Sample records for distant solar wind

  1. Distant Tail Behavior During High Speed Solar Wind Streams and Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Tsurutani, B. T.

    1997-01-01

    We have examined the ISEE 3 distant tail data during three intense magnetic storms and have identified the tail response to high-speed solar wind streams, interplanetary magnetic clouds, and near-Earth storms.

  2. (abstract) The Distant Tail Behavior During High Speed Solar Wind Streams and Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Tsurutani, B. T.

    1996-01-01

    We have examined the ISEE-3 distant tail data during three intense magnetic storms and have identified the tail response to high speed solar wind streams, interplanetary magnetic clouds, and near-Earth storms.

  3. The Distant Tail Behavior During High Speed Solar Wind Streams and Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Tsurutani, B. T.

    1996-01-01

    We have examined the ISEE-3 distant tail data during three intense (Dst< -100(sub n)T) magnetic storms and have identified the tail response to high speed solar wind streams, interplanetary magnetic clouds, and near-Earth storms. The three storms have a peak Dst ranging from -150 to -220 nT, and occur on Jan. 9, Feb. 4, and Aug. 8, 1993.

  4. Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.

    2004-01-01

    Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.

  5. Multifractal two-scale Cantor set model for slow solar wind turbulence in the outer heliosphere during solar maximum

    NASA Astrophysics Data System (ADS)

    Macek, W. M.; Wawrzaszek, A.

    2011-05-01

    To quantify solar wind turbulence, we consider a generalized two-scale weighted Cantor set with two different scales describing nonuniform distribution of the kinetic energy flux between cascading eddies of various sizes. We examine generalized dimensions and the corresponding multifractal singularity spectrum depending on one probability measure parameter and two rescaling parameters. In particular, we analyse time series of velocities of the slow speed streams of the solar wind measured in situ by Voyager 2 spacecraft in the outer heliosphere during solar maximum at various distances from the Sun: 10, 30, and 65 AU. This allows us to look at the evolution of multifractal intermittent scaling of the solar wind in the distant heliosphere. Namely, it appears that while the degree of multifractality for the solar wind during solar maximum is only weakly correlated with the heliospheric distance, but the multifractal spectrum could substantially be asymmetric in a very distant heliosphere beyond the planetary orbits. Therefore, one could expect that this scaling near the frontiers of the heliosphere should rather be asymmetric. It is worth noting that for the model with two different scaling parameters a better agreement with the solar wind data is obtained, especially for the negative index of the generalized dimensions. Therefore we argue that there is a need to use a two-scale cascade model. Hence we propose this model as a useful tool for analysis of intermittent turbulence in various environments and we hope that our general asymmetric multifractal model could shed more light on the nature of turbulence.

  6. Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island

    NASA Astrophysics Data System (ADS)

    Roy, P. C.; Majumder, A.; Chakraborty, N.

    2010-10-01

    An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.

  7. Pioneer and Voyager observations of the solar wind at large heliocentric distances and latitudes

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Mihalov, J. D.; Barnes, A.; Lazarus, A. J.; Smith, E. J.

    1989-01-01

    Data obtained from the electrostatic analyzers aboard the Pioneer 10 and 11 spacecraft and from the Faraday cup aboard Voyager 2 were used to study spatial gradients in the distant solar wind. Prior to mid-1985, both spacecraft observed nearly identical solar wind structures. After day 150 of 1985, the velocity structure at Voyager 2 became flatter, and the Voyager 2 velocities were smaller than those observed by Pioneer 11. It is suggested that these changes in the solar wind at low latitudes may be related to a change which occurred in the coronal hole structure in early 1985.

  8. Solar wind-magnetosphere coupling and the distant magnetotail: ISEE-3 observations

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Smith, E. J.; Sibeck, D. G.; Baker, D. N.; Zwickl, R. D.; Akasofu, S. I.; Lepping, R. P.

    1985-01-01

    ISEE-3 Geotail observations are used to investigate the relationship between the interplanetary magnetic field, substorm activity, and the distant magnetotail. Magnetic field and plasma observations are used to present evidence for the existence of a quasi-permanent, curved reconnection neutral line in the distant tail. The distance to the neutral line varies from absolute value of X = 120 to 140 R/sub e near the center of the tail to beyond absolute value of X = 200 R/sub e at the flanks. Downstream of the neutral line the plasma sheet magnetic field is shown to be negative and directly proportional to negative B/sub z in the solar wind as observed by IMP-8. V/sub x in the distant plasma sheet is also found to be proportional to IMF B/sub z with southward IMF producing the highest anti-solar flow velocities. A global dayside reconnection efficiency of 20 +- 5% is derived from the ISEE-3/IMP-8 magnetic field comparisons. Substorm activity, as measured by the AL index, produces enhanced negative B/sub z and tailward V/sub x in the distant plasma sheet in agreement with the basic predictions of the reconnection-based models of substorms. The rate of magnetic flux transfer out of the tail as a function of AL is found to be consistent with previous near-Earth studies. Similarly, the mass and energy fluxes carried by plasma sheet flow down the tail are consistent with theoretical mass and energy budgets for an open magnetosphere. In summary, the ISEE-3 Geotail observations appear to provide good support for reconnection models of solar wind-magnetosphere coupling and substorm energy rates.

  9. The Distant Tail at 200 R(sub E): Comparison Between Geotail Observations and the Results from a Global Magnetohydrodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.

    1998-01-01

    This paper reports a comparison between Geotail observations of plasmas and magnetic fields at 200 R(sub E) in the Earth's magnetotail with results from a time-dependent, global magnetohydrodynamic simulation of the interaction of the solar wind with the magnetosphere. The study focuses on observations from July 7, 1993, during which the Geotail spacecraft crossed the distant tail magnetospheric boundary several times while the interplanetary magnetic field (IMF) was predominantly northward and was marked by slow rotations of its clock angle. Simultaneous IMP 8 observations of solar wind ions and the IMF were used as driving input for the MHD simulation, and the resulting time series were compared directly with those from the Geotail spacecraft. The very good agreement found provided the basis for an investigation of the response of the distant tail associated with the clock angle of the IMF. Results from the simulation show that the stresses imposed by the draping of magnetosheath field lines and the asymmetric removal of magnetic flux tailward of the cusps altered considerably the shape of the distant tail as the solar wind discontinuities convected downstream of Earth. As a result, the cross section of the distant tail was considerably flattened along the direction perpendicular to the IMF clock angle, the direction of the neutral sheet following that of the IMF. The simulation also revealed that the combined action of magnetic reconnection and the slow rotation of the IMF clock angle led to a braiding of the distant tail's magnetic field lines along the axis of the tail, with the plane of the braid lying in the direction of the IMF.

  10. Solar wind energy transfer through the magnetopause of an open magnetosphere

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Roederer, J. G.

    1982-01-01

    An expression is derived for the total power, transferred from the solar wind to an open magnetosphere, which consists of the electromagnetic energy rate and the particle kinetic energy rate. The total rate of energy transferred from the solar wind to an open magnetosphere mainly consists of kinetic energy, and the kinetic energy flux is carried by particles, penetrating from the solar wind into the magnetosphere, which may contribute to the observed flow in the plasma mantle and which will eventually be convected slowly toward the plasma sheet by the electric field as they flow down the tail. While the electromagnetic energy rate controls the near-earth magnetospheric activity, the kinetic energy rate should dominate the dynamics of the distant magnetotail.

  11. Average dimension and magnetic structure of the distant Venus magnetotail

    NASA Technical Reports Server (NTRS)

    Saunders, M. A.; Russell, C. T.

    1986-01-01

    The first major statistical investigation of the far wake of an unmagnetized object embedded in the solar wind is reported. The investigation is based on Pioneer Venus Orbiter magnetometer data from 70 crossings of the Venus wake at altitudes between 5 and 11 Venus radii during reasonably steady IMF conditions. It is found that Venus has a well-developed-tail, flaring with altitude and possibly broader in the direction parallel to the IMF cross-flow component. Tail lobe field polarities and the direction of the cross-tail field are consistent with tail accretion from the solar wind. Average values for the cross-tail field (2 nT) and the distant tail flux (3 MWb) indicate that most distant tail field lines close across the center of the tail and are not rooted in the Venus ionosphere. The findings are illustrated in a three-dimensional schematic.

  12. Solar wind structure out of the ecliptic plane over solar cycles

    NASA Astrophysics Data System (ADS)

    Sokol, J. M.; Bzowski, M.; Tokumaru, M.

    2017-12-01

    Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.

  13. Solar wind stream interaction regions throughout the heliosphere

    NASA Astrophysics Data System (ADS)

    Richardson, Ian G.

    2018-01-01

    This paper focuses on the interactions between the fast solar wind from coronal holes and the intervening slower solar wind, leading to the creation of stream interaction regions that corotate with the Sun and may persist for many solar rotations. Stream interaction regions have been observed near 1 AU, in the inner heliosphere (at ˜ 0.3-1 AU) by the Helios spacecraft, in the outer and distant heliosphere by the Pioneer 10 and 11 and Voyager 1 and 2 spacecraft, and out of the ecliptic by Ulysses, and these observations are reviewed. Stream interaction regions accelerate energetic particles, modulate the intensity of Galactic cosmic rays and generate enhanced geomagnetic activity. The remote detection of interaction regions using interplanetary scintillation and white-light imaging, and MHD modeling of interaction regions will also be discussed.

  14. A Distant Solar System Artist Concept

    NASA Image and Video Library

    2004-12-09

    This artist concept depicts a distant hypothetical solar system, similar in age to our own. Looking inward from the system outer fringes, a ring of dusty debris can be seen, and within it, planets circling a star the size of our Sun. This debris is all that remains of the planet-forming disk from which the planets evolved. Planets are formed when dusty material in a large disk surrounding a young star clumps together. Leftover material is eventually blown out by solar wind or pushed out by gravitational interactions with planets. Billions of years later, only an outer disk of debris remains. These outer debris disks are too faint to be imaged by visible-light telescopes. They are washed out by the glare of the Sun. However, NASA's Spitzer Space Telescope can detect their heat, or excess thermal emission, in infrared light. This allows astronomers to study the aftermath of planet building in distant solar systems like our own. http://photojournal.jpl.nasa.gov/catalog/PIA07096

  15. Voyager Approaches Final Frontier Artist Concept

    NASA Image and Video Library

    2003-12-12

    An artist's concept illustrates the positions of the Voyager spacecraft in relation to structures formed around our Sun by the solar wind. Also illustrated is the termination shock, a violent region the spacecraft must pass through before reaching the outer limits of the solar system. At the termination shock, the supersonic solar wind abruptly slows from an average speed of 400 kilometers per second to less than 100 kilometer per second (900,000 to less than 225,000 miles per hour). Beyond the termination shock is the solar system's final frontier, the heliosheath, a vast region where the turbulent and hot solar wind is compressed as it presses outward against the interstellar wind that is beyond the heliopause. A bow shock likely forms as the interstellar wind approaches and is deflected around the heliosphere, forcing it into a teardrop-shaped structure with a long, comet-like tail. The exact location of the termination shock is unknown, and it originally was thought to be closer to the Sun than Voyager 1 currently is. As Voyager 1 cruised ever farther from the Sun, it confirmed that all the planets are inside an immense bubble blown by the solar wind and the termination shock was much more distant. http://photojournal.jpl.nasa.gov/catalog/PIA04927

  16. Double-lunar swingby trajectories for the spacecraft of the International Solar Terrestrial Physics program

    NASA Technical Reports Server (NTRS)

    Dunham, David W.; Jen, Shao-Chiang; Lee, Taesul; Swade, D.; Kawaguchi, Jun'ichiro; Farquhar, Robert W.; Broaddus, S.; Engel, Cheryl

    1989-01-01

    The ISEE-3 satellite carried out the first extensive exploration of the distant geomagnetic tail during 1983. ISEE-3's orbit was altered with four lunar gravity assists that alternately decreased and increased its orbital energy while keeping the apogees aligned in the antisolar direction. Two spacecraft of the International Solar Terrestrial Physics program will use similar double-lunar swingby orbits to study the solar wind and the geomagnetic environment. Geotail will be built in Japan for the Institute of Space and Astronautical Sciences; its main purpose will be to explore the earth's geomagnetic tail. Wind is a NASA spacecraft that will monitor the solar wind upstream from the earth and will also study the bowshock region of the magnetosphere. Current plans call for launches of both by NASA with expendable launch vehicles during the second half of 1992.

  17. Relationship between the Geotail spacecraft potential and the magnetospheric electron number density including the distant tail regions

    NASA Astrophysics Data System (ADS)

    Ishisaka, K.; Okada, T.; Tsuruda, K.; Hayakawa, H.; Mukai, T.; Matsumoto, H.

    2001-04-01

    The spacecraft potential has been used to derive the electron number density surrounding the spacecraft in the magnetosphere and solar wind. We have investigated the correlation between the spacecraft potential of the Geotail spacecraft and the electron number density derived from the plasma waves in the solar wind and almost all the regions of the magnetosphere, except for the high-density plasmasphere, and obtained an empirical formula to show their relation. The new formula is effective in the range of spacecraft potential from a few volts up to 90 V, corresponding to the electron number density from 0.001 to 50 cm-3. We compared the electron number density obtained by the empirical formula with the density obtained by the plasma wave and plasma particle measurements. On occasions the density determined by plasma wave measurements in the lobe region is different from that calculated by the empirical formula. Using the difference in the densities measured by two methods, we discuss whether or not the lower cutoff frequency of the plasma waves, such as continuum radiation, indicates the local electron density near the spacecraft. Then we applied the new relation to the spacecraft potential measured by the Geotail spacecraft during the period from October 1993 to December 1995, and obtained the electron spatial distribution in the solar wind and magnetosphere, including the distant tail region. Higher electron number density is clearly observed on the dawnside than on the duskside of the magnetosphere in the distant tail beyond 100RE.

  18. The solar wind interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations of bow shock position and shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavin, J.A.; Schwingenschuh, K.; Riedler, W.

    1991-07-01

    Observations taken by Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 are used to model the shape, position, and variability of the Martian bow shock for the purpose of better understanding the interaction of this planet with the solar wind. Emphasis is placed upon comparisons with the results of similar analyses at Venus, the only planet known to have no significant intrinsic magnetic field. Excellent agreement is found between Mars bow shock models derived from the earlier Mariner-Mars data set (24 crossings in 1964-1974) and the far more extensive observations recently returned by Phobos 2 (94 crossingsmore » in 1989). The best fit model to the aggregate data set locates the subsolar bow shock at a planetocentric distance of 1.56 {plus minus} 0.04 R{sub M}. Mapped into the terminator plane, the average distance to the Martian bow shock is 2.66 {plus minus} 0.05 R{sub M}. Compared with Venus, the bow wave at Mars is significantly more distant in the terminator plane, 2.7 R{sub M} versus 2.4 R{sub V}, and over twice as variable in location with a standard deviation of 0.49 R{sub M} versus 0.21 R{sub V} at Venus. The Mars 2, 3, and 5 and Phobos 2 data also contain a small number of very distant dayside shock crossings with inferred subsolar obstacle radii derived from gasdynamic modeling of 2,000 to 4,000 km. Such distant bow shock occurrences do not appear to take place at Venus and may be associated with the expansion of a small Martian magnetosphere under the influence of unusually low wind pressure. Finally, the altitude of the Venus bow shock has a strong solar cycle dependence believed to be due to the effect of solar EUV on the neutral atmosphere and mass loading. Comparison of the Phobos 2 shock observations near solar maximum (R{sub z} = 141) with the Mariner-Mars measurements taken much farther from solar maximum (R{sub z} = 59) indicates that the Martian bow shock location is independent of solar cycle phase and, hence, solar EUV flux.« less

  19. What is the Relationship between the Solar Wind and Storms/Substorms?

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Burlaga, L. F.

    1999-01-01

    The interplanetary magnetic field (IMF) carried past the Earth by the solar wind has long been known to be the principal quantity that controls geomagnetic storms and substorms. Intervals of strong southward IMF with durations of at least a significant fraction of a day produce storms, while more typical, shorter intervals of less-intense southward fields produce substorms. The strong, long-duration southward fields are generally associated with coronal mass ejections and magnetic clouds or else they are produced by interplanetary dynamics initiated by fast solar wind flows that compress preexisting southward fields. Smaller, short-duration southward fields that occur on most days are related to long period waves, turbulence, or random variations in the IMF. Southward IMF enhances dayside reconnection between the IMF and the Earth's dipole with the reconnected field lines supplementing open field lines of the geomagnetic tail and producing an expanded polar cap and increased tail energy. Although the frequent storage of solar wind energy and its release during substorms is the most common mode of solar wind/magnetosphere interaction, under certain circumstances, steady southward IMF seems to produce intervals of relatively steady magnetosphere convection without substorms. During these latter times, the inner magnetosphere remains in a stressed tail-like state while the more distant magnetotail has larger northward field and more dipolar-like field lines. Recent evidence suggests that enhanced magnetosphere particle densities associated with enhanced solar wind densities allow more particles to be accelerated for the ring current, thus creating larger storms.

  20. A proposed national wind power R and D program. [offshore wind power system for electric energy supplies

    NASA Technical Reports Server (NTRS)

    Heronemus, W.

    1973-01-01

    An offshore wind power system is described that consists of wind driven electrical dc generators mounted on floating towers in offshore waters. The output from the generators supplies underwater electrolyzer stations in which water is converted into hydrogen and oxygen. The hydrogen is piped to shore for conversion to electricity in fuel cell stations. It is estimated that this system can produce 159 x 10 to the ninth power kilowatt-hours per year. It is concluded that solar energy - and that includes wind energy - is the only way out of the US energy dilemma in the not too distant future.

  1. The Thermal Ion Dynamics Experiment and Plasma Source Instrument

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chappell, C. R.; Chandler, M. O.; Fields, S. A.; Pollock, C. J.; Reasoner, D. L.; Young, D. T.; Burch, J. L.; Eaker, N.; Waite, J. H., Jr.; hide

    1995-01-01

    The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0-500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of about 1 cm squared effective area each) and angular resolution (6 x 18 degrees) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.

  2. Quasi-steady solar wind dynamics

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1983-01-01

    Progress in understanding the large scale dynamics of quasisteady, corotating solar wind structure was reviewed. The nature of the solar wind at large heliocentric distances preliminary calculations from a 2-D MHD model are used to demonstrate theoretical expectations of corotating structure out to 30 AU. It is found that the forward and reverse shocks from adjacent CIR's begin to interact at about 10 AU, producing new shock pairs flanking secondary CIR's. These sawtooth secondary CIR's interact again at about 20 AU and survive as visible entities to 30 AU. The model predicts the velocity jumps at the leading edge of the secondary CIR's at 30 AU should be very small but there should still be sizable variations in the thermodynamic and magnetic parameters. The driving dynamic mechanism in the distant solar wind is the relaxation of pressure gradients. The second topic is the influence of weak, nonimpulsive time dependence in quasisteady dynamics. It is suggested that modest large scale variations in the coronal flow speed on periods of several hours to a day may be responsible for many of the remaining discrepancies between theory and observation. Effects offer a ready explanation for the apparent rounding of stream fronts between 0.3 and 1.0 AU discovered by Helios.

  3. Distribution and solar wind control of compressional solar wind-magnetic anomaly interactions observed at the Moon by ARTEMIS

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Poppe, A. R.; Lue, C.; Farrell, W. M.; McFadden, J. P.

    2017-06-01

    A statistical investigation of 5 years of observations from the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission reveals that strong compressional interactions occur infrequently at high altitudes near the ecliptic but can form in a wide range of solar wind conditions and can occur up to two lunar radii downstream from the lunar limb. The compressional events, some of which may represent small-scale collisionless shocks ("limb shocks"), occur in both steady and variable interplanetary magnetic field (IMF) conditions, with those forming in steady IMF well organized by the location of lunar remanent crustal magnetization. The events observed by ARTEMIS have similarities to ion foreshock phenomena, and those observed in variable IMF conditions may result from either local lunar interactions or distant terrestrial foreshock interactions. Observed velocity deflections associated with compressional events are always outward from the lunar wake, regardless of location and solar wind conditions. However, events for which the observed velocity deflection is parallel to the upstream motional electric field form in distinctly different solar wind conditions and locations than events with antiparallel deflections. Consideration of the momentum transfer between incoming and reflected solar wind populations helps explain the observed characteristics of the different groups of events.Plain Language SummaryWe survey the environment around the Moon to determine when and where strong amplifications in the charged particle density and magnetic field strength occur. These structures may be some of the smallest shock waves in the solar system, and learning about their formation informs us about the interaction of charged particles with small-scale magnetic fields throughout the solar system and beyond. We find that these compressions occur in an extended region downstream from the lunar dawn and dusk regions and that they can form under a wide variety of solar wind conditions. However, we find that two distinctly different types of interactions occur for different magnetic field geometries and solar wind conditions. The two types of events appear to differ because of the different trajectories followed by solar wind protons that reflect from localized lunar magnetic fields and the resulting differences in how the incoming solar wind from upstream interacts with these reflected particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830020882','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830020882"><span>Structure and other properties of Jupiter's distant magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lepping, R. P.; Desch, M. D.; Klein, L. W.; Sittler, E. C., Jr.; Sullivan, J. D.; Kurth, W. S.; Behannon, K. W.</p> <p>1983-01-01</p> <p>Analyses of data from Voyager 2 experiments provide evidence for, and characteristics of, a Jovian magnetotail extending at least to 9,000 Jovian radii from the planet. During approximately (25 day) periodic sightings of the tail, the magnetic field tended to point radially towards or away from Jupiter, indicating preservation to large distances of the bipolar, lobe like structure observed near the planet. This periodicity, along with various properties of the solar wind at this time, indicates that the tail is apparently influenced by recurrent solar wind features. Anomalous magnetic fields, not aligned with the nominal tail axis, also exist within the tail, especially in the low density, central (core) region, indicating some complexity of internal structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM33B2508D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM33B2508D"><span>In situ plasma and magnetic field measurements of SMILE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dai, L.; Li, L.; Wang, J.; Zhang, A.; Kong, L.; Wang, C.; Branduardi-Raymont, G.; Escoubet, C. P.; Sibeck, D. G.; Zheng, J.; Rebuffat, D.; Raab, W.</p> <p>2016-12-01</p> <p>The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a new mission to observe the solar wind-magnetosphere coupling via X-Ray images of the magnetosheath and polar cusps, UV images of global auroral distributions and simultaneous in situ solar wind/magnetosheath plasma and magnetic field measurements. As a stand-alone mission, SMILE will provide the in situ solar wind drivers for understanding and interpreting the remote sensing data, obviating past concerns regarding the arrival times and spatial extent of solar wind features that arose in studies employing distant L1 solar wind monitors. The Light Ion Analyser (LIA) is designed to measure the moments of the solar wind and magnetosheath ion distributions. LIA is equipped with a top-hat electrostatic analyser with a FOV deflection system, with an energy range of 0.05-20keV/q, an energy resolution of 8%, an azimuthal angle range (resolution) of 360° (7.5°), and an elevation angle range (resolution) of ±45° (6°), a time cadence of 1s for normal mode and 0.25s for burst mode, and an adjustable geometric factor. The total data volume per orbit is 5.232 Gbit for LIA. The aim of the magnetometer experiment (MAG) is to establish the orientation and magnitude of magnetic field in the solar wind and magnetosheath. The magnetometer will also be used in combination with LIA to detect interplanetary shocks and solar wind discontinuities passing over the spacecraft. The baseline design of MAG is a dual redundant digital fluxgate magnetometer consisting of two individual tri-axial fluxgate sensors mounted on a 2.5m deployable boom, connected by harness to a spacecraft-mounted electronics box. The dynamic range of the instrument is ±12800nT, and the accuracy is 0.1nT, while the sampling rate is 40Hz. The development of LIA and MAG is under the responsibility of The Chinese Academy of Sciences. Now the preliminary design and simulation have begun. The preliminary design reviews of the instruments are scheduled in 2018.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930000379&hterms=toxic+rain&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtoxic%2Brain','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930000379&hterms=toxic+rain&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtoxic%2Brain"><span>Light-Flash Wind-Direction Indicator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zysko, Jan A.</p> <p>1993-01-01</p> <p>Proposed wind-direction indicator read easily by distant observers. Indicator emits bright flashes of light separated by interval of time proportional to angle between true north and direction from which wind blowing. Timing of flashes indicates direction of wind. Flashes, from high-intensity stroboscopic lights seen by viewers at distances up to 5 miles or more. Also seen more easily through rain and fog. Indicator self-contained, requiring no connections to other equipment. Power demand satisfied by battery or solar power or both. Set up quickly to provide local surface-wind data for aircraft pilots during landing or hovering, for safety officers establishing hazard zones and safety corridors during handling of toxic materials, for foresters and firefighters conducting controlled burns, and for real-time wind observations during any of variety of wind-sensitive operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRA..119.6273V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRA..119.6273V"><span>Windsock memory COnditioned RAM (CO-RAM) pressure effect: Forced reconnection in the Earth's magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vörös, Z.; Facskó, G.; Khodachenko, M.; Honkonen, I.; Janhunen, P.; Palmroth, M.</p> <p>2014-08-01</p> <p>Magnetic reconnection (MR) is a key physical concept explaining the addition of magnetic flux to the magnetotail and closed flux lines back-motion to the dayside magnetosphere. This scenario elaborated by Dungey (1963) can explain many aspects of solar wind-magnetosphere interaction processes, including substorms. However, neither the Dungey model nor its numerous modifications were able to explain fully the onset conditions for MR in the tail. In this paper, we introduce new onset conditions for forced MR in the tail. We call our scenario the "windsock memory conditioned ram pressure effect." Our nonflux transfer-associated forcing is introduced by a combination of the large-scale windsock motions exhibiting memory effects and solar wind dynamic pressure actions on the nightside magnetopause during northward oriented interplanetary magnetic field (IMF). Using global MHD Grand Unified Magnetosphere Ionosphere Coupling Simulation version 4 simulation results, upstream data from Wind, magnetosheath data from Cluster 1 and distant tail data from the two-probe Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun mission, we show that the simultaneous occurrence of vertical windsock motions of the magnetotail and enhanced solar wind dynamic pressure introduces strong nightside disturbances, including enhanced electric fields and persistent vertical cross-tail shear flows. These perturbations, associated with a stream interaction region in the solar wind, drive MR in the tail during episodes of northward oriented interplanetary magnetic field (IMF). We detect MR indirectly, observing plasmoids in the tail and ground-based signatures of earthward moving fast flows. We also consider the application to solar system planets and close-in exoplanets, where the proposed scenario can elucidate some new aspects of solar/stellar wind-magnetosphere interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016598','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016598"><span>Resolving the Origin of the Diffuse Soft X-ray Background</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Randall K.; Foster, Adam R.; Edgar, Ricard J.; Brickhouse, Nancy S.; Sanders, Wilton T.</p> <p>2012-01-01</p> <p>In January 1993, the Diffuse X-ray Spectrometer (DXS) measured the first high-resolution spectrum of the diffuse soft X-ray background between 44-80A. A line-dominated spectrum characteristic of a 10(exp 6)K collisionally ionized plasma' was expected but while the observed spectrum was clearly line-dominated, no model would fit. Then in 2003 the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) launched and observed the diffuse extreme-ultraviolet (EUV) spectrum between 90- 265A. Although many emission lines were again expected; only Fe IX at 171.1A was detected. The discovery of X-rays from comets led to the realization that heavy ions (Z=6-28) in the solar wind will emit soft X-rays as the ions interact via charge exchange with neutral atoms in the heliosphere and geocorona. Using a new model for solar wind charge exchange (SWCX) emission, we show that the diffuse soft X-ray background can be understood as a combination of emission from charge exchange onto the slow and fast solar wind together with a more distant and diffuse hot (10(exp 6)K) plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22525550-plasma-environment-comets-over-wide-range-heliocentric-distances-application-comet-p1-mcnaught','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22525550-plasma-environment-comets-over-wide-range-heliocentric-distances-application-comet-p1-mcnaught"><span>THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shou, Y.; Combi, M.; Gombosi, T.</p> <p>2015-08-20</p> <p>On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006more » P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150022342','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150022342"><span>Electric Sail Propulsion for Exploring Nearby Interstellar Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Les; Wiegmann, Bruce; Bangham, Mike</p> <p>2015-01-01</p> <p>An Electric Sail is a revolutionary propellant-less propulsion system that is ideal for deep space missions to the outer planets, the Heliopause, and beyond. It is revolutionary in that it uses momentum exchange with the hypersonic solar wind to propel a spacecraft within the heliosphere. The momentum exchange is affected by the deflection of charged solar wind particles by an array of electrically biased wires that extend outward up to 30 km from a slowly rotating spacecraft. A high-voltage, positive bias on the wires, which are oriented normal to the solar wind flow, deflects the streaming protons, resulting in a reaction force on the wires that is also directed radially away from the sun. Over a period of months, this small force can accelerate the spacecraft to enormous speeds-on the order of 100-150 km/s (approximately 20 to 30 AU/yr). Unlike solar sails, Electric Sails do not rely on a fixed area to produce thrust. In fact, as they move away from the Sun and solar wind pressure decreases, the area for solar proton momentum transfer becomes larger, increasing system efficiency. As a result, thrust decreases at ˜1/r**(7/6) instead of the ˜1/r**2 rate typical for solar sails. The net effect is that an increased radial range of operation, together with increased thrust, both contribute to higher velocities and shorter total trip times to distant destinations. The MSFC Advanced Concepts Office (ACO) was awarded a Phase II NASA Innovative Advanced Concepts (NIAC) study to mature the technology for possible future demonstration and implementation. Preliminary results indicate that the physics of the system is viable and that a spacecraft propelled by an Electric Sail could reach the Heliopause in less than 15 years - and could be developed within a decade.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840010169&hterms=environnement&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Denvironnement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840010169&hterms=environnement&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Denvironnement"><span>The ISPM unified radio and plasma wave experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stone, R. G.; Caldwell, J.; Deconchy, Y.; Deschanciaux, C.; Ebbett, R.; Epstein, G.; Groetz, K.; Harvey, C. C.; Hoang, S.; Howard, R.</p> <p>1983-01-01</p> <p>Hardware for the International Solar Polar Mission (ISPM) Unified Radio and Plasma (URAP) wave experiment is presented. The URAP determines direction and polarization of distant radio sources for remote sensing of the heliosphere, and studies local wave phenomena which determine the transport coefficients of the ambient plasma. Electric and magnetic field antennas and preamplifiers; the electromagnetic compatibility plan and grounding; radio astronomy and plasma frequency receivers; a fast Fourier transformation data processing unit waveform analyzer; dc voltage measurements; a fast envelope sampler for the solar wind, and plasmas near Jupiter; a sounder; and a power converter are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT........59K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT........59K"><span>Statistical Behavior of Quasi-Steady Balanced Reconnection in Earth's Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kissinger, Jennifer Eileen</p> <p></p> <p>Magnetic reconnection between Earth's magnetosphere and the solar wind results in several modes of response, including the impulsive substorm and the quasi-steady mode known as steady magnetospheric convection (SMC). SMC events are theorized to result from balancing the dayside and nightside reconnection rates. The reasons the magnetosphere responds with different modes are not fully known. This dissertation comprises statistical data analysis of the SMC mode to investigate the solar wind conditions and magnetospheric properties during these events. A comprehensive list of SMC events is selected from 1997-2011. In the first of three studies, an association between SMCs and solar wind stream interfaces (SI) is identified in the declining phase of Solar Cycle 23. SMC occurrence peaks 12-24 hours after an SI if the solar wind is geoeffective. The subset of SI-associated SMCs occurs during fast solar wind velocity, in contrast to previous results, but the driving electric field imposed on the magnetosphere (Ey) is the same for SI-associated and unassociated SMC events. Therefore the magnitude and steadiness of E y is the most important solar wind parameter for an SMC to occur. The second study shows that magnetotail convection is significantly different for SMC events, compared to quiet intervals and isolated substorms. Fast flows transporting enhanced magnetic flux are deflected toward the dawn and dusk flanks during SMC. Flow diversion is due to a broad high pressure region in the inner magnetosphere. The interval preceding SMC events is found to set up the magnetotail conditions that assist balanced reconnection. In particular inner magnetosphere pressure before SMCs is enhanced from substorm levels but not as high as SMC levels. The final study shows that nearly all SMCs are preceded by a substorm expansion. In rare cases when an SMC occurs without a preceding substorm, we hypothesize that the distant x-line is able to balance a weak solar wind driver. These results help explain how quasi-steady magnetospheric convection occurs. A southward turning of the solar wind and positive Ey leads to dayside reconnection and a substorm onset occurs. Plasma injections from the near-Earth nightside x-line increase the pressure in the inner magnetosphere. If positive Ey continues to drive dayside reconnection, the nightside x-line will stabilize to match it. Tail flux is diverted towards the flanks by pressure gradients and returns to the dayside. This convection pattern keeps the magnetosphere in its balanced reconnection mode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AnGeo..35.1293B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AnGeo..35.1293B"><span>Open and partially closed models of the solar wind interaction with outer planet magnetospheres: the case of Saturn</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belenkaya, Elena S.; Cowley, Stanley W. H.; Alexeev, Igor I.; Kalegaev, Vladimir V.; Pensionerov, Ivan A.; Blokhina, Marina S.; Parunakian, David A.</p> <p>2017-12-01</p> <p>A wide variety of interactions take place between the magnetized solar wind plasma outflow from the Sun and celestial bodies within the solar system. Magnetized planets form magnetospheres in the solar wind, with the planetary field creating an obstacle in the flow. The reconnection efficiency of the solar-wind-magnetized planet interaction depends on the conditions in the magnetized plasma flow passing the planet. When the reconnection efficiency is very low, the interplanetary magnetic field (IMF) does not penetrate the magnetosphere, a condition that has been widely discussed in the recent literature for the case of Saturn. In the present paper, we study this issue for Saturn using Cassini magnetometer data, images of Saturn's ultraviolet aurora obtained by the HST, and the paraboloid model of Saturn's magnetospheric magnetic field. Two models are considered: first, an open model in which the IMF penetrates the magnetosphere, and second, a partially closed model in which field lines from the ionosphere go to the distant tail and interact with the solar wind at its end. We conclude that the open model is preferable, which is more obvious for southward IMF. For northward IMF, the model calculations do not allow us to reach definite conclusions. However, analysis of the observations available in the literature provides evidence in favor of the open model in this case too. The difference in magnetospheric structure for these two IMF orientations is due to the fact that the reconnection topology and location depend on the relative orientation of the IMF vector and the planetary dipole magnetic moment. When these vectors are parallel, two-dimensional reconnection occurs at the low-latitude neutral line. When they are antiparallel, three-dimensional reconnection takes place in the cusp regions. Different magnetospheric topologies determine different mapping of the open-closed boundary in the ionosphere, which can be considered as a proxy for the poleward edge of the auroral oval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeoRL..3616103N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeoRL..3616103N"><span>Solar-wind proton access deep into the near-Moon wake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishino, M. N.; Fujimoto, M.; Maezawa, K.; Saito, Y.; Yokota, S.; Asamura, K.; Tanaka, T.; Tsunakawa, H.; Matsushima, M.; Takahashi, F.; Terasawa, T.; Shibuya, H.; Shimizu, H.</p> <p>2009-08-01</p> <p>We study solar wind (SW) entry deep into the near-Moon wake using SELENE (KAGUYA) data. It has been known that SW protons flowing around the Moon access the central region of the distant lunar wake, while their intrusion deep into the near-Moon wake has never been expected. We show that SW protons sneak into the deepest lunar wake (anti-subsolar region at ˜100 km altitude), and that the entry yields strong asymmetry of the near-Moon wake environment. Particle trajectory calculations demonstrate that these SW protons are once scattered at the lunar dayside surface, picked-up by the SW motional electric field, and finally sneak into the deepest wake. Our results mean that the SW protons scattered at the lunar dayside surface and coming into the night side region are crucial for plasma environment in the wake, suggesting absorption of ambient SW electrons into the wake to maintain quasi-neutrality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910068919&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910068919&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dquasi%2Bparticle"><span>Collisions between quasi-parallel shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cargill, Peter J.</p> <p>1991-01-01</p> <p>The collision between pairs of quasi-parallel shocks is examined using hybrid numerical simulations. In the interaction, the two shocks are transmitted through each other leaving behind a hot plasma with a population of particles with energies in excess of 40 E0, where E0 is the kinetic energy of particles in the shock frame prior to the collision. The energization is more efficient for quasi-parallel shocks than parallel shocks. Collisions between shocks of equal strengths are more efficient than those that are unequal. The results are of importance for phenomena during the impulsive phase of solar flares, in the distant solar wind and at planetary bow shocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-NHQ_2015_1106_TWAN.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-NHQ_2015_1106_TWAN.html"><span>How Mars is losing its atmosphere on This Week @NASA – November 6, 2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-11-06</p> <p>New findings by NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission indicate that solar wind is currently stripping away the equivalent of about 1/4 pound of gas every second from the Martian atmosphere. MAVEN tracked a series of dramatic solar storms passing through the Martian atmosphere in March and found the loss was accelerated. This could suggest that violent solar activity in the distant past may have played a key role in the transition of the Martian climate from an early, warm and wet environment that might have supported surface life, to the cold, arid planet Mars is today. Also, 15 Years on space station, and counting!, Spacewalk for space station maintenance, NASA seeking future astronauts, Commercial Crew access tower progress and First SLS flight engine placed for testing!</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20931984','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20931984"><span>Cost of wind energy: comparing distant wind resources to local resources in the midwestern United States.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoppock, David C; Patiño-Echeverri, Dalia</p> <p>2010-11-15</p> <p>The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29360793','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29360793"><span>Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli</p> <p>2018-01-23</p> <p>Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5856022','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5856022"><span>Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli</p> <p>2018-01-01</p> <p>Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6399059-computer-constructed-imagery-distant-plasma-interaction-boundaries','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6399059-computer-constructed-imagery-distant-plasma-interaction-boundaries"><span>Computer constructed imagery of distant plasma interaction boundaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Grenstadt, E.W.; Schurr, H.D.; Tsugawa, R.K.</p> <p>1982-01-01</p> <p>Computer constructed sketches of plasma boundaries arising from the interaction between the solar wind and the magnetosphere can serve as both didactic and research tools. In particular, the structure of the earth's bow shock can be represented as a nonuniform surfce according to the instantaneous orientation of the IMF, and temporal changes in structural distribution can be modeled as a sequence of sketches based on observed sequences of spacecraft-based measurements. Viewed rapidly, such a sequence of sketches can be the basis for representation of plasma processes by computer animation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21578263-magnetic-field-line-lengths-interplanetary-coronal-mass-ejections-inferred-from-energetic-electron-events','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21578263-magnetic-field-line-lengths-interplanetary-coronal-mass-ejections-inferred-from-energetic-electron-events"><span>MAGNETIC FIELD-LINE LENGTHS IN INTERPLANETARY CORONAL MASS EJECTIONS INFERRED FROM ENERGETIC ELECTRON EVENTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kahler, S. W.; Haggerty, D. K.; Richardson, I. G., E-mail: AFRL.RVB.PA@hanscom.af.mil</p> <p></p> <p>About one quarter of the observed interplanetary coronal mass ejections (ICMEs) are characterized by enhanced magnetic fields that smoothly rotate in direction over timescales of about 10-50 hr. These ICMEs have the appearance of magnetic flux ropes and are known as 'magnetic clouds' (MCs). The total lengths of MC field lines can be determined using solar energetic particles of known speeds when the solar release times and the 1 AU onset times of the particles are known. A recent examination of about 30 near-relativistic (NR) electron events in and near 8 MCs showed no obvious indication that the field-line lengthsmore » were longest near the MC boundaries and shortest at the MC axes or outside the MCs, contrary to the expectations for a flux rope. Here we use the impulsive beamed NR electron events observed with the Electron Proton and Alpha Monitor instrument on the Advanced Composition Explorer spacecraft and type III radio bursts observed on the Wind spacecraft to determine the field-line lengths inside ICMEs included in the catalog of Richardson and Cane. In particular, we extend this technique to ICMEs that are not MCs and compare the field-line lengths inside MCs and non-MC ICMEs with those in the ambient solar wind outside the ICMEs. No significant differences of field-line lengths are found among MCs, ICMEs, and the ambient solar wind. The estimated number of ICME field-line turns is generally smaller than those deduced for flux-rope model fits to MCs. We also find cases in which the electron injections occur in solar active regions (ARs) distant from the source ARs of the ICMEs, supporting CME models that require extensive coronal magnetic reconnection with surrounding fields. The field-line lengths are found to be statistically longer for the NR electron events classified as ramps and interpreted as shock injections somewhat delayed from the type III bursts. The path lengths of the remaining spike and pulse electron events are compared with model calculations of solar wind field-line lengths resulting from turbulence and found to be in good agreement.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110023536&hterms=white+cane&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dwhite%2Bcane','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110023536&hterms=white+cane&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dwhite%2Bcane"><span>Magnetic Field-Line Lengths in Interplanetary Coronal Mass Ejections Inferred from Energetic Electron Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kahler, S. W.; Haggerty, D. K.; Richardson, I. G.</p> <p>2011-01-01</p> <p>About one quarter of the observed interplanetary coronal mass ejections (ICMEs) are characterized by enhanced magnetic fields that smoothly rotate in direction over timescales of about 10-50 hr. These ICMEs have the appearance of magnetic flux ropes and are known as "magnetic clouds" (MCs). The total lengths of MC field lines can be determined using solar energetic particles of known speeds when the solar release times and the I AU onset times of the particles are known. A recent examination of about 30 near-relativistic (NR) electron events in and near 8 MCs showed no obvious indication that the field-line lengths were longest near the MC boundaries and shortest at the MC axes or outside the MCs, contrary to the expectations for a flux rope. Here we use the impulsive beamed NR electron events observed with the Electron Proton and Alpha Monitor instrument on the Advanced Composition Explorer spacecraft and type III radio bursts observed on the Wind spacecraft to determine the field-line lengths inside ICMEs included in the catalog of Richardson & Cane. In particular, we extend this technique to ICMEs that are not MCs and compare the field-line lengths inside MCs and non-MC ICMEs with those in the ambient solar wind outside the ICMEs. No significant differences of field-line lengths are found among MCs, ICMEs, and the ambient solar wind. The estimated number of ICME field-line turns is generally smaller than those deduced for flux-rope model fits to MCs. We also find cases in which the electron injections occur in solar active regions CARs) distant from the source ARs of the ICMEs, supporting CME models that require extensive coronal magnetic reconnection with surrounding fields. The field-line lengths are found to be statistically longer for the NR electron events classified as ramps and interpreted as shock injections somewhat delayed from the type III bursts. The path lengths of the remaining spike and pulse electron events are compared with model calculations of solar wind field-line lengths resulting from turbulence and found to be in good agreement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH54A..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH54A..06H"><span>Solar wind classification from a machine learning perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heidrich-Meisner, V.; Wimmer-Schweingruber, R. F.</p> <p>2017-12-01</p> <p>It is a very well known fact that the ubiquitous solar wind comes in at least two varieties, the slow solar wind and the coronal hole wind. The simplified view of two solar wind types has been frequently challenged. Existing solar wind categorization schemes rely mainly on different combinations of the solar wind proton speed, the O and C charge state ratios, the Alfvén speed, the expected proton temperature and the specific proton entropy. In available solar wind classification schemes, solar wind from stream interaction regimes is often considered either as coronal hole wind or slow solar wind, although their plasma properties are different compared to "pure" coronal hole or slow solar wind. As shown in Neugebauer et al. (2016), even if only two solar wind types are assumed, available solar wind categorization schemes differ considerably for intermediate solar wind speeds. Thus, the decision boundary between the coronal hole and the slow solar wind is so far not well defined.In this situation, a machine learning approach to solar wind classification can provide an additional perspective.We apply a well-known machine learning method, k-means, to the task of solar wind classification in order to answer the following questions: (1) How many solar wind types can reliably be identified in our data set comprised of ten years of solar wind observations from the Advanced Composition Explorer (ACE)? (2) Which combinations of solar wind parameters are particularly useful for solar wind classification?Potential subtypes of slow solar wind are of particular interest because they can provide hints of respective different source regions or release mechanisms of slow solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P13A1895X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P13A1895X"><span>Martian Low-Altitude Magnetic Topology Deduced from MAVEN/SWEA Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, S.; Mitchell, D. L.; Liemohn, M. W.; Fang, X.; Ma, Y.; Luhmann, J. G.; Brain, D. A.; Steckiewicz, M.; Mazelle, C. X.; Connerney, J. E. P.; Jakosky, B. M.</p> <p>2016-12-01</p> <p>The Mars Atmosphere and Volatile Evolution (MAVEN) mission is the first to make comprehensive plasma and magnetic field measurements down to 150 km altitude over wide ranges of solar zenith angle, local time, longitude, and latitude. The Magnetometer (MAG) and the Solar Wind Electron Analyzer (SWEA) measure the magnetic field vector and the energy-angle distribution of superthermal (3-4600 eV) electrons along the spacecraft trajectory. This study presents pitch angle-resolved electron energy spectra, which we use to infer the plasma source regions sampled by the magnetic field line at large distances from the spacecraft, and in particular whether one or both ends of the magnetic field line have access to the day-side ionosphere. This is a key piece of information for deducing Martian magnetic topology. In the northern hemisphere at altitudes below 400 km, we find that magnetic field lines typically have both ends embedded in the collisional ionosphere, forming loops that connect distant regions on both the day and night hemispheres. This implies that this low-altitude region is dominated by closed crustal magnetic field lines, as opposed to the draped interplanetary magnetic field (IMF), which is prevalent at higher altitudes. Closed loops straddling the terminator allow transport of superthermal photoelectrons to the night hemisphere, which provides a source of ionization to support Mars' patchy night-side ionosphere. This study can also identify "open" field lines, with one end embedded in the ionosphere and the other end connected to the solar wind. This topology provides a conduit for ion outflow from the day-side ionosphere as well as precipitation of (possibly energized) solar wind electrons onto the atmosphere, which can also produce ionospheric patches and possibly auroral emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1514184T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1514184T"><span>Data-Based Mapping of Our Dynamical Magnetosphere (Julius Bartels Medal Lecture)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsyganenko, Nikolai A.</p> <p>2013-04-01</p> <p>The geomagnetic field is a principal agent connecting our planet's ionosphere with thehighly variable interplanetary medium, incessantly disturbed by dynamical processesat the Sun. The Earth's magnetosphere serves as a giant storage reservoir of energy pumped in from the solar wind and intermittently spilled into the upperatmosphere during space storms. As the humankindgets more and more dependent on space technologies, it becomes increasingly important to be able to accurately map the distant geomagnetic field and predict its dynamicsusing data of upstream solar wind monitors. Two approaches to the problem have beensuccessfully pursued over last decades. The first one is to treat the solar wind asa flow of magnetized conducting fluid and to numerically solve first-principle equations,governing its interaction with the terrestrial magnetic dipole. Based on pure theory, that approachaddresses the question: "What the magnetosphere would look like and behaveunder assumption thatthe underlying approximations and techniques were universally accurate?" This lecturewill focus on the other, completely different approach, based on direct observations. Its essence is to develop an empirical description of the global geomagnetic field and its response to the solar wind driving by fitting model parameters to large multi-year sets of spacecraft data. Models of that kind seek to answer the question: "What can in situ measurements tell us about the global magnetospheric configuration and its storm-time dynamics, provided our approximations are realistic, flexible, and the data coverage is sufficiently dense and broad?" Five decades of spaceflight produced enormous amount of archived data anda number of empirical models have already been developed on that basis. Recent and ongoing multi-spacecraft missions keep pouring in new data and further expandthe huge and yet largely untapped resource of valuable information. The main goal of the data-based modeling is to extract the largest possible knowledge from the accumulated data, thus synergistically maximizing the output of present and past space experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhDT........24S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhDT........24S"><span>Magnetic reconnection physics in the solar wind with Voyager 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stevens, Michael L.</p> <p>2009-08-01</p> <p>Magnetic reconnection is the process by which the magnetic topology evolves in collisionless plasmas. This phenomenon is fundamental to a broad range of astrophysical processes such as stellar flares, magnetospheric substorms, and plasma accretion, yet it is poorly understood and difficult to observe in situ . In this thesis, the solar wind plasma permeating interplanetary space is treated as a laboratory for reconnection physics. I present an exhaustive statistical approach to the identification of reconnection outflow jets in turbulent plasma and magnetic field time series data. This approach has been automated and characterized so that the resulting reconnection survey can be put in context with other related studies. The algorithm is shown to perform similarly to ad hoc studies in the inner heliosphere. Based on this technique, I present a survey of 138 outflow jets for the Voyager 2 spacecraft mission, including the most distant in situ evidence of reconnection discovered to date. Reconnection in the solar wind is shown to be strongly correlated with stream interactions and with solar activity. The solar wind magnetic field is found to be reconnecting via large, quasi-steady slow- mode magnetohydrodynamic structures as far out as the orbit of Neptune. The role of slow-mode shocks is explored and, in one instance, a well-developed reconnection structure is shown to be in good agreement with the Petschek theory for fast reconnection. This is the first reported example of a reconnection exhaust that satisfies the full jump conditions for a stationary slow-mode shock pair. A complete investigation into corotating stream interactions over the Voyager 2 mission has revealed that detectable reconnection structure occurs in about 23% of forced, global-scale current sheets. Contrary to previous studies, I find that signatures of this kind are most likely to be observed for current sheets where the magnetic field shear and the plasma-b are high. Evidence has been found of thinning in Kelvin-Helmholtz unstable reconnection structures. I hypothesize that reconnection in turbulent environments occurs predominantly on smaller scales than one can measure with Voyager 2. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617- 253-5668; Fax 617-253-1690.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUSM..SM32D03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUSM..SM32D03K"><span>Does Solar Wind also Drive Convection in Jupiter's Magnetosphere?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khurana, K. K.</p> <p>2001-05-01</p> <p>Using a simple model of magnetic field and plasma velocity, Brice and Ioannidis [1970] showed that the corotation electric field exceeds convection electric field throughout the Jovian magnetosphere. Since that time it has been tacitly assumed that Jupiter's magnetosphere is driven from within. If Brice and Ioannidis conjecture is correct then one would not expect major asymmetries in the field and plasma parameters in the middle magnetosphere of Jupiter. Yet, new field and plasma observations from Galileo and simultaneous auroral observations from HST show that there are large dawn/dusk and day/night asymmetries in many magnetospheric parameters. For example, the magnetic observations show that a partial ring current and an associated Region-2 type field-aligned current system exist in the magnetosphere of Jupiter. In the Earth's magnetosphere it is well known that the region-2 current system is created by the asymmetries imposed by a solar wind driven convection. Thus, we are getting first hints that the solar wind driven convection is important in Jupiter's magnetosphere as well. Other in-situ observations also point to dawn-dusk asymmetries imposed by the solar wind. For example, first order anisotropies in the Energetic Particle Detector show that the plasma is close to corotational on the dawn side but lags behind corotation in the dusk sector. Magnetic field data show that the current sheet is thin and highly organized on the dawn side but thick and disturbed on the dusk side. I will discuss the reasons why Brice and Ioannidis calculation may not be valid. I will show that both the magnetic field and plasma velocity estimates used by Brice and Ioannidis were rather excessive. Using more modern estimates of the field and velocity values I show that the solar wind convection can penetrate as deep as 40 RJ on the dawnside. I will present a new model of convection that invokes in addition to a distant neutral line spanning the whole magnetotail, a near-Jupiter neutral line only on the dawnside. I will discuss how the internal and external drivers together set up a convection system and transport plasma and magnetic flux in Jupiter's magnetosphere. I will explore the consequences of this convection system on the flows, current sheet and the Jovian aurorae.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750007505','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750007505"><span>The Third Solar Wind Conference: A summary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Russell, C. T.</p> <p>1974-01-01</p> <p>The Third Solar Wind Conference consisted of nine sessions. The following subjects were discussed: (1) solar abundances; (2) the history and evolution of the solar wind; (3) the structure and dynamics of the solar corona; (4) macroscopic and microscopic properties of the solar wind; (5) cosmic rays as a probe of the solar wind; (6) the structure and dynamics of the solar wind; (7) spatial gradients; (8) stellar winds; and (9) interactions with objects in the solar wind. The invited and contributed talks presented at the conference are summarized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990031964&hterms=monographs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmonographs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990031964&hterms=monographs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmonographs"><span>Large-Scale Dynamics of the Magnetospheric Boundary: Comparisons between Global MHD Simulation Results and ISTP Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.</p> <p>1998-01-01</p> <p>Understanding the large-scale dynamics of the magnetospheric boundary is an important step towards achieving the ISTP mission's broad objective of assessing the global transport of plasma and energy through the geospace environment. Our approach is based on three-dimensional global magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere- ionosphere system, and consists of using interplanetary magnetic field (IMF) and plasma parameters measured by solar wind monitors upstream of the bow shock as input to the simulations for predicting the large-scale dynamics of the magnetospheric boundary. The validity of these predictions is tested by comparing local data streams with time series measured by downstream spacecraft crossing the magnetospheric boundary. In this paper, we review results from several case studies which confirm that our MHD model reproduces very well the large-scale motion of the magnetospheric boundary. The first case illustrates the complexity of the magnetic field topology that can occur at the dayside magnetospheric boundary for periods of northward IMF with strong Bx and By components. The second comparison reviewed combines dynamic and topological aspects in an investigation of the evolution of the distant tail at 200 R(sub E) from the Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021320&hterms=imprint&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dimprint','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021320&hterms=imprint&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dimprint"><span>Evidence of active region imprints on the solar wind structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hick, P.; Jackson, B. V.</p> <p>1995-01-01</p> <p>A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994AdSpR..14...61N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994AdSpR..14...61N"><span>Evidence of mass outflow in the low corona over a large sunspot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neupert, W. M.; Brosius, J. W.; Thomas, R. J.; Thompson, W. T.</p> <p>1994-04-01</p> <p>An extreme ultraviolet (EUV) imaging spectrograph designed for sounding rocket flight has been used to search for velocity fields in the low solar corona. During a flight in May, 1989, we obtained emission line profile measurements along a chord through an active region on the Sun. Relative Doppler velocities were measured in emission lines of Mg IX, Fe XV, and Fe XVI with a sensitivity of 2-3 km/s at 350 A. The only Doppler shift appreciably greater than this level was observed in the line of Mg IX at 368.1 A over the umbra of the large sunspot. The maximum shift measured at that location corresponded to a velocity toward the observer of 14 plus or minus 3 km/s relative to the mean of measurements in that emission line made elsewhere over the active region. The magnetic field in the low corona was aligned to within 10 deg of the line of sight at the location of maximum Doppler shift. Depending on the magnetic field geometry, this mass outflow could either re-appear as a downflow of material in distant footprints of closed coronal loops or, if along open field lines, could contribute to the solar wind. The site of the sunspot was near a major photospheric magnetic field boundary. Such boundaries have been associated with low-speed solar winds as observed in interplanetary plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982MNRAS.198..297E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982MNRAS.198..297E"><span>On the folding phenomenon of comet tail rays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ershkovich, A. I.</p> <p>1982-01-01</p> <p>It is shown that the folding phenomenon of the comet tail rays is compatible with the Ferraro isorotation law if the comet tail magnetic field has no azimuthal component, that is, Bphi (the polar angle) equals zero. Considering electric drift due to convectional electric fields, a formula is obtained for the angular rate of a ray closure which reduces to that of Ness and Donn (1966) if the velocity profile across the tail is linear. The magnetic field B of approximately 20-40 gammas in the coma and less than about 10 gammas in the distant tail is estimated under typical solar wind conditions at 1 AU.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1373K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1373K"><span>Semi-transparent shock model for major solar energetic particle events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kocharov, Leon</p> <p>2014-05-01</p> <p>Production of solar energetic particles in major events typically comprises two stages: (i) the initial stage associated with shocks and magnetic reconnection in solar corona and (ii) the main stage associated with the CME-bow shock in solar wind. The coronal emission of energetic particles from behind the interplanetary shock wave continues for about one hour , being not shielded by the CME shock in solar wind and having the prompt access to particle detectors at 1 AU. On occasion of two well-separated solar eruptions from the same active region, the newly accelerated solar particles may be emitted well behind the previous CME, and those solar particles may penetrate through the interplanetary shock of the previous CME to arrive at the Earth's orbit without significant delay, which is another evidence that high-energy particles from the solar corona can penetrate through travelling interplanetary shocks. Diffusive shock acceleration is fast only if the particle mean free path near the shock is small. The small mean free path (high turbulence level), however, implies that energetic particles from coronal sources could not penetrate through the interplanetary shock, and even the particles accelerated by the interplanetary shock itself could not escape to its far upstream region. If so, they could not be promptly observed at 1 AU. However, high-energy particles in major solar events are detected well before the shock arrival at 1 AU. The theoretical difficulty can be obviated in the framework of the proposed model of a "semitransparent" shock. As in situ plasma observations indicate, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. Such an intermittence of coronal and solar wind plasmas can affect energetic particle acceleration in coronal and interplanetary shocks. The new modeling incorporates particle acceleration in the shock front and the particle transport both in parallel to the magnetic field and in perpendicular to the magnetic field directions. The modeling suggests that the perpendicular diffusion is always essential for the energetic particle production, because particles can be accelerated in tubes with a high turbulence level and then escape to far upstream of the shock via neighboring, less turbulent tubes. We have modeled both the transmission of high-energy (>50 MeV) protons from coronal sources through the interplanetary shock wave and the interplanetary shock acceleration of ~1-10 MeV protons with subsequent transport to far upstream of the shock. The modeling results imply that presence of the fast transport channels penetrating the shock and the cross-field transport of accelerated particles to those channels may play a key role in the high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000021211','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000021211"><span>UCLA IGPP Space Plasma Simulation Group</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1998-01-01</p> <p>During the past 10 years the UCLA IGPP Space Plasma Simulation Group has pursued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: the solar wind, the low- and high-latitude magnetospheric boundary, the near-Earth and distant magnetotail, and the auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-10-10/pdf/2012-24829.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-10-10/pdf/2012-24829.pdf"><span>77 FR 61597 - Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-10-10</p> <p>... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-109-000] Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind Lessee, LLC; Pacific Wind 2, LLC; Valentine Solar, LLC; EDF Renewable Development, Inc.; Notice of Petition for Declaratory...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018nova.pres.3196H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018nova.pres.3196H"><span>Probing the Structure of Our Solar System's Edge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hensley, Kerry</p> <p>2018-02-01</p> <p>The boundary between the solar wind and the interstellar medium (ISM) at the distant edge of our solar system has been probed remotely and directly by spacecraft, but questions about its properties persist. What can models tell us about the structure of this region?The Heliopause: A Dynamic BoundarySchematic illustrating different boundaries of our solar system and the locations of the Voyager spacecraft. [Walt Feimer/NASA GSFCs Conceptual Image Lab]As our solar system travels through interstellar space, the magnetized solar wind flows outward and pushes back on the oncoming ISM, forming a bubble called the heliosphere. The clash of plasmas generates a boundary region called the heliopause, the shape of which depends strongly on the properties of the solar wind and the local ISM.Much of our understanding of the outer heliosphere and the local ISM comes from observations made by the International Boundary Explorer (IBEX) and the Voyager 1 and Voyager 2 spacecraft. IBEX makes global maps of the flux of neutral atoms, while Voyagers 1 and 2 record the plasma density and magnetic field parameters along their trajectories as they exit the solar system. In order to interpret the IBEX and Voyager observations, astronomers rely on complex models that must capture both global and local effects.Simulations of the plasma density in the meridional plane of the heliosphere due to the interaction of the solar wind with the ISM for the case of a relatively dense ISM with a weak magnetic field. [Adapted from Pogorelov et al. 2017]Modeling the Edge of the Solar SystemIn this study, Nikolai Pogorelov (University of Alabama in Huntsville) and collaborators use a hybrid magneto-hydrodynamical (MHD) and kinetic simulation to capture fully the physical processes happening in the outer heliosphere.MHD models have been used to understand many aspects of plasma flow in the heliosphere. However, they struggle to capture processes that are better described kinetically, like charge exchange or plasma instabilities. Fully kinetic models, on the other hand, are too computationally expensive to be used for global time-dependent simulations.In order to combine the strengths of MHD and kinetic models, the authors also use adaptive mesh refinement a technique in which the grid size is whittled down at key locations where small-scale physics can have a large effect to resolve the important kinetic processes taking place at the heliopause while lowering the overall computational cost.Physics of the BorderTop: Simulation results for the plasma density observed by Voyager 1 along its trajectory. Bottom: Voyager 1 observations of plasma waves. An increase in the plasma wave frequency corresponds to an increase in the ambient plasma density. Click for a closer look. [Adapted from Pogorelov et al. 2017]The authors varied the ISMs density and magnetic field, exploring how this changed the interaction between the ISM and the solar wind. Among their many results, the authors found:There exists a plasma density drop and magnetic field strength increase in the ISM, just beyond the heliopause. This narrow boundary region is similar to a plasma depletion layer formed upstream from the Earths magnetopause as the solar wind streams around it.The authors model for the plasma density along the trajectory of Voyager 1 is consistent with the actual plasma density inferred from Voyager 1s measurements.The heliospheric magnetic field likely dissipates in the region between the termination shock the point at which the solar wind speed drops below the speed of sound and the heliopause.While this work by Pogorelov and collaborators has brought to light new aspects of the boundary between the solar wind and the ISM, the challenge of linking data and models continues. Future simulations will help us further interpret observations by IBEX and the Voyager spacecraft and advance our understanding of how our solar system interacts with the surrounding ISM.CitationN. V. Pogorelov et al 2017ApJ8459. doi:10.3847/1538-4357/aa7d4f</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123...20B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123...20B"><span>On the Origins of the Intercorrelations Between Solar Wind Variables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borovsky, Joseph E.</p> <p>2018-01-01</p> <p>It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P34B..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P34B..04R"><span>MAVEN Pickup Ion Constraints on Mars Neutral Escape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rahmati, A.; Larson, D. E.; Cravens, T.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; McFadden, J. P.; Mitchell, D. L.; Thiemann, E.; Connerney, J. E. P.; DiBraccio, G. A.; Espley, J. R.; Eparvier, F. G.</p> <p>2017-12-01</p> <p>Mars is currently losing its atmosphere mainly due to the escape of neutral hydrogen and oxygen. Directly measuring the rate of escaping neutrals is difficult, because the neutral density in the Mars exosphere is dominated, up to several Martian radii, by atoms that are gravitationally bound to the planet. Neutral atoms in the Martian exosphere, however, can get ionized, picked up, and accelerated by the solar wind motional electric field and energized to energies high enough for particle detectors to measure them. The MAVEN SEP instrument detects O+ pickup ions that are created at altitudes where the escaping part of the exosphere is dominant. Fluxes of these ions reflect neutral densities in the distant exosphere of Mars, allowing us to constrain neutral oxygen escape rates. The MAVEN SWIA and STATIC instruments measure pickup H+ and O+ created closer to Mars; comparisons of these data with models can be used to constrain exospheric hot O and thermal H densities and escape rates. In this work, pickup ion measurements from SEP, SWIA, and STATIC, taken during the first 3 Earth years of the MAVEN mission, are compared to the outputs of a pickup ion model to constrain the variability of neutral escape at Mars. The model is based on data from six MAVEN instruments, namely, MAG providing magnetic field used in calculating pickup ion trajectories, SWIA providing solar wind velocity as well as 3D pickup H+ and O+ spectra, SWEA providing solar wind electron spectrum used in electron impact ionization rate calculations, SEP providing pickup O+ spectra, STATIC providing mass resolved 3D pickup H+ and O+ spectra, and EUVM providing solar EUV spectra used in photoionization rate calculations. A variability of less than a factor of two is observed in hot oxygen escape rates, whereas thermal escape of hydrogen varies by an order of magnitude with Mars season. This hydrogen escape variability challenges our understanding of the H cycle at Mars, but is consistent with other recent measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E.113A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E.113A"><span>DAPHNE: Energy Generation and storage, using Solar Sails</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Argelagós Palau, Ana Maria; Savio Bradford, Brandon</p> <p></p> <p>Space travel is still in it's adolescent stages. Having embarked beyond the limit of our atmosphere for a mere 50 years, it is easy to imagine how much is yet to be discovered, in other solar systems and our own. One of the main factors that slow us down is the need for Energy. Long distance space travel requires a lot of energy, both for propulsion and operations alike. The principle of solar sails shows that the momentum of solar energy can be used beneficially, as can be seen in NASA's Sun-Jammer project. So, why not generate energy from this system? The DAPHNE system will utilize the simple principle of wind mills that is used here on Earth; using the force created by Solar wind to rotate an axle that in turn, generates energy. And this mill can be used to recharge spacecraft that need to fly further than it's own initial energy system will allow. Another benefit to developing this system is the fact that it is an alternative to nuclear energy generation for space, that a lot of modern research is being done on. The DAPHNE system can be considered a solution to long term propellant storage in space for interplanetary and interstellar travel. This paper proposes the design of an energy recharge technology, we called DAPHNE, which will utilize Nanotechnology, using solar sails to generate and store energy for future long-distance space craft to dock with, recharge and continue on their journey/mission. Examples of spacecraft in development that might benefit from a recharging station are the LISA Pathfinder, terrestrial exploration missions and eventually, the long interstellar missions that will be launched in the distant future. Thereby, allowing mankind to push the boundaries of our solar system and accelerate our ability to know what's out there. This technology would help the future generations of Space researchers move further than we can.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770032937&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770032937&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwind%2Bmonitor"><span>Solar wind and extreme ultraviolet modulation of the lunar ionosphere/exosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Freeman, J. W.</p> <p>1976-01-01</p> <p>The ALSEP/SIDE detectors routinely monitor the dayside lunar ionosphere. Variations in the ionosphere are found to correlate with both the 2800 MHz radio index which can be related to solar EUV and with the solar wind proton flux. For the solar wind, the ionospheric variation is proportionately greater than that of the solar wind. This suggests an amplification effect on the lunar atmosphere due perhaps to sputtering of the surface or, less probably, an inordinate enhancement of noble gases in the solar wind. The surface neutral number density is calculated under the assumption of neon gas. During a quiet solar wind this number agrees with or is slightly above that expected for neon accreted from the solar wind. During an enhanced solar wind the neutral number density is much higher.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021279&hterms=atmosphere+wind+profile&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Datmosphere%2Bwind%2Bprofile','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021279&hterms=atmosphere+wind+profile&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Datmosphere%2Bwind%2Bprofile"><span>Elemental and charge state composition of the fast solar wind observed with SMS instruments on WIND</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloeckler, G.; Galvin, A. B.; Ipavich, F. M.; Hamilton, D. C.; Bochsler, P.; Geiss, J.; Fisk, L. A.; Wilken, B.</p> <p>1995-01-01</p> <p>The elemental composition and charge state distributions of heavy ions of the solar wind provide essential information about: (1) atom-ion separation processes in the solar atmosphere leading to the 'FIP effect' (the overabundance of low First Ionization potential (FIP) elements in the solar wind compared to the photosphere); and (2) coronal temperature profiles, as well as mechanisms which heat the corona and accelerate the solar wind. This information is required for solar wind acceleration models. The SWICS instrument on Ulysses measures for all solar wind flow conditions the relative abundance of about 8 elements and 20 charge states of the solar wind. Furthermore, the Ulysses high-latitude orbit provides an unprecedented look at the solar wind from the polar coronal holes near solar minimum conditions. The MASS instrument on the WIND spacecraft is a high-mass resolution solar wind ion mass spectrometer that will provide routinely not only the abundances and charge state of all elements easily measured with SWICS, but also of N, Mg, S. The MASS sensor was fully operational at the end of 1994 and has sampled the in-ecliptic solar wind composition in both the slow and the corotating fast streams. This unique combination of SWICS on Ulysses and MASS on WIND allows us to view for the first time the solar wind from two regions of the large coronal hole. Observations with SWICS in the coronal hole wind: (1) indicate that the FIP effect is small; and (2) allow us determine the altitude of the maximum in the electron temperature profile, and indicate a maximum temperature of approximately 1.5 MK. New results from the SMS instruments on Wind will be compared with results from SWICS on Ulysses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053630&hterms=foreshock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dforeshock','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053630&hterms=foreshock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dforeshock"><span>A study of the solar wind deceleration in the Earth's foreshock region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, T.-L.; Schwingenschuh, K.; Russell, C. T.</p> <p>1995-01-01</p> <p>Previous observations have shown that the solar wind is decelerated and deflected in the earth's upstream region populated by long-period waves. This deceleration is corelated with the 'diffuse' but not with the 'reflected' ion population. The speed of the solar wind may decrease tens of km/s in the foreshock region. The solar wind dynamic pressure exerted on the magnetopause may vary due to the fluctuation of the solar wind speed and density in the foreshock region. In this study, we examine this solar wind deceleration and determine how the solar wind deceleration varies in the foreshock region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSH33A4129L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSH33A4129L"><span>Solar Corona/Wind Composition and Origins of the Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lepri, S. T.; Gilbert, J. A.; Landi, E.; Shearer, P.; von Steiger, R.; Zurbuchen, T.</p> <p>2014-12-01</p> <p>Measurements from ACE and Ulysses have revealed a multifaceted solar wind, with distinctly different kinetic and compositional properties dependent on the source region of the wind. One of the major outstanding issues in heliophysics concerns the origin and also predictability of quasi-stationary slow solar wind. While the fast solar wind is now proven to originate within large polar coronal holes, the source of the slow solar wind remains particularly elusive and has been the subject of long debate, leading to models that are stationary and also reconnection based - such as interchange or so-called S-web based models. Our talk will focus on observational constraints of solar wind sources and their evolution during the solar cycle. In particular, we will point out long-term variations of wind composition and dynamic properties, particularly focused on the abundance of elements with low First Ionization Potential (FIP), which have been routinely measured on both ACE and Ulysses spacecraft. We will use these in situ observations, and remote sensing data where available, to provide constraints for solar wind origin during the solar cycle, and on their correspondence to predictions for models of the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730002084','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730002084"><span>The interaction of the solar wind with the interstellar medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Axford, W. I.</p> <p>1972-01-01</p> <p>The expected characteristics of the solar wind, extrapolated from the vicinity of the earth are described. Several models are examined for the interaction of the solar wind with the interstellar plasma and magnetic field. Various aspects of the penetration of neutral interstellar gas into the solar wind are considered. The dynamic effects of the neutral gas on the solar wind are described. Problems associated with the interaction of cosmic rays with the solar wind are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080045448&hterms=terminator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dterminator','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080045448&hterms=terminator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dterminator"><span>Neutral Solar Wind Generated by Lunar Exospheric Dust at the Terminator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collier, Michael R.; Stubbs, Timothy J.</p> <p>2007-01-01</p> <p>We calculate the flux of neutral solar wind observed on the lunar surface at the terminator due to solar wind protons penetrating exospheric dust with: (1) grains larger that 0.1 microns and (2) grains larger than 0.01 microns. For grains larger than 0.1 microns, the ratio of the neutral solar wind to solar wind flux is estimated to be approx.10(exp -4)-10(exp -3) at solar wind speeds in excess of 800 km/s, but much lower (less than 10(exp -5) at average to low solar wind speeds. However, when the smaller grain sizes are considered, the ratio of the neutral solar wind flux to solar wind flux is estimated to be greater than or equal to 10(exp -5) at all speeds and at speeds in excess of 700 km/s reaches 10(exp -3)-10(exp -2). These neutral solar wind fluxes are easily measurable with current low energy neutral atom instrumentation. Observations of neutral solar wind from the surface of the Moon could provide a very sensitive determination of the distribution of very small dust grains in the lunar exosphere and would provide data complementary to optical measurements at ultraviolet and visible wavelengths. Furthermore, neutral solar wind, unlike its ionized counterpart, is .not held-off by magnetic anomalies, and may contribute to greater space weathering than expected in certain lunar locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15716946','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15716946"><span>Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Crary, F J; Clarke, J T; Dougherty, M K; Hanlon, P G; Hansen, K C; Steinberg, J T; Barraclough, B L; Coates, A J; Gérard, J-C; Grodent, D; Kurth, W S; Mitchell, D G; Rymer, A M; Young, D T</p> <p>2005-02-17</p> <p>The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26213518','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26213518"><span>Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M</p> <p>2014-06-01</p> <p>Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910060872&hterms=mars&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmars','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910060872&hterms=mars&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmars"><span>The solar wind interaction with Mars - Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations of bow shock position and shape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Slavin, J. A.; Schwingenschuh, K.; Riedler, W.; Eroshenko, E.</p> <p>1991-01-01</p> <p>An aggregate Mars bow shock data set using Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations has been analyzed. The results support the earlier conclusion that the mean distance to the subsolar shock at Mars is nearly 1.5 planetary radii, from which gas dynamic models predict an obstacle altitude of 500 km. The Martian bow shock does not appear to vary significantly in shape or altitude with the phase of the solar cycle. The unusually distant dayside bow shock crossings reported by Mars 2 and 3 also appear in the Phobos 3 observations, suggesting that the dayside obstacle can on rare occasions reach altitudes over 1000 km. The Martian bow shock differs from that of Venus in that its mean altitude is greater, it lacks a strong solar cycle variation, and its location is far more variable, including the occurrence of strong bow shocks over the dayside hemisphere at distances at least as great as the orbit of Phobos 2, i.e., 2.8 Mars radii.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020039730&hterms=activity+Physics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dactivity%2BPhysics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020039730&hterms=activity+Physics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dactivity%2BPhysics"><span>Theoretical Technology Research for the International Solar Terrestrial Physics (ISTP) Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ashour-Abdalla, Maha; Curtis, Steve (Technical Monitor)</p> <p>2002-01-01</p> <p>During the last four years the UCLA (University of California, Los Angeles) IGPP (Institute of Geophysics and Planetary Physics) Space Plasma Simulation Group has continued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large-scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: solar wind, low- and high- latitude magnetospheric boundary, near-Earth and distant magnetotail, and auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations. A complete list of the activities completed under the grant follow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17734358','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17734358"><span>Pioneer 11 encounter: preliminary results from the ames research center plasma analyzer experiment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mihaloy, J D; Collard, H R; McKibbin, D D; Wolfe, J H; Intriligator, D S</p> <p>1975-05-02</p> <p>Pioneer 11 observations of the interaction of Jupiter's magnetosphere with the distant solar wind have confirmed the earlier Pioneer 10 observations of the great size and extreme variability of the outer magnetosphere. The nature of the plasma transitions across Jupiter's bow shock and magnetopause as observed on Pioneer 10 have also been confirmed on Pioneer 11. However, the northward direction of the Pioneer 11 outbound trajectory and the distance of the final magnetopause crossing (80 Jupiter radii) now suggest that Jupiter's magnetosphere is extremely broad with a half-thickness (normal to the ecliptic plane in the noon meridian) which is comparable to or greater than the sunward distance to the nose.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860013334','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860013334"><span>ICE telemetry performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Layland, J. W.</p> <p>1986-01-01</p> <p>Acquiring telemetry data from the International Cometary Explorer (ICE) at its encounter with the comet Giacobini-Zinner on September 11, 1985 proved to be among the more difficult challenges the DSN has met in recent years. The ICE spacecraft began its life as an Earth orbiting monitor of the Solar Wind. At the comet, ICE was nearly 50 times as distant as in its initial role, with its signal strength diminished nearly 2500 times. Collecting enough of that weak signal to provide meaningful scientific data about the comet required unique new telemetry capabilities and special handling by the DSN. This article describes the development and validation of the DSN telemetry capability for ICE from its early planning stages through the successful comet encounter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CosRe..55..389S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CosRe..55..389S"><span>Features of solar wind streams on June 21-28, 2015 as a result of interactions between coronal mass ejections and recurrent streams from coronal holes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shugay, Yu. S.; Slemzin, V. A.; Rod'kin, D. G.</p> <p>2017-11-01</p> <p>Coronal sources and parameters of solar wind streams during a strong and prolonged geomagnetic disturbance in June 2015 have been considered. Correspondence between coronal sources and solar wind streams at 1 AU has been determined using an analysis of solar images, catalogs of flares and coronal mass ejections, solar wind parameters including the ionic composition. The sources of disturbances in the considered period were a sequence of five coronal mass ejections that propagated along the recurrent solar wind streams from coronal holes. The observed differences from typical in magnetic and kinetic parameters of solar wind streams have been associated with the interactions of different types of solar wind. The ionic composition has proved to be a good additional marker for highlighting components in a mixture of solar wind streams, which can be associated with different coronal sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-12-06/pdf/2011-31212.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-12-06/pdf/2011-31212.pdf"><span>76 FR 76153 - Notice of Effectiveness of Exempt Wholesale Generator Status; Caney River Wind Project, LLC...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-12-06</p> <p>...] Notice of Effectiveness of Exempt Wholesale Generator Status; Caney River Wind Project, LLC, Mesquite Solar 1, LLC, Copper Crossing Solar LLC, Copper Mountain Solar 1, LLC, Pinnacle Wind, LLC, Bellevue Solar, LLC, Yamhill Solar, LLC, Osage Wind, LLC, Minco Wind II, LLC Take notice that during the month of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......299S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......299S"><span>Tracing the Solar Wind to its Origin: New Insights from ACE/SWICS Data and SO/HIS Performance Predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stakhiv, Mark</p> <p></p> <p>The solar wind is a hot tenuous plasma that continuously streams off of the Sun into the heliosphere. The solar wind is the medium through which coronal mass ejections (CMEs) travel from the Sun to the Earth, where they can disrupt vital space-based technologies and wreak havoc on terrestrial infrastructure. Understanding the solar wind can lead to improved predications of CME arrival time as well as their geoeffectiveness. The solar wind is studied in this thesis through in situ measurements of heavy ions. Several outstanding questions about the solar wind are addressed in this thesis: What is the origin of the solar wind? How is the solar wind heated and accelerated? The charge state distribution and abundance of heavy ions in the solar wind record information about their source location and heating mechanism. This information is largely unchanged from the Sun to the Earth, where it is collected in situ with spacecraft. In this thesis we use data from the Solar Wind Ion Composition Spectrometer (SWICS) that flew on two spacecraft: Ulysses (1990 - 2009) and ACE (1998 - present). We analyze the kinetic and compositional properties of the solar wind with heavy ion data and lay out a unified wind scenario, which states that the solar wind originates from two different sources and regardless of its release mechanism the solar wind is then accelerated by waves. The data from these instruments are the best available to date but still lack the measurement cadence and distribution resolution to fully answer all of the solar wind questions. To address these issues a new heavy ion sensor is being developed to be the next generation of in situ heavy ion measurements. This thesis supports the development of this instrument through the analysis of the sensors measurement properties and the characterization of its geometric factor and efficiencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/grid/wwsis.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/grid/wwsis.html"><span>Western Wind and Solar Integration Study | Grid Modernization | NREL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Western <em>Wind</em> and Solar Integration Study Western <em>Wind</em> and Solar Integration Study Can we integrate large amounts of <em>wind</em> and solar energy into the electric power system of the West? That's the question explored by the Western <em>Wind</em> and Solar Integration Study, one of the largest such regional studies to date</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4508929','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4508929"><span>Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M</p> <p>2014-01-01</p> <p>Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Key Points Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations PMID:26213518</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-12-18/pdf/2013-30036.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-12-18/pdf/2013-30036.pdf"><span>78 FR 76609 - Genesis Solar, LLC; NRG Delta LLC; Mountain View Solar, LLC; Pheasant Run Wind, LLC; Pheasant Run...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-12-18</p> <p>... Delta LLC; Mountain View Solar, LLC; Pheasant Run Wind, LLC; Pheasant Run Wind II, LLC; Tuscola Wind II, LLC; Mountain Wind Power, LLC; Mountain Wind Power II, LLC; Summerhaven Wind, LP; Notice of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...596A..42B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...596A..42B"><span>Mass-loading of the solar wind at 67P/Churyumov-Gerasimenko. Observations and modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Behar, E.; Lindkvist, J.; Nilsson, H.; Holmström, M.; Stenberg-Wieser, G.; Ramstad, R.; Götz, C.</p> <p>2016-11-01</p> <p>Context. The first long-term in-situ observation of the plasma environment in the vicinity of a comet, as provided by the European Rosetta spacecraft. Aims: Here we offer characterisation of the solar wind flow near 67P/Churyumov-Gerasimenko (67P) and its long term evolution during low nucleus activity. We also aim to quantify and interpret the deflection and deceleration of the flow expected from ionization of neutral cometary particles within the undisturbed solar wind. Methods: We have analysed in situ ion and magnetic field data and combined this with hybrid modeling of the interaction between the solar wind and the comet atmosphere. Results: The solar wind deflection is increasing with decreasing heliocentric distances, and exhibits very little deceleration. This is seen both in observations and in modeled solar wind protons. According to our model, energy and momentum are transferred from the solar wind to the coma in a single region, centered on the nucleus, with a size in the order of 1000 km. This interaction affects, over larger scales, the downstream modeled solar wind flow. The energy gained by the cometary ions is a small fraction of the energy available in the solar wind. Conclusions: The deflection of the solar wind is the strongest and clearest signature of the mass-loading for a small, low-activity comet, whereas there is little deceleration of the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MPLB...3240009S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MPLB...3240009S"><span>Numerical simulation of wind loads on solar panels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Kao-Chun; Chung, Kung-Ming; Hsu, Shu-Tsung</p> <p>2018-05-01</p> <p>Solar panels mounted on the roof of a building or ground are often vulnerable to strong wind loads. This study aims to investigate wind loads on solar panels using computational fluid dynamic (CFD). The results show good agreement with wind tunnel data, e.g. the streamwise distribution of mean surface pressure coefficient of a solar panel. Wind uplift for solar panels with four aspect ratios is evaluated. The effect of inclined angle and clearance (or height) of a solar panel is addressed. It is found that wind uplift of a solar panel increases when there is an increase in inclined angle and the clearance above ground shows an opposite effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814547D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814547D"><span>Improvement of background solar wind predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dálya, Zsuzsanna; Opitz, Andrea</p> <p>2016-04-01</p> <p>In order to estimate the solar wind properties at any heliospheric positions propagation tools use solar measurements as input data. The ballistic method extrapolates in-situ solar wind observations to the target position. This works well for undisturbed solar wind, while solar wind disturbances such as Corotating Interaction Regions (CIRs) and Coronal Mass Ejections (CMEs) need more consideration. We are working on dedicated ICME lists to clean these signatures from the input data in order to improve our prediction accuracy. These ICME lists are created from several heliospheric spacecraft measurements: ACE, WIND, STEREO, SOHO, MEX and VEX. As a result, we are able to filter out these events from the time series. Our corrected predictions contribute to the investigation of the quiet solar wind and space weather studies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050182987','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050182987"><span>Microphysics of Waves and Instabilities in the Solar Wind and Their Macro Manifestations in the Corona and Interplanetary Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Habbal, Shadia Rifai</p> <p>2005-01-01</p> <p>Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored: (1) the role of proton temperature anisotropy in the expansion of the solar (2) the role of plasma parameters at the coronal base in the formation of high (3) a three-fluid model of the slow solar wind (4) the heating of coronal loops (5) a newly developed hybrid code for the study of ion cyclotron resonance in wind, speed solar wind streams at mid-latitudes, the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026545','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026545"><span>11- and 22-year variations of the cosmic ray density and of the solar wind speed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chirkov, N. P.</p> <p>1985-01-01</p> <p>Cosmic ray density variations for 17-21 solar activity cycles and the solar wind speed for 20-21 events are investigated. The 22-year solar wind speed recurrence was found in even and odd cycles. The 22-year variations of cosmic ray density were found to be opposite that of solar wind speed and solar activity. The account of solar wind speed in 11-year variations significantly decreases the modulation region of cosmic rays when E = 10-20 GeV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820028333&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231087','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820028333&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231087"><span>Correlations between solar wind parameters and auroral kilometric radiation intensity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gallagher, D. L.; Dangelo, N.</p> <p>1981-01-01</p> <p>The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA14112.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA14112.html"><span>Relative Positions of Distant Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-04-29</p> <p>This graphic shows the relative positions of NASA most distant spacecraft in early 2011, looking at the solar system from the side. Voyager 1 is the most distant spacecraft, 10.9 billion miles away from the sun at a northward angle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH21C..05V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH21C..05V"><span>Combining Remote and In Situ Observations with MHD models to Understand the Formation of the Slow Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viall, N. M.; Kepko, L.; Antiochos, S. K.; Lepri, S. T.; Vourlidas, A.; Linker, J.</p> <p>2017-12-01</p> <p>Connecting the structure and variability in the solar corona to the Heliosphere and solar wind is one of the main goals of Heliophysics and space weather research. The instrumentation and viewpoints of the Parker Solar Probe and Solar Orbiter missions will provide an unprecedented opportunity to combine remote sensing with in situ data to determine how the corona drives the Heliosphere, especially as it relates to the origin of the slow solar wind. We present analysis of STEREO coronagraph and heliospheric imager observations and of in situ ACE and Wind measurements that reveal an important connection between the dynamics of the corona and of the solar wind. We show observations of quasi-periodic release of plasma into the slow solar wind occurring throughout the corona - including regions away from the helmet streamer and heliospheric current sheet - and demonstrate that these observations place severe constraints on the origin of the slow solar wind. We build a comprehensive picture of the dynamic evolution by combining remote imaging data, in situ composition and magnetic connectivity information, and MHD models of the solar wind. Our results have critical implications for the magnetic topology involved in slow solar wind formation and magnetic reconnection dynamics. Crucially, this analysis pushes the limits of current instrument resolution and sensitivity, showing the enormous potential science to be accomplished with the Parker Solar Probe and Solar Orbiter missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770027726&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DKrieger','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770027726&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DKrieger"><span>Coronal holes as sources of solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nolte, J. T.; Krieger, A. S.; Timothy, A. F.; Gold, R. E.; Roelof, E. C.; Vaiana, G.; Lazarus, A. J.; Sullivan, J. D.; Mcintosh, P. S.</p> <p>1976-01-01</p> <p>We investigate the association of high-speed solar wind with coronal holes during the Skylab mission by: (1) direct comparison of solar wind and coronal X-ray data; (2) comparison of near-equatorial coronal hole area with maximum solar wind velocity in the associated streams; and (3) examination of the correlation between solar and interplanetary magnetic polarities. We find that all large near-equatorial coronal holes seen during the Skylab period were associated with high-velocity solar wind streams observed at 1 AU.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002234','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002234"><span>Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris</p> <p>2013-01-01</p> <p>A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.749Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.749Q"><span>Analysis of the solar/wind resources in Southern Spain for optimal sizing of hybrid solar-wind power generation systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quesada-Ruiz, S.; Pozo-Vazquez, D.; Santos-Alamillos, F. J.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Tovar-Pescador, J.</p> <p>2010-09-01</p> <p>A drawback common to the solar and wind energy systems is their unpredictable nature and dependence on weather and climate on a wide range of time scales. In addition, the variation of the energy output may not match with the time distribution of the load demand. This can partially be solved by the use of batteries for energy storage in stand-alone systems. The problem caused by the variable nature of the solar and wind resources can be partially overcome by the use of energy systems that uses both renewable resources in a combined manner, that is, hybrid wind-solar systems. Since both resources can show complementary characteristics in certain location, the independent use of solar or wind systems results in considerable over sizing of the batteries system compared to the use of hybrid solar-wind systems. Nevertheless, to the day, there is no single recognized method for properly sizing these hybrid wind-solar systems. In this work, we present a method for sizing wind-solar hybrid systems in southern Spain. The method is based on the analysis of the wind and solar resources on daily scale, particularly, its temporal complementary characteristics. The method aims to minimize the size of the energy storage systems, trying to provide the most reliable supply.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSH32A..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSH32A..03L"><span>Heavy ion composition in the inner heliosphere: Predictions for Solar Orbiter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lepri, S. T.; Livi, S. A.; Galvin, A. B.; Kistler, L. M.; Raines, J. M.; Allegrini, F.; Collier, M. R.; Zurbuchen, T.</p> <p>2014-12-01</p> <p>The Heavy Ion Sensor (HIS) on SO, with its high time resolution, will provide the first ever solar wind and surpathermal heavy ion composition and 3D velocity distribution function measurements inside the orbit of Mercury. These measurements will provide us the most in depth examination of the origin, structure and evolution of the solar wind. The near co-rotation phases of the orbiter will enable the most accurate mapping of in-situ structures back to their solar sources. Measurements of solar wind composition and heavy ion kinetic properties enable characterization of the sources, transport mechanisms and acceleration processes of the solar wind. This presentation will focus on the current state of in-situ studies of heavy ions in the solar wind and their implications for the sources of the solar wind, the nature of structure and variability in the solar wind, and the acceleration of particles. Additionally, we will also discuss opportunities for coordinated measurements across the payloads of Solar Orbiter and Solar Probe in order to answer key outstanding science questions of central interest to the Solar and Heliophysics communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1221389-depth-profiling-analysis-solar-wind-helium-collected-diamond-like-carbon-film-from-genesis','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1221389-depth-profiling-analysis-solar-wind-helium-collected-diamond-like-carbon-film-from-genesis"><span>Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; ...</p> <p>2015-01-01</p> <p>The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920041687&hterms=Bedini&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DBedini','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920041687&hterms=Bedini&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DBedini"><span>The Solar Wind Ion Composition Spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloeckler, G.; Geiss, J.; Balsiger, H.; Bedini, P.; Cain, J. C.; Fisher, J.; Fisk, L. A.; Galvin, A. B.; Gliem, F.; Hamilton, D. C.</p> <p>1992-01-01</p> <p>The Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is designed to determine uniquely the elemental and ionic-charge composition, and the temperatures and mean speeds of all major solar-wind ions, from H through Fe, at solar wind speeds ranging from 175 km/s (protons) to 1280 km/s (Fe(8+)). The instrument, which covers an energy per charge range from 0.16 to 59.6 keV/e in about 13 min, combines an electrostatic analyzer with postacceleration, followed by a time-of-flight and energy measurement. The measurements made by SWICS will have an impact on many areas of solar and heliospheric physics, in particular providing essential and unique information on: (1) conditions and processes in the region of the corona where the solar wind is accelerated; (2) the location of the source regions of the solar wind in the corona; (3) coronal heating processes; (4) the extent and causes of variations in the composition of the solar atmosphere; (5) plasma processes in the solar wind; (6) the acceleration of energetic particles in the solar wind; (7) the thermalization and acceleration of interstellar ions in the solar wind, and their composition; and (8) the composition, charge states, and behavior of the plasma in various regions of the Jovian magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020010112','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020010112"><span>Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Esser, Ruth; Ling, James (Technical Monitor)</p> <p>2001-01-01</p> <p>Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona where these ion charge states are formed. The goal of the proposed research was to determine solar wind models and coronal observations that are necessary tools for the interpretation of the ion charge state observations made in situ in the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...850...45R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...850...45R"><span>Global Solar Magnetic Field Organization in the Outer Corona: Influence on the Solar Wind Speed and Mass Flux Over the Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Réville, Victor; Brun, Allan Sacha</p> <p>2017-11-01</p> <p>The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11-year solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 {R}⊙ , the source surface radius that approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface. We demonstrate this using 3D global magnetohydrodynamic (MHD) simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). A self-consistent expansion beyond the solar wind critical point (even up to 10 {R}⊙ ) makes our model comply with observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun, and that the mass flux is mostly independent of the terminal wind speed. We also show that near activity minimum, the expansion in the higher corona has more influence on the wind speed than the expansion below 2.5 {R}⊙ .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040061975&hterms=statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dstatistics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040061975&hterms=statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dstatistics"><span>The Genesis Mission Solar Wind Collection: Solar-Wind Statistics over the Period of Collection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barraclough, B. L.; Wiens, R. C.; Steinberg, J. E.; Reisenfeld, D. B.; Neugebauer, M.; Burnett, D. S.; Gosling, J.; Bremmer, R. R.</p> <p>2004-01-01</p> <p>The NASA Genesis spacecraft was launched August 8, 2001 on a mission to collect samples of solar wind for 2 years and return them to earth September 8, 2004. Detailed analyses of the solar wind ions implanted into high-purity collection substrates will be carried out using various mass spectrometry techniques. These analyses are expected to determine key isotopic ratios and elemental abundances in the solar wind, and by extension, in the solar photosphere. Further, the photospheric composition is thought to be representative of the solar nebula with a few exceptions, so that the Genesis mission will provide a baseline for the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. The collection of solar wind samples is almost complete. Collection began for most substrates in early December, 2001, and is scheduled to be complete on April 2 of this year. It is critical to understand the solar-wind conditions during the collection phase of the mission. For this reason, plasma ion and electron spectrometers are continuously monitoring the solar wind proton density, velocity, temperature, the alpha/proton ratio, and angular distribution of suprathermal electrons. Here we report on the solar-wind conditions as observed by these in-situ instruments during the first half of the collection phase of the mission, from December, 2001 to present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150010745&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DG%2526T','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150010745&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DG%2526T"><span>Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.</p> <p>2014-01-01</p> <p>The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021428&hterms=micro+wind&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmicro%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021428&hterms=micro+wind&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmicro%2Bwind"><span>Observations of micro-turbulence in the solar wind near the sun with interplanetary scintillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yamauchi, Y.; Misawa, H.; Kojima, M.; Mori, H.; Tanaka, T.; Takaba, H.; Kondo, T.; Tokumaru, M.; Manoharan, P. K.</p> <p>1995-01-01</p> <p>Velocity and density turbulence of solar wind were inferred from interplanetary scintillation (IPS) observations at 2.3 GHz and 8.5 GHz using a single-antenna. The observations were made during September and October in 1992 - 1994. They covered the distance range between 5 and 76 solar radii (Rs). We applied the spectrum fitting method to obtain a velocity, an axial ratio, an inner scale and a power-law spectrum index. We examined the difference of the turbulence properties near the Sun between low-speed solar wind and high-speed solar wind. Both of solar winds showed acceleration at the distance range of 10 - 30 Rs. The radial dependence of anisotropy and spectrum index did not have significant difference between low-speed and high-speed solar winds. Near the sun, the radial dependence of the inner scale showed the separation from the linear relation as reported by previous works. We found that the inner scale of high-speed solar wind is larger than that of low-speed wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...611A..36V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...611A..36V"><span>Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venzmer, M. S.; Bothmer, V.</p> <p>2018-03-01</p> <p>Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner heliosphere confined to the ecliptic region is derived, accounting for solar activity and for solar distance through adequate shifts of the lognormal distributions. Finally, the inclusion of SSN predictions and the extrapolation down to PSPs perihelion region enables us to estimate the solar-wind environment for PSPs planned trajectory during its mission duration. Results: The CGAUSS empirical solar-wind model for PSP yields dependencies on solar activity and solar distance for the solar-wind parameters' frequency distributions. The estimated solar-wind median values for PSPs first perihelion in 2018 at a solar distance of 0.16 au are 87 nT, 340 km s-1, 214 cm-3, and 503 000 K. The estimates for PSPs first closest perihelion, occurring in 2024 at 0.046 au (9.86 R⊙), are 943 nT, 290 km s-1, 2951 cm-3, and 1 930 000 K. Since the modeled velocity and temperature values below approximately 20 R⊙appear overestimated in comparison with existing observations, this suggests that PSP will directly measure solar-wind acceleration and heating processes below 20 R⊙ as planned.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22126712-hemispheric-asymmetries-polar-solar-wind-observed-ulysses-near-minima-solar-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22126712-hemispheric-asymmetries-polar-solar-wind-observed-ulysses-near-minima-solar-cycles"><span>HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ebert, R. W.; Dayeh, M. A.; Desai, M. I.</p> <p>2013-05-10</p> <p>We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF betweenmore » {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810044425&hterms=radiation+Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dradiation%2BSolar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810044425&hterms=radiation+Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dradiation%2BSolar"><span>Polar solar wind and interstellar wind properties from interplanetary Lyman-alpha radiation measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Witt, N.; Blum, P. W.; Ajello, J. M.</p> <p>1981-01-01</p> <p>The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen densities above the solar poles. This increase is caused by a latitudinal variation of the solar wind velocity and/or flux. Using both the Mariner 10 results and other solar wind observations, the values of the solar wind flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar wind latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10856203','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10856203"><span>The solar wind-magnetosphere-ionosphere system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lyon</p> <p>2000-06-16</p> <p>The solar wind, magnetosphere, and ionosphere form a single system driven by the transfer of energy and momentum from the solar wind to the magnetosphere and ionosphere. Variations in the solar wind can lead to disruptions of space- and ground-based systems caused by enhanced currents flowing into the ionosphere and increased radiation in the near-Earth environment. The coupling between the solar wind and the magnetosphere is mediated and controlled by the magnetic field in the solar wind through the process of magnetic reconnection. Understanding of the global behavior of this system has improved markedly in the recent past from coordinated observations with a constellation of satellite and ground instruments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P54C..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P54C..05K"><span>Correlating Solar Wind Modulation with Ionospheric Variability at Mars from MEX and MAVEN Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kopf, A. J.; Morgan, D. D.; Halekas, J. S.; Ruhunusiri, S.; Gurnett, D. A.; Connerney, J. E. P.</p> <p>2017-12-01</p> <p>The synthesis of observations by the Mars Express and Mars Atmosphere and Volatiles Evolution (MAVEN) spacecraft allows for a unique opportunity to study variability in the Martian ionosphere from multiple perspectives. One major source for this variability is the solar wind. Due to its elliptical orbit which precesses over time, MAVEN periodically spends part of its orbit outside the Martian bow shock, allowing for direct measurements of the solar wind impacting the Martian plasma environment. When the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument aboard Mars Express is simultaneously sounding the ionosphere, the influence from changes in the solar wind can be observed. Previous studies have suggested a positive correlation, connecting ionospheric density to the solar wind proton flux, but depended on Earth-based measurements for solar wind conditions. More recently, research has indicated that observations of ionospheric variability from these two spacecraft can be connected in special cases, such as shock wave impacts or specific solar wind magnetic field orientations. Here we extend this to more general solar wind conditions and examine how changes in the solar wind properties measured by MAVEN instruments correlate with ionospheric structure and dynamics observed simultaneously in MARSIS remote and local measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH21C..08W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH21C..08W"><span>Does the magnetic expansion factor play a role in solar wind acceleration?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wallace, S.; Arge, C. N.; Pihlstrom, Y.</p> <p>2017-12-01</p> <p>For the past 25+ years, the magnetic expansion factor (fs) has been a parameter used in the calculation of terminal solar wind speed (vsw) in the Wang-Sheeley-Arge (WSA) coronal and solar wind model. The magnetic expansion factor measures the rate of flux tube expansion in cross section between the photosphere out to 2.5 solar radii (i.e., source surface), and is inversely related to vsw (Wang & Sheeley, 1990). Since the discovery of this inverse relationship, the physical role that fs plays in solar wind acceleration has been debated. In this study, we investigate whether fs plays a causal role in determining terminal solar wind speed or merely serves as proxy. To do so, we study pseudostreamers, which occur when coronal holes of the same polarity are near enough to one another to limit field line expansion. Pseudostreamers are of particular interest because despite having low fs, spacecraft observations show that solar wind emerging from these regions have slow to intermediate speeds of 350-550 km/s (Wang et al., 2012). In this work, we develop a methodology to identify pseudostreamers that are magnetically connected to satellites using WSA output produced with ADAPT input maps. We utilize this methodology to obtain the spacecraft-observed solar wind speed from the exact parcel of solar wind that left the pseudostreamer. We then compare the pseudostreamer's magnetic expansion factor with the observed solar wind speed from multiple spacecraft (i.e., ACE, STEREO-A & B, Ulysses) magnetically connected to the region. We will use this methodology to identify several cases ( 20) where spacecraft are magnetically connected to pseudostreamers, and perform a statistical analysis to determine the correlation of fs within pseudostreamers and the terminal speed of the solar wind emerging from them. This work will help determine if fs plays a physical role in the speed of solar wind originating from regions that typically produce slow wind. This work compliments previous case studies of solar wind originating from pseudostreamers (Riley et al., 2015, Riley & Luhmann 2012) and will contribute to identifying the physical properties of solar wind from these regions. Future work will explore the role of fs in modulating the fast solar wind and will involve a similar analysis for cases where spacecraft are deep within coronal holes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRA..112.8104O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRA..112.8104O"><span>Solar wind structure suggested by bimodal correlations of solar wind speed and density between the spacecraft SOHO and Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogilvie, K. W.; Coplan, M. A.; Roberts, D. A.; Ipavich, F.</p> <p>2007-08-01</p> <p>We calculate the cross-spacecraft maximum lagged-cross-correlation coefficients for 2-hour intervals of solar wind speed and density measurements made by the plasma instruments on the Solar and Heliospheric Observatory (SOHO) and Wind spacecraft over the period from 1996, the minimum of solar cycle 23, through the end of 2005. During this period, SOHO was located at L1, about 200 R E upstream from the Earth, while Wind spent most of the time in the interplanetary medium at distances of more than 100 R E from the Earth. Yearly histograms of the maximum, time-lagged correlation coefficients for both the speed and density are bimodal in shape, suggesting the existence of two distinct solar wind regimes. The larger correlation coefficients we suggest are due to structured solar wind, including discontinuities and shocks, while the smaller are likely due to Alfvénic turbulence. While further work will be required to firmly establish the physical nature of the two populations, the results of the analysis are consistent with a solar wind that consists of turbulence from quiet regions of the Sun interspersed with highly filamentary structures largely convected from regions in the inner solar corona. The bimodal appearance of the distributions is less evident in the solar wind speed than in the density correlations, consistent with the observation that the filamentary structures are convected with nearly constant speed by the time they reach 1 AU. We also find that at solar minimum the fits for the density correlations have smaller high-correlation components than at solar maximum. We interpret this as due to the presence of more relatively uniform Alfvénic regions at solar minimum than at solar maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020087931','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020087931"><span>Sources of Geomagnetic Activity during Nearly Three Solar Cycles (1972-2000)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richardson, I. G.; Cane, H. V.; Cliver, E. W.; White, Nicholas E. (Technical Monitor)</p> <p>2002-01-01</p> <p>We examine the contributions of the principal solar wind components (corotating highspeed streams, slow solar wind, and transient structures, i.e., interplanetary coronal mass ejections (CMEs), shocks, and postshock flows) to averages of the aa geomagnetic index and the interplanetary magnetic field (IMF) strength in 1972-2000 during nearly three solar cycles. A prime motivation is to understand the influence of solar cycle variations in solar wind structure on long-term (e.g., approximately annual) averages of these parameters. We show that high-speed streams account for approximately two-thirds of long-term aa averages at solar minimum, while at solar maximum, structures associated with transients make the largest contribution (approx. 50%), though contributions from streams and slow solar wind continue to be present. Similarly, high-speed streams are the principal contributor (approx. 55%) to solar minimum averages of the IMF, while transient-related structures are the leading contributor (approx. 40%) at solar maximum. These differences between solar maximum and minimum reflect the changing structure of the near-ecliptic solar wind during the solar cycle. For minimum periods, the Earth is embedded in high-speed streams approx. 55% of the time versus approx. 35% for slow solar wind and approx. 10% for CME-associated structures, while at solar maximum, typical percentages are as follows: high-speed streams approx. 35%, slow solar wind approx. 30%, and CME-associated approx. 35%. These compositions show little cycle-to-cycle variation, at least for the interval considered in this paper. Despite the change in the occurrences of different types of solar wind over the solar cycle (and less significant changes from cycle to cycle), overall, variations in the averages of the aa index and IMF closely follow those in corotating streams. Considering solar cycle averages, we show that high-speed streams account for approx. 44%, approx. 48%, and approx. 40% of the solar wind composition, aa, and the IMF strength, respectively, with corresponding figures of approx. 22%, approx. 32%, and approx. 25% for CME-related structures, and approx. 33%, approx. 19%, and approx. 33% for slow solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021399&hterms=solar+energy+effective&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Benergy%2Beffective','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021399&hterms=solar+energy+effective&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Benergy%2Beffective"><span>Solar wind: Internal parameters driven by external source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chertkov, A. D.</p> <p>1995-01-01</p> <p>A new concept interpreting solar wind parameters is suggested. The process of increasing twofold of a moving volume in the solar wind (with energy transfer across its surface which is comparable with its whole internal energy) is a more rapid process than the relaxation for the pressure. Thus, the solar wind is unique from the point of view of thermodynamics of irreversible processes. The presumptive source of the solar wind creation - the induction electric field of the solar origin - has very low entropy. The state of interplanetary plasma must be very far from the thermodynamic equilibrium. Plasma internal energy is contained mainly in non-degenerate forms (plasma waves, resonant plasma oscillations, electric currents). Microscopic oscillating electric fields in the solar wind plasma should be about 1 V/m. It allows one to describe the solar wind by simple dissipative MHD equations with small effective mean free path (required for hydrodynamical description), low value of electrical conductivity combined with very big apparent thermal conductivity (required for observed solar wind acceleration). These internal parameters are interrelated only due to their origin: they are externally driven. Their relation can change during the interaction of solar wind plasma with an obstacle (planet, spacecraft). The concept proposed can be verified by the special electric field measurements, not ruining the primordial plasma state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15306802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15306802"><span>Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hasegawa, H; Fujimoto, M; Phan, T-D; Rème, H; Balogh, A; Dunlop, M W; Hashimoto, C; Tandokoro, R</p> <p>2004-08-12</p> <p>Establishing the mechanisms by which the solar wind enters Earth's magnetosphere is one of the biggest goals of magnetospheric physics, as it forms the basis of space weather phenomena such as magnetic storms and aurorae. It is generally believed that magnetic reconnection is the dominant process, especially during southward solar-wind magnetic field conditions when the solar-wind and geomagnetic fields are antiparallel at the low-latitude magnetopause. But the plasma content in the outer magnetosphere increases during northward solar-wind magnetic field conditions, contrary to expectation if reconnection is dominant. Here we show that during northward solar-wind magnetic field conditions-in the absence of active reconnection at low latitudes-there is a solar-wind transport mechanism associated with the nonlinear phase of the Kelvin-Helmholtz instability. This can supply plasma sources for various space weather phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SSRv..172..209E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SSRv..172..209E"><span>On the Role of Interchange Reconnection in the Generation of the Slow Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edmondson, J. K.</p> <p>2012-11-01</p> <p>The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001756','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001756"><span>Genesis Solar Wind Interstream, Coronal Hole and Coronal Mass Ejection Samples: Update on Availability and Condition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allton, J. H.; Gonzalez, C. P.; Allums, K. K.</p> <p>2017-01-01</p> <p>Recent refinement of analysis of ACE/SWICS data (Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer) and of onboard data for Genesis Discovery Mission of 3 regimes of solar wind at Earth-Sun L1 make it an appropriate time to update the availability and condition of Genesis samples specifically collected in these three regimes and currently curated at Johnson Space Center. ACE/SWICS spacecraft data indicate that solar wind flow types emanating from the interstream regions, from coronal holes and from coronal mass ejections are elementally and isotopically fractionated in different ways from the solar photosphere, and that correction of solar wind values to photosphere values is non-trivial. Returned Genesis solar wind samples captured very different kinds of information about these three regimes than spacecraft data. Samples were collected from 11/30/2001 to 4/1/2004 on the declining phase of solar cycle 23. Meshik, et al is an example of precision attainable. Earlier high precision laboratory analyses of noble gases collected in the interstream, coronal hole and coronal mass ejection regimes speak to degree of fractionation in solar wind formation and models that laboratory data support. The current availability and condition of samples captured on collector plates during interstream slow solar wind, coronal hole high speed solar wind and coronal mass ejections are de-scribed here for potential users of these samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003051&hterms=Mysteries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMysteries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003051&hterms=Mysteries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMysteries"><span>Implications of L1 Observations for Slow Solar Wind Formation by Solar Reconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kepko, L.; Viall, N. M.; Antiochos, S. K.; Lepri, S. T.; Kasper, J. C.; Weberg, M.</p> <p>2016-01-01</p> <p>While the source of the fast solar wind is known to be coronal holes, the source of the slow solar wind has remained a mystery. Long time scale trends in the composition and charge states show strong correlations between solar wind velocity and plasma parameters, yet these correlations have proved ineffective in determining the slow wind source. We take advantage of new high time resolution (12 min) measurements of solar wind composition and charge state abundances at L1 and previously identified 90 min quasi periodic structures to probe the fundamental timescales of slow wind variability. The combination of new high temporal resolution composition measurements and the clearly identified boundaries of the periodic structures allows us to utilize these distinct solar wind parcels as tracers of slowwind origin and acceleration. We find that each 90 min (2000 Mm) parcel of slow wind has near-constant speed yet exhibits repeatable, systematic charge state and composition variations that span the entire range of statistically determined slow solar wind values. The classic composition-velocity correlations do not hold on short, approximately hour long, time scales. Furthermore, the data demonstrate that these structures were created by magnetic reconnection. Our results impose severe new constraints on slow solar wind origin and provide new, compelling evidence that the slow wind results from the sporadic release of closed field plasma via magnetic reconnection at the boundary between open and closed flux in the Sun's atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH31A2717T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH31A2717T"><span>How Interplanetary Scintillation Data Can Improve Modeling of Coronal Mass Ejection Propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taktakishvili, A.; Mays, M. L.; Manoharan, P. K.; Rastaetter, L.; Kuznetsova, M. M.</p> <p>2017-12-01</p> <p>Coronal mass ejections (CMEs) can have a significant impact on the Earth's magnetosphere-ionosphere system and cause widespread anomalies for satellites from geosynchronous to low-Earth orbit and produce effects such as geomagnetically induced currents. At the NASA/GSFC Community Coordinated Modeling Center we have been using ensemble modeling of CMEs since 2012. In this presnetation we demonstrate that using of interplanetary scintillation (IPS) observations from the Ooty Radio Telescope facility in India can help to track CME propagaion and improve ensemble forecasting of CMEs. The observations of the solar wind density and velocity using IPS from hundreds of distant sources in ensemble modeling of CMEs can be a game-changing improvement of the current state of the art in CME forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015731','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015731"><span>The magnetospheric disturbance ring current as a source for probing the deep earth electrical conductivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Campbell, W.H.</p> <p>1990-01-01</p> <p>Two current rings have been observed in the equatorial plane of the earth at times of high geomagnetic activity. An eastward current exists between about 2 and 3.5 earth radii (Re) distant, and a larger, more variable companion current exists between about 4 and 9 Re. These current regions are loaded during geomagnetic substorms. They decay, almost exponentially, after the cessation of the particle influx that attends the solar wind disturbance. This review focuses upon characteristics needed for intelligent use of the ring current as a source for induction probing of the earth's mantle. Considerable difficulties are found with the assumption that Dst is a ring-current index. ?? 1990 Birkha??user Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990102889&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D20%26Ntt%3Dlazarus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990102889&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D20%26Ntt%3Dlazarus"><span>Some Peculiar Properties of Magnetic Clouds as Observed by the WIND Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berdichevsky, D.; Lepping, R. P.; Szabo, A.; Burlaga, L. F.; Thompson, B. J.; Lazarus, A. J.; Steinburg, J. T.; Mariani, F.</p> <p>1999-01-01</p> <p>We aimed at understanding the common characteristics of magnetic clouds, relevant to solar-interplanetary connections, but exceptional ones were noted and are stressed here through a short compendium. The study is based on analyses of 28 good or better events (Out of 33 candidates) as identified in WIND magnetic field and plasma data. These cloud intervals are provided by WIND-MFI's Website under the URL (http://lepmfi.gsfc.nasa.gov/mfi/mag_cloud_publ.html#table). The period covered is from early 1995 to November 1998. A force free, cylindrically symmetric, magnetic field model has been applied to the field data in usually 1-hour averaged form for the cloud analyses. Some of the findings are: (1) one small duration event turned out to have an approximately normal size which was due to a distant almost "skimming" passage by the spacecraft; (2) One truly small event was observed, where 10 min averages had to be used in the model fitting; it had an excellent model fit and the usual properties of a magnetic cloud, except it possessed a small axial magnetic flux; (3) One cloud ha a dual axial-field-polarity, in the sense that the "core" had one polarity and the annular region around it had an opposite polarity. This event also satisfied the model and with a ve3ry good chi-squared value. Some others show a hint of this dual polarity; (4) The temporal distribution of occurrence clouds over the 4 years show a dip in 1996; (5) About 50 % of the clouds had upstream shocks; any others had upstream pressure pulses; (6) The overall average speed (390 km/s) of the best 28 events is less than the normally quoted for the average solar wind speed (420 km/s) The average of central cloud speed to the upstream solar wind speed was not much greater than one (1.08), even though many of these clouds were drivers of interplanetary shocks. Cloud expansion is partly the reason for the existence of upstream shocks; (7) The cloud axes often (about 50 % of the time) revealed reasonable attitudes with respect to the interpreted solar source, from simple geometry, but many bore no relationship, suggesting that their observations at 1 AU were probably those of the legs of the global cloud often having near-radial axes; (8) many clouds appear to have magnetic holes at or their their boundaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/grid/solar-wind-forecasting.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/grid/solar-wind-forecasting.html"><span>Solar and Wind Forecasting | Grid Modernization | NREL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>and <em>Wind</em> Forecasting Solar and <em>Wind</em> Forecasting As solar and <em>wind</em> power become more common system operators. An aerial photo of the National <em>Wind</em> Technology Center's PV arrays. Capabilities value of accurate forecasting <em>Wind</em> power visualization to direct questions and feedback during industry</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH11B2453R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH11B2453R"><span>Global solar magetic field organization in the extended corona: influence on the solar wind speed and density over the cycle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Réville, V.; Velli, M.; Brun, S.</p> <p>2017-12-01</p> <p>The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11yr solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 Rȯ, the source surface radius which approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface: we demonstrate this using 3D global MHD simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). For models to comply with the constraints provided by observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun (Ulysses observations beyond 1 AU), and that the terminal wind speed is anti-correlated with the mass flux, they must accurately describe expansion beyond the solar wind critical point (even up to 10Rȯ and higher in our model). We also show that near activity minimum, expansion in the higher corona beyond 2.5 Rȯ is actually the dominant process affecting the wind speed. We discuss the consequences of this result on the necessary acceleration profile of the solar wind, the location of the sonic point and of the energy deposition by Alfvén waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMSH34A..02G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMSH34A..02G"><span>Solar Wind Suprathermal Electron Strahl Width from 1.3 to 5.4 AU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodrich, K. A.; Skoug, R. M.; Steinberg, J. T.; McComas, D. J.</p> <p>2010-12-01</p> <p>The solar wind suprathermal electron population typically includes an anisotropic anti-sunward field-aligned beam component, referred to as the strahl. As strahl electrons propagate anti-sunward in a decreasing interplanetary magnetic field, magnetic focusing acts to narrow the strahl beam width. At the same time, scattering processes work against the focusing and maintain strahl beams of finite width. The observed strahl width in the heliosphere is the result of the competition between focusing and scattering. The suprathermal electron strahl width and intensity observed by Ulysses from 1991 - 2008 have been newly examined. These observations cover radial distances between 1.3 and 5.4 AU, and span more than a solar cycle. The strahl width and intensity are characterized by fitting pitch angle distributions to a function consisting of a Gaussian, peaked parallel (or anti-parallel) to the interplanetary field, plus a constant term. Approximately 50 - 65% of the Ulysses pitch angle spectra yield reasonable fits in preliminary analysis, indicating distributions that are well-described by this simple function. For most of the Ulysses observations at energies below 429 eV, the strahl width lies between 20o and 90o. The Ulysses results contrast with previously reported ACE observations at 1 AU. In particular, the more distant Ulysses results appear shifted towards larger strahl widths, indicating that scattering becomes relatively more important than focusing beyond 1 AU. The Ulysses strahl widths are generally broader at heliospheric distances just beyond 2.5 AU than inside 2.5 AU. Between about 2.5 AU and 4.5 AU, the strahl width distribution varies little. Beyond 4.5 AU the strahl width again narrows, indicating that focusing begins to overcome scattering at these large distances. The distribution of strahl widths during the 1st (1992-1998) and 2nd (1998 - 2004) Ulysses polar orbits were compared, with little difference found. However a comparison of strahl widths during 1994, a year dominated by coronal hole high-speed solar wind, to 2000, a year dominated by slow solar wind, revealed a notable difference, with widths generally narrower during 1994 than in 2000. Here we present a comprehensive analysis regarding the variability of the strahl width and intensity with heliocentric distance, as well as with the estimated electron field line path length. In addition, we examine the occurrence of unidirectional and counterstreaming strahl electrons, as indicated by the fitting algorithm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090006630&hterms=figueroa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dfigueroa','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090006630&hterms=figueroa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dfigueroa"><span>Variations of Strahl Properties with Fast and Slow Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Figueroa-Vinas, Adolfo; Goldstein, Melvyn L.; Gurgiolo, Chris</p> <p>2008-01-01</p> <p>The interplanetary solar wind electron velocity distribution function generally shows three different populations. Two of the components, the core and halo, have been the most intensively analyzed and modeled populations using different theoretical models. The third component, the strahl, is usually seen at higher energies, is confined in pitch-angle, is highly field-aligned and skew. This population has been more difficult to identify and to model in the solar wind. In this work we make use of the high angular, energy and time resolution and three-dimensional data of the Cluster/PEACE electron spectrometer to identify and analyze this component in the ambient solar wind during high and slow speed solar wind. The moment density and fluid velocity have been computed by a semi-numerical integration method. The variations of solar wind density and drift velocity with the general build solar wind speed could provide some insight into the source, origin, and evolution of the strahl.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020086296','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020086296"><span>Investigation of Solar Wind Correlations and Solar Wind Modifications Near Earth by Multi-Spacecraft Observations: IMP 8, WIND and INTERBALL-1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Paularena, Karolen I.; Richardson, John D.; Zastenker, Georgy N.</p> <p>2002-01-01</p> <p>The foundation of this Project is use of the opportunity available during the ISTP (International Solar-Terrestrial Physics) era to compare solar wind measurements obtained simultaneously by three spacecraft - IMP 8, WIND and INTERBALL-1 at wide-separated points. Using these data allows us to study three important topics: (1) the size and dynamics of near-Earth mid-scale (with dimension about 1-10 million km) and small-scale (with dimension about 10-100 thousand km) solar wind structures; (2) the reliability of the common assumption that solar wind conditions at the upstream Lagrangian (L1) point accurately predict the conditions affecting Earth's magnetosphere; (3) modification of the solar wind plasma and magnetic field in the regions near the Earth magnetosphere, the foreshock and the magnetosheath. Our Project was dedicated to these problems. Our research has made substantial contributions to the field and has lead others to undertake similar work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1156V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1156V"><span>Solar wind influence on Jupiter's magnetosphere and aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogt, Marissa; Gyalay, Szilard; Withers, Paul</p> <p>2016-04-01</p> <p>Jupiter's magnetosphere is often said to be rotationally driven, with strong centrifugal stresses due to large spatial scales and a rapid planetary rotation period. For example, the main auroral emission at Jupiter is not due to the magnetosphere-solar wind interaction but is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma. Additionally, processes like tail reconnection are also thought to be driven, at least in part, by processes internal to the magnetosphere. While the solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. We will report on the results of a comprehensive, quantitative study of the influence of the solar wind on various magnetospheric data sets measured by the Galileo mission from 1996 to 2003. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, we have identified intervals of high and low solar wind dynamic pressure. We can use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration, which in turn will affect the ionospheric mapping of the main auroral emission. We also consider whether there is evidence that reconnection events occur preferentially during certain solar wind conditions or that the solar wind modulates the quasi-periodicity seen in the magnetic field dipolarizations and flow bursts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050051663&hterms=Tam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DTam','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050051663&hterms=Tam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DTam"><span>Comparison of the Effects of Wave-Particle Interactions and the Kinetic Suprathermal Electron Population on the Acceleration of the Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tam, S. W. Y.; Chang, T.</p> <p>2002-01-01</p> <p>Kinetic effects due to wave-particle interactions and suprathermal electrons have been suggested in the literature as possible solar wind acceleration mechanisms. Ion cyclotron resonant heating, in particular, has been associated with some qualitative features observed in the solar wind. In terms of solar wind acceleration, however, it is interesting to compare the kinetic effects of suprathermal electrons with those due to the wave-particle interactions. The combined effects of the two acceleration mechanisms on the fast solar wind have been studied by Tam and Chang (1999a,b). In this study. we investigate the role of the suprathermal electron population in the acceleration of the solar wind. Our model follows the global kinetic evolution of the fast solar wind under the influence of ion cyclotron resonant heating, while taking into account Coulomb collisions, and the ambipolar electric field that is consistent with the particle distributions themselves. The kinetic effects due to the suprathermal electrons, which we define to be the tail of the electron distributions, can be included in the model as an option. By comparing the results with and without the inclusion of the suprathermal electron effects, we determine the relative importance of suprathermal electrons and wave-particle interactions in driving the solar wind. We find that although suprathermal electrons enhance the ambipolar electric potential in the solar wind considerably, their overall influence as an acceleration mechanism is relatively insignificant in a wave-driven solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020006321&hterms=micro+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmicro%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020006321&hterms=micro+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmicro%2Bwind"><span>Exploration of Solar Wind Acceleration Region Using Interplanetary Scintillation of Water Vapor Maser Source and Quasars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tokumaru, Munetoshi; Yamauchi, Yohei; Kondo, Tetsuro</p> <p>2001-01-01</p> <p>Single-station observations of interplanetary scintillation UPS) at three microwave frequencies 2, 8, and 22GHz, were carried out between 1989 and 1998 using a large (34-micro farad) radio telescope at the Kashima Space Research Center of the Communications Research Laboratory. The aim of these observations was to explore the near-sun solar wind, which is the key region for the study of the solar wind acceleration mechanism. Strong quasars, 3C279 and 3C273B, were used for the Kashima IPS observations at 2 and 8GHz, and a water-vapor maser source, IRC20431, was used for the IPS observations at 22GHz. Solar wind speeds derived from Kashima IPS data suggest that the solar wind acceleration takes place at radial distances between 10 and 30 solar radii (Rs) from the sun. The properties of the turbulence spectrum (e.g. anisotropy, spectral index, inner scale) inferred from the Kashima data were found to change systematically in the solar wind acceleration region. While the solar wind in the maximum phase appears to be dominated by the slow wind, fast and rarefied winds associated with the coronal holes were found to develop significantly at high latitudes as the solar activity declined. Nevertheless, the Kashima data suggests that the location of the acceleration region is stable throughout the solar cycle.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020011026&hterms=quasar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dquasar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020011026&hterms=quasar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dquasar"><span>Exploration of Solar Wind Acceleration Region Using Interplanetary Scintillation of Water Vapor Maser Source and Quasars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tokumaru, Munetoshi; Yamauchi, Yohei; Kondo, Tetsuro</p> <p>2001-01-01</p> <p>Single-station observations of interplanetary scintillation (IPS) at three microwave frequencies; 2 GHz, 8 GHz and 22 GHz have been carried out between 1989 and 1998 using a large (34 m farad) radio telescope at the Kashima Space Research Center of the Communications Research Laboratory. The aim of these observations is to explore the near-sun solar wind, which is the key region for the study of the solar wind acceleration mechanism. Strong quasars; 3C279 and 3C273B were used for Kashima IPS observations at 2 GHz and 8 GHz, and a water vapor maser source, IRC20431 was used for the IPS observations at 22 GHz. Solar wind velocities derived from Kashima IPS data suggest that the solar wind acceleration takes place at radial distances between 10 and 30 solar radii (R(sub s)) from the sun. Properties of the turbulence spectrum (e.g. anisotropy, spectral index, inner scale) inferred from Kashima data are found to change systematically in the solar wind acceleration region. While the solar wind in the maximum phase appears to be dominated by the slow wind, fast and rarefied winds associated with coronal holes are found to develop significantly at high latitudes as the solar activity declines. Nevertheless, Kashima data suggests that the location of the acceleration region is stable throughout the solar cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22356468-solar-wind-neon-abundance-observed-ace-swics-ulysses-swics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22356468-solar-wind-neon-abundance-observed-ace-swics-ulysses-swics"><span>The solar wind neon abundance observed with ACE/SWICS and ULYSSES/SWICS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shearer, Paul; Raines, Jim M.; Lepri, Susan T.</p> <p></p> <p>Using in situ ion spectrometry data from ACE/SWICS, we determine the solar wind Ne/O elemental abundance ratio and examine its dependence on wind speed and evolution with the solar cycle. We find that Ne/O is inversely correlated with wind speed, is nearly constant in the fast wind, and correlates strongly with solar activity in the slow wind. In fast wind streams with speeds above 600 km s{sup –1}, we find Ne/O = 0.10 ± 0.02, in good agreement with the extensive polar observations by Ulysses/SWICS. In slow wind streams with speeds below 400 km s{sup –1}, Ne/O ranges from amore » low of 0.12 ± 0.02 at solar maximum to a high of 0.17 ± 0.03 at solar minimum. These measurements place new and significant empirical constraints on the fractionation mechanisms governing solar wind composition and have implications for the coronal and photospheric abundances of neon and oxygen. The results are made possible by a new data analysis method that robustly identifies rare elements in the measured ion spectra. The method is also applied to Ulysses/SWICS data, which confirms the ACE observations and extends our view of solar wind neon into the three-dimensional heliosphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1720b0006Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1720b0006Z"><span>Anomalously low C6+/C5+ ratio in solar wind: ACE/SWICS observation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, L.; Landi, E.; Kocher, M.; Lepri, S. T.; Fisk, L. A.; Zurbuchen, T. H.</p> <p>2016-03-01</p> <p>The Carbon and Oxygen ionization states in the solar wind plasma freeze-in within 2 solar radii (Rs) from the solar surface, and then they do not change as they propagate with the solar wind into the heliosphere. Therefore, the O7+/O6+ and C6+/C5+ charge state ratios measured in situ maintain a record of the thermal properties (electron temperature and density) of the inner corona where the solar wind originates. Since these two ratios freeze-in at very similar height, they are expected to be correlated. However, an investigation of the correlation between these two ratios as measured by ACE/SWICS instrument from 1998 to 201l shows that there is a subset of "Outliers" departing from the expected correlation. We find about 49.4% of these Outliers is related to the Interplanetary Coronal Mass Ejections (ICMEs), while 49.6% of them is slow speed wind (Vp < 500 km/s) and about 1.0% of them is fast solar wind (Vp > 500 km/s). We compare the outlier-slow-speed wind with the normal slow wind (defined as Vp < 500 km/s and O7+/O6+ > 0.2) and find that the reason that causes the Outliers to depart from the correlation is their extremely depleted C6+/C5+ ratio which is decreased by 80% compared to the normal slow wind. We discuss the implication of the Outlier solar wind for the solar wind acceleration mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT........77L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT........77L"><span>The structure of the solar wind in the inner heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Christina On-Yee</p> <p>2010-12-01</p> <p>This dissertation is devoted to expanding our understanding of the solar wind structure in the inner heliosphere and variations therein with solar activity. Using spacecraft observations and numerical models, the origins of the large-scale structures and long-term trends of the solar wind are explored in order to gain insights on how our Sun determines the space environments of the terrestrial planets. I use long term measurements of the solar wind density, velocity, interplanetary magnetic field, and particles, together with models based on solar magnetic field data, to generate time series of these properties that span one solar rotation (˜27 days). From these time series, I assemble and obtain the synoptic overviews of the solar wind properties. The resulting synoptic overviews show that the solar wind around Mercury, Venus, Earth, and Mars is a complex co-rotating structure with recurring features and occasional transients. During quiet solar conditions, the heliospheric current sheet, which separates the positive interplanetary magnetic field from the negative, usually has a remarkably steady two- or four-sector structure that persists for many solar rotations. Within the sector boundaries are the slow and fast speed solar wind streams that originate from the open coronal magnetic field sources that map to the ecliptic. At the sector boundaries, compressed high-density and the related high-dynamic pressure ridges form where streams from different coronal source regions interact. High fluxes of energetic particles also occur at the boundaries, and are seen most prominently during the quiet solar period. The existence of these recurring features depends on how long-lived are their source regions. In the last decade, 3D numerical solar wind models have become more widely available. They provide important scientific tools for obtaining a more global view of the inner heliosphere and of the relationships between conditions at Mercury, Venus, Earth, and Mars. When I compare the model results with observations for periods outside of solar wind disturbances, I find that the models do a good job of simulating at least the steady, large-scale, ambient solar wind structure. However, it remains a challenge to accurately model the solar wind during active solar conditions. During these times, solar transients such as coronal mass ejections travel through interplanetary space and disturb the ambient solar wind, producing a far less predictable and modelable space environment. However, such conditions may have the greatest impact on the planets - especially on their atmospheres and magnetospheres. I therefore also consider the next steps in modeling, toward including active conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900064360&hterms=ici&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dici','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900064360&hterms=ici&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dici"><span>Space-based measurements of elemental abundances and their relation to solar abundances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coplan, M. A.; Ogilvie, K. W.; Bochsler, P.; Geiss, J.</p> <p>1990-01-01</p> <p>The Ion Composition Instrument (ICI) aboard the ISEE-3/ICE spacecraft was in the solar wind continuously from August 1978 to December 1982. The results made it possible to establish long-term average solar wind abundance values for helium, oxygen, neon, silicon, and iron. The Charge-Energy-Mass instrument aboard the CCE spacecraft of the AMPTE mission has measured the abundance of these elements in the magnetosheath and has also added carbon, nitrogen, magnesium, and sulfur to the list. There is strong evidence that these magnetosheath abundances are representative of the solar wind. Other sources of solar wind abundances are Solar Energetic Particle experiments and Apollo lunar foils. When comparing the abundances from all of these sources with photospheric abundances, it is clear that helium is depleted in the solar wind while silicon and iron are enhanced. Solar wind abundances for carbon, nitrogen, oxygen, and neon correlate well with the photospheric values. The incorporation of minor ions into the solar wind appears to depend upon both the ionization times for the elements and the Coulomb drag exerted by the outflowing proton flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930049593&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D50%26Ntt%3Dlazarus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930049593&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D50%26Ntt%3Dlazarus"><span>The structure of the inner heliosphere from Pioneer Venus and IMP observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.</p> <p>1992-01-01</p> <p>The IMP 8 and Pioneer Venus Orbiter (PVO) spacecraft explore the region of heliographic latitudes between 8 deg N and 8 deg S. Solar wind observations from these spacecraft are used to construct synoptic maps of solar wind parameters in this region. These maps provide an explicit picture of the structure of high speed streams near 1 AU and how that structure varies with time. From 1982 until early 1985, solar wind parameters varied little with latitude. During the last solar minimum, the solar wind developed strong latitudinal structure; high speed streams were excluded from the vicinity of the solar equator. Synoptic maps of solar wind speed are compared with maps of the coronal source surface magnetic field. This comparison reveals the expected correlation between solar wind speed near 1 AU, the strength of the coronal magnetic field, and distance from the coronal neutral line.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026465','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026465"><span>Elemental abundances in corotating events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vonrosenvinge, T. T.; Mcguire, R. E.</p> <p>1985-01-01</p> <p>Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) was remarkably constant at a value (22 + or 5) equal to that in the solar wind (21 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results were presented from a similar study approximately 11 years (i.e., one solar cycle) later. Corotating events have been identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. It is flund that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950032354&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsolar%2Bintensity%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950032354&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsolar%2Bintensity%2Bmeasurement"><span>Latitudinal variation of speed and mass flux in the acceleration region of the solar wind inferred from spectral broadening measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Woo, Richard; Goldstein, Richard M.</p> <p>1994-01-01</p> <p>Spectral broadening measurements conducted at S-band (13-cm wavelength) during solar minimum conditions in the heliocentric distance range of 3-8 R(sub O) by Mariner 4, Pioneer 10, Mariner 10, Helios 1, Helios 2, and Viking have been combined to reveal a factor of 2.6 reduction in bandwidth from equator to pole. Since spectral broadening bandwidth depends on electron density fluctuation and solar wind speed, and latitudinal variation of the former is available from coherence bandwidth measurements, the remote sensing spectral broadening measurements provide the first determination of the latitudinal variation of solar wind speed in the acceleration region. When combined with electron density measurements deduced from white-light coronagraphs, this result also leads to the first determination of the latitudinal variation of mass flux in the acceleration region. From equator to pole, solar wind speed increases by a factor of 2.2, while mass flux decreases by a factor of 2.3. These results are consistent with measurements of solar wind speed by multi-station intensity scintillation measurements, as well as measurements of mass flux inferred from Lyman alpha observations, both of which pertain to the solar wind beyond 0.5 AU. The spectral broadening observations, therefore, strengthen earlier conclusions about the latitudinal variation of solar wind speed and mass flux, and reinforce current solar coronal models and their implications for solar wind acceleration and solar wind modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012MNRAS.421..943K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012MNRAS.421..943K"><span>Solar wind and the motion of dust grains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klačka, J.; Petržala, J.; Pástor, P.; Kómar, L.</p> <p>2012-04-01</p> <p>In this paper, we investigate the action of solar wind on an arbitrarily shaped interplanetary dust particle. The final relativistically covariant equation of motion of the particle also contains the change of the particle's mass. The non-radial solar wind velocity vector is also included. The covariant equation of motion reduces to the Poynting-Robertson effect in the limiting case when a spherical particle is treated, when the speed of the incident solar wind corpuscles tends to the speed of light and when the corpuscles spread radially from the Sun. The results of quantum mechanics have to be incorporated into the physical considerations, in order to obtain the limiting case. If the solar wind affects the motion of a spherical interplanetary dust particle, then ?. Here, p'in and p'out are the incoming and outgoing radiation momenta (per unit time), respectively, measured in the proper frame of reference of the particle, and ? and ? are the solar wind pressure and the total scattering cross-sections, respectively. An analytical solution of the derived equation of motion yields a qualitative behaviour consistent with numerical calculations. This also holds if we consider a decrease of the particle's mass. Using numerical integration of the derived equation of motion, we confirm our analytical result that the non-radial solar wind (with a constant value of angle between the radial direction and the direction of the solar wind velocity) causes outspiralling of the dust particle from the Sun for large values of the particle's semimajor axis. The non-radial solar wind also increases the time the particle spirals towards the Sun. If we consider the periodical variability of the solar wind with the solar cycle, then there are resonances between the particle's orbital period and the period of the solar cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRA..113.8107Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRA..113.8107Z"><span>Statistical validation of a solar wind propagation model from 1 to 10 AU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zieger, Bertalan; Hansen, Kenneth C.</p> <p>2008-08-01</p> <p>A one-dimensional (1-D) numerical magnetohydrodynamic (MHD) code is applied to propagate the solar wind from 1 AU through 10 AU, i.e., beyond the heliocentric distance of Saturn's orbit, in a non-rotating frame of reference. The time-varying boundary conditions at 1 AU are obtained from hourly solar wind data observed near the Earth. Although similar MHD simulations have been carried out and used by several authors, very little work has been done to validate the statistical accuracy of such solar wind predictions. In this paper, we present an extensive analysis of the prediction efficiency, using 12 selected years of solar wind data from the major heliospheric missions Pioneer, Voyager, and Ulysses. We map the numerical solution to each spacecraft in space and time, and validate the simulation, comparing the propagated solar wind parameters with in-situ observations. We do not restrict our statistical analysis to the times of spacecraft alignment, as most of the earlier case studies do. Our superposed epoch analysis suggests that the prediction efficiency is significantly higher during periods with high recurrence index of solar wind speed, typically in the late declining phase of the solar cycle. Among the solar wind variables, the solar wind speed can be predicted to the highest accuracy, with a linear correlation of 0.75 on average close to the time of opposition. We estimate the accuracy of shock arrival times to be as high as 10-15 hours within ±75 d from apparent opposition during years with high recurrence index. During solar activity maximum, there is a clear bias for the model to predicted shocks arriving later than observed in the data, suggesting that during these periods, there is an additional acceleration mechanism in the solar wind that is not included in the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800016210&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800016210&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwind%2Bmonitor"><span>Solar wind and magnetosphere interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Russell, C. T.; Allen, J. H.; Cauffman, D. P.; Feynman, J.; Greenstadt, E. W.; Holzer, R. E.; Kaye, S. M.; Slavin, J. A.; Manka, R. H.; Rostoker, G.</p> <p>1979-01-01</p> <p>The relationship between the magnetosphere and the solar wind is addressed. It is noted that this interface determines how much of the solar plasma and field energy is transferred to the Earth's environment, and that this coupling not only varies in time, responding to major solar disturbances, but also to small changes in solar wind conditions and interplanetary field directions. It is recommended that the conditions of the solar wind and interplanetary medium be continuously monitored, as well as the state of the magnetosphere. Other recommendations include further study of the geomagnetic tail, tests of Pc 3,4 magnetic pulsations as diagnostics of the solar wind, and tests of kilometric radiation as a remote monitor of the auroral electrojet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/978002','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/978002"><span>The Genesis Mission: Solar Wind Conditions, and Implications for the FIP Fractionation of the Solar Wind.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Reisenfeld, D. B.; Wiens, R. C.; Barraclough, B. L.</p> <p>2005-01-01</p> <p>The NASA Genesis mission collected solar wind on ultrapure materials between November 30, 2001 and April 1, 2004. The samples were returned to Earth September 8, 2004. Despite the hard landing that resulted from a failure of the avionics to deploy the parachute, many samples were returned in a condition that will permit analyses. Sample analyses of these samples should give a far better understanding of the solar elemental and isotopic composition (Burnett et al. 2003). Further, the photospheric composition is thought to be representative of the solar nebula, so that the Genesis mission will provide a new baseline formore » the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. Sample analysis is currently underway. The Genesis samples must be placed in the context of the solar and solar wind conditions under which they were collected. Solar wind is fractionated from the photosphere by the forces that accelerate the ions off of the Sun. This fractionation appears to be ordered by the first ionization potential (FIP) of the elements, with the tendency for low-FIP elements to be over-abundant in the solar wind relative to the photosphere, and high-FIP elements to be under-abundant (e.g. Geiss, 1982; von Steiger et al., 2000). In addition, the extent of elemental fractionation differs across different solarwind regimes. Therefore, Genesis collected solar wind samples sorted into three regimes: 'fast wind' or 'coronal hole' (CH), 'slow wind' or 'interstream' (IS), and 'coronal mass ejection' (CME). To carry this out, plasma ion and electron spectrometers (Barraclough et al., 2003) continuously monitored the solar wind proton density, velocity, temperature, the alpha/proton ratio, and angular distribution of suprathermal electrons, and those parameters were in turn used in a rule-based algorithm that assigned the most probable solar wind regime (Neugebauer et al., 2003). At any given time, only one of three regime-specific collectors (CH, IS, or CME) was exposed to the solar wind. Here we report on the regime-specific solar wind conditions from in-situ instruments over the course of the collection period. Further, we use composition data from the SWICS (Solar Wind Ion Composition Spectrometer) instrument on ACE (McComas et al., 1998) to examine the FIP fractionation between solar wind regimes, and make a preliminary comparison of these to the FIP analysis of Ulysses/SWICS composition data (von Steiger et al. 2000). Our elemental fractionation study includes a reevaluation of the Ulysses FIP analysis in light of newly reported photospheric abundance data (Asplund, Grevesse & Sauval, 2005). The new abundance data indicate a metallicity (Z/X) for the Sun almost a factor of two lower than that reported in the widely used compilation of Anders & Grevesse (1989). The new photospheric abundances suggest a lower degree of solar wind fractionation than previously reported by von Steiger et al. (2000) for the first Ulysses polar orbit (1991-1998).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661310-turbulent-transport-three-dimensional-solar-wind','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661310-turbulent-transport-three-dimensional-solar-wind"><span>Turbulent Transport in a Three-dimensional Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shiota, D.; Zank, G. P.; Adhikari, L.</p> <p>2017-03-01</p> <p>Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for themore » temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH22B..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH22B..03S"><span>Deflection and Distortion of CME internal magnetic flux rope due to the interaction with a structured solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shiota, D.; Iju, T.; Hayashi, K.; Fujiki, K.; Tokumaru, M.; Kusano, K.</p> <p>2016-12-01</p> <p>CMEs are the most violent driver of geospace disturbances, and therefore their arrival to the Earth position is an important factor in space weather forecast. The dynamics of CME propagation is strongly affected by the interaction with background solar wind. To understand the interaction between a CME and background solar wind, we performed three-dimensional MHD simulations of the propagation of a CME with internal twisted magnetic flux rope into a structured bimodal solar wind. We compared three different cases in which an identical CME is launched into an identical bimodal solar wind but the launch dates of the CME are different. Each position relative to the boundary between slow and fast solar winds becomes almost in the slow wind stream region, almost in the fast wind stream region, or in vicinity of the boundary of the fast and slow solar wind stream (that grows to CIR). It is found that the CME is most distorted and deflected eastward in the case near the CIR, in contrast to the other two cases. The maximum strength of southward magnetic field at the Earth position is also highest in the case near CIR. The results are interpreted that the dynamic pressure gradient due to the back reaction from pushing the ahead slow wind stream and due to the collision behind fast wind stream hinders the expansion of the CME internal flux rope into the direction of the solar wind velocity gradient. As a result, the expansion into the direction to the velocity gradient is slightly enhanced and results in the enhanced deflection and distortion of the CME and its internal flux rope. These results support the pileup accident hypothesis proposed by Kataoka et al. (2015) to form unexpectedly geoeffective solar wind structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980007565','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980007565"><span>Mapping the Solar Wind from its Source Region into the Outer Corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Esser, Ruth</p> <p>1997-01-01</p> <p>Knowledge of the radial variation of the plasma conditions in the coronal source region of the solar wind is essential to exploring coronal heating and solar wind acceleration mechanisms. The goal of the proposal was to determine as many plasma parameters in the solar wind acceleration region and beyond as possible by coordinating different observational techniques, such as Interplanetary Scintillation Observations, spectral line intensity observations, polarization brightness measurements and X-ray observations. The inferred plasma parameters were then used to constrain solar wind models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040058042&hterms=corona&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dcorona','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040058042&hterms=corona&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dcorona"><span>Microphysics of Waves and Instabilities in the Solar Wind and their Macro Manifestations in the Corona and Interplanetary Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gurman, Joseph (Technical Monitor); Habbal, Shadia Rifai</p> <p>2004-01-01</p> <p>Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored (1) the role of proton temperature anisotropy in the expansion of the solar wind, (2) the role of plasma parameters at the coronal base in the formation of high speed solar wind streams at mid-latitudes, and (3) the heating of coronal loops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016041','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016041"><span>Near-Earth Solar Wind Flows and Related Geomagnetic Activity During more than Four Solar Cycles (1963-2011)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richardson, Ian G.; Cane, Hilary V.</p> <p>2012-01-01</p> <p>In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations). These flow types are: (1) High-speed streams associated with coronal holes at the Sun, (2) Slow, interstream solar wind, and (3) Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and l1e related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3627923','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3627923"><span>Three-dimensional exploration of the solar wind using observations of interplanetary scintillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>TOKUMARU, Munetoshi</p> <p>2013-01-01</p> <p>The solar wind, a supersonic plasma flow continuously emanating from the Sun, governs the space environment in a vast region extending to the boundary of the heliosphere (∼100 AU). Precise understanding of the solar wind is of importance not only because it will satisfy scientific interest in an enigmatic astrophysical phenomenon, but because it has broad impacts on relevant fields. Interplanetary scintillation (IPS) of compact radio sources at meter to centimeter wavelengths serves as a useful ground-based method for investigating the solar wind. IPS measurements of the solar wind at a frequency of 327 MHz have been carried out regularly since the 1980s using the multi-station system of the Solar-Terrestrial Environment Laboratory (STEL) of Nagoya University. This paper reviews new aspects of the solar wind revealed from our IPS observations. PMID:23391604</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18046399','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18046399"><span>Little or no solar wind enters Venus' atmosphere at solar minimum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, T L; Delva, M; Baumjohann, W; Auster, H-U; Carr, C; Russell, C T; Barabash, S; Balikhin, M; Kudela, K; Berghofer, G; Biernat, H K; Lammer, H; Lichtenegger, H; Magnes, W; Nakamura, R; Schwingenschuh, K; Volwerk, M; Vörös, Z; Zambelli, W; Fornacon, K-H; Glassmeier, K-H; Richter, I; Balogh, A; Schwarzl, H; Pope, S A; Shi, J K; Wang, C; Motschmann, U; Lebreton, J-P</p> <p>2007-11-29</p> <p>Venus has no significant internal magnetic field, which allows the solar wind to interact directly with its atmosphere. A field is induced in this interaction, which partially shields the atmosphere, but we have no knowledge of how effective that shield is at solar minimum. (Our current knowledge of the solar wind interaction with Venus is derived from measurements at solar maximum.) The bow shock is close to the planet, meaning that it is possible that some solar wind could be absorbed by the atmosphere and contribute to the evolution of the atmosphere. Here we report magnetic field measurements from the Venus Express spacecraft in the plasma environment surrounding Venus. The bow shock under low solar activity conditions seems to be in the position that would be expected from a complete deflection by a magnetized ionosphere. Therefore little solar wind enters the Venus ionosphere even at solar minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Ge%26Ae..56.1095T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Ge%26Ae..56.1095T"><span>Forecast of solar wind parameters according to STOP magnetograph observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tlatov, A. G.; Pashchenko, M. P.; Ponyavin, D. I.; Svidskii, P. M.; Peshcherov, V. S.; Demidov, M. L.</p> <p>2016-12-01</p> <p>The paper discusses the results of the forecast of solar wind parameters at a distance of 1 AU made according to observations made by the STOP telescope magnetograph during 2014-2015. The Wang-Sheeley-Arge (WSA) empirical model is used to reconstruct the magnetic field topology in the solar corona and estimate the solar wind speed in the interplanetary medium. The proposed model is adapted to STOP magnetograph observations. The results of the calculation of solar wind parameters are compared with ACE satellite measurements. It is shown that the use of STOP observations provides a significant correlation of predicted solar wind speed values with the observed ones.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH53A2550G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH53A2550G"><span>Studying Solar Wind Properties Around CIRs and Their Effects on GCR Modulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghanbari, K.; Florinski, V. A.</p> <p>2017-12-01</p> <p>Corotating interaction region (CIR) events occur when a fast solar wind stream overtakes slow solar wind, forming a compression region ahead and a rarefaction region behind in the fast solar wind. Usually this phenomena occurs along with a crossing of heliospheric current sheet which is the surface separating solar magnetic fields of opposing polarities. In this work, the solar plasma data provided by the ACE science center are utilized to do a superposed epoch analysis on solar parameters including proton density, proton temperature, solar wind speed and solar magnetic field in order to study how the variations of these parameters affect the modulation of galactic cosmic rays. Magnetic fluctuation variances in different parts a of CIR are computed and analyzed using similar techniques in order to understand the cosmic-ray diffusive transport in these regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518620-reconstructing-solar-wind-from-its-early-history-current-epoch','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518620-reconstructing-solar-wind-from-its-early-history-current-epoch"><span>RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Airapetian, Vladimir S.; Usmanov, Arcadi V., E-mail: vladimir.airapetian@nasa.gov, E-mail: avusmanov@gmail.com</p> <p></p> <p>Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electronmore » temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9237H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9237H"><span>A multi-timescale view on the slow solar wind with MTOF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heidrich-Meisner, Verena; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter; Ipavich, Fred M.; Paquette, John A.; Klecker, Bernard</p> <p>2013-04-01</p> <p>The solar wind is known to be composed of several different types of wind. Their respective differences in speed gives rise to the somewhat crude categories slow and fast wind. However, slow and fast winds also differ in their composition and plasma properties. While coronal holes are accepted as the origin of the fast wind (e.g. [Tu2005]), slow wind is hypothesized to emanate from different regions and to be caused by different mechanisms, although the average properties of slow wind are remarkably uniform. Models for the origin of the slow solar wind fall in three categories. In the first category, slow wind originates from the edges of coronal holes and is driven by reconnection of open field lines from the coronal hole with closed loops [Schwadron2005]. The second category relies on reconnection as well but places the source regions of the slow solar wind at the boundaries of active regions [Sakao2007]. A topological argument underlies the third group which requires that all coronal holes are connected by the so-called "S-web" as the driver of the slow solar wind [Antiochos2011]. Solar wind composition has been continuously measured by for example SOHO/CELIAS and ACE/SWICS. In this work we focus on the mass time-of-flight instrument of SOHO/CELIAS/MTOF [Hovestadt1995], which has been collecting data from 1996 to the present day. Whereas much attention in previous years has been focused on spectacular features of the solar wind like (interplanetary) coronal mass ejections (ICMEs) our main interest lies in understanding the slow solar wind. Although it is remarkably homogeneous in its average properties (e.g. [vonSteiger2000]) it contains many short term variations. This motivates us to investigate the slow solar wind on multiple timescales with a special focus on identifying individual stream with unusual compositions. A first step in this is to identify individual streams. A useful tool to do this reliably is specific entropy [Pagel2004]. Consequently, this leads to an extensive picture of individual streams from MTOF, which can be combined with observations from other spacecraft in the future. In particular, identifying and understanding short-term variations of the slow solar wind has the potential to help distinguishing between different possible source regions and mechanisms. Further, with the long term goal of identifying possible different source mechanisms or regions, we analyze and compare the properties of individual streams on short time scales to focus on significant deviations from the average properties of slow solar wind. References [Antiochos2011] SK Antiochos, Z. Mikic, VS Titov, R. Lionello, and JA Linker. A model for the sources of the slow solar wind. The Astrophysical Journal, 731(2):112, 2011. [Hovestadt1995] D. Hovestadt, M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, M. Scholer, H. Grünwaldt, WI Axford, S. Livi, E. Marsch, et al. Celias-charge, element and isotope analysis system for soho. Solar Physics, 162(1):441-481, 1995. [Pagel2004] AC Pagel, NU Crooker, TH Zurbuchen, and JT Gosling. Correlation of solar wind entropy and oxygen ion charge state ratio. Journal of geophysical research, 109(A1):A01113, 2004. [Sakao2007] T. Sakao, R. Kano, N. Narukage, J. Kotoku, T. Bando, E.E. DeLuca, L.L. Lundquist, S. Tsuneta, L.K. Harra, Y. Katsukawa, et al. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science, 318(5856):1585-1588, 2007. [Schwadron2005] NA Schwadron, DJ McComas, HA Elliott, G. Gloeckler, J. Geiss, and R. Von Steiger. Solar wind from the coronal hole boundaries. Journal of geophysical research, 110(A4):A04104, 2005. [Tu2005] C.Y. Tu, C. Zhou, E. Marsch, L.D. Xia, L. Zhao, J.X. Wang, and K. Wilhelm. Solar wind origin in coronal funnels. Science, 308(5721):519-523, 2005. [vonSteiger2000] R. Von Steiger, N. Schwadron, LA Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, RF Wimmer-Schweingruber, and TH Zurbuchen. Composition of quasi-stationary solar wind flows from ulysses/solar wind ion composition spectrometer. Journal of geophysical research, 105:27, 2000.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH53A..05D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH53A..05D"><span>Imaging the Top of the Solar Corona and the Young Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.</p> <p>2016-12-01</p> <p>We present the first direct visual evidence of the quasi-stationary breakup of solar coronal structure and the rise of turbulence in the young solar wind, directly in the future flight path of Solar Probe. Although the corona and, more recently, the solar wind have both been observed directly with Thomson scattered light, the transition from the corona to the solar wind has remained a mystery. The corona itself is highly structured by the magnetic field and the outflowing solar wind, giving rise to radial "striae" - which comprise the familiar streamers, pseudostreamers, and rays. These striae are not visible in wide-field heliospheric images, nor are they clearly delineated with in-situ measurements of the solar wind. Using careful photometric analysis of the images from STEREO/HI-1, we have, for the first time, directly observed the breakup of radial coronal structure and the rise of nearly-isotropic turbulent structure in the outflowing slow solar wind plasma between 10° (40 Rs) and 20° (80 Rs) from the Sun. These observations are important not only for their direct science value, but for predicting and understanding the conditions expected near SPP as it flies through - and beyond - this final frontier of the heliosphere, the outer limits of the solar corona.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014FrASS...1....4E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014FrASS...1....4E"><span>A survey of solar wind conditions at 5 AU: A tool for interpreting solar wind-magnetosphere interactions at Jupiter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ebert, Robert; Bagenal, Fran; McComas, David; Fowler, Christopher</p> <p>2014-09-01</p> <p>We examine Ulysses solar wind and interplanetary magnetic field (IMF) observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1 - 4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013), Jupiter’s bow shock and magnetopause is expected to be at least 8 - 12% further from Jupiter, if these trends continue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.492..222O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.492..222O"><span>Were chondrites magnetized by the early solar wind?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oran, Rona; Weiss, Benjamin P.; Cohen, Ofer</p> <p>2018-06-01</p> <p>Chondritic meteorites have been traditionally thought to be samples of undifferentiated bodies that never experienced large-scale melting. This view has been challenged by the existence of post-accretional, unidirectional natural remanent magnetization (NRM) in CV carbonaceous chondrites. The relatively young inferred NRM age [∼10 million years (My) after solar system formation] and long duration of NRM acquisition (1-106 y) have been interpreted as evidence that the magnetizing field was that of a core dynamo within the CV parent body. This would imply that CV chondrites represent the primitive crust of a partially differentiated body. However, an alternative hypothesis is that the NRM was imparted by the early solar wind. Here we demonstrate that the solar wind scenario is unlikely due to three main factors: 1) the magnitude of the early solar wind magnetic field is estimated to be <0.1 μT in the terrestrial planet-forming region, 2) the resistivity of chondritic bodies limits field amplification due to pile-up of the solar wind to less than a factor of 3.5 times that of the instantaneous solar wind field, and 3) the solar wind field likely changed over timescales orders of magnitude shorter than the timescale of NRM acquisition. Using analytical arguments, numerical simulations and astronomical observations of the present-day solar wind and magnetic fields of young stars, we show that the maximum mean field the ancient solar wind could have imparted on an undifferentiated CV parent body is <3.5 nT, which is 3-4 and 3 orders of magnitude weaker than the paleointensities recorded by the CV chondrites Allende and Kaba, respectively. Therefore, the solar wind is highly unlikely to be the source of the NRM in CV chondrites. Nevertheless, future high sensitivity paleomagnetic studies of rapidly-cooled meteorites with high magnetic recording fidelity could potentially trace the evolution of the solar wind field in time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518793-turbulence-solar-wind-measured-comet-tail-test-particles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518793-turbulence-solar-wind-measured-comet-tail-test-particles"><span>TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>DeForest, C. E.; Howard, T. A.; Matthaeus, W. H.</p> <p>2015-10-20</p> <p>By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysismore » and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.2745B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.2745B"><span>ULF Wave Activity in the Magnetosphere: Resolving Solar Wind Interdependencies to Identify Driving Mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bentley, S. N.; Watt, C. E. J.; Owens, M. J.; Rae, I. J.</p> <p>2018-04-01</p> <p>Ultralow frequency (ULF) waves in the magnetosphere are involved in the energization and transport of radiation belt particles and are strongly driven by the external solar wind. However, the interdependency of solar wind parameters and the variety of solar wind-magnetosphere coupling processes make it difficult to distinguish the effect of individual processes and to predict magnetospheric wave power using solar wind properties. We examine 15 years of dayside ground-based measurements at a single representative frequency (2.5 mHz) and a single magnetic latitude (corresponding to L ˜ 6.6RE). We determine the relative contribution to ULF wave power from instantaneous nonderived solar wind parameters, accounting for their interdependencies. The most influential parameters for ground-based ULF wave power are solar wind speed vsw, southward interplanetary magnetic field component Bz<0, and summed power in number density perturbations δNp. Together, the subordinate parameters Bz and δNp still account for significant amounts of power. We suggest that these three parameters correspond to driving by the Kelvin-Helmholtz instability, formation, and/or propagation of flux transfer events and density perturbations from solar wind structures sweeping past the Earth. We anticipate that this new parameter reduction will aid comparisons of ULF generation mechanisms between magnetospheric sectors and will enable more sophisticated empirical models predicting magnetospheric ULF power using external solar wind driving parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/continuum/utility_scale/integrating_wind_solar.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/continuum/utility_scale/integrating_wind_solar.html"><span>Integrating Wind and Solar on the Grid-NREL Analysis Leads the Way -</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>shown in color, but not including pink/IESO area.) Map provided by NREL Integrating <em>Wind</em> and Solar on the Grid-NREL Analysis Leads the Way NREL studies confirm big <em>wind</em>, solar potential for grid integration To fully harvest the nation's bountiful <em>wind</em> and solar resources, it is critical to know how much</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002249','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002249"><span>Global Network of Slow Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crooker, N. U.; Antiochos, S. K.; Zhao, X.; Neugebauer, M.</p> <p>2012-01-01</p> <p>The streamer belt region surrounding the heliospheric current sheet (HCS) is generally treated as the primary or sole source of the slow solar wind. Synoptic maps of solar wind speed predicted by the Wang-Sheeley-Arge model during selected periods of solar cycle 23, however, show many areas of slow wind displaced from the streamer belt. These areas commonly have the form of an arc that is connected to the streamer belt at both ends. The arcs mark the boundaries between fields emanating from different coronal holes of the same polarity and thus trace the paths of belts of pseudostreamers, i.e., unipolar streamers that form over double arcades and lack current sheets. The arc pattern is consistent with the predicted topological mapping of the narrow open corridor or singular separator line that must connect the holes and, thus, consistent with the separatrix-web model of the slow solar wind. Near solar maximum, pseudostreamer belts stray far from the HCS-associated streamer belt and, together with it, form a global-wide web of slow wind. Recognition of pseudostreamer belts as prominent sources of slow wind provides a new template for understanding solar wind stream structure, especially near solar maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/grid/hawaii-integration-studies.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/grid/hawaii-integration-studies.html"><span>Hawaii Solar and Wind Integration Studies | Grid Modernization | NREL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Solar Integration <em>Study</em> and Oahu Wind Integration and Transmission <em>Study</em> investigated the effects of high penetrations of renewables on island grids. Hawaii Solar Integration <em>Study</em> The Hawaii Solar Integration <em>Study</em> was a detailed technical examination of the effects of high penetrations of solar and wind</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840005037','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840005037"><span>The average solar wind in the inner heliosphere: Structures and slow variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schwenn, R.</p> <p>1983-01-01</p> <p>Measurements from the HELIOS solar probes indicated that apart from solar activity related disturbances there exist two states of the solar wind which might result from basic differences in the acceleration process: the fast solar wind (v 600 kms(-)1) emanating from magnetically open regions in the solar corona and the "slow" solar wind (v 400 kms(-)1) correlated with the more active regions and its mainly closed magnetic structures. In a comprehensive study using all HELIOS data taken between 1974 and 1982 the average behavior of the basic plasma parameters were analyzed as functions of the solar wind speed. The long term variations of the solar wind parameters along the solar cycle were also determined and numerical estimates given. These modulations appear to be distinct though only minor. In agreement with earlier studies it was concluded that the major modulations are in the number and size of high speed streams and in the number of interplanetary shock waves caused by coronal transients. The latter ones usually cause huge deviations from the averages of all parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800016212&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800016212&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwind%2Bmonitor"><span>The magnetospheric electric field and convective processes as diagnostics of the IMF and solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaye, S. M.</p> <p>1979-01-01</p> <p>Indirect measurements of the convection field as well as direct of the ionospheric electric field provide a means to at least monitor quanitatively solar wind processes. For instance, asymmetries in the ionospheric electric field and ionospheric Hall currents over the polar cap reflect the solar wind sector polarity. A stronger electric field, and thus convective flow, is found on the side of the polar cap where the y component of the IMF is parallel to the y component of the geomagnetic field. Additionally, the magnitude of the electric field and convective southward B sub Z and/or solar wind velocity, and thus may indicate the arrival at Earth of an interaction region in the solar wind. It is apparent that processes associated with the convention electric field may be used to predict large scale features in the solar wind; however, with present empirical knowledge it is not possible to make quantitative predictions of individual solar wind or IMF parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018P%26SS..154...59C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018P%26SS..154...59C"><span>The future of stellar occultations by distant solar system bodies: Perspectives from the Gaia astrometry and the deep sky surveys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Vieira-Martins, R.; Assafin, M.; Sicardy, B.; Bérard, D.; Benedetti-Rossi, G.</p> <p>2018-05-01</p> <p>Distant objects in the solar system are crucial to better understand the history and evolution of its outskirts. The stellar occultation technique allows the determination of their sizes and shapes with kilometric accuracy, a detailed investigation of their immediate vicinities, as well as the detection of tenuous atmospheres. The prediction of such events is a key point in this study, and yet accurate enough predictions are available to a handful of objects only. In this work, we briefly discuss the dramatic impact that both the astrometry from the Gaia space mission and the deep sky surveys - the Large Synoptic Survey Telescope in particular - will have on the prediction of stellar occultations and how they may influence the future of the study of distant small solar system bodies through this technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM13B2203T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM13B2203T"><span>Statistical Methods for Quantifying the Variability of Solar Wind Transients of All Sizes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tindale, E.; Chapman, S. C.</p> <p>2016-12-01</p> <p>The solar wind is inherently variable across a wide range of timescales, from small-scale turbulent fluctuations to the 11-year periodicity induced by the solar cycle. Each solar cycle is unique, and this change in overall cycle activity is coupled from the Sun to Earth via the solar wind, leading to long-term trends in space weather. Our work [Tindale & Chapman, 2016] applies novel statistical methods to solar wind transients of all sizes, to quantify the variability of the solar wind associated with the solar cycle. We use the same methods to link solar wind observations with those on the Sun and Earth. We use Wind data to construct quantile-quantile (QQ) plots comparing the statistical distributions of multiple commonly used solar wind-magnetosphere coupling parameters between the minima and maxima of solar cycles 23 and 24. We find that in each case the distribution is multicomponent, ranging from small fluctuations to extreme values, with the same functional form at all phases of the solar cycle. The change in PDF is captured by a simple change of variables, which is independent of the PDF model. Using this method we can quantify the quietness of the cycle 24 maximum, identify which variable drives the changing distribution of composite parameters such as ɛ, and we show that the distribution of ɛ is less sensitive to changes in its extreme values than that of its constituents. After demonstrating the QQ method on solar wind data, we extend the analysis to include solar and magnetospheric data spanning the same time period. We focus on GOES X-ray flux and WDC AE index data. Finally, having studied the statistics of transients across the full distribution, we apply the same method to time series of extreme bursts in each variable. Using these statistical tools, we aim to track the solar cycle-driven variability from the Sun through the solar wind and into the Earth's magnetosphere. Tindale, E. and S.C. Chapman (2016), Geophys. Res. Lett., 43(11), doi: 10.1002/2016GL068920.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.2973B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.2973B"><span>Substorm occurrence rates, substorm recurrence times, and solar wind structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borovsky, Joseph E.; Yakymenko, Kateryna</p> <p>2017-03-01</p> <p>Two collections of substorms are created: 28,464 substorms identified with jumps in the SuperMAG AL index in the years 1979-2015 and 16,025 substorms identified with electron injections into geosynchronous orbit in the years 1989-2007. Substorm occurrence rates and substorm recurrence-time distributions are examined as functions of the phase of the solar cycle, the season of the year, the Russell-McPherron favorability, the type of solar wind plasma at Earth, the geomagnetic-activity level, and as functions of various solar and solar wind properties. Three populations of substorm occurrences are seen: (1) quasiperiodically occurring substorms with recurrence times (waiting times) of 2-4 h, (2) randomly occurring substorms with recurrence times of about 6-15 h, and (3) long intervals wherein no substorms occur. A working model is suggested wherein (1) the period of periodic substorms is set by the magnetosphere with variations in the actual recurrence times caused by the need for a solar wind driving interval to occur, (2) the mesoscale structure of the solar wind magnetic field triggers the occurrence of the random substorms, and (3) the large-scale structure of the solar wind plasma is responsible for the long intervals wherein no substorms occur. Statistically, the recurrence period of periodically occurring substorms is slightly shorter when the ram pressure of the solar wind is high, when the magnetic field strength of the solar wind is strong, when the Mach number of the solar wind is low, and when the polar-cap potential saturation parameter is high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750002821','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750002821"><span>Termination of the solar wind in the hot, partially ionized interstellar medium. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lombard, C. K.</p> <p>1974-01-01</p> <p>Theoretical foundations for understanding the problem of the termination of the solar wind are reexamined in the light of most recent findings concerning the states of the solar wind and the local interstellar medium. The investigation suggests that a simple extention of Parker's (1961) analytical model provides a useful approximate description of the combined solar wind, interstellar wind plasma flowfield under conditions presently thought to occur. A linear perturbation solution exhibiting both the effects of photoionization and charge exchange is obtained for the supersonic solar wind. A numerical algorithm is described for computing moments of the non-equilibrium hydrogen distribution function and associated source terms for the MHD equations. Computed using the algorithm in conjunction with the extended Parker solution to approximate the plasma flowfield, profiles of hydrogen number density are given in the solar wind along the upstream and downstream axes of flow with respect to the direction of the interstellar wind. Predictions of solar Lyman-alpha backscatter intensities to be observed at 1 a.u. have been computed, in turn, from a set of such hydrogen number density profiles varied over assumed conditions of the interstellar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22590900-coherent-relation-between-solar-wind-proton-speed-sup-sup-ratio-its-coronal-sources','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22590900-coherent-relation-between-solar-wind-proton-speed-sup-sup-ratio-its-coronal-sources"><span>The coherent relation between the solar wind proton speed and O{sup 7+}/O{sup 6+} ratio and its coronal sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, L., E-mail: lzh@umich.edu; Landi, E.; Fisk, L. A.</p> <p></p> <p>We analyze the two-hour resolution solar wind proton speed (V{sub p}) and charge state ratio of O{sup 7+}/O{sup 6+} measured by ACE (SWICS and SWEPAM) from 1998 to 2011 at 1 AU. By applying a two-step mapping method, we link the solar wind in-situ observations to the corona images captured by SOHO and STEREO, in which we identify the different plasma structures, such as active regions (ARs), coronal holes (CHs) and quiet Sun regions (QS), using a classification scheme based on pixel brightness. Then we determine from which region in the corona the solar wind originates. We examine the in-situmore » properties of the solar wind streams associated with CHs, ARs and QS regions. We find that more than half of CH associated wind is actually slow wind, and O{sup 7+}/O{sup 6+} ratio has a strong coherent correlation with the location of the solar wind coronal sources. Therefore, we conclude that O{sup 7+}/O{sup 6+} ratio can be used as a much more effective discriminator to identify solar wind coronal sources region than V{sub p}.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH32A..03A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH32A..03A"><span>A Deeper Understanding of Stability in the Solar Wind: Applying Nyquist's Instability Criterion to Wind Faraday Cup Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alterman, B. L.; Klein, K. G.; Verscharen, D.; Stevens, M. L.; Kasper, J. C.</p> <p>2017-12-01</p> <p>Long duration, in situ data sets enable large-scale statistical analysis of free-energy-driven instabilities in the solar wind. The plasma beta and temperature anisotropy plane provides a well-defined parameter space in which a single-fluid plasma's stability can be represented. Because this reduced parameter space can only represent instability thresholds due to the free energy of one ion species - typically the bulk protons - the true impact of instabilities on the solar wind is under estimated. Nyquist's instability criterion allows us to systematically account for other sources of free energy including beams, drifts, and additional temperature anisotropies. Utilizing over 20 years of Wind Faraday cup and magnetic field observations, we have resolved the bulk parameters for three ion populations: the bulk protons, beam protons, and alpha particles. Applying Nyquist's criterion, we calculate the number of linearly growing modes supported by each spectrum and provide a more nuanced consideration of solar wind stability. Using collisional age measurements, we predict the stability of the solar wind close to the sun. Accounting for the free-energy from the three most common ion populations in the solar wind, our approach provides a more complete characterization of solar wind stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810060080&hterms=Solar+power+filters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSolar%2Bpower%2Bfilters','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810060080&hterms=Solar+power+filters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSolar%2Bpower%2Bfilters"><span>Solar wind control of auroral zone geomagnetic activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clauer, C. R.; Mcpherron, R. L.; Searls, C.; Kivelson, M. G.</p> <p>1981-01-01</p> <p>Solar wind magnetosphere energy coupling functions are analyzed using linear prediction filtering with 2.5 minute data. The relationship of auroral zone geomagnetic activity to solar wind power input functions are examined, and a least squares prediction filter, or impulse response function is designed from the data. Computed impulse response functions are observed to have characteristics of a low pass filter with time delay. The AL index is found well related to solar wind energy functions, although the AU index shows a poor relationship. High frequency variations of auroral indices and substorm expansions are not predictable with solar wind information alone, suggesting influence by internal magnetospheric processes. Finally, the epsilon parameter shows a poorer relationship with auroral geomagnetic activity than a power parameter, having a VBs solar wind dependency.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730002053','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730002053"><span>Conversion of magnetic field energy into kinetic energy in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Whang, Y. C.</p> <p>1972-01-01</p> <p>The outflow of the solar magnetic field energy (the radial component of the Poynting vector) per steradian is inversely proportional to the solar wind velocity. It is a decreasing function of the heliocentric distance. When the magnetic field effect is included in the one-fluid model of the solar wind, the transformation of magnetic field energy into kinetic energy during the expansion process increases the solar wind velocity at 1 AU by 17 percent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021300&hterms=dimensions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddimensions','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021300&hterms=dimensions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddimensions"><span>The solar wind in the third dimension</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Neugebauer, M.</p> <p>1995-01-01</p> <p>For many years, solar-wind physicists have been using plasma and field data acquired near the ecliptic plane together with data on the scintillation of radio sources and remote sensing of structures in the solar corona to estimate the properties of the high-latitude solar wind, Because of the highly successful Ulysses mission, the moment of truth is now here. This talk summarizes the principal differences between the high and low latitude solar winds at the declining phase of the solar-activity cycle and between the Ulysses observations and expectations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981IJAmE...2..223B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981IJAmE...2..223B"><span>Potential for a Danish power system using wind energy generators, solar cells and storage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blegaa, S.; Christiansen, G.</p> <p>1981-10-01</p> <p>Performance characteristics of a combined solar/wind power system equipped with storage and an unspecified back-up power source are studied on the basis of meteorological data in Denmark from 1959-1972. A model for annual production and storage from wind/solar installations is presented, assuming 12% efficiency for the solar cells and various power coefficients of the windmills, in addition to long and short-term storage. Noting that no correlation between wind and solar energy availability was found, and a constant ratio of 60% wind/40% solar was determined to be the optimum mix for large scale power production without taking into consideration the variations among years. It is concluded that 80-90% of the total Danish electrical load can be covered by solar/wind systems, and 100% may be possible with the addition of pumped hydroelectric storage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH23D2692D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH23D2692D"><span>Remote Sensing of the Solar Wind Density, Speed, and Temperature in the Region between the Sun and Parker Solar Probe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davila, J. M.; Reginald, N. L.</p> <p>2017-12-01</p> <p>A coronagraph is the tool of choice to understand and observe the structure of the corona from space. The novel coronagraph concept presented her provides a new scientific capability that will allow the measurement of density, temperature, and flow velocity in the solar atmosphere. This instrument will provide the first remote sensing measurement of the global solar wind temperature, density, and flow speed in the regions between 3 and 8 Rsun. It is in this region that the manority of the solar wind acceleration takes place, and where the ion compsition of the solar wind is "frozen in". This is also the region of the corona that links the surface of the Sun to the Parker Solar Probe and to Solar Orbiter. The observations suggested here would dramatically improve our understanding of solar wind formation and evolution in this critical region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910047213&hterms=radiation+Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dradiation%2BSolar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910047213&hterms=radiation+Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dradiation%2BSolar"><span>Erosion of carbon/carbon by solar wind charged particle radiation during a solar probe mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sokolowski, Witold; O'Donnell, Tim; Millard, Jerry</p> <p>1991-01-01</p> <p>The possible erosion of a carbon/carbon thermal shield by solar wind-charged particle radiation is reviewed. The present knowledge of erosion data for carbon and/or graphite is surveyed, and an explanation of erosion mechanisms under different charged particle environments is discussed. The highest erosion is expected at four solar radii. Erosion rates are analytically estimated under several conservative assumptions for a normal quiet and worst case solar wind storm conditions. Mass loss analyses and comparison studies surprisingly indicate that the predicted erosion rate by solar wind could be greater than by nominal free sublimation during solar wind storm conditions at four solar radii. The predicted overall mass loss of a carbon/carbon shield material during the critical four solar radii flyby can still meet the mass loss mission requirement of less than 0.0025 g/sec.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920068530&hterms=missing+data&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmissing%2Bdata','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920068530&hterms=missing+data&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmissing%2Bdata"><span>Missing pressure in the dayside ionosphere of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cloutier, P. A.; Stewart, B. K.; Taylor, H. A., Jr.</p> <p>1992-01-01</p> <p>Data obtained by various instruments on the Pioneer-Venus spacecraft were used to study the conservation of momentum flux from the solar wind through the dayside ionopause into the thermal Venus ionosphere. A consistent pressure deficit was found below the ionopause, with a strong dependence on solar wind pressure. Independent of solar wind pressure, the pressure deficit was found to decrease with decreasing altitude below the ionopause. Measurements of this pressure deficit (missing pressure) are presented as a function of altitude for various solar wind conditions. The identity of the missing pressure component and the correlation with solar wind pressure are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720012210','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720012210"><span>Collisionless solar wind protons: A comparison of kinetic and hydrodynamic descriptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leer, E.; Holzer, T. E.</p> <p>1971-01-01</p> <p>Kinetic and hydrodynamic descriptions of a collisionless solar wind proton gas are compared. Heat conduction and viscosity are neglected in the hydrodynamic formulation but automatically included in the kinetic formulation. The results of the two models are very nearly the same, indicating that heat conduction and viscosity are not important in the solar wind proton gas beyond about 0.1 AU. It is concluded that the hydrodynamic equations provide a valid description of the collisionless solar wind protons, and hence that future models of the quiet solar wind should be based on a hydrodynamic formulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSH22B..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSH22B..03H"><span>IPS analysis on relationship among velocity, density and temperature of the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayashi, K.; Tokumaru, M.; Fujiki, K.</p> <p>2015-12-01</p> <p>The IPS(Interplanetary Scintillation)-MHD(magnetohydrodynamics) tomography is a method we have developed to determine three-dimensional MHD solution of the solar wind that best matches the line-of-sight IPS solar-wind speed data (Hayashi et al., 2003). The tomographic approach is an iteration method in which IPS observations are simulated in MHD steady-state solution, then differences between the simulated observation and the actual IPS observation is reduced by modifying solar-wind boundary map at 50 solar radii. This forward model needs to assume solar wind density and temperature as function of speed. We use empirical functions, N(V) and T(V), derived from Helios in-situ measurement data within 0.5 AU in 1970s. For recent years, especially after 2006, these functions yield higher densities and lower temperatures than in-situ measurements indicate. To characterize the differences between the simulated and actual solar wind plasma, we tune parameters in the functions so that agreements with in-situ data (near the Earth and at Ulysses) will be optimized. This optimization approach can help better simulations of the solar corona and heliosphere, and will help our understandings on roles of magnetic field in solar wind heating and acceleration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMSH43C1975L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMSH43C1975L"><span>Are current sheets the boundary of fluxtubes in the solar wind? -- A study from multiple spacecraft observation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, G.; Arnold, L.; Miao, B.; Yan, Y.</p> <p>2011-12-01</p> <p>G. Li (1,2), L. Arnold (1), B. Miao (3) and Y. Yan (4) (1) Department of Physics, University of Alabama in Huntsville Huntsville, AL, 35899 (2) CSPAR, University of Alabama in Huntsville Huntsville, AL, 35899 (3) School of Earth and Space Sciences, University of Science and Technology of CHINA, Hefei, China (4) Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012, China Current sheets is a common structure in the solar wind and is a significant source of solar wind MHD turbulence intermittency. The origin of these structure is presently unknown. Non-linear interactions of the solar wind MHD turbulence can spontaneously generate these structures. On the other hand, there are proposals that these structures may represent relic structures having solar origins. Using a technique developed in [1], we examine current sheets in the solar wind from multiple spacecraft. We identify the "single-peak" and "double-peak" events in the solar wind and discuss possible scenarios for these events and its implication of the origin of the current sheets. [1] Li, G., "Identify current-sheet-like structures in the solar wind", ApJL 672, L65, 2008.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840004999','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840004999"><span>Solar Wind Five</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Neugebauer, M. (Editor)</p> <p>1983-01-01</p> <p>Topics of discussion were: solar corona, MHD waves and turbulence, acceleration of the solar wind, stellar coronae and winds, long term variations, energetic particles, plasma distribution functions and waves, spatial dependences, and minor ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.2141R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.2141R"><span>Intermittency of solar wind on scale 0.01-16 Hz.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riazantseva, Maria; Zastenker, Georgy; Chernyshov, Alexander; Petrosyan, Arakel</p> <p></p> <p>Magnetosphere of the Earth is formed in the process of solar wind flow around earth's magnetic field. Solar wind is a flow of turbulent plasma that displays a multifractal structure and an intermittent character. That is why the study of the characteristics of solar wind turbulence is very important part of the solution of the problem of the energy transport from the solar wind to magnetosphere. A large degree of intermittency is observed in the solar wind ion flux and magnetic field time rows. We investigated the intermittency of solar wind fluctuations under large statistics of high time resolution measurements onboard Interball-1 spacecraft on scale from 0.01 to 16 Hz. Especially it is important that these investigation is carry out for the first time for the earlier unexplored (by plasma data) region of comparatively fast variations (frequency up to 16 Hz), so we significantly extend the range of intermittency observations for solar wind plasma. The intermittency practically absent on scale more then 1000 s and it grows to the small scales right up till t 30-60 s. The behavior of the intermittency for the scale less then 30-60 s is rather changeable. The boundary between these two rates of intermittency is quantitatively near to the well-known boundary between the dissipation and inertial scales of fluctuations, what may point to their possible relation. Special attention is given to a comparison of intermittency for solar wind observation intervals containing SCIF (Sudden Changes of Ion Flux) to ones for intervals without SCIF. Such a comparison allows one to reveal the fundamental turbulent properties of the solar wind regions in which SCIF is observed more frequently. We use nearly incompressible model of the solar wind turbulence for obtained data interpretation. The regime when density fluctuations are passive scalar in a hydrodynamic field of velocity is realized in turbulent solar wind flows according to this model. This hypothesis can be verified straightforwardly by investigating the density spectrum which should be slaved to the incompressible velocity spectrum. Density discontinuities on times up to t 30-60 s are defined by intermittency of velocity turbulent field. Solar wind intermittency and many or most of its discontinuities are produced by MHD turbulence in this time interval. It is possible that many or even most of the current structures in the solar wind, particularly inertial range structures that contribute to the tails of the PDFs. Complex non-gaussian behaviour on smaller times is described by dissipation rate nonhomogeneity of statistical moments for density field in a random flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750053168&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DWind%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750053168&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DWind%2Benergy"><span>Summary of NASA-Lewis Research Center solar heating and cooling and wind energy programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vernon, R. W.</p> <p>1975-01-01</p> <p>NASA is planning to construct and operate a solar heating and cooling system in conjunction with a new office building being constructed at Langley Research Center. The technology support for this project will be provided by a solar energy program underway at NASA's Lewis Research Center. The solar program at Lewis includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. NASA-Lewis has been assisting the National Science Foundation and now the Energy Research and Development Administration in planning and executing a national wind energy program. The areas of the wind energy program that are being conducted by Lewis include: design and operation of a 100 kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950015967','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950015967"><span>Solar wind composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ogilvie, K. W.; Coplan, M. A.</p> <p>1995-01-01</p> <p>Advances in instrumentation have resulted in the determination of the average abundances of He, C, N, O, Ne, Mg, Si, S, and Fe in the solar wind to approximately 10%. Comparisons with solar energetic particle (SEP) abundances and galactic cosmic ray abundances have revealed many similarities, especially when compared with solar photospheric abundances. It is now well established that fractionation in the corona results in an overabundance (with respect to the photosphere) of elements with first ionization potentials less than 10 eV. These observations have in turn led to the development of fractionation models that are reasonably successful in reproducing the first ionization (FIP) effect. Under some circumstances it has been possible to relate solar wind observations to particular source regions in the corona. The magnetic topologies of the source regions appear to have a strong influence on the fractionation of elements. Comparisons with spectroscopic data are particularly useful in classifying the different topologies. Ions produced from interstellar neutral atoms are also found in the solar wind. These ions are picked up by the solar wind after ionization by solar radiation or charge exchange and can be identified by their velocity in the solar wind. The pick-up ions provide most of the pressure in the interplanetary medium at large distances. Interstellar abundances can be derived from the observed fluxes of solar wind pick-up ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC53G..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC53G..02D"><span>High-quality weather data for grid integration studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Draxl, C.</p> <p>2016-12-01</p> <p>As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. In this talk we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets will be presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The Solar Integration National Dataset (SIND) is available as time synchronized with the WIND Toolkit, and will allow for combined wind-solar grid integration studies. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. Grid integration studies are also carried out in various countries, which aim at increasing their wind and solar penetration through combined wind and solar integration data sets. We will present a multi-year effort to directly support India's 24x7 energy access goal through a suite of activities aimed at enabling large-scale deployment of clean energy and energy efficiency. Another current effort is the North-American-Renewable-Integration-Study, with the aim of providing a seamless data set across borders for a whole continent, to simulate and analyze the impacts of potential future large wind and solar power penetrations on bulk power system operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DPS....4750601R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DPS....4750601R"><span>Comets as natural laboratories: Interpretations of the structure of the inner heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramanjooloo, Yudish; Jones, Geraint H.; Coates, Andrew J.; Owens, Mathew J.</p> <p>2015-11-01</p> <p>Much has been learnt about the heliosphere’s structure from in situ solar wind spacecraft observations. Their coverage is however limited in time and space. Comets can be considered to be natural laboratories of the inner heliosphere, as their ion tails trace the solar wind flow. Solar wind conditions influence comets’ induced magnetotails, formed through the draping of the heliospheric magnetic field by the velocity shear in the mass-loaded solar wind.I present a novel imaging technique and software to exploit the vast catalogues of amateur and professional images of comet ion tails. My projection technique uses the comet’s orbital plane to sample its ion tail as a proxy for determining multi-latitudinal radial solar wind velocities in each comet’s vicinity. Making full use of many observing stations from astrophotography hobbyists to professional observatories and spacecraft, this approach is applied to several comets observed in recent years. This work thus assesses the validity of analysing comets’ ion tails as complementary sources of information on dynamical heliospheric phenomena and the underlying continuous solar wind.Complementary velocities, measured from folding ion rays and a velocity profile map built from consecutive images, are derived as an alternative means of quantifying the solar wind-cometary ionosphere interaction, including turbulent transient phenomena such as coronal mass ejections. I review the validity of these techniques by comparing near-Earth comets to solar wind MHD models (ENLIL) in the inner heliosphere and extrapolated measurements by ACE to the orbit of comet C/2004 Q2 (Machholz), a near-Earth comet. My radial velocities are mapped back to the solar wind source surface to identify sources of the quiescent solar wind and heliospheric current sheet crossings. Comets were found to be good indicators of solar wind structure, but the quality of results is strongly dependent on the observing geometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021368&hterms=solar+geometry&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsolar%2Bgeometry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021368&hterms=solar+geometry&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsolar%2Bgeometry"><span>Self consistent MHD modeling of the solar wind from coronal holes with distinct geometries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stewart, G. A.; Bravo, S.</p> <p>1995-01-01</p> <p>Utilizing an iterative scheme, a self-consistent axisymmetric MHD model for the solar wind has been developed. We use this model to evaluate the properties of the solar wind issuing from the open polar coronal hole regions of the Sun, during solar minimum. We explore the variation of solar wind parameters across the extent of the hole and we investigate how these variations are affected by the geometry of the hole and the strength of the field at the coronal base.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EOSTr..93R..40S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EOSTr..93R..40S"><span>Validating a magnetic reconnection model for the magnetopause</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultz, Colin</p> <p>2012-01-01</p> <p>Originating in the Sun's million-degree corona, the solar wind flows at supersonic speeds into interplanetary space, carrying with it the solar magnetic field. As the solar wind reaches Earth's orbit, its interaction with the geomagnetic field forms the magnetosphere, a bubble-like structure within the solar wind flow that shields Earth from direct exposure to the solar wind as well as to the highly energetic charged particles produced during solar storms. Under certain orientations, the magnetic field entrained in the solar wind, known as the interplanetary magnetic field (IMF), merges with the geomagnetic field, transferring mass, momentum, and energy to the magnetosphere. The merging of these two distinct magnetic fields occurs through magnetic reconnection, a fundamental plasma-physical process that converts magnetic energy into kinetic energy and heat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SoPh..291.3777L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SoPh..291.3777L"><span>A Possible Cause of the Diminished Solar Wind During the Solar Cycle 23 - 24 Minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liou, Kan; Wu, Chin-Chun</p> <p>2016-12-01</p> <p>Interplanetary magnetic field and solar wind plasma density observed at 1 AU during Solar Cycle 23 - 24 (SC-23/24) minimum were significantly smaller than those during its previous solar cycle (SC-22/23) minimum. Because the Earth's orbit is embedded in the slow wind during solar minimum, changes in the geometry and/or content of the slow wind region (SWR) can have a direct influence on the solar wind parameters near the Earth. In this study, we analyze solar wind plasma and magnetic field data of hourly values acquired by Ulysses. It is found that the solar wind, when averaging over the first (1995.6 - 1995.8) and third (2006.9 - 2008.2) Ulysses' perihelion ({˜} 1.4 AU) crossings, was about the same speed, but significantly less dense ({˜} 34 %) and cooler ({˜} 20 %), and the total magnetic field was {˜} 30 % weaker during the third compared to the first crossing. It is also found that the SWR was {˜} 50 % wider in the third ({˜} 68.5^deg; in heliographic latitude) than in the first ({˜} 44.8°) solar orbit. The observed latitudinal increase in the SWR is sufficient to explain the excessive decline in the near-Earth solar wind density during the recent solar minimum without speculating that the total solar output may have been decreasing. The observed SWR inflation is also consistent with a cooler solar wind in the SC-23/24 than in the SC-22/23 minimum. Furthermore, the ratio of the high-to-low latitude photospheric magnetic field (or equatorward magnetic pressure force), as observed by the Mountain Wilson Observatory, is smaller during the third than the first Ulysses' perihelion orbit. These findings suggest that the smaller equatorward magnetic pressure at the Sun may have led to the latitudinally-wider SRW observed by Ulysses in SC-23/24 minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720003183','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720003183"><span>Dynamics of the solar wind and its interaction with bodies in the solar system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spreiter, J. R.</p> <p>1971-01-01</p> <p>A discussion of the solar wind and its interaction with bodies of the solar system is presented. An overall unified account of the role of shock waves in the heating of the solar corona, the transmission of solar disturbances to the solar system, the flow fields of planets and natural satellites, and biological effects are provided. An analysis of magnetometer data from Explorer 33 and Vela 3A satellites to identify characteristics of solar wind shock waves is included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860022049','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860022049"><span>Elemental abundances in corotating events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vonrosenvinge, T. T.; Mcguire, R. E.</p> <p>1986-01-01</p> <p>Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) reported was remarkably constant at a value (22 + or - 5) equal to that in the solar wind (32 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results from a similar study approximately 11 years (i.e., one solar cycle) later are reported. Corotating events were identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. In addition, other corotating events were examined at times when solar flare events could have injected particles into the corresponding corotating interaction regions. It was found that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050180487','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050180487"><span>Propagation of Interplanetary Disturbances in the Outer Heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Chi</p> <p>2005-01-01</p> <p>Contents include the following: 1. We have developed a one-dimensional, spherically symmetric, multi-fluid MHD model that includes solar wind protons and electrons, pickup ions, and interstellar neutral hydrogen. This model advances the existing solar wind models for the outer heliosphere in two important ways: one is that it distinguishes solar wind protons from pickup ions, and the other is that it allows for energy transfer from pickup ions to the solar wind protons. Model results compare favorably with the Voyager 2 observations. 2. 2. Solar wind slowdown and interstellar neutral density. The solar wind in the outer heliosphere is fundamentally different from that in the inner heliosphere since the effects of interstellar neutrals become significant. 3. ICME propagation from the inner to outer heliosphere. Large coronal mass ejections (CMEs) have major effects on the structure of the solar wind and the heliosphere. The plasma and magnetic field can be compressed ahead of interplanetary CMEs. 4. During the current solar cycle (Cycle 23), several major CMEs associated with solar flares produced large transient shocks which were observed by widely-separated spacecraft such as Wind at Earth and Voyager 2 beyond 60 AU. Using data from these spacecraft, we use the multi-fluid model to investigate shock propagation and interaction in the heliosphere. Specifically, we studied the Bastille Day 2000, April 2001 and Halloween 2003 events. 5. Statistical properties of the solar wind in the outer heliosphere. In a collaboration with L.F. Burlaga of GSFC, it is shown that the basic statistical properties of the solar wind in the outer heliosphere can be well produced by our model. We studied the large-scale heliospheric magnetic field strength fluctuations as a function of distance from the Sun during the declining phase of a solar cycle, using our numerical model with observations made at 1 AU during 1995 as input. 6. Radial heliospheric magnetic field events. The heliospheric magnetic field (HMF) direction, on average, conforms well to the Parker spiral.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070011399&hterms=lazarus&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlazarus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070011399&hterms=lazarus&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlazarus"><span>Solar Wind Helium Abundance as a Function of Speed and Heliographic Latitude: Variation through a Solar Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kasper, J. C.; Stenens, M. L.; Stevens, M. L.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, Keith W.</p> <p>2006-01-01</p> <p>We present a study of the variation of the relative abundance of helium to hydrogen in the solar wind as a function of solar wind speed and heliographic latitude over the previous solar cycle. The average values of A(sub He), the ratio of helium to hydrogen number densities, are calculated in 25 speed intervals over 27-day Carrington rotations using Faraday Cup observations from the Wind spacecraft between 1995 and 2005. The higher speed and time resolution of this study compared to an earlier work with the Wind observations has led to the discovery of three new aspects of A(sub He), modulation during solar minimum from mid-1995 to mid-1997. First, we find that for solar wind speeds between 350 and 415 km/s, A(sub He), varies with a clear six-month periodicity, with a minimum value at the heliographic equatorial plane and a typical gradient of 0.01 per degree in latitude. For the slow wind this is a 30% effect. We suggest that the latitudinal gradient may be due to an additional dependence of coronal proton flux on coronal field strength or the stability of coronal loops. Second, once the gradient is subtracted, we find that A(sub He), is a remarkably linear function of solar wind speed. Finally, we identify a vanishing speed, at which A(sub He), is zero, is 259 km/s and note that this speed corresponds to the minimum solar wind speed observed at one AU. The vanishing speed may be related to previous theoretical work in which enhancements of coronal helium lead to stagnation of the escaping proton flux. During solar maximum the A(sub He), dependences on speed and latitude disappear, and we interpret this as evidence of two source regions for slow solar wind in the ecliptic plane, one being the solar minimum streamer belt and the other likely being active regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22590899-anomalously-low-sup-sup-ratio-solar-wind-ace-swics-observation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22590899-anomalously-low-sup-sup-ratio-solar-wind-ace-swics-observation"><span>Anomalously low C{sup 6+}/C{sup 5+} ratio in solar wind: ACE/SWICS observation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, L., E-mail: lzh@umich.edu; Landi, E.; Kocher, M.</p> <p></p> <p>The Carbon and Oxygen ionization states in the solar wind plasma freeze-in within 2 solar radii (R{sub s}) from the solar surface, and then they do not change as they propagate with the solar wind into the heliosphere. Therefore, the O{sup 7+}/O{sup 6+} and C{sup 6+}/C{sup 5+} charge state ratios measured in situ maintain a record of the thermal properties (electron temperature and density) of the inner corona where the solar wind originates. Since these two ratios freeze-in at very similar height, they are expected to be correlated. However, an investigation of the correlation between these two ratios as measuredmore » by ACE/SWICS instrument from 1998 to 201l shows that there is a subset of “Outliers” departing from the expected correlation. We find about 49.4% of these Outliers is related to the Interplanetary Coronal Mass Ejections (ICMEs), while 49.6% of them is slow speed wind (V{sub p} < 500 km/s) and about 1.0% of them is fast solar wind (V{sub p} > 500 km/s). We compare the outlier-slow-speed wind with the normal slow wind (defined as V{sub p} < 500 km/s and O{sup 7+}/O{sup 6+} > 0.2) and find that the reason that causes the Outliers to depart from the correlation is their extremely depleted C{sup 6+}/C{sup 5+} ratio which is decreased by 80% compared to the normal slow wind. We discuss the implication of the Outlier solar wind for the solar wind acceleration mechanism.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.P32A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.P32A..01S"><span>The solar wind - Moon interaction discovered by MAP-PACE on KAGUYA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saito, Y.; Yokota, S.; Tanaka, T.; Asamura, K.; Nishino, M. N.; Yamamoto, T.; Tsunakawa, H.; Shibuya, H.; Shimizu, H.; Takahashi, F.</p> <p>2009-12-01</p> <p>Magnetic field And Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on KAGUYA (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon. SELENE was successfully launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. SELENE was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. The newly observed data showed characteristic ion distributions around the Moon. Besides the solar wind, one of the MAP-PACE sensors MAP-PACE-IMA (Ion Mass Analyzer) discovered four clearly distinguishable ion distributions on the dayside of the Moon: 1) Solar wind ions backscattered at the lunar surface, 2) Solar wind ions reflected by magnetic anomalies on the lunar surface, 3) Ions that are originating from the reflected / backscattered solar wind ions and are pick-up accelerated by the solar wind convection electric field, and 4) Ions originating from the lunar surface / lunar atmosphere. One of the most important discoveries of the ion mass spectrometer (MAP-PACE-IMA) is the first in-situ measurements of the alkali ions originating from the Moon surface / atmosphere. The ions generated on the lunar surface by solar wind sputtering, solar photon stimulated desorption, or micro-meteorite vaporization are accelerated by the solar wind convection electric field and detected by IMA. The mass profiles of these ions show ions including He+, C+, O+, Na+, and K+/Ar+. The heavy ions were also observed when the Moon was in the Earth’s magnetotail where no solar wind ions impinged on the lunar surface. This discovery strongly restricts the possible generation mechanisms of the ionized alkali atmosphere around the Moon. When KAGUYA flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These reflected ions had nearly the same energy as the incident solar wind ions, and their flux was more than 10% of the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At ~50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. At ~10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. These newly discovered plasma signatures around the Moon are the evidences of the smallest magnetosphere ever observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800004726','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800004726"><span>An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 AU: Voyager 2 and Mariner 10</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sittler, E. C., Jr.; Scudder, J. D.</p> <p>1979-01-01</p> <p>Empirical evidence is presented that solar wind thermal electrons obey a polytrope law with polytrope index gamma = 1.175 plus or minus 0.03. The Voyager 2 and Mariner 10 data used as evidence are compared and discussed. The theoretical predictions that solar wind thermal electrons in the asymptotic solar wind should obey a polytrope law with polytrope index gamma = 1.16 plus or minus. The widespread impressions in the literature that solar wind electrons behave more like an isothermal than adiabatic gas, and the arguments that Coulomb collisions are the dominant stochastic process shaping observed electron distribution functions in the solar wind are reexamined, reviewed and evaluated. The assignment of the interplanetary potential as equal to approximately seven times the temperature of the thermal electrons is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120015694&hterms=protons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dprotons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120015694&hterms=protons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dprotons"><span>Three-Dimensional Magnetohydrodynamic Modeling of the Solar Wind Including Pickup Protons and Turbulence Transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.</p> <p>2012-01-01</p> <p>To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons.We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 deg - .90 deg and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1026632','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1026632"><span>Microgrid Control Strategy Utlizing Thermal Energy Storage With Renewable Solar And Wind Power Generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-06-01</p> <p>13 Figure 6. Vertical Axis Wind Turbines and Photovoltaic Solar Panels ....................15 Figure 7. Solar Sunny Boy Inverter...16 Figure 8. Wind Turbine Inverters...1. Comparison of Energy Storage. Adapted from [16], [18], [19]. ................10 Table 2. DC Operating Voltage of Wind Turbine Inverters</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=273864','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=273864"><span>Analysis of off-grid hybrid wind turbine/solar PV water pumping systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P12A..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P12A..06R"><span>Oxygen Pickup Ions Measured by MAVEN Outside the Martian Bow Shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rahmati, A.; Cravens, T.; Larson, D. E.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F. G.; Thiemann, E.; Mitchell, D. L.; Jakosky, B. M.</p> <p>2015-12-01</p> <p>The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars on September 21, 2014 and has since been detecting energetic oxygen pickup ions by its SEP (Solar Energetic Particles) and SWIA (Solar Wind Ion Analyzer) instruments. The oxygen pickup ions detected outside the Martian bowshock and in the upstream solar wind are associated with the extended hot oxygen exosphere of Mars, which is created mainly by the dissociative recombination of molecular oxygen ions with electrons in the ionosphere. We use analytic solutions to the equations of motion of pickup ions moving in the undisturbed upstream solar wind magnetic and motional electric fields and calculate the flux of oxygen pickup ions at the location of MAVEN. Our model calculates the ionization rate of oxygen atoms in the exosphere based on the hot oxygen densities predicted by Rahmati et al. (2014), and the sources of ionization include photo-ionization, charge exchange, and electron impact ionization. The photo-ionization frequency is calculated using the FISM (Flare Irradiance Spectral Model) solar flux model, based on MAVEN EUVM (Extreme Ultra-Violet Monitor) measurements. The frequency of charge exchange between a solar wind proton and an oxygen atom is calculated using MAVEN SWIA solar wind proton flux measurements, and the electron impact ionization frequency is calculated based on MAVEN SWEA (Solar Wind Electron Analyzer) solar wind electron flux measurements. The solar wind magnetic field used in the model is from the measurements taken by MAVEN MAG (magnetometer) in the upstream solar wind. The good agreement between our predicted pickup oxygen fluxes and the MAVEN SEP and SWIA measured ones confirms detection of oxygen pickup ions and these model-data comparisons can be used to constrain models of hot oxygen densities and photochemical escape flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH32A..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH32A..01K"><span>Understanding non-equilibrium collisional and expansion effects in the solar wind with Parker Solar Probe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korreck, K. E.; Klein, K. G.; Maruca, B.; Alterman, B. L.</p> <p>2017-12-01</p> <p>The evolution of the solar wind from the corona to the Earth and throughout the heliosphere is a complex interplay between local micro kinetics and large scale expansion effects. These processes in the solar wind need to be separated in order to understand and distinguish the dominant mechanism for heating and acceleration of the solar wind. With the upcoming launch in 2018 of Parker Solar Probe and the launch of Solar Orbiter after, addressing the local and global phenomena will be enabled with in situ measurements. Parker Solar Probe will go closer to the Sun than any previous mission enabling the ability to examine the solar wind at an early expansion age. This work examines the predictions for what will be seen inside of the 0.25 AU (54 solar radii) where Parker Solar Probe will take measurements and lays the groundwork for disentangling the expansion and collisional effects. In addition, methods of thermal plasma data analysis to determine the stability of the plasma in the Parker Solar Probe measurements will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22126793-solar-wind-heavy-ions-over-solar-cycle-ace-swics-measurements','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22126793-solar-wind-heavy-ions-over-solar-cycle-ace-swics-measurements"><span>SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lepri, S. T.; Landi, E.; Zurbuchen, T. H.</p> <p>2013-05-01</p> <p>Solar wind plasma and compositional properties reflect the physical properties of the corona and its evolution over time. Studies comparing the previous solar minimum with the most recent, unusual solar minimum indicate that significant environmental changes are occurring globally on the Sun. For example, the magnetic field decreased 30% between the last two solar minima, and the ionic charge states of O have been reported to change toward lower values in the fast wind. In this work, we systematically and comprehensively analyze the compositional changes of the solar wind during cycle 23 from 2000 to 2010 while the Sun movedmore » from solar maximum to solar minimum. We find a systematic change of C, O, Si, and Fe ionic charge states toward lower ionization distributions. We also discuss long-term changes in elemental abundances and show that there is a {approx}50% decrease of heavy ion abundances (He, C, O, Si, and Fe) relative to H as the Sun went from solar maximum to solar minimum. During this time, the relative abundances in the slow wind remain organized by their first ionization potential. We discuss these results and their implications for models of the evolution of the solar atmosphere, and for the identification of the fast and slow wind themselves.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17792150','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17792150"><span>International cometary explorer encounter with giacobini-zinner: magnetic field observations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, E J; Tsurutani, B T; Slvain, J A; Jones, D E; Siscoe, G L; Mendis, D A</p> <p>1986-04-18</p> <p>The vector helium magnetometer on the International Cometary Explorer observed the magnetic fields induced by the interaction of comet Giacobini-Zinner with the solar wind. A magnetic tail was penetrated approximately 7800 kilometers downstream from the comet and was found to be 10(4) kilometers wide. It consisted of two lobes, containing oppositely directed fields with strengths up to 60 nanoteslas, separated by a plasma sheet approximately 10(3)kilometers thick containing a thin current sheet. The magnetotail was enclosed in an extended ionosheath characterized by intense hydromagnetic turbulene and interplanetary fields draped around the comet. A distant bow wave, which may or may not have been a bow shock, was observed at both edges of the ionosheath. Weak turbulence was observed well upstream of the bow wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020044001','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020044001"><span>Properties of Minor Ions In the Solar Wind and Implications for the Background Solar Wind Plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Esser, Ruth; Wagner, William (Technical Monitor)</p> <p>2002-01-01</p> <p>Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona. The goal of the proposal is to determine coronal plasma conditions that produce the in situ observed charge states. This study is carried out using solar wind models, coronal observations, ion fraction calculations and in situ observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001723','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001723"><span>Asteroid surface processes: Experimental studies of the solar wind on reflectance and optical properties of asteroids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcfadden, Lucy-Ann</p> <p>1991-01-01</p> <p>The effect of the solar wind on the optical properties of meteorites was studied to determine whether the solar wind can alter the properties of ordinary chondrite parent bodies resulting in the spectral properties of S-type asteroids. The existing database of optical properties of asteroids was analyzed to determine the effect of solar wind in altering asteroid surface properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060051794&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsolar%2Bradiation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060051794&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsolar%2Bradiation"><span>Molecular Substrate Alteration by Solar Wind Radiation Documented on Flown Genesis Mission Array Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Calaway, Michael J.; Stansbery, Eileen K.</p> <p>2006-01-01</p> <p>The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030020902&hterms=corona&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dcorona','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030020902&hterms=corona&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dcorona"><span>Microphysics of Waves and Instabilities in the Solar Wind and their Macro Manifestations in the Corona and Interplanetary Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Habbal, Shadia R.; Gurman, Joseph (Technical Monitor)</p> <p>2003-01-01</p> <p>Investigations of the physical processes responsible for the acceleration of the solar wind were pursued with the development of two new solar wind codes: a hybrid code and a 2-D MHD code. Hybrid simulations were performed to investigate the interaction between ions and parallel propagating low frequency ion cyclotron waves in a homogeneous plasma. In a low-beta plasma such as the solar wind plasma in the inner corona, the proton thermal speed is much smaller than the Alfven speed. Vlasov linear theory predicts that protons are not in resonance with low frequency ion cyclotron waves. However, non-linear effect makes it possible that these waves can strongly heat and accelerate protons. This study has important implications for study of the corona and the solar wind. Low frequency ion cyclotron waves or Alfven waves are commonly observed in the solar wind. Until now, it is believed that these waves are not able to heat the solar wind plasma unless some cascading processes transfer the energy of these waves to high frequency part. However, this study shows that these waves may directly heat and accelerate protons non-linearly. This process may play an important role in the coronal heating and the solar wind acceleration, at least in some parameter space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1413179-wind-solar-resource-data-sets-wind-solar-resource-data-sets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1413179-wind-solar-resource-data-sets-wind-solar-resource-data-sets"><span>Wind and solar resource data sets: Wind and solar resource data sets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Clifton, Andrew; Hodge, Bri-Mathias; Draxl, Caroline</p> <p></p> <p>The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used for their creation and validation. A brief history of wind and solarmore » resource data sets is then presented, followed by areas for future research.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750043159&hterms=Xx&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DXx','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750043159&hterms=Xx&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DXx"><span>Interplanetary gas. XX - Does the radial solar wind speed increase with latitude</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brandt, J. C.; Harrington, R. S.; Roosen, R. G.</p> <p>1975-01-01</p> <p>The astrometric technique used to derive solar wind speeds from ionic comet-tail orientations has been used to test the suggestion that the radial solar wind speed is higher near the solar poles than near the equator. We find no evidence for the suggested latitude variation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-09-27/pdf/2010-24064.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-09-27/pdf/2010-24064.pdf"><span>75 FR 59291 - In the Matter of: Certain Wind and Solar-Powered Light Posts and Street Lamps; Notice of...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-09-27</p> <p>... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-736] In the Matter of: Certain Wind and Solar... solar-powered light posts and street lamps by reason of infringement of the claimed design of U.S... certain wind and solar- [[Page 59292</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997ScCW...33...33M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997ScCW...33...33M"><span>Taking Venus models to new dimensions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murawski, K.</p> <p>1997-11-01</p> <p>Space plasma physicists in Poland and Japan have gained new insights into the interaction between the solar wind and Venus. Computer simulations of this 3D global interaction between the solar wind and nonmagnetized bodies have enabled greater understanding of the large-scale processes involved in such phenomena. A model that offers improved understanding of the solar wind interaction with Venus (as well as other nonmagnetized bodies impacted by the solar wind) has been developed. In this model, the interaction of the solar wind with the ionosphere of Venus is studied by calculating numerical solutions of the 3D MHD equations for two-component, chemically reactive plasma. The author describes the innovative model.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010046973&hterms=kellogg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dkellogg','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010046973&hterms=kellogg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dkellogg"><span>Ion Isotropy and Ion Resonant Waves in the Solar Wind: Cassini Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kellogg, Paul J.; Gurnett, Donald A.; Hospodarsky, George B.; Kurth, William S.</p> <p>2001-01-01</p> <p>Electric fields in the solar wind, in the range of one Hertz, are reported for the first time from a 3-axis stabilized spacecraft. The measurements are made with the Radio and Plasma Wave System (RPWS) experiment on the Cassini spacecraft. Kellogg suggested that such waves could be important in maintaining the near-isotropy of solar wind ions and the validity of MHD for the description of the solar wind. The amplitudes found are larger than those estimated by Kellogg from other measurements, and are due to quasi-electrostatic waves. These amplitudes are quite sufficient to maintain isotropy of the solar wind ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750018425','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750018425"><span>Summary of NASA Lewis Research Center solar heating and cooling and wind energy programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vernon, R. W.</p> <p>1975-01-01</p> <p>Plans for the construction and operation of a solar heating and cooling system in conjunction with a office building being constructed at Langley Research Center, are discussed. Supporting research and technology includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. The areas of a wind energy program that are being conducted include: design and operation of a 100-kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1326077-modeling-solar-wind-boundary-conditions-from-interplanetary-scintillations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1326077-modeling-solar-wind-boundary-conditions-from-interplanetary-scintillations"><span>Modeling solar wind with boundary conditions from interplanetary scintillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Manoharan, P.; Kim, T.; Pogorelov, N. V.; ...</p> <p>2015-09-30</p> <p>Interplanetary scintillations make it possible to create three-dimensional, time- dependent distributions of the solar wind velocity. Combined with the magnetic field observations in the solar photosphere, they help perform solar wind simulations in a genuinely time-dependent way. Interplanetary scintillation measurements from the Ooty Radio Astronomical Observatory in India provide directions to multiple stars and may assure better resolution of transient processes in the solar wind. In this paper, we present velocity distributions derived from Ooty observations and compare them with those obtained with the Wang-Sheeley-Arge (WSA) model. We also present our simulations of the solar wind flow from 0.1 AUmore » to 1 AU with the boundary conditions based on both Ooty and WSA data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029599&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D50%26Ntt%3Dlazarus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029599&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D50%26Ntt%3Dlazarus"><span>Solar wind velocity and temperature in the outer heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.</p> <p>1994-01-01</p> <p>At the end of 1992, the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were at heliocentric distances of 56.0, 37.3, and 39.0 AU and heliographic latitudes of 3.3 deg N, 17.4 deg N, and 8.6 deg S, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer 10 is on the opposite side of the Sun. All three spacecraft have working plasma analyzers, so intercomparison of data from these spacecraft provides important information about the global character of the solar wind in the outer heliosphere. The averaged solar wind speed continued to exhibit its well-known variation with solar cycle: Even at heliocentric distances greater than 50 AU, the average speed is highest during the declining phase of the solar cycle and lowest near solar minimum. There was a strong latitudinal gradient in solar wind speed between 3 deg and 17 deg N during the last solar minimum, but this gradient has since disappeared. The solar wind temperature declined with increasing heliocentric distance out to a heliocentric distance of at least 20 AU; this decline appeared to continue at larger heliocentric distances, but temperatures in the outer heliosphere were suprisingly high. While Pioneer 10 and Voyager 2 observed comparable solar wind temperatures, the temperature at Pioneer 11 was significantly higher, which suggests the existence of a large-scale variation of temperature with heliographic longitude. There was also some suggestion that solar wind temperatures were higher near solar minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930049627&hterms=background+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dbackground%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930049627&hterms=background+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dbackground%2Bwind"><span>Ions with low charges in the solar wind as measured by SWICS on board Ulysses. [Solar Wind Ion Composition Spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geiss, J.; Ogilvie, K. W.; Von Steiger, R.; Mall, U.; Gloeckler, G.; Galvin, A. B.; Ipavich, F.; Wilken, B.; Gliem, F.</p> <p>1992-01-01</p> <p>We present new data on rare ions in the solar wind. Using the Ulysses-SWICS instrument with its very low background we have searched for low-charge ions during a 6-d period of low-speed solar wind and established sensitive upper limits for many species. In the solar wind, we found He(1+)/He(2+) of less than 5 x 10 exp -4. This result and the charge state distributions of heavier elements indicate that all components of the investigated ion population went through a regular coronal expansion and experienced the typical electron temperatures of 1 to 2 million Kelvin. We argue that the virtual absence of low-charge ions demonstrates a very low level of nonsolar contamination in the source region of the solar wind sample we studied. Since this sample showed the FlP effect typical for low-speed solar wind, i.e., an enhancement in the abundances of elements with low first ionization potential, we conclude that this enhancement was caused by an ion-atom separation mechanism operating near the solar surface and not by foreign material in the corona.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM11B2317B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM11B2317B"><span>Dynamics of Magnetopause Reconnection in Response to Variable Solar Wind Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berchem, J.; Richard, R. L.; Escoubet, C. P.; Pitout, F.</p> <p>2017-12-01</p> <p>Quantifying the dynamics of magnetopause reconnection in response to variable solar wind driving is essential to advancing our predictive understanding of the interaction of the solar wind/IMF with the magnetosphere. To this end we have carried out numerical studies that combine global magnetohydrodynamic (MHD) and Large-Scale Kinetic (LSK) simulations to identify and understand the effects of solar wind/IMF variations. The use of the low dissipation, high resolution UCLA MHD code incorporating a non-linear local resistivity allows the representation of the global configuration of the dayside magnetosphere while the use of LSK ion test particle codes with distributed particle detectors allows us to compare the simulation results with spacecraft observations such as ion dispersion signatures observed by the Cluster spacecraft. We present the results of simulations that focus on the impacts of relatively simple solar wind discontinuities on the magnetopause and examine how the recent history of the interaction of the magnetospheric boundary with solar wind discontinuities can modify the dynamics of magnetopause reconnection in response to the solar wind input.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015175','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015175"><span>Sputtering by the Solar Wind: Effects of Variable Composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Killen, R. M.; Arrell, W. M.; Sarantos, M.; Delory, G. T.</p> <p>2011-01-01</p> <p>It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that there is no increase in the sputtering yield caused by highly charged heavy ions for metallic and for semiconducting surfaces, but the sputter yield can be noticeably increased in the case of a good insulating surface. Recently measurements of the solar wind composition have become available. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. Whereas many previous calculations of sputtering were limited to the effects of proton bombardment. we show that the heavy ion component. especially the He++ component. can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. We will discuss sputtering of both neutrals and ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSH52A..03V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSH52A..03V"><span>The Slow and Fast Solar Wind Boundary, Corotating Interaction Regions, and Coronal Mass Ejection observations with Solar Probe Plus and Solar Orbiter (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velli, M. M.</p> <p>2013-12-01</p> <p>The Solar Probe Plus and Solar Orbiter missions have as part of their goals to understand the source regions of the solar wind and of the heliospheric magnetic field. In the heliosphere, the solar wind is made up of interacting fast and slow solar wind streams as well as a clearly intermittent source of flow and field, arising from coronal mass ejections (CMEs). In this presentation a summary of the questions associated with the distibution of wind speeds and magnetic fields in the inner heliosphere and their origin on the sun will be summarized. Where and how does the sharp gradient in speeds develop close to the Sun? Is the wind source for fast and slow the same, and is there a steady component or is its origin always intermittent in nature? Where does the heliospheric current sheet form and how stable is it close to the Sun? What is the distribution of CME origins and is there a continuum from large CMEs to small blobs of plasma? We will describe our current knowledge and discuss how SPP and SO will contribute to a more comprehensive understanding of the sources of the solar wind and magnetic fields in the heliosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22356862-temperature-quiescent-streamers-during-solar-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22356862-temperature-quiescent-streamers-during-solar-cycles"><span>The temperature of quiescent streamers during solar cycles 23 and 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Landi, E.; Testa, P.</p> <p>2014-05-20</p> <p>Recent in-situ determinations of the temporal evolution of the charge state distribution in the fast and slow solar wind have shown a general decrease in the degree of ionization of all the elements in the solar wind along solar cycles 23 and 24. Such a decrease has been interpreted as a cooling of the solar corona which occurred during the decline and minimum phase of solar cycle 23 from 2000 to 2010. In the present work, we investigate whether spectroscopic determinations of the temperature of the quiescent streamers show signatures of coronal plasma cooling during cycles 23 and 24. Wemore » measure the coronal electron density and thermal structure at the base of 60 quiescent streamers observed from 1996 to 2013 by SOHO/SUMER and Hinode/EIS and find that both quantities do now show any significant dependence on the solar cycle. We argue that if the slow solar wind is accelerated from the solar photosphere or chromosphere, the measured decrease in the in-situ wind charge state distribution might be due to an increased efficiency in the wind acceleration mechanism at low altitudes. If the slow wind originates from the corona, a combination of density and wind acceleration changes may be responsible for the in-situ results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985fggf.rept.....F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985fggf.rept.....F"><span>Contribution of wind energy to the energy balance of a combined solar and wind energy system. Part 1: System description, data acquisition and system performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferger, R.; Machens, U.</p> <p>1985-05-01</p> <p>A one-family house was equipped with a combined solar and wind energy system plus a night storage heater to measure the seasonal complementary contribution of wind and solar energy to energy demand. Project implementation, problems encountered and modifications to the initial system are described. Meteorological and operational data and house consumption data were recorded on computer-based measuring system. Data on the combined effects of and interdependence between solar collector and wind energy converter are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-12-05/pdf/2012-28926.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-12-05/pdf/2012-28926.pdf"><span>77 FR 72439 - Residential, Business, and Wind and Solar Resource Leases on Indian Land</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-12-05</p> <p>... Affairs 25 CFR Part 162 Residential, Business, and Wind and Solar Resource Leases on Indian Land; Final...-2011-0001] RIN 1076-AE73 Residential, Business, and Wind and Solar Resource Leases on Indian Land... adds new regulations to address residential leases, business leases, wind energy evaluation leases, and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...829..117S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...829..117S"><span>On Solar Wind Origin and Acceleration: Measurements from ACE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stakhiv, Mark; Lepri, Susan T.; Landi, Enrico; Tracy, Patrick; Zurbuchen, Thomas H.</p> <p>2016-10-01</p> <p>The origin and acceleration of the solar wind are still debated. In this paper, we search for signatures of the source region and acceleration mechanism of the solar wind in the plasma properties measured in situ by the Advanced Composition Explorer spacecraft. Using the elemental abundances as a proxy for the source region and the differential velocity and ion temperature ratios as a proxy for the acceleration mechanism, we are able to identify signatures pointing toward possible source regions and acceleration mechanisms. We find that the fast solar wind in the ecliptic plane is the same as that observed from the polar regions and is consistent with wave acceleration and coronal-hole origin. We also find that the slow wind is composed of two components: one similar to the fast solar wind (with slower velocity) and the other likely originating from closed magnetic loops. Both components of the slow solar wind show signatures of wave acceleration. From these findings, we draw a scenario that envisions two types of wind, with different source regions and release mechanisms, but the same wave acceleration mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667380-solar-wind-origin-acceleration-measurements-from-ace','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667380-solar-wind-origin-acceleration-measurements-from-ace"><span>ON SOLAR WIND ORIGIN AND ACCELERATION: MEASUREMENTS FROM ACE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stakhiv, Mark; Lepri, Susan T.; Landi, Enrico</p> <p></p> <p>The origin and acceleration of the solar wind are still debated. In this paper, we search for signatures of the source region and acceleration mechanism of the solar wind in the plasma properties measured in situ by the Advanced Composition Explorer spacecraft. Using the elemental abundances as a proxy for the source region and the differential velocity and ion temperature ratios as a proxy for the acceleration mechanism, we are able to identify signatures pointing toward possible source regions and acceleration mechanisms. We find that the fast solar wind in the ecliptic plane is the same as that observed frommore » the polar regions and is consistent with wave acceleration and coronal-hole origin. We also find that the slow wind is composed of two components: one similar to the fast solar wind (with slower velocity) and the other likely originating from closed magnetic loops. Both components of the slow solar wind show signatures of wave acceleration. From these findings, we draw a scenario that envisions two types of wind, with different source regions and release mechanisms, but the same wave acceleration mechanism.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6925E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6925E"><span>Survey of the spectral properties of turbulence in the solar wind, the magnetospheres of Venus and Earth, at solar minimum and maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Echim, Marius M.</p> <p>2014-05-01</p> <p>In the framework of the European FP7 project STORM ("Solar system plasma Turbulence: Observations, inteRmittency and Multifractals") we analyze the properties of turbulence in various regions of the solar system, for the minimum and respectively maximum of the solar activity. The main scientific objective of STORM is to advance the understanding of the turbulent energy transfer, intermittency and multifractals in space plasmas. Specific analysis methods are applied on magnetic field and plasma data provided by Ulysses, Venus Express and Cluster, as well as other solar system missions (e.g. Giotto, Cassini). In this paper we provide an overview of the spectral properties of turbulence derived from Power Spectral Densities (PSD) computed in the solar wind (from Ulysses, Cluster, Venus Express) and at the interface of planetary magnetospheres with the solar wind (from Venus Express, Cluster). Ulysses provides data in the solar wind between 1992 and 2008, out of the ecliptic, at radial distances ranging between 1.3 and 5.4 AU. We selected only those Ulysses data that satisfy a consolidated set of selection criteria able to identify "pure" fast and slow wind. We analyzed Venus Express data close to the orbital apogee, in the solar wind, at 0.72 AU, and in the Venus magnetosheath. We investigated Cluster data in the solar wind (for time intervals not affected by planetary ions effects), the magnetosheath and few crossings of other key magnetospheric regions (cusp, plasma sheet). We organize our PSD results in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PSD obtained in the terrestrial magnetosphere, and one for the solar minimum, 2007-2008, that includes PSD obtained in the terrestrial and Venus magnetospheres and magnetosheaths). In addition to investigating the properties of turbulence for the minimum and maximum of the solar cycle we also analyze the spectral similarities and differences between fast and slow wind turbulence. We emphasize the importance of our data survey and analysis in the context of understanding the solar wind turbulence, the exploitation of data bases and as a first step towards developing a (virtual) laboratory for studying solar system plasma turbulence. Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-11-08/pdf/2013-26735.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-11-08/pdf/2013-26735.pdf"><span>78 FR 67138 - Combined Notice of Filings #1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-11-08</p> <p>... Solar 1, LLC, Copper Mountain Solar 2, LLC, Energia Sierra Juarez U.S., LLC, Flat Ridge 2 Wind Energy LLC, Fowler Ridge II Wind Farm LLC, Mehoopany Wind Energy LLC, Mesquite Power, LLC, Mesquite Solar 1...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110013323','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110013323"><span>Multifluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldstein, Melvyn L.; Usmanov, A. V.</p> <p>2011-01-01</p> <p>I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. The interstellar pickup protons are treated in the model as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. The simulation assumes that the background magnetic field on the Sun is either a dipole (aligned or tilted with respect to the solar rotation axis) or one that is deduced from solar magnetograms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770051140&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DKrieger','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770051140&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DKrieger"><span>High coronal structure of high velocity solar wind stream sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nolte, J. T.; Krieger, A. S.; Roelof, E. C.; Gold, R. E.</p> <p>1977-01-01</p> <p>It is shown analytically that the transition from a high-speed stream source to the ambient coronal conditions is quite rapid in longitude in the high corona. This sharp eastern coronal boundary for the solar wind stream sources is strongly suggested by the solar wind 'dwells' which appear in plots of solar wind velocity against constant-radial-velocity-approximation source longitudes. The possibility of a systematic velocity-dependent effect in the constant-radial-velocity approximation, which would cause this boundary to appear sharper than it is, is investigated. A velocity-dependent interplanetary propagation effect or a velocity-dependent 'source altitude' are two possible sources of such a systematic effect. It is shown that, for at least some dwells, significant interplanetary effects are not likely. The variation of the Alfvenic critical radius in solar wind dwells is calculated, showing that the high-velocity stream originates from a significantly lower altitude than the ambient solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20867562','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20867562"><span>Contribution of strong discontinuities to the power spectrum of the solar wind.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Borovsky, Joseph E</p> <p>2010-09-10</p> <p>Eight and a half years of magnetic field measurements (2(22) samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the "inertial subrange" with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this "inertial subrange." Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..585L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..585L"><span>Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui</p> <p>2018-01-01</p> <p>Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950038009&hterms=foreshock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dforeshock','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950038009&hterms=foreshock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dforeshock"><span>Elsaesser variable analysis of fluctuations in the ion foreshock and undisturbed solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Labelle, James; Treumann, Rudolf A.; Marsch, Eckart</p> <p>1994-01-01</p> <p>Magnetohydrodynamics (MHD) fluctuations in the solar wind have been investigated previously by use of Elsaesser variables. In this paper, we present a comparison of the spectra of Elsaesser variables in the undisturbed solar wind at 1 AU and in the ion foreshock in front of the Earth. Both observations take place under relatively strong solar wind flow speed conditions (approximately equal 600 km/s). In the undisturbed solar wind we find that outward propagating Alfven waves dominate, as reported by other observers. In the ion foreshock the situation is more complex, with neither outward nor inward propagation dominating over the entire range investigated (1-10 mHz). Measurements of the Poynting vectors associated with the fluctuations are consistent with the Elsaesser variable analysis. These results generally support interpretations of the Elsaesser variables which have been made based strictly on solar wind data and provide additional insight into the nature of the ion foreshock turbulence.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.7328W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.7328W"><span>A comparison of empirical and experimental O7+, O8+, and O/H values, with applications to terrestrial solar wind charge exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whittaker, Ian C.; Sembay, Steve</p> <p>2016-07-01</p> <p>Solar wind charge exchange occurs at Earth between the neutral planetary exosphere and highly charged ions of the solar wind. The main challenge in predicting the resultant photon flux in the X-ray energy bands is due to the interaction efficiency, known as the α value. This study produces experimental α values at the Earth, for oxygen emission in the range of 0.5-0.7 keV. Thirteen years of data from the Advanced Composition Explorer are examined, comparing O7+ and O8+ abundances, as well as O/H to other solar wind parameters allowing all parameters in the αO7,8+ calculation to be estimated based on solar wind velocity. Finally, a table is produced for a range of solar wind speeds giving average O7+ and O8+ abundances, O/H, and αO7,8+ values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22877159','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22877159"><span>Costs of solar and wind power variability for reducing CO2 emissions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lueken, Colleen; Cohen, Gilbert E; Apt, Jay</p> <p>2012-09-04</p> <p>We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010032395','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010032395"><span>Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ofman, Leon</p> <p>2001-01-01</p> <p>The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear. time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that nonlinear waves are generated in coronal holes by torsional Alfv\\'{e}n waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the, fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature. and magnetic field geometry,) that will become available from the recently launched SOHO spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000021483','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000021483"><span>Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ofman, Leon</p> <p>2000-01-01</p> <p>The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear, time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that solitary-like waves are generated in coronal holes nonlinearly by torsional Alfven waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature, and magnetic field geometry) that will become available from the recently launched SOHO spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28139769','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28139769"><span>Global solar wind variations over the last four centuries.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Owens, M J; Lockwood, M; Riley, P</p> <p>2017-01-31</p> <p>The most recent "grand minimum" of solar activity, the Maunder minimum (MM, 1650-1710), is of great interest both for understanding the solar dynamo and providing insight into possible future heliospheric conditions. Here, we use nearly 30 years of output from a data-constrained magnetohydrodynamic model of the solar corona to calibrate heliospheric reconstructions based solely on sunspot observations. Using these empirical relations, we produce the first quantitative estimate of global solar wind variations over the last 400 years. Relative to the modern era, the MM shows a factor 2 reduction in near-Earth heliospheric magnetic field strength and solar wind speed, and up to a factor 4 increase in solar wind Mach number. Thus solar wind energy input into the Earth's magnetosphere was reduced, resulting in a more Jupiter-like system, in agreement with the dearth of auroral reports from the time. The global heliosphere was both smaller and more symmetric under MM conditions, which has implications for the interpretation of cosmogenic radionuclide data and resulting total solar irradiance estimates during grand minima.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA557860','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA557860"><span>The Distribution of Solar Wind Speeds During Solar Minimum: Calibration for Numerical Solar Wind Modeling Constraints on the Source of the Slow Solar Wind (Postprint)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-03-05</p> <p>subsonic corona below the critical point, resulting in an increased scale height and mass flux, while keeping the kinetic energy of the flow fairly...Approved for public release; distribution is unlimited. tubes with small expansion factors the heating occurs in the supersonic corona, where the energy ...goes into the kinetic energy of the solar wind, increasing the flow speed [Leer and Holzer, 1980; Pneuman, 1980]. Using this model and a sim- plified</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApJ...804L..41T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApJ...804L..41T"><span>Inertial Range Turbulence of Fast and Slow Solar Wind at 0.72 AU and Solar Minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teodorescu, Eliza; Echim, Marius; Munteanu, Costel; Zhang, Tielong; Bruno, Roberto; Kovacs, Peter</p> <p>2015-05-01</p> <p>We investigate Venus Express observations of magnetic field fluctuations performed systematically in the solar wind at 0.72 Astronomical Units (AU), between 2007 and 2009, during the deep minimum of solar cycle 24. The power spectral densities (PSDs) of the magnetic field components have been computed for time intervals that satisfy the data integrity criteria and have been grouped according to the type of wind, fast and slow, defined for speeds larger and smaller, respectively, than 450 km s-1. The PSDs show higher levels of power for the fast wind than for the slow. The spectral slopes estimated for all PSDs in the frequency range 0.005-0.1 Hz exhibit a normal distribution. The average value of the trace of the spectral matrix is -1.60 for fast solar wind and -1.65 for slow wind. Compared to the corresponding average slopes at 1 AU, the PSDs are shallower at 0.72 AU for slow wind conditions suggesting a steepening of the solar wind spectra between Venus and Earth. No significant time variation trend is observed for the spectral behavior of both the slow and fast wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-11-29/pdf/2011-29991.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-11-29/pdf/2011-29991.pdf"><span>76 FR 73783 - Residential, Business, and Wind and Solar Resource Leases on Indian Land</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-11-29</p> <p>... Affairs 25 CFR Part 162 Residential, Business, and Wind and Solar Resource Leases on Indian Land; Proposed...-0001] RIN 1076-AE73 Residential, Business, and Wind and Solar Resource Leases on Indian Land AGENCY... leases, and solar resource development leases on Indian land, and would therefore remove the existing...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930049592&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D60%26Ntt%3Dlazarus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930049592&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D60%26Ntt%3Dlazarus"><span>Solar wind temperature observations in the outer heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.</p> <p>1992-01-01</p> <p>The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft are now at heliocentric distances of 50, 32 and 33 AU, and heliographic latitudes of 3.5 deg N, 17 deg N, and 0 deg N, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer l0 is on the opposite side of the sun. The baselines defined by these spacecraft make it possible to resolve radial, longitudinal, and latitudinal variations of solar wind parameters. The solar wind temperature decreases with increasing heliocentric distance out to a distance of 10-15 AU. At larger heliocentric distances, this gradient disappears. These high solar wind temperatures in the outer heliosphere have persisted for at least 10 years, which suggests that they are not a solar cycle effect. The solar wind temperature varied with heliographic latitude during the most recent solar minimum. The solar wind temperature at Pioneer 11 and Voyager 2 was higher than that seen at Pioneer 10 for an extended period of time, which suggests the existence of a large-scale variation of temperature with celestial longitude, but the contribution of transient phenomena is yet to be clarified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA12A..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA12A..01L"><span>Magnetosphere-Ionosphere-Thermosphere Response to Quasi-periodic Oscillations in Solar Wind Driving Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, J.; Wang, W.; Zhang, B.; Huang, C.</p> <p>2017-12-01</p> <p>Periodical oscillations with periods of several tens of minutes to several hours are commonly seen in the Alfven wave embedded in the solar wind. It is yet to be known how the solar wind oscillation frequency modulates the solar wind-magnetosphere-ionosphere coupled system. Utilizing the Coupled Magnetosphere-Ionosphere-Thermosphere Model (CMIT), we analyzed the magnetosphere-ionosphere-thermosphere system response to IMF Bz oscillation with periods of 10, 30, and 60 minutes from the perspective of energy budget and electrodynamic coupling processes. Our results indicate that solar wind energy coupling efficiency depends on IMF Bz oscillation frequency; energy coupling efficiency, represented by the ratio between globally integrated Joule heating and Epsilon function, is higher for lower frequency IMF Bz oscillation. Ionospheric Joule heating dissipation not only depends on the direct solar wind driven process but also is affected by the intrinsic nature of magnetosphere (i.e. loading-unloading process). In addition, ionosphere acts as a low-pass filter and tends to filter out very high-frequency solar wind oscillation (i.e. shorter than 10 minutes). Ionosphere vertical ion drift is most sensitive to IMF Bz oscillation compared to hmF2, and NmF2, while NmF2 is less sensitive. This can account for not synchronized NmF2 and hmF2 response to penetration electric fields in association with fast solar wind changes. This research highlights the critical role of IMF Bz oscillation frequency in constructing energy coupling function and understanding electrodynamic processes in the coupled solar wind-magnetosphere-ionosphere system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22039309-three-dimensional-magnetohydrodynamic-modeling-solar-wind-including-pickup-protons-turbulence-transport','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22039309-three-dimensional-magnetohydrodynamic-modeling-solar-wind-including-pickup-protons-turbulence-transport"><span>THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELING OF THE SOLAR WIND INCLUDING PICKUP PROTONS AND TURBULENCE TRANSPORT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov</p> <p>2012-07-20</p> <p>To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfermore » from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons. We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 Degree-Sign -90 Degree-Sign and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..MARV31015P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..MARV31015P"><span>Analysis of Wind Forces on Roof-Top Solar Panel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panta, Yogendra; Kudav, Ganesh</p> <p>2011-03-01</p> <p>Structural loads on solar panels include forces due to high wind, gravity, thermal expansion, and earthquakes. International Building Code (IBC) and the American Society of Civil Engineers are two commonly used approaches in solar industries to address wind loads. Minimum Design Loads for Buildings and Other Structures (ASCE 7-02) can be used to calculate wind uplift loads on roof-mounted solar panels. The present study is primarily focused on 2D and 3D modeling with steady, and turbulent flow over an inclined solar panel on the flat based roof to predict the wind forces for designing wind management system. For the numerical simulation, 3-D incompressible flow with the standard k- ɛ was adopted and commercial CFD software ANSYS FLUENT was used. Results were then validated with wind tunnel experiments with a good agreement. Solar panels with various aspect ratios for various high wind speeds and angle of attacks were modeled and simulated in order to predict the wind loads in various scenarios. The present study concluded to reduce the strong wind uplift by designing a guide plate or a deflector before the panel. Acknowledgments to Northern States Metal Inc., OH (GK & YP) and School of Graduate Studies of YSU for RP & URC 2009-2010 (YP).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P51C2600L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P51C2600L"><span>Analysis of Solar Wind Precipitation on Mars Using MAVEN/SWIA Observations of Spacecraft-Scattered Ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lue, C.; Halekas, J. S.</p> <p>2017-12-01</p> <p>Particle sensors on the MAVEN spacecraft (SWIA, SWEA, STATIC) observe precipitating solar wind ions during MAVEN's periapsis passes in the Martian atmosphere (at 120-250 km altitude). The signature is observed as positive and negative particles at the solar wind energy, traveling away from the Sun. The observations can be explained by the solar wind penetrating the Martian magnetic barrier in the form of energetic neutral atoms (ENAs) due to charge-exchange with the Martian hydrogen corona, and then being reionized in positive or negative form upon impact with the atmosphere (1). These findings have elucidated solar wind precipitation dynamics at Mars, and can also be used to monitor the solar wind even when MAVEN is at periapsis (2). In the present study, we focus on a SWIA instrument background signal that has been interpreted as spacecraft/instrument-scattered ions (2). We aim to model and subtract the scattered ion signal from the observations including those of reionized solar wind. We also aim to use the scattered ion signal to track hydrogen ENAs impacting the spacecraft above the reionization altitude. We characterize the energy spectrum and directional scattering function for solar wind scattering off the SWIA aperture structure, the radome and the spacecraft body. We find a broad scattered-ion energy spectrum up to the solar wind energy, displaying increased energy loss and reduced flux with increasing scattering angle, allowing correlations with the solar wind direction, energy, and flux. We develop models that can be used to predict the scattered signal based on the direct solar wind observations or to infer the solar wind properties based on the observed scattered signal. We then investigate deviations to the models when the spacecraft is in the Martian atmosphere and evaluate the plausibility of that these are caused by ENAs. We also perform SIMION modeling of the scattering process and the resulting signal detection by SWIA, to study the results from an instrument point-of-view and evaluate the instrument sensitivity to ENAs. 1. Halekas, J. S., et al. (2015), Geophys. Res. Lett., 42, doi:10.1002/2015GL064693 2. Halekas, J. S., et al. (2017), J. Geophys. Res., 122, doi:10.1002/2016JA023167</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27194962','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27194962"><span>Wave Modeling of the Solar Wind.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ofman, Leon</p> <p></p> <p>The acceleration and heating of the solar wind have been studied for decades using satellite observations and models. However, the exact mechanism that leads to solar wind heating and acceleration is poorly understood. In order to improve the understanding of the physical mechanisms that are involved in these processes a combination of modeling and observational analysis is required. Recent models constrained by satellite observations show that wave heating in the low-frequency (MHD), and high-frequency (ion-cyclotron) range may provide the necessary momentum and heat input to coronal plasma and produce the solar wind. This review is focused on the results of several recent solar modeling studies that include waves explicitly in the MHD and the kinetic regime. The current status of the understanding of the solar wind acceleration and heating by waves is reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910043354&hterms=fisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dfisica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910043354&hterms=fisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dfisica"><span>A study of the relationship between micropulsations and solar wind properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yedidia, B. A.; Lazarus, A. J.; Vellante, M.; Villante, U.</p> <p>1991-01-01</p> <p>A year-long comparison between daily averages of solar wind parameters obtained from the MIT experiment on IMP-8 and micropulsation measurements made by the Universita dell'Aquila has shown a correlation between solar wind speed and micropulsation power with peaks of the correlation coefficient greater than 0.8 in the period range from 20 to 40 s. Different behavior observed for different period bands suggests that the shorter period activity tends to precede the highest values of the solar wind speed while the longer period activity tends to persist for longer intervals within high velocity solar wind streams. A comparison with simultaneous interplanetary magnetic field measurements supports the upstream origin of the observed ground pulsations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890053926&hterms=solar+two&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsolar%2Btwo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890053926&hterms=solar+two&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsolar%2Btwo"><span>Long-term changes in solar wind elemental and isotopic ratios - A comparison of two lunar ilmenites of different antiquities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Becker, Richard H.; Pepin, Robert O.</p> <p>1989-01-01</p> <p>The solar wind components in two lunar ilmenites are examined. The noble gas and nitrogen elemental and isotopic abundances of lunar regolith breccia sample 79035, assumed to have been exposed to solar winds more than 2 Ga ago, are analyzed using stepwise oxidation and pyrolysis. This sample is compared with the data of Frick et al. (1988) for soil sample 71501, recently exposed to solar winds. It is observed that the two elements differ in terms of xenon abundance, helium and neon isotopic rates, and He/Ar elemental ratios. It is concluded that there have been isotopic and elemental abundance changes in solar wind composition over time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293...88P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293...88P"><span>Modeling the Global Coronal Field with Simulated Synoptic Magnetograms from Earth and the Lagrange Points L3, L4, and L5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrie, Gordon; Pevtsov, Alexei; Schwarz, Andrew; DeRosa, Marc</p> <p>2018-06-01</p> <p>The solar photospheric magnetic flux distribution is key to structuring the global solar corona and heliosphere. Regular full-disk photospheric magnetogram data are therefore essential to our ability to model and forecast heliospheric phenomena such as space weather. However, our spatio-temporal coverage of the photospheric field is currently limited by our single vantage point at/near Earth. In particular, the polar fields play a leading role in structuring the large-scale corona and heliosphere, but each pole is unobservable for {>} 6 months per year. Here we model the possible effect of full-disk magnetogram data from the Lagrange points L4 and L5, each extending longitude coverage by 60°. Adding data also from the more distant point L3 extends the longitudinal coverage much further. The additional vantage points also improve the visibility of the globally influential polar fields. Using a flux-transport model for the solar photospheric field, we model full-disk observations from Earth/L1, L3, L4, and L5 over a solar cycle, construct synoptic maps using a novel weighting scheme adapted for merging magnetogram data from multiple viewpoints, and compute potential-field models for the global coronal field. Each additional viewpoint brings the maps and models into closer agreement with the reference field from the flux-transport simulation, with particular improvement at polar latitudes, the main source of the fast solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.6000S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.6000S"><span>Interaction between Solar Wind and Lunar Magnetic Anomalies observed by Kaguya MAP-PACE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki; Yamamoto, Tadateru; Uemura, Kota; Tsunakawa, Hideo</p> <p>2010-05-01</p> <p>It is known that Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. Since the discovery of the lunar crustal magnetic field in 1960s, several papers have been published concerning the interaction between the solar wind and the lunar magnetic anomalies. MAG/ER on Lunar Prospector found heating of the solar wind electrons presumably due to the interaction between the solar wind and the lunar magnetic anomalies and the existence of the mini-magnetosphere was suggested. However, the detailed mechanism of the interaction has been unclear mainly due to the lack of the in-situ observed data of low energy ions. MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon on 10 June, 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was an energy mass spectrometer. IMA measured mass identified ion energy spectra that had never been obtained at 100km altitude polar orbit around the Moon. When Kaguya flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These ions had much higher flux than the solar wind protons scattered at the lunar surface. The magnetically reflected ions had nearly the same energy as the incident solar wind ions while the solar wind protons scattered at the lunar surface had slightly lower energy than the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At ~50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. It suggests that there exists an area on the lunar surface where solar wind does not impact. At ~10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. Calculating velocity moments including density, velocity, temperature of the ions and electrons, we have found that there exists 100km scale regions over strong magnetic anomalies where plasma parameters are quite different from the outside. Solar wind ions observed at 10km altitude show several different behaviors such as deceleration without heating and heating in a limited region inside the magnetic anomalies that may be caused by the magnetic field structure. The deceleration of the solar wind has the same ΔE/q (ΔE : deceleration energy, q: charge) for different species, which constraints the possible mechanisms of the interaction between solar wind and magnetic anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060032727&hterms=depletion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddepletion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060032727&hterms=depletion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddepletion"><span>The Solar Wind Depletion (SWD) event of 26 April 1999: Triggering of an auroral pseudobreakup event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhou, X.; Tsurutani, B.; Gonzalez, W.</p> <p>2000-01-01</p> <p>The interplanetary solar wind depletion (SWD) event of 26 April 1999 and its magnetospheric consequences are examined. The SWD event is characterized by a solar wind density decrease from [similar to] 3.0 to 0.7 cm(sup -3) leading to a solar wind ram pressure decrease from [similar to] 2.0 to 0.2 nPa. This SWD onset is followed by a dipolarization of nightside magnetospheric fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1020869','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1020869"><span>Solar Wind Earth Exchange Project (SWEEP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-10-28</p> <p>AFRL-AFOSR-UK-TR-2016-0035 Solar Wind Earth Exchange Project 140200 Steven Sembay UNIVERSITY OF LEICESTER Final Report 10/28/2016 DISTRIBUTION A...To) 01 Sep 2014 to 31 Aug 2016 4. TITLE AND SUBTITLE Solar Wind Earth Exchange Project (SWEEP) 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1...SUPPLEMENTARY NOTES 14. ABSTRACT The grant received from AFRL/AOFSR/EOARD funded the Solar Wind Earth Exchange Project (SWEEP) at Leicester University. The goal</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SoPh..286..157S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SoPh..286..157S"><span>Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.</p> <p>2013-08-01</p> <p>The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010093223','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010093223"><span>A Study of the Structure of the Source Region of the Solar Wind in Support of a Solar Probe Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Habbal, Shadia R.; Forman, M. A. (Technical Monitor)</p> <p>2001-01-01</p> <p>Despite the richness of the information about the physical properties and the structure of the solar wind provided by the Ulysses and SOHO (Solar and Heliospheric Observatory) observations, fundamental questions regarding the nature of the coronal heating mechanisms, their source, and the manifestations of the fast and slow solar wind, still remain unanswered. The last unexplored frontier to establish the connection between the structure and dynamics of the solar atmosphere, its extension into interplanetary space, and the mechanisms responsible for the evolution of the solar wind, is the corona between 1 and 30 R(sub s). A Solar Probe mission offers an unprecedented opportunity to explore this frontier. Its uniqueness stems from its trajectory in a plane perpendicular to the ecliptic which reaches within 9 R(sub s) of the solar surface over the poles and 3 - 9 R(sub s) at the equator. With a complement of simultaneous in situ and remote sensing observations, this mission is destined to detect remnants and signatures of the processes which heat the corona and accelerate the solar wind. In support of this mission, we fulfilled the following two long-term projects: (1) Study of the evolution of waves and turbulence in the solar wind (2) Exploration of signatures of physical processes and structures in the corona. A summary of the tasks achieved in support of these projects are given below. In addition, funds were provided to support the Solar Wind 9 International Conference which was held in October 1998. A brief report on the conference is also described in what follows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021285&hterms=kellogg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dkellogg','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021285&hterms=kellogg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dkellogg"><span>Some remarks on waves in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kellogg, Paul J.</p> <p>1995-01-01</p> <p>Waves are significant to the solar wind in two ways as modifiers of the particle distribution functions, and as diagnostics. In addition, the solar wind serves as an important laboratory for the study of plasma wave processes, as it is possible to make detailed measurements of phenomena which are too small to be easily measured by laboratory sized sensors. There are two areas where waves (we include discontinuities under this heading) must make important modifications of the distribution functions: in accelerating the alpha particles to higher speeds than the protons (Marsch et al.) and in accelerating the solar wind itself. A third area is possibly in maintaining the relative isotropy of the solar wind ion distribution in the solar wind rest frame. As the solar wind is nearly collisionless, the ions should conserve magnetic moment in rushing out from the sun, and therefore Tperp/B should be relatively constant, but it is obviously not. This has not received much attention. The waves, both electromagnetic and electrostatic, which are pan of the solar Type 111 burst phenomenon, have been extensively studied as examples of nonlinear plasma phenomena, and also used as remote sensors to trace the solar magnetic field. The observations made by Ulysses show that the field can be traced in this way out to perhaps a little more than an A.U., but then the electromagnetic pan of the type 111 burst fades out. Nevertheless, sometimes Langmuir waves appear at Ulysses at an appropriate extrapolated time. This seems to support the picture in which the electromagnetic waves at the fundamental plasma frequency are trapped in density fluctuations. Langmuir waves in the solar wind are usually in quasi-thermal equilibrium quasi because the solar wind itself is not isothermal. The Observatory of Paris group (Steinberg. Meyer-Vernet, Hoang) has exploited this with an experiment on WIND which is capable of providing density and temperature on a faster time scale than hitherto. Recently it has been found that Langmuir waves are associated with magnetic holes. This may help to elucidate the nature of magnetic holes. Nonlinear processes are important in the transformation of wave energy to panicle energy. Some recent examples from WIND data will be shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910040202&hterms=coal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcoal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910040202&hterms=coal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcoal"><span>Solar power. [comparison of costs to wind, nuclear, coal, oil and gas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walton, A. L.; Hall, Darwin C.</p> <p>1990-01-01</p> <p>This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030102163','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030102163"><span>Iron K Lines from Gamma Ray Bursts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kallman, T. R.; Meszaros, P.; Rees, M. J.</p> <p>2003-01-01</p> <p>We present models for reprocessing of an intense flux of X-rays and gamma rays expected in the vicinity of gamma ray burst sources. We consider the transfer and reprocessing of the energetic photons into observable features in the X-ray band, notably the K lines of iron. Our models are based on the assumption that the gas is sufficiently dense to allow the microphysical processes to be in a steady state, thus allowing efficient line emission with modest reprocessing mass and elemental abundances ranging from solar to moderately enriched. We show that the reprocessing is enhanced by down-Comptonization of photons whose energy would otherwise be too high to absorb on iron, and that pair production can have an effect on enhancing the line production. Both "distant" reprocessors such as supernova or wind remnants and "nearby" reprocessors such as outer stellar envelopes can reproduce the observed line fluxes with Fe abundances 30-100 times above solar, depending on the incidence angle. The high incidence angles required arise naturally only in nearby models, which for plausible values can reach Fe line to continuum ratios close to the reported values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14603312','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14603312"><span>Enhancements of energetic particles near the heliospheric termination shock.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McDonald, Frank B; Stone, Edward C; Cummings, Alan C; Heikkila, Bryant; Lal, Nand; Webber, William R</p> <p>2003-11-06</p> <p>The spacecraft Voyager 1 is at a distance greater than 85 au from the Sun, in the vicinity of the termination shock that marks the abrupt slowing of the supersonic solar wind and the beginning of the extended and unexplored distant heliosphere. This shock is expected to accelerate 'anomalous cosmic rays', as well as to re-accelerate Galactic cosmic rays and low-energy particles from the inner Solar System. Here we report a significant increase in the numbers of energetic ions and electrons that persisted for seven months beginning in mid-2002. This increase differs from any previously observed in that there was a simultaneous increase in Galactic cosmic ray ions and electrons, anomalous cosmic rays and low-energy ions. The low-intensity level and spectral energy distribution of the anomalous cosmic rays, however, indicates that Voyager 1 still has not reached the termination shock. Rather, the observed increase is an expected precursor event. We argue that the radial anisotropy of the cosmic rays is expected to be small in the foreshock region, as is observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/greenpower/gpp-webinar-market-outlook-and-innovations-wind-and-solar-power','PESTICIDES'); return false;" href="https://www.epa.gov/greenpower/gpp-webinar-market-outlook-and-innovations-wind-and-solar-power"><span>GPP Webinar: Market Outlook and Innovations in Wind and Solar Power</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Green Power Partnership webinar reviewing the state of the renewable energy industry as a whole, with a focus on wind and solar power and exploring recent marketplace innovations in wind and solar power and renewable energy purchases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...853..142L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...853..142L"><span>Generation of Kappa Distributions in Solar Wind at 1 au</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Livadiotis, G.; Desai, M. I.; Wilson, L. B., III</p> <p>2018-02-01</p> <p>We examine the generation of kappa distributions in the solar wind plasma near 1 au. Several mechanisms are mentioned in the literature, each characterized by a specific relationship between the solar wind plasma features, the interplanetary magnetic field (IMF), and the kappa index—the parameter that governs the kappa distributions. This relationship serves as a signature condition that helps the identification of the mechanism in the plasma. In general, a mechanism that generates kappa distributions involves a single or a series of stochastic or physical processes that induces local correlations among particles. We identify three fundamental solar wind plasma conditions that can generate kappa distributions, noted as (i) Debye shielding, (ii) frozen IMF, and (iii) temperature fluctuations, each one prevailing in different scales of solar wind plasma and magnetic field properties. Moreover, our findings show that the kappa distributions, and thus, their generating mechanisms, vary significantly with solar wind features: (i) the kappa index has different dependence on the solar wind speed for slow and fast modes, i.e., slow wind is characterized by a quasi-constant kappa index, κ ≈ 4.3 ± 0.7, while fast wind exhibits kappa indices that increase with bulk speed; (ii) the dispersion of magnetosonic waves is more effective for lower kappa indices (i.e., further from thermal equilibrium); and (iii) the kappa and polytropic indices are positively correlated, as it was anticipated by the theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvE..89e2812M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvE..89e2812M"><span>Stationarity of extreme bursts in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moloney, N. R.; Davidsen, J.</p> <p>2014-05-01</p> <p>Recent results have suggested that the statistics of bursts in the solar wind vary with solar cycle. Here, we show that this variation is basically absent if one considers extreme bursts. These are defined as threshold-exceeding events over the range of high thresholds for which their number decays as a power law. In particular, we find that the distribution of duration times and energies of extreme bursts in the solar wind ɛ parameter and similar observables are independent of the solar cycle and in this sense stationary, and show robust asymptotic power laws with exponents that are independent of the specific threshold. This is consistent with what has been observed for solar flares and, thus, provides evidence in favor of a link between solar flares and extreme bursts in the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760044011&hterms=activity+Physics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dactivity%2BPhysics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760044011&hterms=activity+Physics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dactivity%2BPhysics"><span>Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newkirk, G., Jr.</p> <p>1975-01-01</p> <p>Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790009952&hterms=history+gold&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dhistory%2Bgold','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790009952&hterms=history+gold&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dhistory%2Bgold"><span>Prediction of solar energetic particle event histories using real-time particle and solar wind measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roelof, E. C.; Gold, R. E.</p> <p>1978-01-01</p> <p>The comparatively well-ordered magnetic structure in the solar corona during the decline of Solar Cycle 20 revealed a characteristic dependence of solar energetic particle injection upon heliographic longitude. When analyzed using solar wind mapping of the large scale interplanetary magnetic field line connection from the corona to the Earth, particle fluxes display an approximately exponential dependence on heliographic longitude. Since variations in the solar wind velocity (and hence the coronal connection longitude) can severely distort the simple coronal injection profile, the use of real-time solar wind velocity measurements can be of great aid in predicting the decay of solar particle events. Although such exponential injection profiles are commonplace during 1973-1975, they have also been identified earlier in Solar Cycle 20, and hence this structure may be present during the rise and maximum of the cycle, but somewhat obscured by greater temporal variations in particle injection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070018822','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070018822"><span>Composition of the Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Suess, S. T.</p> <p>2007-01-01</p> <p>The solar wind reflects the composition of the Sun and physical processes in the corona. Analysis produces information on how the solar system was formed and on physical processes in the corona. The analysis can also produce information on the local interstellar medium, galactic evolution, comets in the solar wind, dust in the heliosphere, and matter escaping from planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4604519','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4604519"><span>Impacts of wind stilling on solar radiation variability in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lin, Changgui; Yang, Kun; Huang, Jianping; Tang, Wenjun; Qin, Jun; Niu, Xiaolei; Chen, Yingying; Chen, Deliang; Lu, Ning; Fu, Rong</p> <p>2015-01-01</p> <p>Solar dimming and wind stilling (slowdown) are two outstanding climate changes occurred in China over the last four decades. The wind stilling may have suppressed the dispersion of aerosols and amplified the impact of aerosol emission on solar dimming. However, there is a lack of long-term aerosol monitoring and associated study in China to confirm this hypothesis. Here, long-term meteorological data at weather stations combined with short-term aerosol data were used to assess this hypothesis. It was found that surface solar radiation (SSR) decreased considerably with wind stilling in heavily polluted regions at a daily scale, indicating that wind stilling can considerably amplify the aerosol extinction effect on SSR. A threshold value of 3.5 m/s for wind speed is required to effectively reduce aerosols concentration. From this SSR dependence on wind speed, we further derived proxies to quantify aerosol emission and wind stilling amplification effects on SSR variations at a decadal scale. The results show that aerosol emission accounted for approximately 20% of the typical solar dimming in China, which was amplified by approximately 20% by wind stilling. PMID:26463748</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMSH34A..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMSH34A..03H"><span>Probability Density Functions of the Solar Wind Driver of the Magnetopshere-Ionosphere System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horton, W.; Mays, M. L.</p> <p>2007-12-01</p> <p>The solar-wind driven magnetosphere-ionosphere system is a complex dynamical system in that it exhibits (1) sensitivity to initial conditions; (2) multiple space-time scales; (3) bifurcation sequences with hysteresis in transitions between attractors; and (4) noncompositionality. This system is modeled by WINDMI--a network of eight coupled ordinary differential equations which describe the transfer of power from the solar wind through the geomagnetic tail, the ionosphere, and ring current in the system. The model captures both storm activity from the plasma ring current energy, which yields a model Dst index result, and substorm activity from the region 1 field aligned current, yielding model AL and AU results. The input to the model is the solar wind driving voltage calculated from ACE solar wind parameter data, which has a regular coherent component and broad-band turbulent component. Cross correlation functions of the input-output data time series are computed and the conditional probability density function for the occurrence of substorms given earlier IMF conditions are derived. The model shows a high probability of substorms for solar activity that contains a coherent, rotating IMF with magnetic cloud features. For a theoretical model of the imprint of solar convection on the solar wind we have used the Lorenz attractor (Horton et al., PoP, 1999, doi:10.10631.873683) as a solar wind driver. The work is supported by NSF grant ATM-0638480.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.463.2958V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.463.2958V"><span>The fates of Solar system analogues with one additional distant planet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Veras, Dimitri</p> <p>2016-12-01</p> <p>The potential existence of a distant planet (`Planet Nine') in the Solar system has prompted a re-think about the evolution of planetary systems. As the Sun transitions from a main-sequence star into a white dwarf, Jupiter, Saturn, Uranus and Neptune are currently assumed to survive in expanded but otherwise unchanged orbits. However, a sufficiently distant and sufficiently massive extra planet would alter this quiescent end scenario through the combined effects of Solar giant branch mass-loss and Galactic tides. Here, I estimate bounds for the mass and orbit of a distant extra planet that would incite future instability in systems with a Sun-like star and giant planets with masses and orbits equivalent to those of Jupiter, Saturn, Uranus and Neptune. I find that this boundary is diffuse and strongly dependent on each of the distant planet's orbital parameters. Nevertheless, I claim that instability occurs more often than not when the planet is as massive as Jupiter and harbours a semimajor axis exceeding about 300 au, or has a mass of a super-Earth and a semimajor axis exceeding about 3000 au. These results hold for orbital pericentres ranging from 100 to at least 400 au. This instability scenario might represent a common occurrence, as potentially evidenced by the ubiquity of metal pollution in white dwarf atmospheres throughout the Galaxy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002024','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002024"><span>Three-Fluid Magnetohydrodynamic Modeling of the Solar Wind in the Outer Heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.</p> <p>2011-01-01</p> <p>We have developed a three-fluid, fully three-dimensional magnetohydrodynamic model of the solar wind plasma in the outer heliosphere as a co-moving system of solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Our approach takes into account the effects of electron heat conduction and dissipation of Alfvenic turbulence on the spatial evolution of the solar wind plasma and interplanetary magnetic fields. The turbulence transport model is based on the Reynolds decomposition of physical variables into mean and fluctuating components and uses the turbulent phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. We solve the coupled set of the three-fluid equations for the mean-field solar wind and the turbulence equations for the turbulence energy, cross helicity, and correlation length. The equations are written in the rotating frame of reference and include heating by turbulent dissipation, energy transfer from interstellar pickup protons to solar wind protons, and solar wind deceleration due to the interaction with the interstellar hydrogen. The numerical solution is constructed by the time relaxation method in the region from 0.3 to 100 AU. Initial results from the novel model are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5261766-solar-wind-speed-he-nm-absorption-line-intensity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5261766-solar-wind-speed-he-nm-absorption-line-intensity"><span>Solar wind speed and He I (1083 nm) absorption line intensity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hakamada, Kazuyuki; Kojima, Masayoshi; Kakinuma, Takakiyo</p> <p>1991-04-01</p> <p>Since the pattern of the solar wind was relatively steady during Carrington rotations 1,748 through 1,752 in 1984, an average distribution of the solar windspeed on a so-called source surface can be constructed by superposed epoch analysis of the wind values estimated by the interplanetary scintillation observations. The average distribution of the solar wind speed is then projected onto the photosphere along magnetic field lines computed by a so-called potential model with the line-of-sight components of the photospheric magnetic fields. The solar wind speeds projected onto the photosphere are compared with the intensities of the He I (1,083 nm) absorptionmore » line at the corresponding locations in the chromosphere. The authors found that there is a linear relation between the speeds and the intensities. Since the intensity of the He I (1,083 nm) absorption line is coupled with the temperature of the corona, this relation suggests that some physical mechanism in or above the photosphere accelerates coronal plasmas to the solar wind speed in regions where the temperature is low. Further, it is suggested that the efficiency of the solar wind acceleration decreases as the coronal temperature increases.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171195','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171195"><span>Identification of Interplanetary Coronal Mass Ejections at 1 AU Using Multiple Solar Wind Plasma Composition Anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richardson, I. G.; Cane, H. V.</p> <p>2004-01-01</p> <p>We investigate the use of multiple simultaneous solar wind plasma compositional anomalies, relative to the composition of the ambient solar wind, for identifying interplanetary coronal mass ejection (ICME) plasma. We first summarize the characteristics of several solar wind plasma composition signatures (O(+7)/O(+6), Mg/O, Ne/O, Fe charge states, He/p) observed by the ACE and WIND spacecraft within the ICMEs during 1996 - 2002 identsed by Cane and Richardson. We then develop a set of simple criteria that may be used to identify such compositional anomalies, and hence potential ICMEs. To distinguish these anomalies from the normal variations seen in ambient solar wind composition, which depend on the wind speed, we compare observed compositional signatures with those 'expected' in ambient solar wind with the same solar wind speed. This method identifies anomalies more effectively than the use of fixed thresholds. The occurrence rates of individual composition anomalies within ICMEs range from approx. 70% for enhanced iron and oxygen charge states to approx. 30% for enhanced He/p (> 0.06) and Ne/O, and are generally higher in magnetic clouds than other ICMEs. Intervals of multiple anomalies are usually associated with ICMEs, and provide a basis for the identification of the majority of ICMEs. We estimate that Cane and Richardson, who did not refer to composition data, probably identitied approx. 90% of the ICMEs present. However, around 10% of their ICMEs have weak compositional anomalies, suggesting that the presence of such signatures does not provide a necessary requirement for an ICME. We note a remarkably similar correlation between the Mg/O and O(7)/O(6) ratios in hourly-averaged data both within ICMEs and the ambient solar wind. This 'universal' relationship suggests that a similar process (such as minor ion heating by waves inside coronal magnetic field loops) produces the first-ionization potential bias and ion freezing-in temperatures in the source regions of both ICMEs and the ambient solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title25-vol1/pdf/CFR-2014-title25-vol1-sec162-010.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title25-vol1/pdf/CFR-2014-title25-vol1-sec162-010.pdf"><span>25 CFR 162.010 - How do I obtain a lease?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>... subpart E for wind energy evaluation, wind resource, or solar resource leases; and (3) Prospective lessees..., residential, business, wind energy evaluation, wind resource, and solar resource leases will not be advertised...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title25-vol1/pdf/CFR-2013-title25-vol1-sec162-010.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title25-vol1/pdf/CFR-2013-title25-vol1-sec162-010.pdf"><span>25 CFR 162.010 - How do I obtain a lease?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... subpart E for wind energy evaluation, wind resource, or solar resource leases; and (3) Prospective lessees..., residential, business, wind energy evaluation, wind resource, and solar resource leases will not be advertised...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1215020','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1215020"><span>Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Denholm, P.; Mehos, M.</p> <p>2015-06-03</p> <p>As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920016948','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920016948"><span>Handbook of solar-terrestrial data systems, version 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1991-01-01</p> <p>The interaction between the solar wind and the earth's magnetic field creates a large magnetic cavity which is termed the magnetosphere. Energy derived from the solar wind is ultimately dissipated by particle acceleration-precipitation and Joule heating in the magnetosphere-ionosphere. The rate of energy dissipation is highly variable, with peak levels during geomagnetic storms and substorms. The degree to which solar wind and magnetospheric conditions control the energy dissipation processes remains one of the major outstanding questions in magnetospheric physics. A conference on Solar Wind-Magnetospheric Coupling was convened to discuss these issues and this handbook is the result.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22365016-evolution-au-equatorial-solar-wind-its-association-morphology-heliospheric-current-sheet-from-solar-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22365016-evolution-au-equatorial-solar-wind-its-association-morphology-heliospheric-current-sheet-from-solar-cycles"><span>The evolution of 1 AU equatorial solar wind and its association with the morphology of the heliospheric current sheet from solar cycles 23 to 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, L.; Landi, E.; Zurbuchen, T. H.</p> <p>2014-09-20</p> <p>The solar wind can be categorized into three types based on its 'freeze-in' temperature (T {sub freeze-in}) in the coronal source: low T {sub freeze-in} wind mostly from coronal holes, high T {sub freeze-in} wind mostly from regions outside of coronal holes, including streamers (helmet streamer and pseudostreamer), active regions, etc., and transient interplanetary coronal mass ejections (ICMEs) usually possessing the hottest T {sub freeze-in}. The global distribution of these three types of wind has been investigated by examining the most effective T {sub freeze-in} indicator, the O{sup 7+}/O{sup 6+} ratio, as measured by the Solar Wind Ion Composition Spectrometermore » on board the Advanced Composition Explorer (ACE) during 1998-2008 by Zhao et al. In this study, we extend the previous investigation to 2011 June, covering the unusual solar minimum between solar cycles 23 and 24 (2007-2010) and the beginning of solar cycle 24. We find that during the entire solar cycle, from the ascending phase of cycle 23 in 1998 to the ascending phase of cycle 24 in 2011, the average fractions of the low O{sup 7+}/O{sup 6+} ratio (LOR) wind, the high O{sup 7+}/O{sup 6+} ratio (HOR) wind, and ICMEs at 1 AU are 50.3%, 39.4%, and 10.3%, respectively; the contributions of the three types of wind evolve with time in very different ways. In addition, we compare the evolution of the HOR wind with two heliospheric current sheet (HCS) parameters, which indicate the latitudinal standard deviation (SD) and the slope (SL) of the HCS on the synoptic Carrington maps at 2.5 solar radii surface. We find that the fraction of HOR wind correlates with SD and SL very well (slightly better with SL than with SD), especially after 2005. This result verifies the link between the production of HOR wind and the morphology of the HCS, implying that at least one of the major sources of the HOR wind must be associated with the HCS.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMSH21A1569W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMSH21A1569W"><span>The GENESIS Mission: Solar Wind Isotopic and Elemental Compositions and Their Implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiens, R. C.; Burnett, D. S.; McKeegan, K. D.; Kallio, A. P.; Mao, P. H.; Heber, V. S.; Wieler, R.; Meshik, A.; Hohenberg, C. M.; Mabry, J. C.; Gilmour, J.; Crowther, S. A.; Reisenfeld, D. B.; Jurewicz, A.; Marty, B.; Pepin, R. O.; Barraclough, B. L.; Nordholt, J. E.; Olinger, C. T.; Steinberg, J. T.</p> <p>2008-12-01</p> <p>The GENESIS mission was a novel NASA experiment to collect solar wind at the Earth's L1 point for two years and return it for analysis. The capsule crashed upon re-entry in 2004, but many of the solar-wind collectors were recovered, including separate samples of coronal hole, interstream, and CME material. Laboratory analyses of these materials have allowed higher isotopic precision than possible with current in-situ detectors. To date GENESIS results have been obtained on isotopes of O, He, Ne, Ar, Kr, and Xe on the order of 1% accuracy and precision, with poorer uncertainty on Xe isotopes and significantly better uncertainties on the lighter noble gases. Elemental abundances are available for the above elements as well as Mg, Si, and Fe. When elemental abundances are compared with other in situ solar wind measurements, agreement is generally quite good. One exception is the Ne elemental abundance, which agrees with Ulysses and Apollo SWC results, but not with ACE. Neon is of particular interest because of the uncertainty in the solar Ne abundance, which has significant implications for the standard solar model. Helium isotopic results of material from the different solar wind regimes collected by GENESIS is consistent with isotopic fractionation predictions of the Coulomb drag model, suggesting that isotopic fractionation corrections need to be applied to heavier elements as well when extrapolating solar wind to solar compositions. Noble gas isotopic compositions from GENESIS are consistent with those obtained for solar wind trapped in lunar grains, but have for the first time yielded a very precise Ar isotopic result. Most interesting for cosmochemistry is a preliminary oxygen isotopic result from GENESIS which indicates a solar enrichment of ~4% in 16O relative to the planets, consistent with a photolytic self-shielding phenomenon during solar system formation. Analyses of solar wind N and C isotopes may further elucidate this phenomenon. Preliminary results from GENESIS have been reported for N, and results are still pending for C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980210218','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980210218"><span>Mapping the Solar Wind from its Source Region into the Outer Corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Esser, Ruth</p> <p>1998-01-01</p> <p>Knowledge of the radial variation of the plasma conditions in the coronal source region of the solar wind is essential to exploring coronal heating and solar wind acceleration mechanisms. The goal of the present proposal is to determine as many plasma parameters in that region as possible by coordinating different observational techniques, such as Interplanetary Scintillation Observations, spectral line intensity observations, polarization brightness measurements and X-ray observations. The inferred plasma parameters are then used to constrain solar wind models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15004472','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15004472"><span>Wind and Solar Resource Assessment of Sri Lanka and the Maldives (CD-ROM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Elliott, D.; Schwartz, M.; Scott, G.</p> <p>2003-08-01</p> <p>The Wind and Solar Resource Assessment of Sri Lanka and the Maldives CD contains an electronic version of Wind Energy Resource Atlas of Sri Lanka and the Maldives (NREL/TP-500-34518), Solar Resource Assessment for Sri Lanka and the Maldives (NREL/TO-710-34645), Sri Lanka Wind Farm Analysis and Site Selection Assistance (NREL/SR-500-34646), GIS Data Viewer (software and data files with a readme file), and Hourly Solar and Typical Meteorological Year Data with a readme file.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA626067','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA626067"><span>An Analysis of the Use of Energy Audits, Solar Panels, and Wind Turbines to Reduce Energy Consumption from Non Renewable Energy Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-04-15</p> <p>the Use of Energy Audits, Solar Panels, and Wind Turbines to Reduce Energy Consumption from Non Renewable Energy Sources Energy is a National...Park, NC 27709-2211 Energy Audits, Energy Conservation, Renewable Energy, Solar Energy, Wind Turbine Use, Energy Consumption REPORT DOCUMENTATION PAGE 11...in non peer-reviewed journals: An Analysis of the Use of Energy Audits, Solar Panels, and Wind Turbines to Reduce Energy Consumption from Non</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014acm..conf..438R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014acm..conf..438R"><span>Solar-wind velocity measurements from near-Sun comets C/2011 W3 (Lovejoy), C/2011 L4 (Pan-STARRS), and C/2012 S1 (ISON)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramanjooloo, Y.; Jones, G. H.; Coates, A.; Owens, M. J.; Battams, K.</p> <p>2014-07-01</p> <p>Since the mid-20th century, comets' plasma (type I) tails have been studied as natural probes of the solar wind [1]. Comets have induced magnetotails, formed through the draping of the heliospheric magnetic field by the velocity shear in the mass-loaded solar wind. These can be easily observed remotely as the comets' plasma tails, which generally point away from the Sun. Local solar-wind conditions directly influence the morphology and dynamics of a comet's plasma tail. During ideal observing geometries, the orientation and structure of the plasma tail can reveal large-scale and small-scale variations in the local solar-wind structure. These variations can be manifested as tail condensations, kinks, and disconnection events. Over 50 % of observed catalogued comets are sungrazing comets [2], fragments of three different parent comets. Since 2011, two bright new comets, C/2011 W3 [3] (from hereon comet Lovejoy) and C/2012 S1 [4] (hereon comet ISON) have experienced extreme solar-wind conditions and insolation of their nucleus during their perihelion passages, approaching to within 8.3×10^5 km (1.19 solar radii) and 1.9×10^6 km (2.79 solar radii) of the solar centre. They each displayed a prominent plasma tail, proving to be exceptions amongst the observed group of sungrazing comets. These bright sungrazers provide unprecedented access to study the solar wind in the heretofore unprobed innermost region of the solar corona. The closest spacecraft in-situ sampling of the solar wind by the Helios probes reached 0.29 au. For this study, we define a sungrazing comet as one with its perihelion within the solar Roche limit (3.70 solar radii). We also extend this study to include C/2011 L4 [5] (comet Pan-STARRS), a comet with a much further perihelion distance of 0.302 au. The technique employed in this study was first established by analysing geocentric amateur observations of comets C/2001 Q4 (NEAT) and C/2004 Q2 (Machholz) [7]. These amateur images, obtained with modern equipment and sensors, rival and sometimes arguably exceed the quality of professional images obtained only 2--3 decades ago. Multiple solar-wind velocity estimates were derived from each image and the results compared to observed and modelled near-Earth solar-wind data. Our unique analysis technique [Ramanjooloo et al., in preparation] allows us to determine the latitudinal variations of the solar wind, heliospheric current-sheet sector boundaries and the boundaries of transient features as a comet with an observable plasma tail probes the inner heliosphere. We present solar-wind velocity measurements derived from multiple observing locations of comets Lovejoy from the 14th -- 19th December 2011, comet Pan-STARRS during 11th -- 16th March 2013 and comet ISON from 12th -- 29th November 2013. Observations were gathered from multiple resources, from the SECCHI heliospheric imagers aboard STEREO A and B [8], the LASCO coronagraphs aboard SOHO [9], as well as ground-based amateur and professional observations coordinated by the CIOC. Overlapping observation sessions from the three spacecraft and ground-based efforts provided the perfect opportunity to use these comets as a diagnostic tool to understand solar-wind variability close to the Sun. We plan to compare our observations to results of suitable simulations [10] of plasma conditions in the corona and inner heliosphere during each of the comets' perihelion passage. The correlation of the solar-wind velocity distribution from different observing locations can provide clues towards the morphology and orientation of the plasma tail. We also attempt to determine the difficult-to-determine non-radial components of the measured solar-wind velocities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661344-propagation-characteristics-two-coronal-mass-ejections-from-sun-far-interplanetary-space','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661344-propagation-characteristics-two-coronal-mass-ejections-from-sun-far-interplanetary-space"><span>Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong</p> <p></p> <p>Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamicmore » propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080022945','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080022945"><span>On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.</p> <p>2008-01-01</p> <p>The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760017040','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760017040"><span>The large-scale magnetic field in the solar wind. [astronomical models of interplanetary magnetics and the solar magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burlaga, L. F.; Ness, N. F.</p> <p>1976-01-01</p> <p>A literature review is presented of theoretical models of the interaction of the solar wind and interplanetary magnetic fields. Observations of interplanetary magnetic fields by the IMP and OSO spacecraft are discussed. The causes for cosmic ray variations (Forbush decreases) by the solar wind are examined. The model of Parker is emphasized. This model shows the three dimensional magnetic field lines of the solar wind to have the form of spirals wrapped on cones. It is concluded that an out-of-the-ecliptic solar probe mission would allow the testing and verification of the various theoretical models examined. Diagrams of the various models are shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110013339','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110013339"><span>The Character of the Solar Wind, Surface Interactions, and Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farrell, William M.</p> <p>2011-01-01</p> <p>We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.215M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.215M"><span>Use of meteorological information in the risk analysis of a mixed wind farm and solar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mengelkamp, H.-T.; Bendel, D.</p> <p>2010-09-01</p> <p>Use of meteorological information in the risk analysis of a mixed wind farm and solar power plant portfolio H.-T. Mengelkamp*,** , D. Bendel** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH The renewable energy industry has rapidly developed during the last two decades and so have the needs for high quality comprehensive meteorological services. It is, however, only recently that international financial institutions bundle wind farms and solar power plants and offer shares in these aggregate portfolios. The monetary value of a mixed wind farm and solar power plant portfolio is determined by legal and technical aspects, the expected annual energy production of each wind farm and solar power plant and the associated uncertainty of the energy yield estimation or the investment risk. Building an aggregate portfolio will reduce the overall uncertainty through diversification in contrast to the single wind farm/solar power plant energy yield uncertainty. This is similar to equity funds based on a variety of companies or products. Meteorological aspects contribute to the diversification in various ways. There is the uncertainty in the estimation of the expected long-term mean energy production of the wind and solar power plants. Different components of uncertainty have to be considered depending on whether the power plant is already in operation or in the planning phase. The uncertainty related to a wind farm in the planning phase comprises the methodology of the wind potential estimation and the uncertainty of the site specific wind turbine power curve as well as the uncertainty of the wind farm effect calculation. The uncertainty related to a solar power plant in the pre-operational phase comprises the uncertainty of the radiation data base and that of the performance curve. The long-term mean annual energy yield of operational wind farms and solar power plants is estimated on the basis of the actual energy production and it's relation to a climatologically stable long-term reference period. These components of uncertainty are of technical nature and based on subjective estimations rather than on a statistically sound data analysis. And then there is the temporal and spatial variability of the wind speed and radiation. Their influence on the overall risk is determined by the regional distribution of the power plants. These uncertainty components are calculated on the basis of wind speed observations and simulations and satellite derived radiation data. The respective volatility (temporal variability) is calculated from the site specific time series and the influence on the portfolio through regional correlation. For an exemplary portfolio comprising fourteen wind farms and eight solar power plants the annual mean energy production to be expected is calculated, the different components of uncertainty are estimated for each single wind farm and solar power plant and for the portfolio as a whole. The reduction in uncertainty (or risk) through bundling the wind farms and the solar power plants (the portfolio effect) is calculated by Markowitz' Modern Portfolio Theory. This theory is applied separately for the wind farm and the solar power plant bundle and for the combination of both. The combination of wind and photovoltaic assets clearly shows potential for a risk reduction. Even assets with a comparably low expected return can lead to a significant risk reduction depending on their individual characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760050074&hterms=Evolution+test&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DEvolution%2Btest','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760050074&hterms=Evolution+test&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DEvolution%2Btest"><span>Solar wind stream evolution at large heliocentric distances - Experimental demonstration and the test of a model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gosling, J. T.; Hundhausen, A. J.; Bame, S. J.</p> <p>1976-01-01</p> <p>A stream propagation model which neglects all dissipation effects except those occurring at shock interfaces, was used to compare Pioneer-10 solar wind speed observations, during the time when Pioneer 10, the earth, and the sun were coaligned, with near-earth Imp-7 observations of the solar wind structure, and with the theoretical predictions of the solar wind structure at Pioneer 10 derived from the Imp-7 measurements, using the model. The comparison provides a graphic illustration of the phenomenon of stream steepening in the solar wind with the attendant formation of forward-reverse shock pairs and the gradual decay of stream amplitudes with increasing heliocentric distance. The comparison also provides a qualitative test of the stream propagation model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830033900&hterms=overcoming+bias&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dovercoming%2Bbias','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830033900&hterms=overcoming+bias&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dovercoming%2Bbias"><span>Measurements of the properties of solar wind plasma relevant to studies of its coronal sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Neugebauer, M.</p> <p>1982-01-01</p> <p>Interplanetary measurements of the speeds, densities, abundances, and charge states of solar wind ions are diagnostic of conditions in the source region of the solar wind. The absolute values of the mass, momentum, and energy fluxes in the solar wind are not known to an accuracy of 20%. The principal limitations on the absolute accuracies of observations of solar wind protons and alpha particles arise from uncertain instrument calibrations, from the methods used to reduce the data, and from sampling biases. Sampling biases are very important in studies of alpha particles. Instrumental resolution and measurement ambiguities are additional major problems for the observation of ions heavier than helium. Progress in overcoming some of these measurement inadequacies is reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM31A2479H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM31A2479H"><span>The Interaction Between the Magnetosphere of Mars and that of Comet Siding Spring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holmstrom, M.; Futaana, Y.; Barabash, S. V.</p> <p>2015-12-01</p> <p>On 19 October 2014 the comet Siding Spring flew by Mars. This was a unique opportunity to study the interaction between a cometary and a planetary magnetosphere. Here we model the magnetosphere of the comet using a hybrid plasma solver (ions as particles, electrons as a fluid). The undisturbed upstream solar wind ion conditions are estimated from observations by ASPERA-3/IMA on Mars Express during several orbits. It is found that Mars probably passed through a solar wind that was disturbed by the comet during the flyby. The uncertainty derives from that the size of the disturbed solar wind region in the comet simulation is sensitive to the assumed upstream solar wind conditions, especially the solar wind proton density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5282500','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5282500"><span>Global solar wind variations over the last four centuries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Owens, M. J.; Lockwood, M.; Riley, P.</p> <p>2017-01-01</p> <p>The most recent “grand minimum” of solar activity, the Maunder minimum (MM, 1650–1710), is of great interest both for understanding the solar dynamo and providing insight into possible future heliospheric conditions. Here, we use nearly 30 years of output from a data-constrained magnetohydrodynamic model of the solar corona to calibrate heliospheric reconstructions based solely on sunspot observations. Using these empirical relations, we produce the first quantitative estimate of global solar wind variations over the last 400 years. Relative to the modern era, the MM shows a factor 2 reduction in near-Earth heliospheric magnetic field strength and solar wind speed, and up to a factor 4 increase in solar wind Mach number. Thus solar wind energy input into the Earth’s magnetosphere was reduced, resulting in a more Jupiter-like system, in agreement with the dearth of auroral reports from the time. The global heliosphere was both smaller and more symmetric under MM conditions, which has implications for the interpretation of cosmogenic radionuclide data and resulting total solar irradiance estimates during grand minima. PMID:28139769</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987IJBm...31..127B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987IJBm...31..127B"><span>Convective and radiative components of wind chill in sheep: Estimation from meteorological records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, D.; Mount, L. E.</p> <p>1987-06-01</p> <p>Wind chill is defined as the excess of sensible heat loss over what would occur at zero wind speed with other conditions unchanged. Wind chill can be broken down into a part that is determined by air temperature and a radiative part that comprises wind-dependent effects on additional long-wave radiative exchange and on solar radiation (by reducing solar warming). Radiative exchange and gain from solar radiation are affected by changes that are produced by wind in both surface and fleece insulations. Coefficients are derived for (a) converting the components of sensible heat exchange (air-temperature-dependent including both convective and associated long-wave radiative, additional long-wave radiative and solar) into the components of the total heat loss that are associated with wind and (b) for calculating equivalent air temperature changes. The coefficients contain terms only in wind speed, wetting of the fleece and fleece depth; these determine the external insulation. Calculation from standard meteorological records, using Plymouth and Aberdeen in 1973 as examples, indicate that in April September 1973 at Plymouth reduction in effective solar warming constituted 28% of the 24-h total wind chill, and 7% in the other months of the year combined; at Aberdeen the corresponding percentages were 25% and 6%. Mean hour-of-day estimates for the months of April and October showed that at midday reduction in solar warming due to wind rose to the order of half the air-temperature-dependent component of wind chill, with a much smaller effect in January. For about six hours at midday in July reduction in solar warming due to wind was similar in magnitude to the air-temperature-dependent component. It is concluded that realistic estimates of wind chill cannot be obtained unless the effect of solar radiation is taken into account. Failure to include solar radiation results not only in omitting solar warming but also in omitting the effects of wind in reducing that warming. The exchange of sensible (non-evaporative) heat loss between a homeothermic animal and its environment can be divided into two parts: one part is due to the temperature difference between the animal and the surrounding air, and the other part is due to additional long-wave radiative exchange between animal and environment and to solar radiation. Both parts of the heat exchange are determined in magnitude by the animal's thermal insulation, which is itself affected by windspeed and wetting. Wind diminishes as animal's external insulation, so increasing heat loss under all conditions when the air temperature is lower than the animal's surface temperature: this effect is termed wind chill. Wind chill has previously been investigated more commonly in relation to man (Burton an Edholm, 1955; Smithson and Baldwin, 1978; Mumford, 1979; Baldwin and Smithson, 1979). This paper is concerned with the separate contributions to wind chill calculated for sheep that can be associated with convective and radiative heat exchanges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840003950','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840003950"><span>Radioactivites in returned lunar materials and in meteorites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fireman, E. L.</p> <p>1983-01-01</p> <p>The cosmic-ray, solar-flare, and solar-wind bombardments of lunar rocks and soils and meteorites were studied by measurements of tritium, carbon-14 and argon radioactivity. The radioactivity integrates the bombardment for a time period equal to several half-lines. H-3, Ar-37, Ar-39, C-14. For the interior samples of lunar rocks and for deep lunar soil samples, the amounts of the radioactivities were equal to those calculated for galactic cosmic-ray interactions. The top near-surface samples of lunar rocks and the shallow lunar soil samples show excess amounts of the radioactivities attributable to solar flares. Lunar soil fines contain a large amount of hydrogen due to implanted solar wind. Studies of the H-3 in lunar soils and in recovered Surveyor-3 materials gave an upper limit for the H-3/H ratio in the solar wind of 10 to the -11th power. Solar wind carbon is also implanted on lunar soil fines. Lunar soils collected on the surface contained a 0.14 component attributable to implanted solar wind C-14. The C-14/H ratio attributed to the solar wind from this C-14 excess is approximately 4 x 10 to the -11th power.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020094346','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020094346"><span>Propagation of Interplanetary Disturbances in the Outer Heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Chi</p> <p>2002-01-01</p> <p>Work finished during 2002 included: (1) Finished a multi-fluid solar wind model; (2) Determined the solar wind slowdown and interstellar neutral density; (3) Studied shock propagation and evolution in the outer heliosphere; (4) Investigated statistical properties of the solar wind in the outer heliosphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA610364','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA610364"><span>Unintentional Insider Threats: A Review of Phishing and Malware Incidents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-07-01</p> <p>their agency as deliberate, malicious hackers [1]. This research supports the conclusions in the 2013 Verizon Data Breach Report that 47% of...References [1] SolarWinds. SolarWinds Federal Cybersecurity Survey Summary Report. SolarWinds, 2014. [2] Verizon. 2013 Data Breach Investigations</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM21C..07R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM21C..07R"><span>Dependence of Subsolar Magnetopause on Solar Wind Properties using the Magnetosphere Multiscale Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, C. T.; Zhao, C.; Qi, Y.; Lai, H.; Strangeway, R. J.; Paterson, W. R.; Giles, B. L.; Baumjohann, W.; Torbert, R. B.; Burch, J.</p> <p>2017-12-01</p> <p>The nature of the solar wind interaction with the Earth's magnetic field depends on the balance between magnetic and plasma forces at the magnetopause. This balance is controlled by the magnetosonic Mach number of the bow shock standing in front of the magnetosphere. We have used measurements of the solar wind obtained in the near Earth solar wind to calculate this Mach number whenever MMS was near the magnetopause and in the subsolar region. In particular, we examine two intervals of magnetopause encounters when the solar wind Mach number was close to 2.0, one when the IMF was nearly due southward and one when it was due northward. The due southward magnetic field produced a rapidly oscillating boundary. The northward magnetic field produced a much more stable boundary but with a hot low density boundary layer between the magnetospheric and magnetosheath plasmas. These magnetopause crossings are quite different than those studied earlier under high solar wind Mach number conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SoSyR..51..165O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SoSyR..51..165O"><span>On the history of the solar wind discovery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Obridko, V. N.; Vaisberg, O. L.</p> <p>2017-03-01</p> <p>The discovery of the solar wind has been an outstanding achievement in heliophysics and space physics. The solar wind plays a crucial role in the processes taking place in the Solar System. In recent decades, it has been recognized as the main factor that controls the terrestrial effects of space weather. The solar wind is an unusual plasma laboratory of giant scale with a fantastic diversity of parameters and operating modes, and devoid of influence from the walls of laboratory plasma systems. It is also the only kind of stellar wind accessible for direct study. The history of this discovery is quite dramatic. Like many remarkable discoveries, it had several predecessors. However, the honor of a discovery usually belongs to a scientist who was able to more fully explain the phenomenon. Such a man is deservedly considered the US theorist Eugene Parker, who discovered the solar wind, as we know it today, almost "with the point of his pen". In 2017, we will celebrate the 90th anniversary birthday of Eugene Parker.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1393626','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1393626"><span>Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India’s Electric Grid, Vol. I. National Study. Executive Summary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Palchak, David; Cochran, Jaquelin; Deshmukh, Ranjit</p> <p></p> <p>The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established an installed capacity target of 175 gigawatts (GW) RE by 2022 that includes 60 GW of wind and 100 GW of solar, up from current capacities of 29 GW wind and 9 GW solar. India’s contribution to global efforts on climate mitigation extends this ambition to 40% non-fossil-based generation capacity by 2030. Global experience demonstrates that power systems can integrate wind and solar at this scale; however, evidence-based planning is important tomore » achieve wind and solar integration at least cost. The purpose of this analysis is to evaluate the operation of India’s power grid with 175 GW of RE in order to identify potential cost and operational concerns and actions needed to efficiently integrate this level of wind and solar generation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..12211468M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..12211468M"><span>Solar Illumination Control of the Polar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.</p> <p>2017-11-01</p> <p>Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920030899&hterms=potential+difference&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dpotential%2Bdifference','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920030899&hterms=potential+difference&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dpotential%2Bdifference"><span>On the differences in element abundances of energetic ions from corotating events and from large solar events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reames, D. V.; Richardson, I. G.; Barbier, L. M.</p> <p>1991-01-01</p> <p>The abundances of energetic ions accelerated from high-speed solar wind streams by shock waves formed at corotating interaction regions (CIRs) where high-speed streams overtake the lower-speed solar wind are examined. The observed element abundances appear to represent those of the high-speed solar wind, unmodified by the shock acceleration. These abundances, relative to those in the solar photosphere, are organized by the first ionization potential (FIP) of the ions in a way that is different from the FIP effect commonly used to describe differences between abundances in the solar photosphere and those in the solar corona, solar energetic particles (SEPs), and the low-speed solar wind. In contrast, the FIP effect of the ion abundances in the CIR events is characterized by a smaller amplitude of the differences between high-FIP and low-FIP ions and by elevated abundances of He, C, and S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21700869','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21700869"><span>A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S</p> <p>2011-06-24</p> <p>The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMSH32A0735F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMSH32A0735F"><span>Comparison of Density Measurements on ACE and WIND</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fowler, G.; Russell, C. T.</p> <p>2001-12-01</p> <p>In studying the compression of the magnetosphere by the solar wind we have used data publically available on the CDA Web site and the ACE website. The solar wind velocities measured by these two spacecraft agree well but the densities do not. The density reported by WIND is on average only 75% of that reported by ACE. This ratio does not appear to be a constant, however. It seems to vary with the solar wind velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4138012','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4138012"><span>Wind Farm Facilities in Germany Kill Noctule Bats from Near and Far</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lehnert, Linn S.; Kramer-Schadt, Stephanie; Schönborn, Sophia; Lindecke, Oliver; Niermann, Ivo; Voigt, Christian C.</p> <p>2014-01-01</p> <p>Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats, considering the large geographical catchment areas of German wind turbines for this species. PMID:25118805</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25118805','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25118805"><span>Wind farm facilities in Germany kill noctule bats from near and far.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lehnert, Linn S; Kramer-Schadt, Stephanie; Schönborn, Sophia; Lindecke, Oliver; Niermann, Ivo; Voigt, Christian C</p> <p>2014-01-01</p> <p>Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats, considering the large geographical catchment areas of German wind turbines for this species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1224824','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1224824"><span>Solar energy system with wind vane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Grip, Robert E</p> <p>2015-11-03</p> <p>A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982STIN...8233887E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982STIN...8233887E"><span>Solar- and wind-powered irrigation systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Enochian, R. V.</p> <p>1982-02-01</p> <p>Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT........30E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT........30E"><span>Modeling energy production of solar thermal systems and wind turbines for installation at corn ethanol plants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ehrke, Elizabeth</p> <p></p> <p>Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a solar thermal array or wind turbine. The model is meant to aide in the planning stages of a renewable energy project, and advanced investigation will be needed to move forward with that project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...829...88L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...829...88L"><span>Plasma-field Coupling at Small Length Scales in Solar Wind Near 1 AU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Livadiotis, G.; Desai, M. I.</p> <p>2016-10-01</p> <p>In collisionless plasmas such as the solar wind, the coupling between plasma constituents and the embedded magnetic field occurs on various temporal and spatial scales, and is primarily responsible for the transfer of energy between waves and particles. Recently, it was shown that the transfer of energy between solar wind plasma particles and waves is governed by a new and unique relationship: the ratio between the magnetosonic energy and the plasma frequency is constant, E ms/ω pl ˜ ℏ*. This paper examines the variability and substantial departure of this ratio from ℏ* observed at ˜1 au, which is caused by a dispersion of fast magnetosonic (FMS) waves. In contrast to the efficiently transferred energy in the fast solar wind, the lower efficiency of the slow solar wind can be caused by this dispersion, whose relation and characteristics are derived and studied. In summary, we show that (I) the ratio E ms/ω pl transitions continuously from the slow to the fast solar wind, tending toward the constant ℏ* (II) the transition is more efficient for larger thermal, Alfvén, or FMS speeds; (III) the fast solar wind is almost dispersionless, characterized by quasi-constant values of the FMS speed, while the slow wind is subject to dispersion that is less effective for larger wind or magnetosonic speeds; and (IV) the constant ℏ* is estimated with the best known precision, ℏ* ≈ (1.160 ± 0.083) × 10-22 Js.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMSM31A1860S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMSM31A1860S"><span>Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szabo, A.; Koval, A.; Merka, J.; Narock, T. W.</p> <p>2010-12-01</p> <p>The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the ~2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040051183&hterms=mit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmit','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040051183&hterms=mit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmit"><span>Reduction and Analysis of Data from the IMP 8 Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p>The IMP 8 spacecraft was launched in 1973 and the MIT solar wind Faraday Cup experiment continues to produce excellent data except for a slightly increased noise level. Those data have been important for determining the solar wind interaction with Earth's magnetic field; studies of interplanetary shocks; studies of the correlation lengths of solar wind features through comparisons with other spacecraft; and more recently, especially important for determination of the regions in which the Wind spacecraft was taking data as it passed through Earth's magnetotail and for understanding the propagation of solar wind features from near 1 AU to the two Voyager spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002023','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002023"><span>Magnetofluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldstein, Melvyn L.; Usmanov, Arcadi V.; Matthaeus, William H.</p> <p>2011-01-01</p> <p>I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. In this report, the interstellar pickup protons are treated as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. Where possible, the model is compared with Voyager data. Initial results from generalization to a three-fluid model is described elsewhere in this session.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840014950','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840014950"><span>Wind and solar powered turbine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wells, I. D.; Koh, J. L.; Holmes, M. (Inventor)</p> <p>1984-01-01</p> <p>A power generating station having a generator driven by solar heat assisted ambient wind is described. A first plurality of radially extendng air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the fist plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind drien power generating system operates in electrical cogeneration mode with a fuel powered prime mover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ut0702.photos.574860p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ut0702.photos.574860p/"><span>DISTANT VIEW, AUTOMOTIVE REPAIR SHOP ON LEFT AND UTILITY BUILDING ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>DISTANT VIEW, AUTOMOTIVE REPAIR SHOP ON LEFT AND UTILITY BUILDING "B" ON RIGHT. HOSE WINDING SHED ADJACENT TO SHED-ROOFED ADDITION ON THE UTILITY BUILDING, BLM SEED SHED AND TACK SHED VISIBLE IN FAR DISTANCE. VIEW TO EAST/ - Cedar City Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080047931&hterms=major+depression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmajor%2Bdepression','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080047931&hterms=major+depression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmajor%2Bdepression"><span>Energy and Mass Transport of Magnetospheric Plasmas during the November 2003 Magnetic Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Chging; Moore, Thomas</p> <p>2008-01-01</p> <p>Intensive energy and mass transport from the solar wind across the magnetosphere boundary is a trigger of magnetic storms. The storm on 20-21 November 2003 was elicited by a high-speed solar wind and strong southward component of interplanetary magnetic field. This storm attained a minimum Dst of -422 nT. During the storm, some of the solar wind particles enter the magnetosphere and eventually become part of the ring current. At the same time, the fierce solar wind powers strong outflow of H+ and O+ from the ionosphere, as well as from the plasmasphere. We examine the contribution of plasmas from the solar wind, ionosphere and plasmasphere to the storm-time ring current. Our simulation shows, for this particular storm, ionospheric O+ and solar wind ions are the major sources of the ring current particles. The polar wind and plasmaspheric H+ have only minor impacts. In the storm main phase, the strong penetration of solar wind electric field pushes ions from the geosynchronous orbit to L shells of 2 and below. Ring current is greatly intensified during the earthward transport and produces a large magnetic depression in the surface field. When the convection subsides, the deep penetrating ions experience strong charge exchange loss, causing rapid decay of the ring current and fast initial storm recovery. Our simulation reproduces very well the storm development indicated by the Dst index.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010038050','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010038050"><span>Fluid Aspects of Solar Wind Disturbances Driven by Coronal Mass Ejections. Appendix 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gosling, J. T.; Riley, Pete</p> <p>2001-01-01</p> <p>Transient disturbances in the solar wind initiated by coronal eruptions have been modeled for many years, beginning with the self-similar analytical models of Parker and Simon and Axford. The first numerical computer code (one-dimensional, gas dynamic) to study disturbance propagation in the solar wind was developed in the late 1960s, and a variety of other codes ranging from simple one-dimensional gas dynamic codes through three-dimensional gas dynamic and magnetohydrodynamic codes have been developed in subsequent years. For the most part, these codes have been applied to the problem of disturbances driven by fast CMEs propagating into a structureless solar wind. Pizzo provided an excellent summary of the level of understanding achieved from such simulation studies through about 1984, and other reviews have subsequently become available. More recently, some attention has been focused on disturbances generated by slow CMEs, on disturbances driven by CMEs having high internal pressures, and disturbance propagation effects associated with a structured ambient solar wind. Our purpose here is to provide a brief tutorial on fluid aspects of solar wind disturbances derived from numerical gas dynamic simulations. For the most part we illustrate disturbance evolution by propagating idealized perturbations, mimicking different types of CMEs, into a structureless solar wind using a simple one-dimensional, adiabatic (except at shocks), gas dynamic code. The simulations begin outside the critical point where the solar wind becomes supersonic and thus do not address questions of how the CMEs themselves are initiated. Limited to one dimension (the radial direction), the simulation code predicts too strong an interaction between newly ejected solar material and the ambient wind because it neglects azimuthal and meridional motions of the plasma that help relieve pressure stresses. Moreover, the code ignores magnetic forces and thus also underestimates the speed with which pressure disturbances propagate in the wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040074203','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040074203"><span>Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wagner, William (Technical Monitor); Esser, Ruth</p> <p>2004-01-01</p> <p>The scope of the investigation is to extract information on the properties of the bulk solar wind from the minor ion observations that are provided by instruments on board NASA space craft and theoretical model studies. Ion charge states measured in situ in interplanetary space are formed in the inner coronal regions below 5 solar radii, hence they carry information on the properties of the solar wind plasma in that region. The plasma parameters that are important in the ion forming processes are the electron density, the electron temperature and the flow speeds of the individual ion species. In addition, if the electron distribution function deviates from a Maxwellian already in the inner corona, then the enhanced tail of that distribution function, also called halo, greatly effects the ion composition. This study is carried out using solar wind models, coronal observations, and ion calculations in conjunction with the in situ observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5063966','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5063966"><span>Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lugaz, Noé; Farrugia, Charles J.; Huang, Chia-Lin; Winslow, Reka M.; Spence, Harlan E.; Schwadron, Nathan A.</p> <p>2016-01-01</p> <p>The interaction between Earth's magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000–100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values <1 for several hours on 17 January 2013. Simultaneous measurements by more than ten spacecraft in the near-Earth environment reveal the evanescence of the bow shock, the sunward motion of the magnetopause and the extremely rapid and intense loss of electrons in the outer radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets. PMID:27694887</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27694887','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27694887"><span>Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lugaz, Noé; Farrugia, Charles J; Huang, Chia-Lin; Winslow, Reka M; Spence, Harlan E; Schwadron, Nathan A</p> <p>2016-10-03</p> <p>The interaction between Earth's magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000-100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values <1 for several hours on 17 January 2013. Simultaneous measurements by more than ten spacecraft in the near-Earth environment reveal the evanescence of the bow shock, the sunward motion of the magnetopause and the extremely rapid and intense loss of electrons in the outer radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021490&hterms=english+varieties&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Denglish%2Bvarieties','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021490&hterms=english+varieties&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Denglish%2Bvarieties"><span>The variety of MHD shock waves interactions in the solar wind flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grib, S. A.</p> <p>1995-01-01</p> <p>Different types of nonlinear shock wave interactions in some regions of the solar wind flow are considered. It is shown, that the solar flare or nonflare CME fast shock wave may disappear as the result of the collision with the rotational discontinuity. By the way the appearance of the slow shock waves as the consequence of the collision with other directional discontinuity namely tangential is indicated. Thus the nonlinear oblique and normal MHD shock waves interactions with different solar wind discontinuities (tangential, rotational, contact, shock and plasmoidal) both in the free flow and close to the gradient regions like the terrestrial magnetopause and the heliopause are described. The change of the plasma pressure across the solar wind fast shock waves is also evaluated. The sketch of the classification of the MHD discontinuities interactions, connected with the solar wind evolution is given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810040177&hterms=WIND+STORMS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWIND%2BSTORMS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810040177&hterms=WIND+STORMS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWIND%2BSTORMS"><span>Interplanetary ions during an energetic storm particle event - The distribution function from solar wind thermal energies to 1.6 MeV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Hynds, R. J.</p> <p>1981-01-01</p> <p>An ion velocity distribution function of the postshock phase of an energetic storm particle (ESP) event is obtained from data from the ISEE 2 and ISEE 3 experiments. The distribution function is roughly isotropic in the solar wind frame from solar wind thermal energies to 1.6 MeV. The ESP event studied (8/27/78) is superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. The observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with shock wave disturbance. The acceleration mechanism is sufficiently efficient so that approximately 1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approximately 290 eV cubic centimeters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..278a2070J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..278a2070J"><span>Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; Pan, C. Z.; Wang, J. J.</p> <p>2017-12-01</p> <p>Due to the nature of fluctuation and intermittency, the utilization of wind and solar power will bring a huge impact to the power grid management. Therefore a novel hybrid wind-solar-liquid air energy storage (WS-LAES) system was proposed. In this system, wind and solar power are stored in the form of liquid air by cryogenic liquefaction technology and thermal energy by solar thermal collector, respectively. Owing to the high density of liquid air, the system has a large storage capacity and no geographic constraints. The WS-LAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Moreover, a thermodynamic analysis was carried out to investigate the best system performance. The result shows that the increases of compressor adiabatic efficiency, turbine inlet pressure and inlet temperature all have a beneficial effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900049938&hterms=SMM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSMM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900049938&hterms=SMM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSMM"><span>Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.</p> <p>1990-01-01</p> <p>Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SSRv..210..227C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SSRv..210..227C"><span>Minimal Magnetic States of the Sun and the Solar Wind: Implications for the Origin of the Slow Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cliver, E. W.; von Steiger, R.</p> <p>2017-09-01</p> <p>During the last decade it has been proposed that both the Sun and the solar wind have minimum magnetic states, lowest order levels of magnetism that underlie the 11-yr cycle as well as longer-term variability. Here we review the literature on basal magnetic states at the Sun and in the heliosphere and draw a connection between the two based on the recent deep 2008-2009 minimum between cycles 23 and 24. In particular, we consider the implications of the low solar activity during the recent minimum for the origin of the slow solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22590905-fip-effect-minor-heavy-solar-wind-ions-seen-soho-celias-mtof','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22590905-fip-effect-minor-heavy-solar-wind-ions-seen-soho-celias-mtof"><span>FIP effect for minor heavy solar wind ions as seen with SOHO/CELIAS/MTOF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Heidrich-Meisner, Verena, E-mail: heidrich@physik.uni-kiel.de; Berger, Lars; Wimmer-Schweingruber, Robert F.</p> <p></p> <p>A recent paper [Shearer et al., 2014] reported that during solar maximum Ne showed a surprisingly low abundance. This leads to the question whether other elements show the same behavior. The good mass resolution of Mass-Time-Of-Flight (MTOF) as part of the Charge ELement and Isotope Analysis System (CELIAS) on the Solar Helioshperic Observatory (SOHO) allows to investigate the composition of heavy minor elements in different types of solar wind. We restrict this study to slow solar wind, where the characterisation of slow solar wind is taken from Xu and Borovsky, 2014. This classification scheme requires magnet field information. Since SOHOmore » does not carry a magnetometer, we use the Magnetometer (MAG) of the Advanced Composition Explorer (ACE) instead. The Solar Wind Ion Composition Spectrometer (ACE/SWICS) also provides composition data for cross-calibration and charge-state distributions as input for the transmission function of MTOF whenever the two spacecraft can be expected to observe the same type of wind. We illustrate the MTOF’s capability to determine the solar wind abundance compared to the photospheric abundance (called the FIP ratio in the following) for rare elements like Ti or Cr on long-time scales as a proof of concept for our analysis. And in this brief study, measurements with both ACE/SWICS indicate that the observed elements exhibit a (weak) dependence on the solar cycle, whereas the MTOF measurements are inconclusive.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988JGR....93..235G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988JGR....93..235G"><span>Electromagnetic ion instabilities in a cometary environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gary, S. P.; Madland, C. D.</p> <p>1988-01-01</p> <p>This paper considers the linear theory of electromagnetic ion beam and ion ring-beam instabilities in a homogeneous Vlasov plasma. Propagation parallel or antiparallel to a uniform magnetic field and frequencies at or below the proton cyclotron frequency are considered. For parameters representative of the distant cometary environment, the authors show that instabilities with right-hand polarization in the zero momentum frame have larger linear growth rates than left-hand polarized instabilities at α values up to 90° where α is the angle between the solar wind velocity and the uniform interplanetary magnetic field. If both a proton beam and an oxygen beam are present with α = 0°, two right-hand resonant instabilities may grow; these two modes are distinct and relatively independent of one another for a very wide range of proton/oxygen beam density ratios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SpWea..16..157L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SpWea..16..157L"><span>Statistical Similarities Between WSA-ENLIL+Cone Model and MAVEN in Situ Observations From November 2014 to March 2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lentz, C. L.; Baker, D. N.; Jaynes, A. N.; Dewey, R. M.; Lee, C. O.; Halekas, J. S.; Brain, D. A.</p> <p>2018-02-01</p> <p>Normal solar wind flows and intense solar transient events interact directly with the upper Martian atmosphere due to the absence of an intrinsic global planetary magnetic field. Since the launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, there are now new means to directly observe solar wind parameters at the planet's orbital location for limited time spans. Due to MAVEN's highly elliptical orbit, in situ measurements cannot be taken while MAVEN is inside Mars' magnetosheath. To model solar wind conditions during these atmospheric and magnetospheric passages, this research project utilized the solar wind forecasting capabilities of the WSA-ENLIL+Cone model. The model was used to simulate solar wind parameters that included magnetic field magnitude, plasma particle density, dynamic pressure, proton temperature, and velocity during a four Carrington rotation-long segment. An additional simulation that lasted 18 Carrington rotations was then conducted. The precision of each simulation was examined for intervals when MAVEN was in the upstream solar wind, that is, with no exospheric or magnetospheric phenomena altering in situ measurements. It was determined that generalized, extensive simulations have comparable prediction capabilities as shorter, more comprehensive simulations. Generally, this study aimed to quantify the loss of detail in long-term simulations and to determine if extended simulations can provide accurate, continuous upstream solar wind conditions when there is a lack of in situ measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003238&hterms=background+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbackground%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003238&hterms=background+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbackground%2Bwind"><span>Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.</p> <p>2016-01-01</p> <p>Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667456-fading-coronal-structure-onset-turbulence-young-solar-wind','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667456-fading-coronal-structure-onset-turbulence-young-solar-wind"><span>FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.</p> <p></p> <p>Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transitionmore » in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA615815','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA615815"><span>IPS Space Weather Research: Korea-Japan-UCSD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-04-27</p> <p>SUBJECT TERMS Solar Physics , Solar Wind, interplanetary scintillation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER...Institution : Center for Astrophysics and space science (CASS), University of California, San Diego (UCSD) - Mailing Address : 9500 Gilman Dr. #0424...the physical parameters like solar wind velocities and densities. This is the one of the unique way to observer the solar wind from the earth. The</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030093541','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030093541"><span>CMEs, the Tail of the Solar Wind Magnetic Field Distribution, and 11-yr Cosmic Ray Modulation at 1 AU. Revised</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cliver, E. W.; Ling, A. G.; Richardson, I. G.</p> <p>2003-01-01</p> <p>Using a recent classification of the solar wind at 1 AU into its principal components (slow solar wind, high-speed streams, and coronal mass ejections (CMEs) for 1972-2000, we show that the monthly-averaged galactic cosmic ray intensity is anti-correlated with the percentage of time that the Earth is imbedded in CME flows. We suggest that this correlation results primarily from a CME related change in the tail of the distribution function of hourly-averaged values of the solar wind magnetic field (B) between solar minimum and solar maximum. The number of high-B (square proper subset 10 nT) values increases by a factor of approx. 3 from minimum to maximum (from 5% of all hours to 17%), with about two-thirds of this increase due to CMEs. On an hour-to-hour basis, average changes of cosmic ray intensity at Earth become negative for solar wind magnetic field values square proper subset 10 nT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050177063&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DOpen%2BField','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050177063&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DOpen%2BField"><span>Magnetic Fields and Flows in Open Magnetic Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jones, Harrlson P.</p> <p>2004-01-01</p> <p>Open magnetic structures connect the solar surface to the heliosphere and are thus of great interest in solar-terrestrial physics. This talk is primarily an observational review of what is known about magnetic fields and particularly flows in such regions with special focus on coronal holes and origins of the fast solar wind. First evidence of the connection between these two features was seen in correlations of Skylab data with in situ measurements of the solar wind soon after the discovery of coronal holes, which are now known to emanate from unipolar magnetic regions at the photosphere. Subsequently many observations of have been made, ranging from oscillations in the underlying photosphere and chromosphere, to possible beginnings of the solar wind as observed by Doppler shifts in high chromospheric and transition-region lines, to coronagraphic time-lapse studies of outward-moving blobs of material which perhaps trace elements of solar-wind plasma. Some of the many unresolved and controversial issues regarding details of these observations and their association with the solar wind will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810025913&hterms=debye+length&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddebye%2Blength','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810025913&hterms=debye+length&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddebye%2Blength"><span>A comparison of solar wind and ionospheric ion acoustic waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kintner, P. M.; Kelley, M. C.</p> <p>1980-01-01</p> <p>Ion acoustic waves produced during the Trigger experiment are compared to ion acoustic waves observed in the solar wind. After normalizing to the Debye length the spectra are nearly identical, although the ionospheric wave relative energy density is 100 times larger than the solar wind case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860041661&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWind%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860041661&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWind%2Benergy"><span>Global energy regulation in the solar wind-magnetosphere-ionosphere system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sato, T.</p> <p>1985-01-01</p> <p>Some basic concepts which are essential in the understanding of global energy regulation in the solar wind-magnetosphere-ionosphere system are introduced. The importance of line-tying concept is particularly emphasized in connection with the solar wind energy, energy release in the magnetosphere and energy dissipation in the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730002049','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730002049"><span>Average thermal characteristics of solar wind electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Montgomery, M. D.</p> <p>1972-01-01</p> <p>Average solar wind electron properties based on a 1 year Vela 4 data sample-from May 1967 to May 1968 are presented. Frequency distributions of electron-to-ion temperature ratio, electron thermal anisotropy, and thermal energy flux are presented. The resulting evidence concerning heat transport in the solar wind is discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930049573&hterms=solar+two&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsolar%2Btwo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930049573&hterms=solar+two&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsolar%2Btwo"><span>A two-fluid model of the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sandbaek, O.; Leer, E.; Holzer, T. E.</p> <p>1992-01-01</p> <p>A method is presented for the integration of the two-fluid solar-wind equations which is applicable to a wide variety of coronal base densities and temperatures. The method involves proton heat conduction, and may be applied to coronal base conditions for which subsonic-supersonic solar wind solutions exist.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090006792','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090006792"><span>Decontaminating Solar Wind Samples with the Genesis Ultra-Pure Water Megasonic Wafer Spin Cleaner</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Calaway, Michael J.; Rodriquez, M. C.; Allton, J. H.; Stansbery, E. K.</p> <p>2009-01-01</p> <p>The Genesis sample return capsule, though broken during the landing impact, contained most of the shattered ultra-pure solar wind collectors comprised of silicon and other semiconductor wafers materials. Post-flight analysis revealed that all wafer fragments were littered with surface particle contamination from spacecraft debris as well as soil from the impact site. This particulate contamination interferes with some analyses of solar wind. In early 2005, the Genesis science team decided to investigate methods for removing the surface particle contamination prior to solar wind analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720044025&hterms=Parkin&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DParkin','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720044025&hterms=Parkin&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DParkin"><span>Measurements of lunar magnetic field interaction with the solar wind.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dyal, P.; Parkin, C. W.; Snyder, C. W.; Clay, D. R.</p> <p>1972-01-01</p> <p>Study of the compression of the remanent lunar magnetic field by the solar wind, based on measurements of remanent magnetic fields at four Apollo landing sites and of the solar wind at two of these sites. Available data show that the remanent magnetic field at the lunar surface is compressed as much as 40% above its initial value by the solar wind, but the total remanent magnetic pressure is less than the stagnation pressure by a factor of six, implying that a local shock is not formed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015321','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015321"><span>Kinetic and Potential Sputtering of Lunar Regolith: The Contribution of the Heavy Highly Charged (Minority) Solar Wind Ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Meyer, F. W.; Barghouty, A. F.</p> <p>2012-01-01</p> <p>Solar wind sputtering of the lunar surface helps determine the composition of the lunar exosphere and contributes to surface weathering. To date, only the effects of the two dominant solar wind constituents, H+ and He+, have been considered. The heavier, less abundant solar wind constituents have much larger sputtering yields because they have greater mass (kinetic sputtering) and they are highly charged (potential sputtering) Their contribution to total sputtering can therefore be orders of magnitude larger than their relative abundances would suggest</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4394679','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4394679"><span>Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Goldstein, M. L.; Wicks, R. T.; Perri, S.; Sahraoui, F.</p> <p>2015-01-01</p> <p>Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of turbulence to solar wind dynamics. PMID:25848084</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P53C2655T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P53C2655T"><span>Effects of the Solar Wind Pressure on Mercury's Exosphere: Hybrid Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Travnicek, P. M.; Schriver, D.; Orlando, T. M.; Hellinger, P.</p> <p>2017-12-01</p> <p>We study effects of the changed solar wind pressure on the precipitation of hydrogen on the Mercury's surface and on the formation of Mercury's magnetosphere. We carry out a set of global hybrid simulations of the Mercury's magnetosphere with the interplanetary magnetic field oriented in the equatorial plane. We change the solar wind pressure by changing the velocity of injected solar wind plasma (vsw = 2 vA,sw; vsw = 4 vA,sw; vsw = 6 vA,sw). For each of the cases we examine proton and electron precipitation on Mercury's surface and calculate yields of heavy ions released from Mercury's surface via various processes (namely: Photo-Stimulated Desorption, Solar Wind Sputtering, and Electron Stimulated Desorption). We study circulation of the released ions within the Mercury's magnetosphere for the three cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880051672&hterms=direct+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddirect%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880051672&hterms=direct+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddirect%2Benergy"><span>The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rostoker, G.; Akasofu, S. I.; Baumjohann, W.; Kamide, Y.; Mcpherron, R. L.</p> <p>1987-01-01</p> <p>The contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in an unpredictable manner are considered. Two physical processes for the dispensation of the energy input from the solar wind are identified: (1) a driven process in which energy supplied from the solar wind is directly dissipated in the ionosphere; and (2) a loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere. The pattern of substorm development in response to changes in the interplanetary medium has been elucidated for a canonical isolated substorm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10511515','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10511515"><span>Viscous Forces in Velocity Boundary Layers around Planetary Ionospheres.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pérez-De-Tejada</p> <p>1999-11-01</p> <p>A discussion is presented to examine the role of viscous forces in the transport of solar wind momentum to the ionospheric plasma of weakly magnetized planets (Venus and Mars). Observational data are used to make a comparison of the Reynolds and Maxwell stresses that are operative in the interaction of the solar wind with local plasma (planetary ionospheres). Measurements show the presence of a velocity boundary layer formed around the flanks of the ionosphere where the shocked solar wind has reached super-Alfvénic speeds. It is found that the Reynolds stresses in the solar wind at that region can be larger than the Maxwell stresses and thus are necessary in the local acceleration of the ionospheric plasma. From an order-of-magnitude calculation of the Reynolds stresses, it is possible to derive values of the kinematic viscosity and the Reynolds number that are suitable to the gyrotropic motion of the solar wind particles across the boundary layer. The value of the kinematic viscosity is comparable to those inferred from studies of the transport of solar wind momentum to the earth's magnetosphere and thus suggest a common property of the solar wind around planetary obstacles. Similar conditions could also be applicable to velocity boundary layers formed in other plasma interaction problems in astrophysics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38..419S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38..419S"><span>Interaction between solar wind and lunar magnetic anomalies observed by MAP-PACE on Kaguya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki N.; Yamamoto, Tadateru I.; Tsunakawa, Hideo</p> <p></p> <p>It is well known that the Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. MAgnetic field and Plasma experiment -Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its 1.5-year observation of the low energy charged particles around the Moon on 10 June 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to 50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of 10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was an energy mass spectrometer. IMA measured mass identified ion energy spectra that had never been obtained at 100km altitude polar orbit around the Moon. When Kaguya flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These ions had much higher flux than the solar wind protons scattered at the lunar surface. The magnetically reflected ions had nearly the same energy as the incident solar wind ions while the solar wind protons scattered at the lunar surface had slightly lower energy than the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At 50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. It suggests that there exists an area on the lunar surface where solar wind does not impact. At 10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. Calculating velocity moments including density, velocity, temperature of the ions and electrons, we have found that there exists 100km scale regions over strong magnetic anomalies where plasma parameters are quite different from the outside. Solar wind ions observed at 10km altitude show several different behaviors such as deceleration without heating and heating in a limited region inside the magnetic anomalies that may be caused by the magnetic field structure. The deceleration of the solar wind has the same ∆E/q (∆E : deceleration energy, q: charge) for different species, which constraints the possible mechanisms of the interaction between solar wind and magnetic anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRA..113.7101V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRA..113.7101V"><span>Inherent length-scales of periodic solar wind number density structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viall, N. M.; Kepko, L.; Spence, H. E.</p> <p>2008-07-01</p> <p>We present an analysis of the radial length-scales of periodic solar wind number density structures. We converted 11 years (1995-2005) of solar wind number density data into radial length series segments and Fourier analyzed them to identify all spectral peaks with radial wavelengths between 72 (116) and 900 (900) Mm for slow (fast) wind intervals. Our window length for the spectral analysis was 9072 Mm, approximately equivalent to 7 (4) h of data for the slow (fast) solar wind. We required that spectral peaks pass both an amplitude test and a harmonic F-test at the 95% confidence level simultaneously. From the occurrence distributions of these spectral peaks for slow and fast wind, we find that periodic number density structures occur more often at certain radial length-scales than at others, and are consistently observed within each speed range over most of the 11-year interval. For the slow wind, those length-scales are L ˜ 73, 120, 136, and 180 Mm. For the fast wind, those length-scales are L ˜ 187, 270 and 400 Mm. The results argue for the existence of inherent radial length-scales in the solar wind number density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRA..120..344D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRA..120..344D"><span>Upstream proton cyclotron waves at Venus near solar maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.</p> <p>2015-01-01</p> <p>magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of observable proton cyclotron waves near solar maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999xmm..pres....1.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999xmm..pres....1."><span>Orbiting observatory SOHO finds source of high-speed "wind" blowing from the Sun</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>1999-02-01</p> <p>"The search for the source of the solar wind has been like the hunt for the source of the Nile," said Dr. Don Hassler of the Southwest Research Institute, Boulder, Colorado, lead author of the paper in Science. "For 30 years, scientists have observed high-speed solar wind coming from regions in the solar atmosphere with open magnetic field lines, called coronal holes. However, only recently, with the observations from SOHO, have we been able to measure the detailed structure of this source region". The solar wind comes in two varieties : high-speed and low-speed. The low-speed solar wind moves at "only" 1.5 million kilometres per hour, while the high-speed wind is even faster, moving at speeds as high as 3 million kilometres per hour. As it flows past Earth, the solar wind changes the shape and structure of the Earth's magnetic field. In the past, the solar wind didn't affect us directly, but as we become increasingly dependent on advanced technology, we become more susceptible to its effects. Researchers are learning that variations in the solar wind flow can cause dramatic changes in the shape of the Earth's magnetic field, which can damage satellites and disrupt communications and electrical power systems. The nature and origin of the solar wind is one of the main mysteries ESA's solar observatory SOHO was designed to solve. It has long been thought that the solar wind flows from coronal holes; what is new is the discovery that these outflows are concentrated in specific patches at the edges of the honeycomb-shaped magnetic fields. Just below the surface of the Sun there are large convection cells, and each cell has a magnetic field associated with it. "If one thinks of these cells as paving stones in a patio, then the solar wind is breaking through like grass around the edges, concentrated in the corners where the paving stones meet", said Dr. Helen Mason, University of Cambridge, England, and co-author of the paper to appear in Science. "However, at speeds ranging from 30,000 km/h at the surface to over 3 million km/h, the solar wind "grows" much faster than grass". "Looking at the spot where the solar wind actually appears is extremely important", says co-author Dr. Philippe Lemaire of the Institut d'Astrophysique Spatiale in Orsay, France. The Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on SOHO detected the solar wind by observing the ultraviolet spectrum over a large area of the solar north polar region. The SUMER instrument was built under the leadership of Dr. Klaus Wilhelm at the Max-Planck-Institut für Aeronomie in Lindau, Germany, with key contributions from the Institut d'Astrophysique Spatiale in Orsay, France, the NASA Goddard Space Flight Center in Greenbelt, Maryland, and the University of California at Berkeley, with financial support from German, French, US and Swiss national agencies. "Identification of the detailed structure of the source region of the fast solar wind is an important step in solving the solar wind acceleration problem. We can now focus our attention on the plasma conditions and the dynamic processes seen in the corners of the magnetic field structures", says Dr. Wilhelm, also co-author of the Science paper. A spectrum results from the separation of light into its component colours, which correspond to different wavelengths. Blue light has a shorter wavelength and is more energetic than red. A spectrum is similar to what is seen when a prism separates white light into a rainbow of distinct colours. By analysing light this way, astronomers learn a great deal about the object emitting the light, such as its temperature, chemical composition, and motion. The ultraviolet light observed by SUMER is actually invisible to the human eye and cannot penetrate the Earth's atmosphere. The hot gas in the solar wind source region emits light at certain ultraviolet wavelengths. When the hot gas flows towards Earth, as it does in the solar wind, the wavelengths of the ultraviolet light emitted become shorter, a phenomenon called Doppler shift. This is similar to the way an ambulance siren appears to change tone as it speeds by. When the ambulance moves towards us, its sound is compressed to a shorter wavelength, resulting in a higher tone. As it moves away, its sound is stretched to a longer wavelength, resulting in a lower tone. Motion towards us, away from the solar surface, was detected as blueshifts and identified as the beginning of the solar wind. SOHO operates at a special vantage point 1.5 million kilometres out in space, on the sunward side of the Earth. The project is an international collaboration between ESA and NASA. SOHO was launched on an Atlas rocket from Cape Canaveral Air Station, Florida, in December 1995 and is operated from the Goddard Space Flight Center in Greenbelt, Maryland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...75a2007B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...75a2007B"><span>Design of Hybrid Solar and Wind Energy Harvester for Fishing Boat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Banjarnahor, D. A.; Hanifan, M.; Budi, E. M.</p> <p>2017-07-01</p> <p>In southern beach of West Java, Indonesia, there are many villagers live as fishermen. They use small boats for fishing, in one to three days. Therefore, they need a fish preservation system. Fortunately, the area has high potential of solar and wind energy. This paper presents the design of a hybrid solar and wind energy harvester to power a refrigerator in the fishing boat. The refrigerator should keep the fish in 2 - 4 °C. The energy needed is 720 Wh daily. In the area, the daily average wind velocity is 4.27 m/s and the sun irradiation is 672 W/m2. The design combined two 100W solar panels and a 300W wind turbine. The testing showed that the solar panels can harvest 815 - 817 Wh of energy, while the wind turbine can harvest 43 - 62 Wh of energy daily. Therefore, the system can fulfil the energy requirement in fishing boat, although the solar panels were more dominant. To install the wind turbine on the fishing-boat, a computational design had been conducted. The boat hydrostatic dimension was measured to determine its stability condition. To reach a stable equilibrium condition, the wind turbine should be installed no more than 1.7 m of height.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021392&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021392&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwind%2Bmonitor"><span>SWICS/Ulysses and MASS/wind observations of solar wind sulfur charge states</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cohen, C. M. S.; Galvin, A. B.; Hamilton, D. C.; Gloeckler, G.; Geiss, J.; Bochsler, P.</p> <p>1995-01-01</p> <p>As Ulysses journeys from the southern to the northern solar pole, the newly launched Wind spacecraft is monitoring the solar wind near 1 AU, slightly upstream of the Earth. Different solar wind structures pass over both spacecraft as coronal holes and other features rotate in and out of view. Ulysses and Wind are presently on opposing sides of the sun allowing us to monitor these streams for extended periods of time. Composition measurements made by instruments on both spacecraft provide information concerning the evolution and properties of these structures. We have combined data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and the high mass resolution spectrometer (MASS) on Wind to determine the charge state distribution of sulfur in the solar wind. Both instruments employ electrostatic deflection with time-of-flight measurement. The high mass resolution of the MASS instrument (M/Delta-M approximately 100) allows sulfur to be isolated easily while the stepping energy/charge selection provides charge state information. SWICS measurements allow the unique identification of heavy ions by their mass and mass/charge with resolutions of M/Delta-M approximately 3 and M/q/Delta(M/q) approximately 20. The two instruments complement each other nicely in that MASS has the greater mass resolution while SWICS has the better mass/charge resolution and better statistics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...856...53P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...856...53P"><span>The Solar Wind Environment in Time</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pognan, Quentin; Garraffo, Cecilia; Cohen, Ofer; Drake, Jeremy J.</p> <p>2018-03-01</p> <p>We use magnetograms of eight solar analogs of ages 30 Myr–3.6 Gyr obtained from Zeeman Doppler Imaging and taken from the literature, together with two solar magnetograms, to drive magnetohydrodynamical wind simulations and construct an evolutionary scenario of the solar wind environment and its angular momentum loss rate. With observed magnetograms of the radial field strength as the only variant in the wind model, we find that a power-law model fitted to the derived angular momentum loss rate against time, t, results in a spin-down relation Ω ∝ t ‑0.51, for angular speed Ω, which is remarkably consistent with the well-established Skumanich law Ω ∝ t ‑0.5. We use the model wind conditions to estimate the magnetospheric standoff distances for an Earth-like test planet situated at 1 au for each of the stellar cases, and to obtain trends of minimum and maximum wind ram pressure and average ram pressure in the solar system through time. The wind ram pressure declines with time as \\overline{{P}ram}}\\propto {t}2/3, amounting to a factor of 50 or so over the present lifetime of the solar system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000GeoRL..27.2165L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000GeoRL..27.2165L"><span>Magnetosphere on May 11, 1999, the day the solar wind almost disappeared: II. Magnetic pulsations in space and on the ground</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le, G.; Chi, P. J.; Goedecke, W.; Russell, C. T.; Szabo, A.; Petrinec, S. M.; Angelopoulos, V.; Reeves, G. D.; Chun, F. K.</p> <p>2000-08-01</p> <p>Simultaneous observations by Wind and IMP-8 in the upstream region on May 11, 1999, when the solar wind density was well below its usual values and the IMF was generally weakly northward, indicate there were upstream waves present in the foreshock, but wave power was an order of magnitude weaker than usual due to an extremely weak bow shock and tenuous solar wind plasma. Magnetic pulsations in the magnetosphere have been observed in the magnetic field data from Polar and at mid-latitude ground stations. By comparing May 11 with a control day under normal solar wind conditions and with a similar foreshock geometry, we find that the magnetosphere was much quieter than usual. The Pc 3-4 waves were nearly absent in the dayside magnetosphere both at Polar and as seen at mid-latitude ground stations even through the foreshock geometry was favorable for the generation of these waves. Since the solar wind speed was not unusual on this day, these observations suggest that it is the Mach number of the solar wind flow relative to the magnetosphere that controls the amplitude of Pc 3-4 waves in the magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Ge%26Ae..54..688B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Ge%26Ae..54..688B"><span>Spectral features of solar plasma flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkhatov, N. A.; Revunov, S. E.</p> <p>2014-11-01</p> <p>Research to the identification of plasma flows in the Solar wind by spectral characteristics of solar plasma flows in the range of magnetohydrodynamics is devoted. To do this, the wavelet skeleton pattern of Solar wind parameters recorded on Earth orbit by patrol spacecraft and then executed their neural network classification differentiated by bandwidths is carry out. This analysis of spectral features of Solar plasma flows in the form of magnetic clouds (MC), corotating interaction regions (CIR), shock waves (Shocks) and highspeed streams from coronal holes (HSS) was made. The proposed data processing and the original correlation-spectral method for processing information about the Solar wind flows for further classification as online monitoring of near space can be used. This approach will allow on early stages in the Solar wind flow detect geoeffective structure to predict global geomagnetic disturbances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4820607N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4820607N"><span>Small is different: RPC observations of a small scale comet interacting with the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nilsson, Hans; Burch, James L.; Carr, Christopher M.; Eriksson, Anders I.; Glassmeier, Karl-Heinz; Henri, Pierre; Rosetta Plasma Consortium Team</p> <p>2016-10-01</p> <p>Rosetta followed comet 67P from low activity at more than 3 AU heliocentric distance to peak activity at perihelion and then out again. We study the evolution of the dynamic plasma environment using data from the Rosetta Plasma Consortium (RPC). Observations of cometary plasma began in August 2014, at a distance of 100 km from the comet nucleus and at 3.6 AU from the Sun. As the comet approached the Sun, outgassing from the comet increased, as did the density of the cometary plasma. Measurements showed a highly heterogeneous cold ion environment, permeated by the solar wind. The solar wind was deflected due to the mass loading from newly added cometary plasma, with no discernible slowing down. The magnetic field magnitude increased significantly above the background level, and strong low frequency waves were observed in the magnetic field, a.k.a. the "singing comet". Electron temperatures were high, leading to a frequently strongly negative spacecraft potential. In mid to late April 2015 the solar wind started to disappear from the observation region. This was associated with a solar wind deflection reaching nearly 180°, indicating that mass loading became efficient enough to form a solar wind-free region. Accelerated water ions, moving mainly in the anti-sunward direction, kept being observed also after the solar wind disappearance. Plasma boundaries began to form and a collisionopause was tentatively identified in the ion and electron data. At the time around perihelion, a diamagnetic cavity was also observed, at a surprisingly large distance from the comet. In late 2016 the solar wind re-appeared at the location of Rosetta, allowing for studies of asymmetry of the comet ion environment with respect to perihelion. A nightside excursion allowed us to get a glimpse of the electrodynamics of the innermost part of the plasma tail. Most of these phenomena are dependent on the small-scale physics of comet 67P, since for most of the Rosetta mission the solar wind - comet atmosphere interaction region is smaller than the pickup ion gyroradius in the undisturbed solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25b3702M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25b3702M"><span>An analytical investigation: Effect of solar wind on lunar photoelectron sheath</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishra, S. K.; Misra, Shikha</p> <p>2018-02-01</p> <p>The formation of a photoelectron sheath over the lunar surface and subsequent dust levitation, under the influence of solar wind plasma and continuous solar radiation, has been analytically investigated. The photoelectron sheath characteristics have been evaluated using the Poisson equation configured with population density contributions from half Fermi-Dirac distribution of the photoemitted electrons and simplified Maxwellian statistics of solar wind plasma; as a consequence, altitude profiles for electric potential, electric field, and population density within the photoelectron sheath have been derived. The expression for the accretion rate of sheath electrons over the levitated spherical particles using anisotropic photoelectron flux has been derived, which has been further utilized to characterize the charging of levitating fine particles in the lunar sheath along with other constituent photoemission and solar wind fluxes. This estimate of particle charge has been further manifested with lunar sheath characteristics to evaluate the altitude profile of the particle size exhibiting levitation. The inclusion of solar wind flux into analysis is noticed to reduce the sheath span and altitude of the particle levitation; the dependence of the sheath structure and particle levitation on the solar wind plasma parameters has been discussed and graphically presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123..211D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123..211D"><span>On the Relation Between Soft Electron Precipitations in the Cusp Region and Solar Wind Coupling Functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dang, Tong; Zhang, Binzheng; Wiltberge, Michael; Wang, Wenbin; Varney, Roger; Dou, Xiankang; Wan, Weixing; Lei, Jiuhou</p> <p>2018-01-01</p> <p>In this study, the correlations between the fluxes of precipitating soft electrons in the cusp region and solar wind coupling functions are investigated utilizing the Lyon-Fedder-Mobarry global magnetosphere model simulations. We conduct two simulation runs during periods from 20 March 2008 to 16 April 2008 and from 15 to 24 December 2014, which are referred as "Equinox Case" and "Solstice Case," respectively. The simulation results of Equinox Case show that the plasma number density in the high-latitude cusp region scales well with the solar wind number density (ncusp/nsw=0.78), which agrees well with the statistical results from the Polar spacecraft measurements. For the Solstice Case, the plasma number density of high-latitude cusp in both hemispheres increases approximately linearly with upstream solar wind number density with prominent hemispheric asymmetry. Due to the dipole tilt effect, the average number density ratio ncusp/nsw in the Southern (summer) Hemisphere is nearly 3 times that in the Northern (winter) Hemisphere. In addition to the solar wind number density, 20 solar wind coupling functions are tested for the linear correlation with the fluxes of precipitating cusp soft electrons. The statistical results indicate that the solar wind dynamic pressure p exhibits the highest linear correlation with the cusp electron fluxes for both equinox and solstice conditions, with correlation coefficients greater than 0.75. The linear regression relations for equinox and solstice cases may provide an empirical calculation for the fluxes of cusp soft electron precipitation based on the upstream solar wind driving conditions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.2493M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.2493M"><span>Autocorrelation Study of Solar Wind Plasma and IMF Properties as Measured by the MAVEN Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marquette, Melissa L.; Lillis, Robert J.; Halekas, J. S.; Luhmann, J. G.; Gruesbeck, J. R.; Espley, J. R.</p> <p>2018-04-01</p> <p>It has long been a goal of the heliophysics community to understand solar wind variability at heliocentric distances other than 1 AU, especially at ˜1.5 AU due to not only the steepening of solar wind stream interactions outside 1 AU but also the number of missions available there to measure it. In this study, we use 35 months of solar wind and interplanetary magnetic field (IMF) data taken at Mars by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to conduct an autocorrelation analysis of the solar wind speed, density, and dynamic pressure, which is derived from the speed and density, as well as the IMF strength and orientation. We found that the solar wind speed is coherent, that is, has an autocorrelation coefficient above 1/e, over roughly 56 hr, while the density and pressure are coherent over smaller intervals of roughly 25 and 20 hr, respectively, and that the IMF strength is coherent over time intervals of approximately 20 hr, while the cone and clock angles are considerably less steady but still somewhat coherent up to time lags of roughly 16 hr. We also found that when the speed, density, pressure, or IMF strength is higher than average, the solar wind or IMF becomes uncorrelated more quickly, while when they are below average, it tends to be steadier. This analysis allows us to make estimates of the values of solar wind plasma and IMF parameters when they are not directly measured and provide an approximation of the error associated with that estimate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050176059','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050176059"><span>Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Strachan, Leonard</p> <p>2005-01-01</p> <p>NASA Grant NAG5-12781 is a study on the "Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind." The two main goals of this study are to identify: 1) Where in the streamer structure does the solar wind originate, and 2) What coronal conditions are responsible for the variability of the slow speed wind. To answer the first question, we examined the mostly closed magnetic field regions in streamer cores to search for evidence of outflow. Preliminary results from the OVI Doppler dimming ratios indicates that most of the flow originates from the edges of coronal streamers but this idea should be confirmed by a comparison of the coronal plasma properties with in situ solar wind data. To answer the second question, the work performed thus far suggests that solar minimum streamers have larger perpendicular velocity distributions than do solar maximum streamers. If it can be shown that solar minimum streamers also produce higher solar wind speeds then this would suggest that streamers and coronal holes have similar solar wind acceleration mechanisms. The key to both questions lie in the analysis of the in situ solar wind data sets. This work was not able to be completed during the period of performance and therefore the grant was formally extended for an additional year at no cost to NASA. We hope to have final results and a publication by the end of the calendar year 2004. The SAO personnel involved in the research are Leonard Strachan (PI), Mari Paz Miralles, Alexander Panasyuk, and a Southern University student Michael Baham.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22519953-new-horizons-solar-wind-around-pluto-swap-observations-solar-wind-from-au','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22519953-new-horizons-solar-wind-around-pluto-swap-observations-solar-wind-from-au"><span>THE NEW HORIZONS SOLAR WIND AROUND PLUTO (SWAP) OBSERVATIONS OF THE SOLAR WIND FROM 11–33 au</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Elliott, H. A.; McComas, D. J.; Valek, P.</p> <p></p> <p>The Solar Wind Around Pluto (SWAP) instrument on National Aeronautics and Space Administration's New Horizons Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parametersmore » and both propagated 1 au observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T–V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T–V correlation clearly breaks down beyond 20 au, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 au indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.3349M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.3349M"><span>Evolution of Multiscale Multifractal Turbulence in the Heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macek, W. M.; Wawrzaszek, A.</p> <p>2009-04-01</p> <p>The aim of this study is to examine the question of scaling properties of intermittent turbulence in the space environment. We analyze time series of velocities of the slow and fast speed streams of the solar wind measured in situ by Helios 2, Advanced Composition Explorer and Voyager 2 spacecraft in the inner and outer heliosphere during solar minimum and maximum at various distances from the Sun. To quantify asymmetric scaling of solar wind turbulence, we consider a generalized two-scale weighted Cantor set with two different scales describing nonuniform distribution of the kinetic energy flux between cascading eddies of various sizes. We investigate the resulting spectrum of generalized dimensions and the corresponding multifractal singularity spectrum depending on one probability measure parameter and two rescaling parameters, demonstrating that the multifractal scaling is often rather asymmetric. In particular, we show that the degree of multifractality for the solar wind during solar minimum is greater for fast streams velocity fluctuations than that for the slow streams; the fast wind during solar minimum may exhibit strong asymmetric scaling. Moreover, we observe the evolution of multifractal scaling of the solar wind in the outer heliosphere. It is worth noting that for the model with two different scaling parameters a much better agreement with the solar wind data is obtained, especially for the negative index of the generalized dimensions. Therefore we argue that there is a need to use a two-scale cascade model. Hence we propose this new more general model as a useful tool for analysis of intermittent turbulence in various environments. References [1] W. M. Macek and A. Szczepaniak, Generalized two-scale weighted Cantor set model for solar wind turbulence, Geophys. Res. Lett., 35, L02108, doi:10.1029/2007GL032263 (2008). [2] A. Szczepaniak and W. M. Macek, Asymmetric multifractal model for solar wind intermittent turbulence, Nonlin. Processes Geophys., 15, 615-620 (2008), http://www.nonlin-processes-geophys.net/15/615/2008/. [3] W. M. Macek and A. Wawrzaszek, Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere, J. Geophys. Res., A013795, doi:10.1029/2008JA013795, in press.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/news/press/1997/56stocksh.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/news/press/1997/56stocksh.html"><span>Free Consumer Workshops On Solar & Wind Power</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p><em>Free</em> Consumer Workshops On Solar & Wind Power For Farm & Ranch At National Western Stock three <em>free</em> consumer workshops on solar and wind power for the farm and ranch at the 1998 National information booth in the Stock Show's Hall of Education. <em>Free</em> literature on renewable energy is available at</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-04-26/pdf/2011-10019.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-04-26/pdf/2011-10019.pdf"><span>76 FR 23198 - Segregation of Lands-Renewable Energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-04-26</p> <p>... could be used to carry the power generated from a specific wind or solar energy ROW project, and the... included in a pending or future wind or solar energy generation right- of-way (ROW) application, or public lands identified by the BLM for a potential future wind or solar energy generation ROW authorization...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=251717','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=251717"><span>Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Some small scale irrigation systems (< 2 ha) powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSH13B4118L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSH13B4118L"><span>Analysis of Solar Wind Plasma Properties of Co-Rotating Interaction Regions at Mars with MSL/RAD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lohf, H.; Kohler, J.; Zeitlin, C. J.; Ehresmann, B.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Reitz, G.; Posner, A.; Heber, B.; Appel, J. K.; Matthiae, D.; Brinza, D. E.; Weigle, E.; Böttcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Boehm, E.; Rafkin, S. C.; Kahanpää, H.; Martín-Torres, J.; Zorzano, M. P.</p> <p>2014-12-01</p> <p>The measurements of the Radiation Assessment Detector (RAD) onboard Mars Science Laboratory's rover Curiosity have given us the very first opportunity to evaluate the radiation environment on the surface of Mars, which consists mostly of Galactic Cosmic Rays (GCRs) and secondary particles created in the Martian Atmosphere. The solar wind can have an influence on the modulation of the GCR, e.g. when the fast solar wind (~ 750 km/s) interacts with the slow solar wind (~ 400 km/s) at so-called Stream Interaction Regions (SIRs) resulting in an enhancement of the local magnetic field which could affect the shielding of GCRs. SIRs often occur periodically as Co-rotating Interaction Regions (CIRs) which may-be observed at Mars as a decrease in the radiation data measured by MSL/RAD. Considering the difference of the Earth-Mars orbit, we correlate these in-situ radiation data at Mars with the solar wind properties measured by spacecrafts at 1 AU, with the aim to eventually determine the solar wind properties at Mars based on MSL/RAD measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..287..131H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..287..131H"><span>Pluto-Charon solar wind interaction dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hale, J. P. M.; Paty, C. S.</p> <p>2017-05-01</p> <p>This work studies Charon's effects on the Pluto-solar wind interaction using a multifluid MHD model which simulates the interactions of Pluto and Charon with the solar wind as well as with each other. Specifically, it investigates the ionospheric dynamics of a two body system in which either one or both bodies possess an ionosphere. Configurations in which Charon is directly upstream and directly downstream of Pluto are considered. Depending on ionospheric and solar wind conditions, Charon could periodically pass into the solar wind flow upstream of Pluto. The results of this study demonstrate that in these circumstances Charon modifies the upstream flow, both in the case in which Charon possesses an ionosphere, and in the case in which Charon is without an ionosphere. This modification amounts to a change in the gross structure of the interaction region when Charon possesses an ionosphere but is more localized when Charon lacks an ionosphere. Furthermore, evidence is shown that supports Charon acting to partially shield Pluto from the solar wind when it is upstream of Pluto, resulting in a decrease in ionospheric loss by Pluto.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AIPC..679..168L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AIPC..679..168L"><span>A Solar Wind Source Tracking Concept for Inner Heliosphere Constellations of Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luhmann, J. G.; Li, Yan; Arge, C. N.; Hoeksema, Todd; Zhao, Xuepu</p> <p>2003-09-01</p> <p>During the next decade, a number of spacecraft carrying in-situ particles and fields instruments, including the twin STEREO spacecraft, ACE, WIND, and possibly Triana, will be monitoring the solar wind in the inner heliosphere. At the same time, several suitably instrumented planetary missions, including Nozomi, Mars Express, and Messenger will be in either their cruise or orbital phases which expose them at times to interplanetary conditions and/or regions affected by the solar wind interaction. In addition to the mutual support role for the individual missions that can be gained from this coincidence, this set provides an opportunity for evaluating the challenges and tools for a future targeted heliospheric constellation mission. In the past few years the capability of estimating the solar sources of the local solar wind has improved, in part due to the ability to monitor the full-disk magnetic field of the Sun on an almost continuous basis. We illustrate a concept for a model and web-based display that routinely updates the estimated sources of the solar wind arriving at inner heliospheric spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JASTP.102..185O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JASTP.102..185O"><span>The dispersion analysis of drift velocity in the study of solar wind flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olyak, Maryna</p> <p>2013-09-01</p> <p>In this work I consider a method for the study of the solar wind flows at distances from the Sun more than 1 AU. The method is based on the analysis of drift velocity dispersion that was obtained from the simultaneous scintillation observations in two antennas. I considered dispersion dependences for different models of the solar wind, and I defined its specificity for each model. I have determined that the presence of several solar wind flows significantly affects the shape and the slope of the dispersion curve. The maximum slope angle is during the passage of the fast solar wind flow near the Earth. If a slow flow passes near the Earth, the slope of the dispersion curve decreases. This allows a more precise definition of the velocity and flow width compared to the traditional scintillation method. Using the comparison of experimental and theoretical dispersion curves, I calculated the velocity and width of solar wind flows and revealed the presence of significant velocity fluctuations which accounted for about 60% of the average velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4308709','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4308709"><span>Direct evidence for kinetic effects associated with solar wind reconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng</p> <p>2015-01-01</p> <p>Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed. PMID:25628139</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatEn...217134M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatEn...217134M"><span>The climate and air-quality benefits of wind and solar power in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Millstein, Dev; Wiser, Ryan; Bolinger, Mark; Barbose, Galen</p> <p>2017-09-01</p> <p>Wind and solar energy reduce combustion-based electricity generation and provide air-quality and greenhouse gas emission benefits. These benefits vary dramatically by region and over time. From 2007 to 2015, solar and wind power deployment increased rapidly while regulatory changes and fossil fuel price changes led to steep cuts in overall power-sector emissions. Here we evaluate how wind and solar climate and air-quality benefits evolved during this time period. We find cumulative wind and solar air-quality benefits of 2015 US$29.7-112.8 billion mostly from 3,000 to 12,700 avoided premature mortalities, and cumulative climate benefits of 2015 US$5.3-106.8 billion. The ranges span results across a suite of air-quality and health impact models and social cost of carbon estimates. We find that binding cap-and-trade pollutant markets may reduce these cumulative benefits by up to 16%. In 2015, based on central estimates, combined marginal benefits equal 7.3 ¢ kWh-1 (wind) and 4.0 ¢ kWh-1 (solar).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSH51B2230P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSH51B2230P"><span>Statistical analysis of dispersion relations in turbulent solar wind fluctuations using Cluster data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perschke, C.; Narita, Y.</p> <p>2012-12-01</p> <p>Multi-spacecraft measurements enable us to resolve three-dimensional spatial structures without assuming Taylor's frozen-in-flow hypothesis. This is very useful to study frequency-wave vector diagram in solar wind turbulence through direct determination of three-dimensional wave vectors. The existence and evolution of dispersion relation and its role in fully-developed plasma turbulence have been drawing attention of physicists, in particular, if solar wind turbulence represents kinetic Alfvén or whistler mode as the carrier of spectral energy among different scales through wave-wave interactions. We investigate solar wind intervals of Cluster data for various flow velocities with a high-resolution wave vector analysis method, Multi-point Signal Resonator technique, at the tetrahedral separation about 100 km. Magnetic field data and ion data are used to determine the frequency- wave vector diagrams in the co-moving frame of the solar wind. We find primarily perpendicular wave vectors in solar wind turbulence which justify the earlier discussions about kinetic Alfvén or whistler wave. The frequency- wave vector diagrams confirm (a) wave vector anisotropy and (b) scattering in frequencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25628139','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25628139"><span>Direct evidence for kinetic effects associated with solar wind reconnection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng</p> <p>2015-01-28</p> <p>Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.1628L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.1628L"><span>Flow Sources of The Solar Wind Stream Structieres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lotova, N. A.; Obridko, V. N.; Vladimirskii, K. V.</p> <p></p> <p>The large-scale stream structure of the solar wind flow was studied at the main acceler- ation area of 10 to 40 solar radii from the Sun. Three independent sets of experimental data were used: radio astronomy observations of radio wave scattering on near-solar plasmas (large radio telescopes of the P.N.Lebedev Physical Institute were used); mor- phology of the WLC as revealed by the SOHO optical solar corona observations; solar magnetic field strength and configuration computed using the Wilcox Solar Observa- tory data. Experimental data of 1997-1998 years on the position of the transition, tran- sonic region of the solar wind flow were used as a parameter reflecting the intensity of the solar plasmas acceleration process. Correlation studies of these data combined with the magnetic field strength at the solar corona level revealed several types of the solar wind streams differing in the final result, the velocity at large distances from the Sun. Besides of the well-known flows stemming from the polar coronal holes, high-speed streams were observed arising in lateral areas of the streamer structures in contrast to the main body of the streamers, being a known source of the slow solar wind. The slowest streams arise at areas of mixed magnetic field structure compris- ing both open and closed (loop-like) filed lines. In the white-light corona images this shows extensive areas of bright amorphous luminosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJS..228....4Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJS..228....4Z"><span>An Anomalous Composition in Slow Solar Wind as a Signature of Magnetic Reconnection in its Source Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, L.; Landi, E.; Lepri, S. T.; Kocher, M.; Zurbuchen, T. H.; Fisk, L. A.; Raines, J. M.</p> <p>2017-01-01</p> <p>In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exception being a very large decrease in the abundance of fully charged species (He2+, C6+, N7+, O8+, Mg12+), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4354106','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4354106"><span>Full-Sun observations for identifying the source of the slow solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brooks, David H.; Ugarte-Urra, Ignacio; Warren, Harry P.</p> <p>2015-01-01</p> <p>Fast (>700 km s−1) and slow (~400 km s−1) winds stream from the Sun, permeate the heliosphere and influence the near-Earth environment. While the fast wind is known to emanate primarily from polar coronal holes, the source of the slow wind remains unknown. Here we identify possible sites of origin using a slow solar wind source map of the entire Sun, which we construct from specially designed, full-disk observations from the Hinode satellite, and a magnetic field model. Our map provides a full-Sun observation that combines three key ingredients for identifying the sources: velocity, plasma composition and magnetic topology and shows them as solar wind composition plasma outflowing on open magnetic field lines. The area coverage of the identified sources is large enough that the sum of their mass contributions can explain a significant fraction of the mass loss rate of the solar wind. PMID:25562705</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM53A2216C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM53A2216C"><span>Demonstrated Performance of the Solar Probe Cup</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Daigneau, P.; Freeman, M.; Caldwell, D.; Gauron, T.; Wright, K. H.; Bergner, H.; Cirtain, J. W.; Larson, D.; Brodu, E.; Balat-Pichelin, M.</p> <p>2013-12-01</p> <p>The Solar Probe Cup (SPC) is a Faraday Cup being developed for the Solar Probe Plus (SPP) mission. SPP will be the first spacecraft to directly measure the solar environment near the Alfven point in the atmosphere of the Sun, approaching to within 10 solar radii of the center of the Sun. In order to make the observations of radially flowing solar wind needed to address questions of coronal and solar wind heating and acceleration, SPC must operate while looking directly at the Sun. As a result, SPC will face a harsh and unprecidented environment, with component temperatures exceeding 1000C at closest approach. SPC is similar in design and operation to the two Faraday Cup instruments on the Wind spacecraft, which have been making stable measurements of the solar wind near Earth for two decades, with two key differences. SPC must survive and operate at extreme temperatures due to the levels of solar flux near the Sun, and it must record the solar wind approximately one thousand times faster than the instruments on Wind to keep up with the rapid variations expected near the Sun. We present results of a demonstration model of SPC operated in laboratory reproductions of the near-Sun environment. In the last year, SPC has been exposed to simulated encounter solar fluxes and resulting temperature profiles using a vaccum chamber and modified IMAX film projectors. In addition, SPC has been exposed to realistic ion beams. We show that SPC can operate in these environments, and make the measurements required for the sucess of the Solar Probe mission. Based on the performance of our prototype, the expected cadence and sensitivity of SPC will be discussed, with a focus on its ability to distinguish between models of heating in the solar corona.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900027052&hterms=Fran&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DFran','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900027052&hterms=Fran&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DFran"><span>Pluto's interaction with the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bagenal, Fran; Mcnutt, Ralph L., Jr.</p> <p>1989-01-01</p> <p>If Pluto's atmospheric escape rate is significantly greater than 1.5 x 10 to the 27th molecules/s then the interaction with the tenuous solar wind at 30 A.U. will be like that of a comet. There will be extensive ion pick-up upstream and the size of the interaction region will vary directly with variations in the solar wind flux. If the escape flux is much less, then one expects that the solar wind will be deflected around Pluto's ionosphere in a Venus-like interaction. In either case, the weak interplanetary magnetic field at 30 A.U. results in very large gyroradii for the picked-up ions and a thick bow shock, necessitating a kinetic treatment of the interaction. Strong variations in the size of the interaction region are expected on time scales of days due to changes in the solar wind.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999AIPC..471..729D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999AIPC..471..729D"><span>Real-time Kp predictions from ACE real time solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Detman, Thomas; Joselyn, Joann</p> <p>1999-06-01</p> <p>The Advanced Composition Explorer (ACE) spacecraft provides nearly continuous monitoring of solar wind plasma, magnetic fields, and energetic particles from the Sun-Earth L1 Lagrange point upstream of Earth in the solar wind. The Space Environment Center (SEC) in Boulder receives ACE telemetry from a group of international network of tracking stations. One-minute, and 1-hour averages of solar wind speed, density, temperature, and magnetic field components are posted on SEC's World Wide Web page within 3 to 5 minutes after they are measured. The ACE Real Time Solar Wind (RTSW) can be used to provide real-time warnings and short term forecasts of geomagnetic storms based on the (traditional) Kp index. Here, we use historical data to evaluate the performance of the first real-time Kp prediction algorithm to become operational.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030066670&hterms=Controlling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWhat%2BControlling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030066670&hterms=Controlling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWhat%2BControlling"><span>Factors Controlling the Position of the Martian Magnetic Pileup Boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crider, D. H.; Acuna, M.; Vignes, D.; Krymskii, A.; Breus, T.; Ness, N.</p> <p>2003-01-01</p> <p>The magnetic pileup boundary (MPB) at Mars is the position where the dominant ion of the plasma changes from solar wind protons to heavy ions of planetary origin. As such, it is the obstacle to solar wind ions. We investigate the factors that influence the shape and position of the magnetic pileup boundary at Mars in order to better understand the Martian obstacle to the solar wind. Employing MGS data, we determine how the Martian MPB moves in response to factors including solar wind pressure and crustal magnetic fields. We also study the factors affecting the thickness of the MPB. Further, we compare the magnetic pileup boundary to the magnetic barrier at Venus. Direct comparison aids in our interpretation of the physics involved in the solar wind interaction with planets lacking a significant intrinsic magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSM23A4180C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSM23A4180C"><span>Time delay between the SYMH and the solar wind energy input during intense storms determined by response function analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, X.; Du, A.</p> <p>2014-12-01</p> <p>We statistically studied the response time of the SYMH to the solar wind energy input ɛ by using the RFA approach. The average response time was 64 minutes. There was no clear trend among these events concerning to the minimum SYMH and storm type. It seems that the response time of magnetosphere to the solar wind energy input is independent on the storm intensity and the solar wind condition. The response function shows one peak even when the solar wind energy input and the SYMH have multi-peak. The response time exhibits as the intrinsic property of the magnetosphere that stands for the typical formation time of the ring current. This may be controlled by magnetospheric temperature, average number density, the oxygen abundance et al.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021905','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021905"><span>Estimated solar wind-implanted helium-3 distribution on the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnson, J. R.; Swindle, T.D.; Lucey, P.G.</p> <p>1999-01-01</p> <p>Among the solar wind-implanted volatiles present in the lunar regolith, 3 He is possibly the most valuable resource because of its potential as a fusion fuel. The abundance of 3 He in the lunar regolith at a given location depends on surface maturity, the amount of solar wind fluence, and titanium content, because ilmenite (FeTiO3) retains helium much better than other major lunar minerals. Surface maturity and TiO2 maps from Clementine multispectral data sets are combined here with a solar wind fluence model to produce a 3He abundance map of the Moon. Comparison of the predicted 3He values to landing site observations shows good correlation. The highest 3He abundances occur in the farside maria (due to greater solar wind fluence received) and in higher TiO2 nearside mare regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-07-20/pdf/2012-17658.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-07-20/pdf/2012-17658.pdf"><span>77 FR 42719 - Notice of Effectiveness of Exempt Wholesale Generator or Foreign Utility Company Status</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-07-20</p> <p>... Docket Nos. Sherbino I Wind Farm LLC EG12-43-000 Eagle Point Power Generation LLC....... EG12-53-000... Mountain Solar 2, LLC EG12-59-000 Minok Wind, LLC EG12-60-000 Senate Wind, LLC EG12-61-000 Canadian Hills Wind, LLC EG12-62-000 Moore Solar, Inc FC12-6-000 Sombra Solar, Inc FC12-7-000 Take notice that during...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E3557V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E3557V"><span>Sources of the solar wind - the heliospheric point of view</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Von Steiger, Rudolf; Shearer, Paul; Zurbuchen, Thomas</p> <p></p> <p>The solar wind as observed in the heliosphere has several properties that can be interpreted as signatures of conditions and processes at its source in the solar atmosphere. Traditionally it has been customary to distinguish between solar wind types solely based on its speed, "fast" and "slow" wind. Over the last couple of decades new instruments resolving not only the main constituents (protons and alpha particles) but also heavy ions from C to Fe have added new observables, in particular the charge state and elemental composition of these ions. The charge states are indicators of the coronal temperature at the source region; they have confirmed that the "fast" wind emanates from the relatively cool coronal hole regions, while the "slow" wind originates from hotter sources such as the streamer belt and active regions. Thus they are more reliable indicators of solar wind source than the speed alone could be because they readily discriminate between "fast" wind from coronal holes and fast coronal mass ejections (CMEs). The elemental composition in the solar wind compared to the abundances in the photosphere shows a typical fractionation that depends on the first ionization potential (FIP) of the elements. Since that fractionation occurs beneath the corona, in the chromosphere, its strength is indicative of the conditions in that layer. While the "fast" wind is very similar to photospheric composition, the fractionation of the "slow" wind and of CMEs is higher and strongly variable. We will review the observations of the SWICS composition instruments on both the ACE and the Ulysses missions, which have made composition observations between 1 and 5 AU and at all latitudes in the heliosphere over the last two decades. Specifically, analysis of the "slow" wind observations at all time scales, from hours to complete solar cycles, will be used to better characterize its source regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM41D2461N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM41D2461N"><span>Diamagnetic effect in the foremoon solar wind observed by Kaguya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishino, M. N.; Saito, Y.; Tsunakawa, H.; Miyake, Y.; Harada, Y.; Yokota, S.; Takahashi, F.; Matsushima, M.; Shibuya, H.; Shimizu, H.</p> <p>2016-12-01</p> <p>Interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the lunar plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE and WIND with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such diamagnetic effect would be prominent in the high-beta solar wind environment, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1157F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1157F"><span>Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, Hui; Madjarska, M. S.; Li, Bo; Xia, LiDong; Huang, ZhengHua</p> <p>2018-05-01</p> <p>Two main models have been developed to explain the mechanisms of release, heating and acceleration of the nascent solar wind, the wave-turbulence-driven (WTD) models and reconnection-loop-opening (RLO) models, in which the plasma release processes are fundamentally different. Given that the statistical observational properties of helium ions produced in magnetically diverse solar regions could provide valuable information for the solar wind modelling, we examine the statistical properties of the helium abundance (AHe) and the speed difference between helium ions and protons (vαp) for coronal holes (CHs), active regions (ARs) and the quiet Sun (QS). We find bimodal distributions in the space of AHeand vαp/vA(where vA is the local Alfvén speed) for the solar wind as a whole. The CH wind measurements are concentrated at higher AHeand vαp/vAvalues with a smaller AHedistribution range, while the AR and QS wind is associated with lower AHeand vαp/vA, and a larger AHedistribution range. The magnetic diversity of the source regions and the physical processes related to it are possibly responsible for the different properties of AHeand vαp/vA. The statistical results suggest that the two solar wind generation mechanisms, WTD and RLO, work in parallel in all solar wind source regions. In CH regions WTD plays a major role, whereas the RLO mechanism is more important in AR and QS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...859....6H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...859....6H"><span>Structured Slow Solar Wind Variability: Streamer-blob Flux Ropes and Torsional Alfvén Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Higginson, A. K.; Lynch, B. J.</p> <p>2018-05-01</p> <p>The slow solar wind exhibits strong variability on timescales from minutes to days, likely related to magnetic reconnection processes in the extended solar corona. Higginson et al. presented a numerical magnetohydrodynamic simulation that showed interchange magnetic reconnection is ubiquitous and most likely responsible for releasing much of the slow solar wind, in particular along topological features known as the Separatrix-Web (S-Web). Here, we continue our analysis, focusing on two specific aspects of structured slow solar wind variability. The first type is present in the slow solar wind found near the heliospheric current sheet (HCS), and the second we predict should be present everywhere S-Web slow solar wind is observed. For the first type, we examine the evolution of three-dimensional magnetic flux ropes formed at the top of the helmet streamer belt by reconnection in the HCS. For the second, we examine the simulated remote and in situ signatures of the large-scale torsional Alfvén wave (TAW), which propagates along an S-Web arc to high latitudes. We describe the similarities and differences between the reconnection-generated flux ropes in the HCS, which resemble the well-known “streamer blob” observations, and the similarly structured TAW. We discuss the implications of our results for the complexity of the HCS and surrounding plasma sheet and the potential for particle acceleration, as well as the interchange reconnection scenarios that may generate TAWs in the solar corona. We discuss predictions from our simulation results for the dynamic slow solar wind in the extended corona and inner heliosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMSH33A0369A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMSH33A0369A"><span>Genesis Solar Wind Array Collector Fragments Post-Recovery Status</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allton, J. H.</p> <p>2005-12-01</p> <p>The Genesis solar wind sample return mission spacecraft was launched with 271 whole and 30 half hexagonally-shaped collectors. At 65 cm2 per hexagon, the total collection area was 18,600 cm2. These 301 collectors were comprised of 9 materials mounted on 5 arrays, each of which was exposed to a specific regime of the solar wind. Thoughtfully, collectors exposed to a specific regime were made of a unique thickness: bulk solar wind (700 μm thick), transient solar wind associated with coronal mass ejection (650 μm), high speed solar wind from coronal holes (600 μm), and interstream low-speed solar wind (550 μm). Thus, it is easy to distinguish the solar wind regime sampled by measuring the fragment thickness. Nearly 10,000 fragments have been enumerated, constituting about 20% of the total area. The sapphire-based hexagons survived better than the silicon hexagons as seen in the percent pre-flight whole collectors compared to the percent of recovered fragments in 10 to 25 mm size range. Silicon-based collectors accounted for 57% of the hexagons flown but 18% of the recovered fragments. However, a) gold coating on sapphire accounted for 12% flown and 27% of the recovered; b) aluminum coating on sapphire for 9% flown and 25% of the recovered; c) silicon coating on sapphire for 7% flown and 18% of the recovered; and d) sapphire for 7% flown and 10% of the recovered. Due to the design of the array frames, many of the recovered fragments were trapped in baffles very near their original location and were relatively protected from outside debris. Collector fragments are coated with particulate debris, and there is evidence that a thin molecular film was deposited on collector surfaces during flight. Therefore, in addition to allocations distributed for solar wind science analysis, poorer quality samples have been used in specimen cleaning tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P43A2098D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P43A2098D"><span>The singing comet 67P: utilizing fully kinetic simulations to study its interaction with the solar wind plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deca, J.; Divin, A. V.; Horanyi, M.; Henri, P.</p> <p>2016-12-01</p> <p>We present preliminary results of the first 3-D fully kinetic and electromagnetic simulations of the solar wind interaction with 67P/Churyumov-Gerasimenko at 3 AU, before the comet transitions into its high-activity phase. We focus on the global cometary environment and the electron-kinetic activity of the interaction. In addition to the background solar wind plasma flow, our model includes also plasma-driven ionization of cometary neutrals and collisional effects. We approximate mass loading of cold cometary oxygen and hydrogen using a hyperbolic relation with distance to the comet. We consider two primary cases: a weak outgassing comet (with the peak ion density 10x the solar wind density) and a moderately outgassing comet (with the peak ion density 50x the solar wind density). The weak comet is characterized by the formation of a narrow region containing a compressed solar wind (the density of the solar wind ion population is 3x the value far upstream of the comet) and a magnetic barrier ( 2x to 4x the interplanetary magnetic field). Blobs of plasma are detached continuously from this sheath region. Standing electromagnetic waves are excited in the cometary wake due to a strong anisotropy in the plasma pressure, as the density and the magnetic field magnitude are anti-correlated.The moderate mass-loading case shows more dynamics at the dayside region. The stagnation of the solar wind flow is accompanied by the formation of elongated density stripes, indicating the presence of a Rayleigh-Taylor instability. These density cavities are elongated in the direction of the magnetic field and encompass the dayside ionopause. To conclude, we believe that our results provide vital information to disentangle the observations made by the Rosetta spacecraft and compose a global solar wind - comet interaction model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSM52A..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSM52A..08B"><span>Foreshock and magnetosheath transients, origin and connection to the magnetopause.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanco-Cano, X.</p> <p>2014-12-01</p> <p>The solar wind interaction with earths's magnetosphere begins well ahead of the magnetopause when the solar wind encounters the foreshock, bow shock and magnetosheath. In these regions a variety of waves and magnetic structures exist and modify the solar wind. The foreshock is permeated by a variety of ultra low frequency (ULF) waves and magnetic transient structures such as shocklets, SLAMs, and cavitons. These structures are very compressive and are generated by the solar wind interaction with backstreaming particles plus non linear processes. Other structures such as hot flow anomalies (HFA), and spontaneous hot flow anomalies (SHFA) can also exist in the foreshock. HFAs are generated by discontinuities that arrive to the bow shock. Recent studies show that SHFA have the same profiles as HFA, but form by the interaction of foreshock cavitons with the bowshock. Foreshock bubbles can form when energetic ions upstream of the quasi-parallel bow shock interact with rotational discontinuities in the solar wind. All these structures can merge with the bow shock and be convected into the magnetosheath. The magnetosheath is both a place for rich plasma physical processes and a filter between solar wind and the magnetospheric plasma and magnetic field environments. It is permeated by the superposition of upstream convected structures plus locally generated waves (ion cyclotron and mirror mode). Recent studies have shown that jets and magnetosheath filamentary structures (MFS) can be observed downstream from the bow shock. Jets are associated to shock rippling efects and MFS to acceleration of particles at and near the shock. Due to the presence of the foreshock, bow shock and magnetosheath transients, the solar wind arriving to the magnetopause is very different to the pristine solar wind. In this talk we will address the main characteristics of these transients, discuss their origin, and how they can modify the solar wind, the bow shock, the magnetosheath and the magnetopause.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910358K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910358K"><span>Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan</p> <p>2017-04-01</p> <p>Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR's shocks, and these shocks to be believed to accelerate ions up to several MeV per nucleon. In this paradigm particle acceleration is commonly believed to occur mainly at the well-formed reverse shock at 2-3 AU with particles streaming back from the shocks from the outer heliosphere to 1 AU (Malandraki et al., 2007). However, AEPEs observed for many hours before the crossing of the forward shock (or even before the leading edge of a CIR without well-formed forward shock) cannot be explained within the framework of this paradigm. We have recently found that the effect of pre-CIR AEPEs occurs mainly as a result of the formation of a region filled with magnetic islands compressed between the high-density leading edge of a CIR and the HCS (Khabarova et al. ApJ, 2016). We show here that any kind of complicated stream-CIR interactions may lead to the same effect due to the formation of magnetic cavities in front of CIRs. The analysis of in situ multi-spacecraft measurements often suggests very complicated ways of propagation of streams and current sheets that form magnetic cavities. In the case of multiple stream-stream interaction, comparisons of data from distant spacecraft may be puzzling and even useless for understanding the large-scale topology of the region of particle acceleration, because even several point measurements cannot reconstruct approximate forms of the magnetic cavities and shed light on the pre-history of their origin and evolution. We employ interplanetary scintillation tomographic data for reconstructions of the solar wind speed, density and interplanetary magnetic field profiles to understand a 3-D picture of stream interactions responsible for pre-CIR AEPEs. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH12A..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH12A..03L"><span>The Solar Wind Source Cycle: Relationship to Dynamo Behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luhmann, J. G.; Li, Y.; Lee, C. O.; Jian, L. K.; Petrie, G. J. D.; Arge, C. N.</p> <p>2017-12-01</p> <p>Solar cycle trends of interest include the evolving properties of the solar wind, the heliospheric medium through which the Sun's plasmas and fields interact with Earth and the planets -including the evolution of CME/ICMEs enroute. Solar wind sources include the coronal holes-the open field regions that constantly evolve with solar magnetic fields as the cycle progresses, and the streamers between them. The recent cycle has been notably important in demonstrating that not all solar cycles are alike when it comes to contributions from these sources, including in the case of ecliptic solar wind. In particular, it has modified our appreciation of the low latitude coronal hole and streamer sources because of their relative prevalence. One way to understand the basic relationship between these source differences and what is happening inside the Sun and on its surface is to use observation-based models like the PFSS model to evaluate the evolution of the coronal field geometry. Although the accuracy of these models is compromised around solar maximum by lack of global surface field information and the sometimes non-potential evolution of the field related to more frequent and widespread emergence of active regions, they still approximate the character of the coronal field state. We use these models to compare the inferred recent cycle coronal holes and streamer belt sources of solar wind with past cycle counterparts. The results illustrate how (still) hemispherically asymmetric weak polar fields maintain a complex mix of low-to-mid latitude solar wind sources throughout the latest cycle, with a related marked asymmetry in the hemispheric distribution of the ecliptic wind sources. This is likely to be repeated until the polar field strength significantly increases relative to the fields at low latitudes, and the latter symmetrize.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015TESS....131004A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015TESS....131004A"><span>Global MHD modeling of an ICME focused on the physics involved in an ICME interacting with a solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>An, Jun-Mo; Magara, Tetsuya; Inoue, Satoshi; Hayashi, Keiji; Tanaka, Takashi</p> <p>2015-04-01</p> <p>We developed a three-dimensional (3D) magnetohydrodynamic (MHD) code to investigate the structure of a solar wind, the properties of a coronal mass ejection (CME) and the interaction between them. This MHD code is based on the finite volume method incorporating total variation diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in a spherical coordinate system (Tanaka 1994). In this model, we first apply an MHD tomographic method (Hayashi et al. 2003) to interplanetary scintillation (IPS) observational data and derive a solar wind from the physical values obtained at 50 solar radii away from the Sun. By comparing the properties of this solar wind to observational data obtained near the Earth orbit, we confirmed that our model captures the velocity, temperature and density profiles of a solar wind near the Earth orbit. We then insert a spheromak-type CME (Kataoka et al. 2009) into the solar wind to reproduce an actual CME event occurred on 29 September 2013. This has been done by introducing a time-dependent boundary condition to the inner boundary of our simulation domain (50rs < r < 300rs). On the basis of a comparison between the properties of a simulated CME and observations near the Earth, we discuss the physics involved in an ICME interacting with a solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150010735','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150010735"><span>On Lunar Exospheric Column Densities and Solar Wind Access Beyond the Terminator from ROSAT Soft X-Ray Observations of Solar Wind Charge Exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collier, Michael R.; Snowden, S. L.; Sarantos, M.; Benna, M.; Carter, J. A.; Cravens, T. E.; Farrell, W. M.; Fatemi, S.; Hills, H. Kent; Hodges, R. R.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150010735'); toggleEditAbsImage('author_20150010735_show'); toggleEditAbsImage('author_20150010735_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150010735_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150010735_hide"></p> <p>2014-01-01</p> <p>We analyze the Rontgen satellite (ROSAT) position sensitive proportional counter soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the surface brightness in three wedges: two 19 deg wedges (one north and one south) 13-32 deg off the terminator toward the dark side and one wedge 38 deg wide centered on the antisolar direction. The radial profiles of both the north and the south wedges show significant limb brightening that is absent in the 38 deg wide antisolar wedge. An analysis of the soft X-ray intensity increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere based on lunar exospheric models and hybrid simulation results of solar wind access beyond the terminator. Soft X-ray imaging thus can independently infer the total lunar limb column density including all species, a property that before now has not been measured, and provide a large-scale picture of the solar wind-lunar interaction. Because the SWCX signal appears to be dominated by exospheric species arising from solar wind implantation, this technique can also determine how the exosphere varies with solar wind conditions. Now, along with Mars, Venus, and Earth, the Moon represents another solar system body at which SWCX has been observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110013445&hterms=parametric+scaling&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dparametric%2Bscaling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110013445&hterms=parametric+scaling&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dparametric%2Bscaling"><span>Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ofman, L.</p> <p>2010-01-01</p> <p>Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840024844','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840024844"><span>Wind loading on solar concentrators: Some general considerations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roschke, E. J.</p> <p>1984-01-01</p> <p>A survey was completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view. Current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed. Recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914825O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914825O"><span>Solar wind parameteres and disturbances in STEREO view</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Opitz, Andrea</p> <p>2017-04-01</p> <p>The twin STEREO spacecraft provided two vantage point solar wind observations between 2007 and 2014. Instrumentation of the STEREO A and B spacecraft is very nearly identical, hence their measurements are easily comparable. These measurements are visualised and treated with different methods in order to obtain a global view of the in-ecliptic background solar wind and the disturbances such as CIRs and CMEs. Comparison of the two datasets and exclusion of spatial effects provides information on the in-ecliptic solar wind structure in the inner heliosphere. These methods and results will be revised in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25848084','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25848084"><span>Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goldstein, M L; Wicks, R T; Perri, S; Sahraoui, F</p> <p>2015-05-13</p> <p>Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of turbulence to solar wind dynamics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920064825&hterms=solar+receiver&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsolar%2Breceiver','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920064825&hterms=solar+receiver&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsolar%2Breceiver"><span>Solar wind thermal electrons in the ecliptic plane between 1 and 4 AU - Preliminary results from the Ulysses radio receiver</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoang, S.; Meyer-Vernet, N.; Bougeret, J.-L.; Harvey, C. C.; Lacombe, C.; Mangeney, A.; Moncuquet, M.; Perche, C.; Steinberg, J.-L.; Macdowall, R. J.</p> <p>1992-01-01</p> <p>The radio receiver of the Unified Radio and Plasma experiment aboard the Ulysses spacecraft records spectra of the quasi-thermal plasma noise. The interpretation of these spectra allows the determination of the total electron density Ne and of the cold (core) electron temperature Tc in the solar wind. A single power law does not fit the variations of Ne which result from the contribution from different solar wind structures. The distribution of the values of Tc suggests that, on the average, the solar wind is nearly isothermal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870052836&hterms=wind+monitor&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870052836&hterms=wind+monitor&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dwind%2Bmonitor"><span>Solar wind parameters and magnetospheric coupling studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, Joseph H.</p> <p>1986-01-01</p> <p>This paper presents distributions, means, and standard deviations of the fluxes of solar wind protons, momentum, and energy as observed near earth during the solar quiet and active years 1976 and 1979. Distributions of ratios of energies (Alfven Mach number, plasma beta) and distributions of interplanetary magnetic field orientations are also given. Finally, the uncertainties associated with the use of the libration point orbiting ISEE-3 spacecraft as a solar wind monitor are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080031334&hterms=solar+energy+advantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsolar%2Benergy%2Badvantage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080031334&hterms=solar+energy+advantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsolar%2Benergy%2Badvantage"><span>Recent Insights into the Nature of Turbulence in the Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldstein, Melvun L.</p> <p>2008-01-01</p> <p>During the past several years, studies of solar wind turbulence using data from Cluster and other spacecraft, and results from new numerical simulations, have revealed new aspects of solar wind turbulence. I will try to highlight some of that research. At the shortest length scales and highest frequencies, there is renewed interest in determining how the turbulence dissipates, e.g., whether by kinetic Alfven waves or whistler turbulence. Finding observational evidence for exponential damping of solar wind fluctuations has proven challenging. New studies using a combination of flux gate and search coil magnetometer data from Cluster have extended this search (in the spacecraft frame of reference) to more than 10 Hertz. New models and simulations are also being used to study the dissipation. A detailed study of fluctuations in the magnetosheath suggests that turbulent dissipation could be occurring at very thin current sheets as had been suggested by two-dimensional MHD simulations more than 20 years ago. Data from the four Cluster spacecraft, now at their maximum separation of 10,000 km provide new opportunities to investigate the symmetry properties, scale lengths, and the relative proportion of magnetic energy in parallel and perpendicular wave numbers of solar wind turbulence. By utilizing well-calibrated electron data, it has been possible to take advantage of the tetrahedral separation of Cluster in the solar wind near apogee to measure directly the compressibility and vorticity of the solar wind plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663942-theory-transport-nearly-incompressible-magnetohydrodynamic-turbulence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663942-theory-transport-nearly-incompressible-magnetohydrodynamic-turbulence"><span>Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zank, G. P.; Adhikari, L.; Hunana, P.</p> <p>2017-02-01</p> <p>The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuationsmore » in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3718187','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3718187"><span>Regional variations in the health, environmental, and climate benefits of wind and solar generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M. Granger; Apt, Jay</p> <p>2013-01-01</p> <p>When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region. PMID:23798431</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH51A2478G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH51A2478G"><span>Ion Ramp Structure of Bow shocks and Interplanetary Shocks: Differences and Similarities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goncharov, O.; Safrankova, J.; Nemecek, Z.; Koval, A.; Szabo, A.; Prech, L.; Zastenker, G. N.; Riazantseva, M.</p> <p>2017-12-01</p> <p>Collisionless shocks play a significant role in the solar wind interaction with the Earth. Fast forward shocks driven by coronal mass ejections or by interaction of fast and slow solar wind streams can be encountered in the interplanetary space, whereas the bow shock is a standing fast reverse shock formed by an interaction of the supersonic solar wind with the Earth magnetic field. Both types of shocks are responsible for a transformation of a part of the energy of the directed solar wind motion to plasma heating and to acceleration of reflected particles to high energies. These processes are closely related to the shock front structure. In present paper, we compares the analysis of low-Mach number fast forward interplanetary shocks registered in the solar wind by the DSCOVR, WIND, and ACE with observations of bow shock crossings observed by the Cluster, THEMIS, MMS, and Spektr-R spacecraft. An application of the high-time resolution data facilitates further discussion on formation mechanisms of both types of shocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23798431','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23798431"><span>Regional variations in the health, environmental, and climate benefits of wind and solar generation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M Granger; Apt, Jay</p> <p>2013-07-16</p> <p>When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MS%26E...78a2042T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MS%26E...78a2042T"><span>The Feasibility of Wind and Solar Energy Application for Oil and Gas Offshore Platform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tiong, Y. K.; Zahari, M. A.; Wong, S. F.; Dol, S. S.</p> <p>2015-04-01</p> <p>Renewable energy is an energy which is freely available in nature such as winds and solar energy. It plays a critical role in greening the energy sector as these sources of energy produce little or no pollution to environment. This paper will focus on capability of renewable energy (wind and solar) in generating power for offshore application. Data of wind speeds and solar irradiation that are available around SHELL Sabah Water Platform for every 10 minutes, 24 hours a day, for a period of one year are provided by SHELL Sarawak Sdn. Bhd. The suitable wind turbine and photovoltaic panel that are able to give a high output and higher reliability during operation period are selected by using the tabulated data. The highest power output generated using single wind energy application is equal to 492 kW while for solar energy application is equal to 20 kW. Using the calculated data, the feasibility of renewable energy is then determined based on the platform energy demand.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JGR...10412605T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JGR...10412605T"><span>Solar cycle dependence of the heliospheric shape deduced from a global MHD simulation of the interaction process between a nonuniform time-dependent solar wind and the local interstellar medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanaka, T.; Washimi, H.</p> <p>1999-06-01</p> <p>The global structure of the solar wind/very local interstellar medium interaction is studied from a fully three-dimensional time-dependent magnetohydrodynamic model, in which the solar wind speed increases from 400 to 800 km/s in going from the ecliptic to pole and the heliolatitude of the low-high-speed boundary changes from 30° to 80° in going from the solar minimum to solar maximum. In addition, the interplanetary magnetic field (IMF) changes its polarity at the solar maximum. As a whole, the shapes of the terminal shock (TS) and heliopause (HP) are elongated along the solar polar axis owing to a high solar wind ram pressure over the poles. In the ecliptic plane, the heliospheric structure changes little throughout a solar cycle. The TS in this plane shows a characteristic bullet-shaped structure. In the polar plane, on the other hand, the shape of the TS exhibits many specific structures according to the stage of the solar cycle. These structures include the polygonal configuration of the polar TS seen around the solar minimum, the mesa- and terrace-shaped TSs in the high- and low-speed solar wind regions seen around the ascending phase, and the chimney-shaped TS in the high-speed solar wind region seen around the solar maximum. These structures are formed from different combinations of right-angle shock, oblique shock, and steep oblique shock so as to transport the heliosheath plasma most efficiently toward the heliotail (HT). In the HT, the hot and weakly-magnetized plasma from the high-heliolatitude TS invades as far as the ecliptic plane. A weakly time-dependent recirculation flow in the HT is a manifestation of invading flow. Distributions of magnetic field in the HT, which are a pile-up of the compressed MF over several solar cycles, are modified by the flow from high-heliolatitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654481-magnetic-nulls-super-radial-expansion-solar-corona','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654481-magnetic-nulls-super-radial-expansion-solar-corona"><span>Magnetic Nulls and Super-radial Expansion in the Solar Corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gibson, Sarah E.; Dalmasse, Kevin; Tomczyk, Steven</p> <p></p> <p>Magnetic fields in the Sun’s outer atmosphere—the corona—control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity. CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factorsmore » from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170005502','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170005502"><span>Magnetic Nulls and Super-Radial Expansion in the Solar Corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gibson, Sarah E.; Dalmasse, Kevin; Rachmeler, Laurel A.; De Rosa, Marc L.; Tomczyk, Steven; De Toma, Giuliana; Burkepile, Joan; Galloy, Michael</p> <p>2017-01-01</p> <p>Magnetic fields in the Sun's outer atmosphere, the corona, control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity.CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factors from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950046490&hterms=1101&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3D%2526%25231101','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950046490&hterms=1101&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3D%2526%25231101"><span>Mass flux in the ecliptic plane and near the Sun deduced from Doppler scintillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Woo, Richard; Gazis, Paul R.</p> <p>1994-01-01</p> <p>During the late declining phase of the solar cycle, the tilt of the solar magnetic dipole with respect to the Sun's rotation axis leads to large-scale organization of the solar wind, such that alternating regions of high- and low-speed solar wind are observed in the ecliptic plane. In this paper, we use Doppler scintillation measurements to investigate mass flux of these two types of solar wind in the ecliptic plane and inside 0.3 AU, where in situ measurements have not been possible. To the extent that Doppler scintillation reflects mass flux, we find that mass flux in high-speed streams: (1) is lower (by a factor of approximately 2.2) than the mass flux of the average solar wind in the heliocentric distance range of 0.3-0.5 AU; (2) is lower still (by as much as a factor of about 4) than the mass flux of the slow solar wind associated with the streamer belt; and (3) appears to grow with heliocentric distance. These Doppler scintillation results are consistent with the equator to pole decrease in mass flux observed in earlier spectral broadening measurements, and with trends and differences between high- and low-speed solar wind observed by in situ measurements in the range of 0.3-0.1 AU. The mass flux results suggest that the solar wind flow in high-speed streams is convergent towards the ecliptic near the Sun, becoming less convergent and approaching radial with increasing heliocentric distance beyond 0.3 AU. The variability of mass flux observed within equatorial and polar high-speed streams close to the Sun is strikingly low. This low variability implies that, as Ulysses currently ascends to higher latitudes and spends more time in the south polar high-speed stream after crossing the heliocentric current sheet, it can expect to observe a marked decrease in variations of both mass flux and solar wind speed, a trend that appears to have started already.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030020816&hterms=background+wind&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbackground%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030020816&hterms=background+wind&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbackground%2Bwind"><span>Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Esser, Ruth; Wagner, William (Technical Monitor)</p> <p>2003-01-01</p> <p>Ion charge states measured in situ in interplanetary space are formed in the inner coronal regions below 5 solar radii, hence they carry information on the properties of the solar wind plasma in that region. The plasma parameters that are important in the ion forming processes are the electron density, the electron temperature and the flow speeds of the individual ion species. In addition, if the electron distribution function deviates from a Maxwellian already in the inner corona, then the enhanced tail of that distribution function, also called halo, greatly effects the ion composition. The goal of the proposal is to make use of ion fractions observed in situ in the solar wind to learn about both, the plasma conditions in the inner corona and the expansion and ion formation itself. This study is carried out using solar wind models, coronal observations, and ion fraction calculations in conjunction with the in situ observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830025552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830025552"><span>Solar wind iron abundance variations at solar wind speeds up to 600 km s sup -1, 1972 to 1976</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mitchell, D. G.; Roelof, E. C.; Bame, S. J.</p> <p>1982-01-01</p> <p>The Fe/H ratios in the peaks of high speed streams (HSS) were analyzed during the decline of Solar Cycle 20 and the following minimum (October 1972 to December 1976). The response of the 50 to 200 keV ion channel of the APL/JHU energetic particle experiment (EPE) on IMP-7 and 8 was utilized to solar wind iron ions at high solar wind speeds (V or = 600 km/sec). Fe measurements with solar wind H and He parameters were compared from the Los Alamos National Laboratory (LANL) instruments on the same spacecraft. In general, the Fe distribution parameters (bulk velocity, flow direction, temperature) are found to be similar to the LANL He parameters. Although the average Fe/H ration in many steady HSS peaks agrees within observational uncertainties with the nominal coronal ratio of 4.7 x 0.00001, abundance variations of a factor of up to 6 are obtained across a given coronal-hole associated HSS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-06-25/pdf/2013-15077.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-06-25/pdf/2013-15077.pdf"><span>78 FR 38028 - Winding Creek Solar LLC; Notice of Petition for Enforcement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-06-25</p> <p>... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EL13-71-000 ; QF13-403-001] Winding Creek Solar LLC; Notice of Petition for Enforcement Take notice that on June 13, 2013, Winding Creek Solar LLC filed a Petition for Enforcement, pursuant to section 210(h)(2)(B) of the Public Utility...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-12-29/pdf/2011-33429.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-12-29/pdf/2011-33429.pdf"><span>76 FR 81906 - Advance Notice of Proposed Rulemaking Regarding a Competitive Process for Leasing Public Lands...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-12-29</p> <p>... Solar and Wind Energy Development AGENCY: Bureau of Land Management. ACTION: Advance notice of proposed... to establish a competitive process for leasing public lands for solar and wind energy development... process for issuing Right-of-Way (ROW) leases for solar and wind energy development that is based upon the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title25-vol1/pdf/CFR-2013-title25-vol1-sec162-502.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title25-vol1/pdf/CFR-2013-title25-vol1-sec162-502.pdf"><span>25 CFR 162.502 - Who must obtain a WEEL or WSR lease?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... Wind and Solar Resource Leases General Provisions Applicable to Weels and Wsr Leases § 162.502 Who must... possession of the Indian land to conduct wind energy evaluation activities is authorized: (1) Under § 162.005.../or solar resources must obtain a WSR lease. (c) A tribe that conducts wind and solar resource...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title25-vol1/pdf/CFR-2014-title25-vol1-sec162-502.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title25-vol1/pdf/CFR-2014-title25-vol1-sec162-502.pdf"><span>25 CFR 162.502 - Who must obtain a WEEL or WSR lease?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>... Wind and Solar Resource Leases General Provisions Applicable to Weels and Wsr Leases § 162.502 Who must... possession of the Indian land to conduct wind energy evaluation activities is authorized: (1) Under § 162.005.../or solar resources must obtain a WSR lease. (c) A tribe that conducts wind and solar resource...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-06-10/pdf/2010-13959.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-06-10/pdf/2010-13959.pdf"><span>75 FR 32963 - Notice of Availability of the Draft Resource Management Plan and Draft Environmental Impact...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-06-10</p> <p>.... Alternative B: Same as Alternative A. Alternative C: ACEC would be rescinded. Closed to wind and solar energy... mineral material sales. Closed to wind and solar energy. Closed to motorized travel. Visual Resource... and Hilltop. Closed to wind and solar energy. Visual Resource Management Class I would apply to a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950037083&hterms=mass+fraction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmass%2Bfraction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950037083&hterms=mass+fraction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmass%2Bfraction"><span>The solar cycle variation of coronal mass ejections and the solar wind mass flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Webb, David F.; Howard, Russell A.</p> <p>1994-01-01</p> <p>Coronal mass ejections (CMEs) are an important aspect of coronal physics and a potentially significant contributor to perturbations of the solar wind, such as its mass flux. Sufficient data on CMEs are now available to permit study of their longer-term occurrency patterns. Here we present the results of a study of CME occurrence rates over more than a complete 11-year solar sunspot cycle and a comparison of these rates with those of other activity related to CMEs and with the solar wind particle flux at 1 AU. The study includes an evaluation of correlations to the CME rates, which include instrument duty cycles, visibility functions, mass detection thresholds, and geometrical considerations. The main results are as follows: (1) The frequency of occurrence of CMEs tends to track the solar activity cycle in both amplitude and phase; (2) the CME rates from different instruments, when corrected for both duty cycles and visibility functions, are reasonably consistent; (3) considering only longer-term averages, no one class of solar activity is better correlated with CME rate than any other; (4) the ratio of the annualized CME to solar wind mass flux tends to track the solar cycle; and (5) near solar maximum, CMEs can provide a significant fraction (i.e., approximately equals 15%) of the average mass flux to the near-ecliptic solar wind.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT........23Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT........23Z"><span>Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Wei</p> <p></p> <p>Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The optimal sizing method was developed to find the system optimum configuration and settings that can achieve the custom-required Renewable Energy Fraction (fRE) of the system with minimum Annualized Cost of System (ACS). Du to the need for optimum design of the hybrid systems, an analysis of local weather conditions (solar radiation and wind speed) was carried out for the potential installation site, and mathematical simulation of the hybrid systems' components was also carried out including PV array, wind turbine and battery bank. By statistically analyzing the long-term hourly solar and wind speed data, Hong Kong area is found to have favorite solar and wind power resources compared with other areas, which validates the practical applications in Hong Kong and Guangdong area. Simulation of PV array performance includes three main parts: modeling of the maximum power output of the PV array, calculation of the total solar radiation on any tilted surface with any orientations, and PV module temperature predictions. Five parameters are introduced to account for the complex dependence of PV array performance upon solar radiation intensities and PV module temperatures. The developed simulation model was validated by using the field-measured data from one existing building-integrated photovoltaic system (BIPV) in Hong Kong, and good simulation performance of the model was achieved. Lead-acid batteries used in hybrid systems operate under very specific conditions, which often cause difficulties to predict when energy will be extracted from or supplied to the battery. In this thesis, the lead-acid battery performance is simulated by three different characteristics: battery state of charge (SOC), battery floating charge voltage and the expected battery lifetime. Good agreements were found between the predicted values and the field-measured data of a hybrid solar-wind project. At last, one 19.8kW hybrid solar-wind power generation project, designed by the optimal sizing method and set up to supply power for a telecommunication relay station on a remote island of Guangdong province, was studied. Simulation and experimental results about the operating performances and characteristics of the hybrid solar-wind project have demonstrated the feasibility and accuracy of the recommended optimal sizing method developed in this thesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980217101','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980217101"><span>Solar-Planetary Relationships: Magnetospheric Physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barnes, Aaron</p> <p>1979-01-01</p> <p>The quadrennium 1975-1978 was a period of great advance for solar-wind studies, a period that combined exploration of new regions with increased maturity in established fields of study. The Helios, Pioneer, and Voyager spacecraft have been exploring the inner and outer regions of the solar wind. There has been a rebirth of the study of possible relations between solar variability and Earth's climate and weather, stimulated largely by Eddy's investigation of the Maunder Minimum; the solar wind may well prove to be a significant link in solar-terrestrial relations. Unique coronal data from the SKYLAB 1973-1974 mission, in combination with satellite and ground-based observations, provided the basis for identification of coronal holes as the main source of highspeed solar wind. The interplanetary medium has continued to serve as a laboratory for the study of plasma processes that cannot yet be studied in terrestrial laboratories, providing insights of potential importance both for controlled fusion research and for astrophysics. It is ironic that such a productive period, the legacy of many past space missions, was also a time of severely limited opportunity for new space investigations; the outlook for the future is equally austere. Especially regrettable is the dearth of career opportunities for young scientists in this field; comparison of the bibliography of this report with that of its predecessor 4 years ago shows few new names. Despite such problems, research has continued with enthusiasm and much has been learned. The present report will survey selected topics related to the origin, expansion, and acceleration of the solar wind and the plasma physics of the interplanetary medium. Companion reports deal with a number of closely related topics, including the heliocentric distance and latitude variation of the solar wind and its fluctuations topology of the interplanetary magnetic field morphology of solar-wind streams and shocks, sunweather studies, and interplanetary manifestations of type-3 bursts. Of the subjects that fall within the scope of this report, the study of the relationship between coronal holes and solar-wind streams, and the associated revision of our ideas about solar wind acceleration and heating, have had the most impact; hence I review these topics in considerable detail. In addition, I discuss the topics of hydromagnetic waves and turbulence, and interplanetary electrons, as items of particular importance during the past quadrennium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMSM31A0293J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMSM31A0293J"><span>THE Role OF Anisotropy AND Intermittency IN Solar Wind/Magnetosphere Coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jankovicova, D.; Voros, Z.</p> <p>2006-12-01</p> <p>Turbulent fluctuations are common in the solar wind as well as in the Earth's magnetosphere. The fluctuations of both magnetic field and plasma parameters exhibit non-Gaussian statistics. Neither the amplitude of these fluctuations nor their spectral characteristics can provide a full statistical description of multi-scale features in turbulence. It substantiates a statistical approach including the estimation of experimentally accessible statistical moments. In this contribution, we will directly estimate the third (skewness) and the fourth (kurtosis) statistical moments from the available time series of magnetic measurements in the solar wind (ACE and WIND spacecraft) and in the Earth's magnetosphere (SYM-H index). Then we evaluate how the statistical moments change during strong and weak solar wind/magnetosphere coupling intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JASTP.147...21M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JASTP.147...21M"><span>Solar activity variations of nocturnal thermospheric meridional winds over Indian longitude sector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madhav Haridas, M. K.; Manju, G.; Arunamani, T.</p> <p>2016-09-01</p> <p>The night time F-layer base height information from ionosondes located at two equatorial stations Trivandrum (TRV 8.5°N, 77°E) and Sriharikota (SHAR 13.7°N, 80.2°E) spanning over two decades are used to derive the climatology of equatorial nocturnal Thermospheric Meridional Winds (TMWs) prevailing during High Solar Activity (HSA) and Low Solar Activity (LSA) epochs. The important inferences from the analysis are 1) Increase in mean equatorward winds observed during LSA compared to HSA during pre midnight hours; 25 m/s for VE (Vernal Equinox) and 20 m/s for SS (Summer Solstice), AE (autumnal Equinox) and WS (Winter Solstice). 2) Mean wind response to Solar Flux Unit (SFU) is established quantitatively for all seasons for pre-midnight hours; rate of increase is 0.25 m/s/SFU for VE, 0.2 m/s/SFU for SS and WS and 0.08 m/s/SFU for AE. 3) Theoretical estimates of winds for the two epochs are performed and indicate the role of ion drag forcing as a major factor influencing TMWs. 4) Observed magnitude of winds and rate of flux dependencies are compared to thermospheric wind models. 5) Equinoctial asymmetry in TMWs is observed for HSA at certain times, with more equatorward winds during AE. These observations lend a potential to parameterize the wind components and effectively model the winds, catering to solar activity variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3900L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3900L"><span>Saptio-temporal complementarity of wind and solar power in India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lolla, Savita; Baidya Roy, Somnath; Chowdhury, Sourangshu</p> <p>2015-04-01</p> <p>Wind and solar power are likely to be a part of the solution to the climate change problem. That is why they feature prominently in the energy policies of all industrial economies including India. One of the major hindrances that is preventing an explosive growth of wind and solar energy is the issue of intermittency. This is a major problem because in a rapidly moving economy, energy production must match the patterns of energy demand. Moreover, sudden increase and decrease in energy supply may destabilize the power grids leading to disruptions in power supply. In this work we explore if the patterns of variability in wind and solar energy availability can offset each other so that a constant supply can be guaranteed. As a first step, this work focuses on seasonal-scale variability for each of the 5 regional power transmission grids in India. Communication within each grid is better than communication between grids. Hence, it is assumed that the grids can switch sources relatively easily. Wind and solar resources are estimated using the MERRA Reanalysis data for the 1979-2013 period. Solar resources are calculated with a 20% conversion efficiency. Wind resources are estimated using a 2 MW turbine power curve. Total resources are obtained by optimizing location and number of wind/solar energy farms. Preliminary results show that the southern and western grids are more appropriate for cogeneration than the other grids. Many studies on wind-solar cogeneration have focused on temporal complementarity at local scale. However, this is one of the first studies to explore spatial complementarity over regional scales. This project may help accelerate renewable energy penetration in India by identifying regional grid(s) where the renewable energy intermittency problem can be minimized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15.1461O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15.1461O"><span>Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Owens, Mathew J.; Riley, Pete</p> <p>2017-11-01</p> <p>Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9652R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9652R"><span>Comparison of solar wind driving of the aurora in the two hemispheres due to the solar wind dynamo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reistad, Jone Peter; Østgaard, Nikolai; Magnus Laundal, Karl; Haaland, Stein; Tenfjord, Paul; Oksavik, Kjellmar</p> <p>2014-05-01</p> <p>Event studies of simultaneous global imaging of the aurora in both hemispheres have suggested that an asymmetry of the solar wind driving between the two hemispheres could explain observations of non-conjugate aurora during specific driving conditions. North-South asymmetries in energy transfer from the solar wind across the magnetopause is believed to depend upon the dipole tilt angle and the x-component of the interplanetary magnetic field (IMF). Both negative tilt (winter North) and negative IMF Bx is expected to enhance the efficiency of the solar wind dynamo in the Northern Hemisphere. By the same token, positive tilt and IMF Bx is expected to enhance the solar wind dynamo efficiency in the Southern Hemisphere. We show a statistical study of the auroral response from both hemispheres using global imaging where we compare results during both favourable and not favourable conditions in each hemisphere. By this study we will address the question of general impact on auroral hemispheric asymmetries by this mechanism - the asymmetric solar wind dynamo. We use data from the Wideband Imaging Camera on the IMAGE spacecraft which during its lifetime from 2000-2005 covered both hemispheres. To ease comparison of the two hemispheres, seasonal differences in auroral brightness is removed as far as data coverage allows by only using events having small dipole tilt angles. Hence, the IMF Bx is expected to be the controlling parameter for the hemispheric preference of strongest solar wind dynamo efficiency in our dataset. Preliminary statistical results indicate the expected opposite behaviour in the two hemispheres, however, the effect is believed to be weak.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29398982','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29398982"><span>Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Owens, Mathew J; Riley, Pete</p> <p>2017-11-01</p> <p>Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5784391','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5784391"><span>Probabilistic Solar Wind Forecasting Using Large Ensembles of Near‐Sun Conditions With a Simple One‐Dimensional “Upwind” Scheme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Riley, Pete</p> <p>2017-01-01</p> <p>Abstract Long lead‐time space‐weather forecasting requires accurate prediction of the near‐Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near‐Sun solar wind and magnetic field conditions provide the inner boundary condition to three‐dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics‐based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near‐Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near‐Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near‐Sun solar wind speed at a range of latitudes about the sub‐Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun‐Earth line. Propagating these conditions to Earth by a three‐dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one‐dimensional “upwind” scheme is used. The variance in the resulting near‐Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996–2016, the upwind ensemble is found to provide a more “actionable” forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large). PMID:29398982</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760017036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760017036"><span>The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steinberg, J. L.; Caroubalos, C.</p> <p>1976-01-01</p> <p>The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003hst..prop10083C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003hst..prop10083C"><span>HST UV Images of Saturn's Aurora Coordinated with Cassini Solar Wind Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clarke, John</p> <p>2003-07-01</p> <p>A key measurement goal of the Cassini mission to Saturn is to obtain simultaneous solar wind and auroral imaging measurements in a campaign scheduled for Jan. 2004. Cassini will measure the solar wind approaching Saturn continuously from 9 Jan. - 6 Feb., but not closer to Saturn due to competing spacecraft orientation constraints. The only system capable of imaging Saturn's aurora in early 2004 will be HST. In this community DD proposal we request the minimum HST time needed to support the Cassini mission during the solar wind campaign with UV images of Saturn's aurora. Saturn's magnetosphere is intermediate between the "closed" Jovian case with large internal sources of plasma and the Earth's magnetosphere which is open to solar wind interactions. Saturn's aurora has been shown to exhibit large temporal variations in brightness and morphology from Voyager and HST observations. Changes of auroral emitted power exceeding one order of magnitude, dawn brightenings, and latitudinal motions of the main oval have all been observed. Lacking knowledge of solar wind conditions near Saturn, it has not been possible to determine its role in Saturn's auroral processes, nor the mechanisms controlling the auroral precipitation. During Cassini's upcoming approach to Saturn there will be a unique opportunity to answer these questions. We propose to image one complete rotation of Saturn to determine the corotational and longitudinal dependences of the auroral activity. We will then image the active sector of Saturn once every two days for a total coverage of 26 days during the Cassini campaign to measure the upstream solar wind parameters. This is the minimum coverage needed to ensure observations of the aurora under solar wind pressure variations of more than a factor of two, based on the solar wind pressure variations measured by Voyager 2 near Saturn on the declining phase of solar activity. The team of proposers has carried out a similar coordinated observing campaign of Jupiter during the Cassini flyby, resulting in a set of papers and HST images on the cover of Nature on 28 February 2002.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040082015','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040082015"><span>XMM-Newton Observations of Solar Wind Charge Exchange Emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Snowden, S. L.; Collier, M. R.; Kuntz, K. D.</p> <p>2004-01-01</p> <p>We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770059881&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D80%26Ntt%3Dlazarus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770059881&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D80%26Ntt%3Dlazarus"><span>A comparison of solar wind streams and coronal structure near solar minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nolte, J. T.; Davis, J. M.; Gerassimenko, M.; Lazarus, A. J.; Sullivan, J. D.</p> <p>1977-01-01</p> <p>Solar wind data from the MIT detectors on the IMP 7 and 8 satellites and the SOLRAD 11B satellite for the solar-minimum period September-December, 1976, were compared with X-ray images of the solar corona taken by rocket-borne telescopes on September 16 and November 17, 1976. There was no compelling evidence that a coronal hole was the source of any high speed stream. Thus it is possible that either coronal holes were not the sources of all recurrent high-speed solar wind streams during the declining phase of the solar cycle, as might be inferred from the Skylab period, or there was a change in the appearance of some magnetic field regions near the time of solar minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1118B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1118B"><span>Dawn-dusk asymmetry induced by the Parker spiral angle in the plasma dynamics around comet 67P/Churyumov-Gerasimenko</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Behar, E.; Tabone, B.; Nilsson, H.</p> <p>2018-05-01</p> <p>When interacting, the solar wind and the ionised atmosphere of a comet exchange energy and momentum. Our aim is to understand the influence of the average Parker spiral configuration of the solar wind magnetic field on this interaction. We compare the theoretical expectations of an analytical generalised gyromotion with Rosetta observations at comet 67P/Churyumov-Gerasimenko. A statistical approach allows one to overcome the lack of upstream solar wind measurement. We find that additionally to their acceleration along (for cometary pick-up ions) or against (for solar wind ions) the upstream electric field orientation and sense, the cometary pick-up ions are drifting towards the dawn side of the coma, while the solar wind ions are drifting towards the dusk side of the coma, independent of the heliocentric distance. The dynamics of the interaction is not taking place in a plane, as often assumed in previous works.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002066','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002066"><span>Comparative Validation of Realtime Solar Wind Forecasting Using the UCSD Heliospheric Tomography Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>MacNeice, Peter; Taktakishvili, Alexandra; Jackson, Bernard; Clover, John; Bisi, Mario; Odstrcil, Dusan</p> <p>2011-01-01</p> <p>The University of California, San Diego 3D Heliospheric Tomography Model reconstructs the evolution of heliospheric structures, and can make forecasts of solar wind density and velocity up to 72 hours in the future. The latest model version, installed and running in realtime at the Community Coordinated Modeling Center(CCMC), analyzes scintillations of meter wavelength radio point sources recorded by the Solar-Terrestrial Environment Laboratory(STELab) together with realtime measurements of solar wind speed and density recorded by the Advanced Composition Explorer(ACE) Solar Wind Electron Proton Alpha Monitor(SWEPAM).The solution is reconstructed using tomographic techniques and a simple kinematic wind model. Since installation, the CCMC has been recording the model forecasts and comparing them with ACE measurements, and with forecasts made using other heliospheric models hosted by the CCMC. We report the preliminary results of this validation work and comparison with alternative models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSH41F..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSH41F..05K"><span>Integrating Multiple Approaches to Solving Solar Wind Turbulence Problems (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karimabadi, H.; Roytershteyn, V.</p> <p>2013-12-01</p> <p>The ultimate understanding of the solar wind turbulence must explain the physical process and their connection at all scales ranging from the largest down to electron kinetic scales. This is a daunting task and as a result a more piecemeal approach to the problem has been followed. For example, the role of each wave has been explored in isolation and in simulations with scales limited to those of the underlying waves. In this talk, we present several issues with this approach and offer an alternative with an eye towards more realistic simulations of solar wind turbulence. The main simulation techniques used have been MHD, Hall MHD, hybrid, fully kinetic, and gyrokinetic. We examine the limitations of each approach and their viability for studies of solar wind turbulence. Finally, the effect of initial conditions on the resulting turbulence and their comparison with solar wind are demonstrated through several kinetic simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990028110&hterms=Whole+Sale&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DWhole%2BSale','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990028110&hterms=Whole+Sale&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DWhole%2BSale"><span>A search for the coronal origins of fast solar wind streams during the whole sun month period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lazarus, A. J.; Steinberg, J. T.; Biesecker, D. A.; Forsyth, R. J.; Galvin, A. B.; Ipavich, F. M.; Gibson, S. E.; Lecinski, A.; Hassler, D. M.; Hoeksema, J. T.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_19990028110'); toggleEditAbsImage('author_19990028110_show'); toggleEditAbsImage('author_19990028110_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_19990028110_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_19990028110_hide"></p> <p>1997-01-01</p> <p>The solar wind streams observed from the Solar and Heliospheric Observatory (SOHO) and Ulysses, WIND spacecraft during the whole solar month are discussed. These solar wind streams, with speeds in excess of 500 km/s, were detected from 10 August to 8 September 1996. The data covering Carrington rotations 1912 and 1913 are presented. The magnetic field azimuthal angle observations at 1 AU from WIND show that all the streams are associated with outward fields near the sun. The stream structure near 320 deg was associated with the central meridian passage of a coronal hole. The Fe XIV ground based observations show a region of low intensity in the zero to 170 deg longitude. The question of whether the streams arise from equatorial features or represent flows coming from higher latitude features is not solved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1018254-sputtering-lunar-regolith-simulant-protons-multicharged-heavy-ions-solar-wind-energies','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1018254-sputtering-lunar-regolith-simulant-protons-multicharged-heavy-ions-solar-wind-energies"><span>Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meyer, Fred W; Harris, Peter R; Taylor, C. N.</p> <p>2011-01-01</p> <p>We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have highermore » physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830052897&hterms=ACCOUNTS+CHARGE&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DACCOUNTS%2BBY%2BCHARGE','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830052897&hterms=ACCOUNTS+CHARGE&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DACCOUNTS%2BBY%2BCHARGE"><span>Charge exchange in solar wind-cometary interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gombosi, T. I.; Horanyi, M.; Kecskemety, K.; Cravens, T. E.; Nagy, A. F.</p> <p>1983-01-01</p> <p>A simple model of a cometary spherically symmetrical atmosphere and ionosphere is considered. An analytic solution of the governing equations describing the radial distribution of the neutral and ion densities is found. The new solution is compared to the well-known solution of the equations containing only ionization terms. Neglecting recombination causes a significant overestimate of the ion density in the vicinity of the comet. An axisymmetric model of the solar wind-cometary interaction is considered, taking into account the loss of solar wind ions due to charge exchange. The calculations predict that for active comets, solar wind absorption due to charge exchange becomes important at a few thousand kilometers from the nucleus, and a surface separating the shocked solar wind from the cometary ionosphere develops in this region. These calculations are in reasonable agreement with the few observations available for the ionopause location at comets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7668G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7668G"><span>Juno-UVS approach observations of Jupiter's auroras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gladstone, G. R.; Versteeg, M. H.; Greathouse, T. K.; Hue, V.; Davis, M. W.; Gérard, J.-C.; Grodent, D. C.; Bonfond, B.; Nichols, J. D.; Wilson, R. J.; Hospodarsky, G. B.; Bolton, S. J.; Levin, S. M.; Connerney, J. E. P.; Adriani, A.; Kurth, W. S.; Mauk, B. H.; Valek, P.; McComas, D. J.; Orton, G. S.; Bagenal, F.</p> <p>2017-08-01</p> <p>Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of 2 h and a decay time of 5 h.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1312472-transient-stability-us-western-interconnection-high-wind-solar-generation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1312472-transient-stability-us-western-interconnection-high-wind-solar-generation"><span>Transient Stability of the US Western Interconnection with High Wind and Solar Generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Clark, Kara; Miller, Nicholas W.; Shao, Miaolei</p> <p></p> <p>The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability of the WI with high penetrations of wind and solar generation. The mainmore » goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28989207','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28989207"><span>Juno-UVS approach observations of Jupiter's auroras.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gladstone, G R; Versteeg, M H; Greathouse, T K; Hue, V; Davis, M W; Gérard, J-C; Grodent, D C; Bonfond, B; Nichols, J D; Wilson, R J; Hospodarsky, G B; Bolton, S J; Levin, S M; Connerney, J E P; Adriani, A; Kurth, W S; Mauk, B H; Valek, P; McComas, D J; Orton, G S; Bagenal, F</p> <p>2017-08-16</p> <p>Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of ~2 h and a decay time of ~5 h.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA616385','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA616385"><span>Space-Based Solar Power: A Technical, Economic, and Operational Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-04-01</p> <p>reports also address alternative and renew- able sources such as biomass, wind, geothermal , and solar (thermal and photovoltaic), which are becom- ing...2025 using solar, wind, biomass, and geothermal energy generation technologies.86 Table 3. Army Sites for Terrestrial Solar Photovoltaic Power</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSH13C2268L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSH13C2268L"><span>On the Cause of Solar Differential Rotations in the Solar Interior and Near the Solar Surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lyu, L.</p> <p>2012-12-01</p> <p>A theoretical model is proposed to explain the cause of solar differential rotations observed in the solar interior and near the solar surface. We propose that the latitudinal differential rotation in the solar convection zone is a manifestation of an easterly wind in the mid latitude. The speed of the easterly wind is controlled by the magnitude of the poleward temperature gradient in the lower part of the solar convection zone. The poleward temperature gradient depends on the orientation and strength of the magnetic fields at different latitudes in the solar convection zone. The north-south asymmetry in the wind speed can lead to north-south asymmetry in the evolution of the solar cycle. The easterly wind is known to be unstable for a west-to-east rotating star or planet. Based on the observed differential rotations in the solar convection zone, we can estimate the easterly wind speed at about 60-degree latitude and determine the azimuthal wave number of the unstable wave modes along the zonal flow. The lowest azimuthal wave number is about m=7~8. This result is consistent with the average width of the elephant-trunk coronal hole shown in the solar X-ray images. The nonlinear evolution of the unstable easterly wind can lead to transpolar migration of coronal holes and can change the poloidal magnetic field in a very efficient way. In the study of radial differential rotation near the solar surface, we propose that the radial differential rotation depends on the radial temperature gradient. The radial temperature gradient depends on the magnetic field structure above the solar surface. The non-uniform magnetic field distribution above the solar surface can lead to non-uniform radial convections and formation of magnetic flux rope at different spatial scales. The possible cause of continuous formation and eruption of prominences near an active region will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810012473','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810012473"><span>Elemental composition of solar energetic particles. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cook, W. R., III</p> <p>1981-01-01</p> <p>The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 or = Z or = 28) and energy spectra (5 to 15 MeV/nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources: spectroscopy of the photosphere and corona, and solar wind measurements. The four flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy. The average SEP composition is in agreement with solar wind abundance results and with a number of recent coronal abundance measurements. The evidence for a common depletion of oxygen in SEPs, the corona and the solar wind relative to the photosphere suggest that the SEPs originate in the corona and that both the SEPs and solar wind sample a coronal composition which is significantly and persistently different from that of the photosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4295037','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4295037"><span>Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Luhmann, Janet G.; Petrie, Gordon; Riley, Pete</p> <p>2012-01-01</p> <p>The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020068996','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020068996"><span>Scientific Analysis of Data for the ISTP/SOLARMAX Programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lazarus, Alan J.</p> <p>2001-01-01</p> <p>This Grant supplemented our work on data analysis from the Wind spacecraft which was one of the ISTRIA fleet of spacecraft. It was targeted at observations related to the time of solar maximum in 2000. The work we proposed to do under this grant included comparison of solar wind parameters obtained from different spacecraft in order to establish correlation lengths appropriate to the solar wind and also to compare parameters to explore solar cycle effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900063357&hterms=background+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbackground%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900063357&hterms=background+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbackground%2Bwind"><span>Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ajello, J. M.</p> <p>1990-01-01</p> <p>Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019564','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019564"><span>Interaction of the plasma tail of comet Bradfield 1979L on 1980 February 6 with a possibly flare-generated solar-wind disturbance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niedner, M. B., Jr.; Brandt, J. C.; Zwickl, R. D.; Bame, S. J.</p> <p>1983-01-01</p> <p>Solar-wind plasma data from the ISEE-3 and Helios 2 spacecraft were examined in order to explain a uniquely rapid 10 deg turning of the plasma tail of comet Bradfield 1979l on 1980 February 6. An earlier study conducted before the availability of in situ solar-wind data (Brandt et al., 1980) suggested that the tail position angle change occurred in response to a solar-wind velocity shear across the polar component changed by approximately 50 km/s. The present contribution confirms this result and further suggests that the comet-tail activity was caused by non-corotating, disturbed plasma flows probably associated with an Importance 1B solar flare.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982ATJSE.104..310Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982ATJSE.104..310Y"><span>Integrated solar energy system optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Young, S. K.</p> <p>1982-11-01</p> <p>The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/575588-solar-wind-eight-proceedings-eighth-international-solar-wind-conference-proceedings','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/575588-solar-wind-eight-proceedings-eighth-international-solar-wind-conference-proceedings"><span>Solar Wind Eight: Proceedings of the Eighth International Solar Wind Conference. Proceedings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Winterhalter, D.; Gosling, J.T.; Habbal, S.R.</p> <p>1997-06-01</p> <p>These proceedings represent papers presented at the eighth international solar wind conference held at the Dana Point Resort, California. The conference was sponsored by the National Aeronautics and Space Administration(NASA), the National Science Foundation(NSF) and the Committee on space Research (COSPAR). The proceedings from this conference reflected the state of the art of solar wind research: its origin at the sun, the transport through the solar system, and its ultimate fate at the heliocentric boundaries. There were one hundred and seventy eight papers presented and nineteen papers for which the research was sponsored by the US Department of Energy havemore » been abstracted for the Energy Science and Technology database.(AIP)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017xru..conf..103I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017xru..conf..103I"><span>A Systematic Search for Solar Wind Charge Exchange Emission from the Earth's Exosphere with Suzaku</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishi, D.; Ishikawa, K.; Ezoe, Y.; Ohashi, T.; Miyoshi, Y.; Terada, N.</p> <p>2017-10-01</p> <p>We report on a systematic search of all the Suzaku archival data covering from 2005 August to 2015 May for geocoronal Solar Wind Charge eXchange (SWCX). In the vicinity of Earth, solar wind ions strip an electron from Earth's exospheric neutrals, emitting X-ray photons (e.g., Snowden et al. 1997). The X-ray flux of this geocoronal SWCX can change depending on solar wind condition and line of sight direction. Although it is an immediate background for all the X-ray astronomy observations, the X-ray flux prediction and the dependence on the observational conditions are not clear. Using the X-ray Imaging Spectrometer onboard Suzaku which has one of the highest sensitivities to the geocoronal SWCX, we searched the data for time variation of soft X-ray background. We then checked the solar wind proton flux taken with the WIND satellite and compared it with X-ray light curve. We also analyzed X-ray spectra and fitted them with a charge exchange emission line model constructed by Bodewits et al. (2007). Among 3055 data sets, 90 data showed SWCX features. The event rate seems to correlate with solar activity, while the distribution of SWCX events plotted in the solar magnetic coordinate system was relatively uniform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSH53A2140A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSH53A2140A"><span>Three-dimensional global MHD modeling of a coronal mass ejection interacting with the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>An, J.; Inoue, S.; Magara, T.; Lee, H.; Kang, J.; Hayashi, K.; Tanaka, T.; Den, M.</p> <p>2013-12-01</p> <p>We developed a three-dimensional (3D) magnetohydrodynamic (MHD) code to reproduce the structure of the solar wind, the propagation of a coronal mass ejection (CME), and the interaction between them. This MHD code is based on the finite volume method and total diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in the spherical coordinate system (Tanaka 1995). In this study, we constructed a model of the solar wind driven by the physical values at 50 solar radii obtained from the MHD tomographic method (Hayashi et al. 2003) where an interplanetary scintillation (IPS) observational data is used. By comparing the result to the observational data obtained from the near-Earth OMNI dataset, we confirmed that our simulation reproduces the velocity, temperature and density profiles obtained from the near-Earth OMNI dataset. We then insert a spheromak-type CME (Kataoka et al. 2009) into our solar-wind model and investigate the propagation process of the CME interacting with the solar wind. In particular, we discuss how the magnetic twist accumulated in a CME affects the CME-solar wind interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080013312&hterms=ionosphere&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dionosphere','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080013312&hterms=ionosphere&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dionosphere"><span>Prediction of Geomagnetic Activity and Key Parameters in High-latitude Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, George V.; Lyatsky, Wladislaw; Tan, Arjun; Ridley, Aaron</p> <p>2007-01-01</p> <p>Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere are important tasks of US Space Weather Program. Prediction reliability is dependent on the prediction method, and elements included in the prediction scheme. Two of the main elements of such prediction scheme are: an appropriate geomagnetic activity index, and an appropriate coupling function (the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity). We have developed a new index of geomagnetic activity, the Polar Magnetic (PM) index and an improved version of solar wind coupling function. PM index is similar to the existing polar cap PC index but it shows much better correlation with upstream solar wind/IMF data and other events in the magnetosphere and ionosphere. We investigate the correlation of PM index with upstream solar wind/IMF data for 10 years (1995-2004) that include both low and high solar activity. We also have introduced a new prediction function for the predicting of cross-polar-cap voltage and Joule heating based on using both PM index and upstream solar wind/IMF data. As we show such prediction function significantly increase the reliability of prediction of these important parameters. The correlation coefficients between the actual and predicted values of these parameters are approx. 0.9 and higher.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021293&hterms=understand&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dunderstand','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021293&hterms=understand&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dunderstand"><span>Can we understand the turbulent solar wind via turbulent simulations?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grappin, R.; Mangeney, A.</p> <p>1995-01-01</p> <p>We attempt to assess the present understanding of the turbulent solar wind using numerical simulations. The solar wind may be considered as a kind of wind tunnel with peculiar properties: the tunnel is spherical; the source of the wind is rotating; and the medium is a plasma containing a large-scale magnetic field. These constraints lead to anisotropic dynamics of the fluctuations on the one hand, and to non-standard (turbulent?) transport properties of the global plasma on the other hand. How much of this rich physics can we approach today via numerical simulations?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021282&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D20%26Ntt%3Dlazarus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021282&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D20%26Ntt%3Dlazarus"><span>WIND measurements of proton and alpha particle flow and number density</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steinberg, J. T.; Lazarus, A. J.; Ogilvie, J. T.; Lepping, R.; Byrnes, J.; Chornay, D.; Keller, J.; Torbert, R. B.; Bodet, D.; Needell, G. J.</p> <p>1995-01-01</p> <p>We propose to review measurements of the solar wind proton and alpha particle flow velocities and densities made since launch with the WIND SWE instrument. The SWE Faraday cup ion sensors are designed to be able to determine accurately flow vector directions, and thus can be used to detect proton-alpha particle differential flow. Instances of differential flow, and the solar wind features with which they are associated will be discussed. Additionally, the variability of the percentage of alpha particles as a fraction of the total solar wind ion density will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA33B..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA33B..07D"><span>MENTAT: A New Magnetic Meridional Neutral Wind Model for Earth's Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dandenault, P. B.</p> <p>2017-12-01</p> <p>We present a new model of thermosphere winds in the F region obtained from variations in the altitude of the peak density of the ionosphere (hmF2). The new Magnetic mEridional NeuTrAl Thermospheric (MENTAT) wind model produces magnetic-meridional neutral winds as a function of year, day of year, solar local time, solar flux, geographic latitude, and geographic longitude. The winds compare well with Fabry-Pérot Interferometer (FPI) wind observations and are shown to provide accurate specifications in regions outside of the observational database such as the midnight collapse of hmF2 at Arecibo, Puerto Rico. The model winds are shown to exhibit the expected seasonal, diurnal, and hourly behavior based on geophysical conditions. The magnetic meridional winds are similar to those from the well-known HWM14 model but there are important differences. For example, Townsville, Australia has a strong midnight collapse similar to that at Arecibo, but winds from HWM14 do not reproduce it. Also, the winds from hmF2 exhibit a moderate solar cycle dependence under certain conditions, whereas, HWM14 has no solar activity dependence. For more information, please visit http://www.mentatwinds.net/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980018649','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980018649"><span>Constraints on Solar Wind Acceleration Mechanisms from Ulysses Plasma Observations: The First Polar Pass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barnes, Aaron; Gazis, Paul R.; Phillips, John L.</p> <p>1995-01-01</p> <p>The mass flux density and velocity of the solar wind at polar latitudes can provide strong constraints on solar wind acceleration mechanisms. We use plasma observations from the first polar passage of the Ulysses spacecraft to investigate this question. We find that the mass flux density and velocity are too high to reconcile with acceleration of the solar wind by classical thermal conduction alone. Therefore acceleration of the high-speed must involve extended deposition of energy by some other mechanism, either as heat or as a direct effective pressure, due possibly to waves and/or turbulence, or completely non-classical heat transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820047282&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D80%26Ntt%3Dlazarus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820047282&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D80%26Ntt%3Dlazarus"><span>Voyager observations of solar wind proton temperature - 1-10 AU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gazis, P. R.; Lazarus, A. J.</p> <p>1982-01-01</p> <p>Simultaneous measurements are made of the solar wind proton temperatures by the Voyager 1 and 2 spacecraft, far from earth, and the IMP 8 spacecraft in earth orbit. This technique permits a separation of radial and temporal variations of solar wind parameters. The average value of the proton temperature between 1 and 9 AU is observed to decrease as r (the heliocentric radius) to the -(0.7 + or - 0.2). This is slower than would be expected for adiabatic expansion. A detailed examination of the solar wind stream structure shows that considerable heating occurs at the interface between high and low speed streams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667169-modeling-solar-wind-ulysses-voyager-new-horizons-spacecraft','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667169-modeling-solar-wind-ulysses-voyager-new-horizons-spacecraft"><span>MODELING THE SOLAR WIND AT THE ULYSSES , VOYAGER , AND NEW HORIZONS SPACECRAFT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, T. K.; Pogorelov, N. V.; Zank, G. P.</p> <p></p> <p>The outer heliosphere is a dynamic region shaped largely by the interaction between the solar wind and the interstellar medium. While interplanetary magnetic field and plasma observations by the Voyager spacecraft have significantly improved our understanding of this vast region, modeling the outer heliosphere still remains a challenge. We simulate the three-dimensional, time-dependent solar wind flow from 1 to 80 astronomical units (au), where the solar wind is assumed to be supersonic, using a two-fluid model in which protons and interstellar neutral hydrogen atoms are treated as separate fluids. We use 1 day averages of the solar wind parameters frommore » the OMNI data set as inner boundary conditions to reproduce time-dependent effects in a simplified manner which involves interpolation in both space and time. Our model generally agrees with Ulysses data in the inner heliosphere and Voyager data in the outer heliosphere. Ultimately, we present the model solar wind parameters extracted along the trajectory of the New Horizons spacecraft. We compare our results with in situ plasma data taken between 11 and 33 au and at the closest approach to Pluto on 2015 July 14.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030056680','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030056680"><span>The Interplanetary Magnetic Field and Magnetospheric Current Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>El-Alaoui, Mostafa</p> <p>2003-01-01</p> <p>We have performed systematic global magnetohydrodynamic (MHD) simulation studies driven by an idealized time series of solar wind parameters to establish basic cause and effect relationships between the solar wind variations and the ionosphere parameters. We studied six cases in which the interplanetary magnetic field (IMF) rotated from southward to northward in one minute. In three cases (cases A, B, and C) we ran five hours of southward IMF with Beta(sub Zeta) = 5 nT, followed by five hours of northward IMF with Beta(sub Zeta) = 5 nT. In the other three cases (cases D, E, and F) the magnetic field magnitude was increased to 10 nT. The solar wind parameters were: For cases A and D a density of 5 cm(exp -3), a thermal pressure of 3.3 nPa, and a solar wind speed 375 km/s, for cases B and E a density of 10 cm(exp -3), a thermal pressure of 9.9 nPa, and a solar wind speed 420 km/s, while for cases C and F a density of 15 cm(exp -3), a thermal pressure of 14.9 nPa, and a solar wind speed of 600 km/s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780039623&hterms=orbiting+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dorbiting%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780039623&hterms=orbiting+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dorbiting%2Bwind"><span>Ion acoustic waves in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gurnett, D. A.; Frank, L. A.</p> <p>1978-01-01</p> <p>Plasma wave measurements on the Helios 1 and 2 spacecraft have revealed the occurrence of electric field turbulence in the solar wind at frequencies between the electron and ion plasma frequencies. Wavelength measurements with the Imp 6 spacecraft now provide strong evidence that these waves are shortwavelength ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar wind. Comparison of the Helios results with measurements from the earth-orbiting Imp 6 and 8 spacecraft shows that the ion acoustic wave turbulence detected in interplanetary space has characteristics essentially identical to those of bursts of electrostatic turbulence generated by protons streaming into the solar wind from the earth's bow shock. In a few cases, enhanced ion acoustic wave intensities have been observed in direct association with abrupt increases in the anisotropy of the solar wind electron distribution. This relationship strongly suggests that the ion acoustic waves detected by Helios far from the earth are produced by an electron heat flux instability, as was suggested by Forslund. Possible related mechanisms which could explain the generation of ion acoustic waves by protons streaming into the solar wind from the earth's bow shock are also considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.P51D1474W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.P51D1474W"><span>Dynamic Hybrid Simulation of the Lunar Wake During ARTEMIS Crossing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiehle, S.; Plaschke, F.; Angelopoulos, V.; Auster, H.; Glassmeier, K.; Kriegel, H.; Motschmann, U. M.; Mueller, J.</p> <p>2010-12-01</p> <p>The interaction of the highly dynamic solar wind with the Moon is simulated with the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) code for the ARTEMIS P1 flyby on February 13, 2010. The A.I.K.E.F. hybrid plasma simulation code is the improved version of the Braunschweig code. It is able to automatically increase simulation grid resolution in areas of interest during runtime, which greatly increases resolution as well as performance. As the Moon has no intrinsic magnetic field and no ionosphere, the solar wind particles are absorbed at its surface, resulting in the formation of the lunar wake at the nightside. The solar wind magnetic field is basically convected through the Moon and the wake is slowly filled up with solar wind particles. However, this interaction is strongly influenced by the highly dynamic solar wind during the flyby. This is considered by a dynamic variation of the upstream conditions in the simulation using OMNI solar wind measurement data. By this method, a very good agreement between simulation and observations is achieved. The simulations show that the stationary structure of the lunar wake constitutes a tableau vivant in space representing the well-known Friedrichs diagram for MHD waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...850..164D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...850..164D"><span>Evolution of Proton and Alpha Particle Velocities through the Solar Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ďurovcová, T.; Šafránková, J.; Němeček, Z.; Richardson, J. D.</p> <p>2017-12-01</p> <p>Relative properties of solar wind protons and α particles are often used as indicators of a source region on the solar surface, and analysis of their evolution along the solar wind path tests our understanding of physics of multicomponent magnetized plasma. The paper deals with the comprehensive analysis of the difference between proton and α particle bulk velocities at 1 au with a special emphasis on interplanetary coronal mass ejections (ICMEs). A comparison of about 20 years of Wind observations at 1 au with Helios measurements closer to the Sun (0.3-0.7 au) generally confirms the present knowledge that (1) the differential speed between both species increases with the proton speed; (2) the differential speed is lower than the local Alfvén speed; (3) α particles are faster than protons near the Sun, and this difference decreases with the increasing distance. However, we found a much larger portion of observations with protons faster than α particles in Wind than in Helios data and attributed this effect to a preferential acceleration of the protons in the solar wind. A distinct population characterized by a very small differential velocity and nearly equal proton and α particle temperatures that is frequently observed around the maximum of solar activity was attributed to ICMEs. Since this population does not exhibit any evolution with increasing collisional age, we suggest that, by contrast to the solar wind from other sources, ICMEs are born in an equilibrium state and gradually lose this equilibrium due to interactions with the ambient solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950047150&hterms=PHOTOIONIZATION&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPHOTOIONIZATION','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950047150&hterms=PHOTOIONIZATION&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPHOTOIONIZATION"><span>Solar photoionization as a loss mechanism of neutral interstellar hydrogen in interplanetary space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ogawa, H. S.; Wu, C. Y. Robert; Gangopadhyay, P.; Judge, D. L.</p> <p>1995-01-01</p> <p>Two primary loss mechanisms of interstellar neutral hydrogen in interplanetary space are resonance charge exchange ionization with solar wind protons and photoionization by solar EUV radiation. The later process has often been neglected since the average photoionization rate has been estimated to be as much as 5 to 10 times smaller than the charge exchange rate. These factors are based on ionization rates from early measurements of solar EUV and solar wind fluxes. Using revised solar EUV and solar wind fluxes measured near the ecliptic plane we have reinvestigated the ionization rates of interplanetary hydrogen. The result of our analysis indicates that indeed the photoionization rate during solar minimum can be smaller than charge exchange by a factor of 5; however, during solar maximum conditions when solar EUV fluxes are high, and solar wind fluxes are low, photoionization can be over 60% of the charge exchange rate at Earth orbit. To obtain an accurate estimate of the importance of photoionization relative to charge exchange, we have included photoionization from both the ground and metastable states of hydrogen. We find, however, that the photoionization from the metastable state does not contribute significantly to the overall photoionization rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002BASI...30..517B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002BASI...30..517B"><span>Book Review: Distant wanderers / Copernicus Books/Springer , 2001/2002</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhatt, H. C.</p> <p>2002-06-01</p> <p>Are we alone in the Universe? The Earth, teeming with life, as we know it, is only one amongst the nine planets (wanderers) that wander around the Sun in more or less circular orbits. Do distant stars also have planets circling them? Are some of them similar to Earth and support life? These questions have long occupied the human mind. However, until the closing years of the twentieth century, the idea that there are stars, other than the Sun, that have planets orbiting them, remained a subject of speculation and controversy because the astronomical observing techniques used for the detection of planetary companions of stars did not have the necessary precision. During the past several years, advances in technology and dedicated efforts of planet-hunting astronomers have made it possible to detect Jupiter-like or more massive planets around nearby stars. So far about 70 such extra-solar planets have been discovered indicating that our solar system is not unique and distant wanderers are not uncommon. Distant Wanderers narrates the story of the search for extra-solar planets, even as the search is becoming more vigorous with newer instruments pushing the limits of sensitivity that has often resulted in the detection of planetary systems with totally unexpected characteristics. The book is primarily aimed at non specialists, but practicing scientists, including astronomers, will find the narrative very interesting and sometimes offering a perspective that is unfamiliar to professionals. The book begins with an introduction to some basic astronomical facts about the Universe, evolution of stars, supernovae and formation of pulsars. The first extra-solar planets were discovered in 1992 around a radio pulsar (PSR 1257+12) by measuring the oscillatory perturbations in the pulse arrival times from the pulsar caused by the presence of orbiting earth-sized planets as their gravity forces the pulsar also to move in orbit around the system barycenter. Such planetary systems are, however, very rare and only one other planet around a pulsar has so far been found. The first extra-solar planet around a sun-like star was discovered in 1995 by M. Mayor and D. Queloz circling the star 51 Pegasi by the method of Doppler spectroscopy. Since then about 70 extra-solar planets have been discovered. Most of these have been detected by Doppler spectroscopy, but now newer methods like occultation and gravitational lensing have also begun to reveal extra-solar planets and candidate extra-solar planets. Distant Wanderers gives a brief description of current theories of planet formation in dusty disks around stars as they form by gravitational collapse of rotating interstellar clouds. Various techniques used by astronomers for the detection of extra-solar planets are discussed. Important astrophysical concepts relevant to planet formation and their detection are also explained. The reader is taken to observatories on mountain tops, laboratories where instruments are built and conferences where astronomers announce their discoveries, debate the results and discuss future strategies for the search for distant wanderers. The extra-solar planets discovered so far, around sun-like stars, are similar in mass to Jupiter or more massive. Their orbits show a great variety. Some are in very close orbits (orbital periods of a few days) about the parent star, and are therefore very hot (hot Jupiters), while others are in wider orbits and cold. Some have nearly circular orbits, while many of them have highly eccentric orbits. There are extra-solar planets with masses as large as about 10 times the mass of Jupiter, close to being brown dwarfs. The existence of such planetary systems was never predicted by the standard theories of planet and star formation. As the hunt for extra-solar planets continues with more sophisticated instruments using innovative ideas, astronomers can be sure to be rewarded with more surprises. In Distant Wanderers, these discoveries and technological developments, currently taking place and being planned for the future, in the search for extra-solar planets, are narrated by the author, Bruce Dorminey, in simple language and lucid style. There are a few technical errors in the book. For example, on page 4, the angular momentum , which must always be conserved, is said to be created. In the discussion of the proper motion (which is measured on the plane of the sky) of Barnard's star, on page 111, it is incorrect to say that the star is moving toward the Sun. The book is, otherwise, well written and succeeds in communicating the excitement of the hunt for the distant wanderers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080018955&hterms=wind+monitor&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080018955&hterms=wind+monitor&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dwind%2Bmonitor"><span>The Solar Wind and Geomagnetic Activity as a Function of Time Relative to Corotating Interaction Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McPherron, Robert L.; Weygand, James</p> <p>2006-01-01</p> <p>Corotating interaction regions during the declining phase of the solar cycle are the cause of recurrent geomagnetic storms and are responsible for the generation of high fluxes of relativistic electrons. These regions are produced by the collision of a high-speed stream of solar wind with a slow-speed stream. The interface between the two streams is easily identified with plasma and field data from a solar wind monitor upstream of the Earth. The properties of the solar wind and interplanetary magnetic field are systematic functions of time relative to the stream interface. Consequently the coupling of the solar wind to the Earth's magnetosphere produces a predictable sequence of events. Because the streams persist for many solar rotations it should be possible to use terrestrial observations of past magnetic activity to predict future activity. Also the high-speed streams are produced by large unipolar magnetic regions on the Sun so that empirical models can be used to predict the velocity profile of a stream expected at the Earth. In either case knowledge of the statistical properties of the solar wind and geomagnetic activity as a function of time relative to a stream interface provides the basis for medium term forecasting of geomagnetic activity. In this report we use lists of stream interfaces identified in solar wind data during the years 1995 and 2004 to develop probability distribution functions for a variety of different variables as a function of time relative to the interface. The results are presented as temporal profiles of the quartiles of the cumulative probability distributions of these variables. We demonstrate that the storms produced by these interaction regions are generally very weak. Despite this the fluxes of relativistic electrons produced during those storms are the highest seen in the solar cycle. We attribute this to the specific sequence of events produced by the organization of the solar wind relative to the stream interfaces. We also show that there are large quantitative differences in various parameters between the two cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021297&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsolar%2Bintensity%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021297&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsolar%2Bintensity%2Bmeasurement"><span>Radio interferometer measurements of turbulence in the inner solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spangler, S. R.; Sakurai, T.; Coles, William A.; Grall, R. R.; Harmon, J. K.</p> <p>1995-01-01</p> <p>Measurements can be made of Very Long Baseline Interferometer (VLBI) phase scintillations due to plasma turbulence in the solar corona and solar wind. These measurements provide information on the spectrum and intensity of density fluctuations with scale sizes of a few hundred to several thousand kilometers. If we model the spatial power spectrum of the density fluctuations as P(sub delta n)(q) = C(sup 2)(sub N) q(sup -alpha), where q is the spatial wavenumber, these observations yield both alpha and the path-integrated value of C(sup 2)(sub N). The recently completed Very Long Baseline Array (VLBA) is capable of making such measurements over the heliocentric distance range from a few solar radii to 60 solar radii and beyond. This permits the determination with the same technique and instrument of the radial evolution of turbulent characteristics, as well as their dependence on solar wind transients, sector structure, etc. In this paper we present measurements of 13 sources observed at a wide range of solar elongations, and at different times. These observations show that the coefficient C(sup 2(sub N), depends on heliocentric distance as approximately C(sup 2)(sub N) varies as (R/Solar Radius)(sup -3.7). The radio derived power spectral characteristics are in agreement with in situ measurements by the Helios spacecraft for regions of slow solar wind, but fast solar wind does not have large enough density fluctuations to account for the magnitude of the observed scintillations. The observed radial dependence is consistent with a WKB-type evolution of the turbulence with heliocentric distance. Our data also show indication of turbulence enhancement associated with solar wind transients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM43B2506L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM43B2506L"><span>On the Role of Solar Wind Discontinuities in the ULF Power Spectral Density at the Earth's Outer Radiation Belt: a Case Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lago, A.; Alves, L. R.; Braga, C. R.; Mendonca, R. R. S.; Jauer, P. R.; Medeiros, C.; Souza, V. M. C. E. S.; Mendes, O., Jr.; Marchezi, J.; da Silva, L.; Vieira, L.; Rockenbach, M.; Sibeck, D. G.; Kanekal, S. G.; Baker, D. N.; Wygant, J. R.; Kletzing, C.</p> <p>2016-12-01</p> <p>The solar wind incident upon the Earth's magnetosphere can produce either enhancement, depletion or no change in the flux of relativistic electrons at the outer radiation belt. During geomagnetic storms progress, solar wind parameters may change significantly, and occasionally relativistic electron fluxes at the outer radiation belt show dropouts in a range of energy and L-shells. Wave-particle interactions observed within the Van Allen belts have been claimed to play a significant role in energetic particle flux changes. The relation between changes on the solar wind parameters and the radiation belt is still a hot topic nowadays, particularly the role played by the solar wind on sudden electron flux decreases. The twin satellite Van Allen Probes measured a relativistic electron flux dropout concurrent to broad band Ultra-low frequency (ULF) waves, i.e. from 1 mHz to 10 Hz, on October 2, 2013. Magnetic field and plasma data from both ACE and WIND satellites allowed the characterization of this event as being an interplanetary coronal mass ejection in conjunction with shock. The interaction of this event with the Earth's magnetosphere was modeled using a global magnetohydrodynamic simulation and the magnetic field perturbation deep in magnetosphere could be analyzed from the model outputs. Results show the contribution of time-varying solar wind parameters to the generation of ULF waves. The power spectral densities, as a function of L-shell, were evaluated considering changes in the input parameters, e.g. magnitude and duration of dynamic pressure and magnetic field. The modeled power spectral densities are compared with Van Allen Probes data. The results provide us a clue on the solar wind characteristics that might be able to drive ULF waves in the inner magnetosphere, and also which wave modes are expected to be excited under a specific solar wind driving.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPSC...11..899A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPSC...11..899A"><span>Modelling Magnetodisc Response to Solar Wind Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Achilleos, N.; Guio, P.; Arridge, C. S.</p> <p>2017-09-01</p> <p>The Sun's influence is felt by planets in the solar system in many different ways. In this work, we use theoretical models of the magnetic fields of the Gas Giants (Jupiter and Saturn) to predict how they would change in response to compressions and expansions in the flow of charged particles ('solar wind') which continually emanates from the Sun. This in an example of 'Space Weather' - the interaction between the solar wind and magnetized planets, such as Jupiter, Saturn and even the Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850003656','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850003656"><span>Physics of the inner heliosphere 1-10R sub O plasma diagnostics and models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Withbroe, G. L.</p> <p>1984-01-01</p> <p>The physics of solar wind flow in the acceleration region and impulsive phenomena in the solar corona is studied. The study of magnetohydrodynamic wave propagation in the corona and the solutions for steady state and time dependent solar wind equations gives insights concerning the physics of the solar wind acceleration region, plasma heating and plasma acceleration processes and the formation of shocks. Also studied is the development of techniques for placing constraints on the mechanisms responsible for coronal heating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SoPh..292...69O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SoPh..292...69O"><span>Probabilistic Solar Wind and Geomagnetic Forecasting Using an Analogue Ensemble or "Similar Day" Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Owens, M. J.; Riley, P.; Horbury, T. S.</p> <p>2017-05-01</p> <p>Effective space-weather prediction and mitigation requires accurate forecasting of near-Earth solar-wind conditions. Numerical magnetohydrodynamic models of the solar wind, driven by remote solar observations, are gaining skill at forecasting the large-scale solar-wind features that give rise to near-Earth variations over days and weeks. There remains a need for accurate short-term (hours to days) solar-wind forecasts, however. In this study we investigate the analogue ensemble (AnEn), or "similar day", approach that was developed for atmospheric weather forecasting. The central premise of the AnEn is that past variations that are analogous or similar to current conditions can be used to provide a good estimate of future variations. By considering an ensemble of past analogues, the AnEn forecast is inherently probabilistic and provides a measure of the forecast uncertainty. We show that forecasts of solar-wind speed can be improved by considering both speed and density when determining past analogues, whereas forecasts of the out-of-ecliptic magnetic field [BN] are improved by also considering the in-ecliptic magnetic-field components. In general, the best forecasts are found by considering only the previous 6 - 12 hours of observations. Using these parameters, the AnEn provides a valuable probabilistic forecast for solar-wind speed, density, and in-ecliptic magnetic field over lead times from a few hours to around four days. For BN, which is central to space-weather disturbance, the AnEn only provides a valuable forecast out to around six to seven hours. As the inherent predictability of this parameter is low, this is still likely a marked improvement over other forecast methods. We also investigate the use of the AnEn in forecasting geomagnetic indices Dst and Kp. The AnEn provides a valuable probabilistic forecast of both indices out to around four days. We outline a number of future improvements to AnEn forecasts of near-Earth solar-wind and geomagnetic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040047164&hterms=topology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtopology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040047164&hterms=topology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtopology"><span>Coronal Magnetic Field Topology and Source of Fast Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guhathakurta, M.; Sittler, E.; Fisher, R.; McComas, D.; Thompson, B.</p> <p>1999-01-01</p> <p>We have developed a steady state, 2D semi-empirical MHD model of the solar corona and the solar wind with many surprising results. This model for the first time shows, that the boundary between the fast and the slow solar wind as observed by Ulysses beyond 1 AU, is established in the low corona. The fastest wind observed by Ulysses (680-780 km/s) originates from the polar coronal holes at 70 -90 deg. latitude at the Sun. Rapidly diverging magnetic field geometry accounts for the fast wind reaching down to a latitude of +/- 30 deg. at the orbit of Earth. The gradual increase in the fast wind observed by Ulysses, with latitude, can be explained by an increasing field strength towards the poles, which causes Alfven wave energy flux to increase towards the poles. Empirically, there is a direct relationship between this gradual increase in wind speed and the expansion factor, f, computed at r greater than 20%. This relationship is inverse if f is computed very close to the Sun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031725&hterms=asteroid+belt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dasteroid%2Bbelt','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031725&hterms=asteroid+belt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dasteroid%2Bbelt"><span>The composition and origin of the C, P, and D asteroids - Water as a tracer of thermal evolution in the outer belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jones, Thomas D.; Lebofsky, Larry A.; Lewis, John S.; Marley, Mark S.</p> <p>1990-01-01</p> <p>A telescopic and laboratory investigation of water distribution among low albedo asteroids in the outer belt, using the 3-micron reflectance absorption of molecular H2O and structural OH ions (coincident with the 3-micron spectral signature of meteorite and asteroid hydrated silicates) shows that 66 percent of the C-class asteroids in the sample have hydrated silicate surfaces. In conjunction with the apparently anhydrous P and D surfaces, this pronounced hydration difference between C-class asteroids and the more distant P and D classes points to an original outer belt asteroid composition of anhydrous silicates, water ice, and complex organic material. Early solar-wind induction heating of protoasteroids, declining in intensity with distance from the sun, is conjectured to have produced the observed diminution of hydrated silicate abundance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26A...576A..55T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26A...576A..55T"><span>Composition of inner-source heavy pickup ions at 1 AU: SOHO/CELIAS/CTOF observations. Implications for the production mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taut, A.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.</p> <p>2015-04-01</p> <p>Context. Pickup ions in the inner heliosphere mainly originate in two sources, one interstellar and one in the inner solar system. In contrast to the interstellar source that is comparatively well understood, the nature of the inner source has not been clearly identified. Former results obtained with the Solar Wind Ion Composition Spectrometer on-board the Ulysses spacecraft revealed that the composition of inner-source pickup ions is similar, but not equal, to the elemental solar-wind composition. These observations suffered from very low counting statistics of roughly one C+ count per day. Aims: Because the composition of inner-source pickup ions could lead to identifying their origin, we used data from the Charge-Time-Of-Flight sensor on-board the Solar and Heliospheric Observatory. It offers a large geometry factor that results in about 100 C+ counts per day combined with an excellent mass-per-charge resolution. These features enable a precise determination of the inner-source heavy pickup ion composition at 1 AU. To address the production mechanisms of inner-source pickup ions, we set up a toy model based on the production scenario involving the passage of solar-wind ions through thin dust grains to explain the observed deviations of the inner-source PUI and the elemental solar-wind composition. Methods: An in-flight calibration of the sensor allows identification of heavy pickup ions from pulse height analysis data by their mass-per-charge. A statistical analysis was performed to derive the inner-source heavy pickup ion relative abundances of N+, O+, Ne+, Mg+, Mg2+, and Si+ compared to C+. Results: Our results for the inner-source pickup ion composition are in good agreement with previous studies and confirm the deviations from the solar-wind composition. The large geometry factor of the Charge-Time-of-Flight sensor even allowed the abundance ratios of the two most prominent pickup ions, C+ and O+, to be investigated at varying solar-wind speeds. We found that the O+/C+ ratio increases systematically with higher solar-wind speeds. This observation is an unprecedented feature characterising the production of inner-source pickup ions. Comparing our observations to the toy model results, we find that both the deviation from the solar-wind composition and the solar-wind-speed dependent O+/C+ ratio can be explained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P53C2226C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P53C2226C"><span>Coherence Analysis of the Solar Wind Between l1 and the Lunar Orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crane, S. O.; Fuqua, H.; Poppe, A. R.; Harada, Y.; Fatemi, S.; Delory, G. T.</p> <p>2016-12-01</p> <p>A cross correlation analysis of the lunar and solar wind interaction was performed to understand coherence length scales. This is mandatory for conducting tests in electromagnetic sounding of the moon with two measurement probes. Signal processing and data analysis methods encompass the study of the lunar electromagnetic plasma environment with properties of the solar wind at key positions outside of Earth's magnetosphere. Variations in solar activity detected by ACE, WIND, Kaguya and Lunar Prospector can be informative regarding how well correlated the magnetic properties of the solar wind are between the 1st Lagrange point (ACE & WIND orbits) and the lunar orbit (Kaguya & Lunar Prospector investigations). The analysis objective is to use cross correlation to understand the solar wind coherence between these positions. This requires mastering concrete analysis tools to filter and use data that yields high (>0.80) or intermediate (0.70-0.80) coherence values, while demonstrating an analysis of up to one month of data, and archiving poor (<0.50) cross correlation coefficients for effects of orbit position and downstream distance. We also consider the impact of high energy events such as Coronal Mass Ejections, Solar Flares, and shocks that may be recorded by `ACE's List of Disturbances and Transients' to the effect that, at the current level of analysis, various expected coefficients between 0.55 and 0.85 have been generated for up to 3 months of data, 2008-02-01 through 2008-05-03.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5995N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5995N"><span>Diamagnetic effect in the foremoon solar wind observed by Kaguya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Miyake, Yohei; Harada, Yuki; Yokota, Shoichiro; Takahashi, Futoshi; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi</p> <p>2017-04-01</p> <p>Direct interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the planetary plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude often increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such an effect would be prominent in the high-beta solar wind, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM31C2515G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM31C2515G"><span>Considerations of solar wind dynamics in mapping of Jupiter's auroral features to magnetospheric sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gyalay, S.; Vogt, M.; Withers, P.</p> <p>2015-12-01</p> <p>Previous studies have mapped locations from the magnetic equator to the ionosphere in order to understand how auroral features relate to magnetospheric sources. Vogt et al. (2011) in particular mapped equatorial regions to the ionosphere by using a method of flux equivalence—requiring that the magnetic flux in a specified region at the equator is equal to the magnetic flux in the region to which it maps in the ionosphere. This is preferred to methods relying on tracing field lines from global Jovian magnetic field models, which are inaccurate beyond 30 Jupiter radii from the planet. That previous study produced a two-dimensional model—accounting for changes with radial distance and local time—of the normal component of the magnetic field in the equatorial region. However, this two-dimensional fit—which aggregated all equatorial data from Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Ulysses, and Galileo—did not account for temporal variability resulting from changing solar wind conditions. Building off of that project, this study aims to map the Jovian aurora to the magnetosphere for two separate cases: with a nominal magnetosphere, and with a magnetosphere compressed by high solar wind dynamic pressure. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, intervals of high solar wind dynamic pressure were separated from intervals of low solar wind dynamic pressure—thus creating two datasets of magnetometer measurements to be used for two separate 2D fits, and two separate mappings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...613A..62S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...613A..62S"><span>Number density structures in the inner heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stansby, D.; Horbury, T. S.</p> <p>2018-06-01</p> <p>Aims: The origins and generation mechanisms of the slow solar wind are still unclear. Part of the slow solar wind is populated by number density structures, discrete patches of increased number density that are frozen in to and move with the bulk solar wind. In this paper we aimed to provide the first in-situ statistical study of number density structures in the inner heliosphere. Methods: We reprocessed in-situ ion distribution functions measured by Helios in the inner heliosphere to provide a new reliable set of proton plasma moments for the entire mission. From this new data set we looked for number density structures measured within 0.5 AU of the Sun and studied their properties. Results: We identified 140 discrete areas of enhanced number density. The structures occurred exclusively in the slow solar wind and spanned a wide range of length scales from 50 Mm to 2000 Mm, which includes smaller scales than have been previously observed. They were also consistently denser and hotter that the surrounding plasma, but had lower magnetic field strengths, and therefore remained in pressure balance. Conclusions: Our observations show that these structures are present in the slow solar wind at a wide range of scales, some of which are too small to be detected by remote sensing instruments. These structures are rare, accounting for only 1% of the slow solar wind measured by Helios, and are not a significant contribution to the mass flux of the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811610V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811610V"><span>Energetic Neutral Atom Imaging of the Lunar Poles and Night-Side</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Bhardwaj, Anil; Dhanya, Mb; Asamura, Kazushi</p> <p>2016-04-01</p> <p>So far all reported scientific results derived from measurements of the Chandrayaan-1 Energetic Neutral Analyzer (CENA) on board the Indian lunar mission Chandrayaan-1 focused on the sun-lit part of the Moon. Here, for the first time, we present the analysis of the Moon - solar wind interaction in Energetic Neutral Atoms (ENAs) from measurements over the poles and the night-side of the Moon. The Moon, not being protected by a global magnetic field or an atmosphere, is constantly bombarded by solar wind ions. Until recently, it was tacitly assumed that the solar wind ions that impinge onto the lunar surface are almost completely absorbed ( < 1% reflection) by the lunar surface (e.g. Crider and Vondrak [Adv. Space Res., 2002]; Feldman et al. [J. Geophys. Res., 2000]). However, recent observations conducted by the two ENA sensors of NASA's Interstellar Boundary Explorer and by Chandrayaan-1/CENA showed an average global energetic neutral atom (ENA) albedo of 10% - 20% (e.g. McComas et al. [Geophys. Res. Lett., 2009], Wieser et al. [Planet. Space Sci., 2009], Vorburger et al. [J. Geophys. Res., 2013]). In the past 6 years, several studies have closely investigated this solar wind - lunar surface interaction from various viewpoints. The main findings of these studies include (1) the dependency of the hydrogen reflection ratio on the local crustal magnetic fields (e.g., Wieser et al. [Geophys. Res. Lett. ,2010] and Vorburger et al. [J. Geophys. Res., 2012]), (2) the determination of the energy spectra of backscattered neutralized solar wind protons (Futaana et al. [J. Geophys. Res., 2012]) (3) the use of the spectra shape to remotely define an electric potential above a lunar magnetic anomaly (Futaana et al. [Geophys. Res. Lett., 2012]), (4) the favouring of backscattering over forward-scattering of impinging solar wind hydrogen particles (Vorburger et al. [Geophys. Res. Lett., 2011]), (5) the first-ever measurements of sputtered lunar oxygen (Vorburger et al. [J. Geophys. Res., 2012]), (6) the first-ever observation of backscattered solar wind helium (Vorburger et al. [J. Geophys. Res., 2012]), and (7) the determination of the scattering properties of backscattered solar wind hydrogen measured when the Moon transversed Earth's magneto-sheath (Lue et al. [J. Geophys. Res., 2016]). All findings above are based on measurements from the sun-lit side of the Moon's surface, where solar wind particles can impinge freely onto the lunar surface. On the night-side, in contrast, a large scale wake structure is formed as a result of the high absorption of solar wind plasma on the lunar day-side. Very recent ion measurements of Chandrayaan-1's Solar Wind Monitor (SWIM) have revealed the presence of protons in the near-lunar wake, though (Dhanya et al., [Icarus 2016 (submitted)]). The presence of protons in the near lunar wake implies that there is also some sort of solar wind - lunar surface interaction on the lunar night-side. A complete analysis of this interaction will be presented herein.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSH33A4124Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSH33A4124Y"><span>How Well Does the S-Web Theory Predict In-Situ Observations of the Slow Solar Wind?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Young, A. K.; Antiochos, S. K.; Linker, J.; Zurbuchen, T.</p> <p>2014-12-01</p> <p>The S-Web theory provides a physical explanation for the origin and properties of the slow solar wind, particularly its composition. The theory proposes that magnetic reconnection along topologically complex boundaries between open and closed magnetic fields on the sun releases plasma from closed magnetic field regions into the solar wind at latitudes away from the heliospheric current sheet. Such a wind would have elevated charge states compared to the fast wind and an elemental composition resembling the closed-field corona. This theory is currently being tested using time-dependent, high-resolution, MHD simulations, however comparisons to in-situ observations play an essential role in testing and understanding slow-wind release mechanisms. In order to determine the relationship between S-Web signatures and the observed, slow solar wind, we compare plasma data from the ACE and Ulysses spacecraft to solutions from the steady-state models created at Predictive Science, Inc., which use observed magnetic field distributions on the sun as a lower boundary condition. We discuss the S-Web theory in light of our results and the significance of the S-Web for interpreting current and future solar wind observations. This work was supported, in part, by the NASA TR&T and SR&T programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSMSH31A..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSMSH31A..04W"><span>UVCS Observations of Slow Plasma Flow in the Corona Above Active Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woo, R.; Habbal, S. R.</p> <p>2005-05-01</p> <p>The elusive source of slow solar wind has been the subject of ongoing discussion and debate. Observations of solar wind speed near the Earth orbit, first with IPS (interplanetary scintillation) and later with Ulysses in situ measurements, have suggested that some slow solar wind may be associated with active regions (Kojima & Kakinuma 1987; Woo, Habbal & Feldman 2004). The ability of SOHO UVCS Doppler dimming measurements to provide estimates of solar wind speed in the corona (Kohl et al. 1995) has made it possible to investigate the distribution of flow near the Sun. In this paper, we will present results confirming that active regions are one of the sources of slow wind. Insight into the relationship between coronal streamers, active regions and plasma flow will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840004997','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840004997"><span>Interpretation of 3He variations in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coplan, M. A.; Ogilvie, K. W.; Geiss, J.; Bochsler, P.</p> <p>1983-01-01</p> <p>The ion composition instrument (ICI) on ISEE-3 observed the isotopes of helium of mass 3 and 4 in the solar wind almost continuously between August 1978 and July 1982. This period included the increase towards the maximum of solar activity cycle 21, the maximum period, and the beginning of the descent towards solar minimum. Observations were made when the solar wind speed was between 300 and 620 km/s. For part of the period evidence for regular interplanetary magnetic sector structure was clear and a number of 3He flares occurred during this time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850032849&hterms=ici&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dici','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850032849&hterms=ici&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dici"><span>Interpretation of He-3 abundance variations in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coplan, M. A.; Ogilvie, K. W.; Bochsler, P.; Geiss, J.</p> <p>1984-01-01</p> <p>The ion composition instrument (ICI) on ISEE-3 observed the isotopes of helium of mass 3 and 4 in the solar wind almost continuously between August 1978 and July 1982. This period included the increase towards the maximum of solar activity cycle 21, the maximum period, and the beginning of the descent towards solar minimum. Observations were made when the solar wind speed was between 300 and 620 km/s. For part of the period evidence for regular interplanetary magnetic sector structure was clear and a number of He-3 flares occurred during this time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990028046&hterms=Open+Field&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DOpen%2BField','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990028046&hterms=Open+Field&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DOpen%2BField"><span>Signature of open magnetic field lines in the extended solar corona and of solar wind acceleration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Antonucci, E.; Giordano, S.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.</p> <p>1997-01-01</p> <p>The observations carried out with the ultraviolet coronagraph spectrometer onboard the Solar and Heliospheric Observatory (SOHO) are discussed. The purpose of the observations was to determine the line of sight and radial velocity fields in coronal regions with different magnetic topology. The results showed that the regions where the high speed solar wind flows along open field lines are characterized by O VI 1032 and HI Lyman alpha 1216 lines. The global coronal maps of the line of sight velocity were reconstructed. The corona height, where the solar wind reaches 100 km/s, was determined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017nova.pres.2992K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017nova.pres.2992K"><span>A Shifting Shield Provides Protection Against Cosmic Rays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohler, Susanna</p> <p>2017-12-01</p> <p>The Sun plays an important role in protecting us from cosmic rays, energetic particles that pelt us from outside our solar system. But can we predict when and how it will provide the most protection, and use this to minimize the damage to both pilotedand roboticspace missions?The Challenge of Cosmic RaysSpacecraft outside of Earths atmosphere and magnetic field are at risk of damage from cosmic rays. [ESA]Galactic cosmic rays are high-energy, charged particles that originate from astrophysical processes like supernovae or even distant active galactic nuclei outside of our solar system.One reason to care about the cosmic rays arriving near Earth is because these particles can provide a significant challenge for space missions traveling above Earths protective atmosphere and magnetic field. Since impacts from cosmic rays can damage human DNA, this risk poses a major barrier to plans for interplanetary travel by crewed spacecraft. And roboticmissions arent safe either: cosmic rays can flip bits, wreaking havoc on spacecraft electronics as well.The magnetic field carried by the solar wind provides a protective shield, deflecting galactic cosmic rays from our solar system. [Walt Feimer/NASA GSFCs Conceptual Image Lab]Shielded by the SunConveniently, we do have some broader protection against galactic cosmic rays: a built-in shield provided by the Sun. The interplanetary magnetic field, which is embedded in the solar wind, deflects low-energy cosmic rays from us at the outer reaches of our solar system, decreasing the flux of these cosmic rays that reach us at Earth.This shield, however, isnt stationary; instead, it moves and changes as the strength and direction of the solar wind moves and changes. This results in a much lower cosmic-ray flux at Earth when solar activity is high i.e., at the peak of the 11-year solar cycle than when solar activity is low. This visible change in local cosmic-ray flux with solar activity is known as solar modulation of the cosmic ray flux at Earth.In a new study, a team of scientists led by Nicola Tomassetti (University of Perugia, Italy) has modeled this solar modulation to better understand the process by which the Suns changing activity influences the cosmic ray flux that reaches us at Earth.Modeling a LagTomassetti and collaborators model uses two solar-activity observables as inputs: the number of sunspots and the tilt angle of the heliospheric current sheet. By modeling basic transport processes in the heliosphere, the authors then track the impact that the changing solar properties have on incoming galactic cosmic rays. In particular, the team explores the time lag between when solar activity changes and when we see the responding change in the cosmic-ray flux.Cosmic-ray flux observations are best fit by the authors model when an 8-month lag is included (red bold line). A comparison model with no lag (black dashed line) is included. [Tomassetti et al. 2017]By comparing their model outputs to the large collection of time-dependent observations of cosmic-ray fluxes, Tomassetti and collaborators show that the best fit to data occurs with an 8-month lag between changing solar activity and local cosmic-ray flux modulation.This is an important outcome for studying the processes that affect the cosmic-ray flux that reaches Earth. But theres an additional intriguing consequence of this result: knowledge of the current solar activity could allow us to predict the modulation that will occur for cosmic rays near Earth an entire 8 months from now! If this model is correct, it brings us one step closer to being able to plan safer space missions for the future.CitationNicola Tomassetti et al 2017 ApJL 849 L32. doi:10.3847/2041-8213/aa9373</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008003','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008003"><span>Current Sheets in the Corona and the Complexity of Slow Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Antiochos, Spiro</p> <p>2010-01-01</p> <p>The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391668-performance-evaluation-stand-alone-hybrid-pv-wind-generator','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391668-performance-evaluation-stand-alone-hybrid-pv-wind-generator"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.</p> <p></p> <p>This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system ismore » based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...823..145F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...823..145F"><span>An Investigation of the Sources of Earth-directed Solar Wind during Carrington Rotation 2053</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fazakerley, A. N.; Harra, L. K.; van Driel-Gesztelyi, L.</p> <p>2016-06-01</p> <p>In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode’s Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990056504&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsolar%2Bintensity%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990056504&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsolar%2Bintensity%2Bmeasurement"><span>Solar wind acceleration in the solar corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Giordano, S.; Antonucci, E.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.</p> <p>1997-01-01</p> <p>The intensity ratio of the O VI doublet in the extended area is analyzed. The O VI intensity data were obtained with the ultraviolet coronagraph spectrometer (UVCS) during the SOHO campaign 'whole sun month'. The long term observations above the north pole of the sun were used for the polar coronal data. Using these measurements, the solar wind outflow velocity in the extended corona was determined. The 100 km/s level is running along the streamer borders. The acceleration of the solar wind is found to be high in regions between streamers. In the central part of streamers, the outflow velocity of the coronal plasma remains below 100 km/s at least within 3.8 solar radii. The regions at the north and south poles, characterized by a more rapid acceleration of the solar wind, correspond to regions where the UVCS observes enhanced O VI line broadenings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850008417','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850008417"><span>Polar rain: Solar coronal electrons in the Earth's magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fairfield, D. H.; Scudder, J. D.</p> <p>1984-01-01</p> <p>Low energy electron measurements collected by ISEE 1 reveal the frequent presence of field-aligned fluxes of few hundred eV electrons in he geomagnetic tail lobes. In the northern tail lobe these electrons are most prominent when the interplanetary magnetic field is directed away from the Sun. This characteristic helps identify the electrons as polar rain electrons. By mapping the tail lobe velocity distribution function into the solar wind, previous suggestions that the polar rain is indeed of solar wind origin and is due to the access of electrons to the magnetotail lobe were confirmed. It was demonstrated that the moe energetic component of the polar rain is composed of electrons from the solar wind strahl - a field-aligned component of the solar wind which is difficult to measure but which is thought to be caused by the collisionless transit of hundred eV electrons from the inner solar corona to 1 AU.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016043','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016043"><span>ROSAT Observations of Solar Wind Charge Exchange with the Lunar Exosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collier, Michael R.; Snowden, S. L.; Benna, M.; Carter, J. A.; Cravens, T. E.; Hills, H. Kent; Hodges, R. R.; Kuntz, K. D.; Porter, F. Scott; Read, A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20120016043'); toggleEditAbsImage('author_20120016043_show'); toggleEditAbsImage('author_20120016043_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20120016043_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20120016043_hide"></p> <p>2012-01-01</p> <p>We analyze the ROSAT PSPC soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the count rate in three wedges, two wedges (one north and one south) 13-32 degrees off (19 degrees wide) the terminator towards the dark side and one wedge 38 degrees wide centered on the anti-solar direction. The radial profiles of both the north and the south wedges show substantial limb brightening that is absent in the 38 degree wide antisolar wedge. An analysis of the count rate increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere. Along with Mars, Venus, and Earth, the Moon represents another solar system body at which solar wind charge exchange has been observed. This technique can be used to explore the solar wind-lunar interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003MmSAI..74..733A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003MmSAI..74..733A"><span>Acceleration region of the slow solar wind in corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbo, L.; Antonucci, E.; Mikić, Z.; Riley, P.; Dodero, M. A.; Giordano, S.</p> <p></p> <p>We present the results of a study concerning the physical parameters of the plasma of the extended corona in the low-latitude and equatorial regions, in order to investigate the sources of the slow solar wind during the minimum of solar activity. The equatorial streamer belt has been observed with the Ultraviolet Coronagraph Spectrometer (UVCS) onboard SOHO from August 19 to September 1, 1996. The spectroscopic diagnostic technique applied in this study, based on the OVI 1032, 1037 Ålines, allows us to determine both the solar wind velocity and the electron density of the extended corona. The main result of the analysis is the identification of the acceleration region of the slow wind, whose outflow velocity is measured in the range from 1.7 up to 3.5 solar radii.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740044930&hterms=heinemann&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dheinemann','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740044930&hterms=heinemann&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dheinemann"><span>Shapes of strong shock fronts in an inhomogeneous solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heinemann, M. A.; Siscoe, G. L.</p> <p>1974-01-01</p> <p>The shapes expected for solar-flare-produced strong shock fronts in the solar wind have been calculated, large-scale variations in the ambient medium being taken into account. It has been shown that for reasonable ambient solar wind conditions the mean and the standard deviation of the east-west shock normal angle are in agreement with experimental observations including shocks of all strengths. The results further suggest that near a high-speed stream it is difficult to distinguish between corotating shocks and flare-associated shocks on the basis of the shock normal alone. Although the calculated shapes are outside the range of validity of the linear approximation, these results indicate that the variations in the ambient solar wind may account for large deviations of shock normals from the radial direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080039628&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dplanetary%2Bboundaries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080039628&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dplanetary%2Bboundaries"><span>Stellar Ablation of Planetary Atmospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Thomas E.; Horwitz, J. L.</p> <p>2007-01-01</p> <p>We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ApJ...787..160W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ApJ...787..160W"><span>Turbulence-driven Coronal Heating and Improvements to Empirical Forecasting of the Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woolsey, Lauren N.; Cranmer, Steven R.</p> <p>2014-06-01</p> <p>Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060036154&hterms=dependency&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddependency','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060036154&hterms=dependency&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddependency"><span>(abstract) Ulysses Solar Wind Ion Temperatures: Radial, Latitudinal, and Dynamical Dependencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldstein, B. E.; Smith, E. J.; Gosling, J. T.; McComas, D. J.; Balogh, A.</p> <p>1996-01-01</p> <p>Observations of the Ulysses SWOOPS plasma experiment are used to determine the dependencies of solar wind ion temperatures upon radial distance, speed, and other parameters, and to estimate solar wind heating. Comparisons with three dimensional temperature estimates determined from the ion spectra by a least squares fitting program will be provided (only small samples of data have been reduced with this program).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900063359&hterms=heinemann&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dheinemann','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900063359&hterms=heinemann&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dheinemann"><span>On WKB expansions for Alfven waves in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hollweg, Joseph V.</p> <p>1990-01-01</p> <p>The WKB expansion for 'toroidal' Alfven waves in solar wind, which is described by equations of Heinemann and Olbert (1980), is examined. In this case, the multiple scales method (Nayfeh, 1981) is used to obtain a uniform expansion. It is shown that the WKB expansion used by Belcher (1971) and Hollweg (1973) for Alfven waves in the solar wind is nonuniformly convergent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....9514873H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....9514873H"><span>On WKB expansions for Alfven waves in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hollweg, Joseph V.</p> <p>1990-09-01</p> <p>The WKB expansion for 'toroidal' Alfven waves in solar wind, which is described by equations of Heinemann and Olbert (1980), is examined. In this case, the multiple scales method (Nayfeh, 1981) is used to obtain a uniform expansion. It is shown that the WKB expansion used by Belcher (1971) and Hollweg (1973) for Alfven waves in the solar wind is nonuniformly convergent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830028774','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830028774"><span>Development of a computational model for predicting solar wind flows past nonmagnetic terrestrial planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stahara, S. S.; Spreiter, J. R.</p> <p>1983-01-01</p> <p>A computational model for the determination of the detailed plasma and magnetic field properties of the global interaction of the solar wind with nonmagnetic terrestrial planetary obstacles is described. The theoretical method is based on an established single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of supersonic, super-Alfvenic solar wind flow past terrestrial ionospheres.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SSRv..214...56C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SSRv..214...56C"><span>Evolution of the Sunspot Number and Solar Wind B Time Series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cliver, Edward W.; Herbst, Konstantin</p> <p>2018-03-01</p> <p>The past two decades have witnessed significant changes in our knowledge of long-term solar and solar wind activity. The sunspot number time series (1700-present) developed by Rudolf Wolf during the second half of the 19th century was revised and extended by the group sunspot number series (1610-1995) of Hoyt and Schatten during the 1990s. The group sunspot number is significantly lower than the Wolf series before ˜1885. An effort from 2011-2015 to understand and remove differences between these two series via a series of workshops had the unintended consequence of prompting several alternative constructions of the sunspot number. Thus it has been necessary to expand and extend the sunspot number reconciliation process. On the solar wind side, after a decade of controversy, an ISSI International Team used geomagnetic and sunspot data to obtain a high-confidence time series of the solar wind magnetic field strength (B) from 1750-present that can be compared with two independent long-term (> ˜600 year) series of annual B-values based on cosmogenic nuclides. In this paper, we trace the twists and turns leading to our current understanding of long-term solar and solar wind activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.7323W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.7323W"><span>Hybrid simulations of Venus' ionospheric magnetization states</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiehle, Stefan; Motschmann, Uwe; Fränz, Markus</p> <p>2013-04-01</p> <p>The solar wind interaction with the plasma environment of Venus is studied with focus on ionospheric magnetization states using a 3D hybrid simulation code. The plasma environment of Venus was investigated mainly by Pioneer Venus Orbiter (PVO) and the still ongoing Venus Express (VEX) mission. Unlike many other planets, Venus' ionosphere is not shielded by a strong magnetosphere. Hence, data measured by spacecraft like PVO and VEX close to the planet are highly sensitive to solar wind and IMF upstream conditions, which cannot be measured while the spacecraft is inside the magnetosheath region about one hour before and after the closest approach. However, solar wind and IMF are known to change within minutes; ionospheric magnetization states, found by PVO and VEX, are highly dependent on the solar wind upstream pressure and also the magnetic field direction may change rapidly in case of a magnetic sector boundary crossing. When these solar wind induced transition effects occur, the causal change in the solar wind cannot be determined from ionospheric in-situ data. Additionally, with an orbital period of 24 hours, measuring transition timescales of solar wind triggered events is not possible. Our self-consistent simulations aim to provide a global picture of the solar wind interaction with Venus focusing on the effects of upstream fluctuations to the magnetic field in the vicinity of the planet. We use the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) 3D hybrid simulation code to model the entire Venus plasma environment. The simulation grid is refined within the ionosphere in order to resolve strong small-scale gradients of the magnetic field and ion density, a necessity to describe the magnetic field depletion inside the Venus' ionosphere. In contrast to other simulation studies, we apply no boundary conditions for the magnetic field at the planetary surface. Furthermore, we include varying upstream conditions like solar wind velocity and density as well as IMF strength and direction by adjusting these parameters after a first, quasi-stationary state has been reached. This allows for a simulation of dynamic processes like the transition between the magnetized and unmagnetized ionospheric state and fossil fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010022102','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010022102"><span>MACS, An Instrument and a Methodology for Simultaneous and Global Measurements of the Coronal Electron Temperature and the Solar Wind Velocity on the Solar Corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reginald, Nelson L.</p> <p>2000-01-01</p> <p>In Cram's theory for the formation of the K-coronal spectrum he observed the existence of temperature sensitive anti-nodes, which were separated by temperature insensitive nodes, at certain wave-lengths in the K-coronal spectrum. Cram also showed these properties were remarkably independent of altitude above the solar limb. In this thesis Cram's theory has been extended to incorporate the role of the solar wind in the formation of the K-corona, and we have identified both temperature and wind sensitive intensity ratios. The instrument, MACS, for Multi Aperture Coronal Spectrometer, a fiber optic based spectrograph, was designed for global and simultaneous measurements of the thermal electron temperature and the solar wind velocity in the solar corona. The first ever experiment of this nature was conducted in conjunction with the total solar eclipse of 11 August 1999 in Elazig, Turkey. Here twenty fiber optic tips were positioned in the focal plane of the telescope to observe simultaneously at many different latitudes and two different radial distances in the solar corona. The other ends were vertically stacked and placed at the primary focus of the spectrograph. By isolating the K-coronal spectrum from each fiber the temperature and the wind sensitive intensity ratios were calculated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518771-photoionization-solar-wind','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518771-photoionization-solar-wind"><span>PHOTOIONIZATION IN THE SOLAR WIND</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Landi, E.; Lepri, S. T., E-mail: elandi@umich.edu</p> <p>2015-10-20</p> <p>In this work we investigate the effects of photoionization on the charge state composition of the solar wind. Using measured solar EUV and X-ray irradiance, the Michigan Ionization Code and a model for the fast and slow solar wind, we calculate the evolution of the charge state distribution of He, C, N, O, Ne, Mg, Si, S, and Fe with and without including photoionization for both types of wind. We find that the solar radiation has significant effects on the charge state distribution of C, N, and O, causing the ionization levels of these elements to be higher than withoutmore » photoionization; differences are largest for oxygen. The ions commonly observed for elements heavier than O are much less affected, except in ICMEs where Fe ions more ionized than 16+ can also be affected by the solar radiation. We also show that the commonly used O{sup 7+}/O{sup 6+} density ratio is the most sensitive to photoionization; this sensitivity also causes the value of this ratio to depend on the phase of the solar cycle. We show that the O{sup 7+}/O{sup 6+} ratio needs to be used with caution for solar wind classification and coronal temperature estimates, and recommend the C{sup 6+}/C{sup 4+} ratio for these purposes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930036990&hterms=surface+equipotential&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsurface%2Bequipotential','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930036990&hterms=surface+equipotential&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsurface%2Bequipotential"><span>A scenario for solar wind penetration of earth's magnetic tail based on ion composition data from the ISEE 1 spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lennartsson, W.</p> <p>1992-01-01</p> <p>Based on He(2+) and H(-) ion composition data from the Plasma Composition Experiment on ISEE 1, a scenario is proposed for the solar wind penetration of the earth's magnetic tail, which does not require that the solar wind plasma be magnetized. While this study does not take issue with the notion that earth's magnetic field merges with the solar wind magnetic field on a regular basis, it focuses on certain aspects of interaction between the solar wind particles and the earth's field, e.g, the fact that the geomagnetic tail always has a plasma sheet, even during times when the physical signs of magnetic merging are weak or absent. It is argued that the solar plasma enters along slots between the tail lobes and the plasma sheet, even quite close to earth, convected inward along the plasma sheet boundary layer or adjacent to it, by the electric fringe field of the ever present low-latitude magnetopause boundary layer (LLBL). The required E x B drifts are produced by closing LLBL equipotential surfaces through the plasma sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5296H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5296H"><span>Overview of the HELCATS project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harrison, Richard; Davies, Jackie; Perry, Chris; Moestl, Christian; Rouillard, Alexis; Bothmer, Volker; Rodriguez, Luciano; Eastwood, Jonathan; Kilpua, Emilia; Gallagher, Peter; Odstrcil, Dusan</p> <p>2017-04-01</p> <p>Understanding solar wind evolution is fundamental to advancing our knowledge of energy and mass transport in the solar system, whilst also being crucial to space weather and its prediction. The advent of truly wide-angle heliospheric imaging has revolutionised the study of solar wind evolution, by enabling direct and continuous observation of both transient and background components of the solar wind as they propagate from the Sun to 1 AU and beyond. The EU-funded FP7 Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) project combines European expertise in heliospheric imaging, built up over the last decade in particular through lead involvement in NASA's STEREO mission, with expertise in solar and coronal imaging as well as the interpretation of in-situ and radio diagnostic measurements of solar wind phenomena. HELCATS involves: (1) cataloguing of transient (coronal mass ejections) and background (stream/corotating interaction regions) solar wind structures observed by the STEREO/Heliospheric Imagers, including estimates of their kinematic properties based on a variety of modelling techniques; (2) verifying these kinematic properties through comparison with solar source observations and in-situ measurements at multiple points throughout the heliosphere; (3) assessing the potential for initialising numerical models based on the derived kinematic properties of transient and background solar wind components; (4) assessing the complementarity of radio observations (Type II radio bursts and interplanetary scintillation) in the detection and analysis of heliospheric structure in combination with heliospheric imaging observations. We provide an overview of the achievements of the HELCATS project, as it reaches its conclusion, and present selected results that seek to illustrate the value and legacy of this unprecedented, coordinated study of structures in the heliosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AAS...22933909B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AAS...22933909B"><span>Periodic Alpha Signatures and the Origins of the Slow Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blume, Catherine; Kepko, Larry</p> <p>2017-01-01</p> <p>The origin of the slow solar wind has puzzled scientists for decades. Both flux tube geometry of field lines open to the heliosphere and magnetic reconnection that opens field lines that were previously closed to the heliosphere have been proposed as explanations (via the expansion factor and S-web models, respectively), but the observations to date have proven an inadequate test for distinguishing between the theories. However, short term (~hours) variability of alpha particles could provide the set of observations that tips the balance. Alpha particles compose about 4% of the solar wind, and its precise composition is determined by dynamics in the solar atmosphere. Therefore, compositional changes in the alpha to proton ratio must have originated at the Sun, making alphs tracer particles of sorts and carrying signatures of their solar creation. We examined in situ alpha density and proton density data from the Wind, ACE, STEREO-B, AND STEREO-A spacecraft, focusing on a pseudostreamer that occurred August 9, 2008. This case study found one clear periodic structure in the slow solar wind preceding the pseudostreamer in Wind/ACE and the same periodic structure in the in situ data at STEREO-B. The existence of this slow wind structure in association with a pseudostreamer directly contradicts the expansion factor model, which predicts that pseudostreamers produce fast wind. The structure's appearance at STEREO-B, which was located 30 degrees behind the Earth-Sun line, further indicates that the mechanism at the Sun is responsible for its formation was active for at least three days. Moreover, an analysis of both helmet streamer and pseudostreamer events between 2007-2009 finds that similar density structures exist in at least 35% of all streamers. This indicates that the same physical process that produces this slow solar wind occurs with a degree of frequency in association with both types of streamers. The clarity, duration, and frequency of these periodic density structures seem to support the S-web model over the expansion factor model and can provide additional constrains to slow solar wind models moving forward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC23G..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC23G..07C"><span>Opportunities for wind and solar to displace coal and associated health impacts in Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cohan, D. S.; Strasert, B.; Slusarewicz, J.</p> <p>2017-12-01</p> <p>Texas uses more coal for power production than any other state, but also leads the nation in wind power while lagging in solar. Many analysts expect that more than half of coal power plants may close within the next decade, unable to compete with cheaper natural gas and renewable electricity. To what extent could displacing coal with wind and solar yield benefits for air quality, health, and climate? Here, we present modeling of the ozone, particulate matter, and associated health impacts of each of 15 coal power plants in Texas, using the CAMx model for air quality and BenMAP for health effects. We show that health impacts from unscrubbed coal plants near urban areas can be an order of magnitude larger than some other facilities. We then analyze the temporal patterns of generation that could be obtained from solar and wind farms in various regions of Texas that could displace these coal plants. We find that winds along the southern Gulf coast of Texas exhibit strikingly different temporal patterns than in west Texas, peaking on summer afternoons rather than winter nights. Thus, wind farms from the two regions along with solar farms could provide complementary sources of power to displace coal. We quantify several metrics to characterize the extent to which wind and solar farms in different regions provide complementary sources of power that can reliably displace traditional sources of electricity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH11A2216M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH11A2216M"><span>Janus: Graphical Software for Analyzing In-Situ Measurements of Solar-Wind Ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maruca, B.; Stevens, M. L.; Kasper, J. C.; Korreck, K. E.</p> <p>2016-12-01</p> <p>In-situ observations of solar-wind ions provide tremendous insights into the physics of space plasmas. Instrument on spacecraft measure distributions of ion energies, which can be processed into scientifically useful data (e.g., values for ion densities and temperatures). This analysis requires a strong, technical understanding of the instrument, so it has traditionally been carried out by the instrument teams using automated software that they had developed for that purpose. The automated routines are optimized for typical solar-wind conditions, so they can fail to capture the complex (and scientifically interesting) microphysics of transient solar-wind - such as coronal mass ejections (CME's) and co-rotating interaction regions (CIR's) - which are often better analyzed manually.This presentation reports on the ongoing development of Janus, a new software package for processing in-situ measurement of solar-wind ions. Janus will provide user with an easy-to-use graphical user interface (GUI) for carrying out highly customized analyses. Transparent to the user, Janus will automatically handle the most technical tasks (e.g., the retrieval and calibration of measurements). For the first time, users with only limited knowledge about the instruments (e.g., non-instrumentalists and students) will be able to easily process measurements of solar-wind ions. Version 1 of Janus focuses specifically on such measurements from the Wind spacecraft's Faraday Cups and is slated for public release in time for this presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.7349A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.7349A"><span>On the integration of wind and solar energy to provide a total energy supply in the USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Archer, Cristina; Mills, David; Cheng, Weili; Sloggy, Matthew; Liebig, Edwin; Rhoades, Alan</p> <p>2010-05-01</p> <p>This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary source of energy in the USA, under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar or wind alone can power the present U.S. grid on average. Other studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the U.S. national load on a monthly basis. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from the year 2006 are used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental U.S. using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all suitable locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra's model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat processing, and future electrified transportation loads were calculated from monthly and yearly energy consumption data from the Energy Information Administration. Using different scenarios of wind power penetration (between 10% and 120% of the average national electricity and/or energy demand), the remaining hourly electricity and/or energy load was covered by solar thermal electricity produced via the Ausra's innovative linear reflective system, with various amounts of storage. With a 20% redundancy (i.e., an average production of 120% of the demand), a match of ~98% for electric load and ~96% for total energy load were found for the 60%wind-60%solar combination and with 12-hr storage. Work is continuing on improving that match through more sophisticated storage usage strategies and by looking at other options for the few days in the year for which wind and solar might be insufficient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ERL.....9e5004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ERL.....9e5004S"><span>Evidence for solar wind modulation of lightning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scott, C. J.; Harrison, R. G.; Owens, M. J.; Lockwood, M.; Barnard, L.</p> <p>2014-05-01</p> <p>The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream’s source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (˜1%) but rapid decrease in galactic cosmic ray flux, a moderate (˜6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer months (June to August). Though this reduced the number of solar wind triggers to 32, the response in both lightning and thunder day data remained statistically significant. This modulation of lightning by regular and predictable solar wind events may be beneficial to medium range forecasting of hazardous weather.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPSC...11...52V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPSC...11...52V"><span>How Planet Nine could change the fate of the Solar system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Veras, D.</p> <p>2017-09-01</p> <p>The potential existence of a distant planet ('Planet Nine') in the Solar system has prompted a re-think about the evolution of planetary systems. As the Sun transitions from a main-sequence star into a white dwarf, Jupiter, Saturn, Uranus and Neptune are currently assumed to survive in expanded but otherwise unchanged orbits. However, a sufficiently distant and sufficiently massive extra planet would alter this quiescent end scenario through the combined effects of Solar giant branch mass-loss and Galactic tides. Here I estimate bounds for the mass and orbit of a distant extra planet that would incite future instability in systems with a Sun-like star and giant planets with masses and orbits equivalent to those of Jupiter, Saturn, Uranus and Neptune. I find that this boundary is diffuse and strongly dependent on each of the distant planet's orbital parameters. Nevertheless, I claim that instability occurs more often than not when the planet is as massive as Jupiter and harbours a semimajor axis exceeding about 300 au, or has a mass of a super-Earth and a semimajor axis exceeding about 3000 au. These results hold for orbital pericentres ranging from 100 to at least 400 au. This instability scenario might represent a common occurrence, as potentially evidenced by the ubiquity of metal pollution in white dwarf atmospheres throughout the Galaxy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8408D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8408D"><span>Effects of different drivers on ion fluxes at Mars. MARS EXPRESS and MAVEN observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dubinin, Eduard; Fraenz, Markus; McFadden, James; Halekas, Jasper; Epavier, Frank; Connerney, Jack; Brain, David; Jakosky, Bruce; Andrews, David; Barabash, Stas</p> <p>2017-04-01</p> <p>Recent observations by Mars Express and MAVEN spacecraft have shown that the Martian atmosphere/ionosphere is exposed to the impact of solar wind which results in losses of volatiles from Mars. This erosion is an important factor for the evolution of the Martian atmosphere and its water inventory. To estimate the escape forced by the solar wind during the early Solar System conditions we need to know how the ionosphere of Mars and escape fluxes depend on variations in the strength of the external drivers, in particularly, of solar wind and solar EUV flux. We present multi-instrument observations of the influence of the solar wind and solar irradiance on the Martian ionosphere and escape fluxes. We use data obtained by the ASPERA-3 and MARSIS experiments on Mars Express and by the STATIC, SWIA, MAG and EUV monitor on MAVEN. Observations by Mars Express supplemented by the EUV monitoring at Earth orbit and translated to Mars orbit provide us information about this dependence over more than 10 years whereas the measurements made by MAVEN provide us for the first time the opportunity to study these processes with simultaneous monitoring of the solar wind and ionospheric variations, planetary ion fluxes and solar irradiance. It will be shown that that fluxes of planetary ions through different escape channels (trans-terminator fluxes, ion plume, plasma sheet) respond differently on the variations of the different drivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1396B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1396B"><span>Venus, Earth, Mars: Comparative ion escape caused by the interaction with the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barabash, Stas</p> <p></p> <p>For the solar system planets the non-thermal atmospheric escape exceeds by far the Jean escape for particles heavier than helium. In this talk we consider only ion escape and compare the total ion escape rates for Venus, Earth, and Mars caused by the interaction with the solar wind. We review the most recent data on the escape rates based on measurements from Mars Express, Venus Express, and Cluster. The comparison of the available numbers show that despite large differences in the atmospheric masses between these three planets (a factor of 100 -200), different types of the interactions with the solar wind (magnetized and non-magnetized obstacles), the escape rates for Mars, Venus, and the Earth are within the range 1024 - 1025 s-1 . Surprisingly, the expected shielding of the Earth atmosphere by the intrinsic magnetic field is not as efficient as one may think. The reason for this is the non-thermal escape caused by the solar wind interaction is a energy -limited process. Indeed, normalizing the escape rates to the planet-dependent escape energy and power available in the solar wind results in the normalized escape rates deferring only on a factor between three planets. The larger Earth's magnetosphere intercepts and tunnels down to the ionosphere more energy from the solar wind than more compact interaction regions of non-magnetized planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980236879&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980236879&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwind%2Bmonitor"><span>Comparisons of Solar Wind Coupling Parameters with Auroral Energy Deposition Rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elsen, R.; Brittnacher, M. J.; Fillingim, M. O.; Parks, G. K.; Germany G. A.; Spann, J. F., Jr.</p> <p>1997-01-01</p> <p>Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. In this session. A number of parameters that predict the rate of coupling of solar wind energy into the magnetosphere have been proposed in the last few decades. Some of these parameters, such as the epsilon parameter of Perrault and Akasofu, depend on the instantaneous values in the solar wind. Other parameters depend on the integrated values of solar wind parameters, especially IMF Bz, e.g. applied flux which predicts the net transfer of magnetic flux to the tail. While these parameters have often been used successfully with substorm studies, their validity in terms of global energy input has not yet been ascertained, largely because data such as that supplied by the ISTP program was lacking. We have calculated these and other energy coupling parameters for January 1997 using solar wind data provided by WIND and other solar wind monitors. The rates of energy input predicted by these parameters are compared to those measured through UVI data and correlations are sought. Whether these parameters are better at providing an instantaneous rate of energy input or an average input over some time period is addressed. We also study if either type of parameter may provide better correlations if a time delay is introduced; if so, this time delay may provide a characteristic time for energy transport in the coupled solar wind-magnetosphere-ionosphere system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1087208','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1087208"><span>Using Solar Business Models to Expand the Distributed Wind Market (Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Savage, S.</p> <p>2013-05-01</p> <p>This presentation to attendees at Wind Powering America's All-States Summit in Chicago describes business models that were responsible for rapid growth in the solar industry and that may be applicable to the distributed wind industry as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AIPC.1500..186W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AIPC.1500..186W"><span>Alfvén wave interactions in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.</p> <p>2012-11-01</p> <p>Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026730','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026730"><span>Observation of pick-up ions in the solar wind: Evidence for the source of the anomalous cosmic ray component?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hovestadt, D.; Moebius, E.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.</p> <p>1985-01-01</p> <p>Singly ionized energetic helium has been observed in the solar wind by using the time of flight spectrometer SULEICA on the AMPTE/IRM satellite between September and December, 1984. The energy density spectrum shows a sharp cut off which is strongly correlated with the four fold solar wind bulk energy. The absolute flux of the He(+)ions of about 10000 ion/sq cm.s is present independent of the IPL magnetic field orientation. The most likely source is the neutral helium of the interstellar wind which is ionized by solar UV radiation. It is suggested that these particles represent the source of the anomalous cosmic ray component.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970026625','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970026625"><span>Numerical Simulations of Mass Loading in the Solar Wind Interaction with Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Murawski, K.; Steinolfson, R. S.</p> <p>1996-01-01</p> <p>Numerical simulations are performed in the framework of nonlinear two-dimensional magnetohydrodynamics to investigate the influence of mass loading on the solar wind interaction with Venus. The principal physical features of the interaction of the solar wind with the atmosphere of Venus are presented. The formation of the bow shock, the magnetic barrier, and the magnetotail are some typical features of the interaction. The deceleration of the solar wind due to the mass loading near Venus is an additional feature. The effect of the mass loading is to push the shock farther outward from the planet. The influence of different values of the magnetic field strength on plasma evolution is considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860040981&hterms=relationship+form&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drelationship%2Bform','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860040981&hterms=relationship+form&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drelationship%2Bform"><span>Solar wind proton temperature-velocity relationship</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lopez, R. E.; Freeman, J. W.</p> <p>1986-01-01</p> <p>Helios 1 data are analyzed to find an experimental fit for the temperature-velocity relationship at 1 AU. It is shown that the proton temperature-velocity changes at a velocity of approximately 500 km/s. Interplanetary dynamic processes, i.e., stream interactions, are shown to affect the temperature-velocity relationships less than 22 percent; the functional form of these relationships appears to be preserved throughout the solar cycle. It is pointed out that any comprehensive model of the solar wind will have to address the difference in the temperature-velocity relationship between the low- and high-speed wind, since this is a product of the acceleration and subsequent heating process generating the solar wind.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>