Cox, Timothy C.

    2014-01-01

    Comparison of genomic sequences from diverse vertebrate species has revealed numerous highly conserved regions that do not appear to encode proteins or functional RNAs. Often these “conserved non-coding elements,” or CNEs, can direct gene expression to specific tissues in transgenic models, demonstrating they have regulatory function. CNEs are frequently found near “developmental” genes, particularly transcription factors, implying that these elements have essential regulatory roles in development. However, actual examples demonstrating CNE regulatory functions across species have been few, and recent loss-of-function studies of several CNEs in mice have shown relatively minor effects. In this Perspectives article, we discuss new findings in “fancy” rats and Highland cattle demonstrating that function of a CNE near the Hmx1 gene is crucial for normal external ear development and when disrupted can mimic loss-of function Hmx1 coding mutations in mice and humans. These findings provide important support for conserved developmental roles of CNEs in divergent species, and reinforce the concept that CNEs should be examined systematically in the ongoing search for genetic causes of human developmental disorders in the era of genome-scale sequencing. PMID:24478720

  8. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution.

    PubMed

    Vierstra, Jeff; Rynes, Eric; Sandstrom, Richard; Zhang, Miaohua; Canfield, Theresa; Hansen, R Scott; Stehling-Sun, Sandra; Sabo, Peter J; Byron, Rachel; Humbert, Richard; Thurman, Robert E; Johnson, Audra K; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Giste, Erika; Haugen, Eric; Dunn, Douglas; Wilken, Matthew S; Josefowicz, Steven; Samstein, Robert; Chang, Kai-Hsin; Eichler, Evan E; De Bruijn, Marella; Reh, Thomas A; Skoultchi, Arthur; Rudensky, Alexander; Orkin, Stuart H; Papayannopoulou, Thalia; Treuting, Piper M; Selleri, Licia; Kaul, Rajinder; Groudine, Mark; Bender, M A; Stamatoyannopoulos, John A

    2014-11-21

    To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes. Copyright © 2014, American Association for the Advancement of Science.

  9. The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaynes, J.B.; Johnson, J.E.; Buskin, J.N.

    1988-01-01

    Muscle creatine kinase (MCK) is induced to high levels during skeletal muscle differentiation. The authors examined the upstream regulatory elements of the mouse MCK gene which specify its activation during myogenesis in culture. Fusion genes containing up to 3,300 nucleotides (nt) of MCK 5' flanking DNA in various positions and orientations relative to the bacterial chloramphenicol acetyltransferase (CAT) structural gene were transfected into cultured cells. Transient expression of CAT was compared between proliferating and differentiated MM14 mouse myoblasts and with nonmyogenic mouse L cells. The major effector of high-level expression was found to have the properties of a transcriptional enhancer.more » This element, located between 1,050 and 1,256 nt upstream of the transcription start site, was also found to have a major influence on the tissue and differentiation specificity of MCK expression; it activated either the MCK promoter or heterologous promoters only in differentiated muscle cells. Comparisons of viral and cellular enhancer sequences with the MCK enhancer revealed some similarities to essential regions of the simian virus 40 enhancer as well as to a region of the immunoglobulin heavy-chain enhancer, which has been implicated in tissue-specific protein binding. Even in the absence of the enhancer, low-level expression from a 776-nt MCK promoter retained differentiation specificity. In addition to positive regulatory elements, our data provide some evidence for negative regulatory elements with activity in myoblasts. These may contribute to the cell type and differentiation specificity of MCK expression.« less

  10. Identification of the first PAR1 deletion encompassing upstream SHOX enhancers in a family with idiopathic short stature.

    PubMed

    Benito-Sanz, Sara; Aza-Carmona, Miriam; Rodríguez-Estevez, Amaya; Rica-Etxebarria, Ixaso; Gracia, Ricardo; Campos-Barros, Angel; Heath, Karen E

    2012-01-01

    Short stature homeobox-containing gene, MIM 312865 (SHOX) is located within the pseudoautosomal region 1 (PAR1) of the sex chromosomes. Mutations in SHOX or its downstream transcriptional regulatory elements represent the underlying molecular defect in ~60% of Léri-Weill dyschondrosteosis (LWD) and ~5-15% of idiopathic short stature (ISS) patients. Recently, three novel enhancer elements have been identified upstream of SHOX but to date, no PAR1 deletions upstream of SHOX have been observed that only encompass these enhancers in LWD or ISS patients. We set out to search for genetic alterations of the upstream SHOX regulatory elements in 63 LWD and 100 ISS patients with no known alteration in SHOX or the downstream enhancer regions using a specifically designed MLPA assay, which covers the PAR1 upstream of SHOX. An upstream SHOX deletion was identified in an ISS proband and her affected father. The deletion was confirmed and delimited by array-CGH, to extend ~286 kb. The deletion included two of the upstream SHOX enhancers without affecting SHOX. The 13.3-year-old proband had proportionate short stature with normal GH and IGF-I levels. In conclusion, we have identified the first PAR1 deletion encompassing only the upstream SHOX transcription regulatory elements in a family with ISS. The loss of these elements may result in SHOX haploinsufficiency because of decreased SHOX transcription. Therefore, this upstream region should be included in the routine analysis of PAR1 in patients with LWD, LMD and ISS.

  11. Identification of the first PAR1 deletion encompassing upstream SHOX enhancers in a family with idiopathic short stature

    PubMed Central

    Benito-Sanz, Sara; Aza-Carmona, Miriam; Rodríguez-Estevez, Amaya; Rica-Etxebarria, Ixaso; Gracia, Ricardo; Campos-Barros, Ángel; Heath, Karen E

    2012-01-01

    Short stature homeobox-containing gene, MIM 312865 (SHOX) is located within the pseudoautosomal region 1 (PAR1) of the sex chromosomes. Mutations in SHOX or its downstream transcriptional regulatory elements represent the underlying molecular defect in ∼60% of Léri-Weill dyschondrosteosis (LWD) and ∼5–15% of idiopathic short stature (ISS) patients. Recently, three novel enhancer elements have been identified upstream of SHOX but to date, no PAR1 deletions upstream of SHOX have been observed that only encompass these enhancers in LWD or ISS patients. We set out to search for genetic alterations of the upstream SHOX regulatory elements in 63 LWD and 100 ISS patients with no known alteration in SHOX or the downstream enhancer regions using a specifically designed MLPA assay, which covers the PAR1 upstream of SHOX. An upstream SHOX deletion was identified in an ISS proband and her affected father. The deletion was confirmed and delimited by array-CGH, to extend ∼286 kb. The deletion included two of the upstream SHOX enhancers without affecting SHOX. The 13.3-year-old proband had proportionate short stature with normal GH and IGF-I levels. In conclusion, we have identified the first PAR1 deletion encompassing only the upstream SHOX transcription regulatory elements in a family with ISS. The loss of these elements may result in SHOX haploinsufficiency because of decreased SHOX transcription. Therefore, this upstream region should be included in the routine analysis of PAR1 in patients with LWD, LMD and ISS. PMID:22071895

  12. Review of the leafhopper genus Penthimia Germar (Hemiptera: Cicadellidae: Deltocephalinae) from the Indian subcontinent with description of seven new species.

    PubMed

    Shobharani, M; Viraktamath, C A; Webb, M D

    2018-01-02

    Species of the leafhopper genus Penthimia Germar known from the Indian subcontinent are reviewed based on the examination of type specimens. Seven new species of the genus, Penthimia curvata sp. nov. (Karnataka: Bandipur), P. meghalayensis sp. nov. (Meghalaya: Nangpoh), P. neoattenuata sp. nov. (India: Tamil Nadu), P. ribhoi sp. nov. (India: Meghalaya), P. sahyadrica sp. nov. (Karnataka: Dharmasthala, Agumbe; Kerala: Thekkady), P. spiculata sp. nov. (Karnataka: Nagarahole) and P. tumida sp. nov. (Tamil Nadu: Ootacamund; Kerala: Munnar) are described. The following nomenclatorial changes are proposed: Penthimia alba Zahniser, McKamey Dmitriev, 2012 (replacement name for P. thoracica Distant, 1918, nec Panzer, 1799), syn. nov. of P. quadrinotata Distant, 1918; Neodartus scutellatus Distant, 1908 syn. nov. of Penthimia ereba Distant 1908; P. nilgiriensis Distant, 1918 syn. nov. of P. montana Distant, 1918; P. scutellata (Distant) comb. nov. (from genus Neodartus); a lectotype is designated for P. maculosa Distant, stat. revived, thereby removing its synonymy with P. scapularis Distant. The following other lectotypes are designated: P. attenuata Distant, P. subniger Distant, P. scapularis Distant, P. distanti Baker, P. ereba Distant, N. scutellatus Distant, P. fraterna Distant, P. funebris Distant, P. juno Distant, P. maculosa Distant, P. montana Distant, P. noctua Distant, P. quadrinotata Distant, P. alba Zahniser, McKamey Dmitriev. Examination of types of Penthimia rufopunctata Motschulsky revealed that it belongs to Penthimia and hence it is transferred back to that genus from Neodartus, revised placement. The following species previously included in the genus Penthimia are transferred to the genera Tambila Distant and Vulturnus Kirkaldy: Tambila badia (Distant) comb. nov., T. majuscula (Distant) comb. nov., T. vittatifrons (Distant) comb. nov., T. variabilis (Distant) comb. nov. and Vulturnus flavocapitata (Distant) comb. nov. Three species are treated in a new Penthimia compacta Walker complex, i.e., Penthimia compacta Walker 1851, Penthimia subniger Distant 1908 and Penthimia scapularis Distant 1908. All taxa are described and a key to Penthimiini genera found in the subcontinent and also a key to species of Penthimia are included.

  13. CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors

    PubMed Central

    Corbo, Joseph C.; Lawrence, Karen A.; Karlstetter, Marcus; Myers, Connie A.; Abdelaziz, Musa; Dirkes, William; Weigelt, Karin; Seifert, Martin; Benes, Vladimir; Fritsche, Lars G.; Weber, Bernhard H.F.; Langmann, Thomas

    2010-01-01

    Approximately 98% of mammalian DNA is noncoding, yet we understand relatively little about the function of this enigmatic portion of the genome. The cis-regulatory elements that control gene expression reside in noncoding regions and can be identified by mapping the binding sites of tissue-specific transcription factors. Cone-rod homeobox (CRX) is a key transcription factor in photoreceptor differentiation and survival, but its in vivo targets are largely unknown. Here, we used chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) on CRX to identify thousands of cis-regulatory regions around photoreceptor genes in adult mouse retina. CRX directly regulates downstream photoreceptor transcription factors and their target genes via a network of spatially distributed regulatory elements around each locus. CRX-bound regions act in a synergistic fashion to activate transcription and contain multiple CRX binding sites which interact in a spacing- and orientation-dependent manner to fine-tune transcript levels. CRX ChIP-seq was also performed on Nrl−/− retinas, which represent an enriched source of cone photoreceptors. Comparison with the wild-type ChIP-seq data set identified numerous rod- and cone-specific CRX-bound regions as well as many shared elements. Thus, CRX combinatorially orchestrates the transcriptional networks of both rods and cones by coordinating the expression of photoreceptor genes including most retinal disease genes. In addition, this study pinpoints thousands of noncoding regions of relevance to both Mendelian and complex retinal disease. PMID:20693478

  14. 77 FR 76112 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-68468; File No. SR-FINRA-2012-055] Self...-Element Continuing Education Program To Qualify To Engage in a Security Futures Business December 19, 2012. Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934 (``Act'')\\1\\ and Rule 19b-4 thereunder...

  15. A biological compression model and its applications.

    PubMed

    Cao, Minh Duc; Dix, Trevor I; Allison, Lloyd

    2011-01-01

    A biological compression model, expert model, is presented which is superior to existing compression algorithms in both compression performance and speed. The model is able to compress whole eukaryotic genomes. Most importantly, the model provides a framework for knowledge discovery from biological data. It can be used for repeat element discovery, sequence alignment and phylogenetic analysis. We demonstrate that the model can handle statistically biased sequences and distantly related sequences where conventional knowledge discovery tools often fail.

  16. Destruction of a distal hypoxia response element abolishes trans-activation of the PAG1 gene mediated by HIF-independent chromatin looping

    PubMed Central

    Schörg, Alexandra; Santambrogio, Sara; Platt, James L.; Schödel, Johannes; Lindenmeyer, Maja T.; Cohen, Clemens D.; Schrödter, Katrin; Mole, David R.; Wenger, Roland H.; Hoogewijs, David

    2015-01-01

    A crucial step in the cellular adaptation to oxygen deficiency is the binding of hypoxia-inducible factors (HIFs) to hypoxia response elements (HREs) of oxygen-regulated genes. Genome-wide HIF-1α/2α/β DNA-binding studies revealed that the majority of HREs reside distant to the promoter regions, but the function of these distal HREs has only been marginally studied in the genomic context. We used chromatin immunoprecipitation (ChIP), gene editing (TALEN) and chromosome conformation capture (3C) to localize and functionally characterize a 82 kb upstream HRE that solely drives oxygen-regulated expression of the newly identified HIF target gene PAG1. PAG1, a transmembrane adaptor protein involved in Src signalling, was hypoxically induced in various cell lines and mouse tissues. ChIP and reporter gene assays demonstrated that the −82 kb HRE regulates PAG1, but not an equally distant gene further upstream, by direct interaction with HIF. Ablation of the consensus HRE motif abolished the hypoxic induction of PAG1 but not general oxygen signalling. 3C assays revealed that the −82 kb HRE physically associates with the PAG1 promoter region, independent of HIF-DNA interaction. These results demonstrate a constitutive interaction between the −82 kb HRE and the PAG1 promoter, suggesting a physiologically important rapid response to hypoxia. PMID:26007655

  17. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene.

    PubMed

    Rim, Jong S; Kozak, Leslie P

    2002-09-13

    Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer elements. In the course of analyzing how these half-site CREs are involved in Ucp1 expression, we found that a DNA regulatory element for NF-E2 overlaps CRE2. Electrophoretic mobility shift assay and competition assays with the CRE2 element indicates that nuclear proteins from BAT, inguinal fat, and retroperitoneal fat tissue interact with the CRE2 motif (CGTCA) in a specific manner. A supershift assay using an antibody against the CRE-binding protein (CREB) shows specific affinity to the complex from CRE2 and nuclear extract of BAT. Additionally, Western blot analysis for phospho-CREB/ATF1 shows an increase in phosphorylation of CREB/ATF1 in HIB-1B cells after norepinephrine treatment. Transient transfection assay using luciferase reporter constructs also indicates that the two half-site CREs are involved in transcriptional regulation of Ucp1 in response to norepinephrine and cAMP. We also show that a second DNA regulatory element for NF-E2 is located upstream of the CRE2 region. This element, which is found in a similar location in the 5'-flanking region of the human and rodent Ucp1 genes, shows specific binding to rat and human NF-E2 by electrophoretic mobility shift assay with nuclear extracts from brown fat. Co-transfections with an Nfe2l2 expression vector and a luciferase reporter construct of the Ucp1 enhancer region provide additional evidence that Nfe2l2 is involved in the regulation of Ucp1 by cAMP-mediated signaling.

  18. Origin and distribution of trace elements in high-elevation precipitation in southern China.

    PubMed

    Zhou, Jie; Wang, Yan; Yue, Taixing; Li, Yuhua; Wai, Ka-Ming; Wang, Wenxing

    2012-09-01

    During a 2009 investigation of the transport and deposition of trace elements in southern China, 37 event-based precipitation samples were collected at an observatory on Mount Heng, China (1,269 m asl). Concentrations of trace elements were analyzed using inductively coupled plasma-mass spectrometry and the wet deposition fluxes were established. A combination of techniques including enrichment factor analysis, principal component analysis, and back trajectory models were used to identify pollutant sources. Trace element concentrations at Mount Heng were among the highest with respect to measured values reported elsewhere. All elements were of non-marine origin. The elements Pb, As, Cu, Se, and Cd were anthropogenic, while Fe, Cr, V, Ba, Mn, and Ni were of mixed crustal/anthropogenic origin. The crustal and anthropogenic contributions of trace elements were 12.8 % (0.9 ~ 17.4 %) and 87.2 % (82.6 ~ 99.1 %), with the maximum crustal fraction being 17.4 % for Fe. Coal combustion, soil and road dust, metallurgical processes, and industrial activities contributed to the element composition. Summit precipitation events were primarily distant in origin. Medium- to long-range transport of trace elements from the Yangtze River Delta and northern China played an important role in wet deposition at Mount Heng, while air masses from south or southeast of the station were generally low in trace element concentrations.

  19. High-resolution genome-wide scan of genes, gene-networks and cellular systems impacting the yeast ionome

    USDA-ARS?s Scientific Manuscript database

    To balance the demand for uptake of essential elements with their potential toxicity living cells have complex regulatory mechanisms. Here, we describe a genome-wide screen to identify genes that impact the elemental composition (‘ionome’) of yeast Saccharomyces cerevisiae. Using inductively coupled...

  20. 78 FR 63219 - International Conference on Harmonisation; Draft Guidance on Elemental Impurities; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... appropriate limits for impurities, and emphasizes control of supply chains and risk assessments. It is... expectations for test requirements and regulatory filings, and a global policy for limiting elemental... written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630...

  1. 75 FR 51864 - Self-Regulatory Organizations; Municipal Securities Rulemaking Board; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... decisions. Data elements with respect to the SHORT subscription service that would be provided through the... information about technical data elements to support transmission and data-integrity processes between the... for making well-informed investment decisions. Broad access to the information collected by the SHORT...

  2. 75 FR 60488 - Self-Regulatory Organizations; Municipal Securities Rulemaking Board; Order Granting Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... decisions. Data elements with respect to the SHORT subscription service that would be provided through the... information about technical data elements to support transmission and data-integrity processes between the... Securities and Exchange Commission (``Commission''), pursuant to Section 19(b)(1) of the Securities [[Page...

  3. Sieve-based relation extraction of gene regulatory networks from biological literature

    PubMed Central

    2015-01-01

    Background Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. Results We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice of transforming data into skip-mention sequences is appropriate for detecting relations between distant mentions. Conclusions Linear-chain conditional random fields, along with appropriate data transformations, can be efficiently used to extract relations. The sieve-based architecture simplifies the system as new sieves can be easily added or removed and each sieve can utilize the results of previous ones. Furthermore, sieves with conditional random fields can be trained on arbitrary text data and hence are applicable to broad range of relation extraction tasks and data domains. PMID:26551454

  4. Sieve-based relation extraction of gene regulatory networks from biological literature.

    PubMed

    Žitnik, Slavko; Žitnik, Marinka; Zupan, Blaž; Bajec, Marko

    2015-01-01

    Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice of transforming data into skip-mention sequences is appropriate for detecting relations between distant mentions. Linear-chain conditional random fields, along with appropriate data transformations, can be efficiently used to extract relations. The sieve-based architecture simplifies the system as new sieves can be easily added or removed and each sieve can utilize the results of previous ones. Furthermore, sieves with conditional random fields can be trained on arbitrary text data and hence are applicable to broad range of relation extraction tasks and data domains.

  5. Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis.

    PubMed

    Lee, M M; Schiefelbein, J

    2001-05-01

    The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.

  6. Neuroendocrine activity of the melanocyte

    PubMed Central

    Slominski, Andrzej

    2009-01-01

    More than 15 years ago, we have proposed that melanocytes are sensory and regulatory cells with computing capability, which transform external and/or internal signals/energy into organized regulatory network(s) for the maintenance of the cutaneous homeostasis. This concept is substantiated by accumulating evidence that melanocytes produce classical stress neurotransmitters, neuropeptides and hormones, express corresponding receptors and these processes are modified and/or regulated by ultraviolet radiation, biological factors or stress. Examples of the above are catecholamines, serotonin, N-acetyl-serotonin, melatonin, proopiomelanocortin-derived adrenocorticotropic hormone, β-endorphin or melanocyte-stimulating hormone peptides, corticotropin releasing factor, related urocortins and corticosteroids including cortisol and corticosterone as well as their precursors. Furthermore, their production is not random, but hierarchical and follows the structures of classical neuroendocrine organizations such as hypothalamic-pituitary-adrenal axis, serotoninergic, melatoninergic and catecholaminergic systems. An example of an intrinsic but overlooked neuroendocrine activity is production and secretion of melanogenesis intermediates including L-DOPA or its derivatives that could enter circulation and act on distant sites. Such capabilities have defined melanocytes as neuroendocrine cells that not only coordinate cutaneous but also can affect a global homeostasis. PMID:19558501

  7. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.

    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent withmore » the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.« less

  8. Identification of genetic elements in metabolism by high-throughput mouse phenotyping.

    PubMed

    Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A; Schütt, Christine; Ravindranath, Aakash Chavan; Leuchtenberger, Stefanie; Sharma, Sapna; Kistler, Martin; Willershäuser, Monja; Brommage, Robert; Meehan, Terrence F; Mason, Jeremy; Haselimashhadi, Hamed; Hough, Tertius; Mallon, Ann-Marie; Wells, Sara; Santos, Luis; Lelliott, Christopher J; White, Jacqueline K; Sorg, Tania; Champy, Marie-France; Bower, Lynette R; Reynolds, Corey L; Flenniken, Ann M; Murray, Stephen A; Nutter, Lauryl M J; Svenson, Karen L; West, David; Tocchini-Valentini, Glauco P; Beaudet, Arthur L; Bosch, Fatima; Braun, Robert B; Dobbie, Michael S; Gao, Xiang; Herault, Yann; Moshiri, Ala; Moore, Bret A; Kent Lloyd, K C; McKerlie, Colin; Masuya, Hiroshi; Tanaka, Nobuhiko; Flicek, Paul; Parkinson, Helen E; Sedlacek, Radislav; Seong, Je Kyung; Wang, Chi-Kuang Leo; Moore, Mark; Brown, Steve D; Tschöp, Matthias H; Wurst, Wolfgang; Klingenspor, Martin; Wolf, Eckhard; Beckers, Johannes; Machicao, Fausto; Peter, Andreas; Staiger, Harald; Häring, Hans-Ulrich; Grallert, Harald; Campillos, Monica; Maier, Holger; Fuchs, Helmut; Gailus-Durner, Valerie; Werner, Thomas; Hrabe de Angelis, Martin

    2018-01-18

    Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.

  9. Altruistic functions for selfish DNA.

    PubMed

    Faulkner, Geoffrey J; Carninci, Piero

    2009-09-15

    Mammalian genomes are comprised of 30-50% transposed elements (TEs). The vast majority of these TEs are truncated and mutated fragments of retrotransposons that are no longer capable of transposition. Although initially regarded as important factors in the evolution of gene regulatory networks, TEs are now commonly perceived as neutrally evolving and non-functional genomic elements. In a major development, recent works have strongly contradicted this "selfish DNA" or "junk DNA" dogma by demonstrating that TEs use a host of novel promoters to generate RNA on a massive scale across most eukaryotic cells. This transcription frequently functions to control the expression of protein-coding genes via alternative promoters, cis regulatory non protein-coding RNAs and the formation of double stranded short RNAs. If considered in sum, these findings challenge the designation of TEs as selfish and neutrally evolving genomic elements. Here, we will expand upon these themes and discuss challenges in establishing novel TE functions in vivo.

  10. Delimiting regulatory sequences of the Drosophila melanogaster Ddc gene.

    PubMed Central

    Hirsh, J; Morgan, B A; Scholnick, S B

    1986-01-01

    We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity. Images PMID:3099170

  11. Tissue-Specific Enrichment of Lymphoma Risk Loci in Regulatory Elements

    PubMed Central

    Hayes, James E.; Trynka, Gosia; Vijai, Joseph; Offit, Kenneth; Raychaudhuri, Soumya; Klein, Robert J.

    2015-01-01

    Though numerous polymorphisms have been associated with risk of developing lymphoma, how these variants function to promote tumorigenesis is poorly understood. Here, we report that lymphoma risk SNPs, especially in the non-Hodgkin’s lymphoma subtype chronic lymphocytic leukemia, are significantly enriched for co-localization with epigenetic marks of active gene regulation. These enrichments were seen in a lymphoid-specific manner for numerous ENCODE datasets, including DNase-hypersensitivity as well as multiple segmentation-defined enhancer regions. Furthermore, we identify putatively functional SNPs that are both in regulatory elements in lymphocytes and are associated with gene expression changes in blood. We developed an algorithm, UES, that uses a Monte Carlo simulation approach to calculate the enrichment of previously identified risk SNPs in various functional elements. This multiscale approach integrating multiple datasets helps disentangle the underlying biology of lymphoma, and more broadly, is generally applicable to GWAS results from other diseases as well. PMID:26422229

  12. FARME DB: a functional antibiotic resistance element database

    PubMed Central

    Wallace, James C.; Port, Jesse A.; Smith, Marissa N.; Faustman, Elaine M.

    2017-01-01

    Antibiotic resistance (AR) is a major global public health threat but few resources exist that catalog AR genes outside of a clinical context. Current AR sequence databases are assembled almost exclusively from genomic sequences derived from clinical bacterial isolates and thus do not include many microbial sequences derived from environmental samples that confer resistance in functional metagenomic studies. These environmental metagenomic sequences often show little or no similarity to AR sequences from clinical isolates using standard classification criteria. In addition, existing AR databases provide no information about flanking sequences containing regulatory or mobile genetic elements. To help address this issue, we created an annotated database of DNA and protein sequences derived exclusively from environmental metagenomic sequences showing AR in laboratory experiments. Our Functional Antibiotic Resistant Metagenomic Element (FARME) database is a compilation of publically available DNA sequences and predicted protein sequences conferring AR as well as regulatory elements, mobile genetic elements and predicted proteins flanking antibiotic resistant genes. FARME is the first database to focus on functional metagenomic AR gene elements and provides a resource to better understand AR in the 99% of bacteria which cannot be cultured and the relationship between environmental AR sequences and antibiotic resistant genes derived from cultured isolates. Database URL: http://staff.washington.edu/jwallace/farme PMID:28077567

  13. AP1 Keeps Chromatin Poised for Action | Center for Cancer Research

    Cancer.gov

    The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins

  14. Explaining the disease phenotype of intergenic SNP through predicted long range regulation

    PubMed Central

    Chen, Jingqi; Tian, Weidong

    2016-01-01

    Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. PMID:27280978

  15. Preclinical Development of Cell-Based Products: a European Regulatory Science Perspective.

    PubMed

    McBlane, James W; Phul, Parvinder; Sharpe, Michaela

    2018-06-25

    This article describes preclinical development of cell-based medicinal products for European markets and discusses European regulatory mechanisms open to developers to aid successful product development. Cell-based medicinal products are diverse, including cells that are autologous or allogeneic, have been genetically modified, or not, or expanded ex vivo, and applied systemically or to an anatomical site different to that of their origin; comments applicable to one product may not be applicable to others, so bespoke development is needed, for all elements - quality, preclinical and clinical. After establishing how the product is produced, proof of potential for therapeutic efficacy, and then safety, of the product need to be determined. This includes understanding biodistribution, persistence and toxicity, including potential for malignant transformation. These elements need to be considered in the context of the intended clinical development. This article describes regulatory mechanisms available to developers to support product development that aim to resolve scientific issues prior to marketing authorization application, to enable patients to have faster access to the product than would otherwise be the case. Developers are encouraged to be aware of both the scientific issues and regulatory mechanisms to ensure patients can be supplied with these products.

  16. Functional Assessment of Disease-Associated Regulatory Variants In Vivo Using a Versatile Dual Colour Transgenesis Strategy in Zebrafish

    PubMed Central

    Bhatia, Shipra; Gordon, Christopher T.; Foster, Robert G.; Melin, Lucie; Abadie, Véronique; Baujat, Geneviève; Vazquez, Marie-Paule; Amiel, Jeanne; Lyonnet, Stanislas; van Heyningen, Veronica; Kleinjan, Dirk A.

    2015-01-01

    Disruption of gene regulation by sequence variation in non-coding regions of the genome is now recognised as a significant cause of human disease and disease susceptibility. Sequence variants in cis-regulatory elements (CREs), the primary determinants of spatio-temporal gene regulation, can alter transcription factor binding sites. While technological advances have led to easy identification of disease-associated CRE variants, robust methods for discerning functional CRE variants from background variation are lacking. Here we describe an efficient dual-colour reporter transgenesis approach in zebrafish, simultaneously allowing detailed in vivo comparison of spatio-temporal differences in regulatory activity between putative CRE variants and assessment of altered transcription factor binding potential of the variant. We validate the method on known disease-associated elements regulating SHH, PAX6 and IRF6 and subsequently characterise novel, ultra-long-range SOX9 enhancers implicated in the craniofacial abnormality Pierre Robin Sequence. The method provides a highly cost-effective, fast and robust approach for simultaneously unravelling in a single assay whether, where and when in embryonic development a disease-associated CRE-variant is affecting its regulatory function. PMID:26030420

  17. Functional analysis of two sterol regulatory element binding proteins in Penicillium digitatum

    PubMed Central

    Ruan, Ruoxin; Wang, Mingshuang; Liu, Xin; Sun, Xuepeng; Chung, Kuang-Ren

    2017-01-01

    The sterol regulatory element binding proteins (SREBPs) are key regulators for sterol homeostasis in most fungi. In the citrus postharvest pathogen Penicillium digitatum, the SREBP homolog is required for fungicide resistance and regulation of CYP51 expression. In this study, we identified another SREBP transcription factor PdSreB in P. digitatum, and the biological functions of both SREBPs were characterized and compared. Inactivation of PdsreA, PdsreB or both genes in P. digitatum reduced ergosterol contents and increased sensitivities to sterol 14-α-demethylation inhibitors (DMIs) and cobalt chloride. Fungal strains impaired at PdsreA but not PdsreB increased sensitivity to tridemorph and an iron chelator 2,2’-dipyridyl. Virulence assays on citrus fruit revealed that fungal strains impaired at PdsreA, PdsreB or both induce maceration lesions similar to those induced by wild-type. However, ΔPdsreA, ΔPdsreB or the double mutant strain rarely produce aerial mycelia on infected citrus fruit peels. RNA-Seq analysis showed the broad regulatory functions of both SREBPs in biosynthesis, transmembrane transportation and stress responses. Our results provide new insights into the conserved and differentiated regulatory functions of SREBP homologs in plant pathogenic fungi. PMID:28467453

  18. The twilight zone of cis element alignments.

    PubMed

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2013-02-01

    Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.

  19. The twilight zone of cis element alignments

    PubMed Central

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2013-01-01

    Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein–DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein–DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments. PMID:23268451

  20. Widespread promoter-mediated coordination of transcription and mRNA degradation

    PubMed Central

    2012-01-01

    Background Previous work showed that mRNA degradation is coordinated with transcription in yeast, and in several genes the control of mRNA degradation was linked to promoter elements through two different mechanisms. Here we show at the genomic scale that the coordination of transcription and mRNA degradation is promoter-dependent in yeast and is also observed in humans. Results We first demonstrate that swapping upstream cis-regulatory sequences between two yeast species affects both transcription and mRNA degradation and suggest that while some cis-regulatory elements control either transcription or degradation, multiple other elements enhance both processes. Second, we show that adjacent yeast genes that share a promoter (through divergent orientation) have increased similarity in their patterns of mRNA degradation, providing independent evidence for the promoter-mediated coupling of transcription to mRNA degradation. Finally, analysis of the differences in mRNA degradation rates between mammalian cell types or mammalian species suggests a similar coordination between transcription and mRNA degradation in humans. Conclusions Our results extend previous studies and suggest a pervasive promoter-mediated coordination between transcription and mRNA degradation in yeast. The diverse genes and regulatory elements associated with this coordination suggest that it is generated by a global mechanism of gene regulation and modulated by gene-specific mechanisms. The observation of a similar coupling in mammals raises the possibility that coupling of transcription and mRNA degradation may reflect an evolutionarily conserved phenomenon in gene regulation. PMID:23237624

  1. A cis-regulatory module activating transcription in the suspensor contains five cis-regulatory elements

    DOE PAGES

    Henry, Kelli F.; Kawashima, Tomokazu; Goldberg, Robert B.

    2015-03-22

    Little is known about the molecular mechanisms by which the embryo proper and suspensor of plant embryos activate specific gene sets shortly after fertilization. We analyzed the upstream region of the Scarlet Runner Bean ( Phaseolus coccineus) G564 gene in order to understand how genes are activated specifically in the suspensor during early embryo development. Previously, we showed that a 54-bp fragment of the G564 upstream region is sufficient for suspensor transcription and contains at least three required cis-regulatory sequences, including the 10-bp motif (5'-GAAAAGCGAA-3'), the 10 bp-like motif (5'-GAAAAACGAA-3'), and Region 2 motif (partial sequence 5'-TTGGT-3'). Here, we usemore » site-directed mutagenesis experiments in transgenic tobacco globularstage embryos to identify two additional cis-regulatory elements within the 54-bp cis-regulatory module that are required for G564 suspensor transcription: the Fifth motif (5'-GAGTTA-3') and a third 10-bp-related sequence (5'-GAAAACCACA-3'). Further deletion of the 54-bp fragment revealed that a 47-bp fragment containing the five motifs (the 10-bp, 10-bp-like, 10-bp-related, Region 2 and Fifth motifs) is sufficient for suspensor transcription, and represents a cis-regulatory module. A consensus sequence for each type of motif was determined by comparing motif sequences shown to activate suspensor transcription. Phylogenetic analyses suggest that the regulation of G564 is evolutionarily conserved. Lastly, a homologous cis-regulatory module was found upstream of the G564 ortholog in the Common Bean (Phaseolus vulgaris), indicating that the regulation of G564 is evolutionarily conserved in closely related bean species.« less

  2. A cis-regulatory module activating transcription in the suspensor contains five cis-regulatory elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Kelli F.; Kawashima, Tomokazu; Goldberg, Robert B.

    Little is known about the molecular mechanisms by which the embryo proper and suspensor of plant embryos activate specific gene sets shortly after fertilization. We analyzed the upstream region of the Scarlet Runner Bean ( Phaseolus coccineus) G564 gene in order to understand how genes are activated specifically in the suspensor during early embryo development. Previously, we showed that a 54-bp fragment of the G564 upstream region is sufficient for suspensor transcription and contains at least three required cis-regulatory sequences, including the 10-bp motif (5'-GAAAAGCGAA-3'), the 10 bp-like motif (5'-GAAAAACGAA-3'), and Region 2 motif (partial sequence 5'-TTGGT-3'). Here, we usemore » site-directed mutagenesis experiments in transgenic tobacco globularstage embryos to identify two additional cis-regulatory elements within the 54-bp cis-regulatory module that are required for G564 suspensor transcription: the Fifth motif (5'-GAGTTA-3') and a third 10-bp-related sequence (5'-GAAAACCACA-3'). Further deletion of the 54-bp fragment revealed that a 47-bp fragment containing the five motifs (the 10-bp, 10-bp-like, 10-bp-related, Region 2 and Fifth motifs) is sufficient for suspensor transcription, and represents a cis-regulatory module. A consensus sequence for each type of motif was determined by comparing motif sequences shown to activate suspensor transcription. Phylogenetic analyses suggest that the regulation of G564 is evolutionarily conserved. Lastly, a homologous cis-regulatory module was found upstream of the G564 ortholog in the Common Bean (Phaseolus vulgaris), indicating that the regulation of G564 is evolutionarily conserved in closely related bean species.« less

  3. In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.

    PubMed

    Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E

    2018-01-01

    DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.

  4. A cis-regulatory module activating transcription in the suspensor contains five cis-regulatory elements.

    PubMed

    Henry, Kelli F; Kawashima, Tomokazu; Goldberg, Robert B

    2015-06-01

    Little is known about the molecular mechanisms by which the embryo proper and suspensor of plant embryos activate specific gene sets shortly after fertilization. We analyzed the upstream region of the Scarlet Runner Bean (Phaseolus coccineus) G564 gene in order to understand how genes are activated specifically in the suspensor during early embryo development. Previously, we showed that a 54-bp fragment of the G564 upstream region is sufficient for suspensor transcription and contains at least three required cis-regulatory sequences, including the 10-bp motif (5'-GAAAAGCGAA-3'), the 10 bp-like motif (5'-GAAAAACGAA-3'), and Region 2 motif (partial sequence 5'-TTGGT-3'). Here, we use site-directed mutagenesis experiments in transgenic tobacco globular-stage embryos to identify two additional cis-regulatory elements within the 54-bp cis-regulatory module that are required for G564 suspensor transcription: the Fifth motif (5'-GAGTTA-3') and a third 10-bp-related sequence (5'-GAAAACCACA-3'). Further deletion of the 54-bp fragment revealed that a 47-bp fragment containing the five motifs (the 10-bp, 10-bp-like, 10-bp-related, Region 2 and Fifth motifs) is sufficient for suspensor transcription, and represents a cis-regulatory module. A consensus sequence for each type of motif was determined by comparing motif sequences shown to activate suspensor transcription. Phylogenetic analyses suggest that the regulation of G564 is evolutionarily conserved. A homologous cis-regulatory module was found upstream of the G564 ortholog in the Common Bean (Phaseolus vulgaris), indicating that the regulation of G564 is evolutionarily conserved in closely related bean species.

  5. Evidence of reduced recombination rate in human regulatory domains.

    PubMed

    Liu, Yaping; Sarkar, Abhishek; Kheradpour, Pouya; Ernst, Jason; Kellis, Manolis

    2017-10-20

    Recombination rate is non-uniformly distributed across the human genome. The variation of recombination rate at both fine and large scales cannot be fully explained by DNA sequences alone. Epigenetic factors, particularly DNA methylation, have recently been proposed to influence the variation in recombination rate. We study the relationship between recombination rate and gene regulatory domains, defined by a gene and its linked control elements. We define these links using expression quantitative trait loci (eQTLs), methylation quantitative trait loci (meQTLs), chromatin conformation from publicly available datasets (Hi-C and ChIA-PET), and correlated activity links that we infer across cell types. Each link type shows a "recombination rate valley" of significantly reduced recombination rate compared to matched control regions. This recombination rate valley is most pronounced for gene regulatory domains of early embryonic development genes, housekeeping genes, and constitutive regulatory elements, which are known to show increased evolutionary constraint across species. Recombination rate valleys show increased DNA methylation, reduced doublestranded break initiation, and increased repair efficiency, specifically in the lineage leading to the germ line. Moreover, by using only the overlap of functional links and DNA methylation in germ cells, we are able to predict the recombination rate with high accuracy. Our results suggest the existence of a recombination rate valley at regulatory domains and provide a potential molecular mechanism to interpret the interplay between genetic and epigenetic variations.

  6. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  7. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis.

    PubMed

    Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R

    2005-09-01

    We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.

  8. Evolution of DNA-Binding Sites of a Floral Master Regulatory Transcription Factor

    PubMed Central

    Muiño, Jose M.; de Bruijn, Suzanne; Pajoro, Alice; Geuten, Koen; Vingron, Martin; Angenent, Gerco C.; Kaufmann, Kerstin

    2016-01-01

    Flower development is controlled by the action of key regulatory transcription factors of the MADS-domain family. The function of these factors appears to be highly conserved among species based on mutant phenotypes. However, the conservation of their downstream processes is much less well understood, mostly because the evolutionary turnover and variation of their DNA-binding sites (BSs) among plant species have not yet been experimentally determined. Here, we performed comparative ChIP (chromatin immunoprecipitation)-seq experiments of the MADS-domain transcription factor SEPALLATA3 (SEP3) in two closely related Arabidopsis species: Arabidopsis thaliana and A. lyrata which have very similar floral organ morphology. We found that BS conservation is associated with DNA sequence conservation, the presence of the CArG-box BS motif and on the relative position of the BS to its potential target gene. Differences in genome size and structure can explain that SEP3 BSs in A. lyrata can be located more distantly to their potential target genes than their counterparts in A. thaliana. In A. lyrata, we identified transposition as a mechanism to generate novel SEP3 binding locations in the genome. Comparative gene expression analysis shows that the loss/gain of BSs is associated with a change in gene expression. In summary, this study investigates the evolutionary dynamics of DNA BSs of a floral key-regulatory transcription factor and explores factors affecting this phenomenon. PMID:26429922

  9. DREISS: Using State-Space Models to Infer the Dynamics of Gene Expression Driven by External and Internal Regulatory Networks

    PubMed Central

    Gerstein, Mark

    2016-01-01

    Gene expression is controlled by the combinatorial effects of regulatory factors from different biological subsystems such as general transcription factors (TFs), cellular growth factors and microRNAs. A subsystem’s gene expression may be controlled by its internal regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated internally or externally–e.g., how non-conserved, species-specific TFs affect the expression of conserved, cross-species genes during evolution. We developed a computational method (DREISS, dreiss.gerteinlab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks, both External and Internal based on State Space models. Given a subsystem, the “state” and “control” in the model refer to its own (internal) and another subsystem’s (external) gene expression levels. The state at a given time is determined by the state and control at a previous time. Because typical time-series data do not have enough samples to fully estimate the model’s parameters, DREISS uses dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and oscillation) representing the regulatory effects emanating from various subsystems. To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs across distant species. In particular, we applied DREISS to the time-series gene expression datasets of C. elegans and D. melanogaster during their embryonic development. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between two species, the orthologs have matched, internally driven expression patterns but very different externally driven ones. This is particularly true for genes with evolutionarily ancient functions (e.g. the ribosomal proteins), in contrast to those with more recently evolved functions (e.g., cell-cell communication). This suggests that despite striking morphological differences, some fundamental embryonic-developmental processes are still controlled by ancient regulatory systems. PMID:27760135

  10. DREISS: Using State-Space Models to Infer the Dynamics of Gene Expression Driven by External and Internal Regulatory Networks.

    PubMed

    Wang, Daifeng; He, Fei; Maslov, Sergei; Gerstein, Mark

    2016-10-01

    Gene expression is controlled by the combinatorial effects of regulatory factors from different biological subsystems such as general transcription factors (TFs), cellular growth factors and microRNAs. A subsystem's gene expression may be controlled by its internal regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated internally or externally-e.g., how non-conserved, species-specific TFs affect the expression of conserved, cross-species genes during evolution. We developed a computational method (DREISS, dreiss.gerteinlab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks, both External and Internal based on State Space models. Given a subsystem, the "state" and "control" in the model refer to its own (internal) and another subsystem's (external) gene expression levels. The state at a given time is determined by the state and control at a previous time. Because typical time-series data do not have enough samples to fully estimate the model's parameters, DREISS uses dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and oscillation) representing the regulatory effects emanating from various subsystems. To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs across distant species. In particular, we applied DREISS to the time-series gene expression datasets of C. elegans and D. melanogaster during their embryonic development. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between two species, the orthologs have matched, internally driven expression patterns but very different externally driven ones. This is particularly true for genes with evolutionarily ancient functions (e.g. the ribosomal proteins), in contrast to those with more recently evolved functions (e.g., cell-cell communication). This suggests that despite striking morphological differences, some fundamental embryonic-developmental processes are still controlled by ancient regulatory systems.

  11. Database construction for PromoterCAD: synthetic promoter design for mammals and plants.

    PubMed

    Nishikata, Koro; Cox, Robert Sidney; Shimoyama, Sayoko; Yoshida, Yuko; Matsui, Minami; Makita, Yuko; Toyoda, Tetsuro

    2014-03-21

    Synthetic promoters can control a gene's timing, location, and expression level. The PromoterCAD web server ( http://promotercad.org ) allows the design of synthetic promoters to control plant gene expression, by novel arrangement of cis-regulatory elements. Recently, we have expanded PromoterCAD's scope with additional plant and animal data: (1) PLACE (Plant Cis-acting Regulatory DNA Elements), including various sized sequence motifs; (2) PEDB (Mammalian Promoter/Enhancer Database), including gene expression data for mammalian tissues. The plant PromoterCAD data now contains 22 000 Arabidopsis thaliana genes, 2 200 000 microarray measurements in 20 growth conditions and 79 tissue organs and developmental stages, while the new mammalian PromoterCAD data contains 679 Mus musculus genes and 65 000 microarray measurements in 96 tissue organs and cell types ( http://promotercad.org/mammal/ ). This work presents step-by-step instructions for adding both regulatory motif and gene expression data to PromoterCAD, to illustrate how users can expand PromoterCAD functionality for their own applications and organisms.

  12. TRACTOR_DB: a database of regulatory networks in gamma-proteobacterial genomes

    PubMed Central

    González, Abel D.; Espinosa, Vladimir; Vasconcelos, Ana T.; Pérez-Rueda, Ernesto; Collado-Vides, Julio

    2005-01-01

    Experimental data on the Escherichia coli transcriptional regulatory system has been used in the past years to predict new regulatory elements (promoters, transcription factors (TFs), TFs' binding sites and operons) within its genome. As more genomes of gamma-proteobacteria are being sequenced, the prediction of these elements in a growing number of organisms has become more feasible, as a step towards the study of how different bacteria respond to environmental changes at the level of transcriptional regulation. In this work, we present TRACTOR_DB (TRAnscription FaCTORs' predicted binding sites in prokaryotic genomes), a relational database that contains computational predictions of new members of 74 regulons in 17 gamma-proteobacterial genomes. For these predictions we used a comparative genomics approach regarding which several proof-of-principle articles for large regulons have been published. TRACTOR_DB may be currently accessed at http://www.bioinfo.cu/Tractor_DB, http://www.tractor.lncc.br/ or at http://www.cifn.unam.mx/Computational_Genomics/tractorDB. Contact Email id is tractor@cifn.unam.mx. PMID:15608293

  13. BET Bromodomain Inhibition Releases the Mediator Complex from Select cis-Regulatory Elements.

    PubMed

    Bhagwat, Anand S; Roe, Jae-Seok; Mok, Beverly Y L; Hohmann, Anja F; Shi, Junwei; Vakoc, Christopher R

    2016-04-19

    The bromodomain and extraterminal (BET) protein BRD4 can physically interact with the Mediator complex, but the relevance of this association to the therapeutic effects of BET inhibitors in cancer is unclear. Here, we show that BET inhibition causes a rapid release of Mediator from a subset of cis-regulatory elements in the genome of acute myeloid leukemia (AML) cells. These sites of Mediator eviction were highly correlated with transcriptional suppression of neighboring genes, which are enriched for targets of the transcription factor MYB and for functions related to leukemogenesis. A shRNA screen of Mediator in AML cells identified the MED12, MED13, MED23, and MED24 subunits as performing a similar regulatory function to BRD4 in this context, including a shared role in sustaining a block in myeloid maturation. These findings suggest that the interaction between BRD4 and Mediator has functional importance for gene-specific transcriptional activation and for AML maintenance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Electron cryo-microscopy structure of Ebola nucleoprotein reveals a mechanism for nucleocapsid-like assembly

    PubMed Central

    Su, Zhaoming; Wu, Chao; Shi, Liuqing; Luthra, Priya; Pintilie, Grigore D.; Johnson, Britney; Porter, Justin R.; Ge, Peng; Chen, Muyuan; Liu, Gai; Frederick, Thomas E.; Binning, Jennifer M.; Bowman, Gregory R.; Zhou, Z. Hong; Basler, Christopher F.; Gross, Michael L.; Leung, Daisy W.

    2018-01-01

    Summary Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22–α23. Biochemical, biophysical, and mutational analysis revealed inter-eNP contacts within α22–α23 are critical for viral NC-assembly and regulate viral RNA synthesis. These observations suggest that the N-terminus and α22–α23 of eNP function as context dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target. PMID:29474922

  15. Long Distance Modulation of Disorder-to-Order Transitions in Protein Allostery.

    PubMed

    Wang, Jingheng; Custer, Gregory; Beckett, Dorothy; Matysiak, Silvina

    2017-08-29

    Elucidation of the molecular details of allosteric communication between distant sites in a protein is key to understanding and manipulating many biological regulatory processes. Although protein disorder is acknowledged to play an important thermodynamic role in allostery, the molecular mechanisms by which this disorder is harnessed for long distance communication are known for a limited number of systems. Transcription repression by the Escherichia coli biotin repressor, BirA, is allosterically activated by binding of the small molecule effector biotinoyl-5'-AMP. The effector acts by promoting BirA dimerization, which is a prerequisite for sequence-specific binding to the biotin biosynthetic operon operator sequence. A 30 Å distance separates the effector binding and dimerization surfaces in BirA, and previous studies indicate that allostery is mediated, in part, by disorder-to-order transitions on the two coupled sites. In this work, combined experimental and computational methods have been applied to investigate the molecular basis of allosteric communication in BirA. Double-mutant cycle analysis coupled with thermodynamic measurements indicates functional coupling between residues in disordered loops on the two distant surfaces. All atom molecular dynamics simulations reveal that this coupling occurs through long distance reciprocal modulation of the structure and dynamics of disorder-to-order transitions on the two surfaces.

  16. Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories.

    PubMed

    Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T; Jongbloets, Bart C; Down, Thomas A; Riccio, Antonella

    2013-01-01

    In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes.

  17. Exaptation of Transposable Elements into Novel Cis-Regulatory Elements: Is the Evidence Always Strong?

    PubMed Central

    de Souza, Flávio S.J.; Franchini, Lucía F.; Rubinstein, Marcelo

    2013-01-01

    Transposable elements (TEs) are mobile genetic sequences that can jump around the genome from one location to another, behaving as genomic parasites. TEs have been particularly effective in colonizing mammalian genomes, and such heavy TE load is expected to have conditioned genome evolution. Indeed, studies conducted both at the gene and genome levels have uncovered TE insertions that seem to have been co-opted—or exapted—by providing transcription factor binding sites (TFBSs) that serve as promoters and enhancers, leading to the hypothesis that TE exaptation is a major factor in the evolution of gene regulation. Here, we critically review the evidence for exaptation of TE-derived sequences as TFBSs, promoters, enhancers, and silencers/insulators both at the gene and genome levels. We classify the functional impact attributed to TE insertions into four categories of increasing complexity and argue that so far very few studies have conclusively demonstrated exaptation of TEs as transcriptional regulatory regions. We also contend that many genome-wide studies dealing with TE exaptation in recent lineages of mammals are still inconclusive and that the hypothesis of rapid transcriptional regulatory rewiring mediated by TE mobilization must be taken with caution. Finally, we suggest experimental approaches that may help attributing higher-order functions to candidate exapted TEs. PMID:23486611

  18. Regulatory elements driving the expression of skeletal lineage reporters differ during bone development and adulthood.

    PubMed

    Stiers, Pieter-Jan; van Gastel, Nick; Moermans, Karen; Stockmans, Ingrid; Carmeliet, Geert

    2017-12-01

    To improve bone healing or regeneration more insight in the fate and role of the different skeletal cell types is required. Mouse models for fate mapping and lineage tracing of skeletal cells, using stage-specific promoters, have advanced our understanding of bone development, a process that is largely recapitulated during bone repair. However, validation of these models is often only performed during development, whereas proof of the activity and specificity of the used promoters during the bone regenerative process is limited. Here, we show that the regulatory elements of the 6kb collagen type II promoter are not adequate to drive gene expression during bone repair. Similarly, the 2.3kb promoter of collagen type I lacks activity in adult mice, but the 3.2kb promoter is suitable. Furthermore, Cre-mediated fate mapping allows the visualization of progeny, but this label retention may hinder to distinguish these cells from ones with active expression of the marker at later time points. Together, our results show that the lineage-specific regulatory elements driving gene expression during bone development differ from those required later in life and during bone repair, and justify validation of lineage-specific cell tracing and gene silencing strategies during fracture healing and bone regenerative applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Identification of a cis-Regulatory Element Involved in Phytochrome Down-Regulated Expression of the Pea Small GTPase Gene pra21

    PubMed Central

    Inaba, Takehito; Nagano, Yukio; Sakakibara, Toshihiro; Sasaki, Yukiko

    1999-01-01

    The pra2 gene encodes a pea (Pisum sativum) small GTPase belonging to the YPT/rab family, and its expression is down-regulated by light, mediated by phytochrome. We have isolated and characterized a genomic clone of this gene and constructed a fusion DNA of its 5′-upstream region in front of the gene for firefly luciferase. Using this construct in a transient assay, we determined a pra2 cis-regulatory region sufficient to direct the light down-regulation of the luciferase reporter gene. Both 5′- and internal deletion analyses revealed that the 93-bp sequence between −734 and −642 from the transcriptional start site was important for phytochrome down-regulation. Gain-of-function analysis showed that this 93-bp region could confer light down-regulation when fused to the cauliflower mosaic virus 35S promoter. Furthermore, linker-scanning analysis showed that a 12-bp sequence within the 93-bp region mediated phytochrome down-regulation. Gel-retardation analysis showed the presence of a nuclear factor that was specifically bound to the 12-bp sequence in vitro. These results indicate that this element is a cis-regulatory element involved in phytochrome down-regulated expression. PMID:10364400

  20. [Analysis of cis-regulatory element distribution in gene promoters of Gossypium raimondii and Arabidopsis thaliana].

    PubMed

    Sun, Gao-Fei; He, Shou-Pu; Du, Xiong-Ming

    2013-10-01

    Cotton genomic studies have boomed since the release of Gossypium raimondii draft genome. In this study, cis-regulatory element (CRE) in 1 kb length sequence upstream 5' UTR of annotated genes were selected and scanned in the Arabidopsis thaliana (At) and Gossypium raimondii (Gr) genomes, based on the database of PLACE (Plant cis-acting Regulatory DNA Elements). According to the definition of this study, 44 (12.3%) and 57 (15.5%) CREs presented "peak-like" distribution in the 1 kb selected sequences of both genomes, respectively. Thirty-four of them were peak-like distributed in both genomes, which could be further categorized into 4 types based on their core sequences. The coincidence of TATABOX peak position and their actual position ((-) -30 bp) indicated that the position of a common CRE was conservative in different genes, which suggested that the peak position of these CREs was their possible actual position of transcription factors. The position of a common CRE was also different between the two genomes due to stronger length variation of 5' UTR in Gr than At. Furthermore, most of the peak-like CREs were located in the region of -110 bp-0 bp, which suggested that concentrated distribution might be conductive to the interaction of transcription factors, and then regulate the gene expression in downstream.

  1. Binding of TFIIIC to SINE Elements Controls the Relocation of Activity-Dependent Neuronal Genes to Transcription Factories

    PubMed Central

    Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T.; Jongbloets, Bart C.; Down, Thomas A.; Riccio, Antonella

    2013-01-01

    In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes. PMID:23966877

  2. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling

    PubMed Central

    Pardo-Diaz, Carolina; Hanly, Joseph J.; Martin, Simon H.; Mallet, James; Dasmahapatra, Kanchon K.; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W. Owen; Jiggins, Chris D.

    2016-01-01

    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation. PMID:26771987

  3. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling.

    PubMed

    Wallbank, Richard W R; Baxter, Simon W; Pardo-Diaz, Carolina; Hanly, Joseph J; Martin, Simon H; Mallet, James; Dasmahapatra, Kanchon K; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W Owen; Jiggins, Chris D

    2016-01-01

    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.

  4. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation

    PubMed Central

    Engel, Krysta L.; Mackiewicz, Mark; Hardigan, Andrew A.; Myers, Richard M.; Savic, Daniel

    2016-01-01

    Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. PMID:27224938

  5. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation.

    PubMed

    Engel, Krysta L; Mackiewicz, Mark; Hardigan, Andrew A; Myers, Richard M; Savic, Daniel

    2016-09-01

    Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... further testing under the provisions of Tier 3 or to support regulatory decisions affecting that fuel or... elements or classes of compounds other than those permitted in the base fuel for the respective fuel family... all of the following criteria: (1) Contain no elements other than carbon, hydrogen, oxygen, nitrogen...

  7. Negative regulation of P element excision by the somatic product and terminal sequences of P in drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    A transient in vivo P element excision assay was used to test the regulatory properties of putative repressor-encoding plasmids in Drosophila melanogaster embryos. The somatic expression of an unmodified transposase transcription unit under the control of a heat shock gene promoter (phsn) effectivel...

  8. Massive contribution of transposable elements to mammalian regulatory sequences.

    PubMed

    Rayan, Nirmala Arul; Del Rosario, Ricardo C H; Prabhakar, Shyam

    2016-09-01

    Barbara McClintock discovered the existence of transposable elements (TEs) in the late 1940s and initially proposed that they contributed to the gene regulatory program of higher organisms. This controversial idea gained acceptance only much later in the 1990s, when the first examples of TE-derived promoter sequences were uncovered. It is now known that half of the human genome is recognizably derived from TEs. It is thus important to understand the scope and nature of their contribution to gene regulation. Here, we provide a timeline of major discoveries in this area and discuss how transposons have revolutionized our understanding of mammalian genomes, with a special emphasis on the massive contribution of TEs to primate evolution. Our analysis of primate-specific functional elements supports a simple model for the rate at which new functional elements arise in unique and TE-derived DNA. Finally, we discuss some of the challenges and unresolved questions in the field, which need to be addressed in order to fully characterize the impact of TEs on gene regulation, evolution and disease processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Identification of Regulatory Elements That Control PPARγ Expression in Adipocyte Progenitors

    PubMed Central

    Chou, Wen-Ling; Galmozzi, Andrea; Partida, David; Kwan, Kevin; Yeung, Hui; Su, Andrew I.; Saez, Enrique

    2013-01-01

    Adipose tissue renewal and obesity-driven expansion of fat cell number are dependent on proliferation and differentiation of adipose progenitors that reside in the vasculature that develops in coordination with adipose depots. The transcriptional events that regulate commitment of progenitors to the adipose lineage are poorly understood. Because expression of the nuclear receptor PPARγ defines the adipose lineage, isolation of elements that control PPARγ expression in adipose precursors may lead to discovery of transcriptional regulators of early adipocyte determination. Here, we describe the identification and validation in transgenic mice of 5 highly conserved non-coding sequences from the PPARγ locus that can drive expression of a reporter gene in a manner that recapitulates the tissue-specific pattern of PPARγ expression. Surprisingly, these 5 elements appear to control PPARγ expression in adipocyte precursors that are associated with the vasculature of adipose depots, but not in mature adipocytes. Characterization of these five PPARγ regulatory sequences may enable isolation of the transcription factors that bind these cis elements and provide insight into the molecular regulation of adipose tissue expansion in normal and pathological states. PMID:24009687

  10. Modeling the evolution of regulatory elements by simultaneous detection and alignment with phylogenetic pair HMMs.

    PubMed

    Majoros, William H; Ohler, Uwe

    2010-12-16

    The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation.

  11. QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks.

    PubMed

    Thibodeau, Asa; Márquez, Eladio J; Luo, Oscar; Ruan, Yijun; Menghi, Francesca; Shin, Dong-Guk; Stitzel, Michael L; Vera-Licona, Paola; Ucar, Duygu

    2016-06-01

    Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. QuIN's web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/.

  12. Elucidating the Small Regulatory RNA Repertoire of the Sea Anemone Anemonia viridis Based on Whole Genome and Small RNA Sequencing

    PubMed Central

    Patel, Hardip; Forêt, Sylvain; Karlsen, Bård Ove; Jørgensen, Tor Erik; Hall-Spencer, Jason M

    2018-01-01

    Abstract Cnidarians harbor a variety of small regulatory RNAs that include microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), but detailed information is limited. Here, we report the identification and expression of novel miRNAs and putative piRNAs, as well as their genomic loci, in the symbiotic sea anemone Anemonia viridis. We generated a draft assembly of the A. viridis genome with putative size of 313 Mb that appeared to be composed of about 36% repeats, including known transposable elements. We detected approximately equal fractions of DNA transposons and retrotransposons. Deep sequencing of small RNA libraries constructed from A. viridis adults sampled at a natural CO2 gradient off Vulcano Island, Italy, identified 70 distinct miRNAs. Eight were homologous to previously reported miRNAs in cnidarians, whereas 62 appeared novel. Nine miRNAs were recognized as differentially expressed along the natural seawater pH gradient. We found a highly abundant and diverse population of piRNAs, with a substantial fraction showing ping–pong signatures. We identified nearly 22% putative piRNAs potentially targeting transposable elements within the A. viridis genome. The A. viridis genome appeared similar in size to that of other hexacorals with a very high divergence of transposable elements resembling that of the sea anemone genus Exaiptasia. The genome encodes and expresses a high number of small regulatory RNAs, which include novel miRNAs and piRNAs. Differentially expressed small RNAs along the seawater pH gradient indicated regulatory gene responses to environmental stressors. PMID:29385567

  13. Naturally occurring deletions of hunchback binding sites in the even-skipped stripe 3+7 enhancer.

    PubMed

    Palsson, Arnar; Wesolowska, Natalia; Reynisdóttir, Sigrún; Ludwig, Michael Z; Kreitman, Martin

    2014-01-01

    Changes in regulatory DNA contribute to phenotypic differences within and between taxa. Comparative studies show that many transcription factor binding sites (TFBS) are conserved between species whereas functional studies reveal that some mutations segregating within species alter TFBS function. Consistently, in this analysis of 13 regulatory elements in Drosophila melanogaster populations, single base and insertion/deletion polymorphism are rare in characterized regulatory elements. Experimentally defined TFBS are nearly devoid of segregating mutations and, as has been shown before, are quite conserved. For instance 8 of 11 Hunchback binding sites in the stripe 3+7 enhancer of even-skipped are conserved between D. melanogaster and Drosophila virilis. Oddly, we found a 72 bp deletion that removes one of these binding sites (Hb8), segregating within D. melanogaster. Furthermore, a 45 bp deletion polymorphism in the spacer between the stripe 3+7 and stripe 2 enhancers, removes another predicted Hunchback site. These two deletions are separated by ∼250 bp, sit on distinct haplotypes, and segregate at appreciable frequency. The Hb8Δ is at 5 to 35% frequency in the new world, but also shows cosmopolitan distribution. There is depletion of sequence variation on the Hb8Δ-carrying haplotype. Quantitative genetic tests indicate that Hb8Δ affects developmental time, but not viability of offspring. The Eve expression pattern differs between inbred lines, but the stripe 3 and 7 boundaries seem unaffected by Hb8Δ. The data reveal segregating variation in regulatory elements, which may reflect evolutionary turnover of characterized TFBS due to drift or co-evolution.

  14. 2012 Global Summit on Regulatory Science (GSRS-2012)--modernizing toxicology.

    PubMed

    Miller, Margaret A; Tong, Weida; Fan, Xiaohui; Slikker, William

    2013-01-01

    Regulatory science encompasses the tools, models, techniques, and studies needed to assess and evaluate product safety, efficacy, quality, and performance. Several recent publications have emphasized the role of regulatory science in improving global health, supporting economic development and fostering innovation. As for other scientific disciplines, research in regulatory science is the critical element underpinning the development and advancement of regulatory science as a modern scientific discipline. As a regulatory agency in the 21st century, the Food and Drug Administration (FDA) has an international component that underpins its domestic mission; foods, drugs, and devices are developed and imported to the United States from across the world. The Global Summit on Regulatory Science, an international conference for discussing innovative technologies, approaches, and partnerships that enhance the translation of basic science into regulatory applications, is providing leadership for the advancement of regulatory sciences within the global context. Held annually, this international conference provides a platform where regulators, policy makers, and bench scientists from various countries can exchange views on how to develop, apply, and implement innovative methodologies into regulatory assessments in their respective countries, as well as developing a harmonized strategy to improve global public health through global collaboration.

  15. Absence of mutation at the 5'-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum).

    PubMed

    Denz, Christopher R; Zhang, Chi; Jia, Pingping; Du, Jianfeng; Huang, Xupei; Dube, Syamalima; Thomas, Anish; Poiesz, Bernard J; Dube, Dipak K

    2011-09-01

    Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.

  16. Microarray and comparative genomics-based identification of genes and gene regulatory regions of the mouse immune system

    PubMed Central

    Hutton, John J; Jegga, Anil G; Kong, Sue; Gupta, Ashima; Ebert, Catherine; Williams, Sarah; Katz, Jonathan D; Aronow, Bruce J

    2004-01-01

    Background In this study we have built and mined a gene expression database composed of 65 diverse mouse tissues for genes preferentially expressed in immune tissues and cell types. Using expression pattern criteria, we identified 360 genes with preferential expression in thymus, spleen, peripheral blood mononuclear cells, lymph nodes (unstimulated or stimulated), or in vitro activated T-cells. Results Gene clusters, formed based on similarity of expression-pattern across either all tissues or the immune tissues only, had highly significant associations both with immunological processes such as chemokine-mediated response, antigen processing, receptor-related signal transduction, and transcriptional regulation, and also with more general processes such as replication and cell cycle control. Within-cluster gene correlations implicated known associations of known genes, as well as immune process-related roles for poorly described genes. To characterize regulatory mechanisms and cis-elements of genes with similar patterns of expression, we used a new version of a comparative genomics-based cis-element analysis tool to identify clusters of cis-elements with compositional similarity among multiple genes. Several clusters contained genes that shared 5–6 cis-elements that included ETS and zinc-finger binding sites. cis-Elements AP2 EGRF ETSF MAZF SP1F ZF5F and AREB ETSF MZF1 PAX5 STAT were shared in a thymus-expressed set; AP4R E2FF EBOX ETSF MAZF SP1F ZF5F and CREB E2FF MAZF PCAT SP1F STAT cis-clusters occurred in activated T-cells; CEBP CREB NFKB SORY and GATA NKXH OCT1 RBIT occurred in stimulated lymph nodes. Conclusion This study demonstrates a series of analytic approaches that have allowed the implication of genes and regulatory elements that participate in the differentiation, maintenance, and function of the immune system. Polymorphism or mutation of these could adversely impact immune system functions. PMID:15504237

  17. FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis

    PubMed Central

    2012-01-01

    Background FK506 (Tacrolimus) is an important immunosuppressant, produced by industrial biosynthetic processes using various Streptomyces species. Considering the complex structure of FK506, it is reasonable to expect complex regulatory networks controlling its biosynthesis. Regulatory elements, present in gene clusters can have a profound influence on the final yield of target product and can play an important role in development of industrial bioprocesses. Results Three putative regulatory elements, namely fkbR, belonging to the LysR-type family, fkbN, a large ATP-binding regulator of the LuxR family (LAL-type) and allN, a homologue of AsnC family regulatory proteins, were identified in the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488, a progenitor of industrial strains used for production of FK506. Inactivation of fkbN caused a complete disruption of FK506 biosynthesis, while inactivation of fkbR resulted in about 80% reduction of FK506 yield. No functional role in the regulation of the FK506 gene cluster has been observed for the allN gene. Using RT-PCR and a reporter system based on a chalcone synthase rppA, we demonstrated, that in the wild type as well as in fkbN- and fkbR-inactivated strains, fkbR is transcribed in all stages of cultivation, even before the onset of FK506 production, whereas fkbN expression is initiated approximately with the initiation of FK506 production. Surprisingly, inactivation of fkbN (or fkbR) does not abolish the transcription of the genes in the FK506 gene cluster in general, but may reduce expression of some of the tested biosynthetic genes. Finally, introduction of a second copy of the fkbR or fkbN genes under the control of the strong ermE* promoter into the wild type strain resulted in 30% and 55% of yield improvement, respectively. Conclusions Our results clearly demonstrate the positive regulatory role of fkbR and fkbN genes in FK506 biosynthesis in S. tsukubaensis NRRL 18488. We have shown that regulatory mechanisms can differ substantially from other, even apparently closely similar FK506-producing strains, reported in literature. Finally, we have demonstrated the potential of these genetically modified strains of S. tsukubaensis for improving the yield of fermentative processes for production of FK506. PMID:23083511

  18. A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: functional characterisation and signatures of selection.

    PubMed

    Wilding, Craig S; Smith, Ian; Lynd, Amy; Yawson, Alexander Egyir; Weetman, David; Paine, Mark J I; Donnelly, Martin J

    2012-09-01

    Although cytochrome P450 (CYP450) enzymes are frequently up-regulated in mosquitoes resistant to insecticides, no regulatory motifs driving these expression differences with relevance to wild populations have been identified. Transposable elements (TEs) are often enriched upstream of those CYP450s involved in insecticide resistance, leading to the assumption that they contribute regulatory motifs that directly underlie the resistance phenotype. A partial CuRE1 (Culex Repetitive Element 1) transposable element is found directly upstream of CYP9M10, a cytochrome P450 implicated previously in larval resistance to permethrin in the ISOP450 strain of Culex quinquefasciatus, but is absent from the equivalent genomic region of a susceptible strain. Via expression of CYP9M10 in Escherichia coli we have now demonstrated time- and NADPH-dependant permethrin metabolism, prerequisites for confirmation of a role in metabolic resistance, and through qPCR shown that CYP9M10 is >20-fold over-expressed in ISOP450 compared to a susceptible strain. In a fluorescent reporter assay the region upstream of CYP9M10 from ISOP450 drove 10× expression compared to the equivalent region (lacking CuRE1) from the susceptible strain. Close correspondence with the gene expression fold-change implicates the upstream region including CuRE1 as a cis-regulatory element involved in resistance. Only a single CuRE1 bearing allele, identical to the CuRE1 bearing allele in the resistant strain, is found throughout Sub-Saharan Africa, in contrast to the diversity encountered in non-CuRE1 alleles. This suggests a single origin and subsequent spread due to selective advantage. CuRE1 is detectable using a simple diagnostic. When applied to C. quinquefasciatus larvae from Ghana we have demonstrated a significant association with permethrin resistance in multiple field sites (mean Odds Ratio = 3.86) suggesting this marker has relevance to natural populations of vector mosquitoes. However, when CuRE1 was excised from the allele used in the reporter assay through fusion PCR, expression was unaffected, indicating that the TE has no direct role in resistance and hence that CuRE1 is acting only as a marker of an as yet unidentified regulatory motif in the association analysis. This suggests that a re-evaluation of the assumption that TEs contribute regulatory motifs involved in gene expression may be necessary. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies

    PubMed Central

    Supple, Megan A.; Hines, Heather M.; Dasmahapatra, Kanchon K.; Lewis, James J.; Nielsen, Dahlia M.; Lavoie, Christine; Ray, David A.; Salazar, Camilo; McMillan, W. Owen; Counterman, Brian A.

    2013-01-01

    Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations. PMID:23674305

  20. Loss of the insulator protein CTCF during nematode evolution

    PubMed Central

    Heger, Peter; Marin, Birger; Schierenberg, Einhard

    2009-01-01

    Background The zinc finger (ZF) protein CTCF (CCCTC-binding factor) is highly conserved in Drosophila and vertebrates where it has been shown to mediate chromatin insulation at a genomewide level. A mode of genetic regulation that involves insulators and insulator binding proteins to establish independent transcriptional units is currently not known in nematodes including Caenorhabditis elegans. We therefore searched in nematodes for orthologs of proteins that are involved in chromatin insulation. Results While orthologs for other insulator proteins were absent in all 35 analysed nematode species, we find orthologs of CTCF in a subset of nematodes. As an example for these we cloned the Trichinella spiralis CTCF-like gene and revealed a genomic structure very similar to the Drosophila counterpart. To investigate the pattern of CTCF occurrence in nematodes, we performed phylogenetic analysis with the ZF protein sets of completely sequenced nematodes. We show that three ZF proteins from three basal nematodes cluster together with known CTCF proteins whereas no zinc finger protein of C. elegans and other derived nematodes does so. Conclusion Our findings show that CTCF and possibly chromatin insulation are present in basal nematodes. We suggest that the insulator protein CTCF has been secondarily lost in derived nematodes like C. elegans. We propose a switch in the regulation of gene expression during nematode evolution, from the common vertebrate and insect type involving distantly acting regulatory elements and chromatin insulation to a so far poorly characterised mode present in more derived nematodes. Here, all or some of these components are missing. Instead operons, polycistronic transcriptional units common in derived nematodes, seemingly adopted their function. PMID:19712444

  1. Detection of expression quantitative trait Loci in complex mouse crosses: impact and alleviation of data quality and complex population substructure.

    PubMed

    Iancu, Ovidiu D; Darakjian, Priscila; Kawane, Sunita; Bottomly, Daniel; Hitzemann, Robert; McWeeney, Shannon

    2012-01-01

    Complex Mus musculus crosses, e.g., heterogeneous stock (HS), provide increased resolution for quantitative trait loci detection. However, increased genetic complexity challenges detection methods, with discordant results due to low data quality or complex genetic architecture. We quantified the impact of theses factors across three mouse crosses and two different detection methods, identifying procedures that greatly improve detection quality. Importantly, HS populations have complex genetic architectures not fully captured by the whole genome kinship matrix, calling for incorporating chromosome specific relatedness information. We analyze three increasingly complex crosses, using gene expression levels as quantitative traits. The three crosses were an F(2) intercross, a HS formed by crossing four inbred strains (HS4), and a HS (HS-CC) derived from the eight lines found in the collaborative cross. Brain (striatum) gene expression and genotype data were obtained using the Illumina platform. We found large disparities between methods, with concordance varying as genetic complexity increased; this problem was more acute for probes with distant regulatory elements (trans). A suite of data filtering steps resulted in substantial increases in reproducibility. Genetic relatedness between samples generated overabundance of detected eQTLs; an adjustment procedure that includes the kinship matrix attenuates this problem. However, we find that relatedness between individuals is not evenly distributed across the genome; information from distinct chromosomes results in relatedness structure different from the whole genome kinship matrix. Shared polymorphisms from distinct chromosomes collectively affect expression levels, confounding eQTL detection. We suggest that considering chromosome specific relatedness can result in improved eQTL detection.

  2. Whole-genome sequencing approaches for conservation biology: Advantages, limitations and practical recommendations.

    PubMed

    Fuentes-Pardo, Angela P; Ruzzante, Daniel E

    2017-10-01

    Whole-genome resequencing (WGR) is a powerful method for addressing fundamental evolutionary biology questions that have not been fully resolved using traditional methods. WGR includes four approaches: the sequencing of individuals to a high depth of coverage with either unresolved or resolved haplotypes, the sequencing of population genomes to a high depth by mixing equimolar amounts of unlabelled-individual DNA (Pool-seq) and the sequencing of multiple individuals from a population to a low depth (lcWGR). These techniques require the availability of a reference genome. This, along with the still high cost of shotgun sequencing and the large demand for computing resources and storage, has limited their implementation in nonmodel species with scarce genomic resources and in fields such as conservation biology. Our goal here is to describe the various WGR methods, their pros and cons and potential applications in conservation biology. WGR offers an unprecedented marker density and surveys a wide diversity of genetic variations not limited to single nucleotide polymorphisms (e.g., structural variants and mutations in regulatory elements), increasing their power for the detection of signatures of selection and local adaptation as well as for the identification of the genetic basis of phenotypic traits and diseases. Currently, though, no single WGR approach fulfils all requirements of conservation genetics, and each method has its own limitations and sources of potential bias. We discuss proposed ways to minimize such biases. We envision a not distant future where the analysis of whole genomes becomes a routine task in many nonmodel species and fields including conservation biology. © 2017 John Wiley & Sons Ltd.

  3. RNA expression in a cartilaginous fish cell line reveals ancient 3′ noncoding regions highly conserved in vertebrates

    PubMed Central

    Forest, David; Nishikawa, Ryuhei; Kobayashi, Hiroshi; Parton, Angela; Bayne, Christopher J.; Barnes, David W.

    2007-01-01

    We have established a cartilaginous fish cell line [Squalus acanthias embryo cell line (SAE)], a mesenchymal stem cell line derived from the embryo of an elasmobranch, the spiny dogfish shark S. acanthias. Elasmobranchs (sharks and rays) first appeared >400 million years ago, and existing species provide useful models for comparative vertebrate cell biology, physiology, and genomics. Comparative vertebrate genomics among evolutionarily distant organisms can provide sequence conservation information that facilitates identification of critical coding and noncoding regions. Although these genomic analyses are informative, experimental verification of functions of genomic sequences depends heavily on cell culture approaches. Using ESTs defining mRNAs derived from the SAE cell line, we identified lengthy and highly conserved gene-specific nucleotide sequences in the noncoding 3′ UTRs of eight genes involved in the regulation of cell growth and proliferation. Conserved noncoding 3′ mRNA regions detected by using the shark nucleotide sequences as a starting point were found in a range of other vertebrate orders, including bony fish, birds, amphibians, and mammals. Nucleotide identity of shark and human in these regions was remarkably well conserved. Our results indicate that highly conserved gene sequences dating from the appearance of jawed vertebrates and representing potential cis-regulatory elements can be identified through the use of cartilaginous fish as a baseline. Because the expression of genes in the SAE cell line was prerequisite for their identification, this cartilaginous fish culture system also provides a physiologically valid tool to test functional hypotheses on the role of these ancient conserved sequences in comparative cell biology. PMID:17227856

  4. Destruction of a distal hypoxia response element abolishes trans-activation of the PAG1 gene mediated by HIF-independent chromatin looping.

    PubMed

    Schörg, Alexandra; Santambrogio, Sara; Platt, James L; Schödel, Johannes; Lindenmeyer, Maja T; Cohen, Clemens D; Schrödter, Katrin; Mole, David R; Wenger, Roland H; Hoogewijs, David

    2015-07-13

    A crucial step in the cellular adaptation to oxygen deficiency is the binding of hypoxia-inducible factors (HIFs) to hypoxia response elements (HREs) of oxygen-regulated genes. Genome-wide HIF-1α/2α/β DNA-binding studies revealed that the majority of HREs reside distant to the promoter regions, but the function of these distal HREs has only been marginally studied in the genomic context. We used chromatin immunoprecipitation (ChIP), gene editing (TALEN) and chromosome conformation capture (3C) to localize and functionally characterize a 82 kb upstream HRE that solely drives oxygen-regulated expression of the newly identified HIF target gene PAG1. PAG1, a transmembrane adaptor protein involved in Src signalling, was hypoxically induced in various cell lines and mouse tissues. ChIP and reporter gene assays demonstrated that the -82 kb HRE regulates PAG1, but not an equally distant gene further upstream, by direct interaction with HIF. Ablation of the consensus HRE motif abolished the hypoxic induction of PAG1 but not general oxygen signalling. 3C assays revealed that the -82 kb HRE physically associates with the PAG1 promoter region, independent of HIF-DNA interaction. These results demonstrate a constitutive interaction between the -82 kb HRE and the PAG1 promoter, suggesting a physiologically important rapid response to hypoxia. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Chemistry of the Triangulum-Andromeda Overdensity as Seen by APOGEE

    NASA Astrophysics Data System (ADS)

    Rochford Hayes, Christian; Majewski, Steven R.; Hasselquist, Sten; Beaton, Rachael; Cunha, Katia M. L.; Smith, Verne V.; Price-Whelan, Adrian M.; APOGEE Team

    2018-06-01

    The nature of the Triangulum-Andromeda (TriAnd) system has been debated since the discovery of this distant, low-latitude Milky Way (MW) overdensity more than a decade ago. Explanations for its origin are either as a halo substructure from the disruption of a dwarf galaxy or a distant extension of the Galactic disk. We test these hypotheses using chemical abundances of a dozen TriAnd members from the Sloan Digital Sky Survey’s 14th Data Release of Apache Point Observatory Galactic Evolution Experiment (APOGEE) data to compare to APOGEE abundances of stars with similar metallicity from both the Sagittarius (Sgr) dSph, and the outer MW disk. We find that TriAnd stars are chemically distinct from Sgr across a variety of elements, (C+N), Mg, K, Ca, Mn, and Ni, with a separation in [X/Fe] of about 0.1 to 0.4 dex depending on the element. Instead, the TriAnd stars, with a median metallicity of about -0.8, exhibit chemical abundance ratios similar to those of the lowest metallicity ([Fe/H] ~ -0.7) stars in the outer Galactic disk, and are consistent with expectations of extrapolated chemical gradients in the outer disk of the MW. These results suggest that TriAnd is associated with the MW disk, and, therefore, that the disk extends to this overdensity - i.e., past a Galactocentric radius of 24 kpc - albeit vertically perturbed about 7 kpc below the nominal disk midplane in this region of the Galaxy.

  6. Isolated Fungal Promoters and Gene Transcription Terminators and Methods of Protein and Chemical Production in a Fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.

    2008-11-11

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  7. Isolated fungal promoters and gene transcription terminators and methods of protein and chemical production in a fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.

    2008-11-11

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  8. Isolated fungal promoters and gene transcription terminators and methods of protein and chemical production in a fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L; Magnuson, Jon K

    2014-05-27

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  9. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors

    PubMed Central

    Prazak, Lisa; Fujioka, Miki; Gergen, J. Peter

    2010-01-01

    The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from −3.1 kb to −2.5 kb and from −8.1 kb to −7.1 kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter. PMID:20435028

  10. The Regulatory Framework for Privacy and Security

    NASA Astrophysics Data System (ADS)

    Hiller, Janine S.

    The internet enables the easy collection of massive amounts of personally identifiable information. Unregulated data collection causes distrust and conflicts with widely accepted principles of privacy. The regulatory framework in the United States for ensuring privacy and security in the online environment consists of federal, state, and self-regulatory elements. New laws have been passed to address technological and internet practices that conflict with privacy protecting policies. The United States and the European Union approaches to privacy differ significantly, and the global internet environment will likely cause regulators to face the challenge of balancing privacy interests with data collection for many years to come.

  11. Targeted Deletion of the Antisilencer/Enhancer (ASE) Element from Intron 1 of the Myelin Proteolipid Protein Gene (Plp1) in Mouse Reveals that the Element Is Dispensable for Plp1 Expression in Brain during Development and Remyelination

    PubMed Central

    Pereira, Glauber B.; Meng, Fanxue; Kockara, Neriman T.; Yang, Baoli; Wight, Patricia A.

    2012-01-01

    Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1-lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion-transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.1 oligodendroglial cell line, which was named ASE (antisilencer/enhancer) based on its functional properties in these cells. To investigate the role of the ASE in vivo, the element was deleted from the native gene in mouse using a Cre/lox strategy. While removal of the ASE from Plp1-lacZ constructs profoundly decreased expression in transfected oligodendroglial cell lines (N20.1 and Oli-neu), the element was dispensable to achieve normal levels of Plp1 gene expression in mouse during development (except perhaps at postnatal day 15) and throughout the remyelination period following cuprizone-induced (acute) demyelination. Thus, it is possible that the ASE is nonfunctional in vivo, or that loss of the ASE from the native gene in mouse can be compensated for by the presence of other regulatory elements within the Plp1 gene. PMID:23157328

  12. Use of a Drosophila Genome-Wide Conserved Sequence Database to Identify Functionally Related cis-Regulatory Enhancers

    PubMed Central

    Brody, Thomas; Yavatkar, Amarendra S; Kuzin, Alexander; Kundu, Mukta; Tyson, Leonard J; Ross, Jermaine; Lin, Tzu-Yang; Lee, Chi-Hon; Awasaki, Takeshi; Lee, Tzumin; Odenwald, Ward F

    2012-01-01

    Background: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs. Results: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome. cis-Decoder database search and alignment algorithms enable the discovery of functionally related enhancers. The program first identifies conserved repeat elements within an input enhancer and then searches the database for CSCs that score highly against the input CSC. Scoring is based on shared repeats as well as uniquely shared matches, and includes measures of the balance of shared elements, a diagnostic that has proven to be useful in predicting cis-regulatory function. To demonstrate the utility of these tools, a temporally-restricted CNS neuroblast enhancer was used to identify other functionally related enhancers and analyze their structural organization. Conclusions: cis-Decoder reveals that co-regulating enhancers consist of combinations of overlapping shared sequence elements, providing insights into the mode of integration of multiple regulating transcription factors. The database and accompanying algorithms should prove useful in the discovery and analysis of enhancers involved in any developmental process. Developmental Dynamics 241:169–189, 2012. © 2011 Wiley Periodicals, Inc. Key findings A genome-wide catalog of Drosophila conserved DNA sequence clusters. cis-Decoder discovers functionally related enhancers. Functionally related enhancers share balanced sequence element copy numbers. Many enhancers function during multiple phases of development. PMID:22174086

  13. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Calcium Binding Properties and Allosteric Regulation of Downstream Regulatory Element Antagonist Modulator (DREAM).

    PubMed

    Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L

    2017-07-18

    Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.

  14. Friends-enemies: endogenous retroviruses are major transcriptional regulators of human DNA

    NASA Astrophysics Data System (ADS)

    Buzdin, Anton A.; Prassolov, Vladimir; Garazha, Andrew V.

    2017-06-01

    Endogenous retroviruses are mobile genetic elements hardly distinguishable from infectious, or “exogenous”, retroviruses at the time of insertion in the host DNA. Human endogenous retroviruses (HERVs) are not rare. They gave rise to multiple families of closely related mobile elements that occupy 8% of the human genome. Together, they shape genomic regulatory landscape by providing at least 320,000 human transcription factor binding sites (TFBS) located on 110,000 individual HERV elements. The HERVs host as many as 155,000 mapped DNaseI hypersensitivity sites, which denote loci active in the regulation of gene expression or chromatin structure. The contemporary view of the HERVs evolutionary dynamics suggests that at the early stages after insertion, the HERV is treated by the host cells as a foreign genetic element, and is likely to be suppressed by the targeted methylation and mutations. However, at the later stages, when significant number of mutations has been already accumulated and when the retroviral genes are broken, the regulatory potential of a HERV may be released and recruited to modify the genomic balance of transcription factor binding sites. This process goes together with further accumulation and selection of mutations, which reshape the regulatory landscape of the human DNA. However, developmental reprogramming, stress or pathological conditions like cancer, inflammation and infectious diseases, can remove the blocks limiting expression and HERV-mediated host gene regulation. This, in turn, can dramatically alter the gene expression equilibrium and shift it to a newer state, thus further amplifying instability and exacerbating the stressful situation.

  15. Epigenomic elements analyses for promoters identify ESRRG as a new susceptibility gene for obesity-related traits.

    PubMed

    Dong, S-S; Guo, Y; Zhu, D-L; Chen, X-F; Wu, X-M; Shen, H; Chen, X-D; Tan, L-J; Tian, Q; Deng, H-W; Yang, T-L

    2016-07-01

    With ENCODE epigenomic data and results from published genome-wide association studies (GWASs), we aimed to find regulatory signatures of obesity genes and discover novel susceptibility genes. Obesity genes were obtained from public GWAS databases and their promoters were annotated based on the regulatory element information. Significantly enriched or depleted epigenomic elements in the promoters of obesity genes were evaluated and all human genes were then prioritized according to the existence of the selected elements to predict new candidate genes. Top-ranked genes were subsequently applied to validate their associations with obesity-related traits in three independent in-house GWAS samples. We identified RAD21 and EZH2 as over-represented, and STAT2 (signal transducer and activator of transcription 2) and IRF3 (interferon regulatory transcription factor 3) as depleted transcription factors. Histone modification of H3K9me3 and chromatin state segmentation of 'poised promoter' and 'repressed' were over-represented. All genes were prioritized and we selected the top five genes for validation at the population level. Combining results from the three GWAS samples, rs7522101 in ESRRG (estrogen-related receptor-γ) remained significantly associated with body mass index after multiple testing corrections (P=7.25 × 10(-5)). It was also associated with β-cell function (P=1.99 × 10(-3)) and fasting glucose level (P<0.05) in the meta-analyses of glucose and insulin-related traits consortium (MAGIC) data set.Cnoclusions:In summary, we identified epigenomic characteristics for obesity genes and suggested ESRRG as a novel obesity-susceptibility gene.

  16. RUDI, a short interspersed element of the V-SINE superfamily widespread in molluscan genomes.

    PubMed

    Luchetti, Andrea; Šatović, Eva; Mantovani, Barbara; Plohl, Miroslav

    2016-06-01

    Short interspersed elements (SINEs) are non-autonomous retrotransposons that are widespread in eukaryotic genomes. They exhibit a chimeric sequence structure consisting of a small RNA-related head, an anonymous body and an AT-rich tail. Although their turnover and de novo emergence is rapid, some SINE elements found in distantly related species retain similarity in certain core segments (or highly conserved domains, HCD). We have characterized a new SINE element named RUDI in the bivalve molluscs Ruditapes decussatus and R. philippinarum and found this element to be widely distributed in the genomes of a number of mollusc species. An unexpected structural feature of RUDI is the HCD domain type V, which was first found in non-amniote vertebrate SINEs and in the SINE from one cnidarian species. In addition to the V domain, the overall sequence conservation pattern of RUDI elements resembles that found in ancient AmnSINE (~310 Myr old) and Au SINE (~320 Myr old) families, suggesting that RUDI might be among the most ancient SINE families. Sequence conservation suggests a monophyletic origin of RUDI. Nucleotide variability and phylogenetic analyses suggest long-term vertical inheritance combined with at least one horizontal transfer event as the most parsimonious explanation for the observed taxonomic distribution.

  17. Hybridogenesis and a potential case of R2 non-LTR retrotransposon horizontal transmission in Bacillus stick insects (Insecta Phasmida).

    PubMed

    Scavariello, Claudia; Luchetti, Andrea; Martoni, Francesco; Bonandin, Livia; Mantovani, Barbara

    2017-02-06

    Horizontal transfer (HT) is an event in which the genetic material is transferred from one species to another, even if distantly related, and it has been demonstrated as a possible essential part of the lifecycle of transposable elements (TEs). However, previous studies on the non-LTR R2 retrotransposon, a metazoan-wide distributed element, indicated its vertical transmission since the Radiata-Bilateria split. Here we present the first possible instances of R2 HT in stick insects of the genus Bacillus (Phasmida). Six R2 elements were characterized in the strictly bisexual subspecies B. grandii grandii, B. grandii benazzii and B. grandii maretimi and in the obligatory parthenogenetic taxon B. atticus. These elements were compared with those previously retrieved in the facultative parthenogenetic species B. rossius. Phylogenetic inconsistencies between element and host taxa, and age versus divergence analyses agree and support at least two HT events. These HT events can be explained by taking into consideration the complex Bacillus reproductive biology, which includes also hybridogenesis, gynogenesis and androgenesis. Through these non-canonical reproductive modes, R2 elements may have been transferred between Bacillus genomes. Our data suggest, therefore, a possible role of hybridization for TEs survival and the consequent reshaping of involved genomes.

  18. Acid-base homeostasis in the human system

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  19. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants.

    PubMed

    Chow, Chi-Nga; Zheng, Han-Qin; Wu, Nai-Yun; Chien, Chia-Hung; Huang, Hsien-Da; Lee, Tzong-Yi; Chiang-Hsieh, Yi-Fan; Hou, Ping-Fu; Yang, Tien-Yi; Chang, Wen-Chi

    2016-01-04

    Transcription factors (TFs) are sequence-specific DNA-binding proteins acting as critical regulators of gene expression. The Plant Promoter Analysis Navigator (PlantPAN; http://PlantPAN2.itps.ncku.edu.tw) provides an informative resource for detecting transcription factor binding sites (TFBSs), corresponding TFs, and other important regulatory elements (CpG islands and tandem repeats) in a promoter or a set of plant promoters. Additionally, TFBSs, CpG islands, and tandem repeats in the conserve regions between similar gene promoters are also identified. The current PlantPAN release (version 2.0) contains 16 960 TFs and 1143 TF binding site matrices among 76 plant species. In addition to updating of the annotation information, adding experimentally verified TF matrices, and making improvements in the visualization of transcriptional regulatory networks, several new features and functions are incorporated. These features include: (i) comprehensive curation of TF information (response conditions, target genes, and sequence logos of binding motifs, etc.), (ii) co-expression profiles of TFs and their target genes under various conditions, (iii) protein-protein interactions among TFs and their co-factors, (iv) TF-target networks, and (v) downstream promoter elements. Furthermore, a dynamic transcriptional regulatory network under various conditions is provided in PlantPAN 2.0. The PlantPAN 2.0 is a systematic platform for plant promoter analysis and reconstructing transcriptional regulatory networks. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Explaining the disease phenotype of intergenic SNP through predicted long range regulation.

    PubMed

    Chen, Jingqi; Tian, Weidong

    2016-10-14

    Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Using reporter gene assays to identify cis regulatory differences between humans and chimpanzees.

    PubMed

    Chabot, Adrien; Shrit, Ralla A; Blekhman, Ran; Gilad, Yoav

    2007-08-01

    Most phenotypic differences between human and chimpanzee are likely to result from differences in gene regulation, rather than changes to protein-coding regions. To date, however, only a handful of human-chimpanzee nucleotide differences leading to changes in gene regulation have been identified. To hone in on differences in regulatory elements between human and chimpanzee, we focused on 10 genes that were previously found to be differentially expressed between the two species. We then designed reporter gene assays for the putative human and chimpanzee promoters of the 10 genes. Of seven promoters that we found to be active in human liver cell lines, human and chimpanzee promoters had significantly different activity in four cases, three of which recapitulated the gene expression difference seen in the microarray experiment. For these three genes, we were therefore able to demonstrate that a change in cis influences expression differences between humans and chimpanzees. Moreover, using site-directed mutagenesis on one construct, the promoter for the DDA3 gene, we were able to identify three nucleotides that together lead to a cis regulatory difference between the species. High-throughput application of this approach can provide a map of regulatory element differences between humans and our close evolutionary relatives.

  2. A liver enhancer in the fibrinogen gene cluster.

    PubMed

    Fort, Alexandre; Fish, Richard J; Attanasio, Catia; Dosch, Roland; Visel, Axel; Neerman-Arbez, Marguerite

    2011-01-06

    The plasma concentration of fibrinogen varies in the healthy human population between 1.5 and 3.5 g/L. Understanding the basis of this variability has clinical importance because elevated fibrinogen levels are associated with increased cardiovascular disease risk. To identify novel regulatory elements involved in the control of fibrinogen expression, we used sequence conservation and in silico-predicted regulatory potential to select 14 conserved noncoding sequences (CNCs) within the conserved block of synteny containing the fibrinogen locus. The regulatory potential of each CNC was tested in vitro using a luciferase reporter gene assay in fibrinogen-expressing hepatoma cell lines (HuH7 and HepG2). 4 potential enhancers were tested for their ability to direct enhanced green fluorescent protein expression in zebrafish embryos. CNC12, a sequence equidistant from the human fibrinogen alpha and beta chain genes, activates strong liver enhanced green fluorescent protein expression in injected embryos and their transgenic progeny. A transgenic assay in embryonic day 14.5 mouse embryos confirmed the ability of CNC12 to activate transcription in the liver. While additional experiments are necessary to prove the role of CNC12 in the regulation of fibrinogen, our study reveals a novel regulatory element in the fibrinogen locus that is active in the liver and may contribute to variable fibrinogen expression in humans.

  3. Who owns Australia's water--elements of an effective regulatory model.

    PubMed

    McKay, J

    2003-01-01

    This paper identifies and describes a number of global trends in regulatory theory and legal scholarship. It points out the huge level of complexity demanded by globalisation and the unfortunate complication of this is that there is legal indeterminacy. The legal indeterminacy springs from the desire to amend and alter existing models. That has been the thrust of the Council of Australian Governments changes to adapt and add huge amounts of complexity to a flawed system. This paper argues that an effective water regulatory model requires a fundamental re-examination of the concept of water ownership and a capturing by the State of the right to allocate rainfall. This foundation is effective and the way forward to deal with the key issues in this transition phase. The second key element to an effective regulatory model is the concept of performance-based assessment. This requires information and schemes to be set up to work out ways to monitor and evaluate the performance of the utility on selected criteria. For Australia at present there is a dire lack of agreed criteria on these key issues and these have the potential to pull apart the whole process. The key issues are indigenous rights, governance issues, public participation, alteration of pre-existing rights and incorporation of environmental requirements.

  4. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    Abstract Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8–10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. PMID:27503290

  5. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.

    PubMed

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice. Thus, the co-regulatory network analysis facilitated the identification of complex OsMYB regulatory networks, and candidate target regulon genes of selected guide MYB genes. The results contribute to the candidate gene screening, and experimentally testable hypotheses for potential regulatory MYB TFs, and their targets under stress conditions.

  6. The impact of transposable elements in environmental adaptation.

    PubMed

    Casacuberta, Elena; González, Josefa

    2013-03-01

    Transposable elements (TEs) play an important role in the responsive capacity of their hosts in the face of environmental challenges. The variety of mechanisms by which TEs influence the capacity of adaptation of the host is as large as the variety of TEs and host genomes. For example, TEs might directly affect the function of individual genes, provide a mechanism for rapidly acquiring new genetic material and disseminate regulatory elements that can lead to the creation of stress-inducible regulatory networks. In this review, we summarize recent examples that are part of an increasing body of evidence suggesting a significant role of TEs in the host response to an ever-changing environment, both in prokaryote and in eukaryote organisms. We argue that in the near future, the increasing availability of genome sequences and the development of new tools to discover and analyse TE insertions will further show the relevant role of TEs in environmental adaptation. © 2013 Blackwell Publishing Ltd.

  7. The Prx1 limb enhancers: targeted gene expression in developing zebrafish pectoral fins.

    PubMed

    Hernández-Vega, Amayra; Minguillón, Carolina

    2011-08-01

    Limbs represent an excellent model to study the induction, growth, and patterning of several organs. A breakthrough to study gene function in various tissues has been the characterization of regulatory elements that allow tissue-specific interference of gene function. The mouse Prx1 promoter has been used to generate limb-specific mutants and overexpress genes in tetrapod limbs. Although zebrafish possess advantages that favor their use to study limb morphogenesis, there is no driver described suitable for specifically interfering with gene function in developing fins. We report the generation of zebrafish lines that express enhanced green fluorescent protein (EGFP) driven by the mouse Prx1 enhancer in developing pectoral fins. We also describe the expression pattern of the zebrafish prrx1 genes and identify three conserved non-coding elements (CNEs) that we use to generate fin-specific EGFP reporter lines. Finally, we show that the mouse and zebrafish regulatory elements may be used to modify gene function in pectoral fins. Copyright © 2011 Wiley-Liss, Inc.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searchedmore » and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.« less

  9. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed Central

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-01-01

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions. Images PMID:2556266

  10. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-12-20

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions.

  11. Design of a muscle cell-specific expression vector utilising human vascular smooth muscle alpha-actin regulatory elements.

    PubMed

    Keogh, M C; Chen, D; Schmitt, J F; Dennehy, U; Kakkar, V V; Lemoine, N R

    1999-04-01

    The facility to direct tissue-specific expression of therapeutic gene constructs is desirable for many gene therapy applications. We describe the creation of a muscle-selective expression vector which supports transcription in vascular smooth muscle, cardiac muscle and skeletal muscle, while it is essentially silent in other cell types such as endothelial cells, hepatocytes and fibroblasts. Specific transcriptional regulatory elements have been identified in the human vascular smooth muscle cell (VSMC) alpha-actin gene, and used to create an expression vector which directs the expression of genes in cis to muscle cells. The vector contains an enhancer element we have identified in the 5' flanking region of the human VSMC alpha-actin gene involved in mediating VSMC expression. Heterologous pairing experiments have shown that the enhancer does not interact with the basal transcription complex recruited at the minimal SV40 early promoter. Such a vector has direct application in the modulation of VSMC proliferation associated with intimal hyperplasia/restenosis.

  12. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription

    PubMed Central

    Giorgetti, Luca; Galupa, Rafael; Nora, Elphège P.; Piolot, Tristan; Lam, France; Dekker, Job; Tiana, Guido; Heard, Edith

    2015-01-01

    Summary A new level of chromosome organization, Topologically Associating Domains (TADs), was recently uncovered by chromosome-confirmation-capture (3C) techniques. To explore TAD structure and function, we developed a polymer model that can extract the full repertoire of chromatin conformations within TADs from population-based 3C data. This model predicts actual physical distances and to what extent chromosomal contacts vary between cells. It also identifies interactions within single TADs that stabilize boundaries between TADs and allows us to identify and genetically validate key structural elements within TADs. Combining the model’s predictions with high-resolution DNA FISH and quantitative RNA FISH for TADs within the X-inactivation center (Xic), we dissect the relationship between transcription and spatial proximity to cis-regulatory elements. We demonstrate that contacts between potential regulatory elements occur in the context of fluctuating structures rather than stable loops and propose that such fluctuations may contribute to asymmetric expression in the Xic during X inactivation. PMID:24813616

  13. A post-MI power struggle: adaptations in cardiac power occur at the sarcomere level alongside MyBP-C and RLC phosphorylation.

    PubMed

    Toepfer, Christopher N; Sikkel, Markus B; Caorsi, Valentina; Vydyanath, Anupama; Torre, Iratxe; Copeland, O'Neal; Lyon, Alexander R; Marston, Steven B; Luther, Pradeep K; Macleod, Kenneth T; West, Timothy G; Ferenczi, Michael A

    2016-08-01

    Myocardial remodeling in response to chronic myocardial infarction (CMI) progresses through two phases, hypertrophic "compensation" and congestive "decompensation." Nothing is known about the ability of uninfarcted myocardium to produce force, velocity, and power during these clinical phases, even though adaptation in these regions likely drives progression of compensation. We hypothesized that enhanced cross-bridge-level contractility underlies mechanical compensation and is controlled in part by changes in the phosphorylation states of myosin regulatory proteins. We induced CMI in rats by left anterior descending coronary artery ligation. We then measured mechanical performance in permeabilized ventricular trabecula taken distant from the infarct zone and assayed myosin regulatory protein phosphorylation in each individual trabecula. During full activation, the compensated myocardium produced twice as much power and 31% greater isometric force compared with noninfarcted controls. Isometric force during submaximal activations was raised >2.4-fold, while power was 2-fold greater. Electron and confocal microscopy demonstrated that these mechanical changes were not a result of increased density of contractile protein and therefore not an effect of tissue hypertrophy. Hence, sarcomere-level contractile adaptations are key determinants of enhanced trabecular mechanics and of the overall cardiac compensatory response. Phosphorylation of myosin regulatory light chain (RLC) increased and remained elevated post-MI, while phosphorylation of myosin binding protein-C (MyBP-C) was initially depressed but then increased as the hearts became decompensated. These sensitivities to CMI are in accordance with phosphorylation-dependent regulatory roles for RLC and MyBP-C in crossbridge function and with compensatory adaptation in force and power that we observed in post-CMI trabeculae. Copyright © 2016 the American Physiological Society.

  14. Gender differences in landmark learning for virtual navigation: the role of distance to a goal.

    PubMed

    Chamizo, V D; Artigas, A A; Sansa, J; Banterla, F

    2011-09-01

    We used a new virtual program in two experiments to prepare subjects to perform the Morris water task (www.nesplora.com). The subjects were Psychology students; they were trained to locate a safe platform amidst the presence of four pinpoint landmarks spaced around the edge of the pool (i.e., two landmarks relatively near the platform and two landmarks relatively distant away from it). At the end of the training phase, we administered one test trial without the platform and recorded the amount of time that the students had spent in the platform quadrant. In Experiment 1, we conducted the test trial in the presence of one or two of the distant landmarks. When only one landmark was present during testing, performance fell to chance. However, the men outperformed the women when the two distant landmarks were both present. Experiment 2 replicated the previous results and extended it by showing that no sex differences exist when the searching process is based on the near landmarks. Both the men and the women had similarly good performances when the landmarks were present both individually and together. When present together, an addition effect was found. Far landmark tests favor configural learning processes, whereas near landmark tests favor elemental learning. Our findings suggest that other factors in addition to the use of directional cues can underlie the sex differences in the spatial learning process. Thus, we expand upon previous research in the field. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Bacteria may contribute to distant species recognition in ant-aphid mutualistic relationships.

    PubMed

    Fischer, Christophe Y; Detrain, Claire; Thonart, Philippe; Haubruge, Eric; Francis, Frédéric; Verheggen, François J; Lognay, Georges C

    2017-04-01

    Mutualistic interactions between ant and aphid species have been the subject of considerable historical and contemporary investigations, the primary benefits being cleaning and protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remained, however, as to the volatile semiochemical factor influencing this relationship. A recent study highlighted the role of bacterial honeydew volatile compounds in ant attraction. Here, ant's ability to distantly discriminate 2 aphid species was investigated based on bacterial honeydew semiochemicals emissions using a two-way olfactometer. Both the mutualistic aphid Aphis fabae L. and the nonmyrmecophilous aphid Acyrthosiphon pisum Harris were found to be attractive for the ant Lasius niger L. The level of attraction was similar in both assays (control vs. one of the aphid species). However, when given a choice between these 2 aphid species, ants showed a significant preference for Aphis fabae. Honeydew volatiles, mostly from bacterial origins, are known to be a key element in ant attraction. Using the same olfactometry protocol, the relative attractiveness of volatiles emitted by honeydews collected from each aphid species and by bacteria isolated from each honeydew was investigated. Again, ants significantly preferred volatiles released by Aphis fabae honeydew and bacteria. This information suggests that microbial honeydew volatiles enable ants to distantly discriminate aphid species. These results strengthen the interest of studying the occurrence and potential impact of microorganisms in insect symbioses. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  16. Investigating the Control of Chlorophyll Degradation by Genomic Correlation Mining.

    PubMed

    Ghandchi, Frederick P; Caetano-Anolles, Gustavo; Clough, Steven J; Ort, Donald R

    2016-01-01

    Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulated. The primary regulatory step in the chlorophyll degradation pathway involves the enzyme pheophorbide a oxygenase (PAO), which oxidizes the chlorophyll intermediate pheophorbide a, that is eventually converted to non-fluorescent chlorophyll catabolites. There is evidence that PAO is differentially regulated across different environmental and developmental conditions with both transcriptional and post-transcriptional components, but the involved regulatory elements are uncertain or unknown. We hypothesized that transcription factors modulate PAO expression across different environmental conditions, such as cold and drought, as well as during developmental transitions to leaf senescence and maturation of green seeds. To test these hypotheses, several sets of Arabidopsis genomic and bioinformatic experiments were investigated and re-analyzed using computational approaches. PAO expression was compared across varied environmental conditions in the three separate datasets using regression modeling and correlation mining to identify gene elements co-expressed with PAO. Their functions were investigated as candidate upstream transcription factors or other regulatory elements that may regulate PAO expression. PAO transcript expression was found to be significantly up-regulated in warm conditions, during leaf senescence, and in drought conditions, and in all three conditions significantly positively correlated with expression of transcription factor Arabidopsis thaliana activating factor 1 (ATAF1), suggesting that ATAF1 is triggered in the plant response to these processes or abiotic stresses and in result up-regulates PAO expression. The proposed regulatory network includes the freezing, senescence, and drought stresses modulating factor ATAF1 and various other transcription factors and pathways, which in turn act to regulate chlorophyll degradation by up-regulating PAO expression.

  17. Divergent genome evolution caused by regional variation in DNA gain and loss between human and mouse

    PubMed Central

    Kortschak, R. Daniel

    2018-01-01

    The forces driving the accumulation and removal of non-coding DNA and ultimately the evolution of genome size in complex organisms are intimately linked to genome structure and organisation. Our analysis provides a novel method for capturing the regional variation of lineage-specific DNA gain and loss events in their respective genomic contexts. To further understand this connection we used comparative genomics to identify genome-wide individual DNA gain and loss events in the human and mouse genomes. Focusing on the distribution of DNA gains and losses, relationships to important structural features and potential impact on biological processes, we found that in autosomes, DNA gains and losses both followed separate lineage-specific accumulation patterns. However, in both species chromosome X was particularly enriched for DNA gain, consistent with its high L1 retrotransposon content required for X inactivation. We found that DNA loss was associated with gene-rich open chromatin regions and DNA gain events with gene-poor closed chromatin regions. Additionally, we found that DNA loss events tended to be smaller than DNA gain events suggesting that they were able to accumulate in gene-rich open chromatin regions due to their reduced capacity to interrupt gene regulatory architecture. GO term enrichment showed that mouse loss hotspots were strongly enriched for terms related to developmental processes. However, these genes were also located in regions with a high density of conserved elements, suggesting that despite high levels of DNA loss, gene regulatory architecture remained conserved. This is consistent with a model in which DNA gain and loss results in turnover or “churning” in regulatory element dense regions of open chromatin, where interruption of regulatory elements is selected against. PMID:29677183

  18. QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks

    PubMed Central

    Thibodeau, Asa; Márquez, Eladio J.; Luo, Oscar; Ruan, Yijun; Shin, Dong-Guk; Stitzel, Michael L.; Ucar, Duygu

    2016-01-01

    Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. AVAILABILITY: QuIN’s web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/. PMID:27336171

  19. CisMiner: Genome-Wide In-Silico Cis-Regulatory Module Prediction by Fuzzy Itemset Mining

    PubMed Central

    Navarro, Carmen; Lopez, Francisco J.; Cano, Carlos; Garcia-Alcalde, Fernando; Blanco, Armando

    2014-01-01

    Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by the user. PMID:25268582

  20. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    PubMed

    Zhou, Xionghui; Liu, Juan

    2014-01-01

    Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene signature for phenotypic change.

  1. Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus

    PubMed Central

    Sundaram, Vasavi; Choudhary, Mayank N. K.; Pehrsson, Erica; Xing, Xiaoyun; Fiore, Christopher; Pandey, Manishi; Maricque, Brett; Udawatta, Methma; Ngo, Duc; Chen, Yujie; Paguntalan, Asia; Ray, Tammy; Hughes, Ava; Cohen, Barak A.; Wang, Ting

    2017-01-01

    Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome. PMID:28348391

  2. Interstellar Gas-phase Element Depletions in the Small Magellanic Cloud: A Guide to Correcting for Dust in QSO Absorption Line Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Edward B.; Wallerstein, George, E-mail: ebj@astro.princeton.edu, E-mail: walleg@u.washington.edu

    We present data on the gas-phase abundances for 9 different elements in the interstellar medium of the Small Magellanic Cloud (SMC), based on the strengths of ultraviolet absorption features over relevant velocities in the spectra of 18 stars within the SMC. From this information and the total abundances defined by the element fractions in young stars in the SMC, we construct a general interpretation on how these elements condense into solid form onto dust grains. As a group, the elements Si, S, Cr, Fe, Ni, and Zn exhibit depletion sequences similar to those in the local part of our Galaxymore » defined by Jenkins. The elements Mg and Ti deplete less rapidly in the SMC than in the Milky Way, and Mn depletes more rapidly. We speculate that these differences might be explained by the different chemical affinities to different existing grain substrates. For instance, there is evidence that the mass fractions of polycyclic aromatic hydrocarbons in the SMC are significantly lower than those in the Milky Way. We propose that the depletion sequences that we observed for the SMC may provide a better model for interpreting the element abundances in low-metallicity Damped Lyman Alpha (DLA) and sub-DLA absorption systems that are recorded in the spectra of distant quasars and gamma-ray burst afterglows.« less

  3. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome

    PubMed Central

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-01-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. PMID:27401230

  4. SET1A/COMPASS and shadow enhancers in the regulation of homeotic gene expression

    PubMed Central

    Cao, Kaixiang; Collings, Clayton K.; Marshall, Stacy A.; Morgan, Marc A.; Rendleman, Emily J.; Wang, Lu; Sze, Christie C.; Sun, Tianjiao; Bartom, Elizabeth T.; Shilatifard, Ali

    2017-01-01

    The homeotic (Hox) genes are highly conserved in metazoans, where they are required for various processes in development, and misregulation of their expression is associated with human cancer. In the developing embryo, Hox genes are activated sequentially in time and space according to their genomic position within Hox gene clusters. Accumulating evidence implicates both enhancer elements and noncoding RNAs in controlling this spatiotemporal expression of Hox genes, but disentangling their relative contributions is challenging. Here, we identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Simultaneous deletion of these shadow enhancers in embryonic stem cells leads to impaired activation of HoxA genes upon differentiation, while knockdown of a long noncoding RNA overlapping E1 has no detectable effect on their expression. Although MLL/COMPASS (complex of proteins associated with Set1) family of histone methyltransferases is known to activate transcription of Hox genes in other contexts, we found that individual inactivation of the MLL1-4/COMPASS family members has little effect on early Hox gene activation. Instead, we demonstrate that SET1A/COMPASS is required for full transcriptional activation of multiple Hox genes but functions independently of the E1 and E2 cis-regulatory elements. Our results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development. PMID:28487406

  5. The Membrane-Bound NAC Transcription Factor ANAC013 Functions in Mitochondrial Retrograde Regulation of the Oxidative Stress Response in Arabidopsis[C][W

    PubMed Central

    De Clercq, Inge; Vermeirssen, Vanessa; Van Aken, Olivier; Vandepoele, Klaas; Murcha, Monika W.; Law, Simon R.; Inzé, Annelies; Ng, Sophia; Ivanova, Aneta; Rombaut, Debbie; van de Cotte, Brigitte; Jaspers, Pinja; Van de Peer, Yves; Kangasjärvi, Jaakko; Whelan, James; Van Breusegem, Frank

    2013-01-01

    Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely candidate signaling molecules for MRR, the protein signaling components in plants remain largely unknown. Through meta-analysis of transcriptome data, we detected a set of genes that are common and robust targets of MRR and used them as a bait to identify its transcriptional regulators. In the upstream regions of these mitochondrial dysfunction stimulon (MDS) genes, we found a cis-regulatory element, the mitochondrial dysfunction motif (MDM), which is necessary and sufficient for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid analysis and electrophoretic mobility shift assays revealed that the transmembrane domain–containing NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 mediates MRR-induced expression of the MDS genes by direct interaction with the MDM cis-regulatory element and triggers increased oxidative stress tolerance. In conclusion, we characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana. PMID:24045019

  6. HiView: an integrative genome browser to leverage Hi-C results for the interpretation of GWAS variants.

    PubMed

    Xu, Zheng; Zhang, Guosheng; Duan, Qing; Chai, Shengjie; Zhang, Baqun; Wu, Cong; Jin, Fulai; Yue, Feng; Li, Yun; Hu, Ming

    2016-03-11

    Genome-wide association studies (GWAS) have identified thousands of genetic variants associated with complex traits and diseases. However, most of them are located in the non-protein coding regions, and therefore it is challenging to hypothesize the functions of these non-coding GWAS variants. Recent large efforts such as the ENCODE and Roadmap Epigenomics projects have predicted a large number of regulatory elements. However, the target genes of these regulatory elements remain largely unknown. Chromatin conformation capture based technologies such as Hi-C can directly measure the chromatin interactions and have generated an increasingly comprehensive catalog of the interactome between the distal regulatory elements and their potential target genes. Leveraging such information revealed by Hi-C holds the promise of elucidating the functions of genetic variants in human diseases. In this work, we present HiView, the first integrative genome browser to leverage Hi-C results for the interpretation of GWAS variants. HiView is able to display Hi-C data and statistical evidence for chromatin interactions in genomic regions surrounding any given GWAS variant, enabling straightforward visualization and interpretation. We believe that as the first GWAS variants-centered Hi-C genome browser, HiView is a useful tool guiding post-GWAS functional genomics studies. HiView is freely accessible at: http://www.unc.edu/~yunmli/HiView .

  7. A Genome-Wide Identification of the WRKY Family Genes and a Survey of Potential WRKY Target Genes in Dendrobium officinale.

    PubMed

    He, Chunmei; Teixeira da Silva, Jaime A; Tan, Jianwen; Zhang, Jianxia; Pan, Xiaoping; Li, Mingzhi; Luo, Jianping; Duan, Jun

    2017-08-23

    The WRKY family, one of the largest families of transcription factors, plays important roles in the regulation of various biological processes, including growth, development and stress responses in plants. In the present study, 63 DoWRKY genes were identified from the Dendrobium officinale genome. These were classified into groups I, II, III and a non-group, each with 14, 28, 10 and 11 members, respectively. ABA-responsive, sulfur-responsive and low temperature-responsive elements were identified in the 1-k upstream regulatory region of DoWRKY genes. Subsequently, the expression of the 63 DoWRKY genes under cold stress was assessed, and the expression profiles of a large number of these genes were regulated by low temperature in roots and stems. To further understand the regulatory mechanism of DoWRKY genes in biological processes, potential WRKY target genes were investigated. Among them, most stress-related genes contained multiple W-box elements in their promoters. In addition, the genes involved in polysaccharide synthesis and hydrolysis contained W-box elements in their 1-k upstream regulatory regions, suggesting that DoWRKY genes may play a role in polysaccharide metabolism. These results provide a basis for investigating the function of WRKY genes and help to understand the downstream regulation network in plants within the Orchidaceae.

  8. Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis

    PubMed Central

    Liu, Donglin; Brockman, J. Michael; Dass, Brinda; Hutchins, Lucie N.; Singh, Priyam; McCarrey, John R.; MacDonald, Clinton C.; Graber, Joel H.

    2007-01-01

    Gene expression and processing during mouse male germ cell maturation (spermatogenesis) is highly specialized. Previous reports have suggested that there is a high incidence of alternative 3′-processing in male germ cell mRNAs, including reduced usage of the canonical polyadenylation signal, AAUAAA. We used EST libraries generated from mouse testicular cells to identify 3′-processing sites used at various stages of spermatogenesis (spermatogonia, spermatocytes and round spermatids) and testicular somatic Sertoli cells. We assessed differences in 3′-processing characteristics in the testicular samples, compared to control sets of widely used 3′-processing sites. Using a new method for comparison of degenerate regulatory elements between sequence samples, we identified significant changes in the use of putative 3′-processing regulatory sequence elements in all spermatogenic cell types. In addition, we observed a trend towards truncated 3′-untranslated regions (3′-UTRs), with the most significant differences apparent in round spermatids. In contrast, Sertoli cells displayed a much smaller trend towards 3′-UTR truncation and no significant difference in 3′-processing regulatory sequences. Finally, we identified a number of genes encoding mRNAs that were specifically subject to alternative 3′-processing during meiosis and postmeiotic development. Our results highlight developmental differences in polyadenylation site choice and in the elements that likely control them during spermatogenesis. PMID:17158511

  9. How to make stripes: deciphering the transition from non-periodic to periodic patterns in Drosophila segmentation

    PubMed Central

    Schroeder, Mark D.; Greer, Christina; Gaul, Ulrike

    2011-01-01

    The generation of metameric body plans is a key process in development. In Drosophila segmentation, periodicity is established rapidly through the complex transcriptional regulation of the pair-rule genes. The ‘primary’ pair-rule genes generate their 7-stripe expression through stripe-specific cis-regulatory elements controlled by the preceding non-periodic maternal and gap gene patterns, whereas ‘secondary’ pair-rule genes are thought to rely on 7-stripe elements that read off the already periodic primary pair-rule patterns. Using a combination of computational and experimental approaches, we have conducted a comprehensive systems-level examination of the regulatory architecture underlying pair-rule stripe formation. We find that runt (run), fushi tarazu (ftz) and odd skipped (odd) establish most of their pattern through stripe-specific elements, arguing for a reclassification of ftz and odd as primary pair-rule genes. In the case of run, we observe long-range cis-regulation across multiple intervening genes. The 7-stripe elements of run, ftz and odd are active concurrently with the stripe-specific elements, indicating that maternal/gap-mediated control and pair-rule gene cross-regulation are closely integrated. Stripe-specific elements fall into three distinct classes based on their principal repressive gap factor input; stripe positions along the gap gradients correlate with the strength of predicted input. The prevalence of cis-elements that generate two stripes and their genomic organization suggest that single-stripe elements arose by splitting and subfunctionalization of ancestral dual-stripe elements. Overall, our study provides a greatly improved understanding of how periodic patterns are established in the Drosophila embryo. PMID:21693522

  10. Transcriptional switches in the control of macronutrient metabolism.

    PubMed

    Wise, Alan

    2008-06-01

    This review shows how some transcription factors respond to alterations in macronutrients. Carbohydrates induce enzymes for their metabolism and fatty acid synthesis. Fatty acids reduce carbohydrate processing, induce enzymes for their metabolism, and increase both gluconeogenesis and storage of fat. Fat stores help control carbohydrate uptake by other cells. The following main transcription factors are discussed: carbohydrate response element-binding protein; sterol regulatory element-binding protein-1c, cyclic AMP response element-binding protein, peroxisome proliferator-activated receptor-alpha, and peroxisome proliferator-activated receptor-gamma.

  11. Transforming Child and Youth Mental Health Care via Innovative Technological Solutions.

    PubMed

    Pepler, Antonio; Boydell, Katherine M; Teshima, John; Volpe, Tiziana; Braunberger, Peter G; Minden, Debbie

    2011-01-01

    Live interactive videoconferencing and other technologies offer innovative opportunities for effective delivery of specialized child and adolescent mental health services. In this article, an example of a comprehensive telepsychiatry program is presented to highlight a variety of capacity-building initiatives that are responsive to community needs and cultures; these initiatives are allowing children, youth and caregivers to access otherwise-distant specialist services within their home communities. Committed, enthusiastic champions, adequate funding and infrastructure, creativity and a positive attitude represent key elements in the adaptation of this demonstrated user-friendly modality.

  12. Remote preparation of an atomic quantum memory.

    PubMed

    Rosenfeld, Wenjamin; Berner, Stefan; Volz, Jürgen; Weber, Markus; Weinfurter, Harald

    2007-02-02

    Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%.

  13. Viral infection upregulates myostatin promoter activity in orange-spotted grouper (Epinephelus coioides)

    PubMed Central

    Chen, Yi-Tien; Lin, Chao-Fen; Chen, Young-Mao; Lo, Chih-En; Chen, Wan-Erh

    2017-01-01

    Myostatin is a negative regulator of myogenesis and has been suggested to be an important factor in the development of muscle wasting during viral infection. The objective of this study was to characterize the main regulatory element of the grouper myostatin promoter and to study changes in promoter activity due to viral stimulation. In vitro and in vivo experiments indicated that the E-box E6 is a positive cis-and trans-regulation motif, and an essential binding site for MyoD. In contrast, the E-box E5 is a dominant negative cis-regulatory. The characteristics of grouper myostatin promoter are similar in regulation of muscle growth to that of other species, but mainly through specific regulatory elements. According to these results, we conducted a study to investigate the effect of viral infection on myostatin promoter activity and its regulation. The nervous necrosis virus (NNV) treatment significantly induced myostatin promoter activity. The present study is the first report describing that specific myostatin motifs regulate promoter activity and response to viral infection. PMID:29036192

  14. Viral infection upregulates myostatin promoter activity in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Chen, Yi-Tien; Lin, Chao-Fen; Chen, Young-Mao; Lo, Chih-En; Chen, Wan-Erh; Chen, Tzong-Yueh

    2017-01-01

    Myostatin is a negative regulator of myogenesis and has been suggested to be an important factor in the development of muscle wasting during viral infection. The objective of this study was to characterize the main regulatory element of the grouper myostatin promoter and to study changes in promoter activity due to viral stimulation. In vitro and in vivo experiments indicated that the E-box E6 is a positive cis-and trans-regulation motif, and an essential binding site for MyoD. In contrast, the E-box E5 is a dominant negative cis-regulatory. The characteristics of grouper myostatin promoter are similar in regulation of muscle growth to that of other species, but mainly through specific regulatory elements. According to these results, we conducted a study to investigate the effect of viral infection on myostatin promoter activity and its regulation. The nervous necrosis virus (NNV) treatment significantly induced myostatin promoter activity. The present study is the first report describing that specific myostatin motifs regulate promoter activity and response to viral infection.

  15. Cyclosporin A and FK-506 both affect DNA binding of regulatory nuclear proteins to the human interleukin-2 promoter.

    PubMed

    Baumann, G; Geisse, S; Sullivan, M

    1991-03-01

    The structurally unrelated immunosuppressive drugs cyclosporin A (Sandimmun) and FK-506 both interfere with the process of T-cell proliferation by blocking the transcription of the T-cell growth factor interleukin-2 (IL-2). Here we demonstrate that the transcriptional activation of this gene requires the binding of regulatory nuclear proteins to a promoter element with sequence similarity to the consensus binding site for NF-kappa B-related transcription factors. We present evidence that the binding by regulatory nuclear proteins to the kappa B element of the IL-2 promoter is affected negatively by cyclosporin A and FK-506 at concentrations paralleling their immunosuppressive activity in vivo. The decrease in DNA-protein complex formation induced by the immunosuppressive drugs correlates with a decrease in IL-2 production. FK-506 is 10 to 100 times more potent than cyclosporin A in its ability to inhibit sequence-specific DNA binding and IL-2 production. Our findings suggest that the actions of both drugs converge at the level of DNA-protein interaction.

  16. Architectural and functional commonalities between enhancers and promoters

    PubMed Central

    Kim, Tae-Kyung; Shiekhattar, Ramin

    2015-01-01

    Summary With the explosion of genome-wide studies of regulated transcription, it has become clear that traditional definitions of enhancers and promoters need to be revisited. These control elements can now be characterized in terms of their local and regional architecture, their regulatory components including histone modifications and associated binding factors and their functional contribution to transcription. This review discusses unifying themes between promoters and enhancers in transcriptional regulatory mechanisms. PMID:26317464

  17. Data-Driven Discovery of Extravasation Pathway in Circulating Tumor Cells

    PubMed Central

    Yadavalli, S.; Jayaram, S.; Manda, S. S.; Madugundu, A. K.; Nayakanti, D. S.; Tan, T. Z.; Bhat, R.; Rangarajan, A.; Chatterjee, A.; Gowda, H.; Thiery, J. P.; Kumar, P.

    2017-01-01

    Circulating tumor cells (CTCs) play a crucial role in cancer dissemination and provide a promising source of blood-based markers. Understanding the spectrum of transcriptional profiles of CTCs and their corresponding regulatory mechanisms will allow for a more robust analysis of CTC phenotypes. The current challenge in CTC research is the acquisition of useful clinical information from the multitude of high-throughput studies. To gain a deeper understanding of CTC heterogeneity and identify genes, pathways and processes that are consistently affected across tumors, we mined the literature for gene expression profiles in CTCs. Through in silico analysis and the integration of CTC-specific genes, we found highly significant biological mechanisms and regulatory processes acting in CTCs across various cancers, with a particular enrichment of the leukocyte extravasation pathway. This pathway appears to play a pivotal role in the migration of CTCs to distant metastatic sites. We find that CTCs from multiple cancers express both epithelial and mesenchymal markers in varying amounts, which is suggestive of dynamic and hybrid states along the epithelial-mesenchymal transition (EMT) spectrum. Targeting the specific molecular nodes to monitor disease and therapeutic control of CTCs in real time will likely improve the clinical management of cancer progression and metastases. PMID:28262832

  18. Food Crises and Food Safety Incidents in European Union, United States, and Maghreb Area: Current Risk Communication Strategies and New Approaches.

    PubMed

    Chammem, Nadia; Issaoui, Manel; De Almeida, Ana Isabel Dâmaso; Delgado, Amélia Martins

    2018-03-22

    Globalization has created a dynamic market, which has dramatically intensified interchanges of goods and information as well as the flow of people among nations. This international phenomenon offers the consumer a choice between a wide variety of foods from diverse locations. However, there are challenges to improving food security and safety on a global scale; the major question is how food safety can be guaranteed while increasing the complexity of food supply chains. A food produced in a certain location usually contains ingredients, additives, and preservatives from different and distant origins. Although countries take several food control measures, their institutional and regulatory frameworks diverge widely, as do the definitions of food crisis, food incidents, and risk management approaches. The present review discusses some past food safety issues and lessons learned. Convergences and differences in the regulatory framework of food control agencies in different regions of the world are herein revealed. Emerging risks are also discussed, particularly the spread of antibiotic resistance in the food chain and the environment, as well as the rise of new antibiotic-resistant pathogenic strains with broader tolerance to environmental factors.

  19. Signal Correlations in Ecological Niches Can Shape the Organization and Evolution of Bacterial Gene Regulatory Networks

    PubMed Central

    Dufour, Yann S.; Donohue, Timothy J.

    2015-01-01

    Transcriptional regulation plays a significant role in the biological response of bacteria to changing environmental conditions. Therefore, mapping transcriptional regulatory networks is an important step not only in understanding how bacteria sense and interpret their environment but also to identify the functions involved in biological responses to specific conditions. Recent experimental and computational developments have facilitated the characterization of regulatory networks on a genome-wide scale in model organisms. In addition, the multiplication of complete genome sequences has encouraged comparative analyses to detect conserved regulatory elements and infer regulatory networks in other less well-studied organisms. However, transcription regulation appears to evolve rapidly, thus, creating challenges for the transfer of knowledge to nonmodel organisms. Nevertheless, the mechanisms and constraints driving the evolution of regulatory networks have been the subjects of numerous analyses, and several models have been proposed. Overall, the contributions of mutations, recombination, and horizontal gene transfer are complex. Finally, the rapid evolution of regulatory networks plays a significant role in the remarkable capacity of bacteria to adapt to new or changing environments. Conversely, the characteristics of environmental niches determine the selective pressures and can shape the structure of regulatory network accordingly. PMID:23046950

  20. [Effects of functional interactions between nonhomologous insulators Wari and Su(Hw)].

    PubMed

    Erokhin, M M; Georgiev, P G; Chetverina, D A

    2010-01-01

    Insulators are regulatory DNA elements restricting gene activation by enhancers. Interactions between insulators can lead to both insulation and activation of promoters by enhancers. In this work, we analyzed the effects of interaction of two Drosophila insulators, Wari and Su(Hw). The functional interaction between these insulators was found to enhance the activity of the Su(Hw) insulator only, but not of the Wari insulator. This suggests that the formation of a chromatin loop between interacting insulators is not a key factor for enhancement of insulation, which is in disagreement with the main idea of structural models. In addition, the effect of interaction between Wari and Su(Hw) depends on a distance between them and on the position in the system relative to other regulatory elements.

  1. Co-Option and De Novo Gene Evolution Underlie Molluscan Shell Diversity

    PubMed Central

    Aguilera, Felipe; McDougall, Carmel

    2017-01-01

    Abstract Molluscs fabricate shells of incredible diversity and complexity by localized secretions from the dorsal epithelium of the mantle. Although distantly related molluscs express remarkably different secreted gene products, it remains unclear if the evolution of shell structure and pattern is underpinned by the differential co-option of conserved genes or the integration of lineage-specific genes into the mantle regulatory program. To address this, we compare the mantle transcriptomes of 11 bivalves and gastropods of varying relatedness. We find that each species, including four Pinctada (pearl oyster) species that diverged within the last 20 Ma, expresses a unique mantle secretome. Lineage- or species-specific genes comprise a large proportion of each species’ mantle secretome. A majority of these secreted proteins have unique domain architectures that include repetitive, low complexity domains (RLCDs), which evolve rapidly, and have a proclivity to expand, contract and rearrange in the genome. There are also a large number of secretome genes expressed in the mantle that arose before the origin of gastropods and bivalves. Each species expresses a unique set of these more ancient genes consistent with their independent co-option into these mantle gene regulatory networks. From this analysis, we infer lineage-specific secretomes underlie shell diversity, and include both rapidly evolving RLCD-containing proteins, and the continual recruitment and loss of both ancient and recently evolved genes into the periphery of the regulatory network controlling gene expression in the mantle epithelium. PMID:28053006

  2. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex.

    PubMed

    Kyrchanova, Olga; Mogila, Vladic; Wolle, Daniel; Deshpande, Girish; Parshikov, Alexander; Cléard, Fabienne; Karch, Francois; Schedl, Paul; Georgiev, Pavel

    2016-07-01

    Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors.

  3. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex

    PubMed Central

    Wolle, Daniel; Deshpande, Girish; Parshikov, Alexander; Cléard, Fabienne; Karch, Francois; Schedl, Paul; Georgiev, Pavel

    2016-01-01

    Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors. PMID:27428541

  4. Common themes and differences in SAM recognition among SAM riboswitches

    PubMed Central

    Price, Ian R.; Grigg, Jason C.; Ke, Ailong

    2014-01-01

    The recent discovery of short cis-acting RNA elements termed riboswitches has caused a paradigm shift in our understanding of genetic regulatory mechanisms. The three distinct superfamilies of S-adenosyl-L-methionine (SAM) riboswitches are the most commonly found riboswitch classes in nature. These RNAs represent three independent evolutionary solutions to achieve specific SAM recognition. This review summarizes research on 1) modes of gene regulatory mechanisms, 2) common themes and differences in ligand recognition, and 3) ligand-induced conformational dynamics among SAM riboswitch families. The body of work on the SAM riboswitch families constitutes a useful primer to the topic of gene regulatory RNAs as a whole. PMID:24863160

  5. Evolution of Two Short Interspersed Elements in Callorhinchus milii (Chondrichthyes, Holocephali) and Related Elements in Sharks and the Coelacanth

    PubMed Central

    Plazzi, Federico; Mantovani, Barbara

    2017-01-01

    Abstract Short interspersed elements (SINEs) are non-autonomous retrotransposons. Although they usually show fast evolutionary rates, in some instances highly conserved domains (HCDs) have been observed in elements with otherwise divergent sequences and from distantly related species. Here, we document the life history of two HCD-SINE families in the elephant shark Callorhinchus milii, one specific to the holocephalan lineage (CmiSINEs) and another one (SacSINE1-CM) with homologous elements in sharks and the coelacanth (SacSINE1s, LmeSINE1s). The analyses of their relationships indicated that these elements share the same 3′-tail, which would have allowed both elements to rise to high copy number by exploiting the C. milii L2-2_CM long interspersed element (LINE) enzymes. Molecular clock analysis on SINE activity in C. milii genome evidenced two replication bursts occurring right after two major events in the holocephalan evolution: the end-Permian mass extinction and the radiation of modern Holocephali. Accordingly, the same analysis on the coelacanth homologous elements, LmeSINE1, identified a replication wave close to the split age of the two extant Latimeria species. The genomic distribution of the studied SINEs pointed out contrasting results: some elements were preferentially sorted out from gene regions, but accumulated in flanking regions, while others appear more conserved within genes. Moreover, data from the C. milii transcriptome suggest that these SINEs could be involved in miRNA biogenesis and may be targets for miRNA-based regulation. PMID:28505260

  6. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae

    PubMed Central

    Mukherjee, Munmun; Kakarla, Prathusha; Kumar, Sanath; Gonzalez, Esmeralda; Floyd, Jared T.; Inupakutika, Madhuri; Devireddy, Amith Reddy; Tirrell, Selena R.; Bruns, Merissa; He, Guixin; Lindquist, Ingrid E.; Sundararajan, Anitha; Schilkey, Faye D.; Mudge, Joann; Varela, Manuel F.

    2015-01-01

    Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain, in order to identify novel genes potentially responsible for virulence. In this study, we compared the whole genome of the non-O1 PS15 strain to the whole genomes of toxigenic serotypes at the phylogenetic level, and found that the PS15 genome was distantly related to those of toxigenic V. cholerae. Thus we focused on a detailed gene comparison between PS15 and the distantly related O1 V. cholerae N16961. Based on sequence alignment we tentatively assigned chromosome numbers 1 and 2 to elements within the genome of non-O1 V. cholerae PS15. Further, we found that PS15 and O1 V. cholerae N16961 shared 98% identity and 766 genes, but of the genes present in N16961 that were missing in the non-O1 V. cholerae PS15 genome, 56 were predicted to encode not only for virulence–related genes (colonization, antimicrobial resistance, and regulation of persister cells) but also genes involved in the metabolic biosynthesis of lipids, nucleosides and sulfur compounds. Additionally, we found 113 genes unique to PS15 that were predicted to encode other properties related to virulence, disease, defense, membrane transport, and DNA metabolism. Here, we identified distinctive and novel genomic elements between O1 and non-O1 V. cholerae genomes as potential virulence factors and, thus, targets for future therapeutics. Modulation of such novel targets may eventually enhance eradication efforts of endemic and pandemic disease cholera in afflicted nations. PMID:25722857

  7. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae.

    PubMed

    Mukherjee, Munmun; Kakarla, Prathusha; Kumar, Sanath; Gonzalez, Esmeralda; Floyd, Jared T; Inupakutika, Madhuri; Devireddy, Amith Reddy; Tirrell, Selena R; Bruns, Merissa; He, Guixin; Lindquist, Ingrid E; Sundararajan, Anitha; Schilkey, Faye D; Mudge, Joann; Varela, Manuel F

    Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain, in order to identify novel genes potentially responsible for virulence. In this study, we compared the whole genome of the non-O1 PS15 strain to the whole genomes of toxigenic serotypes at the phylogenetic level, and found that the PS15 genome was distantly related to those of toxigenic V. cholerae . Thus we focused on a detailed gene comparison between PS15 and the distantly related O1 V. cholerae N16961. Based on sequence alignment we tentatively assigned chromosome numbers 1 and 2 to elements within the genome of non-O1 V. cholerae PS15. Further, we found that PS15 and O1 V. cholerae N16961 shared 98% identity and 766 genes, but of the genes present in N16961 that were missing in the non-O1 V. cholerae PS15 genome, 56 were predicted to encode not only for virulence-related genes (colonization, antimicrobial resistance, and regulation of persister cells) but also genes involved in the metabolic biosynthesis of lipids, nucleosides and sulfur compounds. Additionally, we found 113 genes unique to PS15 that were predicted to encode other properties related to virulence, disease, defense, membrane transport, and DNA metabolism. Here, we identified distinctive and novel genomic elements between O1 and non-O1 V. cholerae genomes as potential virulence factors and, thus, targets for future therapeutics. Modulation of such novel targets may eventually enhance eradication efforts of endemic and pandemic disease cholera in afflicted nations.

  8. Mammalian genomic regulatory regions predicted by utilizing human genomics, transcriptomics, and epigenetics data

    PubMed Central

    Nguyen, Quan H; Tellam, Ross L; Naval-Sanchez, Marina; Porto-Neto, Laercio R; Barendse, William; Reverter, Antonio; Hayes, Benjamin; Kijas, James; Dalrymple, Brian P

    2018-01-01

    Abstract Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets. PMID:29618048

  9. Mammalian genomic regulatory regions predicted by utilizing human genomics, transcriptomics, and epigenetics data.

    PubMed

    Nguyen, Quan H; Tellam, Ross L; Naval-Sanchez, Marina; Porto-Neto, Laercio R; Barendse, William; Reverter, Antonio; Hayes, Benjamin; Kijas, James; Dalrymple, Brian P

    2018-03-01

    Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets.

  10. Evolution of vertebrate sex chromosomes and dosage compensation.

    PubMed

    Graves, Jennifer A Marshall

    2016-01-01

    Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.

  11. Deep Time Iterations: Familiarity, Horizons, and Pattern among Finland's Nuclear Waste Safety Experts

    NASA Astrophysics Data System (ADS)

    Ialenti, Vincent Francis

    This ethnography reconsiders nuclear waste risk's deep time horizons' often-sensationalized aesthetics of horror, sublimity, and awe. It does so by tracking how Finland's nuclear energy and waste experts made visions of distant future Finlands appear more intelligible through mundane corporate, regulatory, financial, and technoscientific practices. Each chapter unpacks how informants iterated and reiterated traces of the very familiar to establish shared grounds of continuity for moving forward in time. Chapter 1 explores how Finland's energy sector's "mankala" cooperative corporate form was iterated and reiterated to give shape to political and financial time horizons. Chapter 2 explores how workplace role distinctions between recruit/retiree and junior/senior were iterated and reiterated to reckon nuclear personnel successions' intergenerational horizons. Chapter 3 explores how input/output and part/whole distinctions were iterated and reiterated to help model distant future worlds in a portfolio of "Safety Case" evidence made to demonstrate the Olkiluoto repository's safety to Finnish nuclear regulator STUK. Chapter 4 explores how Safety Case experts iterated and reiterated memories of a deceased predecessor figure in everyday engagements with deep time. What emerges are three insights about how futures attain discernible features--insights about the "continuity," "thinkability," and "extensibility" of expert thought--that, I argue, can help twenty-first century experts better navigate not only deep time, but also unknown futures of nuclear technologies, planetary environment, and expertise itself.

  12. The role of heterologous chloroplast sequence elements in transgene integration and expression.

    PubMed

    Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry

    2010-04-01

    Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5' untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5' UTR and 3' UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5' UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5' UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation.

  13. The Role of Heterologous Chloroplast Sequence Elements in Transgene Integration and Expression1[W][OA

    PubMed Central

    Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry

    2010-01-01

    Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5′ untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5′ UTR and 3′ UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5′ UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5′ UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation. PMID:20130101

  14. Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements.

    PubMed

    Schartl, Manfred; Schories, Susanne; Wakamatsu, Yuko; Nagao, Yusuke; Hashimoto, Hisashi; Bertin, Chloé; Mourot, Brigitte; Schmidt, Cornelia; Wilhelm, Dagmar; Centanin, Lazaro; Guiguen, Yann; Herpin, Amaury

    2018-01-29

    Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element.

  15. Functional organization of DNA elements regulating SM30alpha, a spicule matrix gene of sea urchin embryos.

    PubMed

    Yamasu, K; Wilt, F H

    1999-02-01

    The SM30a gene encodes a protein in the embryonic endoskeleton of the sea urchin Strongylocentrotus purpuratus, and is specifically expressed in the skeletogenic primary mesenchyme cell lineage. To clarify the mechanism for the differentiation of this cell lineage, which proceeds rather autonomously in the embryo, regulation of the SM30alpha gene was investigated previously and it was shown that the distal DNA region upstream of this gene from - 1.6 to - 1.0 kb contained numerous negative regulatory elements that suppressed the ectopic expression of the gene in the gut. Here we study the influence of the proximal region from - 303 to + 104 bp. Analysis of the expression of reporter constructs indicated that a strong positive enhancer element existed in the region from -142 to -105bp. This element worked both in forward and reverse orientations and additively when placed tandemly upstream to the reporter gene. In addition, other weaker positive and negative regulatory sites were also detected throughout the proximal region. Electrophoretic gel mobility shift analyses showed that multiple nuclear proteins were bound to the putative strong enhancer region. One of the proteins binding to this region was present in ear y blastulae, a time when the SM30 gene was still silent, but it was not in prism embryos actively expressing the gene. The binding region for this blastula-specific protein was narrowed down to the region from - 132 to -122 bp, which included the consensus binding site for the mammalian proto-oncogene product, Ets. Two possible SpGCF1 binding sites were identified in the vicinity of the enhancer region. This information was used to make a comparison of the general regulatory architecture of genes that contribute to the formation of the skeletal spicule.

  16. Official Methods for the Determination of Minerals and Trace Elements in Infant Formula and Milk Products: A Review.

    PubMed

    Poitevin, Eric

    2016-01-01

    The minerals and trace elements that account for about 4% of total human body mass serve as materials and regulators in numerous biological activities in body structure building. Infant formula and milk products are important sources of endogenic and added minerals and trace elements and hence, must comply with regulatory as well as nutritional and safety requirements. In addition, reliable analytical data are necessary to support product content and innovation, health claims, or declaration and specific safety issues. Adequate analytical platforms and methods must be implemented to demonstrate both the compliance and safety assessment of all declared and regulated minerals and trace elements, especially trace-element contaminant surveillance. The first part of this paper presents general information on the mineral composition of infant formula and milk products and their regulatory status. In the second part, a survey describes the main techniques and related current official methods determining minerals and trace elements in infant formula and milk products applied for by various international organizations (AOAC INTERNATIONAL, the International Organization for Standardization, the International Dairy Federation, and the European Committe for Standardization). The third part summarizes method officialization activities by Stakeholder Panels on Infant Formula and Adult Nutritionals and Stakeholder Panel on Strategic Food Analytical Methods. The final part covers a general discussion focusing on analytical gaps and future trends in inorganic analysis that have been applied for in infant formula and milk-based products.

  17. Targeted deletion of the antisilencer/enhancer (ASE) element from intron 1 of the myelin proteolipid protein gene (Plp1) in mouse reveals that the element is dispensable for Plp1 expression in brain during development and remyelination.

    PubMed

    Pereira, Glauber B; Meng, Fanxue; Kockara, Neriman T; Yang, Baoli; Wight, Patricia A

    2013-02-01

    Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1-lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion-transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.1 oligodendroglial cell line, which was named ASE (antisilencer/enhancer) based on its functional properties in these cells. To investigate the role of the ASE in vivo, the element was deleted from the native gene in mouse using a Cre/lox strategy. Although removal of the ASE from Plp1-lacZ constructs profoundly decreased expression in transfected oligodendroglial cell lines (N20.1 and Oli-neu), the element was dispensable to achieve normal levels of Plp1 gene expression in mouse during development (except perhaps at postnatal day 15) and throughout the remyelination period following cuprizone-induced (acute) demyelination. Thus, it is possible that the ASE is non-functional in vivo, or that loss of the ASE from the native gene in mouse can be compensated for by the presence of other regulatory elements within the Plp1 gene. © 2012 International Society for Neurochemistry.

  18. RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation.

    PubMed

    Wiegand, Sandra; Dietrich, Sascha; Hertel, Robert; Bongaerts, Johannes; Evers, Stefan; Volland, Sonja; Daniel, Rolf; Liesegang, Heiko

    2013-10-01

    The production of enzymes by an industrial strain requires a complex adaption of the bacterial metabolism to the conditions within the fermenter. Regulatory events within the process result in a dynamic change of the transcriptional activity of the genome. This complex network of genes is orchestrated by proteins as well as regulatory RNA elements. Here we present an RNA-Seq based study considering selected phases of an industry-oriented fermentation of Bacillus licheniformis. A detailed analysis of 20 strand-specific RNA-Seq datasets revealed a multitude of transcriptionally active genomic regions. 3314 RNA features encoded by such active loci have been identified and sorted into ten functional classes. The identified sequences include the expected RNA features like housekeeping sRNAs, metabolic riboswitches and RNA switches well known from studies on Bacillus subtilis as well as a multitude of completely new candidates for regulatory RNAs. An unexpectedly high number of 855 RNA features are encoded antisense to annotated protein and RNA genes, in addition to 461 independently transcribed small RNAs. These antisense transcripts contain molecules with a remarkable size range variation from 38 to 6348 base pairs in length. The genome of the type strain B. licheniformis DSM13 was completely reannotated using data obtained from RNA-Seq analyses and from public databases. The hereby generated data-sets represent a solid amount of knowledge on the dynamic transcriptional activities during the investigated fermentation stages. The identified regulatory elements enable research on the understanding and the optimization of crucial metabolic activities during a productive fermentation of Bacillus licheniformis strains.

  19. Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality

    PubMed Central

    Simola, Daniel F.; Wissler, Lothar; Donahue, Greg; Waterhouse, Robert M.; Helmkampf, Martin; Roux, Julien; Nygaard, Sanne; Glastad, Karl M.; Hagen, Darren E.; Viljakainen, Lumi; Reese, Justin T.; Hunt, Brendan G.; Graur, Dan; Elhaik, Eran; Kriventseva, Evgenia V.; Wen, Jiayu; Parker, Brian J.; Cash, Elizabeth; Privman, Eyal; Childers, Christopher P.; Muñoz-Torres, Monica C.; Boomsma, Jacobus J.; Bornberg-Bauer, Erich; Currie, Cameron R.; Elsik, Christine G.; Suen, Garret; Goodisman, Michael A.D.; Keller, Laurent; Liebig, Jürgen; Rawls, Alan; Reinberg, Danny; Smith, Chris D.; Smith, Chris R.; Tsutsui, Neil; Wurm, Yannick; Zdobnov, Evgeny M.; Berger, Shelley L.; Gadau, Jürgen

    2013-01-01

    Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor–binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the “socio-genomes” of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations. PMID:23636946

  20. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease.

    PubMed

    Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A

    2018-03-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.

  1. Genome-wide inference of regulatory networks in Streptomyces coelicolor.

    PubMed

    Castro-Melchor, Marlene; Charaniya, Salim; Karypis, George; Takano, Eriko; Hu, Wei-Shou

    2010-10-18

    The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification.

  2. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease

    PubMed Central

    Gray, Alan; Neyton, Lucile P. A.; Barrett, Jeffrey; Stahl, Eli A.; Tenesa, Albert; Andersson, Robin; Brown, J. Ben; Faulkner, Geoffrey J.; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Kawaji, Hideya; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A.; Hacohen, Nir; Freeman, Thomas C.; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Hume, David A.

    2018-01-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn’s disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits. PMID:29494619

  3. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response

    PubMed Central

    Negi, Pooja; Rai, Archana N.; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original ‘Controlling Element’ hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as “distributed genomic control modules.” According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement. PMID:27777577

  4. Value of the distant future: Model-independent results

    NASA Astrophysics Data System (ADS)

    Katz, Yuri A.

    2017-01-01

    This paper shows that the model-independent account of correlations in an interest rate process or a log-consumption growth process leads to declining long-term tails of discount curves. Under the assumption of an exponentially decaying memory in fluctuations of risk-free real interest rates, I derive the analytical expression for an apt value of the long run discount factor and provide a detailed comparison of the obtained result with the outcome of the benchmark risk-free interest rate models. Utilizing the standard consumption-based model with an isoelastic power utility of the representative economic agent, I derive the non-Markovian generalization of the Ramsey discounting formula. Obtained analytical results allowing simple calibration, may augment the rigorous cost-benefit and regulatory impact analysis of long-term environmental and infrastructure projects.

  5. Differences in Krox20-dependent regulation of Hoxa2 and Hoxb2 during hindbrain development.

    PubMed

    Maconochie, M K; Nonchev, S; Manzanares, M; Marshall, H; Krumlauf, R

    2001-05-15

    During hindbrain development, segmental regulation of the paralogous Hoxa2 and Hoxb2 genes in rhombomeres (r) 3 and 5 involves Krox20-dependent enhancers that have been conserved during the duplication of the vertebrate Hox clusters from a common ancestor. Examining these evolutionarily related control regions could provide important insight into the degree to which the basic Krox20-dependent mechanisms, cis-regulatory components, and their organization have been conserved. Toward this goal we have performed a detailed functional analysis of a mouse Hoxa2 enhancer capable of directing reporter expression in r3 and r5. The combined activities of five separate cis-regions, in addition to the conserved Krox20 binding sites, are involved in mediating enhancer function. A CTTT (BoxA) motif adjacent to the Krox20 binding sites is important for r3/r5 activity. The BoxA motif is similar to one (Box1) found in the Hoxb2 enhancer and indicates that the close proximity of these Box motifs to Krox20 sites is a common feature of Krox20 targets in vivo. Two other rhombomeric elements (RE1 and RE3) are essential for r3/r5 activity and share common TCT motifs, indicating that they interact with a similar cofactor(s). TCT motifs are also found in the Hoxb2 enhancer, suggesting that they may be another common feature of Krox20-dependent control regions. The two remaining Hoxa2 cis-elements, RE2 and RE4, are not conserved in the Hoxb2 enhancer and define differences in some of components that can contribute to the Krox20-dependent activities of these enhancers. Furthermore, analysis of regulatory activities of these enhancers in a Krox20 mutant background has uncovered differences in their degree of dependence upon Krox20 for segmental expression. Together, this work has revealed a surprising degree of complexity in the number of cis-elements and regulatory components that contribute to segmental expression mediated by Krox20 and sheds light on the diversity and evolution of Krox20 target sites and Hox regulatory elements in vertebrates. Copyright 2001 Academic Press.

  6. RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.

    PubMed

    Novichkov, Pavel S; Kazakov, Alexey E; Ravcheev, Dmitry A; Leyn, Semen A; Kovaleva, Galina Y; Sutormin, Roman A; Kazanov, Marat D; Riehl, William; Arkin, Adam P; Dubchak, Inna; Rodionov, Dmitry A

    2013-11-01

    Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches). RegPrecise (http://regprecise.lbl.gov) is a web resource for collection, visualization and analysis of transcriptional regulons reconstructed by comparative genomics. We significantly expanded a reference collection of manually curated regulons we introduced earlier. RegPrecise 3.0 provides access to inferred regulatory interactions organized by phylogenetic, structural and functional properties. Taxonomy-specific collections include 781 TF regulogs inferred in more than 160 genomes representing 14 taxonomic groups of Bacteria. TF-specific collections include regulogs for a selected subset of 40 TFs reconstructed across more than 30 taxonomic lineages. Novel collections of regulons operated by RNA regulatory elements (riboswitches) include near 400 regulogs inferred in 24 bacterial lineages. RegPrecise 3.0 provides four classifications of the reference regulons implemented as controlled vocabularies: 55 TF protein families; 43 RNA motif families; ~150 biological processes or metabolic pathways; and ~200 effectors or environmental signals. Genome-wide visualization of regulatory networks and metabolic pathways covered by the reference regulons are available for all studied genomes. A separate section of RegPrecise 3.0 contains draft regulatory networks in 640 genomes obtained by an conservative propagation of the reference regulons to closely related genomes. RegPrecise 3.0 gives access to the transcriptional regulons reconstructed in bacterial genomes. Analytical capabilities include exploration of: regulon content, structure and function; TF binding site motifs; conservation and variations in genome-wide regulatory networks across all taxonomic groups of Bacteria. RegPrecise 3.0 was selected as a core resource on transcriptional regulation of the Department of Energy Systems Biology Knowledgebase, an emerging software and data environment designed to enable researchers to collaboratively generate, test and share new hypotheses about gene and protein functions, perform large-scale analyses, and model interactions in microbes, plants, and their communities.

  7. Premature terminator analysis sheds light on a hidden world of bacterial transcriptional attenuation.

    PubMed

    Naville, Magali; Gautheret, Daniel

    2010-01-01

    Bacterial transcription attenuation occurs through a variety of cis-regulatory elements that control gene expression in response to a wide range of signals. The signal-sensing structures in attenuators are so diverse and rapidly evolving that only a small fraction have been properly annotated and characterized to date. Here we apply a broad-spectrum detection tool in order to achieve a more complete view of the transcriptional attenuation complement of key bacterial species. Our protocol seeks gene families with an unusual frequency of 5' terminators found across multiple species. Many of the detected attenuators are part of annotated elements, such as riboswitches or T-boxes, which often operate through transcriptional attenuation. However, a significant fraction of candidates were not previously characterized in spite of their unmistakable footprint. We further characterized some of these new elements using sequence and secondary structure analysis. We also present elements that may control the expression of several non-homologous genes, suggesting co-transcription and response to common signals. An important class of such elements, which we called mobile attenuators, is provided by 3' terminators of insertion sequences or prophages that may be exapted as 5' regulators when inserted directly upstream of a cellular gene. We show here that attenuators involve a complex landscape of signal-detection structures spanning the entire bacterial domain. We discuss possible scenarios through which these diverse 5' regulatory structures may arise or evolve.

  8. Defective control of pre–messenger RNA splicing in human disease

    PubMed Central

    Shkreta, Lulzim

    2016-01-01

    Examples of associations between human disease and defects in pre–messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies. PMID:26728853

  9. Disk-like Chemistry of the Triangulum-Andromeda Overdensity as Seen by APOGEE

    NASA Astrophysics Data System (ADS)

    Hayes, Christian R.; Majewski, Steven R.; Hasselquist, Sten; Beaton, Rachael L.; Cunha, Katia; Smith, Verne V.; Price-Whelan, Adrian M.; Anguiano, Borja; Beers, Timothy C.; Carrera, Ricardo; Fernández-Trincado, J. G.; Frinchaboy, Peter M.; García-Hernández, D. A.; Lane, Richard R.; Nidever, David L.; Nitschelm, Christian; Roman-Lopes, Alexandre; Zamora, Olga

    2018-05-01

    The nature of the Triangulum-Andromeda (TriAnd) system has been debated since the discovery of this distant, low-latitude Milky Way (MW) overdensity more than a decade ago. Explanations for its origin are either as a halo substructure from the disruption of a dwarf galaxy, or a distant extension of the Galactic disk. We test these hypotheses using the chemical abundances of a dozen TriAnd members from the Sloan Digital Sky Survey-IV’s (SDSS-IV’s) 14th Data Release (DR14) of Apache Point Observatory Galactic Evolution Experiment (APOGEE) data to compare to APOGEE abundances of stars with similar metallicity from both the Sagittarius (Sgr) dSph and the outer MW disk. We find that TriAnd stars are chemically distinct from Sgr across a variety of elements, (C+N), Mg, K, Ca, Mn, and Ni, with a separation in [X/Fe] of about 0.1 to 0.4 dex depending on the element. Instead, the TriAnd stars, with a median metallicity of about ‑0.8, exhibit chemical abundance ratios similar to those of the lowest metallicity ([Fe/H] ∼ ‑0.7) stars in the outer Galactic disk, and are consistent with expectations of extrapolated chemical gradients in the outer disk of the MW. These results suggest that TriAnd is associated with the MW disk, and, therefore, that the disk extends to this overdensity—i.e., past a Galactocentric radius of 24 kpc—albeit vertically perturbed about 7 kpc below the nominal disk midplane in this region of the Galaxy.

  10. Not all predicted CRISPR-Cas systems are equal: isolated cas genes and classes of CRISPR like elements.

    PubMed

    Zhang, Quan; Ye, Yuzhen

    2017-02-06

    The CRISPR-Cas systems in prokaryotes are RNA-guided immune systems that target and deactivate foreign nucleic acids. A typical CRISPR-Cas system consists of a CRISPR array of repeat and spacer units, and a locus of cas genes. The CRISPR and the cas locus are often located next to each other in the genomes. However, there is no quantitative estimate of the co-location. In addition, ad-hoc studies have shown that some non-CRISPR genomic elements contain repeat-spacer-like structures and are mistaken as CRISPRs. Using available genome sequences, we observed that a significant number of genomes have isolated cas loci and/or CRISPRs. We found that 11%, 22% and 28% of the type I, II and III cas loci are isolated (without CRISPRs in the same genomes at all or with CRISPRs distant in the genomes), respectively. We identified a large number of genomic elements that superficially reassemble CRISPRs but don't contain diverse spacers and have no companion cas genes. We called these elements false-CRISPRs and further classified them into groups, including tandem repeats and Staphylococcus aureus repeat (STAR)-like elements. This is the first systematic study to collect and characterize false-CRISPR elements. We demonstrated that false-CRISPRs could be used to reduce the false annotation of CRISPRs, therefore showing them to be useful for improving the annotation of CRISPR-Cas systems.

  11. Current strategies for mobilome research.

    PubMed

    Jørgensen, Tue S; Kiil, Anne S; Hansen, Martin A; Sørensen, Søren J; Hansen, Lars H

    2014-01-01

    Mobile genetic elements (MGEs) are pivotal for bacterial evolution and adaptation, allowing shuffling of genes even between distantly related bacterial species. The study of these elements is biologically interesting as the mode of genetic propagation is kaleidoscopic and important, as MGEs are the main vehicles of the increasing bacterial antibiotic resistance that causes thousands of human deaths each year. The study of MGEs has previously focused on plasmids from individual isolates, but the revolution in sequencing technology has allowed the study of mobile genomic elements of entire communities using metagenomic approaches. The problem in using metagenomic sequencing for the study of MGEs is that plasmids and other mobile elements only comprise a small fraction of the total genetic content that are difficult to separate from chromosomal DNA based on sequence alone. The distinction between plasmid and chromosome is important as the mobility and regulation of genes largely depend on their genetic context. Several different approaches have been proposed that specifically enrich plasmid DNA from community samples. Here, we review recent approaches used to study entire plasmid pools from complex environments, and point out possible future developments for and pitfalls of these approaches. Further, we discuss the use of the PacBio long-read sequencing technology for MGE discovery.

  12. Global Profiling of Rice and Poplar Transcriptomes Highlights Key Conserved Circadian-Controlled Pathways and cis-Regulatory Modules

    PubMed Central

    Filichkin, Sergei A.; Breton, Ghislain; Priest, Henry D.; Dharmawardhana, Palitha; Jaiswal, Pankaj; Fox, Samuel E.; Michael, Todd P.; Chory, Joanne; Kay, Steve A.; Mockler, Todd C.

    2011-01-01

    Background Circadian clocks provide an adaptive advantage through anticipation of daily and seasonal environmental changes. In plants, the central clock oscillator is regulated by several interlocking feedback loops. It was shown that a substantial proportion of the Arabidopsis genome cycles with phases of peak expression covering the entire day. Synchronized transcriptome cycling is driven through an extensive network of diurnal and clock-regulated transcription factors and their target cis-regulatory elements. Study of the cycling transcriptome in other plant species could thus help elucidate the similarities and differences and identify hubs of regulation common to monocot and dicot plants. Methodology/Principal Findings Using a combination of oligonucleotide microarrays and data mining pipelines, we examined daily rhythms in gene expression in one monocotyledonous and one dicotyledonous plant, rice and poplar, respectively. Cycling transcriptomes were interrogated under different diurnal (driven) and circadian (free running) light and temperature conditions. Collectively, photocycles and thermocycles regulated about 60% of the expressed nuclear genes in rice and poplar. Depending on the condition tested, up to one third of oscillating Arabidopsis-poplar-rice orthologs were phased within three hours of each other suggesting a high degree of conservation in terms of rhythmic gene expression. We identified clusters of rhythmically co-expressed genes and searched their promoter sequences to identify phase-specific cis-elements, including elements that were conserved in the promoters of Arabidopsis, poplar, and rice. Conclusions/Significance Our results show that the cycling patterns of many circadian clock genes are highly conserved across poplar, rice, and Arabidopsis. The expression of many orthologous genes in key metabolic and regulatory pathways is diurnal and/or circadian regulated and phased to similar times of day. Our results confirm previous findings in Arabidopsis of three major classes of cis-regulatory modules within the plant circadian network: the morning (ME, GBOX), evening (EE, GATA), and midnight (PBX/TBX/SBX) modules. Identification of identical overrepresented motifs in the promoters of cycling genes from different species suggests that the core diurnal/circadian cis-regulatory network is deeply conserved between mono- and dicotyledonous species. PMID:21694767

  13. Prototype Input and Output Data Elements for the Occupational Health and Safety Information System

    NASA Technical Reports Server (NTRS)

    Whyte, A. A.

    1980-01-01

    The National Aeronautics and Space Administration plans to implement a NASA-wide computerized information system for occupational health and safety. The system is necessary to administer the occupational health and safety programs and to meet the legal and regulatory reporting, recordkeeping, and surveillance requirements. Some of the potential data elements that NASA will require as input and output for the new occupational health and safety information system are illustrated. The data elements are shown on sample forms that have been compiled from various sources, including NASA Centers and industry.

  14. Mass spectrometry for identification of proteins that specifically bind to a distal enhancer of the Oct4 gene

    NASA Astrophysics Data System (ADS)

    Bakhmet, E. I.; Nazarov, I. B.; Artamonova, T. O.; Khodorkovsky, M. A.; Tomilin, A. N.

    2017-11-01

    Transcription factor Oct4 is a marker of pluripotent stem cells and has a significant role in their self-renewal. Oct4 gene is controlled by three cis-regulatory elements - proximal promoter, proximal enhancer and distal enhancer. All of these elements are targets for binding of regulatory proteins. Distal enhancer is in our research focus because of its activity in early stages of embryonic development. There are two main sequences called site 2A and site 2B that are presented in distal enhancer. For this moment proteins which bind to a site 2A (CCCCTCCCCCC) remain unknown. Using combination of in vitro method electrophoretic mobility shift assay (EMSA) and mass spectromery we identified several candidates that can regulate Oct4 gene expression through site 2A.

  15. GmWRKY53, a water- and salt-inducible soybean gene for rapid dissection of regulatory elements in BY-2 cell culture

    PubMed Central

    Tripathi, Prateek; Rabara, Roel C.; Lin, Jun; Rushton, Paul J.

    2013-01-01

    Drought is the major cause of crop losses worldwide. Water stress-inducible promoters are important for understanding the mechanisms of water stress responses in crop plants. Here we utilized tobacco (Nicotiana tabacum L.) Bright Yellow 2 (BY-2) cell system in presence of polyethylene glycol, salt and phytohormones. Extension of the system to 85 mM NaCl led to inducibility of up to 10-fold with the water stress and salt responsive soybean GmWRKY53 promoter. Upon ABA and JA treatment fold inducibility was up to 5-fold and 14-fold, respectively. Thus, we hypothesize that GmWRKY53 could be used as potential model candidate for dissecting drought regulatory elements as well as understanding crosstalk utilizing a rapid heterologous system of BY-2 culture. PMID:23511199

  16. Genetic therapy for the nervous system.

    PubMed

    Bowers, William J; Breakefield, Xandra O; Sena-Esteves, Miguel

    2011-04-15

    Genetic therapy is undergoing a renaissance with expansion of viral and synthetic vectors, use of oligonucleotides (RNA and DNA) and sequence-targeted regulatory molecules, as well as genetically modified cells, including induced pluripotent stem cells from the patients themselves. Several clinical trials for neurologic syndromes appear quite promising. This review covers genetic strategies to ameliorate neurologic syndromes of different etiologies, including lysosomal storage diseases, Alzheimer's disease and other amyloidopathies, Parkinson's disease, spinal muscular atrophy, amyotrophic lateral sclerosis and brain tumors. This field has been propelled by genetic technologies, including identifying disease genes and disruptive mutations, design of genomic interacting elements to regulate transcription and splicing of specific precursor mRNAs and use of novel non-coding regulatory RNAs. These versatile new tools for manipulation of genetic elements provide the ability to tailor the mode of genetic intervention to specific aspects of a disease state.

  17. Computational exploration of cis-regulatory modules in rhythmic expression data using the "Exploration of Distinctive CREs and CRMs" (EDCC) and "CRM Network Generator" (CNG) programs.

    PubMed

    Bekiaris, Pavlos Stephanos; Tekath, Tobias; Staiger, Dorothee; Danisman, Selahattin

    2018-01-01

    Understanding the effect of cis-regulatory elements (CRE) and clusters of CREs, which are called cis-regulatory modules (CRM), in eukaryotic gene expression is a challenge of computational biology. We developed two programs that allow simple, fast and reliable analysis of candidate CREs and CRMs that may affect specific gene expression and that determine positional features between individual CREs within a CRM. The first program, "Exploration of Distinctive CREs and CRMs" (EDCC), correlates candidate CREs and CRMs with specific gene expression patterns. For pairs of CREs, EDCC also determines positional preferences of the single CREs in relation to each other and to the transcriptional start site. The second program, "CRM Network Generator" (CNG), prioritizes these positional preferences using a neural network and thus allows unbiased rating of the positional preferences that were determined by EDCC. We tested these programs with data from a microarray study of circadian gene expression in Arabidopsis thaliana. Analyzing more than 1.5 million pairwise CRE combinations, we found 22 candidate combinations, of which several contained known clock promoter elements together with elements that had not been identified as relevant to circadian gene expression before. CNG analysis further identified positional preferences of these CRE pairs, hinting at positional information that may be relevant for circadian gene expression. Future wet lab experiments will have to determine which of these combinations confer daytime specific circadian gene expression.

  18. Regulatory elements involved in tax-mediated transactivation of the HTLV-I LTR.

    PubMed

    Seeler, J S; Muchardt, C; Podar, M; Gaynor, R B

    1993-10-01

    HTLV-I is the etiologic agent of adult T-cell leukemia. In this study, we investigated the regulatory elements and cellular transcription factors which function in modulating HTLV-I gene expression in response to the viral transactivator protein, tax. Transfection experiments into Jurkat cells of a variety of site-directed mutants in the HTLV-1 LTR indicated that each of the three motifs A, B, and C within the 21-bp repeats, the binding sites for the Ets family of proteins, and the TATA box all influenced the degree of tax-mediated activation. Tax is also able to activate gene expression of other viral and cellular promoters. Tax activation of the IL-2 receptor and the HIV-1 LTR is mediated through NF-kappa B motifs. Interestingly, sequences in the 21-bp repeat B and C motifs contain significant homology with NF-kappa B regulatory elements. We demonstrated that an NF-kappa B binding protein, PRDII-BF1, but not the rel protein, bound to the B and C motifs in the 21-bp repeat. PRDII-BF1 was also able to stimulate activation of HTLV-I gene expression by tax. The role of the Ets proteins on modulating tax activation was also studied. Ets 1 but not Ets 2 was capable of increasing the degree of tax activation of the HTLV-I LTR. These results suggest that tax activates gene expression by either direct or indirect interaction with several cellular transcription factors that bind to the HTLV-I LTR.

  19. Regulatory network involving miRNAs and genes in serous ovarian carcinoma

    PubMed Central

    Zhao, Haiyan; Xu, Hao; Xue, Luchen

    2017-01-01

    Serous ovarian carcinoma (SOC) is one of the most life-threatening types of gynecological malignancy, but the pathogenesis of SOC remains unknown. Previous studies have indicated that differentially expressed genes and microRNAs (miRNAs) serve important functions in SOC. However, genes and miRNAs are identified in a disperse form, and limited information is known about the regulatory association between miRNAs and genes in SOC. In the present study, three regulatory networks were hierarchically constructed, including a differentially-expressed network, a related network and a global network to reveal associations between each factor. In each network, there were three types of factors, which were genes, miRNAs and transcription factors that interact with each other. Focus was placed on the differentially-expressed network, in which all genes and miRNAs were differentially expressed and therefore may have affected the development of SOC. Following the comparison and analysis between the three networks, a number of signaling pathways which demonstrated differentially expressed elements were highlighted. Subsequently, the upstream and downstream elements of differentially expressed miRNAs and genes were listed, and a number of key elements (differentially expressed miRNAs, genes and TFs predicted using the P-match method) were analyzed. The differentially expressed network partially illuminated the pathogenesis of SOC. It was hypothesized that if there was no differential expression of miRNAs and genes, SOC may be prevented and treatment may be identified. The present study provided a theoretical foundation for gene therapy for SOC. PMID:29113276

  20. Computational exploration of cis-regulatory modules in rhythmic expression data using the “Exploration of Distinctive CREs and CRMs” (EDCC) and “CRM Network Generator” (CNG) programs

    PubMed Central

    Staiger, Dorothee

    2018-01-01

    Understanding the effect of cis-regulatory elements (CRE) and clusters of CREs, which are called cis-regulatory modules (CRM), in eukaryotic gene expression is a challenge of computational biology. We developed two programs that allow simple, fast and reliable analysis of candidate CREs and CRMs that may affect specific gene expression and that determine positional features between individual CREs within a CRM. The first program, “Exploration of Distinctive CREs and CRMs” (EDCC), correlates candidate CREs and CRMs with specific gene expression patterns. For pairs of CREs, EDCC also determines positional preferences of the single CREs in relation to each other and to the transcriptional start site. The second program, “CRM Network Generator” (CNG), prioritizes these positional preferences using a neural network and thus allows unbiased rating of the positional preferences that were determined by EDCC. We tested these programs with data from a microarray study of circadian gene expression in Arabidopsis thaliana. Analyzing more than 1.5 million pairwise CRE combinations, we found 22 candidate combinations, of which several contained known clock promoter elements together with elements that had not been identified as relevant to circadian gene expression before. CNG analysis further identified positional preferences of these CRE pairs, hinting at positional information that may be relevant for circadian gene expression. Future wet lab experiments will have to determine which of these combinations confer daytime specific circadian gene expression. PMID:29298348

  1. Control site location and transcriptional regulation in Escherichia coli.

    PubMed Central

    Collado-Vides, J; Magasanik, B; Gralla, J D

    1991-01-01

    The regulatory regions for 119 Escherichia coli promoters have been analyzed, and the locations of the regulatory sites have been cataloged. The following observations emerge. (i) More than 95% of promoters are coregulated with at least one other promoter. (ii) Virtually all sigma 70 promoters contain at least one regulatory site in a proximal position, touching at least position -65 with respect to the start point of transcription. There are not yet clear examples of upstream regulation in the absence of a proximal site. (iii) Operators within regulons appear in very variable proximal positions. By contrast, the proximal activation sites of regulons are much more fixed. (iv) There is a forbidden zone for activation elements downstream from approximately position -20 with respect to the start of transcription. By contrast, operators can occur throughout the proximal region. When activation elements appear in the forbidden zone, they repress. These latter examples usually involve autoregulation. (v) Approximately 40% of repressible promoters contain operator duplications. These occur either in certain regulons where duplication appears to be a requirement for repressor action or in promoters subject to complex regulation. (vi) Remote operator duplications occur in approximately 10% of repressible promoters. They generally appear when a multiple promoter region is coregulated by cyclic AMP receptor protein. (vii) Sigma 54 promoters do not require proximal or precisely positioned activator elements and are not generally subject to negative regulation. Rationales are presented for all of the above observations. PMID:1943993

  2. Cis-acting elements in its 3′ UTR mediate post-transcriptional regulation of KRAS

    PubMed Central

    Kim, Minlee; Kogan, Nicole; Slack, Frank J.

    2016-01-01

    Multiple RNA-binding proteins and non-coding RNAs, such as microRNAs (miRNAs), are involved in post-transcriptional gene regulation through recognition motifs in the 3′ untranslated region (UTR) of their target genes. The KRAS gene encodes a key signaling protein, and its messenger RNA (mRNA) contains an exceptionally long 3′ UTR; this suggests that it may be subject to a highly complex set of regulatory processes. However, 3′ UTR-dependent regulation of KRAS expression has not been explored in detail. Using extensive deletion and mutational analyses combined with luciferase reporter assays, we have identified inhibitory and stabilizing cis-acting regions within the KRAS 3′ UTR that may interact with miRNAs and RNA-binding proteins, such as HuR. Particularly, we have identified an AU-rich 49-nt fragment in the KRAS 3′ UTR that is required for KRAS 3′ UTR reporter repression. This element contains a miR-185 complementary element, and we show that overexpression of miR-185 represses endogenous KRAS mRNA and protein in vitro. In addition, we have identified another 49-nt fragment that is required to promote KRAS 3′ UTR reporter expression. These findings indicate that multiple cis-regulatory motifs in the 3′ UTR of KRAS finely modulate its expression, and sequence alterations within a binding motif may disrupt the precise functions of trans-regulatory factors, potentially leading to aberrant KRAS expression. PMID:26930719

  3. Mutations in the newly identified RAX regulatory sequence are not a frequent cause of micro/anophthalmia.

    PubMed

    Chassaing, Nicolas; Vigouroux, Adeline; Calvas, Patrick

    2009-06-01

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (SOX2, OTX2, RAX, and CHX10) have been implicated in isolated micro/anophthalmia, but causative mutations of these genes explain less than a quarter of these developmental defects. A specifically conserved SOX2/OTX2-mediated RAX expression regulatory sequence has recently been identified. We postulated that mutations in this sequence could lead to micro/anophthalmia, and thus we performed molecular screening of this regulatory element in patients suffering from micro/anophthalmia. Fifty-one patients suffering from nonsyndromic microphthalmia (n = 40) or anophthalmia (n = 11) were included in this study after negative molecular screening for SOX2, OTX2, RAX, and CHX10 mutations. Mutation screening of the RAX regulatory sequence was performed by direct sequencing for these patients. No mutations were identified in the highly conserved RAX regulatory sequence in any of the 51 patients. Mutations in the newly identified RAX regulatory sequence do not represent a frequent cause of nonsyndromic micro/anophthalmia.

  4. Regulatory T Cells in Autoimmune and Viral Chronic Hepatitis

    PubMed Central

    Lapierre, Pascal; Lamarre, Alain

    2015-01-01

    In both autoimmune liver disease and chronic viral hepatitis, the injury results from an immune-mediated cytotoxic T cell response to liver cells. As such, it is not surprising that CD4+ regulatory T cells, a key regulatory population of T cells able to curb immune responses, could be involved in both autoimmune hepatitis and chronic viral hepatitis. The liver can induce the conversion of naïve CD4+ T cells to CD4+ regulatory T cells and induce tolerance to locally expressed antigens. This tolerance mechanism is carefully regulated in physiological conditions but any imbalance could be pathological. An overly tolerant immune response can lead to chronic infections while an overreactive and unbridled immune response can lead to autoimmune hepatitis. With the recent advent of monoclonal antibodies able to target regulatory T cells (daclizumab) and improve immune responses and several ongoing clinical trials analysing the impact of regulatory T cell infusion on autoimmune liver disease or liver transplant tolerance, modulation of immunological tolerance through CD4+ regulatory T cells could be a key element of future immunotherapies for several liver diseases allowing restoring the balance between proper immune responses and tolerance.   PMID:26106627

  5. Emerging principles of regulatory evolution.

    PubMed

    Prud'homme, Benjamin; Gompel, Nicolas; Carroll, Sean B

    2007-05-15

    Understanding the genetic and molecular mechanisms governing the evolution of morphology is a major challenge in biology. Because most animals share a conserved repertoire of body-building and -patterning genes, morphological diversity appears to evolve primarily through changes in the deployment of these genes during development. The complex expression patterns of developmentally regulated genes are typically controlled by numerous independent cis-regulatory elements (CREs). It has been proposed that morphological evolution relies predominantly on changes in the architecture of gene regulatory networks and in particular on functional changes within CREs. Here, we discuss recent experimental studies that support this hypothesis and reveal some unanticipated features of how regulatory evolution occurs. From this growing body of evidence, we identify three key operating principles underlying regulatory evolution, that is, how regulatory evolution: (i) uses available genetic components in the form of preexisting and active transcription factors and CREs to generate novelty; (ii) minimizes the penalty to overall fitness by introducing discrete changes in gene expression; and (iii) allows interactions to arise among any transcription factor and downstream CRE. These principles endow regulatory evolution with a vast creative potential that accounts for both relatively modest morphological differences among closely related species and more profound anatomical divergences among groups at higher taxonomical levels.

  6. Regulation of CYBB Gene Expression in Human Phagocytes by a Distant Upstream NF-κB Binding Site.

    PubMed

    Frazão, Josias B; Thain, Alison; Zhu, Zhiqing; Luengo, Marcos; Condino-Neto, Antonio; Newburger, Peter E

    2015-09-01

    The human CYBB gene encodes the gp91-phox component of the phagocyte oxidase enzyme complex, which is responsible for generating superoxide and other downstream reactive oxygen species essential to microbial killing. In the present study, we have identified by sequence analysis a putative NF-κB binding site in a DNase I hypersensitive site, termed HS-II, located in the distant 5' flanking region of the CYBB gene. Electrophoretic mobility assays showed binding of the sequence element by recombinant NF-κB protein p50 and by proteins in nuclear extract from the HL-60 myeloid leukemia cell line corresponding to p50 and to p50/p65 heterodimers. Chromatin immunoprecipitation demonstrated NF-κB binding to the site in intact HL-60 cells. Chromosome conformation capture (3C) assays demonstrated physical interaction between the NF-κB binding site and the CYBB promoter region. Inhibition of NF-κB activity by salicylate reduced CYBB expression in peripheral blood neutrophils and differentiated U937 monocytic leukemia cells. U937 cells transfected with a mutant inhibitor of κB "super-repressor" showed markedly diminished CYBB expression. Luciferase reporter analysis of the NF-κB site linked to the CYBB 5' flanking promoter region revealed enhanced expression, augmented by treatment with interferon-γ. These studies indicate a role for this distant, 15 kb upstream, binding site in NF-κB regulation of the CYBB gene, an essential component of phagocyte-mediated host defense. © 2015 Wiley Periodicals, Inc.

  7. ReNE: A Cytoscape Plugin for Regulatory Network Enhancement

    PubMed Central

    Politano, Gianfranco; Benso, Alfredo; Savino, Alessandro; Di Carlo, Stefano

    2014-01-01

    One of the biggest challenges in the study of biological regulatory mechanisms is the integration, americanmodeling, and analysis of the complex interactions which take place in biological networks. Despite post transcriptional regulatory elements (i.e., miRNAs) are widely investigated in current research, their usage and visualization in biological networks is very limited. Regulatory networks are commonly limited to gene entities. To integrate networks with post transcriptional regulatory data, researchers are therefore forced to manually resort to specific third party databases. In this context, we introduce ReNE, a Cytoscape 3.x plugin designed to automatically enrich a standard gene-based regulatory network with more detailed transcriptional, post transcriptional, and translational data, resulting in an enhanced network that more precisely models the actual biological regulatory mechanisms. ReNE can automatically import a network layout from the Reactome or KEGG repositories, or work with custom pathways described using a standard OWL/XML data format that the Cytoscape import procedure accepts. Moreover, ReNE allows researchers to merge multiple pathways coming from different sources. The merged network structure is normalized to guarantee a consistent and uniform description of the network nodes and edges and to enrich all integrated data with additional annotations retrieved from genome-wide databases like NCBI, thus producing a pathway fully manageable through the Cytoscape environment. The normalized network is then analyzed to include missing transcription factors, miRNAs, and proteins. The resulting enhanced network is still a fully functional Cytoscape network where each regulatory element (transcription factor, miRNA, gene, protein) and regulatory mechanism (up-regulation/down-regulation) is clearly visually identifiable, thus enabling a better visual understanding of its role and the effect in the network behavior. The enhanced network produced by ReNE is exportable in multiple formats for further analysis via third party applications. ReNE can be freely installed from the Cytoscape App Store (http://apps.cytoscape.org/apps/rene) and the full source code is freely available for download through a SVN repository accessible at http://www.sysbio.polito.it/tools_svn/BioInformatics/Rene/releases/. ReNE enhances a network by only integrating data from public repositories, without any inference or prediction. The reliability of the introduced interactions only depends on the reliability of the source data, which is out of control of ReNe developers. PMID:25541727

  8. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens.

    PubMed

    Glinsky, Gennadi V

    2016-09-19

    Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8-10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. A versatile transfection assay system to evaluate the biological effects of diverse industrial chemicals.

    PubMed

    Koizumi, Shinji; Ohno, Shotaro; Otsuka, Fuminori

    2012-01-01

    Gene expression processes are now recognized as important targets of the toxic effects exerted by industrial chemicals. The transient transfection assay is a powerful tool to evaluate such effects. Thus, we developed a versatile assay system by constructing a basic reporter plasmid in which the regulatory DNA sequence to be studied can easily be substituted. To verify the performance of this system, reporter plasmids carrying any of the three distinct regulatory sequences, estrogen responsive element (ERE), glucocorticoid responsive element (GRE) and xenobiotic responsive element (XRE) were constructed. After transfection of human cells, these plasmids successfully expressed the relevant reporter genes in response to specific inducers, β-estradiol, dexamethasone and 3-methylcholanthrene, respectively. Several industrial chemicals were assayed using these reporter plasmids, and the ability of p-dimethylaminoazobenzene to elevate GRE- and XRE-mediated transcription was detected. α-Naphthylamine and o-tolidine were also observed to increase the XRE-mediated response. The transfection assay system established here will be useful to evaluate the effects of a wide variety of industrial chemicals.

  10. FARE-CAFE: a database of functional and regulatory elements of cancer-associated fusion events.

    PubMed

    Korla, Praveen Kumar; Cheng, Jack; Huang, Chien-Hung; Tsai, Jeffrey J P; Liu, Yu-Hsuan; Kurubanjerdjit, Nilubon; Hsieh, Wen-Tsong; Chen, Huey-Yi; Ng, Ka-Lok

    2015-01-01

    Chromosomal translocation (CT) is of enormous clinical interest because this disorder is associated with various major solid tumors and leukemia. A tumor-specific fusion gene event may occur when a translocation joins two separate genes. Currently, various CT databases provide information about fusion genes and their genomic elements. However, no database of the roles of fusion genes, in terms of essential functional and regulatory elements in oncogenesis, is available. FARE-CAFE is a unique combination of CTs, fusion proteins, protein domains, domain-domain interactions, protein-protein interactions, transcription factors and microRNAs, with subsequent experimental information, which cannot be found in any other CT database. Genomic DNA information including, for example, manually collected exact locations of the first and second break points, sequences and karyotypes of fusion genes are included. FARE-CAFE will substantially facilitate the cancer biologist's mission of elucidating the pathogenesis of various types of cancer. This database will ultimately help to develop 'novel' therapeutic approaches. Database URL: http://ppi.bioinfo.asia.edu.tw/FARE-CAFE. © The Author(s) 2015. Published by Oxford University Press.

  11. FARE-CAFE: a database of functional and regulatory elements of cancer-associated fusion events

    PubMed Central

    Korla, Praveen Kumar; Cheng, Jack; Huang, Chien-Hung; Tsai, Jeffrey J. P.; Liu, Yu-Hsuan; Kurubanjerdjit, Nilubon; Hsieh, Wen-Tsong; Chen, Huey-Yi; Ng, Ka-Lok

    2015-01-01

    Chromosomal translocation (CT) is of enormous clinical interest because this disorder is associated with various major solid tumors and leukemia. A tumor-specific fusion gene event may occur when a translocation joins two separate genes. Currently, various CT databases provide information about fusion genes and their genomic elements. However, no database of the roles of fusion genes, in terms of essential functional and regulatory elements in oncogenesis, is available. FARE-CAFE is a unique combination of CTs, fusion proteins, protein domains, domain–domain interactions, protein–protein interactions, transcription factors and microRNAs, with subsequent experimental information, which cannot be found in any other CT database. Genomic DNA information including, for example, manually collected exact locations of the first and second break points, sequences and karyotypes of fusion genes are included. FARE-CAFE will substantially facilitate the cancer biologist’s mission of elucidating the pathogenesis of various types of cancer. This database will ultimately help to develop ‘novel’ therapeutic approaches. Database URL: http://ppi.bioinfo.asia.edu.tw/FARE-CAFE PMID:26384373

  12. Sequence and functional characterization of MIRNA164 promoters from Brassica shows copy number dependent regulatory diversification among homeologs.

    PubMed

    Jain, Aditi; Anand, Saurabh; Singh, Neer K; Das, Sandip

    2018-03-12

    The impact of polyploidy on functional diversification of cis-regulatory elements is poorly understood. This is primarily on account of lack of well-defined structure of cis-elements and a universal regulatory code. To the best of our knowledge, this is the first report on characterization of sequence and functional diversification of paralogous and homeologous promoter elements associated with MIR164 from Brassica. The availability of whole genome sequence allowed us to identify and isolate a total of 42 homologous copies of MIR164 from diploid species-Brassica rapa (A-genome), Brassica nigra (B-genome), Brassica oleracea (C-genome), and allopolyploids-Brassica juncea (AB-genome), Brassica carinata (BC-genome) and Brassica napus (AC-genome). Additionally, we retrieved homologous sequences based on comparative genomics from Arabidopsis lyrata, Capsella rubella, and Thellungiella halophila, spanning ca. 45 million years of evolutionary history of Brassicaceae. Sequence comparison across Brassicaceae revealed lineage-, karyotype, species-, and sub-genome specific changes providing a snapshot of evolutionary dynamics of miRNA promoters in polyploids. Tree topology of cis-elements associated with MIR164 was found to re-capitulate the species and family evolutionary history. Phylogenetic shadowing identified transcription factor binding sites (TFBS) conserved across Brassicaceae, of which, some are already known as regulators of MIR164 expression. Some of the TFBS were found to be distributed in a sub-genome specific (e.g., SOX specific to promoter of MIR164c from MF2 sub-genome), lineage-specific (YABBY binding motif, specific to C. rubella in MIR164b), or species-specific (e.g., VOZ in A. thaliana MIR164a) manner which might contribute towards genetic and adaptive variation. Reporter activity driven by promoters associated with MIR164 paralogs and homeologs was majorly in agreement with known role of miR164 in leaf shaping, regulation of lateral root development and senescence, and one previously un-described novel role in trichome. The impact of polyploidy was most profound when reporter activity across three MIR164c homeologs were compared that revealed negligible overlap, whereas reporter activity among two homeologs of MIR164a displays significant overlap. A copy number dependent cis-regulatory divergence thus exists in MIR164 genes in Brassica juncea. The full extent of regulatory diversification towards adaptive strategies will only be known when future endeavors analyze the promoter function under duress of stress and hormonal regimes.

  13. Distant stereoacuity in children with anisometropic amblyopia.

    PubMed

    Chung, Yeon Woong; Park, Shin Hae; Shin, Sun Young

    2017-09-01

    To characterize changes in distant stereoacuity using Frisby-Davis Distance test (FD2) and Distant Randot test (DR) during treatment for anisometropic amblyopia, to determine factors that influence posttreatment stereoacuity and to compare the two distant stereotests. Fifty-eight anisometropic amblyopic patients with an interocular difference of ≥1.00 diopter who achieved the visual acuity 20/20 following amblyopia treatment were retrospectively included. Stereoacuity using FD2 and DR for distant and Titmus test for near measurement were assessed and compared at the initial, intermediate, and final visit. Multivariate regression models were used to identify factors associated with initial and final stereoacuity. The two distant stereotests revealed a significant improvement in distant stereoacuity after successful amblyopia treatment. Distant stereoacuity using FD2 showed the greatest improvement during the follow up period. The number of nil scores was higher in DR than FD2 at each period. In multivariate analysis, better final stereoacuity was associated with better initial amblyopic eye acuity in both distant stereotests, but not in the Titmus test. Comparing the two distant stereotests, final stereoacuity using FD2 was associated with initial stereoacuity and was moderately related with the Titmus test at each period, but final stereoacuity using DR was not. Distant stereoacuity measured with both FD2 and DR showed significant improvement when the visual acuity of the amblyopic eye achieved 20/20. Changes in distant stereoacuity by FD2 and DR during the amblyopia treatment were somewhat different.

  14. The commercial development of space: is an international regulatory framework needed?

    PubMed

    Contant, Corinne M; Logsdon, John M

    2004-04-01

    The commercial space sector to date has failed to develop comprehensive regulations--"rules of the road"--for its international activities. Within the next 5 years, conflicts with respect to international trade in satellite sales and launch services could emerge, highlighting the need for such a regulatory framework. If the commercial space sector is to continue to develop, it is important to begin discussions now, before these conflicts become significant, on the elements of an appropriate international regulatory framework. The existing framework for space activities was developed when government, not commercial, space activities were dominant, or was adapted from regulations in other sectors such as terrestrial telecommunications. c2003 Elsevier Ltd. All rights reserved.

  15. Co-Targeting Prostate Cancer Epithelium and Bone Stroma by Human Osteonectin-Promoter-Mediated Suicide Gene Therapy Effectively Inhibits Androgen-Independent Prostate Cancer Growth.

    PubMed

    Sung, Shian-Ying; Chang, Junn-Liang; Chen, Kuan-Chou; Yeh, Shauh-Der; Liu, Yun-Ru; Su, Yen-Hao; Hsueh, Chia-Yen; Chung, Leland W K; Hsieh, Chia-Ling

    2016-01-01

    Stromal-epithelial interaction has been shown to promote local tumor growth and distant metastasis. We sought to create a promising gene therapy approach that co-targets cancer and its supporting stromal cells for combating castration-resistant prostate tumors. Herein, we demonstrated that human osteonectin is overexpressed in the prostate cancer epithelium and tumor stroma in comparison with their normal counterpart. We designed a novel human osteonectin promoter (hON-522E) containing positive transcriptional regulatory elements identified in both the promoter and exon 1 region of the human osteonectin gene. In vitro reporter assays revealed that the hON-522E promoter is highly active in androgen receptor negative and metastatic prostate cancer and bone stromal cells compared to androgen receptor-positive prostate cancer cells. Moreover, in vivo prostate-tumor-promoting activity of the hON-522E promoter was confirmed by intravenous administration of an adenoviral vector containing the hON-522E promoter-driven luciferase gene (Ad-522E-Luc) into mice bearing orthotopic human prostate tumor xenografts. In addition, an adenoviral vector with the hON-522E-promoter-driven herpes simplex virus thymidine kinase gene (Ad-522E-TK) was highly effective against the growth of androgen-independent human prostate cancer PC3M and bone stromal cell line in vitro and in pre-established PC3M tumors in vivo upon addition of the prodrug ganciclovir. Because of the heterogeneity of human prostate tumors, hON-522E promoter-mediated gene therapy has the potential for the treatment of hormone refractory and bone metastatic prostate cancers.

  16. Evolution of p53 transactivation specificity through the lens of a yeast-based functional assay.

    PubMed

    Lion, Mattia; Raimondi, Ivan; Donati, Stefano; Jousson, Olivier; Ciribilli, Yari; Inga, Alberto

    2015-01-01

    Co-evolution of transcription factors (TFs) with their respective cis-regulatory network enhances functional diversity in the course of evolution. We present a new approach to investigate transactivation capacity of sequence-specific TFs in evolutionary studies. Saccharomyces cerevisiae was used as an in vivo test tube and p53 proteins derived from human and five commonly used animal models were chosen as proof of concept. p53 is a highly conserved master regulator of environmental stress responses. Previous reports indicated conserved p53 DNA binding specificity in vitro, even for evolutionary distant species. We used isogenic yeast strains where p53-dependent transactivation was measured towards chromosomally integrated p53 response elements (REs). Ten REs were chosen to sample a wide range of DNA binding affinity and transactivation capacity for human p53 and proteins were expressed at two levels using an inducible expression system. We showed that the assay is amenable to study thermo-sensitivity of frog p53, and that chimeric constructs containing an ectopic transactivation domain could be rapidly developed to enhance the activity of proteins, such as fruit fly p53, that are poorly effective in engaging the yeast transcriptional machinery. Changes in the profile of relative transactivation towards the ten REs were measured for each p53 protein and compared to the profile obtained with human p53. These results, which are largely independent from relative p53 protein levels, revealed widespread evolutionary divergence of p53 transactivation specificity, even between human and mouse p53. Fruit fly and human p53 exhibited the largest discrimination among REs while zebrafish p53 was the least selective.

  17. SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning.

    PubMed

    Anishchenko, Evgeniya; Arnone, Maria Ina; D'Aniello, Salvatore

    2018-01-01

    Current studies in evolutionary developmental biology are focused on the reconstruction of gene regulatory networks in target animal species. From decades, the scientific interest on genetic mechanisms orchestrating embryos development has been increasing in consequence to the fact that common features shared by evolutionarily distant phyla are being clarified. In 2011, a study across eumetazoan species showed for the first time the existence of a highly conserved non-coding element controlling the SoxB2 gene, which is involved in the early specification of the nervous system. This discovery raised several questions about SoxB2 function and regulation in deuterostomes from an evolutionary point of view. Due to the relevant phylogenetic position within deuterostomes, the sea urchin Strongylocentrotus purpuratus represents an advantageous animal model in the field of evolutionary developmental biology. Herein, we show a comprehensive study of SoxB2 functions in sea urchins, in particular its expression pattern in a wide range of developmental stages, and its co-localization with other neurogenic markers, as SoxB1 , SoxC and Elav . Moreover, this work provides a detailed description of the phenotype of sea urchin SoxB2 knocked-down embryos, confirming its key function in neurogenesis and revealing, for the first time, its additional roles in oral and aboral ectoderm cilia and skeletal rod morphology. We concluded that SoxB2 in sea urchins has a neurogenic function; however, this gene could have multiple roles in sea urchin embryogenesis, expanding its expression in non-neurogenic cells. We showed that SoxB2 is functionally conserved among deuterostomes and suggested that in S. purpuratus this gene acquired additional functions, being involved in ciliogenesis and skeletal patterning.

  18. FFPred 2.0: Improved Homology-Independent Prediction of Gene Ontology Terms for Eukaryotic Protein Sequences

    PubMed Central

    Minneci, Federico; Piovesan, Damiano; Cozzetto, Domenico; Jones, David T.

    2013-01-01

    To understand fully cell behaviour, biologists are making progress towards cataloguing the functional elements in the human genome and characterising their roles across a variety of tissues and conditions. Yet, functional information – either experimentally validated or computationally inferred by similarity – remains completely missing for approximately 30% of human proteins. FFPred was initially developed to bridge this gap by targeting sequences with distant or no homologues of known function and by exploiting clear patterns of intrinsic disorder associated with particular molecular activities and biological processes. Here, we present an updated and improved version, which builds on larger datasets of protein sequences and annotations, and uses updated component feature predictors as well as revised training procedures. FFPred 2.0 includes support vector regression models for the prediction of 442 Gene Ontology (GO) terms, which largely expand the coverage of the ontology and of the biological process category in particular. The GO term list mainly revolves around macromolecular interactions and their role in regulatory, signalling, developmental and metabolic processes. Benchmarking experiments on newly annotated proteins show that FFPred 2.0 provides more accurate functional assignments than its predecessor and the ProtFun server do; also, its assignments can complement information obtained using BLAST-based transfer of annotations, improving especially prediction in the biological process category. Furthermore, FFPred 2.0 can be used to annotate proteins belonging to several eukaryotic organisms with a limited decrease in prediction quality. We illustrate all these points through the use of both precision-recall plots and of the COGIC scores, which we recently proposed as an alternative numerical evaluation measure of function prediction accuracy. PMID:23717476

  19. Evolution of p53 Transactivation Specificity through the Lens of a Yeast-Based Functional Assay

    PubMed Central

    Lion, Mattia; Raimondi, Ivan; Donati, Stefano; Jousson, Olivier; Ciribilli, Yari; Inga, Alberto

    2015-01-01

    Co-evolution of transcription factors (TFs) with their respective cis-regulatory network enhances functional diversity in the course of evolution. We present a new approach to investigate transactivation capacity of sequence-specific TFs in evolutionary studies. Saccharomyces cerevisiae was used as an in vivo test tube and p53 proteins derived from human and five commonly used animal models were chosen as proof of concept. p53 is a highly conserved master regulator of environmental stress responses. Previous reports indicated conserved p53 DNA binding specificity in vitro, even for evolutionary distant species. We used isogenic yeast strains where p53-dependent transactivation was measured towards chromosomally integrated p53 response elements (REs). Ten REs were chosen to sample a wide range of DNA binding affinity and transactivation capacity for human p53 and proteins were expressed at two levels using an inducible expression system. We showed that the assay is amenable to study thermo-sensitivity of frog p53, and that chimeric constructs containing an ectopic transactivation domain could be rapidly developed to enhance the activity of proteins, such as fruit fly p53, that are poorly effective in engaging the yeast transcriptional machinery. Changes in the profile of relative transactivation towards the ten REs were measured for each p53 protein and compared to the profile obtained with human p53. These results, which are largely independent from relative p53 protein levels, revealed widespread evolutionary divergence of p53 transactivation specificity, even between human and mouse p53. Fruit fly and human p53 exhibited the largest discrimination among REs while zebrafish p53 was the least selective. PMID:25668429

  20. EGRINs (Environmental Gene Regulatory Influence Networks) in Rice That Function in the Response to Water Deficit, High Temperature, and Agricultural Environments[OPEN

    PubMed Central

    Hafemeister, Christoph; Nicotra, Adrienne B.; Jagadish, S.V. Krishna; Bonneau, Richard; Purugganan, Michael

    2016-01-01

    Environmental gene regulatory influence networks (EGRINs) coordinate the timing and rate of gene expression in response to environmental signals. EGRINs encompass many layers of regulation, which culminate in changes in accumulated transcript levels. Here, we inferred EGRINs for the response of five tropical Asian rice (Oryza sativa) cultivars to high temperatures, water deficit, and agricultural field conditions by systematically integrating time-series transcriptome data, patterns of nucleosome-free chromatin, and the occurrence of known cis-regulatory elements. First, we identified 5447 putative target genes for 445 transcription factors (TFs) by connecting TFs with genes harboring known cis-regulatory motifs in nucleosome-free regions proximal to their transcriptional start sites. We then used network component analysis to estimate the regulatory activity for each TF based on the expression of its putative target genes. Finally, we inferred an EGRIN using the estimated transcription factor activity (TFA) as the regulator. The EGRINs include regulatory interactions between 4052 target genes regulated by 113 TFs. We resolved distinct regulatory roles for members of the heat shock factor family, including a putative regulatory connection between abiotic stress and the circadian clock. TFA estimation using network component analysis is an effective way of incorporating multiple genome-scale measurements into network inference. PMID:27655842

Top