Sample records for distinct compositional differences

  1. Developmental toxicity in flounder embryos exposed to crude oils derived from different geographical regions.

    PubMed

    Jung, Jee-Hyun; Lee, Eun-Hee; Choi, Kwang-Min; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Kim, Moonkoo

    2017-06-01

    Crude oils from distinct geographical regions have distinct chemical compositions, and, as a result, their toxicity may be different. However, developmental toxicity of crude oils derived from different geographical regions has not been extensively characterized. In this study, flounder embryos were separately exposed to effluents contaminated by three crude oils including: Basrah Light (BLO), Pyrenees (PCO), and Sakhalin Vityaz (SVO), in addition to a processed fuel oil (MFO-380), to measure developmental toxicity and for gene expressions. Each oil possessed a distinct chemical composition. Edema defect was highest in embryos exposed to PCO and MFO-380 that both have a greater fraction of three-ring PAHs (33% and 22%, respectively) compared to BLO and SVO. Observed caudal fin defects were higher in embryos exposed to SVO and MFO-380, which are both dominated by naphthalenes (81% and 52%, respectively). CYP1A gene expressions were also highest in embryos exposed to SVO and MFO-380. Higher incidence of cardiotoxicity and lower nkx 2.5 expression were detected in embryos exposed to PCO. Unique gene expression profiles were observed in embryos exposed to crude oils with distinct compositions. This study demonstrates that crude oils of different geographical origins with different compositional characteristics induce developmental toxicity to different degrees. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A primordial origin for the compositional similarity between the Earth and the Moon.

    PubMed

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B; Raymond, Sean N

    2015-04-09

    Most of the properties of the Earth-Moon system can be explained by a collision between a planetary embryo (giant impactor) and the growing Earth late in the accretion process. Simulations show that most of the material that eventually aggregates to form the Moon originates from the impactor. However, analysis of the terrestrial and lunar isotopic compositions show them to be highly similar. In contrast, the compositions of other Solar System bodies are significantly different from those of the Earth and Moon, suggesting that different Solar System bodies have distinct compositions. This challenges the giant impact scenario, because the Moon-forming impactor must then also be thought to have a composition different from that of the proto-Earth. Here we track the feeding zones of growing planets in a suite of simulations of planetary accretion, to measure the composition of Moon-forming impactors. We find that different planets formed in the same simulation have distinct compositions, but the compositions of giant impactors are statistically more similar to the planets they impact. A large fraction of planet-impactor pairs have almost identical compositions. Thus, the similarity in composition between the Earth and Moon could be a natural consequence of a late giant impact.

  3. Concurrent topological design of composite structures and materials containing multiple phases of distinct Poisson's ratios

    NASA Astrophysics Data System (ADS)

    Long, Kai; Yuan, Philip F.; Xu, Shanqing; Xie, Yi Min

    2018-04-01

    Most studies on composites assume that the constituent phases have different values of stiffness. Little attention has been paid to the effect of constituent phases having distinct Poisson's ratios. This research focuses on a concurrent optimization method for simultaneously designing composite structures and materials with distinct Poisson's ratios. The proposed method aims to minimize the mean compliance of the macrostructure with a given mass of base materials. In contrast to the traditional interpolation of the stiffness matrix through numerical results, an interpolation scheme of the Young's modulus and Poisson's ratio using different parameters is adopted. The numerical results demonstrate that the Poisson effect plays a key role in reducing the mean compliance of the final design. An important contribution of the present study is that the proposed concurrent optimization method can automatically distribute base materials with distinct Poisson's ratios between the macrostructural and microstructural levels under a single constraint of the total mass.

  4. Maintaining protein composition in cilia.

    PubMed

    Stephen, Louise A; Elmaghloob, Yasmin; Ismail, Shehab

    2017-12-20

    The primary cilium is a sensory organelle that is vital in regulating several signalling pathways. Unlike most organelles cilia are open to the rest of the cell, not enclosed by membranes. The distinct protein composition is crucial to the function of cilia and many signalling proteins and receptors are specifically concentrated within distinct compartments. To maintain this composition, a mechanism is required to deliver proteins to the cilium whilst another must counter the entropic tendency of proteins to distribute throughout the cell. The combination of the two mechanisms should result in the concentration of ciliary proteins to the cilium. In this review we will look at different cellular mechanisms that play a role in maintaining the distinct composition of cilia, including regulation of ciliary access and trafficking of ciliary proteins to, from and within the cilium.

  5. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems.

    PubMed

    Williams, Clayton J; Frost, Paul C; Morales-Williams, Ana M; Larson, James H; Richardson, William B; Chiandet, Aisha S; Xenopoulos, Marguerite A

    2016-02-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales. © 2015 John Wiley & Sons Ltd.

  6. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems

    USGS Publications Warehouse

    Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.

    2016-01-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales.

  7. Post-natal molecular adaptations in anteromedial and posterolateral bundles of the ovine anterior cruciate ligament: one structure with two parts or two distinct ligaments?

    PubMed

    Huebner, Kyla D; O'Brien, Etienne J O; Heard, Bryan J; Chung, May; Achari, Yamini; Shrive, Nigel G; Frank, Cyril B

    2012-01-01

    The human anterior cruciate ligament (ACL) is a composite structure of two anatomically distinct bundles: an anteromedial (AM) and posterolateral (PL) bundles. Tendons are often used as autografts for surgical reconstruction of ACL following severe injury. However, despite successful surgical reconstruction, some people experience re-rupture and later development of osteoarthritis. Understanding the structure and molecular makeup of normal ACL is essential for its optimal replacement. Reportedly the two bundles display different tensions throughout joint motion and may be fundamentally different. This study assessed the similarities and differences in ultrastructure and molecular composition of the AM and PL bundles to test the hypothesis that the two bundles of the ACL develop unique characteristics with maturation. ACLs from nine mature and six immature sheep were compared. The bundles were examined for mRNA and protein levels of collagen types I, III, V, and VI, and two proteoglycans. The fibril diameter composition of the two bundles was examined with transmission electron microscopy. Maturation does alter the molecular and structural composition of the two bundles of ACL. Although the PL band appears to mature slower than the AM band, no significant differences were detected between the bundles in the mature animals. We thus reject our hypothesis that the two ACL bundles are distinct. The two anatomically distinct bundles of the sheep ACL can be considered as two parts of one structure at maturity and material that would result in a structure of similar functionality can be used to replace each ACL bundle in the sheep.

  8. Cultivating a Reflective Approach to Language Difference in Composition Pedagogy

    ERIC Educational Resources Information Center

    Bommarito, Daniel V.; Cooney, Emily

    2016-01-01

    This essay addresses the persistence of monolingual tendencies in composition pedagogy and the critical efforts needed to dissolve them. Approaching language difference from a distinctly pedagogical perspective, this essay draws on the authors' teaching experiences and reflective writing in an effort to theorize the reflective practices key to…

  9. Is face distinctiveness gender based?

    PubMed

    Baudouin, Jean-Yves; Gallay, Mathieu

    2006-08-01

    Two experiments were carried out to study the role of gender category in evaluations of face distinctiveness. In Experiment 1, participants had to evaluate the distinctiveness and the femininity-masculinity of real or artificial composite faces. The composite faces were created by blending either faces of the same gender (sexed composite faces, approximating the sexed prototypes) or faces of both genders (nonsexed composite faces, approximating the face prototype). The results show that the distinctiveness ratings decreased as the number of blended faces increased. Distinctiveness and gender ratings did not covary for real faces or sexed composite faces, but they did vary for nonsexed composite faces. In Experiment 2, participants were asked to state which of two composite faces, one sexed and one nonsexed, was more distinctive. Sexed composite faces were selected less often. The results are interpreted as indicating that distinctiveness is based on sexed prototypes. Implications for face recognition models are discussed. ((c) 2006 APA, all rights reserved).

  10. Method for attaining fennel (Foeniculum vulgare Mill.) seed oil fractions with different composition and antioxidant capacity

    USDA-ARS?s Scientific Manuscript database

    Fennel (Foeniculum vulgare Mill.) is cultivated for its seeds and foliage, which contain essential oil. We hypothesized that the collection of fennel seed oil at different time points during the distillation process may result in fennel oil with distinct composition and bioactivity. We collected ess...

  11. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

    NASA Astrophysics Data System (ADS)

    Moriarty, D. P.; Pieters, C. M.

    2016-02-01

    We reexamine the relationship between pyroxene composition and near-infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two-part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene-bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene-bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene-bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low-Ca pyroxene-bearing materials, and (4) feldspathic materials.

  12. Preparation of hybrid thiol-acrylate emulsion-templated porous polymers by interfacial copolymerization of high internal phase emulsions.

    PubMed

    Langford, Caitlin R; Johnson, David W; Cameron, Neil R

    2015-05-01

    Emulsion-templated highly porous polymers (polyHIPEs), containing distinct regions differing in composition, morphology, and/or properties, are prepared by the simultaneous polymerization of two high internal phase emulsions (HIPEs) contained within the same mould. The HIPEs are placed together in the mould and subjected to thiol-acrylate photopolymerization. The resulting polyHIPE material is found to contain two distinct semicircular regions, reflecting the composition of each HIPE. The original interface between the two emulsions becomes a copolymerized band between 100 and 300 μm wide, which is found to be mechanically robust. The separate polyHIPE layers are distinguished from one another by their differing average void diameter, chemical composition, and extent of contraction upon drying. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Complex network approach to classifying classical piano compositions

    NASA Astrophysics Data System (ADS)

    Xin, Chen; Zhang, Huishu; Huang, Jiping

    2016-10-01

    Complex network has been regarded as a useful tool handling systems with vague interactions. Hence, numerous applications have arised. In this paper we construct complex networks for 770 classical piano compositions of Mozart, Beethoven and Chopin based on musical note pitches and lengths. We find prominent distinctions among network edges of different composers. Some stylized facts can be explained by such parameters of network structures and topologies. Further, we propose two classification methods for music styles and genres according to the discovered distinctions. These methods are easy to implement and the results are sound. This work suggests that complex network could be a decent way to analyze the characteristics of musical notes, since it could provide a deep view into understanding of the relationships among notes in musical compositions and evidence for classification of different composers, styles and genres of music.

  14. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  15. A comparative study of the fatty acid composition of prochloron lipids

    NASA Technical Reports Server (NTRS)

    Kenrick, J. R.; Deane, E. M.; Bishop, D. G.

    1983-01-01

    The chemical analysis of lipids of Prochloron isolated from several hosts is discussed. The object was to determine whether differences in lipid composition could be used to characterize organisms from different sources. Major lipid components are given. An analysis of fatty acid composition of individual lipids slowed a distinctive disstribution of fatty acids. While present results do not justify the use of fatty acid content in the taxonomy of Prochlon, the variations found in the lipids of cells from the same host harvested from different areas, or at different times in the same area, suggest that a study of the effects of temperature and light intensity on lipid composition would be rewarding.

  16. Petroleum Oils

    EPA Pesticide Factsheets

    Different types of crude oil and refined product, of all different chemical compositions, have distinct physical properties. These properties affect the way oil spreads and breaks down, its hazard to marine and human life, and the likelihood of threat.

  17. Quantification of Ethnic and Racial Residential Segregation: Analysis of 2015 U.S. Census Tracts

    EPA Science Inventory

    The presence and distribution of demographic enclaves, or places defined by distinctly different group compositions than surrounding places, are a well-studied occurrence in urban areas of the United States. With the changing composition of cities and surrounding suburban areas,...

  18. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages

    PubMed Central

    Vogt, Carmen; Pernemalm, Maria; Kohonen, Pekka; Laurent, Sophie; Hultenby, Kjell; Vahter, Marie; Lehtiö, Janne; Toprak, Muhammet S.; Fadeel, Bengt

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs. PMID:26444829

  19. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages.

    PubMed

    Vogt, Carmen; Pernemalm, Maria; Kohonen, Pekka; Laurent, Sophie; Hultenby, Kjell; Vahter, Marie; Lehtiö, Janne; Toprak, Muhammet S; Fadeel, Bengt

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.

  20. Local Discontinuous Galerkin (LDG) Method for Advection of Active Compositional Fields with Discontinuous Boundaries: Demonstration and Comparison with Other Methods in the Mantle Convection Code ASPECT

    NASA Astrophysics Data System (ADS)

    He, Y.; Billen, M. I.; Puckett, E. G.

    2015-12-01

    Flow in the Earth's mantle is driven by thermo-chemical convection in which the properties and geochemical signatures of rocks vary depending on their origin and composition. For example, tectonic plates are composed of compositionally-distinct layers of crust, residual lithosphere and fertile mantle, while in the lower-most mantle there are large compositionally distinct "piles" with thinner lenses of different material. Therefore, tracking of active or passive fields with distinct compositional, geochemical or rheologic properties is important for incorporating physical realism into mantle convection simulations, and for investigating the long term mixing properties of the mantle. The difficulty in numerically advecting fields arises because they are non-diffusive and have sharp boundaries, and therefore require different methods than usually used for temperature. Previous methods for tracking fields include the marker-chain, tracer particle, and field-correction (e.g., the Lenardic Filter) methods: each of these has different advantages or disadvantages, trading off computational speed with accuracy in tracking feature boundaries. Here we present a method for modeling active fields in mantle dynamics simulations using a new solver implemented in the deal.II package that underlies the ASPECT software. The new solver for the advection-diffusion equation uses a Local Discontinuous Galerkin (LDG) algorithm, which combines features of both finite element and finite volume methods, and is particularly suitable for problems with a dominant first-order term and discontinuities. Furthermore, we have applied a post-processing technique to insure that the solution satisfies a global maximum/minimum. One potential drawback for the LDG method is that the total number of degrees of freedom is larger than the finite element method. To demonstrate the capabilities of this new method we present results for two benchmarks used previously: a falling cube with distinct buoyancy and viscosity, and a Rayleigh-Taylor instability of a compositionally buoyant layer. To evaluate the trade-offs in computational speed and solution accuracy we present results for these same benchmarks using the two field tracking methods available in ASPECT: active tracer particles and the entropy viscosity method.

  1. Compositional studies of Mare Moscoviense: New perspectives from Chandrayaan-1 VIS-NIR data

    NASA Astrophysics Data System (ADS)

    Bhatt, Megha; Wöhler, Christian; Dhingra, Deepak; Thangjam, Guneshwar; Rommel, Daniela; Mall, Urs; Bhardwaj, Anil; Grumpe, Arne

    2018-03-01

    Moscoviense is one of the prominent mare-filled basin on the lunar far side holding key insights about volcanic activity on the far side. Here, we present spectral and elemental maps of mare Moscoviense, using the Moon Mineralogy Mapper (M3) and Infrared Spectrometer-2 (SIR-2) data-sets. The different mare units are mapped based on their spectral properties analyzing both quantitatively (band center, band depth) and qualitatively (Integrated Band Depth composite images), and also using their elemental compositions. We find a total of five distinct spectral units from the basin floor based on the spectral properties. Our analysis suggests that the northern part which was mapped as Iltm unit (Imbrian low Ti, low Fe) by earlier researchers is actually a distinct unit, which is different in composition and age, named as Ivltm unit (Imbrian very low Ti and very low Fe). We obtain the absolute model age of 3.2 Ga with uncertainties of +0.2/ -0.5 Ga for the unit Ivltm. The newly identified basalt unit Ivltm is compositionally intermediate to the units Im and Iltm in FeO and TiO2 abundances. We find a total of five distinct spectral units from the basin floor based on the spectral properties. The units Im (Imbrian very low Ti) from southern and northern regions of the basin floor are spectrally distinct in terms of band center position and corresponding band depths but considered a single unit based on the elemental abundance analysis. The units Ivltm and Im are consistent with a high-Al basalt composition. Our detailed analysis of the entire Moscoviense basin indicates that the concentrations of orthopyroxene, olivine, and Mg-rich spinel, named as OOS rock family are widespread and dominant at the western and southern side of the middle ring of the basin with one isolated area found on the northern side of the peak ring.

  2. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms

    PubMed Central

    Casewell, Nicholas R.; Wagstaff, Simon C.; Wüster, Wolfgang; Cook, Darren A. N.; Bolton, Fiona M. S.; King, Sarah I.; Pla, Davinia; Sanz, Libia; Calvete, Juan J.; Harrison, Robert A.

    2014-01-01

    Variation in venom composition is a ubiquitous phenomenon in snakes and occurs both interspecifically and intraspecifically. Venom variation can have severe outcomes for snakebite victims by rendering the specific antibodies found in antivenoms ineffective against heterologous toxins found in different venoms. The rapid evolutionary expansion of different toxin-encoding gene families in different snake lineages is widely perceived as the main cause of venom variation. However, this view is simplistic and disregards the understudied influence that processes acting on gene transcription and translation may have on the production of the venom proteome. Here, we assess the venom composition of six related viperid snakes and compare interspecific changes in the number of toxin genes, their transcription in the venom gland, and their translation into proteins secreted in venom. Our results reveal that multiple levels of regulation are responsible for generating variation in venom composition between related snake species. We demonstrate that differential levels of toxin transcription, translation, and their posttranslational modification have a substantial impact upon the resulting venom protein mixture. Notably, these processes act to varying extents on different toxin paralogs found in different snakes and are therefore likely to be as important as ancestral gene duplication events for generating compositionally distinct venom proteomes. Our results suggest that these processes may also contribute to altering the toxicity of snake venoms, and we demonstrate how this variability can undermine the treatment of a neglected tropical disease, snakebite. PMID:24927555

  3. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms.

    PubMed

    Casewell, Nicholas R; Wagstaff, Simon C; Wüster, Wolfgang; Cook, Darren A N; Bolton, Fiona M S; King, Sarah I; Pla, Davinia; Sanz, Libia; Calvete, Juan J; Harrison, Robert A

    2014-06-24

    Variation in venom composition is a ubiquitous phenomenon in snakes and occurs both interspecifically and intraspecifically. Venom variation can have severe outcomes for snakebite victims by rendering the specific antibodies found in antivenoms ineffective against heterologous toxins found in different venoms. The rapid evolutionary expansion of different toxin-encoding gene families in different snake lineages is widely perceived as the main cause of venom variation. However, this view is simplistic and disregards the understudied influence that processes acting on gene transcription and translation may have on the production of the venom proteome. Here, we assess the venom composition of six related viperid snakes and compare interspecific changes in the number of toxin genes, their transcription in the venom gland, and their translation into proteins secreted in venom. Our results reveal that multiple levels of regulation are responsible for generating variation in venom composition between related snake species. We demonstrate that differential levels of toxin transcription, translation, and their posttranslational modification have a substantial impact upon the resulting venom protein mixture. Notably, these processes act to varying extents on different toxin paralogs found in different snakes and are therefore likely to be as important as ancestral gene duplication events for generating compositionally distinct venom proteomes. Our results suggest that these processes may also contribute to altering the toxicity of snake venoms, and we demonstrate how this variability can undermine the treatment of a neglected tropical disease, snakebite.

  4. Compositional changes of soil organic matter with cropping time were more profound in subsoils and distinct between Phaeozem and Chernozem in Northeast China

    USDA-ARS?s Scientific Manuscript database

    Soil organic matter (SOM) contributes to soil processes and is found both in shallow and deep soil layers. Its activity can be affected by its chemical composition, yet knowledge is incomplete of how land use alters the structural composition of SOM throughout the profiles of different soil types. T...

  5. Mechanism of interactions between CMC binder and Si single crystal facets.

    PubMed

    Vogl, U S; Das, P K; Weber, A Z; Winter, M; Kostecki, R; Lux, S F

    2014-09-02

    Interactions of the active material particles with the binder are crucial in tailoring the properties of composite electrodes used in lithium-ion batteries. The dependency of the protonation degree of the carboxyl group in the carboxymethyl cellulose (CMC) structure on the pH value of the preparation solution was investigated by Fourier transform infrared spectroscopy (FTIR). Three different distinctive chemical states of CMC binder were chosen (protonated, deprotonated, and half-half), and their interactions with different silicon single crystal facets were investigated. The different Si surface orientations display distinct differences of strength of interactions with the CMC binder. The CMC/Si adhesion forces in solution and Si wettability of the silicon are also strongly dependent on the protonation degree of the CMC. This work provides an insight into the nature of these interactions, which determine the electrochemical performance of silicon composite electrodes.

  6. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus.

    PubMed

    Kashtan, Nadav; Roggensack, Sara E; Berta-Thompson, Jessie W; Grinberg, Maor; Stepanauskas, Ramunas; Chisholm, Sallie W

    2017-09-01

    The Atlantic and Pacific Oceans represent different biogeochemical regimes in which the abundant marine cyanobacterium Prochlorococcus thrives. We have shown that Prochlorococcus populations in the Atlantic are composed of hundreds of genomically, and likely ecologically, distinct coexisting subpopulations with distinct genomic backbones. Here we ask if differences in the ecology and selection pressures between the Atlantic and Pacific are reflected in the diversity and genomic composition of their indigenous Prochlorococcus populations. We applied large-scale single-cell genomics and compared the cell-by-cell genomic composition of wild populations of co-occurring cells from samples from Station ALOHA off Hawaii, and from Bermuda Atlantic Time Series Station off Bermuda. We reveal fundamental differences in diversity and genomic structure of populations between the sites. The Pacific populations are more diverse than those in the Atlantic, composed of significantly more coexisting subpopulations and lacking dominant subpopulations. Prochlorococcus from the two sites seem to be composed of mostly non-overlapping distinct sets of subpopulations with different genomic backbones-likely reflecting different sets of ocean-specific micro-niches. Furthermore, phylogenetically closely related strains carry ocean-associated nutrient acquisition genes likely reflecting differences in major selection pressures between the oceans. This differential selection, along with geographic separation, clearly has a significant role in shaping these populations.

  7. Whole body-element composition of Atlantic salmon Salmo salar influenced by migration direction and life stage in three distinct populations.

    PubMed

    Ebel, J D; Leroux, S J; Robertson, M J; Dempson, J B

    2016-11-01

    Body-element content was measured for three life stages of wild Atlantic salmon Salmo salar from three distinct Newfoundland populations as individuals crossed between freshwater and marine ecosystems. Life stage explained most of the variation in observed body-element concentration whereas river of capture explained very little variation. Element composition of downstream migrating post-spawn adults (i.e. kelts) and juvenile smolts were similar and the composition of these two life stages strongly differed from adults migrating upstream to spawn. Low variation within life stages and across populations suggests that S. salar may exert rheostatic control of their body-element composition. Additionally, observed differences in trace element concentration between adults and other life stages were probably driven by the high carbon concentration in adults because abundant elements, such as carbon, can strongly influence the observed concentrations of less abundant elements. Thus, understanding variation among individuals in trace elements composition requires the measurement of more abundant elements. Changes in element concentration with ontogeny have important consequences the role of fishes in ecosystem nutrient cycling and should receive further attention. © 2016 The Fisheries Society of the British Isles.

  8. Geographical ecology of dry forest tree communities in the West Indies

    Treesearch

    Janet Franklin; Riley Andrade; Mark L. Daniels; Patrick Fairbairn; Maria C. Fandino; Thomas W. Gillespie; Grizelle González; Otto Gonzalez; Daniel Imbert; Valerie Kapos; Daniel L. Kelly; Humfredo Marcano-Vega; Elvia J. Meléndez-Ackerman; Kurt P. McLaren; Morag A. McDonald; Julie Ripplinger; Julissa Rojas-Sandoval; Michael S. Ross; Jorge Ruiz; David W. Steadman; Edmund V. J. Tanner; Inge Terrill; Michel Vennetier

    2018-01-01

    Aim: Seasonally dry tropical forest (SDTF) of the Caribbean Islands (primarily West Indies) is floristically distinct from Neotropical SDTF in Central and South America. We evaluate whether tree species composition was associated with climatic gradients or geographical distance. Turnover (dissimilarity) in species composition of different islands or among more distant...

  9. Highly birefringent polymer microstructured optical fibers embedded in composite materials

    NASA Astrophysics Data System (ADS)

    Lesiak, P.; SzelÄ g, M.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.

    2013-05-01

    Composite structures are made from two or more constituent materials with significantly different physical or chemical properties and they remain separate and distinct in a macroscopic level within the finished structure. This feature allows for introducing highly birefringent polymer microstructured optical fibers into the composite material. These new fibers can consist of only two polymer materials (PMMA and PC) with similar value of the Young modulus as the composite material so any stresses induced in the composite material can be easily measured by the proposed embedded fiber optic sensors.

  10. Indentation creep behaviors of amorphous Cu-based composite alloys

    NASA Astrophysics Data System (ADS)

    Song, Defeng; Ma, Xiangdong; Qian, Linfang

    2018-04-01

    This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.

  11. Molecular subtypes of Alzheimer's disease.

    PubMed

    Di Fede, Giuseppe; Catania, Marcella; Maderna, Emanuela; Ghidoni, Roberta; Benussi, Luisa; Tonoli, Elisa; Giaccone, Giorgio; Moda, Fabio; Paterlini, Anna; Campagnani, Ilaria; Sorrentino, Stefano; Colombo, Laura; Kubis, Adriana; Bistaffa, Edoardo; Ghetti, Bernardino; Tagliavini, Fabrizio

    2018-02-19

    Protein misfolding and aggregation is a central feature of several neurodegenerative disorders including Alzheimer's disease (AD), in which assemblies of amyloid β (Aβ) peptides accumulate in the brain in the form of parenchymal and/or vascular amyloid. A widely accepted concept is that AD is characterized by distinct clinical and neuropathological phenotypes. Recent studies revealed that Aβ assemblies might have structural differences among AD brains and that such pleomorphic assemblies can correlate with distinct disease phenotypes. We found that in both sporadic and inherited forms of AD, amyloid aggregates differ in the biochemical composition of Aβ species. These differences affect the physicochemical properties of Aβ assemblies including aggregation kinetics, resistance to degradation by proteases and seeding ability. Aβ-amyloidosis can be induced and propagated in animal models by inoculation of brain extracts containing aggregated Aβ. We found that brain homogenates from AD patients with different molecular profiles of Aβ are able to induce distinct patterns of Aβ-amyloidosis when injected into mice. Overall these data suggest that the assembly of mixtures of Aβ peptides into different Aβ seeds leads to the formation of distinct subtypes of amyloid having distinctive physicochemical and biological properties which result in the generation of distinct AD molecular subgroups.

  12. Distribution and food habits of young-of-the-year fishes in a backwater lake of the upper Mississippi River

    USGS Publications Warehouse

    Holland, L.E.; Huston, M.L.

    1985-01-01

    The distribution patterns and food habits of young-of-the-year (YOY) fishes in a lentic area adjacent to the main channel of Pool 7 of the upper Mississippi River were studied. Habitats sampled grouped distinctly based on percent composition and abundance of YOY fishes with those having submergent vegetation dominated by a number of important sport species. In late spring, the grouping of stations depended on the presence or absence of newly transformed northern pike (Esox lucius). In early summer, stations did not differ as distinctly in composition, but in total abundance of young. Those stations with submergent vegetation had total catches which were more than double those elsewhere. By late summer, submergent and mixed vegetation stations formed a distinct assemblage influenced by the preponderance of three species of sunfishes. (DBO).

  13. THREE DISCRETE GROUPS WITH HOMOGENEOUS CHEMISTRY ALONG THE RED GIANT BRANCH IN THE GLOBULAR CLUSTER NGC 2808

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carretta, E., E-mail: eugenio.carretta@oabo.inaf.it

    2014-11-10

    We present the homogeneous reanalysis of Mg and Al abundances from high resolution UVES/FLAMES spectra for 31 red giants in the globular cluster NGC 2808. We found a well defined Mg-Al anticorrelation reaching a regime of subsolar Mg abundance ratios, with a spread of about 1.4 dex in [Al/Fe]. The main result from the improved statistics of our sample is that the distribution of stars is not continuous along the anticorrelation because they are neatly clustered into three distinct clumps, each with different chemical compositions. One group (P) shows a primordial composition of field stars of similar metallicity, and the other twomore » (I and E) have increasing abundances of Al and decreasing abundances of Mg. The fraction of stars we found in the three components (P: 68%, I: 19%, E: 13%) is in excellent agreement with the ratios computed for the three distinct main sequences in NGC 2808: for the first time there is a clear correspondence between discrete photometric sequences of dwarfs and distinct groups of giants with homogeneous chemistry. The composition of the I group cannot be reproduced by mixing of matter with extreme processing in hot H-burning and gas with pristine, unprocessed composition, as also found in the recent analysis of three discrete groups in NGC 6752. This finding suggests that different classes of polluters were probably at work in NGC 2808 as well.« less

  14. Composition of Façon de Venise glass from early 17th century London in comparison with luxury glass of the same age

    NASA Astrophysics Data System (ADS)

    Cagno, S.; De Raedt, I.; Jeffries, T.; Janssens, K.

    SEM-EDX and LA-ICP-MS analyses were performed on a set of early 17th century London glass fragments. The samples originate from two archaeological sites (Aldgate and Old Broad Street) where glass workshops were active in this period. The great majority of the samples are made of soda glass. Two distinct compositional groups are observed, each typical of one site of provenance. The samples originating from the Old Broad Street excavation feature a silica-soda-lime composition, with a moderate amount of potash. The samples from Aldgate are richer in potassium and feature higher amounts of trace elements such as Rb, Zr and Cu. The distinction between the two groups stems from different flux and silica sources used for glassmaking. A comparison with different European glass compositions of that time reveals no resemblance with genuine Venetian production, yet the composition of the Old Broad Street glass shows a close similarity to that of fragments produced `à la façon de Venise' in Antwerp at the end of the 16th century. This coincides with historical sources attesting the arrival of glassworkers from the Low Countries in England and suggests that a transfer of technology took place near the turn of the century.

  15. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits.

    PubMed

    Wang, Yaqiong; Ma, Hong

    2015-09-01

    Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Trace Element Study of H Chondrites: Evidence for Meteoroid Streams.

    NASA Astrophysics Data System (ADS)

    Wolf, Stephen Frederic

    1993-01-01

    Multivariate statistical analyses, both linear discriminant analysis and logistic regression, of the volatile trace elemental concentrations in H4-6 chondrites reveal compositionally distinguishable subpopulations. Observed difference in volatile trace element composition between Antarctic and non-Antarctic H4-6 chondrites (Lipschutz and Samuels, 1991) can be explained by a compositionaily distinct subpopulation found in Victoria Land, Antarctica. This population of H4-6 chondrites is compositionally distinct from non-Antarctic H4-6 chondrites and from Antarctic H4 -6 chondrites from Queen Maud Land. Comparisons of Queen Maud Land H4-6 chondrites with non-Antarctic H4-6 chondrites do not give reason to believe that these two populations are distinguishable from each other on the basis of the ten volatile trace element concentrations measured. ANOVA indicates that these differences are not the result of trivial causes such as weathering and analytical bias. Thermoluminescence properties of these populations parallels the results of volatile trace element comparisons. Given the differences in terrestrial age between Victoria Land, Queen Maud Land, and modern H4-6 chondrite falls, these results are consistent with a variation in H4-6 chondrite flux on a 300 ky timescale. This conclusion requires the existence of co-orbital meteoroid streams. Statistical analyses of the volatile trace elemental concentrations in non-Antarctic modern falls of H4-6 chondrites also demonstrate that a group of 13 H4-6 chondrites, Cluster 1, selected exclusively for their distinct fall parameters (Dodd, 1992) is compositionally distinguishable from a control group of 45 non-Antarctic modern H4-6 chondrites on the basis of the ten volatile trace element concentrations measured. Model-independent randomization-simulations based on both linear discriminant analysis and logistic regression verify these results. While ANOVA identifies two possible causes for this difference, analytical bias and group classification, a test validation experiment verifies that group classification is the more significant cause of compositional difference between Cluster 1 and non-Cluster 1 modern H4-6 chondrite falls. Thermoluminescence properties of these populations parallels the results of volatile trace element comparisons. This suggests that these meteorites are fragments of a co-orbital meteorite stream derived from a single parent body.

  17. Nonlinearities in the Evolutional Distinctions Between El Niño and La Niña Types

    NASA Astrophysics Data System (ADS)

    Ashok, K.; Shamal, M.; Sahai, A. K.; Swapna, P.

    2017-12-01

    Using the HadISST, SODA reanalysis, and various other observed and reanalyzed data sets for the period 1950-2010, we explore nonlinearities in the subsurface evolutional distinctions between El Niño types and La Niña types from a few seasons before the onset. Cluster analysis carried out over both summer and winter suggests that while the warm-phased events of both types are distinguishable, several cold phased events are clustered together. Further, we apply a joint Self-Organizing Map (SOM) analysis using the monthly sea surface temperature anomaly (SSTA) and thermocline-depth anomalies in tropical Pacific (TP). Results reveal that the evolutionary paths of El Niño Modoki (EM) and El Niño (EL) are, broadly, different. Subsurface temperature composites of EL and EM show different onset characteristics. During an EL, warm anomaly in the west spreads eastward along the thermocline and reaches the surface in the east in March-May of year(0). During an EM, warm anomaly already exists in the central tropical Pacific and then reaches the surface in the east in September-November of year(0). Composited SSTAs during La Niña (LN) and La Niña Modoki (LM) are distinguishable only at 80% confidence level, but the composited subsurface temperature anomalies show differences in the location of the coldest anomaly as well as evolution at 90% confidence level. Thus, the El Niño flavor distinction is potentially predictable at longer leads.

  18. Isotopically distinct reservoirs in the solar nebula: Isotope anomalies in Vigarano meteorite inclusions

    NASA Technical Reports Server (NTRS)

    Loss, R. D.; Lugmair, G. W.; Davis, A. M.; Macpherson, G. J.

    1994-01-01

    The isotopic compositions of Mg, Ca, Ti, Cr, Zn, Sr, Ba, Nd, and Sm were measured in four relatively unaltered refractory inclusions from the Vigarano carbonaceous chondrite meteorite. Three of the inclusions (USNM 1623-2, 1623-3, and 1623-8) show similar Mg, Ca, Ti, and Cr isotopic compositions to those found in most inclusions in the Allende carbonaceous chondrite. This indicates that these Vigarano inclusions sampled the same isotopic reservoirs as the majority of the Allende inclusions that isotope signatures in the latter were not significantly modified by the secondary alteration that permeates most Allende inclusions. In contrast, inclusion 1623-5 has large deficits in Mg-26, Ca-48, and Ti-50 and small but distinct Cr-54, Zn-66, Sr-84, Ba-135, Ba-137, and Sm-144 anomalies. The magnitudes of these unusual anomalies in the refractory elements are within analytical uncertainty of those found in the Allende 'FUN" inclusion C1, yet 1623-5 has a very different bulk chemical composition from C1. The fact that 1623-5 and C1 have identical isotopic anomalies yet have significantly distinct major and trace element contents provide convincing evidence for the presence of isotopically distinct reservoirs in the early solar system.

  19. Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition.

    PubMed

    Marupakula, Srisailam; Mahmood, Shahid; Jernberg, Johanna; Nallanchakravarthula, Srivathsa; Fahad, Zaenab A; Finlay, Roger D

    2017-11-01

    Plant roots select non-random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short-term additions of N, a growth-limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities. The fungi colonizing individual roots had a strong effect on the associated bacterial communities. Even closely related species within the same ectomycorrhizal genus had distinct bacterial microbiomes in unfertilized soil, but fertilization removed this specificity. Effects of N were rapid and context dependent, being influenced by both soil type and the particular ectomycorrhizal fungi involved. Fungal community composition changed in soil from all horizons, but bacteria only responded strongly to N in soil from the B horizon where community structure was different and bacterial diversity was significantly reduced, possibly reflecting changed carbon allocation patterns. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Ablation behaviors of carbon reinforced polymer composites by laser of different operation modes

    NASA Astrophysics Data System (ADS)

    Wu, Chen-Wu; Wu, Xian-Qian; Huang, Chen-Guang

    2015-10-01

    Laser ablation mechanism of Carbon Fiber Reinforced Polymer (CFRP) composite is of critical meaning for the laser machining process. The ablation behaviors are investigated on the CFRP laminates subject to continuous wave, long duration pulsed wave and short duration pulsed wave lasers. Distinctive ablation phenomena have been observed and the effects of laser operation modes are discussed. The typical temperature patterns resulted from laser irradiation are computed by finite element analysis and thereby the different ablation mechanisms are interpreted.

  1. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups

    PubMed Central

    Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A.; Bar-On, Benny

    2017-01-01

    Background and Aims Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. Methods A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns (Asplenium nidus and Platycerium bifurcatum) and angiosperms (Arabidopsis thaliana and Commelina erecta) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata (Sorghum bicolor and Triticum aestivum). Key Results Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. Conclusions The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in environmental selection along the course of plant evolution. PMID:28158449

  2. Leaves as composites of latent developmental and evolutionary shapes

    USDA-ARS?s Scientific Manuscript database

    Across plants, leaves exhibit profound diversity in shape. As a single leaf expands, its shape is in constant flux. Additionally, plants may also produce leaves with different shapes at successive nodes. Because leaf shape can vary in many different ways, theoretically the effects of distinct proces...

  3. Climate change and physical disturbance manipulations result in distinct biological soil crust communities.

    PubMed

    Steven, Blaire; Kuske, Cheryl R; Gallegos-Graves, La Verne; Reed, Sasha C; Belnap, Jayne

    2015-11-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remains poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2°C soil warming, altered summer precipitation [wetting], and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional changes. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in the cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased Cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities, and the communities' functional profiles can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Climate change and physical disturbance manipulations result in distinct biological soil crust communities

    USGS Publications Warehouse

    Steven, Blaire; Kuske, Cheryl R.; Gallegos-Graves, La Verne; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remain poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2 °C soil warming, altered summer precipitation (wetting), and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional change. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities and the community functional profile can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands.

  5. Chemical mixing model studies of lunar orbital geochemical data - Apollo 16 and 17 highlands compositions

    NASA Technical Reports Server (NTRS)

    Spudis, P. D.; Hawke, B. R.

    1982-01-01

    Chemical mixing model studies of lunar geochemical data for the central and Taurus-Littrow lunar highlands were performed utilizing pristine highland rock types as end member compositions. The central highlands show considerable diversity in composition; anorthosite is the principal rock type in the Apollo 16/Descartes region, while norite predominates in the highlands west of the landing site. This change in crustal composition is coincident with a major color boundary seen in earth-based multispectral data and probably represents the presence of distinct geochemical provinces within the central highlands. The Taurus-Littrow highlands are dominated by norite; anorthosite is far less abundant than in the central highlands. This suggests that the impact target for the Serenitatis basin was different than that of the Nectaris basin and further strengthens the hypothesis that the lunar highlands are petrologically heterogeneous on a regional basis. It is suggested that the lunar highlands should be viewed in terms of geochemical provinces that have undergone distinct and complex igneous and impact histories.

  6. Prediction of composites behavior undergoing an ATP process through data-mining

    NASA Astrophysics Data System (ADS)

    Martin, Clara Argerich; Collado, Angel Leon; Pinillo, Rubén Ibañez; Barasinski, Anaïs; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco

    2018-05-01

    The need to characterize composite surfaces for distinct mechanical or physical processes leads to different manners of evaluate the state of the surface. During many manufacturing processes deformation occurs, thus hindering composite classification for fabrication processes. In this work we focus on the challenge of a priori identifying the surfaces' behavior in order to optimize manufacturing. We will propose and validate the curvature of the surface as a reliable parameter and we will develop a tool that allows the prediction of the surface behavior.

  7. Compositional classification and sedimentological interpretation of the laminated lacustrine sediments at Baumkrichen (Western Austria) using XRF core scanning data

    NASA Astrophysics Data System (ADS)

    Barrett, Samuel; Tjallingii, Rik; Bloemsma, Menno; Brauer, Achim; Starnberger, Reinhard; Spötl, Christoph; Dulski, Peter

    2015-04-01

    The outcrop at Baumkirchen (Austria) encloses part of a unique sequence of laminated lacustrine sediments deposited during the last glacial cycle. A ~250m long composite sediment record recovered at this location now continuously covers the periods ~33 to ~45 ka BP (MIS 3) and ~59 to ~73 ka BP (MIS 4), which are separated by a hiatus. The well-laminated (mm-cm scale) and almost entirely clastic sediments reveal alternations of clayey silt and medium silt to very-fine sand layers. Although radiocarbon and optically stimulated luminescence (OSL) dating provide a robust chronology, accurate dating of the sediment laminations appears to be problematic due to very high sedimentation rates (3-8 cm/yr). X-ray fluorescence (XRF) core scanning provided a detailed ~150m long record of compositional changes of the sediments at Baumkirchen. Changes in the sediments are subtle and classification into different facies based on individual elements is therefore subjective. We applied a statistically robust clustering analysis to provide an objective compositional classification without prior knowledge, based on XRF measurements for 15 analysed elements (all those with an acceptable signal-noise ratio: Zr, Sr, Ca, Mn, Cu, Zn, Rb, Ni, Fe, K, Cr, V, Si, Ba, T). The clustering analysis indicates a distinct compositional change between sediments deposited below and above the stratigraphic hiatus, but also differentiates between individual different laminae. Preliminary results suggest variations in the sequence are largely controlled by the relative occurrence of different kinds of sediment represented by different clusters. Three clusters identify well-laminated sediments, visually similar in appearance, each dominated by an anti-correlation between Ca and one or more of the detrital elements K, Zr, Ti, Si and Fe. Two of these clusters occur throughout the entire sequence, one frequently and the other restricted to short sections, while the third occurs almost exclusively below the hiatus, indicating a geochemically distinct component that possibly represents a specific sediment source. In a similar manner, three other clusters identify event layers with different compositions of which two occur exclusively above the hiatus and one exclusively below. The variations in the occurrence of these clusters revealing distinct event layers suggest variations in dominant sediment source both above and below the hiatus and within the section above it. More detailed comparisons between compositional variations of the individual clusters obtained from biplots and microscopic observations on thin sections, grain-size analyses, and mineralogical analyses are needed to further differentiate between sediment sources and transport mechanisms.

  8. Bacterial Composition and Survival on Sahara Dust Particles Transported to the European Alps

    PubMed Central

    Meola, Marco; Lazzaro, Anna; Zeyer, Josef

    2015-01-01

    Deposition of Sahara dust (SD) particles is a frequent phenomenon in Europe, but little is known about the viability and composition of the bacterial community transported with SD. The goal of this study was to characterize SD-associated bacteria transported to the European Alps, deposited and entrapped in snow. During two distinct events in February and May 2014, SD particles were deposited and promptly covered by falling snow, thus preserving them in distinct ochre layers within the snowpack. In June 2014, we collected samples at different depths from a snow profile at the Jungfraujoch (Swiss Alps; 3621 m a.s.l.). After filtration, we performed various microbiological and physicochemical analyses of the snow and dust particles therein that originated in Algeria. Our results show that bacteria survive and are metabolically active after the transport to the European Alps. Using high throughput sequencing, we observed distinct differences in bacterial community composition and structure in SD-layers as compared to clean snow layers. Sporulating bacteria were not enriched in the SD-layers; however, phyla with low abundance such as Gemmatimonadetes and Deinococcus-Thermus appeared to be specific bio-indicators for SD. Since many members of these phyla are known to be adapted to arid oligotrophic environments and UV radiation, they are well suited to survive the harsh conditions of long-range airborne transport. PMID:26733988

  9. Cuticular Waxes of Arabidopsis thaliana Shoots: Cell-Type-Specific Composition and Biosynthesis

    PubMed Central

    Hegebarth, Daniela; Jetter, Reinhard

    2017-01-01

    It is generally assumed that all plant epidermis cells are covered with cuticles, and the distinct surface geometries of pavement cells, guard cells, and trichomes imply functional differences and possibly different wax compositions. However, experiments probing cell-type-specific wax compositions and biosynthesis have been lacking until recently. This review summarizes new evidence showing that Arabidopsis trichomes have fewer wax compound classes than pavement cells, and higher amounts of especially long-chain hydrocarbons. The biosynthesis machinery generating this characteristic surface coating is discussed. Interestingly, wax compounds with similar, long hydrocarbon chains had been identified previously in some unrelated species, not all of them bearing trichomes. PMID:28686187

  10. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments.

    PubMed

    Rocha, Lidianne L; Colares, Geórgia B; Nogueira, Vanessa L R; Paes, Fernanda A; Melo, Vânia M M

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  11. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    PubMed Central

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  12. Composite theory applied to elastomers

    NASA Technical Reports Server (NTRS)

    Clark, S. K.

    1986-01-01

    Reinforced elastomers form the basis for most of the structural or load carrying applications of rubber products. Computer based structural analysis in the form of finite element codes was highly successful in refining structural design in both isotropic materials and rigid composites. This has lead the rubber industry to attempt to make use of such techniques in the design of structural cord-rubber composites. While such efforts appear promising, they were not easy to achieve for several reasons. Among these is a distinct lack of a clearly defined set of material property descriptors suitable for computer analysis. There are substantial differences between conventional steel, aluminum, or even rigid composites such as graphite-epoxy, and textile-cord reinforced rubber. These differences which are both conceptual and practical are discussed.

  13. A dynamic melting model for the origin of Apollo 15 olivine-normative and quartz-normative mare basalts

    NASA Technical Reports Server (NTRS)

    Vetter, Scott K.; Shervais, John W.

    1993-01-01

    Early studies of mare basalts from the Apollo 15 site established that two distinct groups are represented: the olivine-normative basalts (ONB) and the quartz-normative basalts (QNB). The ONB and QNB suites are distinguished petrographically by their phenocryst assemblages (the ONB's are olivine-phyric, the QNB's are generally pyroxene-phyric) and chemically by their major element compositions: the QNB's are higher in SiO2 and MgO/FeO, and lower in FeO and TiO2 than ONB's with similar MgO contents. Experimental data show that the QNB suite is derived from a more magnesian, olivine-normative parent magma, a conclusion which is supported by the recent discovery of high-SiO2 olivine-normative basalt clasts in breccia 15498. The high-SiO2 ONB's fall on olivine control lines with primitive QNB's, and least-squares mixing calculations are consistent with the high-SiO2 ONB's being parental to the more evolved QNB suite. These high-SiO2 ONB's are included as part of the 'QNB suite'. Our major element modeling results also are consistent with the conclusions of earlier studies which showed that the ONB and QNB suites cannot be related to one another by low pressure crystal fractionation. The combination of high Mg#, high SiO2, and low TiO2 in the QNB suite precludes a relationship to the ONB suite by simple removal of liquidus minerals (olivine and pigeonite). Despite these significant differences in petrography and major element composition, both groups have nearly identical trace element concentrations and chondrite-normalized abundance patterns. The major question to be addressed by any petrogenetic model for Apollo 15 mare basalts is how to form mare basalt suites with distinctly different major element characteristics but nearly identical trace element compositions. The similarity in trace element concentrations imply compositionally similar source regions and similar percent melting, but these conclusions are not easily reconciled with the observed differences in major element compositions, which require sources with distinct mineralogies or large differences in percent melt.

  14. From source to surface: Tracking magmatic boron and chlorine input into the geothermal systems of the Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Bégué, Florence; Deering, Chad D.; Gravley, Darren M.; Chambefort, Isabelle; Kennedy, Ben M.

    2017-10-01

    The magmatic contribution into geothermal fluids in the central Taupo Volcanic Zone (TVZ), New Zealand, has been attributed to either andesitic, 'arc-type' fluids, or rhyolitic, 'rift-type' fluids to explain the compositional diversity of discharge waters. However, this model relies on outdated assumptions related to geochemical trends associated with the magma at depth of typical arc to back-arc settings. Current tectonic models have shown that the TVZ is situated within a rifting arc and hosts magmatic systems dominated by distinct rhyolite types, that are likely to have evolved under different conditions than the subordinate andesites. Therefore, a new appraisal of the existing models is required to further understand the origin of the spatial compositional diversity observed in the geothermal fluids and its relationship to the structural setting. Here, we use volatile concentrations (i.e. H2O, Cl, B) from rhyolitic and andesitic mineral-hosted melt inclusions to evaluate the magmatic contribution to the TVZ geothermal systems. The andesite and two different types of rhyolites (R1 and R2) are each distinct in Cl/H2O and B/Cl, which will affect volatile solubility and phase separation (vapor vs. hydrosaline liquid) of the exsolved volatile phase. Ultimately, these key differences in the magmatic volatile constituents will play a significant role in governing the concentration of Cl discharged into geothermal systems. We estimate bulk fluid compositions (B and Cl) in equilibrium with the different melt types to show the potential contribution of 'parent' fluids to the geothermal systems throughout the TVZ. The results of this analysis show that the variability in fluid compositions partly reflects degassing from previously unaccounted for distinct magma source compositions. We suggest the geothermal systems that appear to have an 'arc-type' andesitic fluid contribution are actually derived from a rhyolite melt in equilibrium with a highly crystalline andesite magma. This model is in better agreement with the current understanding of magma petrogenesis in the central TVZ and its atypical rifted-arc tectonic setting, and show that the central TVZ records an arc, not back-arc, fluid signature.

  15. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging

    PubMed Central

    Lammeier, Carmen; Li, YuPing; Lunos, Scott; Fok, Alex; Rudney, Joel

    2012-01-01

    Abstract. The purpose of this study was to investigate cross-polarization-optical coherence tomography (CP-OCT) signal attenuation through different resin material compositions. Four distinct composite systems were used: Filtek supreme ultra (FSU) (3M ESPE), IPS empress direct (EMD) (Ivoclar Vivadent), estelite sigma quick (SQK) (Tokuyama Dental), and Z100 (3M ESPE). Cross-sectional images of different composite-demineralized phantoms (n=108) were collected using a 1310-nm intraoral cross-polarization swept source OCT (CP-OCT) imaging system. %T quantified the CP-OCT signal attenuation. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectrometer chemical analysis was utilized to determine how different matrix/filler compositions affected attenuation of the near infrared (NIR) signal. CP-OCT imaging of dental resin composites showed enormous variation in signal attenuation. For each of our composite systems, there was not a consistent attenuation difference in the NIR signal for A to D shades. The four composites had similar measured backscattering values but attenuated the overall signal to different degrees. When comparing the A2 shades between the four different composite systems, the order of highest to lowest of %T was EMD>Z100, FSU>SQK (ANOVA, Tukey, p<0.0001). As a result, we demonstrate the importance of understanding how the constituents of composite materials affect CP-OCT signal attenuation. PMID:23224001

  16. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Lammeier, Carmen; Li, YuPing; Lunos, Scott; Fok, Alex; Rudney, Joel; Jones, Robert S.

    2012-10-01

    The purpose of this study was to investigate cross-polarization-optical coherence tomography (CP-OCT) signal attenuation through different resin material compositions. Four distinct composite systems were used: Filtek supreme ultra (FSU) (3M ESPE), IPS empress direct (EMD) (Ivoclar Vivadent), estelite sigma quick (SQK) (Tokuyama Dental), and Z100 (3M ESPE). Cross-sectional images of different composite-demineralized phantoms (n=108) were collected using a 1310-nm intraoral cross-polarization swept source OCT (CP-OCT) imaging system. %T quantified the CP-OCT signal attenuation. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectrometer chemical analysis was utilized to determine how different matrix/filler compositions affected attenuation of the near infrared (NIR) signal. CP-OCT imaging of dental resin composites showed enormous variation in signal attenuation. For each of our composite systems, there was not a consistent attenuation difference in the NIR signal for A to D shades. The four composites had similar measured backscattering values but attenuated the overall signal to different degrees. When comparing the A2 shades between the four different composite systems, the order of highest to lowest of %T was EMD>Z100, FSU>SQK (ANOVA, Tukey, p<0.0001). As a result, we demonstrate the importance of understanding how the constituents of composite materials affect CP-OCT signal attenuation.

  17. Unraveling Metabolic Variation for Blueberry and Chokeberry Cultivars Harvested from Different Geo-Climatic Regions in Korea.

    PubMed

    Sim, Inseon; Suh, Dong Ho; Singh, Digar; Do, Seon-Gil; Moon, Kwang Hyun; Lee, Jeong Ho; Ku, Kang-Mo; Lee, Choong Hwan

    2017-10-18

    Temporal geo-climatic variations are presumably vital determinants of phenotypic traits and quality characteristics of berries manifested through reconfigured metabolomes. We performed an untargeted mass spectrometry (MS)-based metabolomic analysis of blueberry (Vaccinium spp.) and chokeberry (Aronia melanocarpa) sample extracts harvested from different geo-climatic regions in Korea. The multivariate statistical analysis indicated distinct metabolite compositions of berry groups based on different species and regions. The amino acids levels were relatively more abundant in chokeberry than in blueberry, while the sugar contents were comparatively higher in blueberry. However, the metabolite compositions were also dependent on geo-climatic conditions, especially latitude. Notwithstanding the cultivar types, amino acids, and sucrose were relatively more abundant in berries harvested from 35°N and 36°N geo-climatic regions, respectively, characterized by distinct duration of sunshine and rainfall patterns. The present study showed the ability of a metabolomics approach for recapitulating the significance of geo-climatic parameters for quality characterization of commercial berry types.

  18. Association between Grape Yeast Communities and the Vineyard Ecosystems

    PubMed Central

    Drumonde-Neves, João; Lima, Teresa; Schuller, Dorit; Pais, Célia

    2017-01-01

    The grape yeast biota from several wine-producing areas, with distinct soil types and grapevine training systems, was assessed on five islands of Azores Archipelago, and differences in yeast communities composition associated with the geographic origin of the grapes were explored. Fifty-seven grape samples belonging to the Vitis vinifera grapevine cultivars Verdelho dos Açores (Verdelho), Arinto da Terceira (Arinto) and Terrantez do Pico (Terrantez) were collected in two consecutive years and 40 spontaneous fermentations were achieved. A total of 1710 yeast isolates were obtained from freshly crushed grapes and 1200 from final stage of fermentations. Twenty-eight species were identified, Hanseniaspura uvarum, Pichia terricola and Metschnikowia pulcherrima being the three most representative species isolated. Candida carpophila was encountered for the first time as an inhabitant of grape or wine-associated environments. In both sampling years, a higher proportion of H. uvarum in fresh grapes from Verdelho cultivar was observed, in comparison with Arinto cultivar. Qualitatively significant differences were found among yeast communities from several locations on five islands of the Archipelago, particularly in locations with distinctive agro-ecological compositions. Our results are in agreement with the statement that grape-associated microbial biogeography is non-randomly associated with interactions of climate, soil, cultivar, and vine training systems in vineyard ecosystems. Our observations strongly support a possible linkage between grape yeast and wine typicality, reinforcing the statement that different viticultural terroirs harbor distinctive yeast biota, in particular in vineyards with very distinctive environmental conditions. PMID:28085916

  19. Linking Above- and Belowground Dynamics in Tropical Urban Forests

    NASA Astrophysics Data System (ADS)

    Atkinson, E. E.; Marin-Spiotta, E.

    2013-12-01

    Secondary forests that emerge after a long history of agriculture can have altered plant community composition and relative abundances of different species. These forests can look and behave differently compared to pre-agricultural forests due changes in primary productivity, resource allocation, and phenology, which can significantly affect processes such as carbon accumulation and nutrient availability. Our research explores how alternative successional trajectories following intensive agricultural use affect linkages among the establishment of novel plant communities, soil nutrient availability and turnover, and soil microbial community composition and function. We hypothesize that different plant species composition due to differing land use legacies and successional trajectories would drive changes in soil microbial community structure and function, affecting soil C and N chemistry and turnover. We conducted this research in the subtropical dry forest life zone of St. Croix, U.S. Virgin Islands where island-wide abandonment of sugarcane resulted in a mosaic of sites in different stages of forest succession. We identified replicate sites with the following post-sugarcane trajectories: 1) natural forest regeneration, 2) low intensity pasture use, followed by reforestation with timber plantation, which are no longer being managed, 3) high intensity pasture use and recent natural forest regeneration, and 4) high intensity pasture use and current active grazing. During 2011-2013, we sampled soils seasonally (0-10 cm) and measured tree species composition. The successional trajectories showed distinct tree species composition. The first two trajectories yielded 40-year old mixed-species secondary forest, dominated by the dry forest tree species Melicoccus bijugatas, Guapira fragrans, Maniklara zapota, and Sideroxylon foetidissimum. The tree species Melicoccus bijugatas primarily drove differences between the first two trajectories (natural forest regeneration vs. timber plantation and subsequent forest regeneration) while the N-fixing species Leucaena leucocephala drove differences between these forests and younger forests (10-year old), which only recently regenerated. The 40-year old mixed-species forests, regardless of successional trajectory, both had higher soil organic C and N (40 × 6 Mg C/ha and 3.8 × 6 Mg N/ha) compared to younger forests (32 × 2 Mg C/ha and 2.9 × 0.2 Mg N/ha) and active pastures. Active pastures had the lowest soil organic C and N (22 × 6 Mg C/ha and 2.1 × 0.5 Mg N/ha). We found that each successional trajectory showed distinct soil microbial community composition. In addition, the recently regenerated younger forests, dominated by N-fixing tree species, had higher microbial biomass and higher rates of N-cycling enzyme activity (N-acetyl glucosaminidase) when compared with the older, mixed-species forest. Our next step is to link microbial community structure and function with distinct forms of soil organic matter (SOM), and thus determine whether changes in function create distinct SOM stabilization pathways. To do this we will compare SOM chemistry and turnover for the different successional trajectories and analyze data from long-term leaf litter and root transplant experiments between the young and old secondary forests.

  20. Enhanced magnetization in morphologically and magnetically distinct BiFeO3 and La0.7Sr0.3MnO3 composites

    NASA Astrophysics Data System (ADS)

    Pillai, Shreeja; Reshi, Hilal Ahmad; Bagwaiya, Toshi; Banerjee, Alok; Shelke, Vilas

    2017-09-01

    Nanomaterials exhibit properties different from those of their bulk counterparts. The modified magnetic characteristics of manganite nanoparticles were exploited to improve magnetization in multiferroic BiFeO3 compound. We studied the composite of two morphologically and magnetically distinct compounds BiFeO3 (BFO) and La0.7Sr0.3MnO3 (LSMO). The microcrystalline BiFeO3 sample was prepared by solid state reaction method and the nanocrystalline La0.7Sr0.3MnO3 by sol-gel method. Composites with nominal compositions (1-x)BiFeO3-(x)La0.7Sr0.3MnO3 were prepared by modified solid state reaction method. The phase purity and crystal structures were checked by using X-ray diffraction. The formation of composites with phase separated BFO and LSMO was confirmed using Raman and Fourier Transform Infrared spectroscopy studies. The composite samples showed relatively high value of magnetization with finite coercivity. This improvement in magnetic behavior is ascribed to the coexistence of multiple magnetic orderings in composite samples. We scrutinized the possibility of oxygen vacancy or Fe mixed valency formation in the samples using X-ray photoelectron spectroscopy technique.

  1. Grassland vegetation and bird communities in the southern Great Plains of North America

    USGS Publications Warehouse

    Chapman, R.N.; Engle, David M.; Masters, R.E.; Leslie, David M.

    2004-01-01

    Structure and composition of vegetation and abundance of breeding birds in grasslands seeded to Old World bluestem (Bothriochloa ischmaeum) were compared to native mixed prairie in the southern Great Plains of North America. Abundance of birds was determined using fixed-radius point counts. Detrended correspondence analysis was used to compare plant community composition and canonical correspondence analysis was used to examine the relationships between plant species composition and vegetation structure with the bird community. Plant species composition differed distinctly between seeded grassland and native mixed prairie, but the differences were not reflected in habitat structure, bird community composition, or abundance of bird species. Seeded grassland was inferior to native mixed prairie in terms of diversity of plant species, but that difference did not translate into meaningful differences in structure that drove habitat selection by breeding birds. Conservation programs that promote establishment of seeded grassland and do not allow for suitable disturbance regimes will selectively benefit a narrow suite of birds regardless of plant species composition. ?? 2004 Elsevier B.V. All rights reserved.

  2. CellTrans: An R Package to Quantify Stochastic Cell State Transitions.

    PubMed

    Buder, Thomas; Deutsch, Andreas; Seifert, Michael; Voss-Böhme, Anja

    2017-01-01

    Many normal and cancerous cell lines exhibit a stable composition of cells in distinct states which can, e.g., be defined on the basis of cell surface markers. There is evidence that such an equilibrium is associated with stochastic transitions between distinct states. Quantifying these transitions has the potential to better understand cell lineage compositions. We introduce CellTrans, an R package to quantify stochastic cell state transitions from cell state proportion data from fluorescence-activated cell sorting and flow cytometry experiments. The R package is based on a mathematical model in which cell state alterations occur due to stochastic transitions between distinct cell states whose rates only depend on the current state of a cell. CellTrans is an automated tool for estimating the underlying transition probabilities from appropriately prepared data. We point out potential analytical challenges in the quantification of these cell transitions and explain how CellTrans handles them. The applicability of CellTrans is demonstrated on publicly available data on the evolution of cell state compositions in cancer cell lines. We show that CellTrans can be used to (1) infer the transition probabilities between different cell states, (2) predict cell line compositions at a certain time, (3) predict equilibrium cell state compositions, and (4) estimate the time needed to reach this equilibrium. We provide an implementation of CellTrans in R, freely available via GitHub (https://github.com/tbuder/CellTrans).

  3. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels.

    PubMed

    Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin

    2016-04-13

    Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity.

  4. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels

    PubMed Central

    Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin

    2016-01-01

    Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity. PMID:27072196

  5. Influence of extraction methodology on grape composition values

    USDA-ARS?s Scientific Manuscript database

    This work demonstrated similarities and differences in quantifying many grape quality components (> 45 compounds) that were extracted from berries by three distinct preparations, and analyzed by eight spectrophotometric and HPLC methods. All sample extraction methods were appropriate for qualitative...

  6. Distinct Amino Acid Compositional Requirements for Formation and Maintenance of the [PSI+] Prion in Yeast

    PubMed Central

    MacLea, Kyle S.; Paul, Kacy R.; Ben-Musa, Zobaida; Waechter, Aubrey; Shattuck, Jenifer E.; Gruca, Margaret

    2014-01-01

    Multiple yeast prions have been identified that result from the structural conversion of proteins into a self-propagating amyloid form. Amyloid-based prion activity in yeast requires a series of discrete steps. First, the prion protein must form an amyloid nucleus that can recruit and structurally convert additional soluble proteins. Subsequently, maintenance of the prion during cell division requires fragmentation of these aggregates to create new heritable propagons. For the Saccharomyces cerevisiae prion protein Sup35, these different activities are encoded by different regions of the Sup35 prion domain. An N-terminal glutamine/asparagine-rich nucleation domain is required for nucleation and fiber growth, while an adjacent oligopeptide repeat domain is largely dispensable for prion nucleation and fiber growth but is required for chaperone-dependent prion maintenance. Although prion activity of glutamine/asparagine-rich proteins is predominantly determined by amino acid composition, the nucleation and oligopeptide repeat domains of Sup35 have distinct compositional requirements. Here, we quantitatively define these compositional requirements in vivo. We show that aromatic residues strongly promote both prion formation and chaperone-dependent prion maintenance. In contrast, nonaromatic hydrophobic residues strongly promote prion formation but inhibit prion propagation. These results provide insight into why some aggregation-prone proteins are unable to propagate as prions. PMID:25547291

  7. Lipid and PCB compositions in water-striders from contaminated streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napolitano, G.E.; Richmond, J.E.; Klasson, K.T.

    1995-12-31

    In a study of hydrophobic substances in stream surface-waters, the authors investigated lipids and polychlorinated biphenyls (PCBs) of water-striders (Gerris remiges). Lipid class, fatty acid, and PCB congener compositions were analyzed in insects from four streams located downstream of the Department of Energy`s facilities near the city of Oak Ridge, Tennessee. Total lipid contents of water-striders varied seasonally, showing maximum concentrations in summer and fall ({approximately} 9.0% of wet weight), and minimum concentrations in winter and spring. Total PCB concentrations of water-striders varied between streams and appeared to parallel PCB concentrations reported for the aquatic fauna of each site. Fattymore » acids were used as chemical markers to detect differences in the food resources of water-striders. The triacylglycerol fatty acid composition was remarkably similar in all the streams and reflected to a large extent, that of a terrestrial insect. The PCB congener composition of water-striders varied significantly between streams, showing a relative enrichment of the less chlorinated congeners in the less contaminated samples. There was also a positive correlation between PCB burden and average molecular weights. Differences between the chlorine content of the dominant congeners suggest distinct sources of PCBs for the different streams. The apparent similarities in the food resources of the water-striders, as inferred from fatty acid markers, and their distinct PCB congener composition, suggest absorption or ingestion from the surface micro-layer, rather than diet, as a more likely route of uptake of lipophilic contaminants by water-striders.« less

  8. Structural and metabolic characterization of RNAs from rats with experimental Guerin tumor - I. Nucleotide composition of RNAs from the liver and tumor tissues of rats.

    PubMed

    Ratkiewicz, A; Galasinski, W

    1976-01-01

    The characteristics of the ribonucleic acids of Guerin tumor was the subject of this work. The effect of tumor development on the structure of the ribonucleic acids in the liver of tumor bearing rats was studied. Some differences of nucleotide compositions in RNAs isolated from subcellular fractions of liver of control and tumor bearing rats and of cancer tissue were observed. The nucleotide compositions of cancer nuclear RNA is distinctly different from liver RNA. The changes in primary structure of liver RNAs due by development of tumor in rats may be result of metabolic peculiarities of these RNAs.

  9. Petrology of Anomalous Eucrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Peng, Z. X.; Ross, D. K.

    2015-01-01

    Most mafic achondrites can be broadly categorized as being "eucritic", that is, they are composed of a ferroan low-Ca clinopyroxene, high-Ca plagioclase and a silica phase. They are petrologically distinct from angritic basalts, which are composed of high-Ca, Al-Ti-rich clinopyroxene, Carich olivine, nearly pure anorthite and kirschsteinite, or from what might be called brachinitic basalts, which are composed of ferroan orthopyroxene and high-Ca clinopyroxene, intermediate-Ca plagioclase and ferroan olivine. Because of their similar mineralogy and composition, eucrite-like mafic achondrites formed on compositionally similar asteroids under similar conditions of temperature, pressure and oxygen fugacity. Some of them have distinctive isotopic compositions and petrologic characteristics that demonstrate formation on asteroids different from the parent of the HED clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller oxygen isotopic distinctions but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The degree of uniformity in delta O-17 of eucrites and diogenites is one piece of evidence considered to favor of a magma-ocean scenario for their petrogenesis. Given that the O isotopic differences separating Pasamonte and PCA 91007 from other eucrites are small, and that there is an absence of other distinguishing characteristics, a legitimate question is: Did the HED parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? We are initiating a program of study of anomalous eucrite-like achondrites as one part of our effort to seek a resolution of this issue. Here we present preliminary petrologic information on Asuka (A-) 881394, Elephant Moraine (EET) 87520 and EET 87542. We will have studied several more by conference time.

  10. Vital effects in coral skeletal composition display strict three-dimensional control

    USGS Publications Warehouse

    Meibom, A.; Yurimoto, H.; Cuif, J.-P.; Domart-Coulon, I.; Houlbreque, F.; Constantz, B.; Dauphin, Y.; Tambutte, E.; Tambutte, S.; Allemand, D.; Wooden, J.; Dunbar, R.

    2006-01-01

    Biological control over coral skeletal composition is poorly understood but critically important to paleoenvironmental reconstructions. We present microanalytical measurements of trace-element abundances as well as oxygen and carbon isotopic compositions of individual skeletal components in the zooxanthellate coral Colpophyllia sp. Our data show that centers of calcification (COC) have higher trace element concentrations and distinctly lighter isotopic compositions than the fibrous components of the skeleton. These observations necessitate that COC and the fibrous skeleton are precipitated by different mechanisms, which are controlled by specialized domains of the calicoblastic cell-layer. Biological processes control the composition of the skeleton even at the ultra-structure level. Copyright 2006 by the American Geophysical Union.

  11. Text Comprehension Mediates Morphological Awareness, Syntactic Processing, and Working Memory in Predicting Chinese Written Composition Performance

    PubMed Central

    Guan, Connie Qun; Ye, Feifei; Wagner, Richard K.; Meng, Wanjin; Leong, Che Kan

    2014-01-01

    The goal of the present study was to test opposing views about four issues concerning predictors of individual differences in Chinese written composition: (a) Whether morphological awareness, syntactic processing, and working memory represent distinct and measureable constructs in Chinese or are just manifestations of general language ability; (b) whether they are important predictors of Chinese written composition, and if so, the relative magnitudes and independence of their predictive relations; (c) whether observed predictive relations are mediated by text comprehension; and (d) whether these relations vary or are developmentally invariant across three years of writing development. Based on analyses of the performance of students in grades 4 (n = 246), 5 (n = 242) and 6 (n = 261), the results supported morphological awareness, syntactic processing, and working memory as distinct yet correlated abilities that made independent contributions to predicting Chinese written composition, with working memory as the strongest predictor. However, predictive relations were mediated by text comprehension. The final model accounted for approximately 75 percent of the variance in Chinese written composition. The results were largely developmentally invariant across the three grades from which participants were drawn. PMID:25530630

  12. Dynamic mechanical properties of a Ti-based metallic glass matrix composite

    NASA Astrophysics Data System (ADS)

    Li, Jinshan; Cui, Jing; Qiao, Jichao; Bai, Jie; Kou, Hongchao; Wang, Jun

    2015-04-01

    Dynamic mechanical behavior of a Ti50Zr20Nb12Cu5Be13 bulk metallic glass composite was investigated using mechanical spectroscopy in both temperature and frequency domains. Storage modulus G' and loss modulus G″ are determined by temperature, and three distinct regions corresponding to different states in the bulk metallic glass composite are characterized. Physical parameters, such as atomic mobility and correlation factor χ, are introduced to analyze dynamic mechanical behavior of the bulk metallic glass composite in the framework of quasi-point defects (QPD) model. The experimental results are in good agreement with the prediction of QPD model.

  13. Dynamic mechanical properties of a Ti-based metallic glass matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinshan, E-mail: ljsh@nwpu.edu.cn; Cui, Jing; Bai, Jie

    2015-04-21

    Dynamic mechanical behavior of a Ti{sub 50}Zr{sub 20}Nb{sub 12}Cu{sub 5}Be{sub 13} bulk metallic glass composite was investigated using mechanical spectroscopy in both temperature and frequency domains. Storage modulus G′ and loss modulus G″ are determined by temperature, and three distinct regions corresponding to different states in the bulk metallic glass composite are characterized. Physical parameters, such as atomic mobility and correlation factor χ, are introduced to analyze dynamic mechanical behavior of the bulk metallic glass composite in the framework of quasi-point defects (QPD) model. The experimental results are in good agreement with the prediction of QPD model.

  14. Altered Oral Viral Ecology in Association with Periodontal Disease

    PubMed Central

    Ly, Melissa; Abeles, Shira R.; Boehm, Tobias K.; Robles-Sikisaka, Refugio; Naidu, Mayuri; Santiago-Rodriguez, Tasha

    2014-01-01

    ABSTRACT The human oral cavity is home to a large and diverse community of viruses that have yet to be characterized in patients with periodontal disease. We recruited and sampled saliva and oral biofilm from a cohort of humans either periodontally healthy or with mild or significant periodontal disease to discern whether there are differences in viral communities that reflect their oral health status. We found communities of viruses inhabiting saliva and the subgingival and supragingival biofilms of each subject that were composed largely of bacteriophage. While there were homologous viruses common to different subjects and biogeographic sites, for most of the subjects, virome compositions were significantly associated with the oral sites from which they were derived. The largest distinctions between virome compositions were found when comparing the subgingival and supragingival biofilms to those of planktonic saliva. Differences in virome composition were significantly associated with oral health status for both subgingival and supragingival biofilm viruses but not for salivary viruses. Among the differences identified in virome compositions was a significant expansion of myoviruses in subgingival biofilm, suggesting that periodontal disease favors lytic phage. We also characterized the bacterial communities in each subject at each biogeographic site by using the V3 hypervariable segment of the 16S rRNA and did not identify distinctions between oral health and disease similar to those found in viral communities. The significantly altered ecology of viruses of oral biofilm in subjects with periodontal disease compared to that of relatively periodontally healthy ones suggests that viruses may serve as useful indicators of oral health status. PMID:24846382

  15. Individual differences in action co-representation: not personal distress or subclinical psychotic experiences but sex composition modulates joint action performance.

    PubMed

    van der Weiden, Anouk; Aarts, Henk; Prikken, Merel; van Haren, Neeltje E M

    2016-02-01

    Successful social interaction requires the ability to integrate as well as distinguish own and others' actions. Normally, the integration and distinction of self and other are a well-balanced process, occurring without much effort or conscious attention. However, not everyone is blessed with the ability to balance self-other distinction and integration, resulting in personal distress in reaction to other people's emotions or even a loss of self [e.g., in (subclinical) psychosis]. Previous research has demonstrated that the integration and distinction of others' actions cause interference with one's own action performance (commonly assessed with a social Simon task). The present study had two goals. First, as previous studies on the social Simon effect employed relatively small samples (N < 50 per test), we aimed for a sample size that allowed us to test the robustness of the action interference effect. Second, we tested to what extent action interference reflects individual differences in traits related to self-other distinction (i.e., personal distress in reaction to other people's emotions and subclinical psychotic symptoms). Based on a questionnaire study among a large sample (N = 745), we selected a subsample (N = 130) of participants scoring low, average, or high on subclinical psychotic symptoms, or on personal distress. The selected participants performed a social Simon task. Results showed a robust social Simon effect, regardless of individual differences in personal distress or subclinical psychotic symptoms. However, exploratory analyses revealed that the sex composition of interaction pairs modulated social Simon effects. Possible explanations for these findings are discussed.

  16. Tree Regeneration Under Different Land-Use Mosaics in the Brazilian Amazon's "Arc of Deforestation".

    PubMed

    Do Vale, Igor; Miranda, Izildinha Souza; Mitja, Danielle; Grimaldi, Michel; Nelson, Bruce Walker; Desjardins, Thierry; Costa, Luiz Gonzaga Silva

    2015-08-01

    We studied the tree-regeneration patterns in three distinct agricultural settlements in the Eastern Amazon to test the influence of land-use mosaics. The following questions are addressed: are the floristic structure and composition of regenerating trees affected by the various land-use types applied in the agricultural settlements? Do tree-regeneration patterns respond similarly to distinct land-use mosaics? Is there a relationship between tree regeneration and soil characteristics among the land-use types? The regeneration was inventoried at 45 sampling points in each settlement. At each sampling point, fourteen soil variables were analyzed. Nine different land-use types were considered. The floristic structure and composition of the settlements showed differences in the density of individuals and species and high species heterogeneity among the land-use types. The maximum Jaccard similarity coefficient found between land-use types was only 29%. Shade-tolerant species were the most diverse functional group in most land-use types, including pasture and annual crops, ranging from 91% of the number of species in the conserved and exploited forests of Travessão 338-S to 53% in the invaded pastures of Maçaranduba. The land-use types influenced significantly the floristic structure and composition of regenerating trees in two agricultural settlements, but not in third the settlement, which had greater forest cover. This finding demonstrates that the composition of each land-use mosaic, established by different management approaches, affects regeneration patterns. Tree regeneration was related to soil characteristics in all mosaics. Preparation of the area by burning was most likely the determining factor in the differences in soil characteristics between forests and agricultural areas.

  17. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups.

    PubMed

    Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A; Bar-On, Benny; Harpaz-Saad, Smadar

    2017-04-01

    Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in environmental selection along the course of plant evolution. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  18. The Mantle Isotopic Array: A Tale of Two FOZOs

    NASA Astrophysics Data System (ADS)

    Apen, F. E.; Mukhopadhyay, S.; Williams, C. D.

    2017-12-01

    Oceanic basalts display isotopic arrays that suggest mixing between a depleted component, several enriched components, and a primitive component. The topology of the arrays provides information on mantle mixing, the distribution of heterogeneities, and information on mantle structure. Here we use a global compilation of mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) He-Sr-Nd-Pb isotopic data to further analyze the topology of these arrays. Previous work indicated that OIB isotopic arrays converge to a common component [1-3] referred to as the focus zone, or FOZO. Our analyses suggest that while all OIBs do point to a common component with unradiogenic 4He/3He ratios relative to MORBs, this component has to be quite variable in its He, Sr, Nd and Pb isotopic compositions. FOZO cannot be a pure component but must represent a heterogeneous mixture of primitive and recycled material. Our analyses of the MORB and OIB isotopic compositions also indicate that while MORBs and OIBs sample the same components, the topology of their mixing arrays are quite distinct. Different MOR segments show quasi-linear isotopic arrays that all converge to a common component. This component is distinctive from the OIB FOZO being more depleted and more restrictive in its He, Sr, Nd and Pb composition. We suggest two common but distinguishable components are present in the mantle arrays: one common to MORBs and the other to OIBs, and we refer to them as MORB-FOZO and OIB-FOZO, respectively. We interpret the two FOZOs to represent the average composition of small-scale heterogeneities that make up the background matrix in the sources of MORBs and OIBs. The depleted and enriched components that are sampled in MORBs and OIBs reflect relatively large-scale heterogeneities distributed within the matrix, material that have yet to be deformed into the smaller length scales of the matrix material. Differences between the two FOZO compositions reflects the inclusion of a component with primitive He in OIBs along with differences in mixing timescales and mantle processing rates for MORBs and OIBs. The two distinct FOZO compositions must also indicate limited direct mixing between the two over Earth's 4.5 Gyr history. References: [1] Hart et al., Science 1992; [2] Farley et al., EPSL 1992; [3] Hanan and Graham, Science 1996.

  19. Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis

    PubMed Central

    Brennecka, Gregory A.; Borg, Lars E.; Wadhwa, Meenakshi

    2013-01-01

    The isotopic composition of our Solar System reflects the blending of materials derived from numerous past nucleosynthetic events, each characterized by a distinct isotopic signature. We show that the isotopic compositions of elements spanning a large mass range in the earliest formed solids in our Solar System, calcium–aluminum-rich inclusions (CAIs), are uniform, and yet distinct from the average Solar System composition. Relative to younger objects in the Solar System, CAIs contain positive r-process anomalies in isotopes A < 140 and negative r-process anomalies in isotopes A > 140. This fundamental difference in the isotopic character of CAIs around mass 140 necessitates (i) the existence of multiple sources for r-process nucleosynthesis and (ii) the injection of supernova material into a reservoir untapped by CAIs. A scenario of late supernova injection into the protoplanetary disk is consistent with formation of our Solar System in an active star-forming region of the galaxy. PMID:24101483

  20. Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis.

    PubMed

    Brennecka, Gregory A; Borg, Lars E; Wadhwa, Meenakshi

    2013-10-22

    The isotopic composition of our Solar System reflects the blending of materials derived from numerous past nucleosynthetic events, each characterized by a distinct isotopic signature. We show that the isotopic compositions of elements spanning a large mass range in the earliest formed solids in our Solar System, calcium-aluminum-rich inclusions (CAIs), are uniform, and yet distinct from the average Solar System composition. Relative to younger objects in the Solar System, CAIs contain positive r-process anomalies in isotopes A < 140 and negative r-process anomalies in isotopes A > 140. This fundamental difference in the isotopic character of CAIs around mass 140 necessitates (i) the existence of multiple sources for r-process nucleosynthesis and (ii) the injection of supernova material into a reservoir untapped by CAIs. A scenario of late supernova injection into the protoplanetary disk is consistent with formation of our Solar System in an active star-forming region of the galaxy.

  1. Biogeochemical drivers of microbial community convergence across actively retreating glaciers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castle, Sarah C.; Nemergut, Diana R.; Grandy, A. Stuart

    The ecological processes that influence biogeographical patterns of microorganisms are actively debated. To investigate how such patterns emerge during ecosystem succession, we examined the biogeochemical drivers of bacterial community assembly in soils over two environmentally distinct, recently deglaciated chronosequences separated by a distance of more than 1,300 kilometers. Our results show that despite different geographic, climatic, and soil chemical and physical characteristics at the two sites, soil bacterial community structure and decomposer function converged during plant succession. In a comparative analysis, we found that microbial communities in early succession soils were compositionally distinct from a group of diverse, mature forestmore » soils, but that the differences between successional soils and mature soils decreased from early to late stages of succession. Differences in bacterial community composition across glacial sites were largely explained by pH. However, successional patterns and community convergence across sites were more consistently related to soil organic carbon and organic matter chemistry, which appeared to be tightly coupled with bacterial community structure across both young and mature soils.« less

  2. Cryogenic-coolant He4-superconductor dynamic and static interactions

    NASA Technical Reports Server (NTRS)

    Caspi, S.; Chuang, C.; Kim, Y. I.; Allen, R. J.; Frederking, T. H. E.

    1980-01-01

    A composite superconducting material (NbTi-Cu) was evaluated with emphasis on post quench solid cooling interaction regimes. The quasi-steady runs confirm the existence of a thermodynamic limiting thickness for insulating coatings. Two distinctly different post quench regimes of coated composites are shown to relate to the limiting thickness. Only one regime,, from quench onset to the peak value, revealed favorable coolant states, in particular in He2. Transient recovery shows favorable recovery times from this post quench regime (not drastically different from bare conductors) for both single coated specimens and a coated conductor bundle.

  3. Soil organic matter composition affected by potato cropping managements

    USDA-ARS?s Scientific Manuscript database

    Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...

  4. Mercury's Exosphere During MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of Neutral Species

    NASA Technical Reports Server (NTRS)

    McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Killen, Rosemary M.; Mouawad, Nelly; Sprague, Ann L.; Burger, Matthew H.; Solomon, Sean C.; Izenberg, Noam R.

    2009-01-01

    During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  5. Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer.

    PubMed

    Kuppardt, Anke; Kleinsteuber, Sabine; Vogt, Carsten; Lüders, Tillmann; Harms, Hauke; Chatzinotas, Antonis

    2014-08-01

    Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.

  6. Modeling Composite Assessment Data Using Item Response Theory

    PubMed Central

    Ueckert, Sebastian

    2018-01-01

    Composite assessments aim to combine different aspects of a disease in a single score and are utilized in a variety of therapeutic areas. The data arising from these evaluations are inherently discrete with distinct statistical properties. This tutorial presents the framework of the item response theory (IRT) for the analysis of this data type in a pharmacometric context. The article considers both conceptual (terms and assumptions) and practical questions (modeling software, data requirements, and model building). PMID:29493119

  7. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    DOE PAGES

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-09-04

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing ofmore » ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha –1 yr –1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. As a result, given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.« less

  8. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    USGS Publications Warehouse

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-01-01

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  9. Composition, Preservation and Production Technology of Augusta Emerita Roman Glasses from the First to the Sixth Century a.d.

    NASA Astrophysics Data System (ADS)

    Palomar, Teresa; Garcia-Heras, Manuel; Sabio, Rafael; Rincon, Jesus-Maria; Villegas, Maria-Angeles

    This paper presents the results derived from an archaeometric study undertaken on glass samples from the Roman town of Augusta Emerita (Mérida, Spain). The main goal of the research was to provide for the first time some compositional and technological insights into the glass finds unearthed in this town. Glass samples from different sites and chronology, either from inside or from outside the perimeter of the ancient town and from the first to the sixth century AD, were analyzed and characterized through optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDS), X-ray fluorescence (XRF) spectrometry and VIS spectrophotometry. Resulting data indicated that all the samples studied were natron-based soda lime silicate glasses, even though two chronological and compositionally distinct groups were distinguished. One composed of Early Empire glasses and a second one composed of glasses from the fourth century AD onward, which was characterized by the presence of the so-called HIMT (high iron, manganese, and titanium) glasses. Comparison with coeval glasses suggested that Augusta Emerita shared the same trade glass circles than other contemporary Roman towns, within the frame of a secondary production scale. Finally, some outstanding differences connected to composition and chronology were found, since Late Roman glasses presented a higher and distinct degree of alteration than Early Empire ones.

  10. Investigation of the Influence of Heat Balance Shifts on the Freeze Microstructure and Composition in Aluminum Smelting Bath System: Cryolite-CaF2-AlF3-Al2O3

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Fallah-Mehrjardi, Ata; Shishin, Denis; Jak, Evgueni; Dorreen, Mark; Taylor, Mark

    2017-12-01

    In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF2-AlF3-Al2O3 electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath.

  11. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    PubMed

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. The failure of 1D seismic model fitting to constrain lower mantle composition

    NASA Astrophysics Data System (ADS)

    Houser, C. T.; Hernlund, J. W.; Valencia-Cardona, J. J.; Wentzcovitch, R.

    2017-12-01

    Tests of lower mantle composition models often compare mineral physics data bearing on the elasticity and density of lower mantle phases to the average seismic velocity profile determined by seismology, such a PREM or ak135. We demonstrate why such comparisons between mineralogy and seismology are an inadequate method for definitive discrimination between different scenarios. One issue is that the seismic velocity is more sensitive to temperature than composition for most lower mantle minerals. In practice, this allows one the freedom to choose the geotherm that brings the predicted seismic and density data into agreement with observations. It is commonly assumed that the temperature profile should be adiabatic, however, such a profile presupposes a particular state of the mantle and is only applicable in the absence of layering, buoyancy fluctuations, compositional segregation, and rheological complexities. The mantle temperature should depend on the composition since the latter influences the viscosity of rocks. However, the precise relation between composition, viscosity, and heat transfer would need to be specified, but unfortunately remains highly uncertain. If the mantle contains a mixture of domains with multiple bulk compositions, then the 1D seismic profile comparison is inherently non-unique. Rocks with different bulk composition likely have different isotopic abundances, and can exhibit differing degrees of internal heating and therefore distinct temperatures. Different composition domains can also exhibit variable densities, and tend to congregate at different depths in ways that also affect their thermal evolution and temperature. Therefore, fitting a 1D seismic model alone is an inadequate tool to evaluate lower mantle composition.

  13. Particle shape effects on the fracture of discontinuously-reinforced 6061-A1 matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, N.; Song, S.G.; Gray, G.T., III

    1996-05-01

    Effects on fracture and ductility of a spherical and an angular particulate-reinforced 6061-Al composite containing 20(vol)% Al{sub 2}O{sub 3} were studied using SEM fractography and modeled using finite element method (FEM). The spherical particulate composite exhibited a slightly lower yield strength and work hardening rate but a considerably higher ductility than the angular counterpart. SEM fractography showed that during tensile deformation the spherical composite failed through void nucleation and linking in the matrix near the reinforcement/matrix interface, whereas the angular composite failed through particle fracture and matrix ligament rupture. FEM results indicate that the distinction between the failure modes formore » these two composites can be attributed to differences in development of internal stresses and strains within the composites due to particle shape.« less

  14. Trade-off between taxon diversity and functional diversity in European lake ecosystems.

    PubMed

    Grossmann, Lars; Beisser, Daniela; Bock, Christina; Chatzinotas, Antonis; Jensen, Manfred; Preisfeld, Angelika; Psenner, Roland; Rahmann, Sven; Wodniok, Sabina; Boenigk, Jens

    2016-12-01

    Inferring ecosystem functioning and ecosystem services through inspections of the species inventory is a major aspect of ecological field studies. Ecosystem functions are often stable despite considerable species turnover. Using metatranscriptome analyses, we analyse a thus-far unparalleled freshwater data set which comprises 21 mainland European freshwater lakes from the Sierra Nevada (Spain) to the Carpathian Mountains (Romania) and from northern Germany to the Apennines (Italy) and covers an altitudinal range from 38 m above sea level (a.s.l) to 3110 m a.s.l. The dominant taxa were Chlorophyta and streptophytic algae, Ciliophora, Bacillariophyta and Chrysophyta. Metatranscriptomics provided insights into differences in community composition and into functional diversity via the relative share of taxa to the overall read abundance of distinct functional genes on the ecosystem level. The dominant metabolic pathways in terms of the fraction of expressed sequences in the cDNA libraries were affiliated with primary metabolism, specifically oxidative phosphorylation, photosynthesis and the TCA cycle. Our analyses indicate that community composition is a good first proxy for the analysis of ecosystem functions. However, differential gene regulation modifies the relative importance of taxa in distinct pathways. Whereas taxon composition varies considerably between lakes, the relative importance of distinct metabolic pathways is much more stable, indicating that ecosystem functioning is buffered against shifts in community composition through a functional redundancy of taxa. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  15. Oxygen Isotopic Analyses of Water Extracted from the Martian Meteorite NWA 7034

    NASA Astrophysics Data System (ADS)

    Nunn, M.; Agee, C. B.; Thiemens, M. H.

    2012-12-01

    Introduction: The NWA 7034 meteorite has been identified as Martian, but it is distinct from the Shergottite-Nakhlite-Chassignite (SNC) grouping of meteorites in its petrology (it is the only known Martian basaltic breccia) and bulk silicate oxygen isotopic composition (Δ17O = 0.56 ± 0.06 ‰, where Δ17O = δ17O - 0.528 x δ18O, compared to the average SNC Δ17O ≈ 0.3 ‰) [e.g., 1-2]. We report here measurements of the oxygen isotopic composition of water extracted from NWA 7034 by stepwise heating. Methods: A piece (~1.2g) of NWA 7034 was pumped to vacuum until outgassing had stopped before heating to 50, 150, 320, 500, and 1000°C. The sample was maintained at each temperature step for at least one hour while collecting evolved volatiles in a liquid nitrogen cold trap. Water was selectively converted to molecular oxygen, the oxygen isotopic composition of which was then measured on a double collecting isotope ratio mass spectrometer. Results: Our stepwise heating experiments indicate NWA 7034 contains 3330ppm water, and this water has an average oxygen isotopic composition of Δ17O = 0.330 ± 0.011‰. The oxygen isotopic composition of water in NWA 7034 is unlike that of the silicates from which it is extracted (Δ17O = 0.56 ± 0.06 ‰) but is comparable to the average SNC silicate composition (Δ17O ≈ 0.3 ‰). However, there is no consensus on the oxygen isotopic composition of water in SNCs because aliquots of water extracted from different samples (separate pieces of a single meteorite or from different meteorites) have different oxygen isotopic compositions [3]. Furthermore, carbonates and sulfates extracted from SNCs also possess distinct oxygen isotopic compositions [4]. The variation in oxygen isotopic composition among these phases most likely results from the existence of isotopically distinct oxygen reservoirs on Mars that were not equilibrated. On Earth, interaction of ozone (O3) and carbon dioxide (CO2) leads to a mass independent oxygen isotopic composition of atmospheric CO2 [5]. This anomaly is transferred by exchange from CO2 to water and subsequently to secondary minerals. The much larger CO2 to water ratio on Mars could allow this process to introduce a measurable oxygen isotopic anomaly to sulfates, carbonates, and water. The magnitude and variability of this anomaly would depend on the formation mechanism of the species (particularly the source of oxygen), as is consistent with measurements to date of phases in SNCs. References: [1] Franchi, I.A., et al. (1999) MAPS 34, 657-661. [2] Rumble, D. and Irving, A.J. (2009) LPSC XXXX, #2293 [3] Karlsson, H.R., et al. (1992) Science 255, 1409-1411. [4] Farquhar, J. and Thiemens, M.H. (2000) J. Geophys. Res. 105, 11991-11997. [5] Yung, Y.L., et al. (1991) Geophys. Res. Lett. 18, 13-16.

  16. Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites.

    PubMed

    Das, Anindita; Rathour, Rahul K; Narayanan, Rishikesh

    2017-01-01

    Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.

  17. ARE ELEMENTAL FINGERPRINTS OF FISH OTOLITHS DISTINCT AMONG GREAT LAKES COASTAL NURSERY AREAS?

    EPA Science Inventory

    Elemental composition of an otolith reflects a fish's rearing environment,
    so otolith geochemistry can record differences in ambient water conditions
    specific to habitats used during a fish's life history. Although few studies
    have been conducted in freshwater, trace ...

  18. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean.

    PubMed

    von der Heyden, B P; Roychoudhury, A N; Mtshali, T N; Tyliszczak, T; Myneni, S C B

    2012-11-30

    Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the Southern Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation and mineralogy are challenging to characterize on a regional scale. We describe a diverse array of iron particles, ranging from 20 to 700 nanometers in diameter, in the waters of the Southern Ocean euphotic zone. Distinct variations in the oxidation state and composition of these iron particles exist between the coasts of South Africa and Antarctica, with different iron pools occurring in different frontal zones. These speciation variations can result in solubility differences that may affect the production of bioavailable dissolved iron.

  19. Beyond Crystal Engineering: Significant Enhancement of C2H2/CO2 Separation by Constructing Composite Material.

    PubMed

    Wu, Hui Qiong; Yan, Chang Sheng; Luo, Feng; Krishna, Rajamani

    2018-04-02

    Different from the established crystal engineering method for enhancing gas-separation performance, we demonstrate herein a distinct approach. In contrast to the pristine MOF (metal-organic framework) material, the C 2 H 2 /CO 2 separation ability for the resultant Ag NPs (nanoparticle)@Fe 2 O 3 @MOF composite material, estimated from breakthrough calculations, is greatly enhanced by 2 times, and further magnified up to 3 times under visible light irradiation.

  20. Hydrogen isotope fractionation during lipid biosynthesis by Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Dirghangi, Sitindra S.; Pagani, Mark

    2013-10-01

    We studied the controls on the fractionation of hydrogen isotopes during lipid biosynthesis by Haloarcula marismortui, a halophilic archaea, in pure culture experiments by varying organic substrate, the hydrogen isotope composition (D/H) of water, temperature, and salinity. Cultures were grown on three substrates: succinate, pyruvate and glycerol with known hydrogen isotope compositions, and in water with different hydrogen isotopic compositions. All culture series grown on a particular substrate show strong correlations between δDarchaeol and δDwater. However, correlations are distinctly different for cultures grown on different substrates. Our results indicate that the metabolic pathway of substrate exerts a fundamental influence on the δD value of lipids, likely by influencing the D/H composition of NADPH (nicotinamide adenine dinucleotide phosphate), the reducing agent that contributes hydrogen to carbon atoms during lipid biosynthesis. Temperature and salinity have smaller, but similar effects on δDlipid, primarily due to the way temperature and salinity influence growth rate, as well as temperature effects on the activity of enzymes.

  1. History of the magmatic feeding system of the Campi Flegrei caldera (Italy)

    NASA Astrophysics Data System (ADS)

    Civetta, L.; Arienzo, I.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.; Orsi, G.

    2007-05-01

    The definition of the magmatic feeding system of active volcanoes in terms of architecture, composition, crystallization time-scale, relationships between composition of the erupted magmas and structural position of the vents, and magma processes, is of paramount importance for volcanic hazards evaluation. Investigations aimed at defining the Campi Flegeri magmatic system, include detailed mineralogical, geochemical and isotopic analyses (Sr, Nd, Pb, Th,U). The magmatic feeding system of the Campi Flegrei caldera is characterized by deep and shallow magma reservoirs. In the deep reservoirs (20-10 km depth) mantle- derived magmas differentiated and were contaminated by continental crust. In the shallow reservoirs isotopically distinct magmas, further differentiated, contaminated, and mixed and mingled before eruptions. These processes generated isotopically distinct components, variably interacting with the different structural elements of the Campi Flegrei caldera through time. The relationships between the structural position of the eruption vents, during the last 15 ka of activity, and the isotopic composition of the magmas erupted at the Campi Flegrei caldera allow us to reconstruct the architecture of the magmatic feeding system and to infer the chemical and isotopic composition of the magma feeding a future eruption, according to vent position.

  2. History of the Magmatic Feeding System of the Campi Flegrei Caldera

    NASA Astrophysics Data System (ADS)

    Orsi, G.; Civetta, L.; Arienzo, I.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.

    2007-12-01

    The definition of the magmatic feeding system of active volcanoes, in terms of composition, time-scale of crystallization, relation between composition of the erupted magma and structural position of vents, magma chamber processes and architecture, is of extreme importance for the hazard evaluation. The studies that are carried out for the definition of the magmatic systems include detailed mineralogical, geochemical and isotopic analyses (Sr, Nd, Pb). The Campi Flegrei caldera magmatic structure is characterized by deep and shallow magma chambers. In the deep reservoir (20-10 km depth) mantle derived magmas differentiate and are contaminated with continental crust. In the shallow reservoirs isotopically distinct magmas further differentiate, mix and mingle before the eruptions. These processes generated isotopically distinct components that were variably involved along different structures of the Campi Flegrei caldera during time. At Campi Flegrei caldera the relation between the structural position of the eruptive vent, for the last 14 ka of activity, and the isotopic composition of the emitted magma allow us to reconstruct the architecture of the magmatic feeding system and to infer the chemical and isotopic composition, and the magma chamber location and processes, of the future eruption, according to the position of the vent

  3. Evolution of the Moon's Mantle and Crust as Reflected in Trace-Element Microbeam Studies of Lunar Magmatism

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Floss, C.

    Ion microprobe trace-element studies of lunar cumulates [ferroan anorthosites (FAN), highlands Mg suite (HMS), and highlands alkali suite (HAS)] and volcanic glasses have provided an additional perspective in reconstructing lunar magmatism and early differentiation. Calculated melt compositions for the FANs indicate that a simple lunar magma ocean (LMO) model does not account for differences between FANs with highly magnesian mafic minerals and “typical” ferroan anorthosites. The HMS and HAS appear to have crystallized from magmas that had incompatible trace-element concentrations equal to or greater than KREEP. Partial melting of distinct, hybridized sources is consistent with these calculated melt compositions. However, the high-Mg silicates with relatively low Ni content that are observed in the HMS are suggestive of other possible processes (reduction, metal removal). The compositions of the picritic glasses indicate that they were produced by melting of hybrid cumulate sources produced by mixing of early and late LMO cumulates. The wide compositional range of near-primitive mare basalts indicates small degrees of localized melting preserved the signature of distinct mantle reservoirs. The relationship between ilmenite anomalies and 182W in the mare basalts suggests that the LMO crystallized over a short period of time.

  4. The evolution of compositionally and functionally distinct actin filaments.

    PubMed

    Gunning, Peter W; Ghoshdastider, Umesh; Whitaker, Shane; Popp, David; Robinson, Robert C

    2015-06-01

    The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity. © 2015. Published by The Company of Biologists Ltd.

  5. Compositions of modern dust and surface sediments in the Desert Southwest, United States

    USGS Publications Warehouse

    Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.; Reynolds, R.L.

    2009-01-01

    Modern dusts across southwestern United States deserts are compositionally similar to dust-rich Av soil horizons (depths of 0-0.5 cm and 1-4 cm at 35 sites) for common crustal elements but distinctly different for some trace elements. Chemical compositions and magnetic properties of the soil samples are similar among sites relative to dust sources, geographic areas, and lithologic substrates. Exceptions are Li, U, and W, enriched in Owens Valley, California, and Mg and Sr, enriched in soils formed on calcareous fan gravel in southeast Nevada. The Av horizons are dominated by dust and reflect limited mixing with substrate sediments. Modern dust samples are also similar across the region, except that Owens Valley dusts are higher in Mg, Ba, and Li and dusts both there and at sites to the north on volcanic substrates are higher in Sb and W. Thus, dust and Av horizons consist of contributions from many different sources that are well mixed before deposition. Modern dusts contain significantly greater amounts of As, Cd, Cr, Cu, Ni, Pb, and Sb than do Av horizons, which record dust additions over hundreds to thousands of years. These results suggest that modern dust compositions are influenced by anthropogenic sources and emissions from Owens (dry) Lake after its artificial desiccation in 1926. Both modern dusts and Av horizons are enriched in As, Ba, Cu, Li, Sb, Th, U, and W relative to average crustal composition, which we interpret to indicate that the geologic sources of dust in the southwestern United States are geochemically distinctive.

  6. Soluble scute proteins of healthy and ill desert tortoises (Gopherus agassizii)

    USGS Publications Warehouse

    Homer, B.L.; Li, C.; Berry, K.H.; Denslow, N.D.; Jacobson, E.R.; Sawyer, R.H.; Williams, J.E.

    2001-01-01

    Objectives - To characterize protein composition of shell scute of desert tortoises and to determine whether detectable differences could be used to identify healthy tortoises from tortoises with certain illnesses. Animals - 20 desert tortoises. Procedures - Complete postmortem examinations were performed on all tortoises. Plastron scute proteins were solubilized, scute proteins were separated by use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and proteins were analyzed, using densitometry. Two-dimensional immobilized pH gradient-PAGE (2D IPG-PAGE) and immunoblot analysis, using polyclonal antisera to chicken-feather ?? keratin and to alligator-scale ?? keratin, were conducted on representative samples. The 14-kd proteins were analyzed for amino acid composition. Results - The SDS-PAGE and densitometry revealed 7 distinct bands, each with a mean relative protein concentration of > 1 %, ranging from 8 to 47 kd, and a major protein component of approximately 14 kd that constituted up to 75% of the scute protein. The 2D IPG-PAGE revealed additional distinct 62-and 68-kd protein bands. On immunoblot analysis, the 14-, 32-, and 45-kd proteins reacted with both antisera. The 14-kd proteins had an amino acid composition similar to that of chicken ?? keratins. There was a substantial difference in the percentage of the major 14-kd proteins from scute of ill tortoises with normal appearing shells, compared with 14-kd proteins of healthy tortoises. Conclusions and Clinical Relevance - The major protein components of shell scute of desert tortoises have amino acid composition and antigenic features of ?? keratins. Scute protein composition may be altered in tortoises with certain systemic illnesses.

  7. Practical Considerations for Working with Latino and Asian American Students and Families

    ERIC Educational Resources Information Center

    Moreno, Gerardo; Wong-Lo, Mickie

    2011-01-01

    Preparing educators to work with students from culturally and linguistically diverse (CLD) background is increasingly valued as the demographics of today?s classrooms continue to evolve. Embracing cultural differences and recognizing the distinctive factors associated within the composition of CLD families are critical elements as educators become…

  8. Atmospherics: A Look at the Earth's Airy Shell.

    ERIC Educational Resources Information Center

    Byalko, A. V.

    1991-01-01

    Describes differences in the composition, pressure, and temperature at distinct altitudes of the Earth's atmosphere from the point of view of physical laws. Discusses the genesis and importance of ozone, thermal radiation and the "layer cake" arrangement of the atmosphere, and solar energy in connection with thermal equilibrium. (JJK)

  9. Cross-Cultural Perspectives in Counseling: Mental Health Conceptions in Malaysia.

    ERIC Educational Resources Information Center

    Mohamed, Othman

    The general societal pattern in Malaysia is reflected by the distinct multi-racial composition of the population, comprised of Malays, Chinese, and Indians. In Malaysia, ethnicity determines the varied differences in the socio-cultural and religious diversity of the population. Organized modern medical services have existed in Malaysia since…

  10. Selective logging: does the imprint remain on tree structure and composition after 45 years?

    PubMed

    Osazuwa-Peters, Oyomoare L; Chapman, Colin A; Zanne, Amy E

    2015-01-01

    Selective logging of tropical forests is increasing in extent and intensity. The duration over which impacts of selective logging persist, however, remains an unresolved question, particularly for African forests. Here, we investigate the extent to which a past selective logging event continues to leave its imprint on different components of an East African forest 45 years later. We inventoried 2358 stems ≥10 cm in diameter in 26 plots (200 m × 10 m) within a 5.2 ha area in Kibale National Park, Uganda, in logged and unlogged forest. In these surveys, we characterized the forest light environment, taxonomic composition, functional trait composition using three traits (wood density, maximum height and maximum diameter) and forest structure based on three measures (stem density, total basal area and total above-ground biomass). In comparison to unlogged forests, selectively logged forest plots in Kibale National Park on average had higher light levels, different structure characterized by lower stem density, lower total basal area and lower above-ground biomass, and a distinct taxonomic composition driven primarily by changes in the relative abundance of species. Conversely, selectively logged forest plots were like unlogged plots in functional composition, having similar community-weighted mean values for wood density, maximum height and maximum diameter. This similarity in functional composition irrespective of logging history may be due to functional recovery of logged forest or background changes in functional attributes of unlogged forest. Despite the passage of 45 years, the legacy of selective logging on the tree community in Kibale National Park is still evident, as indicated by distinct taxonomic and structural composition and reduced carbon storage in logged forest compared with unlogged forest. The effects of selective logging are exerted via influences on tree demography rather than functional trait composition.

  11. Selective logging: does the imprint remain on tree structure and composition after 45 years?

    PubMed Central

    Osazuwa-Peters, Oyomoare L.; Chapman, Colin A.; Zanne, Amy E.

    2015-01-01

    Selective logging of tropical forests is increasing in extent and intensity. The duration over which impacts of selective logging persist, however, remains an unresolved question, particularly for African forests. Here, we investigate the extent to which a past selective logging event continues to leave its imprint on different components of an East African forest 45 years later. We inventoried 2358 stems ≥10 cm in diameter in 26 plots (200 m × 10 m) within a 5.2 ha area in Kibale National Park, Uganda, in logged and unlogged forest. In these surveys, we characterized the forest light environment, taxonomic composition, functional trait composition using three traits (wood density, maximum height and maximum diameter) and forest structure based on three measures (stem density, total basal area and total above-ground biomass). In comparison to unlogged forests, selectively logged forest plots in Kibale National Park on average had higher light levels, different structure characterized by lower stem density, lower total basal area and lower above-ground biomass, and a distinct taxonomic composition driven primarily by changes in the relative abundance of species. Conversely, selectively logged forest plots were like unlogged plots in functional composition, having similar community-weighted mean values for wood density, maximum height and maximum diameter. This similarity in functional composition irrespective of logging history may be due to functional recovery of logged forest or background changes in functional attributes of unlogged forest. Despite the passage of 45 years, the legacy of selective logging on the tree community in Kibale National Park is still evident, as indicated by distinct taxonomic and structural composition and reduced carbon storage in logged forest compared with unlogged forest. The effects of selective logging are exerted via influences on tree demography rather than functional trait composition. PMID:27293697

  12. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    PubMed Central

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships. PMID:23900554

  13. A novel method for a multi-level hierarchical composite with brick-and-mortar structure.

    PubMed

    Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  14. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    NASA Astrophysics Data System (ADS)

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-07-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  15. A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways

    NASA Astrophysics Data System (ADS)

    Yang, Yunlai; Arouri, Khaled

    2016-03-01

    A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.

  16. A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways

    PubMed Central

    Yang, Yunlai; Arouri, Khaled

    2016-01-01

    A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations. PMID:26965479

  17. A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways.

    PubMed

    Yang, Yunlai; Arouri, Khaled

    2016-03-11

    A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.

  18. Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes.

    PubMed

    Reis, Francisca; Valdiviesso, Teresa; Varela, Carolina; Tavares, Rui M; Baptista, Paula; Lino-Neto, Teresa

    2018-05-01

    Cork oak (Quercus suber L.) forests play an important ecological and economic role. Ectomycorrhizal fungi (ECMF) are key components for the sustainability and functioning of these ecosystems. The community structure and composition of ECMF associated with Q. suber in different landscapes of distinct Mediterranean bioclimate regions have not previously been compared. In this work, soil samples from cork oak forests residing in different bioclimates (arid, semi-arid, sub-humid, and humid) were collected and surveyed for ectomycorrhizal (ECM) root tips. A global analysis performed on 3565 ECM root tips revealed that the ECMF community is highly enriched in Russula, Tomentella, and Cenoccocum, which correspond to the ECMF genera that mainly contribute to community differences. The ECMF communities from the rainiest and the driest cork oak forests were distinct, with soils from the rainiest climates being more heterogeneous than those from the driest climates. The analyses of several abiotic factors on the ECMF communities revealed that bioclimate, precipitation, soil texture, and forest management strongly influenced ECMF structure. Shifts in ECMF with different hyphal exploration types were also detected among forests, with precipitation, forest system, and soil texture being the main drivers controlling their composition. Understanding the effects of environmental factors on the structuring of ECM communities could be the first step for promoting the sustainability of this threatened ecosystem.

  19. Separation and partial characterization of guinea-pig caseins.

    PubMed Central

    Craig, R K; McIlreavy, D; Hall, R L

    1978-01-01

    1. Guinea-pig caseins A, B and C were purified free of each other by a combination of ion-exchange chromatography and gel filtration. 2. Determination of the amino acid composition showed all three caseins to contain a high proportion of proline and glutamic acid, but no cysteine. This apart, the amino acid composition of the three caseins was markedly different, though calculated divergence values suggest that some homology may exist between caseins A and B. Molecular-weight estimates based on amino acid composition were in good agreement with those based on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. N-Terminal analysis showed lysine, methionine and lysine to be the N-terminal residues of caseins A, B and C respectively. 4. Two-dimensional separation of tryptic digests revealed a distinctive pattern for each casein. 5. All caseins were shown to be phosphoproteins. The casein C preparation also contained significant amounts of sialic acid, neutral and amino sugars. 6. The results suggest that each casein represents a separate gene product, and that the low-molecular-weight proteins are not the result of a post-translational cleavage of the largest. All were distinctly different from the whey protein alpha-lactalbumin. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:697741

  20. seq-ImmuCC: Cell-Centric View of Tissue Transcriptome Measuring Cellular Compositions of Immune Microenvironment From Mouse RNA-Seq Data.

    PubMed

    Chen, Ziyi; Quan, Lijun; Huang, Anfei; Zhao, Qiang; Yuan, Yao; Yuan, Xuye; Shen, Qin; Shang, Jingzhe; Ben, Yinyin; Qin, F Xiao-Feng; Wu, Aiping

    2018-01-01

    The RNA sequencing approach has been broadly used to provide gene-, pathway-, and network-centric analyses for various cell and tissue samples. However, thus far, rich cellular information carried in tissue samples has not been thoroughly characterized from RNA-Seq data. Therefore, it would expand our horizons to better understand the biological processes of the body by incorporating a cell-centric view of tissue transcriptome. Here, a computational model named seq-ImmuCC was developed to infer the relative proportions of 10 major immune cells in mouse tissues from RNA-Seq data. The performance of seq-ImmuCC was evaluated among multiple computational algorithms, transcriptional platforms, and simulated and experimental datasets. The test results showed its stable performance and superb consistency with experimental observations under different conditions. With seq-ImmuCC, we generated the comprehensive landscape of immune cell compositions in 27 normal mouse tissues and extracted the distinct signatures of immune cell proportion among various tissue types. Furthermore, we quantitatively characterized and compared 18 different types of mouse tumor tissues of distinct cell origins with their immune cell compositions, which provided a comprehensive and informative measurement for the immune microenvironment inside tumor tissues. The online server of seq-ImmuCC are freely available at http://wap-lab.org:3200/immune/.

  1. Shotgun Metagenomic Profiles Have a High Capacity To Discriminate Samples of Activated Sludge According to Wastewater Type

    PubMed Central

    Ibarbalz, Federico M.; Orellana, Esteban; Figuerola, Eva L. M.

    2016-01-01

    ABSTRACT This study was conducted to investigate whether functions encoded in the metagenome could improve our ability to understand the link between microbial community structures and functions in activated sludge. By analyzing data sets from six industrial and six municipal wastewater treatment plants (WWTPs), covering different configurations, operational conditions, and geographic regions, we found that wastewater influent composition was an overriding factor shaping the metagenomic composition of the activated sludge samples. Community GC content profiles were conserved within treatment plants on a time scale of years and between treatment plants with similar influent wastewater types. Interestingly, GC contents of the represented phyla covaried with the average GC contents of the corresponding WWTP metagenome. This suggests that the factors influencing nucleotide composition act similarly across taxa and thus the variation in nucleotide contents is driven by environmental differences between WWTPs. While taxonomic richness and functional richness were correlated, shotgun metagenomics complemented taxon-based analyses in the task of classifying microbial communities involved in wastewater treatment systems. The observed taxonomic dissimilarity between full-scale WWTPs receiving influent types with varied compositions, as well as the inferred taxonomic and functional assignment of recovered genomes from each metagenome, were consistent with underlying differences in the abundance of distinctive sets of functional categories. These conclusions were robust with respect to plant configuration, operational and environmental conditions, and even differences in laboratory protocols. IMPORTANCE This work contributes to the elucidation of drivers of microbial community assembly in wastewater treatment systems. Our results are significant because they provide clear evidence that bacterial communities in WWTPs assemble mainly according to influent wastewater characteristics. Differences in bacterial community structures between WWTPs were consistent with differences in the abundance of distinctive sets of functional categories, which were related to the metabolic potential that would be expected according to the source of the wastewater. PMID:27316957

  2. Bullialdus - Strengthening the case for lunar plutons

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.

    1991-01-01

    Although many craters expose materials of a composition different from that of the local surroundings, Bullialdus has excavated material representing three distinct stratigraphic zones that occur in the upper 6 km of crust, the top two of which are gabbroic and the deepest of which is noritic. This three-component stratigraphy at Bullialdus provides strong evidence that the lunar crust includes pockets of compositionally layered material reminiscent of mafic layered plutons. When combined with previous information on the compositional diversity at other large craters, these remote analyses obtained in a geologic context substantially strengthen the hypothesis suggested from lunar samples that plutons play an integral role in lunar crustal evolution.

  3. Heterogeneity across the murine small and large intestine

    PubMed Central

    Bowcutt, Rowann; Forman, Ruth; Glymenaki, Maria; Carding, Simon Richard; Else, Kathryn Jane; Cruickshank, Sheena Margaret

    2014-01-01

    The small and large intestine of the gastrointestinal tract (GIT) have evolved to have discrete functions with distinct anatomies and immune cell composition. The importance of these differences is underlined when considering that different pathogens have uniquely adapted to live in each region of the gut. Furthermore, different regions of the GIT are also associated with differences in susceptibility to diseases such as cancer and chronic inflammation. The large and small intestine, given their anatomical and functional differences, should be seen as two separate immunological sites. However, this distinction is often ignored with findings from one area of the GIT being inappropriately extrapolated to the other. Focussing largely on the murine small and large intestine, this review addresses the literature relating to the immunology and biology of the two sites, drawing comparisons between them and clarifying similarities and differences. We also highlight the gaps in our understanding and where further research is needed. PMID:25386070

  4. Heterogeneity across the murine small and large intestine.

    PubMed

    Bowcutt, Rowann; Forman, Ruth; Glymenaki, Maria; Carding, Simon Richard; Else, Kathryn Jane; Cruickshank, Sheena Margaret

    2014-11-07

    The small and large intestine of the gastrointestinal tract (GIT) have evolved to have discrete functions with distinct anatomies and immune cell composition. The importance of these differences is underlined when considering that different pathogens have uniquely adapted to live in each region of the gut. Furthermore, different regions of the GIT are also associated with differences in susceptibility to diseases such as cancer and chronic inflammation. The large and small intestine, given their anatomical and functional differences, should be seen as two separate immunological sites. However, this distinction is often ignored with findings from one area of the GIT being inappropriately extrapolated to the other. Focussing largely on the murine small and large intestine, this review addresses the literature relating to the immunology and biology of the two sites, drawing comparisons between them and clarifying similarities and differences. We also highlight the gaps in our understanding and where further research is needed.

  5. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties

    PubMed Central

    Mehrabanian, Mehran; Nasr-Esfahani, Mojtaba

    2011-01-01

    Nanohydroxyapatite (n-HA)/nylon 6,6 composite scaffolds were produced by means of the salt-leaching/solvent casting technique. NaCl with a distinct range size was used with the aim of optimizing the pore network. Composite powders with different n-HA contents (40%, 60%) for scaffold fabrication were synthesized and tested. The composite scaffolds thus obtained were characterized for their microstructure, mechanical stability and strength, and bioactivity. The microstructure of the composite scaffolds possessed a well-developed interconnected porosity with approximate optimal pore size ranging from 200 to 500 μm, ideal for bone regeneration and vascularization. The mechanical properties of the composite scaffolds were evaluated by compressive strength and modulus tests, and the results confirmed their similarity to cortical bone. To characterize bioactivity, the composite scaffolds were immersed in simulated body fluid for different lengths of time and results monitored by scanning electron microscopy and energy dispersive X-ray microanalysis to determine formation of an apatite layer on the scaffold surface. PMID:21904455

  6. A new method for locating changes in a tree reveals distinct nucleotide polymorphism vs. divergence patterns in mouse mitochondrial control region.

    PubMed

    Galtier, N; Boursot, P

    2000-03-01

    A new, model-based method was devised to locate nucleotide changes in a given phylogenetic tree. For each site, the posterior probability of any possible change in each branch of the tree is computed. This probabilistic method is a valuable alternative to the maximum parsimony method when base composition is skewed (i.e., different from 25% A, 25% C, 25% G, 25% T): computer simulations showed that parsimony misses more rare --> common than common --> rare changes, resulting in biased inferred change matrices, whereas the new method appeared unbiased. The probabilistic method was applied to the analysis of the mutation and substitution processes in the mitochondrial control region of mouse. Distinct change patterns were found at the polymorphism (within species) and divergence (between species) levels, rejecting the hypothesis of a neutral evolution of base composition in mitochondrial DNA.

  7. [In Process Citation].

    PubMed

    Brisson, Romain; Bianchi, Renzo

    2015-11-01

    The aim of this study is twofold: first, to assess the statistical significance of the data used by Pierre Bourdieu in Distinction; second, to test the hypothesis that the volume of capital (i.e., the global amount of capital) allows for a finer discrimination of dispositional differences than the composition of capital (i.e., the respective weight of the different types of capital in the global amount of capital). To these ends, five data samples were submitted to bilateral between-proportion comparison tests. The findings (1) reveal that about two-thirds of the differences reported by P. Bourdieu are significant and (2) support the view that the volume of capital prevails over its composition. © 2015 Canadian Sociological Association/La Société canadienne de sociologie.

  8. Alternative Outlining Techniques for ESL Composition.

    ERIC Educational Resources Information Center

    Hubbard, Philip

    Two methods of outlining are suggested for college-level students of English as a second language (ESL) who need the tools to master rhetorical patterns of academic written English that may be very different from those in their native languages. The two outlining techniques separate the four logically distinct tasks in the process of outlining:…

  9. Derivation of Apollo 14 High-Al Basalts from Distinct Source Regions at Discrete Times: New Constraints

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Shih, C.-Y.; Reese, Y.; Nyquist, L. E.; Kramer, G. Y.

    2006-01-01

    Apollo 14 basalts occur predominantly as clasts in breccias, but represent the oldest volcanic products that were returned from the Moon [1]. These basalts are relatively enriched in Al2O3 (11-16 wt%) compared to other mare basalts (7-11 wt%) and were originally classified into 5 compositional groups [2,3]. Neal et al. [4] proposed that a continuum of compositions existed. These were related through assimilation (of KREEP) and fractional crystallization (AFC). Age data, however, show that at least three volcanic episodes are recorded in the sample collection [1,5,6]. Recent work has demonstrated that there are three, possibly four groups of basalts in the Apollo 14 sample collection that were erupted from different source regions at different times [7]. This conclusion was based upon incompatible trace element (ITE) ratios of elements that should not be fractionated from one another during partial melting (Fig. 1). These groups are defined as Group A (Groups 4 & 5 of [3]), Group B (Groups 1 & 2 of [3]), and Group C (Group 3 of [3]). Basalt 14072 is distinct from Groups A-C.

  10. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, P. D.; Brown, M. E.; Hand, K. P., E-mail: pfischer@caltech.edu

    2015-11-15

    We present a comprehensive analysis of spatially resolved moderate spectral resolution near-infrared spectra obtained with the adaptive optics system at the Keck Observatory. We identify three compositionally distinct end member regions: the trailing hemisphere bullseye, the leading hemisphere upper latitudes, and a third component associated with leading hemisphere chaos units. We interpret the composition of the three end member regions to be dominated by irradiation products, water ice, and evaporite deposits or salt brines, respectively. The third component is associated with geological features and distinct from the geography of irradiation, suggesting an endogenous identity. Identifying the endogenous composition is ofmore » particular interest for revealing the subsurface composition. However, its spectrum is not consistent with linear mixtures of the salt minerals previously considered relevant to Europa. The spectrum of this component is distinguished by distorted hydration features rather than distinct spectral features, indicating hydrated minerals but making unique identification difficult. In particular, it lacks features common to hydrated sulfate minerals, challenging the traditional view of an endogenous salty component dominated by Mg-sulfates. Chloride evaporite deposits are one possible alternative.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaramillo, C.A.; Pardo-Trujillo, A.; Rueda, M.

    A palynological study of the Cerrejon Formation was conducted in order to date the formation and understand the floristic composition and diversity of a Paleocene tropical site. The Cerrejon Formation outcrops in the Cerrejon Coal Mine, the largest open cast coal mine in the world. Two cores (725 m) were provided by Carbones del Cerrejon LLC for study. Two hundred samples were prepared for palynology, and at least 150 palynomorphs were counted per sample where possible. Several statistical techniques including rarefaction, species accumulation curves, detrended correspondence analysis, and Anosim were used to analyze the floristic composition and diversity of themore » palynofloras. Palynomorph assemblages indicate that the age of the Cerrejon Formation and the overlying Tabaco Formation is Middle to Late Paleocene (ca. 60-58 Ma). Major structural repetitions were not found in the Cerrejon Formation in the Cerrejon coal mine, and there is little floral variation throughout. The floral composition, diversity, and lithofacies do not change significantly. Lithofacies associations and floral composition indicate deposition fluctuating from an estuarine-influenced coastal plain at the base to a fluvial-influenced coastal plain at the top. There are, however, significant differences in the composition and diversity of coal and siliciclastic samples. Coal palynofloras have fewer morphospecies, and a distinct and more homogeneous floral assemblage compared to assemblages from the intervening sisliciclastic strata, suggesting that tropical swampy environments supported fewer plant species and had a distinct vegetation adapted to permanently wet environments.« less

  12. Grosnaja ABCs: Magnesium isotope compositions

    NASA Technical Reports Server (NTRS)

    Goswami, J. N.; Srinivasan, G.; Ulyanov, A. A.

    1993-01-01

    Three CAI's from the Grosnaja CV3 chondrite were analyzed for their magnesium isotopic compositions by the ion microprobe. The selected CAI's represent three distinct types: GR4(compact Type A), GR7(Type B) and GR2(Type C). Petrographic studies indicate that all three Grosnaja inclusions were subjected to secondary alterations. The Type A CAI GR4 is primarily composed of melilite with spinel and pyroxene occurring as minor phases. The rim of the inclusion does not exhibit distinct layered structure and secondary alteration products (garnet, Fe-rich olivine and Na-rich plagioclase) are present in some localized areas near the rim region. The average major element compositions of different mineral phases in GR4 are given. Preliminary REE data suggest a depletion of HREE relative to LREE by about a factor of 3 without any clear indication of interelement fractionation. The CAI GR7 has textural and minerological characteristics similar to Type B inclusions. The REE data show a pattern that is similar to Group 6 with enrichment in Eu and Yb. In addition, a depletion of HREE compared to LREE is also evident in this object. Melilite composition shows a broad range of akermanite content (Ak(sub 15-55)). Detailed petrographic study is in progress. GR2 is a anorthite-rich Type C inclusion with large plagioclase laths intergrown with Ti-rich pyroxene. The average plagioclase composition is close to pure anorthite (An99).

  13. Evidence of mantle metasomatism in garnet peridotites from V. Grib kimberlite pipe (Arkhangelsk region, Russia)

    NASA Astrophysics Data System (ADS)

    Shchukina, Elena; Agashev, Alexey; Golovin, Nikolai; Pokhilenko, Nikolai

    2013-04-01

    We have studied 26 samples of garnet peridotite xenoliths from V.Grib pipe and 17 of them are phlogopite bearing. Studied peridotites have features of two types of modal metasomatism: low-temperature (˜ 1100 C°) and high-temperature (˜ 1100 C°). Low-temperature modal metasomatism: 17 samples contain modal phlogopite, which is present in the form of tabular grains (to 3 mm in size) and rims around pyrope grains. Chemical composition of minerals from phlogopite-garnet peridotites and phlogopite free peridotites is distinctly different. Olivine, garnet, orthopyroxene and clinopyroxene have higher concentration of FeO relative to these minerals in phlogopite free peridotites. Occurrence of phlogopite in peridotites indicates the influence of melt enriched in K2O, H2O, FeO and other incompatible elements. Two types of phlogopite have difference in chemical composition that indicates two different sources. High-temperature modal metasomatism: Reconstructed V.Grib pipe peridotite whole-rocks composition and high Mg# of peridotite olivines indicates that these samples are residues after 30-40 % partial melting of primitive mantle. At those high degree of partial melting all clinopyroxene and probably all garnet should be exhausted from residue. Character of REE patterns in garnets and clinopyroxenes indicates that the most garnets and all clinopyroxene in studied peridotites are of metasomatic origin. We used the method of geochemical modeling of fractional crystallization to establish the source's composition for garnets and clinopyroxenes. For geochemical modeling we used the composition of tholeitic basalts, picrites and carbonatites which occurred in Arkhangelsk diamondiferous province (ADP) and have emplacement ages similar to that of kimberlites. Modeling result indicates that garnets could be crystallized from alkali picrite and tholeite basalts compositions. Peridotites containing garnets equilibrated with picritic melt have a different position in lithospheric mantle section from that of peridotites with tholeitic originated garnets. Two geochemically distinct types of clinopyroxenes could be the products of crystallization of tholeite basalts (type 1) and carbonatites (type 2). Overall, the lithospheric mantle beneath V. Grib kimberlite pipe experienced a complex history including multiply metasomatic events. Metasomatic agents parental to peridotitic garnets and clinopyroxenes are similar in composition to basalts and carbonatites located within the ADP indicating that magmatic events within the province are interconnected.

  14. Ibitira: A basaltic achondrite from a distinct parent asteroid

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    2004-01-01

    I have done detailed petrologic study of Ibitira, nominally classified as a basaltic eucrite. The Fe/Mn ratio of Ibitira pyroxenes with <10 mole % wollastonite component is 36.4 0.4, and is well-resolved from those of five basaltic eucrites studied for comparison; 31.2-32.2. Data for the latter completely overlap. Ibitira pyroxenes have lower Fe/Mg than the basaltic eucrite pyroxenes. Thus, the higher Fe/Mn ratio does not reflect a simple difference in oxidation state. Ibitira also has an oxygen isotopic composition, alkali element contents and a Ti/Hf ratio that distinguish it from basaltic eucrites. These differences support derivation from a distinct parent asteroid. Ibitira is the first recognized representative of the fifth known asteroidal basaltic crust.

  15. A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems

    PubMed Central

    Levin, Lisa A.; Orphan, Victoria J.; Rouse, Greg W.; Rathburn, Anthony E.; Ussler, William; Cook, Geoffrey S.; Goffredi, Shana K.; Perez, Elena M.; Waren, Anders; Grupe, Benjamin M.; Chadwick, Grayson; Strickrott, Bruce

    2012-01-01

    Upon their initial discovery, hydrothermal vents and methane seeps were considered to be related but distinct ecosystems, with different distributions, geomorphology, temperatures, geochemical properties and mostly different species. However, subsequently discovered vents and seep systems have blurred this distinction. Here, we report on a composite, hydrothermal seep ecosystem at a subducting seamount on the convergent Costa Rica margin that represents an intermediate between vent and seep ecosystems. Diffuse flow of shimmering, warm fluids with high methane concentrations supports a mixture of microbes, animal species, assemblages and trophic pathways with vent and seep affinities. Their coexistence reinforces the continuity of reducing environments and exemplifies a setting conducive to interactive evolution of vent and seep biota. PMID:22398162

  16. Spatial Distribution of Cyanobacteria in Modern Stromatolites

    NASA Technical Reports Server (NTRS)

    Prufert-Bebout, Lee; Dacles-Mariani, Jennifer; Herbert, Alice; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Living stromatolites consist of complex microbial communities with distinct distribution patterns for different microbial groups. The cyanobacterial populations of Highborne Cay Bahamas exemplify this phenomenon. Field observations reveal distinct distribution patterns for several of these cyanobacterial species. To date 10 different cyanobacterial cultures, including both filamentous and endolithic species, have been isolated from these stromatolites. We will present data on the growth and motility characteristics as well as on the nutritional requirements of these isolates. These data will then be correlated with the field observed distributions for these species. Lastly laboratory simulations of stromatolites grown under various conditions of irradiance, flow and cyanobacterial community composition will be presented. These experiments allow us to evaluate our predictions regarding controls on cyanobacterial distribution.

  17. Global investigation of composition and interaction networks in gut microbiomes of individuals belonging to diverse geographies and age-groups.

    PubMed

    Yadav, Deepak; Ghosh, Tarini Shankar; Mande, Sharmila S

    2016-01-01

    Factors like ethnicity, diet and age of an individual have been hypothesized to play a role in determining the makeup of gut microbiome. In order to investigate the gut microbiome structure as well as the inter-microbial associations present therein, we have performed a comprehensive global comparative profiling of the structure (composition, relative heterogeneity and diversity) and the inter-microbial networks in the gut microbiomes of 399 individuals of eight different nationalities. The study identified certain geography-specific trends with respect to composition, intra-group heterogeneity and diversity of the gut microbiomes. Interestingly, the gut microbial association/mutual-exlusion networks were observed to exhibit several cross-geography trends. It was seen that though the composition of gut microbiomes of the American and European individuals were similar, there were distinct patterns in their microbial interaction networks. Amongst European gut-microbiomes, the co-occurrence network obtained for the Danish population was observed to be most dense. Distinct patterns were also observed within Chinese, Japanese and Indian datasets. While performing an age-wise comparison, it was observed that the microbial interactions increased with the age of individuals. Furthermore, certain bacterial groups were identified to be present only in the older age groups. The trends observed in gut microbial networks could be due to the inherent differences in the diet of individuals belonging to different nationalities. For example, the higher number of microbial associations in the Danish population as compared to the Spanish population, may be attributed to the evenly distributed diet of the later. This is in line with previously reported findings which indicate an increase in functional interdependency of microbes in individuals with higher nutritional status. To summarise, the present study identifies geography and age specific patterns in the composition as well as microbial interactions in gut microbiomes.

  18. The sex specific metabolic footprint of Oithona davisae

    NASA Astrophysics Data System (ADS)

    Heuschele, Jan; Nemming, Louise; Tolstrup, Lea; Kiørboe, Thomas; Nylund, Göran M.; Selander, Erik

    2016-11-01

    In pelagic copepods, the group representing the highest animal abundances on earth, males and females have distinct morphological and behavioural differences. In several species female pheromones are known to facilitate the mate finding process, and copepod exudates induce changes in physiology and behaviour in several phytoplankton species. Here we tested whether the sexual dimorphism in morphology and behaviour is mirrored in the exudate composition of males and females. We find differences in the exudate composition, with females seemingly producing more compounds. While we were able to remove the sex pheromones from the water by filtration through reverse phase solid phase extraction columns, we were not able to recover the active pheromone from the solid phase.

  19. Regional Similarities and Consistent Patterns of Local Variation in Beach Sand Bacterial Communities throughout the Northern Hemisphere

    PubMed Central

    Staley, Christopher

    2016-01-01

    ABSTRACT Recent characterization of the bacterial community structure in beach sands has revealed patterns of biogeography similar to those observed in aquatic environments. Studies to date, however, have mainly focused on subtidal sediments from marine beaches. Here, we investigate the bacterial diversity, using Illumina-based sequencing of the V5-V6 region of the 16S rRNA gene, at 11 beaches representing those next to the Great Lakes, Florida, and the Pacific Ocean. The alpha diversity differed significantly among regions (P < 0.0001), while the within-region diversity was more similar. The beta diversity also differed by region (P < 0.001), where freshwater sands had significantly higher abundances of taxa within the Actinobacteria, Betaproteobacteria, and Verrucomicrobia than marine environments. In contrast, marine sands harbored greater abundances of Gammaproteobacteria and Planctomycetes, and those from Florida had more Deltaproteobacteria and Firmicutes. Marine beaches had significantly different phylogenetic community structures (P ≤ 0.018), but freshwater and Florida beaches showed fewer within-region phylogenetic differences. Furthermore, regionally distinct patterns in taxonomic variation were observed in backshore sands, which had communities distinct from those in nearshore sands (P < 0.001). Sample depth minimally influenced the community composition. The results of this study reveal distinct bacterial community structures in sand on a broad geographic scale but moderate regional similarity and suggest that local variation is primarily related to the distance from the shoreline. This study offers a novel comparison of the bacterial communities in freshwater and marine beach sands and provides an important basis for future comparisons and analyses to elucidate factors affecting microbial ecology in this underexplored environment. IMPORTANCE This study presents a large-scale geographic characterization of the bacterial communities present in beach sands. While previous studies have evaluated how environmental factors influence bacterial community composition, few have evaluated bacterial communities in freshwater sands. Furthermore, the use of a consistent methodology to characterize bacterial communities here allowed a novel comparison of communities across geographic regions. We reveal that while the community composition in sands at individual beaches is distinct, beach sands within the same region harbor similar assemblages of bacteria and these assemblages differ greatly between regions. In addition, moisture, associated with distance from the shoreline, strongly influences the bacteria present in sands and more strongly influences the bacteria present than sample depth does. Thus, the data presented here offer an important basis for a broader characterization of the ecology of bacteria in sands, which may also be relevant to public health and resource management initiatives. PMID:26921429

  20. Bacteria form tellurium nanocrystals

    USGS Publications Warehouse

    Oremland, R.S.

    2007-01-01

    A team of researchers have found two bacterial species that produce tellurium oxyanions as respiratory electron acceptors for growth, leaving elemental tellurium in the form of nanoparticles. The crystals from the two organisms exhibit distinctively different structures. Bacillus selenitireducens initially forms nanorods that cluster together to form rosettes. Sulfurospirillum barnesii forms irregularly-shaped nanospheres that coalesce into larger composite aggregates.

  1. Magma batches in the Timber Mountain magmatic system, Southwestern Nevada Volcanic Field, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Mills, James G.; Saltoun, Benjamin W.; Vogel, Thomas A.

    1997-09-01

    The common occurrence of compositionally and mineralogically zoned ash flow sheets, such as those of the Timber Mountain Group, provides evidence that the source magma bodies were chemically and thermally zoned. The Rainier Mesa and Ammonia Tanks tuffs of the Timber Mountain Group are both large volume (1200 and 900 km 3, respectively) chemically zoned (57-78 wt.% SiO 2) ash flow sheets. Evidence of distinct magma batches in the Timber Mountain system are based on: (1) major- and trace-element variations of whole pumice fragments; (2) major-element variations in phenocrysts; (3) major-element variations in glass matrix; and (4) emplacement temperatures calculated from Fe-Ti oxides and feldspars. There are three distinct groups of pumice fragments in the Rainier Mesa Tuff: a low-silica group and two high-silica groups (a low-Th and a high-Th group). These groups cannot be related by crystal fractionation. The low-silica portion of the Rainier Mesa Tuff is distinct from the low-silica portion of the overlying Ammonia Tanks Tuff, even though the age difference is less than 200,000 years. Three distinct groups occur in the Ammonia Tanks Tuff: a low-silica, intermediate-silica and a high-silica group. Part of the high-silica group may be due to mixing of the two high-silica Rainier Mesa groups. The intermediate-silica group may be due to mixing of the low- and high-silica Ammonia Tanks groups. Three distinct emplacement temperatures occur in the Rainier Mesa Tuff (869, 804, 723 °C) that correspond to the low-silica, high-Th and low-Th magma batches, respectively. These temperature differences could not have been maintained for any length of time in the magma chamber (cf. Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255-352; Martin, D., Griffiths, R.W., Campbell, I.H., 1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465-475) and therefore eruption must have occurred soon after emplacement of the magma batches into the chamber. Emplacement temperatures of the pumice fragments from the Ammonia Tanks Tuff show a continuous gradient of temperatures with composition. This continuous temperature gradient is consistent with the model of storage of magma batches in the Ammonia Tanks group that have undergone both thermal and chemical diffusion.

  2. A framework to spatially cluster air pollution monitoring sites in US based on the PM2.5 composition

    PubMed Central

    Austin, Elena; Coull, Brent A.; Zanobetti, Antonella; Koutrakis, Petros

    2013-01-01

    Background Heterogeneity in the response to PM2.5 is hypothesized to be related to differences in particle composition across monitoring sites which reflect differences in source types as well as climatic and topographic conditions impacting different geographic locations. Identifying spatial patterns in particle composition is a multivariate problem that requires novel methodologies. Objectives Use cluster analysis methods to identify spatial patterns in PM2.5 composition. Verify that the resulting clusters are distinct and informative. Methods 109 monitoring sites with 75% reported speciation data during the period 2003–2008 were selected. These sites were categorized based on their average PM2.5 composition over the study period using k-means cluster analysis. The obtained clusters were validated and characterized based on their physico-chemical characteristics, geographic locations, emissions profiles, population density and proximity to major emission sources. Results Overall 31 clusters were identified. These include 21 clusters with 2 or more sites which were further grouped into 4 main types using hierarchical clustering. The resulting groupings are chemically meaningful and represent broad differences in emissions. The remaining clusters, encompassing single sites, were characterized based on their particle composition and geographic location. Conclusions The framework presented here provides a novel tool which can be used to identify and further classify sites based on their PM2.5 composition. The solution presented is fairly robust and yielded groupings that were meaningful in the context of air-pollution research. PMID:23850585

  3. Comparison of the mineral composition of the sediment found in two Mars dunefields: Ogygis Undae and Gale crater - three distinct endmembers identified

    NASA Astrophysics Data System (ADS)

    Charles, Heather; Titus, Timothy; Hayward, Rosalyn; Edwards, Christopher; Ahrens, Caitlin

    2017-01-01

    The composition of two dune fields, Ogygis Undae and the NE-SW trending dune field in Gale crater (the "Bagnold Dune Field" and "Western Dune Field"), were analyzed using thermal emission spectra from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). The Gale crater dune field was used as a baseline as other orbital compositional analyses have been conducted, and in situ sampling results will soon be available. Results from unmixing thermal emission spectra showed a spatial variation between feldspar mineral abundances and pyroxene mineral abundances in Ogygis Undae. Other datasets, including nighttime thermal inertia values, also showed variation throughout the dune field. One explanation proposed for this variation is a bimodal distribution of two sand populations. This distribution is seen in some terrestrial dune fields. The two dune fields varied in both mineral types present and in uniformity of composition. These differences point to different source lithologies and different distances travelled from source material. Examining these differences further will allow for a greater understanding of aeolian processes on Mars.

  4. Comparison of the mineral composition of the sediment found in two Mars dunefields: Ogygis Undae and Gale crater – three distinct endmembers identified

    USGS Publications Warehouse

    Charles, Heather; Titus, Timothy N.; Hayward, Rosalyn; Edwards, Christopher; Ahrens, Caitlin

    2016-01-01

    The composition of two dune fields, Ogygis Undae and the NE–SW trending dune field in Gale crater (the “Bagnold Dune Field” and “Western Dune Field”), were analyzed using thermal emission spectra from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). The Gale crater dune field was used as a baseline as other orbital compositional analyses have been conducted, and in situ sampling results will soon be available.Results from unmixing thermal emission spectra showed a spatial variation between feldspar mineral abundances and pyroxene mineral abundances in Ogygis Undae. Other datasets, including nighttime thermal inertia values, also showed variation throughout the dune field. One explanation proposed for this variation is a bimodal distribution of two sand populations. This distribution is seen in some terrestrial dune fields.The two dune fields varied in both mineral types present and in uniformity of composition. These differences point to different source lithologies and different distances travelled from source material. Examining these differences further will allow for a greater understanding of aeolian processes on Mars.

  5. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants

    PubMed Central

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species. PMID:26974817

  6. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    PubMed

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  7. Mn-53-Cr-53 Systematics of R-Chondrite NWA 753

    NASA Technical Reports Server (NTRS)

    Jogo, K.; Shih, C-Y.; Reese, Y. D.; Nyquist, L. E.

    2006-01-01

    Chondrules and chondrites are interpreted as objects formed in the early solar system, and it is important to study them in order to elucidate its evolution. Here, we report the study of the Mn-Cr systematics of the R-Chondrite NWA753 and compare the results to other chondrite data. The goal was to determine Cr isotopic and age variations among chondrite groups with different O-isotope signatures. The Mn-53-Cr-53 method as applied to individual chondrules [1] or bulk chondrites [2] is based on the assumption that 53Mn was initially homogeneously distributed in that portion the solar nebula where the chondrules and/or chondrites formed. However, different groups of chondrites formed from regions of different O-isotope compositions. So, different types of chondrites also may have had different initial Mn-53 abundances and/or Cr isotopic compositions. Thus, it is important to determine the Cr isotopic systematics among chondrites from various chondrite groups. We are studying CO-chondrite ALH83108 and Tagish Lake in addition to R-Chondrite NWA753. These meteorites have very distinct O-isotope compositions (Figure 1).

  8. An Apollo 15 Mare Basalt Fragment and Lunar Mare Provinces

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Burling, Trina Cox

    1996-01-01

    Lunar sample 15474,4 is a tiny fragment of olivine-augite vitrophyre that is a mare basalt. Although petroraphically distinct from all other Apollo 15 samples, it has been ignored since its first brief description. Our new petrographic and mineral chemical data show that the olivines and pyroxenes are distinct from those in other basalts. The basalt cooled and solidified extremely rapidly; some of the olivine might be cumulate or crystallized prior to extrusion. Bulk-chemical data show that the sample is probably similar to an evolved Apollo 15 olivine-normative basalt in major elements but is distinct in its rare earth element pattern. Its chemical composition and petrography both show that 15474,4 cannot be derived from other Apollo 15 mare basalts by shallow-level crystal fractionation. It represents a distinct extrusion of magma. Nonetheless, the chemical features that 15474,4 has in common with other Apollo 15 mare basalts, including the high FeO/Sc, the general similarity of the rare earth element pattern, and the common (and chondritic) TiO2/Sm ratio, emphasize the concept of a geochemical province at the Apollo 15 site that is distinct from basalts and provinces elsewhere. In making a consistent picture for the derivation of all of the Apollo 15 basalts, both the commonalities and the differences among the basalts must be explained. The Apollo 15 commonalities and differences suggest that the sources must have consisted of major silicate phases with the same composition but with varied amounts of a magma trapped from a contemporary magma ocean. They probably had a high olivine/pyroxene ratio and underwent small and reasonably consistent degrees of partial melting to produce the basalts. These inferences may be inconsistent with models that suggest greatly different depths of melting among basalts, primitive sources for the green glasses, or extensive olivine fractionation during ascent. An integrated approach to lunar mare provinces, of which the Apollo 15 mare basalts constitute only one, offers advances in our understanding of the physical and chemical processes of source formation and mare production but has so far not been utilized.

  9. Lead-isotopic evidence for distinct source of granite and for distinct basement in the northern Appalachians, Maine.

    USGS Publications Warehouse

    Ayuso, R.A.

    1986-01-01

    Lead-isotopic compositions of feldspars in high-level Devonian granitic plutons across the northern Appalachians were measured. The presence of three fundamentally different sources of granites was indicated by three distinct lead-isotope groups. Plutons in the coastal lithotectonic block are the most radiogenic (206Pb/204Pb) 18.25-19.25; 207Pb/204Pb 15.59-15.67; 208Pb/204Pb 38.00-38.60); plutons in northern Maine are the least radiogenic (206Pb/204Pb 18.00-18.50; 207Pb/204Pb 15.51-15.55; 208Pb/204Pb 37.80-38.38). Intermediate lead-isotope values characterize the plutons in central Maine. All plutons show relatively radiogenic lead values for their ages and suggest the imprint of continental crustal sources, particularly in the coastal block. These plutons were formed in different crustal fragments in a continental environment, that were juxtaposed after emplacement of the granites.-L.C.H.

  10. Development of FRP composite structural biomaterials: ultimate strength of the fiber/matrix interfacial bond in in vivo simulated environments.

    PubMed

    Latour, R A; Black, J

    1992-05-01

    Fiber reinforced polymer (FRP) composites are being developed as alternatives to metals for structural orthopedic implant applications. FRP composite fracture behavior and environmental interactions are distinctly different from those which occur in metals. These differences must be accounted for in the design and evaluation of implant performance. Fiber/matrix interfacial bond strength in a FRP composite is known to strongly influence fracture behavior. The interfacial bond strength of four candidate fiber/matrix combinations (carbon fiber/polycarbonate, carbon fiber/polysulfone, polyaramid fiber/polycarbonate, polyaramid fiber/polysulfone) were investigated at 37 degrees C in dry and in vivo simulated (saline, exudate) environments. Ultimate bond strength was measured by a single fiber-microdroplet pull-out test. Dry bond strengths were significantly decreased following exposure to either saline or exudate with bond strength loss being approximately equal in both the saline and exudate. Bond strength loss is attributed to the diffusion of water and/or salt ions into the sample and their interaction with interfacial bonding. Because bond degradation is dependent upon diffusion, diffusional equilibrium must be obtained in composite test samples before the full effect of the test environment upon composite mechanical behavior can be determined.

  11. Successional changes in functional composition contrast for dry and wet tropical forest.

    PubMed

    Lohbeck, Madelon; Poorter, Lourens; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Paz, Horacio; Pérez-García, Eduardo A; Romero-Pérez, I Eunice; Tauro, Alejandra; Bongers, Frans

    2013-06-01

    We tested whether and how functional composition changes with succession in dry deciduous and wet evergreen forests of Mexico. We hypothesized that compositional changes during succession in dry forest were mainly determined by increasing water availability leading to community functional changes from conservative to acquisitive strategies, and in wet forest by decreasing light availability leading to changes from acquisitive to conservative strategies. Research was carried out in 15 dry secondary forest plots (5-63 years after abandonment) and 17 wet secondary forest plots (< 1-25 years after abandonment). Community-level functional traits were represented by community-weighted means based on 11 functional traits measured on 132 species. Successional changes in functional composition are more marked in dry forest than in wet forest and largely characterized by different traits. During dry forest succession, conservative traits related to drought tolerance and drought avoidance decreased, as predicted. Unexpectedly acquisitive leaf traits also decreased, whereas seed size and dependence on biotic dispersal increased. In wet forest succession, functional composition changed from acquisitive to conservative leaf traits, suggesting light availability as the main driver of changes. Distinct suites of traits shape functional composition changes in dry and wet forest succession, responding to different environmental filters.

  12. Exploratory Factor Analyses of the CAHPS® Hospital Pilot Survey Responses across and within Medical, Surgical, and Obstetric Services

    PubMed Central

    O'Malley, A James; Zaslavsky, Alan M; Hays, Ron D; Hepner, Kimberly A; Keller, San; Cleary, Paul D

    2005-01-01

    Objectives To estimate the associations among hospital-level scores from the Consumer Assessments of Healthcare Providers and Systems (CAHPS®) Hospital pilot survey within and across different services (surgery, obstetrics, medical), and to evaluate differences between hospital- and patient-level analyses. Data Source CAHPS Hospital pilot survey data provided by the Centers for Medicare and Medicaid Services. Study Design Responses to 33 questionnaire items were analyzed using patient- and hospital-level exploratory factor analytic (EFA) methods to identify both a patient-level and hospital-level composite structures for the CAHPS Hospital survey. The latter EFA was corrected for patient-level sampling variability using a hierarchical model. We compared results of these analyses with each other and to separate EFAs conducted at the service level. To quantify the similarity of assessments across services, we compared correlations of different composites within the same service with those of the same composite across different services. Data Collection Cross-sectional data were collected during the summer of 2003 via mail and telephone from 19,720 patients discharged from November 2002 through January 2003 from 132 hospitals in three states. Principal Findings Six factors provided the best description of inter-item covariation at the patient level. Analyses that assessed variability across both services and hospitals suggested that three dimensions provide a parsimonious summary of inter-item covariation at the hospital level. Hospital-level factor structures also differed across services; as much variation in quality reports was explained by service as by composite. Conclusions Variability of CAHPS scores across hospitals can be reported parsimoniously using a limited number of composites. There is at least as much distinct information in composite scores from different services as in different composite scores within each service. Because items cluster slightly differently in the different services, service-specific composites may be more informative when comparing patients in a given service across hospitals. When studying individual-level variability, a more differentiated structure is probably more appropriate. PMID:16316439

  13. Oxygen isotopic variations in the outer margins and Wark–Lovering rims of refractory inclusions

    DOE PAGES

    Simon, Justin I.; Matzel, Jennifer E. P.; Simon, Steven B.; ...

    2016-05-02

    Oxygen isotopic variations across the outer margins and Wark–Lovering (WL) rims of a diverse suite of six coarse-grained Types A and B refractory inclusions from both oxidized and reduced CV3 chondrites suggest that CAIs originated from a 16O-rich protosolar gas reservoir and were later exposed to both relatively 17,18O-rich and 16O-rich reservoirs. The O-isotope profiles of CAIs can be explained by changes in the composition of gas near the protoSun or the migration of CAIs through a heterogeneous nebula. Variability within the inclusion interiors appears to have been set prior to WL rim growth. Modeling the isotopic zoning profiles asmore » diffusion gradients between inclusion interiors and edges establishes a range of permissible time–temperature combinations for their exposure in the nebula. At mean temperatures of 1400 K, models that match the isotope gradients in the inclusions yield timescales ranging from 5 × 10 3 to 3 × 10 5 years. Assuming CAIs originated with a relatively 16O-rich (protosolar) isotopic composition, differences among the melilite interiors and the isotopic gradients in their margins imply the existence of a number of isotopically distinct reservoirs. In addition, evidence at the edges of some CAIs for subsequent isotopic exchange may relate to the beginning of rim formation. In the WL rim layers surrounding the interiors, spinel is relatively 16O-rich but subtly distinct among different CAIs. Melilite is often relatively 16O-poor, but rare relatively 16O-rich grains also exist. Pyroxene generally exhibits intermediate O-isotope compositions and isotopic zoning. Olivine in both WL and accretionary rims, when present, is isotopically heterogeneous. The extreme isotopic heterogeneity among and within individual WL rim layers and in particular, the observed trends of outward 16O-enrichments, suggest that rims surrounding CAIs contained in CV3 chondrites, like the inclusions themselves, formed from a number of isotopically distinct gas reservoirs. Collectively, these results support numerical protoplanetary disk models in which CAIs were transported between several distinct nebular reservoirs multiple times prior to accretion onto a parent body.« less

  14. Oxygen isotopic variations in the outer margins and Wark-Lovering rims of refractory inclusions

    NASA Astrophysics Data System (ADS)

    Simon, Justin I.; Matzel, Jennifer E. P.; Simon, Steven B.; Hutcheon, Ian D.; Ross, D. Kent; Weber, Peter K.; Grossman, Lawrence

    2016-08-01

    Oxygen isotopic variations across the outer margins and Wark-Lovering (WL) rims of a diverse suite of six coarse-grained Types A and B refractory inclusions from both oxidized and reduced CV3 chondrites suggest that CAIs originated from a 16O-rich protosolar gas reservoir and were later exposed to both relatively 17,18O-rich and 16O-rich reservoirs. The O-isotope profiles of CAIs can be explained by changes in the composition of gas near the protoSun or the migration of CAIs through a heterogeneous nebula. Variability within the inclusion interiors appears to have been set prior to WL rim growth. Modeling the isotopic zoning profiles as diffusion gradients between inclusion interiors and edges establishes a range of permissible time-temperature combinations for their exposure in the nebula. At mean temperatures of 1400 K, models that match the isotope gradients in the inclusions yield timescales ranging from 5 × 103 to 3 × 105 years. Assuming CAIs originated with a relatively 16O-rich (protosolar) isotopic composition, differences among the melilite interiors and the isotopic gradients in their margins imply the existence of a number of isotopically distinct reservoirs. Evidence at the edges of some CAIs for subsequent isotopic exchange may relate to the beginning of rim formation. In the WL rim layers surrounding the interiors, spinel is relatively 16O-rich but subtly distinct among different CAIs. Melilite is often relatively 16O-poor, but rare relatively 16O-rich grains also exist. Pyroxene generally exhibits intermediate O-isotope compositions and isotopic zoning. Olivine in both WL and accretionary rims, when present, is isotopically heterogeneous. The extreme isotopic heterogeneity among and within individual WL rim layers and in particular, the observed trends of outward 16O-enrichments, suggest that rims surrounding CAIs contained in CV3 chondrites, like the inclusions themselves, formed from a number of isotopically distinct gas reservoirs. Collectively, these results support numerical protoplanetary disk models in which CAIs were transported between several distinct nebular reservoirs multiple times prior to accretion onto a parent body.

  15. Composition-related structural transition of random peptides: insight into the boundary between intrinsically disordered proteins and folded proteins.

    PubMed

    Kang, Wen-Bin; He, Chuan; Liu, Zhen-Xing; Wang, Jun; Wang, Wei

    2018-05-16

    Previous studies based on bioinformatics showed that there is a sharp distinction of structural features and residue composition between the intrinsically disordered proteins and the folded proteins. What induces such a composition-related structural transition? How do various kinds of interactions work in such processes? In this work, we investigate these problems based on a survey on peptides randomly composed of charged residues (including glutamic acids and lysines) and the residues with different hydrophobicity, such as alanines, glycines, or phenylalanines. Based on simulations using all-atom model and replica-exchange Monte Carlo method, a coil-globule transition is observed for each peptide. The corresponding transition temperature is found to be dependent on the contents of the hydrophobic and charged residues. For several cases, when the mean hydrophobicity is larger than a certain threshold, the transition temperature is higher than the room temperature, and vise versa. These thresholds of hydrophobicity and net charge are quantitatively consistent with the border line observed from the study of bioinformatics. These results outline the basic physical reasons for the compositional distinction between the intrinsically disordered proteins and the folded proteins. Furthermore, the contributions of various interactions to the structural variation of peptides are analyzed based on the contact statistics and the charge-pattern dependence of the gyration radii of the peptides. Our observations imply that the hydrophobicity contributes essentially to such composition-related transitions. Thus, we achieve a better understanding on composition-structure relation of the natural proteins and the underlying physics.

  16. Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage.

    PubMed

    Biswas, Kristi; Turner, Susan J

    2012-02-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (<5%). Biovolume estimates of the SRBs were higher in biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.

  17. Recovery of anhydrous hydrogen iodide

    DOEpatents

    O'Keefe, Dennis R.; McCorkle, Jr., Kenneth H.; de Graaf, Johannes D.

    1982-01-01

    Relatively dry hydrogen iodide can be recovered from a mixture of HI, I.sub.2 and H.sub.2 O. After the composition of the mixture is adjusted so that the amounts of H.sub.2 O and I.sub.2 do not exceed certain maximum limits, subjection of the mixture to superatmospheric pressure in an amount equal to about the vapor pressure of HI at the temperature in question causes distinct liquid phases to appear. One of the liquid phases contains HI and not more than about 1 weight percent water. Often the adjustment in the composition will include the step of vaporization, and the distinct layers appear following the increase in pressure of the vapor mixture. Adjustment in the composition may also include the addition of an extraction agent, such as H.sub.3 PO.sub.4, and even though the adjusted composition mixture contains a significant amount of such an agent, the creation of the distinct liquid phases is not adversely affected.

  18. Compositions of Normal and Anomalous Eucrite-Type Mafic Achondrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Peng, Z. X.; Mertzman, S. A.

    2016-01-01

    The most common asteroidal igneous meteorites are eucrite-type mafic achondrites - basalts and gabbros composed of ferroan pigeonite, ferroan augite, calcic plagioclase, silica, ilmenite, troilite, Ca-phosphate, chromite and Fe-metal. These rocks are thought to have formed on a single asteroid along with howardites and diogenites. However, high precision O-isotopic analyses have shown that some mafic achondrites have small, well-resolved, non-mass-dependent differences that have been interpreted as indicating derivation from different asteroids. Some of these O-anomalous mafic achondrites also have anomalous petrologic characteristics, strengthening the case that they hail from distinct parent asteroids. We present the results of bulk compositional studies of a suite of normal and anomalous eucrite-type basalts and cumulate gabbros.

  19. Analysis of main parameters affecting substrate/mortar contact area through tridimensional laser scanner.

    PubMed

    Stolz, Carina M; Masuero, Angela B

    2015-10-01

    This study assesses the influence of the granulometric composition of sand, application energy and the superficial tension of substrates on the contact area of rendering mortars. Three substrates with distinct wetting behaviors were selected and mortars were prepared with different sand compositions. Characterization tests were performed on fresh and hardened mortars, as well as the rheological characterization. Mortars were applied to substrates with two different energies. The interfacial area was then digitized with 3D scanner. Results show that variables are all of influence on the interfacial contact in the development area. Furthermore, 3D laser scanning proved to be a good method to contact area measurement. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. High-Throughput Amplicon Sequencing Reveals Distinct Communities within a Corroding Concrete Sewer System

    PubMed Central

    Dennis, Paul G.; Keller, Jurg; Tyson, Gene W.

    2012-01-01

    Microbially induced concrete corrosion (MICC) is an important problem in sewers. Here, small-subunit (SSU) rRNA gene amplicon pyrosequencing was used to characterize MICC communities. Microbial community composition differed between wall- and ceiling-associated MICC layers. Acidithiobacillus spp. were present at low abundances, and the communities were dominated by other sulfur-oxidizing-associated lineages. PMID:22843532

  1. The effects of stand structure after thinning on the growth of an Allegheny hardwood stand

    Treesearch

    David A. Marquis; Richard L. Ernst

    1991-01-01

    A 50-year-old Allegheny hardwood stand in which the crown canopy had stratified into distinct species groups was thinned to 60% relative density leaving dramatically different stand structures and species composition. Treatments included combined thinning, thin from middle, thin from above, thin from below, and unthinned control. Individual tree growth was stimulated...

  2. Mesosiderites. I - Compositions of their metallic portions and possible relationship to other metal-rich meteorite groups

    NASA Technical Reports Server (NTRS)

    Wasson, J. T.; Schaudy, R.; Bild, R. W.; Chou, C.-L.

    1974-01-01

    The metal from 17 mesosiderites has been analyzed for Ni, Ga, Ge, and Ir by the techniques of atomic-absorption spectrometry and neutron activation. Most mesosiderite metal samples fall in a narrow compositional range: Ni, 7.0-9.0%; Ga, 13-16 ppm; Ge, 47-58 ppm; and Ir, 2.4-4.4 ppm. Most of those falling outside these ranges belong to Powell's (1971) least-metamorphosed type. Mesosiderite metal falls in the same general composition range as IIIAB irons, IIIE irons, pallasites and H-group chondrite metal. There are distinct differences in detail, however, and firm evidence for a close genetic relationship between any of these groups and the mesosiderites is lacking.

  3. Characterization and Distribution of Lunar Mare Basalt Types Using Remote Sensing Techniques. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Pieters, C.

    1977-01-01

    The types of basal to be found on the moon were identified using reflectance spectra from a variety of lunar mare surfaces and craters as well as geochemical interpretations of laboratory measurements of reflectance from lunar, terrestrial, and meteoritic samples. Findings indicate that major basaltic units are not represented in lunar sample collections. The existence of late stage high titanium basalts is confirmed. All maria contain lateral variations of compositionally heterogenous basalts; some are vertically inhomogenous with distinctly different subsurface composition. Some basalt types are spectrally gradational, suggesting minor variations in composition. Mineral components of unsampled units can be defined if spectra are obtained with sufficient spectral coverage (.3 to 2.5 micron m) and spatial resolution (approximating .5 km).

  4. Fire regime, not time-since-fire, affects soil fungal community diversity and composition in temperate grasslands.

    PubMed

    Egidi, Eleonora; McMullan-Fisher, Sapphire; Morgan, John W; May, Tom; Zeeman, Ben; Franks, Ashley E

    2016-09-01

    Frequent burning is commonly undertaken to maintain diversity in temperate grasslands of southern Australia. How burning affects below-ground fungal community diversity remains unknown. We show, using a fungal rDNA metabarcoding approach (Illumina MiSeq), that the fungal community composition was influenced by fire regime (frequency) but not time-since-fire. Fungal community composition was resilient to direct fire effects, most likely because grassland fires transfer little heat to the soil. Differences in the fungal community composition due to fire regime was likely due to associated changes that occur in vegetation with recurrent fire, via the break up of obligate symbiotic relationships. However, fire history only partially explains the observed dissimilarity in composition among the soil samples, suggesting a distinctiveness in composition in each grassland site. The importance of considering changes in soil microbe communities when managing vegetation with fire is highlighted. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Composition of ribonucleic acid from various parts of spider oocytes.

    PubMed

    EDSTROM, J E

    1960-09-01

    Microphoretic purine-pyrimidine analyses of the ribonucleic acid (RNA) in nucleoli, nucleoplasm, cytoplasm, and yolk nuclei of spider oocytes have been carried out. The material necessary for the analyses was isolated by micromanipulation. Determinations of the amounts of RNA in the different parts of the cell were also performed. No differences between the composition of RNA in the nucleolus and the cytoplasm could be disclosed. Nucleoplasmic RNA was, on the other hand, distinctly different from that in the nucleolus and in the cytoplasm. The difference lies in the content of adenine, which is highest in nucleoplasmic RNA. The few analyses carried out on yolk nuclei showed their RNA to be variable in composition with a tendency to high purine values. The cytoplasm contains about 99 per cent of the total RNA in these cells, the nucleoplasm about 1 per cent, and the nucleolus not more than 0.3 per cent, although the highest concentrations are found in these latter structures. When considered in the light of other recent findings the results are compatible with the view that nucleolar RNA is the precursor of cytoplasmic RNA.

  6. Microbial Lifestyle and Genome Signatures

    PubMed Central

    Dutta, Chitra; Paul, Sandip

    2012-01-01

    Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity. PMID:23024607

  7. Sequence, Structure, and Context Preferences of Human RNA Binding Proteins.

    PubMed

    Dominguez, Daniel; Freese, Peter; Alexis, Maria S; Su, Amanda; Hochman, Myles; Palden, Tsultrim; Bazile, Cassandra; Lambert, Nicole J; Van Nostrand, Eric L; Pratt, Gabriel A; Yeo, Gene W; Graveley, Brenton R; Burge, Christopher B

    2018-06-07

    RNA binding proteins (RBPs) orchestrate the production, processing, and function of mRNAs. Here, we present the affinity landscapes of 78 human RBPs using an unbiased assay that determines the sequence, structure, and context preferences of these proteins in vitro by deep sequencing of bound RNAs. These data enable construction of "RNA maps" of RBP activity without requiring crosslinking-based assays. We found an unexpectedly low diversity of RNA motifs, implying frequent convergence of binding specificity toward a relatively small set of RNA motifs, many with low compositional complexity. Offsetting this trend, however, we observed extensive preferences for contextual features distinct from short linear RNA motifs, including spaced "bipartite" motifs, biased flanking nucleotide composition, and bias away from or toward RNA structure. Our results emphasize the importance of contextual features in RNA recognition, which likely enable targeting of distinct subsets of transcripts by different RBPs that recognize the same linear motif. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study.

    PubMed

    Landa, M; Cottrell, M T; Kirchman, D L; Kaiser, K; Medeiros, P M; Tremblay, L; Batailler, N; Caparros, J; Catala, P; Escoubeyrou, K; Oriol, L; Blain, S; Obernosterer, I

    2014-06-01

    Dissolved organic matter (DOM) and heterotrophic bacteria are highly diverse components of the ocean system, and their interactions are key in regulating the biogeochemical cycles of major elements. How chemical and phylogenetic diversity are linked remains largely unexplored to date. To investigate interactions between bacterial diversity and DOM, we followed the response of natural bacterial communities to two sources of phytoplankton-derived DOM over six bacterial generation times in continuous cultures. Analyses of total hydrolysable neutral sugars and amino acids, and ultrahigh resolution mass spectrometry revealed large differences in the chemical composition of the two DOM sources. According to 454 pyrosequences of 16S ribosomal ribonucleic acid genes, diatom-derived DOM sustained higher levels of bacterial richness, evenness and phylogenetic diversity than cyanobacteria-derived DOM. These distinct community structures were, however, not associated with specific taxa. Grazing pressure affected bacterial community composition without changing the overall pattern of bacterial diversity levels set by DOM. Our results demonstrate that resource composition can shape several facets of bacterial diversity without influencing the phylogenetic composition of bacterial communities, suggesting functional redundancy at different taxonomic levels for the degradation of phytoplankton-derived DOM. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Genetic and environmental factors contribute to variation in cell wall composition in mature desi chickpea (Cicer arietinum L.) cotyledons.

    PubMed

    Wood, Jennifer A; Tan, Hwei-Ting; Collins, Helen M; Yap, Kuok; Khor, Shi Fang; Lim, Wai Li; Xing, Xiaohui; Bulone, Vincent; Burton, Rachel A; Fincher, Geoffrey B; Tucker, Matthew R

    2018-03-13

    Chickpea (Cicer arietinum L.) is an important nutritionally rich legume crop that is consumed worldwide. Prior to cooking, desi chickpea seeds are most often dehulled and cleaved to release the split cotyledons, referred to as dhal. Compositional variation between desi genotypes has a significant impact on nutritional quality and downstream processing, and this has been investigated mainly in terms of starch and protein content. Studies in pulses such as bean and lupin have also implicated cell wall polysaccharides in cooking time variation, but the underlying relationship between desi chickpea cotyledon composition and cooking performance remains unclear. Here, we utilized a variety of chemical and immunohistological assays to examine details of polysaccharide composition, structure, abundance, and location within the desi chickpea cotyledon. Pectic polysaccharides were the most abundant cell wall components, and differences in monosaccharide and glycosidic linkage content suggest both environmental and genetic factors contribute to cotyledon composition. Genotype-specific differences were identified in arabinan structure, pectin methylesterification, and calcium-mediated pectin dimerization. These differences were replicated in distinct field sites and suggest a potentially important role for cell wall polysaccharides and their underlying regulatory machinery in the control of cooking time in chickpea. © 2018 The Authors. Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  10. Chemical studies of H chondrites. 6: Antarctic/non-Antarctic compositional differences revisited

    NASA Astrophysics Data System (ADS)

    Wolf, Stephen F.; Lipschutz, Michael E.

    1995-02-01

    We report data for the trace elements Au, Co, Sb, Ga, Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, T1, and In (ordered by putative volatility during nebular condensation and accretion) determined by radiochemical neutron activation analysis of 14 additional H5 and H6 chondrite falls. Data for the 10 most volatile elements (Rb to In) treated by the multivariate techniques of linear discriminant analysis and logistic regression in these and 44 other falls are compared with those of 59 H4-6 chondrites from Antarctica. Various populations are tested by the multivariate techniques, using the previously developed method of randomization-simulation to assess significance levels. An earlier conclusion, based on fewer examples, that H4-6 chondrite falls are compositionally distinguishable from the Antarctic suite is verified by the additional data. This distinctiveness is highly significant because of the presence of samples from Victoria Land in the Antarctic population, which differ compositionally from falls beyond any reasonable doubt. However, it cannot be proven unequivocally that falls and Antarctic samples from Queen Maud Land are compositionally distinguishable. Trivial causes (e.g., analyst bias, weathering) cannot explain the Victoria Land (Antarctic)/non-Antarctic compositional difference for paradigmatic H4-6 chondrites. This seems to reflect a time-dependent variation of near-Earth meteoroid source regions differing in average thermal history.

  11. Chemical studies of H chondrites. 6: Antarctic/non-Antarctic compositional differences revisited

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen F.; Lipschutz, Michael E.

    1995-01-01

    We report data for the trace elements Au, Co, Sb, Ga, Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, T1, and In (ordered by putative volatility during nebular condensation and accretion) determined by radiochemical neutron activation analysis of 14 additional H5 and H6 chondrite falls. Data for the 10 most volatile elements (Rb to In) treated by the multivariate techniques of linear discriminant analysis and logistic regression in these and 44 other falls are compared with those of 59 H4-6 chondrites from Antarctica. Various populations are tested by the multivariate techniques, using the previously developed method of randomization-simulation to assess significance levels. An earlier conclusion, based on fewer examples, that H4-6 chondrite falls are compositionally distinguishable from the Antarctic suite is verified by the additional data. This distinctiveness is highly significant because of the presence of samples from Victoria Land in the Antarctic population, which differ compositionally from falls beyond any reasonable doubt. However, it cannot be proven unequivocally that falls and Antarctic samples from Queen Maud Land are compositionally distinguishable. Trivial causes (e.g., analyst bias, weathering) cannot explain the Victoria Land (Antarctic)/non-Antarctic compositional difference for paradigmatic H4-6 chondrites. This seems to reflect a time-dependent variation of near-Earth meteoroid source regions differing in average thermal history.

  12. Thermal and chemical evolution in the early solar system as recorded by FUN CAIs: Part I - Petrology, mineral chemistry, and isotopic composition of Allende FUN CAI CMS-1

    NASA Astrophysics Data System (ADS)

    Williams, C. D.; Ushikubo, T.; Bullock, E. S.; Janney, P. E.; Hines, R. R.; Kita, N. T.; Hervig, R. L.; MacPherson, G. J.; Mendybaev, R. A.; Richter, F. M.; Wadhwa, M.

    2017-03-01

    Detailed petrologic, geochemical and isotopic analyses of a new FUN CAI from the Allende CV3 meteorite (designated CMS-1) indicate that it formed by extensive melting and evaporation of primitive precursor material(s). The precursor material(s) condensed in a 16O-rich region (δ17O and δ18O ∼ -49‰) of the inner solar nebula dominated by gas of solar composition at total pressures of ∼10-3-10-6 bar. Subsequent melting of the precursor material(s) was accompanied by evaporative loss of magnesium, silicon and oxygen resulting in large mass-dependent isotope fractionations in these elements (δ25Mg = 30.71-39.26‰, δ29Si = 14.98-16.65‰, and δ18O = -41.57 to -15.50‰). This evaporative loss resulted in a bulk composition similar to that of compact Type A and Type B CAIs, but very distinct from the composition of the original precursor condensate(s). Kinetic fractionation factors and the measured mass-dependent fractionation of silicon and magnesium in CMS-1 suggest that ∼80% of the silicon and ∼85% of the magnesium were lost from its precursor material(s) through evaporative processes. These results suggest that the precursor material(s) of normal and FUN CAIs condensed in similar environments, but subsequently evolved under vastly different conditions such as total gas pressure. The chemical and isotopic differences between normal and FUN CAIs could be explained by sorting of early solar system materials into distinct physical and chemical regimes, in conjunction with discrete heating events, within the protoplanetary disk.

  13. Harpacticoida (Crustacea, Copepoda) across a longitudinal transect of the Vema Fracture Zone and along a depth gradient in the Puerto Rico trench

    NASA Astrophysics Data System (ADS)

    Schmidt, Christina; Lins, Lidia; Brandt, Angelika

    2018-02-01

    The aim of this study was the investigation of abundance, composition and biodiversity of benthic deep-sea Harpacticoida (Crustacea, Copepoda) in the Vema Fracture Zone (VFZ) and Puerto Rico trench. The study revealed a clear East-West gradient in total abundance of Harpacticoida with a westward decrease in abundances in the VFZ and significant differences in the community composition in the Eastern (East Vema) and Western Atlantic basin (West Vema) on family and genus level. The Puerto Rico trench and its upper slope did not only differ in abundance, but were distinct with respect to community composition on family and genus level. Thus, the upper slope might be considered as an ecotone, a transition zone where a rapid distinction of species composition occurs. In our study fiarea, 837 adult harpacticoid specimens could be assigned to 16 families and 1 subfamily. The most abundant families found were Ameiridae Boeck, 1865, Pseudotachidiidae Lang, 1936 and Ectinosomatidae Sars, 1903. Genera and species were investigated within selected families (Argestidae Por, 1986, Cletodidae T. Scott, 1905, Canthocamptidae Brady, 1880 and Zosimeidae Seifried, 2003) where 11 genera, and 73 species could be discriminated. Within the selected families, the genera Zosime Boeck, 1873 and Mesocletodes Sars, 1909 were dominant. In the study area, a high number of singletons was detected, which might be endemic to the respective region. Furthermore, a low total number of species in the trench was observed which was attributed to frequent disturbances in the dynamic environment of the Puerto Rico trench (e.g. turbidites or seismic activity) and high adaptability of specialists and opportunists to these disturbances.

  14. Preservation of adobe buildings. Study of materials

    NASA Astrophysics Data System (ADS)

    Velosa, A.; Rocha, F.; Costa, C.; Varum, H.

    2012-04-01

    Adobe buildings are common in the central region of Portugal due to the lack of natural stone in the surrounding area. This type of construction technique lasted until the 20th Century, at which time cementitious materials, with faster hardening and greater structural capacity substituted traditional materials and techniques. Currently, a significant percentage of these buildings is vacant and many are degraded and in need of conservation actions. Adobes from central Portugal are distinctive as they are lightly coloured and made from air lime and quarry sand. Although some adobes were manufactured locally, most were produced almost 'industrially' and sold to nearby regions. In order to preserve this heritage, conservation actions must be undertaken. So as to ensure the adequacy of these actions and compatibility between original materials and new ones, a thorough study of adobe compostion is mandatory. The current study is an initial step in the characterization of earth based construction materials from central Portugal. Adobe samples were collected from residential buildings in two different locations. The determination of the composition of adobe blocks encompassed the determination of the binder fraction and of their chemical composition and also the particle size analysis of the aggregate. For this purpose FRX analysis, acid dissolution and dry sieving were performed. Methylene blue test was also executed in order to determine the clay fraction. Additionally, the mineral composition of powder samples and oriented samples was performed using XRD analysis in order to determine the clay minerals present in the blocks. As adobe blocks are extremely prone to the action of water the Geelong test was undertaken in order to provide information in terms of durability. It was concluded that air lime was generally used in adobe compositions. However, the clay content varies in adobes from different regions, providing distinct durability characteristics to these materials.

  15. Comparison of the LEW88516 and ALHA77005 martian meteorites: Similar but distinct

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Mckay, G. A.; Bogard, D. D.; Mittlefehldt, D. W.; Wang, M.-S.; Keller, L.; Lipschutz, M. E.; Lindstrom, M. M.; Garrison, D.

    1994-01-01

    By mineral and bulk compositions, the Lewis Cliff (LEW) 88516 meteorite is quite similar to the ALHA77005 martian meteorite. These two meteorites are not paired because their mineral compositions are distinct, they were found 500 km apart in ice fields with different sources for meteorites, and their terrestrial residence ages are different. Minerals in LEW88516 include: olivine, pyroxenes (low- and high-Ca), and maskelynite (ater plagioclase); and the minor minerals chromite, whitlockite, ilmenite, and pyrrhotite. Mineral grains in LEW88516 range up to a few mm. Texturally, the meteorite is complex, with regions of olivine and chromite poikilitically enclosed in pyroxene, regions of interstitial basaltic texture, and glass-rich (shock) veinlets. Olivine compositions range from Fo(sub 64) to Fo(sub 70), (avg. Fo(sub 67)), more ferroan and with more variation than in ALHA77005 (Fo(sub 69) to Fo(sub 73)). Pyroxene compositions fall between En(sub 77)Wo(sub 4) and En(sub 65)Wo(sub 15) and in clusters near En(sub 63)Wo(sub 9) and En(sub 53)Wo(sub 33), on average more magnesian and with more variation than in ALHA77005. Shock features in LEW88516 range from weak deformation through complete melting. Bulk chemical analyses by modal recombination of electron microprobe analyses, instrumental neutron activation, and radiochemical neutron activation confirm that LEW88516 is more closely related to ALHA77005 than to other known martian meteorites. Key element abundance ratios are typical of martian meteorites, as is it nonchondritic rare earth pattern. Differences between the chemical compositions of LEW88516 and ALHA77005 are consistent with slight differences in the proportions of their constituent minerals and not from fundamental petrogenetic differences. Noble gas abundances in LEW88516, like those in ALHA77005, show modest excesses of Ar-40 and Xe-129 from trapped (shock-implanted) gas. As with other ALHA77005 and the shergottite martian meteorites (except EETA79001), noble gas isotope abundances in LEW88516 are consistent with exposure to cosmic rays for 2.5-3 Ma. The absence of substantial effects of shielding from cosmic rays suggest LEW88516 spent this time as an object no larger than a few cm in diameter.

  16. Implications of different methods for specifying classroom composition of externalizing behavior and its relationship to social–emotional outcomes

    PubMed Central

    Yudron, Monica; Jones, Stephanie M.; Raver, C. Cybele

    2016-01-01

    In this paper, we examine common methods for using individual-level data to represent classroom composition by examining exemplary studies that thoughtfully incorporate such measures. Building on these studies, and using data from the Chicago School Readiness Project (CSRP), this paper examines theoretical and analytical implications of a set of different transformations of individual ratings of child externalizing behaviors in order to examine and compare the influence of these representations of classroom composition on Kindergarten internalizing behaviors, social competence, and attention/impulsivity problems. Results indicate that each Kindergarten outcome is influenced by distinct aspects of classroom composition of externalizing behaviors. Kindergarten internalizing behaviors are positively associated with the proportion of children in the Head Start classroom who started with externalizing scores above the 75th percentile regardless of the average value of externalizing behaviors in the classroom. In contrast, Kindergarten social competence is predicted by three aspects of the classroom distribution of externalizing behaviors in the fall of Head Start—the classroom mean, standard deviation, and skew. Finally, Kindergarten attention/impulsivity problems were not associated with any aspect of classroom composition of externalizing behavior examined in this paper. PMID:28275289

  17. Minor Elements in Nakhlite Pyroxenes: Cr in MIL00346

    NASA Technical Reports Server (NTRS)

    McKay, G. A.; Schwandt, C.; Le, L.; Makishima, J.; Kurihara, T.

    2006-01-01

    Nakhlites are olivine-bearing clinopyroxene cumulates. Based on petrographic characteristics, they may be divided into groups that cooled at different rates and may have been formed at different depths in a single flow. The order of cooling rate from slowest to fastest is NWA998

  18. Distinctiveness, use, and value of midwestern oak savannas and woodlands as avian habitats

    USGS Publications Warehouse

    Grundel, R.; Pavlovic, N.B.

    2007-01-01

    Oak savannas and woodlands historically covered millions of hectares in the midwestern United States but are rare today. We evaluated the ecological distinctiveness and conservation value of savannas and woodlands by examining bird distributions across a fire-maintained woody-vegetation gradient in northwest Indiana encompassing five habitats—open habitats with low canopy cover, savannas, woodlands, scrublands, and forests—during migration, breeding, and overwintering. Savannas and woodlands were significantly different in overall bird species composition from open and forest habitats but were often intermediate between open and forest in guild densities. Few bird species were consistently and highly concentrated in savannas or woodlands, and the Red-headed Woodpecker (Melanerpes erythrocephalus) was the only species significantly more abundant in savannas and woodlands than in open, scrub, and forest habitats. Fire frequency over a 15-year interval was a significant predictor of bird community composition and was positively related to species diversity, spring transient migrant density, and density of the most threatened species. Each habitat type had characteristics potentially important for avian conservation. Scrub had the highest density of transient migrants, which suggests it plays an important role as migration stopover habitat. More species were significantly concentrated in open or forest habitats than in the other habitats. Lack of species concentration and intermediate community composition suggested that birds experienced savannas and woodlands more as ecotones than as habitats distinct from forests or grasslands. However, this intermediate character can benefit conservation, as evidenced by savannas and woodlands having the highest density of the most threatened species along this woody-vegetation gradient.

  19. Plant and litter influences on earthworm abundance and community structures in a tropical wet forest

    Treesearch

    G. Gonzalez; X. Zou

    1999-01-01

    Plant communities differ in species composition and litter input. To examine the influence of plant species on the abundance and community structure of soil fauna, we sampled earthworms in areas close to and away from the bases of Dacryodes excelsa and Heliconia caribaea, two distinct plant communities within a tropical wet forest in Puerto Rico. We also carried out a...

  20. Similarities and Differences in Teachers' and Researchers' Conceptions of Communicative Language Teaching: Does the Use of an Educational Model Cast a Better Light?

    ERIC Educational Resources Information Center

    Mangubhai, Francis; Marland, Perc; Dashwood, Ann; Son, Jeong-Bae

    2005-01-01

    This study seeks to document teachers' conceptions of communicative language teaching (CLT) and to compare their conceptions with a composite view of CLT assembled, in part, from researchers' accounts of the distinctive features of CLT. The research was prompted by a review of the relevant research literature showing that, though previous studies…

  1. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    PubMed

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  2. Divergent environmental filters drive functional segregation of European peatlands

    NASA Astrophysics Data System (ADS)

    Robroek, B.; Jassey, V.; Bragazza, L.; Buttler, A.

    2015-12-01

    Plant communities are largely shaped by prevailing climatic conditions. As a result, environmental change is expected to alter the (functional) composition in plant communities. Because plants, and particularly the composition of plant species, play an important role in driving ecosystem processes, it is crucial that we improve our understanding on which environmental factors are most important in shaping plant communities. Here we presnt the results for a cross-Eurpean study, were we assessed the role of environmnetal conditions on plant community composition in 56 peatlands. We show that plant species richness and diversity are relatively stable across the main environmental gradients. Nevertheless, we observe large changes in the plant community structure. In other words, species turnover increased with increasing differences in environmental viariables. Such turnover in the community composition is largely associated to gradients temperature and precipitation, whilst nutrients -often reported as major driver for changes in peatland ecosystems- were only important at the end of the gradient of current deposition levels in Europe. Using a combination of species distribution modelling and species co-occurence patterns, we identified two spatially non-exclusive groups of plant species. Species within a distinct group responded similarly to bioclimatic variables and nutrient deposition levels, whilst between group response was mirrored. These results suggest that these two groups of plants are subjected to divergent environmental filters. Additionally, European peatlands aggregate into two distinct clusters based on plant functional trait composition. Each cluster was dominated by plant species from either one of the two co-response groups. Overall, our results demonstrate that environmental change results in a gradual replacement of plant species from two divergent groups, consequently affecting the functional trait composition in peatlands.

  3. Compositional Verification of a Communication Protocol for a Remotely Operated Vehicle

    NASA Technical Reports Server (NTRS)

    Goodloe, Alwyn E.; Munoz, Cesar A.

    2009-01-01

    This paper presents the specification and verification in the Prototype Verification System (PVS) of a protocol intended to facilitate communication in an experimental remotely operated vehicle used by NASA researchers. The protocol is defined as a stack-layered com- position of simpler protocols. It can be seen as the vertical composition of protocol layers, where each layer performs input and output message processing, and the horizontal composition of different processes concurrently inhabiting the same layer, where each process satisfies a distinct requirement. It is formally proven that the protocol components satisfy certain delivery guarantees. Compositional techniques are used to prove these guarantees also hold in the composed system. Although the protocol itself is not novel, the methodology employed in its verification extends existing techniques by automating the tedious and usually cumbersome part of the proof, thereby making the iterative design process of protocols feasible.

  4. Mass Spectrometry Imaging and GC-MS Profiling of the Mammalian Peripheral Sensory-Motor Circuit

    NASA Astrophysics Data System (ADS)

    Rubakhin, Stanislav S.; Ulanov, Alexander; Sweedler, Jonathan V.

    2015-06-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has evolved to become an effective discovery tool in science and clinical diagnostics. Here, chemical imaging approaches are applied to well-defined regions of the mammalian peripheral sensory-motor system, including the dorsal root ganglia (DRG) and adjacent nerves. By combining several MSI approaches, analyte coverage is increased and 195 distinct molecular features are observed. Principal component analysis suggests three chemically different regions within the sensory-motor system, with the DRG and adjacent nerve regions being the most distinct. Investigation of these regions using gas chromatography-mass spectrometry corroborate these findings and reveal important metabolic markers related to the observed differences. The heterogeneity of the structurally, physiologically, and functionally connected regions demonstrates the intricate chemical and spatial regulation of their chemical composition.

  5. Size-fractionated dissolved primary production and carbohydrate composition of the coccolithophore Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Borchard, C.; Engel, A.

    2014-11-01

    Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady state conditions in phosphorus controlled chemostats (N : P = 29, growth rate of μ = 0.2 d-1). 14C incubations were accomplished to determine primary production (PP), comprised by particulate (PO14C) and dissolved organic carbon (DO14C), and the concentration and composition of particulate combined carbohydrates (pCCHO), and of high molecular weight (>1 kDa, HMW) dissolved combined carbohydrates (dCCHO) as major components of ER. Information on size distribution of ER products was obtained by investigating distinct size classes (<0.40 μm, <1000 kDa, <100 kDa and <10 kDa) of DO14C and HMW-dCCHO. Our results revealed relatively low ER during steady state growth, corresponding to ∼4.5% of primary production, and similar ER rates for all size classes. Acidic sugars had a significant share on freshly produced pCCHO as well as on HMW-dCCHO. While pCCHO and the smallest size (<10 kDa) fraction of HMW-dCCHO exhibited a similar sugar composition, dominated by high percentages of glucose (74-80 Mol%), the composition of HMW-dCCHO size-classes >10 kDa was significantly different with higher Mol% of arabinose. Mol% of acidic sugars increased and Mol% glucose decreased with increasing size of HMW-dCCHO. We conclude that larger polysaccharides follow different production and release pathways than smaller molecules, potentially serving distinct ecological and biogeochemical functions.

  6. Size-fractionated dissolved primary production and carbohydrate composition of the coccolithophore Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Borchard, C.; Engel, A.

    2015-02-01

    Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady-state conditions in phosphorus-controlled chemostats (N:P = 29, growth rate of μ = 0.2 d-1) at present-day and high-CO2 concentrations. 14C incubations were performed to determine primary production (PP), comprised of particulate (PO14C) and dissolved organic carbon (DO14C). Concentration and composition of particulate combined carbohydrates (pCCHO) and high-molecular-weight (>1 kDa, HMW) dissolved combined carbohydrates (dCCHO) were determined by ion chromatography. Information on size distribution of ER products was obtained by investigating distinct size classes (<0.4 μm (DO14C), <0.45 μm (HMW-dCCHO), <1000, <100 and <10 kDa) of DO14CC and HMW-dCCHO. Our results revealed relatively low ER during steady-state growth, corresponding to ~4.5% of primary production, and similar ER rates for all size classes. Acidic sugars had a significant share on freshly produced pCCHO as well as on HMW-dCCHO. While pCCHO and the smallest size fraction (<10 kDa) of HMW-dCCHO exhibited a similar sugar composition, dominated by high percentage of glucose (74-80 mol%), the composition of HMW-dCCHO size classes >10 kDa was significantly different, with a higher mol% of arabinose. The mol% of acidic sugars increased and that of glucose decreased with increasing size of HMW-dCCHO. We conclude that larger polysaccharides follow different production and release pathways than smaller molecules, potentially serving distinct ecological and biogeochemical functions.

  7. An inventory of factors that affect polysaccharide production by Phaeocystis globosa

    NASA Astrophysics Data System (ADS)

    van Rijssel, M.; Janse, I.; Noordkamp, D. J. B.; Gieskes, W. W. C.

    2000-08-01

    Phaeocystis material contains polysaccharides that are built from at least eight different monosaccharides. Differences have been reported between the carbohydrate composition of different Phaeocystis species, and also between samples taken from Phaeocystis globosa blooms in different areas. In order to elucidate factors that could play a role in determining variation in carbohydrate composition and production, a number of Phaeocystis globosa strains were studied under laboratory conditions. Although there was a clear distinction of a northern and a southern cluster in the Phaeocystis globosa strains based on RAPD analysis, the differences in the composition of the mucopolysaccharides were relatively small. The contribution of glucose, however, ranged from 7-85% of total sugars. A strain that was cultured in seawaters of diverse origin produced polysaccharides of a different composition, suggesting the effect of environmental factors. The presence of bacteria affected neither the amount, nor the composition of the carbohydrates that were produced by Phaeocystis globosa. Glucose is part of both the intracellular polysaccharide pool and of the mucopolysaccharides in the colony matrix. Using specific digestion of the intracellular chrysolaminaran by laminarinase, the distribution of polysaccharides over different pools could be assessed. During growth of an axenic, mucus-producing strain, the portion of glucose present as chrysolaminaran appeared to increase. The polyglucose that was not digested by laminarinase remains unidentified. This study shows that environmental factors rather than strain differences determine differences in the sugar composition of Phaeocystis globosa, especially with respect to the glucose content of the material. A difference in the contribution of glucose could be correlated to the portion of cells in the culture that are not in the colonies. Our study emphasises that for studying polysaccharide dynamics in Phaeocystis globosa it is important to be able to discriminate between the different polysaccharide pools. Preliminary results of an enzymatic approach were promising

  8. Wastewater Treatment Effluent Reduces the Abundance and Diversity of Benthic Bacterial Communities in Urban and Suburban Rivers

    PubMed Central

    Drury, Bradley; Rosi-Marshall, Emma

    2013-01-01

    In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization. PMID:23315724

  9. The mystery of membrane organization: composition, regulation and physiological relevance of lipid rafts

    PubMed Central

    Sezgin, Erdinc; Levental, Ilya; Mayor, Satyajit; Eggeling, Christian

    2017-01-01

    Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large body of research has focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, wherein the preferential associations of cholesterol and saturated lipids drives the formation of relatively packed (ordered) membrane domains that selectively recruit certain lipids and proteins. Recent years have yielded new insights into this concept and its in vivo relevance, primarily owing to the development of biochemical and biophysical technologies. PMID:28356571

  10. Composite scores in comparative effectiveness research: counterbalancing parsimony and dimensionality in patient-reported outcomes.

    PubMed

    Schwartz, Carolyn E; Patrick, Donald L

    2014-07-01

    When planning a comparative effectiveness study comparing disease-modifying treatments, competing demands influence choice of outcomes. Current practice emphasizes parsimony, although understanding multidimensional treatment impact can help to personalize medical decision-making. We discuss both sides of this 'tug of war'. We discuss the assumptions, advantages and drawbacks of composite scores and multidimensional outcomes. We describe possible solutions to the multiple comparison problem, including conceptual hierarchy distinctions, statistical approaches, 'real-world' benchmarks of effectiveness and subgroup analysis. We conclude that comparative effectiveness research should consider multiple outcome dimensions and compare different approaches that fit the individual context of study objectives.

  11. Brittle behavior of ceramic matrix composites made of 2 different phases

    NASA Astrophysics Data System (ADS)

    Sadowski, Tomasz; Craciun, Eduard; Marsavina, Liviu

    2018-02-01

    Brittle behavior of Ceramic matrix Composites (CMCs) results from overall response to applied loads due to complex of their internal microstructure. The CMCs materials are composed of mixtures of phases, some amount of porosity and technological defects. The phases can exhibit purely elastic behavior or elastic-plastic one under high level of loading. The crucial point in description of their behavior is correlation of microcracking processes with the type of loading, i.e. tensile or compressive. This distinction in the material behavior is typical for so called brittle materials. In this paper we compared both microcracking processes for the above 2 characteristic loading paths.

  12. Hawaiian lavas: a window into mantle dynamics

    NASA Astrophysics Data System (ADS)

    Jones, Tim; Davies, Rhodri; Campbell, Ian

    2017-04-01

    The emergence of double track volcanism at Hawaii has traditionally posed two problems: (i) the physical emergence of two parallel chains of volcanoes at around 3 Ma, named the Loa and Kea tracks after the largest volcanoes in their sequence, and (ii) the systematic geochemical differences between the erupted lavas along each track. In this study, we dissolve this distinction by providing a geodynamical explanation for the physical emergence of double track volcanism at 3 Ma and use numerical models of the Hawaiian plume to illustrate how this process naturally leads to each volcanic track sampling distinct mantle compositions, which accounts for much of the geochemical characteristics of the Loa and Kea trends.

  13. The provisional matrix: setting the stage for tissue repair outcomes.

    PubMed

    Barker, Thomas H; Engler, Adam J

    2017-07-01

    Since its conceptualization in the 1980s, the provisional matrix has often been characterized as a simple fibrin-containing scaffold for wound healing that supports the nascent blood clot and is functionally distinct from the basement membrane. However subsequent advances have shown that this matrix is far from passive, with distinct compositional differences as the wound matures, and providing an active role for wound remodeling. Here we review the stages of this matrix, provide an update on the state of our understanding of provisional matrix, and present some of the outstanding issues related to the provisional matrix, its components, and their assembly and use in vivo. Copyright © 2017. Published by Elsevier B.V.

  14. Body Composition of Elite Female Players in Five Different Sports Games

    PubMed Central

    Mala, Lucia; Maly, Tomas; Zahalka, František; Bunc, Vaclav; Kaplan, Ales; Jebavy, Radim; Tuma, Martin

    2015-01-01

    The goal of this study was to identify and compare body composition (BC) variables in elite female athletes (age ± years): volleyball (27.4 ± 4.1), softball (23.6 ± 4.9), basketball (25.9 ± 4.2), soccer (23.2 ± 4.2) and handball (24.0 ± 3.5) players. Fat-free mass (FFM), fat mass, percentage of fat mass (FMP), body cell mass (BCM), extracellular mass (ECM), their ratio, the percentage of BCM in FFM, the phase angle (α), and total body water, with a distinction between extracellular (ECW) and intracellular water, were measured using bioimpedance analysis. MANOVA showed significant differences in BC variables for athletes in different sports (F60.256 = 2.93, p < 0.01, η2 = 0.407). The results did not indicate any significant differences in FMP or α among the tested groups (p > 0.05). Significant changes in other BC variables were found in analyses when sport was used as an independent variable. Soccer players exhibited the most distinct BC, differing from players of other sports in 8 out of 10 variables. In contrast, the athletes with the most similar BC were volleyball and basketball players, who did not differ in any of the compared variables. Discriminant analysis revealed two significant functions (p < 0.01). The first discriminant function primarily represented differences based on the FFM proportion (volleyball, basketball vs. softball, soccer). The second discriminant function represented differences based on the ECW proportion (softball vs. soccer). Although all of the members of the studied groups competed at elite professional levels, significant differences in the selected BC variables were found. The results of the present study may serve as normative values for comparison or target values for training purposes. PMID:25964823

  15. Body composition of elite female players in five different sports games.

    PubMed

    Mala, Lucia; Maly, Tomas; Zahalka, František; Bunc, Vaclav; Kaplan, Ales; Jebavy, Radim; Tuma, Martin

    2015-03-29

    The goal of this study was to identify and compare body composition (BC) variables in elite female athletes (age ± years): volleyball (27.4 ± 4.1), softball (23.6 ± 4.9), basketball (25.9 ± 4.2), soccer (23.2 ± 4.2) and handball (24.0 ± 3.5) players. Fat-free mass (FFM), fat mass, percentage of fat mass (FMP), body cell mass (BCM), extracellular mass (ECM), their ratio, the percentage of BCM in FFM, the phase angle (α), and total body water, with a distinction between extracellular (ECW) and intracellular water, were measured using bioimpedance analysis. MANOVA showed significant differences in BC variables for athletes in different sports (F60.256 = 2.93, p < 0.01, η2 = 0.407). The results did not indicate any significant differences in FMP or α among the tested groups (p > 0.05). Significant changes in other BC variables were found in analyses when sport was used as an independent variable. Soccer players exhibited the most distinct BC, differing from players of other sports in 8 out of 10 variables. In contrast, the athletes with the most similar BC were volleyball and basketball players, who did not differ in any of the compared variables. Discriminant analysis revealed two significant functions (p < 0.01). The first discriminant function primarily represented differences based on the FFM proportion (volleyball, basketball vs. softball, soccer). The second discriminant function represented differences based on the ECW proportion (softball vs. soccer). Although all of the members of the studied groups competed at elite professional levels, significant differences in the selected BC variables were found. The results of the present study may serve as normative values for comparison or target values for training purposes.

  16. Antibiotic resistome in landfill leachate from different cities of China deciphered by metagenomic analysis.

    PubMed

    Zhao, Renxin; Feng, Jie; Yin, Xiaole; Liu, Jie; Fu, Wenjie; Berendonk, Thomas U; Zhang, Tong; Li, Xiaoyan; Li, Bing

    2018-05-01

    High throughput sequencing-based metagenomic analysis and network analysis were applied to investigate the broad-spectrum profiles of ARGs in landfill leachate from 12 cities in China. In total, 526 ARG subtypes belonging to 21 ARG types were detected with abundances ranging from 1.1 × 10 -6 to 2.09 × 10 -1 copy of ARG/copy of 16S rRNA gene. 68 ARG subtypes that accounted for 73.4%-93.4% of the total ARG abundances were shared by all leachate samples. The four most abundant ARGs, sul1, sul2, aadA and bacA can be served as ARG indicators to quantitatively predict the total abundances by linear functions (r 2  = 0.577-0.819, P < 0.001). No distinct regional distribution pattern of the ARGs was observed among different cities in China, while the ARG compositions of the leachate were clearly distinct from those of other environmental sample types. Nearly 90% ARG subtypes in the anaerobic digestion sludge from sewage treatment plants (STPADS) were shared by the leachate and the abundances of leachate and STPADS ARGs generalists accounted for 84.5% and 87.7% of total abundances in these two types of anaerobic samples, respectively. Furthermore, Procrustes analysis suggested that microbial community composition might be the determining factor of ARG compositions in landfill leachate. ARGs within the same type or among the different types showed higher incidences of non-random co-occurrence and 17 genera might be potential hosts of multiple ARGs. This study highlighted that landfill leachate is an important reservoir of various ARGs and provided a useful reference for the surveillance and risk management of ARGs in landfill environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Mechanical and Morphological Study of Synthesized PMMA/CaCO3 Nano composites

    NASA Astrophysics Data System (ADS)

    Alam Md., Azad; Arif, Sajjad; Ansari, Akhter H.

    2017-08-01

    In this study, Nano-composites have been synthesized in which PMMA is the matrix material and calcium carbonate nanoparticles as the filler by In-situ polymerization reaction. Nano-CaCO3 added during polymerization and the quantity of nano-CaCO3 varied as 0.2, 0.4 and 0.6 wt. % of monomer quantity. The Nano-composites were prepared at three distinct stirring speeds 600, 800, 1000 rpm in order to observe the property with respect to stirring speeds. XRD gram depicts that the presence of nano-CaCO3 has given crystalline nature to Nano-composites. The effects of different concentrations of nano-CaCO3 loading on PMMA morphology were studied by using scanning electron microscope (SEM). The mechanical property is increasing with the stirring speed and concentration. Relative to neat PMMA a 62% increase in impact strength were observed in PMMA based Nano-composites using 0.6 wt.% nano-CaCO3.

  18. The Composite Strain Index (COSI) and Cumulative Strain Index (CUSI): methodologies for quantifying biomechanical stressors for complex tasks and job rotation using the Revised Strain Index.

    PubMed

    Garg, Arun; Moore, J Steven; Kapellusch, Jay M

    2017-08-01

    The Composite Strain Index (COSI) quantifies biomechanical stressors for complex tasks consisting of exertions at different force levels and/or with different exertion times. The Cumulative Strain Index (CUSI) further integrates biomechanical stressors from different tasks to quantify exposure for the entire work shift. The paper provides methodologies to compute COSI and CUSI along with examples. Complex task simulation produced 169,214 distinct tasks. Use of average, time-weighted average (TWA) and peak force and COSI classified 66.9, 28.2, 100 and 38.9% of tasks as hazardous, respectively. For job rotation the simulation produced 10,920 distinct jobs. TWA COSI, peak task COSI and CUSI classified 36.5, 78.1 and 66.6% jobs as hazardous, respectively. The results suggest that the TWA approach systematically underestimates the biomechanical stressors and peak approach overestimates biomechanical stressors, both at the task and job level. It is believed that the COSI and CUSI partially address these underestimations and overestimations of biomechanical stressors. Practitioner Summary: COSI quantifies exposure when applied hand force and/or duration of that force changes during a task cycle. CUSI integrates physical exposures from job rotation. These should be valuable tools for designing and analysing tasks and job rotation to determine risk of musculoskeletal injuries.

  19. What is your patient’s cognitive profile? Three distinct subgroups of cognitive function in persons with heart failure

    PubMed Central

    Hawkins, Misty A.W.; Schaefer, Julie T.; Gunstad, John; Dolansky, Mary A.; Redle, Joseph D.; Josephson, Richard; Moore, Shirley M.; Hughes, Joel W.

    2014-01-01

    Purpose To determine whether patients with heart failure (HF) have distinct profiles of cognitive impairment. Background Cognitive impairment is common in HF. Recent work found three cognitive profiles in HF patients— (1) intact, (2) impaired, and (3) memory-impaired. We examined the reproducibility of these profiles and clarified mechanisms. Methods HF patients (68.6±9.7years; N=329) completed neuropsychological testing. Composite scores were created for cognitive domains and used to identify clusters via agglomerative-hierarchical cluster analysis. Results A 3-cluster solution emerged. Cluster 1 (n=109) had intact cognition. Cluster 2 (n=123) was impaired across all domains. Cluster 3 (n=97) had impaired memory only. Clusters differed in age, race, education, SES, IQ, BMI, and diabetes (ps ≤.026) but not in mood, anxiety, cardiovascular, or pulmonary disease (ps≥.118). Conclusions We replicated three distinct patterns of cognitive function in persons with HF. These profiles may help providers offer tailored care to patients with different cognitive and clinical needs. PMID:25510559

  20. Water sorption-desorption in conifer cuticles: The role of lignin.

    PubMed

    Reina, José J.; Domínguez, Eva; Heredia, Antonio

    2001-07-01

    Current information on the type and amount of biopolymers present in the epidermis of conifer species is still insufficient. This work presents the detailed morphology and chemical composition of Araucaria bidwillii cuticle after selective treatments to remove the different types of biopolymers. After removal of the waxes, cutin and polar hydrolyzable components, a lignin-like fraction, which makes up 25% of the initial cuticle weight, was identified by GC-MS and infrared spectroscopy. The isolated lignin is of G type, mainly formed by guaiacyl units. This composition indicates that the conifer cuticle investigated here has similar composition to other conifer-isolated cuticles. Water sorption and desorption by the isolated cuticle and the different cuticle fractions, including lignin, were studied. The analysis of the isotherms, following distinct physicochemical models, gave useful information on the structural and physiological role of the different biopolymers present in the cuticle. Lignin fraction showed both a high water sorption and capability of retaining it in comparision to other cuticle components. Hysteresis effect on water sorption-desorption cycle and water cluster formations has also been studied, and their physiological role discussed.

  1. The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms.

    PubMed

    Simões, Manuel; Pereira, Maria O; Sillankorva, Sanna; Azeredo, Joana; Vieira, Maria J

    2007-01-01

    This study investigated the phenotypic characteristics of monoculture P. fluorescens biofilms grown under turbulent and laminar flow, using flow cells reactors with stainless steel substrata. The cellular physiology and the overall biofilm activity, structure and composition were characterized, and compared, within hydrodynamically distinct conditions. The results indicate that turbulent flow-generated biofilm cells were significantly less extensive, with decreased metabolic activity and a lower protein and polysaccharides composition per cell than those from laminar flow-generated biofilms. The effect of flow regime did not cause significantly different outer membrane protein expression. From the analysis of biofilm activity, structure and composition, turbulent flow-generated biofilms were metabolically more active, had twice more mass per cm(2), and higher cellular density and protein content (mainly cellular) than laminar flow-generated biofilms. Conversely, laminar flow-generated biofilms presented higher total and matrix polysaccharide contents. Direct visualisation and scanning electron microscopy analysis showed that these different flows generate structurally different biofilms, corroborating the quantitative results. The combination of applied methods provided useful information regarding a broad spectrum of biofilm parameters, which can contribute to control and model biofilm processes.

  2. Variability of community interaction networks in marine reserves and adjacent exploited areas

    USGS Publications Warehouse

    Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.

    2008-01-01

    Regional and small-scale local oceanographic conditions can lead to high variability in community structure even among similar habitats. Communities with identical species composition can depict distinct networks due to different levels of disturbance as well as physical and biological processes. In this study we reconstruct community networks in four different areas off the Oregon Coast by matching simulated communities with observed dynamics. We compared reserves with harvested areas. Simulations suggested that different community networks, but with the same species composition, can represent each study site. Differences were found in predator-prey interactions as well as non-predatory interactions between community members. In addition, each site can be represented as a set of models, creating alternative stages among sites. The set of alternative models that characterize each study area depicts a sequence of functional responses where each specific model or interaction structure creates different species composition patterns. Different management practices, either in the past or of the present, may lead to alternative communities. Our findings suggest that management strategies should be analyzed at a community level that considers the possible consequences of shifting from one community scenario to another. This analysis provides a novel conceptual framework to assess the consequences of different management options for ecological communities. ?? 2008 Elsevier B.V. All rights reserved.

  3. Subseafloor microbial communities in hydrogen‐rich vent fluids from hydrothermal systems along the Mid‐Cayman Rise

    PubMed Central

    Reveillaud, Julie; Reddington, Emily; McDermott, Jill; Algar, Christopher; Meyer, Julie L.; Sylva, Sean; Seewald, Jeffrey; German, Christopher R.

    2016-01-01

    Summary Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid‐Cayman Rise each exhibits novel geologic settings and distinctively hydrogen‐rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic‐influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen‐utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor. PMID:26663423

  4. Distinction between amorphous and healed planar deformation features in shocked quartz using composite color scanning electron microscope cathodoluminescence (SEM-CL) imaging

    NASA Astrophysics Data System (ADS)

    Hamers, Maartje F.; Pennock, Gill M.; Herwegh, Marco; Drury, Martyn R.

    2016-10-01

    Planar deformation features (PDFs) in quartz are one of the most reliable and most widely used forms of evidence for hypervelocity impact. PDFs can be identified in scanning electron microscope cathodoluminescence (SEM-CL) images, but not all PDFs show the same CL behavior: there are nonluminescent and red luminescent PDFs. This study aims to explain the origin of the different CL emissions in PDFs. Focused ion beam (FIB) thin foils were prepared of specific sample locations selected in composite color SEM-CL images and were analyzed in a transmission electron microscope (TEM). The FIB preparation technique allowed a direct, often one-to-one correlation between the CL images and the defect structure observed in TEM. This correlation shows that composite color SEM-CL imaging allows distinction between amorphous PDFs on one hand and healed PDFs and basal Brazil twins on the other: nonluminescent PDFs are amorphous, while healed PDFs and basal Brazil twins are red luminescent, with a dominant emission peak at 650 nm. We suggest that the red luminescence is the result of preferential beam damage along dislocations, fluid inclusions, and twin boundaries. Furthermore, a high-pressure phase (possibly stishovite) in PDFs can be detected in color SEM-CL images by its blue luminescence.

  5. Geochemical evidence for the provenance of aeolian deposits in the Qaidam Basin, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Du, Shisong; Wu, Yongqiu; Tan, Lihua

    2018-06-01

    The main purpose of this study is to analyse the material source of different grain-size components of dune sand in the Qaidam Basin. We determined the trace and rare earth element (REE) compositions and Sr-Nd isotopic compositions of the coarse (75-500 μm) and fine (<75 μm) fractions of surface sediment samples. The comparison of the immobile trace element and REE compositions, Sr-Nd isotopic compositions and multidimensional scaling (MDS) results of the dune sands with those of different types of sediments in potential source areas revealed the following information. (1) The fine- and coarse-grained fractions of dune sands in the Qaidam Basin exhibit distinctly different elemental concentrations, elemental patterns and characteristic parameters of REE. Moreover, Sr-Nd isotopic differences also exist between different grain-size fractions of aeolian sand, which means that different grain-size fractions of these dune sands have different source areas. (2) The geochemical characteristics of the coarse particles of dune sand exhibit obvious regional heterogeneity and generally record a local origin derived from local fluvial sediments and alluvial/proluvial sediments. The coarse- and fine-grained dune sand in the southern Qaidam Basin mainly came from Kunlun Mountains, whereas the coarse- and fine-grained dune sand in the northeastern Qaidam Basin mainly came from Qilian Mountains. (3) The fine-grained fractions of sediments throughout the entire Qaidam Basin may have been affected by the input of foreign materials from the Tarim Basin.

  6. Rainforest Conversion to Rubber Plantation May Not Result in Lower Soil Diversity of Bacteria, Fungi, and Nematodes.

    PubMed

    Kerfahi, Dorsaf; Tripathi, Binu M; Dong, Ke; Go, Rusea; Adams, Jonathan M

    2016-08-01

    Large areas of rainforest in Asia have been converted to plantations, with uncertain effects on soil biodiversity. Using standard metagenetic methods, we compared the soil biota of bacteria, fungi, and nematodes at three rainforest sites in Malaysia with two rubber plantation sites with similar soils and geology. We predicted the following: (1) that the rubber sites would have a lower α- and β-diversity than the rainforest sites, due to the monospecific canopy cover and intensive management with herbicides, pesticides, and fertilizers, and (2) that due to differences in the physical and biotic environment associated with cultivation, there would be distinct communities of bacteria, fungi, and nematodes. However, regarding (1), the results showed no consistent difference in α- and β-diversity of bacteria, fungi, or nematodes between rainforest and rubber plantation sites. It appears that conversion of rainforest to rubber plantations does not necessarily result in a decrease in diversity of soil biota. It may be that heterogeneity associated with the cultivation regimen compensates for loss of biotically imposed heterogeneity of the original rainforest. Regarding (2), as predicted there were statistically significant differences in community composition between rainforest and rubber plantation for bacteria, fungi, and nematodes. These differences could be related to a range of factors including light level, litter fall composition, pH, C and N, selecting a distinct set of soil taxa, and it is possible that this in itself would affect long-term soil function.

  7. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen

    2011-12-01

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphitemore » content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present« less

  8. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species

    PubMed Central

    Di Giallonardo, Francesca; Schlub, Timothy E.; Shi, Mang

    2017-01-01

    ABSTRACT Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and whether dinucleotide composition can be used to accurately predict host species. Using a comparative analysis, we show that dinucleotide composition has a strong phylogenetic association across different RNA virus families, such that dinucleotide composition can predict the family from which a virus sequence has been isolated. Conversely, dinucleotide composition has a poorer predictive power for the different host species within a virus family and across different virus families, indicating that the host has a relatively small impact on the dinucleotide composition of a virus genome. PMID:28148785

  9. Composite Calderas: The Long and Short of it

    NASA Astrophysics Data System (ADS)

    Gravley, D. M.; Hasegawa, T.; Nakagawa, M.; Wilson, C. J.

    2006-12-01

    Calderas formed in supereruptions are normally linked to a single magma body. However, caldera formation, regional tectonics, and multiple magma bodies may interact to form composite structures with complex geometries. The term composite caldera is often used without reference as to whether the `composite' is in time or space. Three examples of composite caldera styles from New Zealand and Japan show field, geophysical, geochemical and isotopic evidence to suggest that current models for the size, shape and evolution of calderas may be too simplistic. In our examples, multiple separate magma bodies distributed in either space or time, or both, may play a significant role in composite caldera formation. Multiple, clustered collapse events incremental in time: Akan caldera in Hokkaido appears to be a single, rectangular shaped caldera. However, the identification of 17 eruptive units spanning >1 Myr suggests that the caldera evolved incrementally over time and space. New gravity data shows that the caldera is actually a daisy-chain of 3 distinct collapse structures that can be correlated, using lithic componentry, to 3 major geochemical groups in the eruptive products. Multiple, clustered collapse events in a single eruption sequence: Shikotsu caldera in Hokkaido was originally thought to have formed following the eruption of a single large zoned magma chamber. However, the caldera-related deposits are characterized by several geochemically distinct pumice types that can not have been accommodated in a single magma system. Our studies suggest that the variations in pumice compositions are consistent with multiple distinct magma bodies feeding coeval eruptions from several vent sources within an area that collapsed to form a single caldera. Paired calderas with linking eruption-related regional faulting: Rotorua and Ohakuri calderas in New Zealand are 30 km apart and formed in close succession during a complex but virtually continuous eruption sequence at ca. 240 ka. The distinct calderas are joined in dumb-bell fashion by an intervening zone of eruption-related and immediately post-eruptive faulting and collapse.

  10. Sequential patterns of essential trace elements composition in Gracilaria verrucosa and its generated products

    NASA Astrophysics Data System (ADS)

    Izzati, Munifatul; Haryanti, Sri; Parman, Sarjana

    2018-05-01

    Gracilaria widely known as a source of essential trace elements. However this red seaweeds also has great potential for being developed into commercial products. This study examined the sequential pattern of essential trace elements composition in fresh Gracilaria verrucosa and a selection of its generated products, nemely extracted agar, Gracilaria salt and Gracilaria residue. The sample was collected from a brackish water pond, located in north part Semarang, Central Java. The collected sample was then dried under the sun, and subsequently processed into aformentioned generated products. The Gracilaria salt was obtain by soaking the sun dried Gracilaria overnight in fresh water overnight. The resulted salt solution was then boiled leaving crystal salt. Extracted agar was obtained with alkali agar extraction method. The rest of remaining material was considered as Gracilaria residue. The entire process was repeated 3 times. The compositin of trace elements was examined using ICP-MS Spectrometry. Collected data was then analyzed by ANOVA single factor. Resulting sequential pattern of its essential trace elements composition was compared. A regular table salt was used as controls. Resuts from this study revealed that Gracilaria verrucosa and its all generated products all have similarly patterned the composition of essential trace elements, where Mn>Zn>Cu>Mo. Additionally this pattern is similar to different subspecies of Gracilaria from different location and and different season. However, Gracilaria salt has distinctly different pattern of sequential essential trace elements composition compared to table salt.

  11. A Method for Populating the Knowledge Base of AFIT’s Domain-Oriented Application Composition System

    DTIC Science & Technology

    1993-12-01

    Analysis ( FODA ). The approach identifies prominent features (similarities) and distinctive features (differences) of software systems within an... analysis approaches we have summarized, the re- searchers described FODA in sufficient detail to use on large domain analysis projects (ones with...Software Technology Center, July 1991. 18. Kang, Kyo C. and others. Feature-Oriented Domain Analysis ( FODA ) Feasibility Study. Technical Report, Software

  12. Tank bromeliad water: Similar or distinct environments for research of bacterial bioactives?

    PubMed Central

    Carmo, F.L.; Santos, H.F.; Peixoto, R.S.; Rosado, A.S.; Araujo, F.V.

    2014-01-01

    The Atlantic Rainforest does not have a uniform physiognomy, its relief determines different environmental conditions that define the composition of its flora and fauna. Within this ecosystem, bromeliads that form tanks with their leaves hold water reservoirs throughout the year, maintaining complex food chains, based mainly on autotrophic and heterotrophic bacteria. Some works concluded that the water held by tank bromeliads concentrate the microbial diversity of their ecosystem. To investigate the bacterial diversity and the potential biotechnology of these ecosystems, tank bromeliads of the Neoregelia cruenta species from the Atlantic Rainforest in Brazil were used as models for this research. Bacteria isolated from these models were tested for production of bioactive compounds. DGGE of the water held by tank bromeliads was performed in different seasons, locations and sun exposure to verify whether these environmental factors affect bacterial communities. The DGGE bands profile showed no grouping of bacterial community by the environmental factors tested. Most of the isolates demonstrated promising activities in the tests performed. Collectively, these results suggest that tank bromeliads of the N. cruenta species provide important habitats for a diverse microbial community, suggesting that each tank forms a distinct micro-habitat. These tanks can be considered excellent sources for the search for new enzymes and/or new bioactive composites of microbial origin. PMID:24948929

  13. Tank bromeliad water: similar or distinct environments for research of bacterial bioactives?

    PubMed

    Carmo, F L; Santos, H F; Peixoto, R S; Rosado, A S; Araujo, F V

    2014-01-01

    The Atlantic Rainforest does not have a uniform physiognomy, its relief determines different environmental conditions that define the composition of its flora and fauna. Within this ecosystem, bromeliads that form tanks with their leaves hold water reservoirs throughout the year, maintaining complex food chains, based mainly on autotrophic and heterotrophic bacteria. Some works concluded that the water held by tank bromeliads concentrate the microbial diversity of their ecosystem. To investigate the bacterial diversity and the potential biotechnology of these ecosystems, tank bromeliads of the Neoregelia cruenta species from the Atlantic Rainforest in Brazil were used as models for this research. Bacteria isolated from these models were tested for production of bioactive compounds. DGGE of the water held by tank bromeliads was performed in different seasons, locations and sun exposure to verify whether these environmental factors affect bacterial communities. The DGGE bands profile showed no grouping of bacterial community by the environmental factors tested. Most of the isolates demonstrated promising activities in the tests performed. Collectively, these results suggest that tank bromeliads of the N. cruenta species provide important habitats for a diverse microbial community, suggesting that each tank forms a distinct micro-habitat. These tanks can be considered excellent sources for the search for new enzymes and/or new bioactive composites of microbial origin.

  14. Collagenous microstructure of the glenoid labrum and biceps anchor

    PubMed Central

    Hill, A M; Hoerning, E J; Brook, K; Smith, C D; Moss, J; Ryder, T; Wallace, A L; Bull, A M J

    2008-01-01

    The glenoid labrum is a significant passive stabilizer of the shoulder joint. However, its microstructural form remains largely unappreciated, particularly in the context of its variety of functions. The focus of labral microscopy has often been histology and, as such, there is very little appreciation of collagen composition and arrangement of the labrum, and hence the micromechanics of the structure. On transmission electron microscopy, significant differences in diameter, area and perimeter were noted in the two gross histological groups of collagen fibril visualized; this suggests a heterogeneous collagenous composition with potentially distinct mechanical function. Scanning electron microscopy demonstrated three distinct zones of interest: a superficial mesh, a dense circumferential braided core potentially able to accommodate hoop stresses, and a loosely packed peri-core zone. Confocal microscopy revealed an articular surface fine fibrillar mesh potentially able to reduce surface friction, bundles of circumferential encapsulated fibres in the bulk of the tissue, and bone anchoring fibres at the osseous interface. Varying microstructure throughout the depth of the labrum suggests a role in accommodating different types of loading. An understanding of the labral microstructure can lead to development of hypotheses based upon an appreciation of this component of material property. This may aid an educated approach to surgical timing and repair. PMID:18429974

  15. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice.

    PubMed

    Yan, Honglin; Diao, Hui; Xiao, Yi; Li, Wenxia; Yu, Bing; He, Jun; Yu, Jie; Zheng, Ping; Mao, Xiangbing; Luo, Yuheng; Zeng, Benhua; Wei, Hong; Chen, Daiwen

    2016-08-22

    Obesity causes changes in microbiota composition, and an altered gut microbiota can transfer obesity-associated phenotypes from donors to recipients. Obese Rongchang pigs (RP) exhibited distinct fiber characteristics and lipid metabolic profiles in their muscle compared with lean Yorkshire pigs (YP). However, whether RP have a different gut microbiota than YP and whether there is a relationship between the microbiota and muscle properties are poorly understood. The present study was conducted to test whether the muscle properties can be transferred from pigs to germ-free (GF) mice. High-throughput pyrosequencing confirms the presence of distinct core microbiota between pig breeds, with alterations in taxonomic distribution and modulations in β diversity. RP displayed a significant higher Firmicutes/Bacteroidetes ratio and apparent genera differences compared with YP. Transplanting the porcine microbiota into GF mice replicated the phenotypes of the donors. RP and their GF mouse recipients exhibited a higher body fat mass, a higher slow-contracting fiber proportion, a decreased fiber size and fast IIb fiber percentage, and enhanced lipogenesis in the gastrocnemius muscle. Furthermore, the gut microbiota composition of colonized mice shared high similarity with their donor pigs. Taken together, the gut microbiota of obese pigs intrinsically influences skeletal muscle development and the lipid metabolic profiles.

  16. Characterizing fish community diversity across Virginia landscapes: Prerequisite for conservation

    USGS Publications Warehouse

    Angermeier, P.L.; Winston, M.R.

    1999-01-01

    The number of community types occurring within landscapes is an important, but often unprotected, component of biological diversity. Generally applicable protocols for characterizing community diversity need to be developed to facilitate conservation. We used several multivariate techniques to analyze geographic variation in the composition of fish communities in Virginia streams. We examined relationships between community composition and six landscape variables: drainage basin, physiography, stream order, elevation, channel slope, and map coordinates. We compared patterns at two scales (statewide and subdrainage-specific) to assess sensitivity of community classification to spatial scale. We also compared patterns based on characterizing communities by species composition vs. ecological composition. All landscape variables explained significant proportions of the variance in community composition. Statewide, they explained 32% of the variance in species composition and 48% of the variance in ecological composition. Typical communities in each drainage or physiography were statistically distinctive. Communities in different combinations of drainage, physiography, and stream size were even more distinctive, but composition was strongly spatially autocorrelated. Ecological similarity and species similarity of community pairs were strongly related, but replacement by ecologically similar species was common among drainage-physiography combinations. Landscape variables explained significant proportions of variance in community composition within selected subdrainages, but proportions were less than at the statewide scale, and the explanatory power of individual variables varied considerably among subdrainages. Community variation within subdrainages appeared to be much more closely related to environmental variation than to replacement among ecologically similar species. Our results suggest that taxonomic and ecological characterizations of community composition are complementary; both are useful in a conservation context. Landscape features such as drainage, physiography, and water body size generally may provide a basis for assessing aquatic community diversity, especially in regions where the biota is poorly known. Systematic conservation of community types would be a major advance relative to most current conservation programs, which typically focus narrowly on populations of imperiled species. More effective conservation of aquatic biodiversity will require new approaches that recognize the value of both species and assemblages, and that emphasize protection of key landscape-scale processes.

  17. Geometry of modified release formulations during dissolution--influence on performance of dosage forms with diclofenac sodium.

    PubMed

    Dorożyński, Przemysław; Kulinowski, Piotr; Jamróz, Witold; Juszczyk, Ewelina

    2014-12-30

    The objectives of the work included: presentation of magnetic resonance imaging (MRI) and fractal analysis based approach to comparison of dosage forms of different composition, structure, and assessment of the influence of the compositional factors i.e., matrix type, excipients etc., on properties and performance of the dosage form during drug dissolution. The work presents the first attempt to compare MRI data obtained for tablet formulations of different composition and characterized by distinct differences in hydration and drug dissolution mechanisms. The main difficulty, in such a case stems from differences in hydration behavior and tablet's geometry i.e., swelling, cracking, capping etc. A novel approach to characterization of matrix systems i.e., quantification of changes of geometrical complexity of the matrix shape during drug dissolution has been developed. Using three chosen commercial modified release tablet formulations with diclofenac sodium we present the method of parameterization of their geometrical complexity on the base of fractal analysis. The main result of the study is the correlation between the hydrating tablet behavior and drug dissolution - the increase of geometrical complexity expressed as fractal dimension relates to the increased variability of drug dissolution results. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Community size and composition of ammonia oxidizers and denitrifiers in an alluvial intertidal wetland ecosystem

    PubMed Central

    Hu, Ziye; Meng, Han; Shi, Jin-Huan; Bu, Nai-Shun; Fang, Chang-Ming; Quan, Zhe-Xue

    2014-01-01

    Global nitrogen cycling is mainly mediated by the activity of microorganisms. Nitrogen cycle processes are mediated by functional groups of microorganisms that are affected by constantly changing environmental conditions and substrate availability. In this study, we investigated the temporal and spatial patterns of nitrifier and denitrifier communities in an intertidal wetland. Soil samples were collected over four distinct seasons from three locations with different vegetative cover. Multiple environmental factors and process rates were measured and analyzed together with the community size and composition profiles. We observed that the community size and composition of the nitrifiers and denitrifiers are affected significantly by seasonal factors, while vegetative cover affected the community composition. The seasonal impacts on the community size of ammonia oxidizing archaea (AOA) are much higher than that of ammonia oxidizing bacteria (AOB). The seasonal change was a more important indicator for AOA community composition patterns, while vegetation was more important for the AOB community patterns. The microbial process rates were correlated with both the community size and composition. PMID:25101072

  19. Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeastern Brazil.

    PubMed

    Azevedo, Márcia Cristina Costa; Gomes-Gonçalves, Rafaela de Sousa; Mattos, Tailan Moretti; Uehara, Wagner; Guedes, Gustavo Henrique Soares; Araújo, Francisco Gerson

    2017-08-01

    Several species of marine fish use different coastal systems especially during their early development. However, these habitats are jeopardized by anthropogenic influences threatening the success of fish populations, and urgent measures are needed to priorize areas to protect their sustainability. We applied taxonomic (Δ+) and functional (X+) distinctiveness indices that represent taxonomic composition and functional roles to assess biodiversity of three different costal systems: bays, coastal lagoons and oceanic beaches. We hypothesized that difference in habitat characteristics, especially in the more dynamism and habitat homogeneity of oceanic beaches compared with more habitat diversity and sheltered conditions of bays and coastal lagoons results in differences in fish richness and taxonomic and functional diversity. The main premise is that communities phylogenetically and functionally more distinct have more interest in conservation policies. Significant differences (P < 0.004) were found in the species richness, Δ+ and X+ among the three systems according to PERMANOVA. Fish richness was higher in bays compared with the coastal lagoons and oceanic beaches. Higher Δ+ was found for the coastal lagoons compared with the bays and oceanic beaches, with the bays having some values below the confidence limit. Similar patterns were found for X+, although all values were within the confidence limits for the bays, suggesting that the absence of some taxa does not interfere in functional diversity. The hypothesis that taxonomic and functional structure of fish assemblages differ among the three systems was accepted and we suggest that coastal lagoons should be priorized in conservation programs because they support more taxonomic and functional distinctiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Body composition and anthropometry in Japanese and Australian Caucasian males and Japanese females.

    PubMed

    Kagawa, Masaharu; Binns, Colin B; Hills, Andrew P

    2007-01-01

    The total amount and location of fat deposition are important factors in the development of obesity and the metabolic syndrome. To date there have been no reported studies of ethnic and gender differences in body composition and fat distribution patterns in Japanese and Australian young adults. The aim of this study was to assess body composition of young Japanese and Australian Caucasian adults using whole-body dual energy x-ray absorptiometry (DXA) and anthropometry to examine body fat deposition patterns. Body composition of 45 Japanese males and 42 Australian Caucasian males living in Australia (aged 18-40 years) and 139 Japanese females living in Japan (aged 18-27 years) were measured using whole-body DXA scanning and anthropometry. Differences in relationships between BMI and waist circumference (WC), sum of skinfolds (SigmaSF) and %BF obtained from DXA were assessed using multivariate analyses. Distinct gender and ethnic differences (p<0.05) in bone density and waist circumference were observed but no gender differences in BMI and bone mineral content and no ethnic differences in sum of skinfolds and %BF. Both Japanese males and females showed a greater %BF at given BMI, WC and SigmaSF values (p<0.05). The results indicate differences in relationships between %BF and anthropometric measures in young Japanese compared to Caucasians and the importance of population-specific cut-off points for these indices. These findings also have implications for the development of chronic disease and further research, including studies in other Asian countries, is recommended.

  1. Comparative transcriptional analysis of three human ligaments with distinct biomechanical properties

    PubMed Central

    Lorda-Diez, Carlos I; Canga-Villegas, Ana; Cerezal, Luis; Plaza, Santiago; Hurlé, Juan M; García-Porrero, Juan A; Montero, Juan A

    2013-01-01

    One major aim of regenerative medicine targeting the musculoskeletal system is to provide complementary and/or alternative therapeutic approaches to current surgical therapies, often involving the removal and prosthetic substitution of damaged tissues such as ligaments. For these approaches to be successful, detailed information regarding the cellular and molecular composition of different musculoskeletal tissues is required. Ligaments have often been considered homogeneous tissues with common biomechanical properties. However, advances in tissue engineering research have highlighted the functional relevance of the organisational and compositional differences between ligament types, especially in those with higher risks of injury. The aim of this study was to provide information concerning the relative expression levels of a subset of key genes (including extracellular matrix components, transcription factors and growth factors) that confer functional identity to ligaments. We compared the transcriptomes of three representative human ligaments subjected to different biomechanical demands: the anterior cruciate ligament (ACL); the ligamentum teres of the hip (LT); and the iliofemoral ligament (IL). We revealed significant differences in the expression of type I collagen, elastin, fibromodulin, biglycan, transforming growth factor β1, transforming growth interacting factor 1, hypoxia-inducible factor 1-alpha and transforming growth factor β-induced gene between the IL and the other two ligaments. Thus, considerable molecular heterogeneity can exist between anatomically distinct ligaments with differing biomechanical demands. However, the LT and ACL were found to show remarkable molecular homology, suggesting common functional properties. This finding provides experimental support for the proposed role of the LT as a hip joint stabiliser in humans. PMID:24128114

  2. Controlled surface functionality of magnetic nanoparticles by layer-by-layer assembled nano-films

    NASA Astrophysics Data System (ADS)

    Choi, Daheui; Son, Boram; Park, Tai Hyun; Hong, Jinkee

    2015-04-01

    Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated.Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07373h

  3. Extensive Gene Remodeling in the Viral World: New Evidence for Nongradual Evolution in the Mobilome Network

    PubMed Central

    Jachiet, Pierre-Alain; Colson, Philippe; Lopez, Philippe; Bapteste, Eric

    2014-01-01

    Complex nongradual evolutionary processes such as gene remodeling are difficult to model, to visualize, and to investigate systematically. Despite these challenges, the creation of composite (or mosaic) genes by combination of genetic segments from unrelated gene families was established as an important adaptive phenomena in eukaryotic genomes. In contrast, almost no general studies have been conducted to quantify composite genes in viruses. Although viral genome mosaicism has been well-described, the extent of gene mosaicism and its rules of emergence remain largely unexplored. Applying methods from graph theory to inclusive similarity networks, and using data from more than 3,000 complete viral genomes, we provide the first demonstration that composite genes in viruses are 1) functionally biased, 2) involved in key aspects of the arm race between cells and viruses, and 3) can be classified into two distinct types of composite genes in all viral classes. Beyond the quantification of the widespread recombination of genes among different viruses of the same class, we also report a striking sharing of genetic information between viruses of different classes and with different nucleic acid types. This latter discovery provides novel evidence for the existence of a large and complex mobilome network, which appears partly bound by the sharing of genetic information and by the formation of composite genes between mobile entities with different genetic material. Considering that there are around 10E31 viruses on the planet, gene remodeling appears as a hugely significant way of generating and moving novel sequences between different kinds of organisms on Earth. PMID:25104113

  4. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics

    PubMed Central

    Beng, Kingsly Chuo; Tomlinson, Kyle W.; Shen, Xian Hui; Surget-Groba, Yann; Hughes, Alice C.; Corlett, Richard T.; Slik, J. W. Ferry

    2016-01-01

    Metabarcoding potentially offers a rapid and cheap method of monitoring biodiversity, but real-world applications are few. We investigated its utility in studying patterns of litter arthropod diversity and composition in the tropics. We collected litter arthropods from 35 matched forest-plantation sites across Xishuangbanna, southwestern China. A new primer combination and the MiSeq platform were used to amplify and sequence a wide variety of litter arthropods using simulated and real-world communities. Quality filtered reads were clustered into 3,624 MOTUs at ≥97% similarity and the taxonomy of each MOTU was predicted. We compared diversity and compositional differences between forests and plantations (rubber and tea) for all MOTUs and for eight arthropod groups. We obtained ~100% detection rate after in silico sequencing six mock communities with known arthropod composition. Ordination showed that rubber, tea and forest communities formed distinct clusters. α-diversity declined significantly between forests and adjacent plantations for more arthropod groups in rubber than tea, and diversity of order Orthoptera increased significantly in tea. Turnover was higher in forests than plantations, but patterns differed among groups. Metabarcoding is useful for quantifying diversity patterns of arthropods under different land-uses and the MiSeq platform is effective for arthropod metabarcoding in the tropics. PMID:27112993

  5. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

    PubMed Central

    Krüger, Claudia; Kohout, Petr; Janoušková, Martina; Püschel, David; Frouz, Jan; Rydlová, Jana

    2017-01-01

    Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age. PMID:28473828

  6. The Influence of Culture on Agroecosystem Structure: A Comparison of the Spatial Patterns of Homegardens of Different Ethnic Groups in Thailand and Vietnam.

    PubMed

    Timsuksai, Pijika; Rambo, A Terry

    2016-01-01

    Different ethnic groups have evolved distinctive cultural models which guide their interactions with the environment, including their agroecosystems. Although it is probable that variations in the structures of homegardens among separate ethnic groups reflect differences in the cultural models of the farmers, empirical support for this assumption is limited. In this paper the modal horizontal structural patterns of the homegardens of 8 ethnic groups in Northeast Thailand and Vietnam are described. Six of these groups (5 speaking Tai languages and 1 speaking Vietnamese) live in close proximity to each other in separate villages in Northeast Thailand, and 2 of the groups (one Tai-speaking and one Vietnamese-speaking) live in different parts of Vietnam. Detailed information on the horizontal structure of homegardens was collected from samples of households belonging to each group. Although each ethnic group has a somewhat distinctive modal structure, the groups cluster into 2 different types. The Tai speaking Cao Lan, Kalaeng, Lao, Nyaw, and Yoy make up Type I while both of the Vietnamese groups, along with the Tai speaking Phu Thai, belong to Type II. Type I gardens have predominantly organic shapes, indeterminate boundaries, polycentric planting patterns, and multi-species composition within planting areas. Type II homegardens have geometric shapes, sharp boundaries, lineal planting patterns, and mono-species composition of planting areas. That the homegardens of most of the Tai ethnic groups share a relatively similar horizontal structural pattern that is quite different from the pattern shared by both of the Vietnamese groups suggests that the spatial layout of homegardens is strongly influenced by their different cultural models.

  7. The Influence of Culture on Agroecosystem Structure: A Comparison of the Spatial Patterns of Homegardens of Different Ethnic Groups in Thailand and Vietnam

    PubMed Central

    2016-01-01

    Different ethnic groups have evolved distinctive cultural models which guide their interactions with the environment, including their agroecosystems. Although it is probable that variations in the structures of homegardens among separate ethnic groups reflect differences in the cultural models of the farmers, empirical support for this assumption is limited. In this paper the modal horizontal structural patterns of the homegardens of 8 ethnic groups in Northeast Thailand and Vietnam are described. Six of these groups (5 speaking Tai languages and 1 speaking Vietnamese) live in close proximity to each other in separate villages in Northeast Thailand, and 2 of the groups (one Tai-speaking and one Vietnamese-speaking) live in different parts of Vietnam. Detailed information on the horizontal structure of homegardens was collected from samples of households belonging to each group. Although each ethnic group has a somewhat distinctive modal structure, the groups cluster into 2 different types. The Tai speaking Cao Lan, Kalaeng, Lao, Nyaw, and Yoy make up Type I while both of the Vietnamese groups, along with the Tai speaking Phu Thai, belong to Type II. Type I gardens have predominantly organic shapes, indeterminate boundaries, polycentric planting patterns, and multi-species composition within planting areas. Type II homegardens have geometric shapes, sharp boundaries, lineal planting patterns, and mono-species composition of planting areas. That the homegardens of most of the Tai ethnic groups share a relatively similar horizontal structural pattern that is quite different from the pattern shared by both of the Vietnamese groups suggests that the spatial layout of homegardens is strongly influenced by their different cultural models. PMID:26752564

  8. Diversity of kelp holdfast-associated fauna in an Arctic fjord - inconsistent responses to glacial mineral sedimentation across different taxa

    NASA Astrophysics Data System (ADS)

    Ronowicz, Marta; Kukliński, Piotr; Włodarska-Kowalczuk, Maria

    2018-05-01

    Kelp forests are complex underwater habitats that support diverse assemblages of animals ranging from sessile filter feeding invertebrates to fishes and marine mammals. In this study, the diversity of invertebrate fauna associated with kelp holdfasts was surveyed in a high Arctic glacial fjord (76 N, Hornsund, Svalbard). The effects of algal host identity (three kelp species: Laminaria digitata, Saccharina latissima and Alaria esculenta), depth (5 and 10 m) and glacier-derived disturbance (three sites with varying levels of mineral sedimentation) on faunal species richness and composition were studied based on 239 collected algal holdfasts. The species pool was mostly made up by three taxa: colonial Bryozoa and Hydrozoa, and Polychaeta. While the all-taxa species richness did not differ between depths, algal hosts and sites, the patterns varied when the two colonial sessile filter-feeding taxa were analysed alone (Hydrozoa and Bryozoa). The Hydrozoa sample species richness and average taxonomic distinctness were the highest at undisturbed sites, whereas Bryozoa species richness was higher in sediment-impacted localities, indicating relative insensitivity of this phylum to the increased level of mineral suspension in the water column. The average taxonomic distinctness of Bryozoa did not vary between sites. The species composition of kelp-associated fauna varied between sites and depths for the whole community and the most dominant taxa (Bryozoa, Hydrozoa). The high load of inorganic suspension and sedimentation did not cause pauperization of kelp holdfast-associated fauna but instead triggered the changes in species composition and shifts between dominant taxonomic groups.

  9. Coordinated Oxygen Isotopic and Petrologic Studies of CAIS Record Varying Composition of Protosolar

    NASA Technical Reports Server (NTRS)

    Simon, Justin I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2012-01-01

    Ca-, Al-rich inclusions (CAIs) record the O-isotope composition of Solar nebular gas from which they grew [1]. High spatial resolution O-isotope measurements afforded by ion microprobe analysis across the rims and margin of CAIs reveal systematic variations in (Delta)O-17 and suggest formation from a diversity of nebular environments [2-4]. This heterogeneity has been explained by isotopic mixing between the O-16-rich Solar reservoir [6] and a second O-16-poor reservoir (probably nebular gas) with a "planetary-like" isotopic composition [e.g., 1, 6-7], but the mechanism and location(s) where these events occur within the protoplanetary disk remain uncertain. The orientation of large and systematic variations in (Delta)O-17 reported by [3] for a compact Type A CAI from the Efremovka reduced CV3 chondrite differs dramatically from reports by [4] of a similar CAI, A37 from the Allende oxidized CV3 chondrite. Both studies conclude that CAIs were exposed to distinct, nebular O-isotope reservoirs, implying the transfer of CAIs among different settings within the protoplanetary disk [4]. To test this hypothesis further and the extent of intra-CAI O-isotopic variation, a pristine compact Type A CAI, Ef-1 from Efremovka, and a Type B2 CAI, TS4 from Allende were studied. Our new results are equally intriguing because, collectively, O-isotopic zoning patterns in the CAIs indicate a progressive and cyclic record. The results imply that CAIs were commonly exposed to multiple environments of distinct gas during their formation. Numerical models help constrain conditions and duration of these events.

  10. Strong-interaction-mediated critical coupling at two distinct frequencies.

    PubMed

    Gupta, S Dutta

    2007-06-01

    I study a multilayered medium consisting of a metal-dielectric composite film, a spacer layer, and a dielectric Bragg reflector. I demonstrate a greater flexibility over the critical coupling phenomenon [Tischler et al., Opt. Lett. 31, 2045 (2006)], whereby nearly all the incident light energy is absorbed by the composite film through suppression of both transmission and reflection from the structure. For a larger volume fraction of the metal inclusions, strong light-matter coupling is shown to lead to almost total absorption at two distinct frequencies.

  11. Different nature of glacial CaCO3 constituents between MIS 2 and MIS 12 in the East Sea/Japan Sea and its paleoceanographic implication

    NASA Astrophysics Data System (ADS)

    Khim, Boo-Keun; Tada, Ryuji; Itaki, Takuya

    2014-05-01

    Two piston cores (PC-05 and PC-08) were collected on the Yamato Rise in the East Sea/Japan Sea during the KR07-12 cruise. A composite core was achieved with the successful replacement of almost half of the upper part of core PC-05 by the entirety of core PC-08 based on the co-equivalence of L* values and the dark layers, because an interval (170 cm to 410 cm) of core PC-05 was considerably disturbed due to fluidization during the core execution. Chronostratigraphy of the composite core was constructed by the direct comparison of L* values to the well-dated core MD01-2407 that was obtained in the Oki Ridge. The lower-bottom of the composite core reached back to Marine Isotope Stage (MIS) 14, based on the age estimate by LR04 stacks. Downcore opal variation of the composite core exhibited the distinct orbital-scale cyclic changes; high during the interglacial and low during the glacial periods. However, downcore CaCO3 variation showed no corresponding orbital-scale cyclic change between glacial and interglacial periods. Some intervals of both periods were high in CaCO3 content. Frequent and large fluctuations in CaCO3 content seemed to be more related to the presence of dark layers containing thin lamination (TL) within the glacial and interglacial intervals. It is worthy to note that MIS 2 and MIS 12 are characterized by distinctly high CaCO3 content, showing up to 18% and 73%, respectively, among the glacial periods. Furthermore, in terms of lithology, MIS 2 was characterized by a thick dark layer (low L* values) with TL, whereas MIS 12 preserved the distinctly light layer (high L* values) with parallel laminations. Another remarkable dissimilarity between MIS 2 and MIS 12 was the nature of their CaCO3 constituent; the CaCO3 constituent of MIS 2 consisted of mostly planktonic foraminifera, whereas that of MIS 12 was mostly dump of coccolithophorids, regardless the presence of planktonic foraminifera. The distinctness of the CaCO3 constituents between MIS 2 and MIS 12 indicates that the preservation of CaCO3 contents was different temporarily during the glacial periods in the East Sea/Japan Sea. Enhanced CaCO3 preservation in MIS 2 is attributed primarily to less dissolution during the sinking through the water column or at the seafloor, but increased CaCO3 preservation in MIS 12 is mainly due to the high primary production in the surface water. With respect to the different function of the biological pump which controls CO2 cycles, the East Sea/Japan Sea clearly experienced carbonate-ocean-like state during MIS 12, despite normally silica-ocean-like state.

  12. Double-phase-functionalized magnetic Janus polymer microparticles containing TiO2 and Fe2O3 nanoparticles encapsulated in mussel-inspired amphiphilic polymers.

    PubMed

    Yabu, Hiroshi; Ohshima, Hiroyuki; Saito, Yuta

    2014-10-22

    Recently, anisotropic colloidal polymeric materials including Janus microparticles, which have two distinct aspects on their surfaces or interiors, have garnered much interest due to their anisotropic alignment and rotational orientation with respect to external electric or magnetic fields. Janus microparticles are also good candidates for pigments in "twisting ball type" electronic paper, which is considered promising for next-generation flexible display devices. We demonstrate here a universal strategy to encapsulate inorganic nanoparticles and to introduce different such inorganic nanoparticles into distinct polymer phases in Janus microparticles. TiO2 and Fe2O3 nanoparticles were separately encapsulated in two different mussel-inspired amphiphilic copolymers, and then organic-inorganic composite Janus microparticles were prepared by simple evaporation of solvent from the dispersion containing the polymer and nanoparticle. These Janus microparticles were observed to rotate quickly in response to applied magnetic fields.

  13. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model

    PubMed Central

    Diesner, Susanne C.; Bergmayr, Cornelia; Pfitzner, Barbara; Assmann, Vera; Krishnamurthy, Durga; Starkl, Philipp; Endesfelder, David; Rothballer, Michael; Welzl, Gerhard; Rattei, Thomas; Eiwegger, Thomas; Szépfalusi, Zsolt; Fehrenbach, Heinz; Jensen-Jarolim, Erika; Hartmann, Anton

    2017-01-01

    In our mouse model, gastric acid-suppression is associated with antigen-specific IgE and anaphylaxis development. We repeatedly observed non-responder animals protected from food allergy. Here, we aimed to analyse reasons for this protection. Ten out of 64 mice, subjected to oral ovalbumin (OVA) immunizations under gastric acid-suppression, were non-responders without OVA-specific IgE or IgG1 elevation, indicating protection from allergy. In these non-responders, allergen challenges confirmed reduced antigen uptake and lack of anaphylactic symptoms, while in allergic mice high levels of mouse mast-cell protease-1 and a body temperature reduction, indicative for anaphylaxis, were determined. Upon OVA stimulation, significantly lower IL-4, IL-5, IL-10 and IL-13 levels were detected in non-responders, while IL-22 was significantly higher. Comparison of fecal microbiota revealed differences of bacterial communities on single bacterial Operational-Taxonomic-Unit level between the groups, indicating protection from food allergy being associated with a distinct microbiota composition in a non-responding phenotype in this mouse model. PMID:27789346

  14. The Miniature Radio Frequency Instruments (Mini-RF) Global Observations of Earth's Moon

    NASA Technical Reports Server (NTRS)

    Cahill, Joshua T. S.; Thomson, B. J.; Patterson, G. Wesley; Bussey, D. Benjamin J.; Neish, Catherine D.; Lopez, Norberto R.; Turner, F. Scott; Aldridge, T.; McAdam, M.; Meyer, H. M.; hide

    2014-01-01

    Radar provides a unique means to analyze the surface and subsurface physical properties of geologic deposits, including their wavelength-scale roughness, the relative depth of the deposits, and some limited compositional information. The NASA Lunar Reconnaissance Orbiter's (LRO) Miniature Radio Frequency (Mini-RF) instrument has enabled these analyses on the Moon at a global scale. Mini-RF has accumulated 67% coverage of the lunar surface in S-band (12.6 cm) radar with a resolution of 30 m/pixel. Here we present new Mini-RF global orthorectified uncontrolled S-band maps of the Moon and use them for analysis of lunar surface physical properties. Reported here are readily apparent global- and regional-scale differences in lunar surface physical properties that suggest three distinct terranes, namely: a (1) Nearside Radar Dark Region; (2) Orientale basin and continuous ejecta; and the (3) Highlands Radar Bright Region. Integrating these observations with new data from LRO's Diviner Radiometer rock abundance maps, as well Clementine and Lunar Prospector derived compositional values show multiple distinct lunar surface terranes and sub-terranes based upon both physical and compositional surface properties. Previous geochemical investigations of the Moon suggested its crust is best divided into three to four basic crustal provinces or terranes (Feldspathic Highlands Terrane (-An and -Outer), Procellarum KREEP Terrane, and South Pole Aitken Terrane) that are distinct from one another. However, integration of these geochemical data sets with new geophysical data sets allows us to refine these terranes. The result shows a more complex view of these same crustal provinces and provides valuable scientific and hazard perspectives for future targeted human and robotic exploration.

  15. New Numerical Approaches for Modeling Thermochemical Convection in a Compositionally Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Puckett, E. G.; Turcotte, D. L.; He, Y.; Lokavarapu, H. V.; Robey, J.; Kellogg, L. H.

    2017-12-01

    Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions.Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB.These regions have been associated with lower mantle structures known as large low shear velocity provinces below Africa and the South Pacific.The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves.Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle.Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods.Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or `artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm.We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method.We compare the performance of these four algorithms on three problems, including computing an approximation to the solution of an initially compositionally stratified fluid at Ra = 105 with buoyancy numbers {B} that vary from no stratification at B = 0 to stratified flow at large B.

  16. On the distinction between large deformation and large distortion for anisotropic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRANNON,REBECCA M.

    2000-02-24

    A motion involves large distortion if the ratios of principal stretches differ significantly from unity. A motion involves large deformation if the deformation gradient tensor is significantly different from the identity. Unfortunately, rigid rotation fits the definition of large deformation, and models that claim to be valid for large deformation are often inadequate for large distortion. An exact solution for the stress in an idealized fiber-reinforced composite is used to show that conventional large deformation representations for transverse isotropy give errant results. Possible alternative approaches are discussed.

  17. Sample Errors Call Into Question Conclusions Regarding Same-Sex Married Parents: A Comment on "Family Structure and Child Health: Does the Sex Composition of Parents Matter?"

    PubMed

    Paul Sullins, D

    2017-12-01

    Because of classification errors reported by the National Center for Health Statistics, an estimated 42 % of the same-sex married partners in the sample for this study are misclassified different-sex married partners, thus calling into question findings regarding same-sex married parents. Including biological parentage as a control variable suppresses same-sex/different-sex differences, thus obscuring the data error. Parentage is not appropriate as a control because it correlates nearly perfectly (+.97, gamma) with the same-sex/different-sex distinction and is invariant for the category of joint biological parents.

  18. Experimental correlation between nonlinear optical and magnetotransport properties observed in Au-Co thin films

    DOE PAGES

    Yang, Kaida; Kryutyanskiy, Victor; Kolmychek, Irina; ...

    2016-01-01

    Magnetic materials where at least one dimension is in the nanometer scale typically exhibit different magnetic, magnetotransport, and magnetooptical properties compared to bulk materials. Composite magnetic thin films where the matrix composition, magnetic cluster size, and overall composite film thickness can be experimentally tailored via adequate processing or growth parameters offer a viable nanoscale platform to investigate possible correlations between nonlinear magnetooptical and magnetotransport properties, since both types of properties are sensitive to the local magnetization landscape. As a result, it has been shown that the local magnetization contrast affects the nonlinear magnetooptical properties as well as the magnetotransport propertiesmore » in magnetic-metal/nonmagnetic metal multilayers; thus, nanocomposite films showcase another path to investigate possible correlations between these distinct properties which may prove useful for sensing applications.« less

  19. Coordinates Analyses of Hydrated Interplanetary Dust Particles: Samples of Primitive Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Snead, C.; McKeegan, K. D.

    2016-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere fall into two major groups: an anhydrous group termed the "chondritic-porous (CP) IDPs and a hydrated group, the "chondritic-smooth (CS) IDPs, although rare IDPs with mineralogies intermediate between these two groups are known [1]. The CP-IDPs are widely believed to be derived from cometary sources [e.g. 2]. The hydrated CS-IDPs show mineralogical similarities to heavily aqueously altered carbonaceous chondrites (e.g. CI chondrites), but only a few have been directly linked to carbonaceous meteorite parent bodies [e.g. 3, 4]. Most CS-IDPs show distinct chemical [5] and oxygen isotopic composition differences [6-8] from primitive carbonaceous chondrites. Here, we report on our coordinated analyses of a suite of carbon-rich CS-IDPs focusing on their bulk compositions, mineralogy, mineral chemistry, and isotopic compositions.

  20. Three distinct pneumotypes characterize the microbiome of the lung in BALB/cJ mice.

    PubMed

    Scheiermann, Julia; Klinman, Dennis M

    2017-01-01

    Bacteria can rarely be isolated from normal healthy lungs using conventional culture techniques, supporting the traditional belief that the lungs are sterile. Yet recent studies using next generation sequencing report that bacterial DNA commonly found in the upper respiratory tract (URT) is present at lower levels in the lungs. Interpretation of that finding is complicated by the technical limitations and potential for contamination introduced when dealing with low biomass samples. The current work sought to overcome those limitations to clarify the number, type and source of bacteria present in the lungs of normal mice. Results showed that the oral microbiome is diverse and highly conserved whereas murine lung samples fall into three distinct patterns. 33% of the samples were sterile, as they lacked culturable bacteria and their bacterial DNA content did not differ from background. 9% of samples contained comparatively higher amounts of bacterial DNA whose composition mimicked that detected in the URT. A final group (58%) contained smaller amounts of microbial DNA whose composition was correlating to that of rodent chow and cage bedding, likely acquired by inspiration of food and bedding fragments. By analyzing each sample independently rather than working with group averages, this work eliminated the bias introduced by aspiration-contaminated samples to establish that three distinct microbiome pneumotypes are present in normal murine lungs.

  1. Characterization of Cell Surface and EPS Remodeling of Azospirillum brasilense Chemotaxis-like 1 Signal Transduction Pathway mutants by Atomic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billings, Amanda N; Siuti, Piro; Bible, Amber

    2011-01-01

    To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain.more » Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.« less

  2. Asymmetric Membranes from Two Chemically Distinct Triblock Terpolymers Blended during Standard Membrane Fabrication.

    PubMed

    Li, Yuk Mun; Srinivasan, Divya; Vaidya, Parth; Gu, Yibei; Wiesner, Ulrich

    2016-10-01

    Deviating from the traditional formation of block copolymer derived isoporous membranes from one block copolymer chemistry, here asymmetric membranes with isoporous surface structure are derived from two chemically distinct block copolymers blended during standard membrane fabrication. As a first proof of principle, the fabrication of asymmetric membranes is reported, which are blended from two chemically distinct triblock terpolymers, poly(isoprene-b-styrene-b-(4-vinyl)pyridine) (ISV) and poly(isoprene-b-styrene-b-(dimethylamino)ethyl methacrylate) (ISA), differing in the pH-responsive hydrophilic segment. Using block copolymer self-assembly and nonsolvent induced phase separation process, pure and blended membranes are prepared by varying weight ratios of ISV to ISA. Pure and blended membranes exhibit a thin, selective layer of pores above a macroporous substructure. Observed permeabilities at varying pH values of blended membranes depend on relative triblock terpolymer composition. These results open a new direction for membrane fabrication through the use of mixtures of chemically distinct block copolymers enabling the tailoring of membrane surface chemistries and functionalities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. CHEMICAL TAGGING OF THREE DISTINCT POPULATIONS OF RED GIANTS IN THE GLOBULAR CLUSTER NGC 6752

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carretta, E.; Bragaglia, A.; Gratton, R. G.

    2012-05-01

    We present aluminum, magnesium, and silicon abundances in the metal-poor globular cluster NGC 6752 for a sample of more than 130 red giants with homogeneous oxygen and sodium abundances. We find that [Al/Fe] shows a spread of about 1.4 dex among giants in NGC 6752 and is anticorrelated with [Mg/Fe] and [O/Fe] and correlated with [Na/Fe] and [Si/Fe]. These relations are not continuous in nature, but the distribution of stars is clearly clustered around three distinct Al values, low, intermediate, and high. These three groups nicely correspond to the three distinct sequences previously detected using Stroemgren photometry along the redmore » giant branch. These two independent findings strongly indicate the existence of three distinct stellar populations in NGC 6752. Comparing the abundances of O and Mg, we find that the population with intermediate chemical abundances cannot originate from material with the same composition of the most O- and Mg-poor population, diluted by material with that of the most O- and Mg-rich one. This calls for different polluters.« less

  4. Urban stress is associated with variation in microbial species composition—but not richness—in Manhattan

    PubMed Central

    Reese, Aspen T; Savage, Amy; Youngsteadt, Elsa; McGuire, Krista L; Koling, Adam; Watkins, Olivia; Frank, Steven D; Dunn, Robert R

    2016-01-01

    The biological diversity and composition of microorganisms influences both human health outcomes and ecological processes; therefore, understanding the factors that influence microbial biodiversity is key to creating healthy, functional landscapes in which to live. In general, biological diversity is predicted to be limited by habitat size, which for green areas is often reduced in cities, and by chronic disturbance (stress). These hypotheses have not previously been tested in microbial systems in direct comparison to macroorganisms. Here we analyzed bacterial, fungal and ant communities in small road medians (average area 0.0008 km2) and larger parks (average area 0.64 km2) across Manhattan (NYC). Bacterial species richness was not significantly different between medians and parks, but community composition was significantly distinct. In contrast, ant communities differed both in composition and richness with fewer ant species in medians than parks. Fungi showed no significant variation in composition or richness but had few shared taxa between habitats or sites. The diversity and composition of microbes appears less sensitive to habitat patchiness or urban stress than those of macroorganisms. Microbes and their associated ecosystem services and functions may be more resilient to the negative effects of urbanization than has been previously appreciated. PMID:26394011

  5. Compositional Similarities and Distinctions between Titan’s Evaporitic Terrains

    NASA Astrophysics Data System (ADS)

    MacKenzie, S. M.; Barnes, Jason W.

    2016-04-01

    We document the similarities in composition between the equatorial basins Tui Regio, Hotei Regio, and other 5-μm-bright materials, notably the north polar evaporites, by investigating the presence and extent of an absorption feature at 4.92 μm. In most observations, Woytchugga Lacuna, Ontario Lacus, MacKay Lacus, deposits near Fensal, some of the lakes and dry lake beds south of Ligeia, and the southern shores of Kraken Mare share the absorption feature at 4.92 μm observed in the spectra of Tui and Hotei. Besides Woytchugga and at Fensal, these 5-μm-bright deposits are geomorphologically substantiated evaporites. Thus, the similarity in composition strengthens the hypothesis that Tui and Hotei once contained liquid. Other evaporite deposits, however, do not show the 4.92 μm absorption, notably Muggel Lacus and the shores of Ligeia Mare at the north pole. This difference in composition suggests that there is more than one kind of soluble material in Titan’s lakes that can create evaporite and/or that the surface properties at the Visual and Infrared Mapping Spectrometer wavelength scale are not uniform between the different deposits (crystal size, abundance, etc.). Our results indicate that the surface structure, composition, and formation history of Titan’s evaporites may be at least as dynamic and complex as their Earth counterparts.

  6. Recent Compositional Trends within the Murray Formation, Gale Crater, Mars, as seen by APXS: Implications for Sedimentary, Diagenetic and Alteration History.

    NASA Astrophysics Data System (ADS)

    Thompson, L. M.; Yen, A.; Spray, J. G.; Johnson, J. R.; Fraeman, A. A.; Berger, J. A.; Gellert, R.; Boyd, N.; Desouza, E.; O'Connell-Cooper, C.; VanBommel, S.

    2017-12-01

    The >230 m thick Murray Formation is the lower-most unit of the Mount Sharp Group, and interpreted as primarily lacustrine. Representative mudstone, siltstone and fine sandstone targets, encountered above -4330 m elevation, trend to lower Si, Al, Ti, Cr and Ca, and higher Fe, Mn, Zn, P and Mg than the Murray below. Less common, distinctive, coarser grained sandstone lenses tend to exhibit slightly different compositions to the more typical Murray but, overall, show similar elemental trends with elevation, albeit exaggerated. This suggests that the variations observed with elevation in Al, Ti, Cr, K, Fe, Mn, Zn and P within both the coarser sandstones and finer grained Murray are the result of diagenetic and/or alteration processes rather than provenance or physical sedimentary processes such as sorting. This is supported by the chemistry of obvious diagenetic, dark grey nodules, and other potential diagenetic/alteration features within this section, which show variations in the same element concentrations (i.e., P, Mn, Fe, Zn, Mg, Ca and S), distinct from diagenetic features lower down in the stratigraphy, indicating mobility of these elements within this section and changing fluid chemistry. Trends in FeO/MnO generally mimic the presence of ferric absorption features observed in visible/near infrared passive spectra from the ChemCam instrument and from CRISM orbital data, which may be consistent with changes in redox conditions as we climb up section towards Vera Rubin Ridge (Hematite Ridge). Layer-parallel CaSO4 is also common, and not observed below -4330 m. This may represent syndepositional evaporite layers, or late bedding/laminae parallel veins emplaced after lithification, in conjunction with cross-cutting veins. The overall differences in composition between the sandstone targets and finer grained Murray are attributed to distinct provenances and/or sorting during transport. We will discuss the implications of the trends and composition of the Murray above -4330 m elevation and how this pertains to the history and evolution of the Murray Formation as a whole, climatic conditions during the formation of the Murray and the nature of Gale crater lake. Also, what do the trends imply about how circulating fluids have evolved within the Murray sediments and pH, redox, salinity conditions of these fluids?

  7. Magma feeding system of Kutcharo and Mashu calderas, Hokkaido, Japan: Evidence of a common basaltic magma evolving into two distinct rock series

    NASA Astrophysics Data System (ADS)

    Miyagi, I.; Itoh, J.; Nguyen, H.

    2009-12-01

    Kutcharo and its adjacent Mashu volcanoes are located in NE Hokkaido, about 150 km west of the Kurile trench. The latest major activity of Kutcharo was 35 thousand years ago (termed KP I) produced about 50 km3 D.R.E, Mashu meanwhile became active after KP I. To understand the magma feeding system of adjoining but distinct Kutcharo (medium-K) and Mashu (low-K) volcanoes, we examined major and trace element, and Sr, Nd, and Pb isotopic compositions of whole rocks. We also studied phenocryst chemical zoning and chemical compositions of melt inclusions in phenocryst. The chemical results of melt inclusions show no distinction between medium- and low-K as being recognized in bulk rock chemistry of the volcanoes. Instead, the results form a smooth trend between low-K rock series and high-K rhyolitic melt end-member (as high as 5 wt. % K2O). There is no significant difference Sr, Nd and Pb isotopes between basalt and rhyolite suggesting genetic relationship. Moreover, the trace element distribution patterns show enrichment increasing gradually from the basalt to rhyolite via andesite indicating fractional crystallization evolution. Chemical zoning in plagioclase phenocryst in KP I (An 80-40) suggest that basaltic magma injected repeatedly into a voluminous felsic magma chamber of Kutcharo volcano. Chemical compositions of olivine phenocryst show that Kutcharo (Fo 86) was hotter as compared to Mashu (Fo 75). Application of MELTS program (Ghiorso and Sack, 1995) on composition of the basaltic melt end-member suggests that crystallization or subsequent re-melting of the basalt may produce medium- to high-K rhyolite melt, and mixing of the rhyolite with basalt may form the observed medium-K Kutcharo and low-K Mashu rock series. It is estimated that total volume of the basaltic magma supplied intermittently beneath the volcanoes was several folds to 10 times larger than the erupted rhyolite magma. And that the basalt injection may be more intensive beneath Kutcharo, leading to the formation of a thermal structure that has a peak at Kutcharo and lowers gradually toward Mashu. The thermal structure may explain the observed difference in erupted volumes and rock series between two volcanoes. This research project has been conducted under the research contract with Nuclear and Industrial Safety Agency (NISA).

  8. Development of Soil Bacterial Communities in Volcanic Ash Microcosms in a Range of Climates.

    PubMed

    Kerfahi, Dorsaf; Tateno, Ryunosuke; Takahashi, Koichi; Cho, HyunJun; Kim, Hyoki; Adams, Jonathan M

    2017-05-01

    There is considerable interest in understanding the processes of microbial development in volcanic ash. We tested the predictions that there would be (1) a distinctive bacterial community associated with soil development on volcanic ash, including groups previously implicated in weathering studies; (2) a slower increase in bacterial abundance and soil C and N accumulation in cooler climates; and (3) a distinct communities developing on the same substrate in different climates. We set up an experiment, taking freshly fallen, sterilized volcanic ash from Sakurajima volcano, Japan. Pots of ash were positioned in multiple locations, with mean annual temperature (MAT) ranging from 18.6 to -3 °C. Within 12 months, bacteria were detectable by qPCR in all pots. By 24 months, bacterial copy numbers had increased by 10-100 times relative to a year before. C and N content approximately doubled between 12 and 24 months. HiSeq and MiSeq sequencing of the 16S rRNA gene revealed a distinctive bacterial community, different from developed vegetated soils in the same areas, for example in containing an abundance of unclassified bacterial groups. Community composition also differed between the ash pots at different sites, while showing no pattern in relation to MAT. Contrary to our predictions, the bacterial abundance did not show any relation to MAT. It also did not correlate to pH or N, and only C was statistically significant. It appears that bacterial community development on volcanic ash can be a rapid process not closely sensitive to temperature, involving distinct communities from developed soils.

  9. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass

    PubMed Central

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-01-01

    Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. PMID:25911738

  10. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEX TM -pre-treated biomass

    DOE PAGES

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; ...

    2015-04-23

    We report that cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is amore » trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. Lastly, we found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.« less

  11. Fully-automated, high-throughput micro-computed tomography analysis of body composition enables therapeutic efficacy monitoring in preclinical models.

    PubMed

    Wyatt, S K; Barck, K H; Kates, L; Zavala-Solorio, J; Ross, J; Kolumam, G; Sonoda, J; Carano, R A D

    2015-11-01

    The ability to non-invasively measure body composition in mouse models of obesity and obesity-related disorders is essential for elucidating mechanisms of metabolic regulation and monitoring the effects of novel treatments. These studies aimed to develop a fully automated, high-throughput micro-computed tomography (micro-CT)-based image analysis technique for longitudinal quantitation of adipose, non-adipose and lean tissue as well as bone and demonstrate utility for assessing the effects of two distinct treatments. An initial validation study was performed in diet-induced obesity (DIO) and control mice on a vivaCT 75 micro-CT system. Subsequently, four groups of DIO mice were imaged pre- and post-treatment with an experimental agonistic antibody specific for anti-fibroblast growth factor receptor 1 (anti-FGFR1, R1MAb1), control immunoglobulin G antibody, a known anorectic antiobesity drug (rimonabant, SR141716), or solvent control. The body composition analysis technique was then ported to a faster micro-CT system (CT120) to markedly increase throughput as well as to evaluate the use of micro-CT image intensity for hepatic lipid content in DIO and control mice. Ex vivo chemical analysis and colorimetric analysis of the liver triglycerides were performed as the standard metrics for correlation with body composition and hepatic lipid status, respectively. Micro-CT-based body composition measures correlate with ex vivo chemical analysis metrics and enable distinction between DIO and control mice. R1MAb1 and rimonabant have differing effects on body composition as assessed by micro-CT. High-throughput body composition imaging is possible using a modified CT120 system. Micro-CT also provides a non-invasive assessment of hepatic lipid content. This work describes, validates and demonstrates utility of a fully automated image analysis technique to quantify in vivo micro-CT-derived measures of adipose, non-adipose and lean tissue, as well as bone. These body composition metrics highly correlate with standard ex vivo chemical analysis and enable longitudinal evaluation of body composition and therapeutic efficacy monitoring.

  12. Earth science: Extraordinary world

    NASA Astrophysics Data System (ADS)

    Day, James M. D.

    2016-09-01

    The isotopic compositions of objects that formed early in the evolution of the Solar System have been found to be similar to Earth's composition -- overturning notions of our planet's chemical distinctiveness. See Letters p.394 & p.399

  13. Influence of Ionizing Radiation on the Mechanical Properties of a Wood-Plastic Composite

    NASA Astrophysics Data System (ADS)

    Palm, Andrew; Smith, Jennifer; Driscoll, Mark; Smith, Leonard; Larsen, L. Scott

    The focus of this study was to examine the potential benefits of irradiating polyethylene (PE)-based wood-plastic composites (WPCs) in order to enhance the mechanical properties of the WPC. The PE-based WPCs were irradiated, post extrusion, at dose levels of 0, 50, 100, 150, 200, and 250 kGy with an electron beam (EB). The irradiated WPCs were then evaluated using a third point bending test (ASTM D4761) along with scanning electron microscopy (SEM). It was found that ultimate strength and modulus of elasticity (MOE) increased with increasing dose level. Examination of the fracture surfaces of polyethylene revealed a distinct difference in failure between irradiated and non-irradiated surfaces.

  14. Characterizing the development of sectoral gross domestic product composition.

    PubMed

    Lutz, Raphael; Spies, Michael; Reusser, Dominik E; Kropp, Jürgen P; Rybski, Diego

    2013-07-01

    We consider the sectoral composition of a country's gross domestic product (GDP), i.e., the partitioning into agrarian, industrial, and service sectors. Exploring a simple system of differential equations, we characterize the transfer of GDP shares between the sectors in the course of economic development. The model fits for the majority of countries providing four country-specific parameters. Relating the agrarian with the industrial sector, a data collapse over all countries and all years supports the applicability of our approach. Depending on the parameter ranges, country development exhibits different transfer properties. Most countries follow three of eight characteristic paths. The types are not random but show distinct geographic and development patterns.

  15. Characterizing the development of sectoral gross domestic product composition

    NASA Astrophysics Data System (ADS)

    Lutz, Raphael; Spies, Michael; Reusser, Dominik E.; Kropp, Jürgen P.; Rybski, Diego

    2013-07-01

    We consider the sectoral composition of a country's gross domestic product (GDP), i.e., the partitioning into agrarian, industrial, and service sectors. Exploring a simple system of differential equations, we characterize the transfer of GDP shares between the sectors in the course of economic development. The model fits for the majority of countries providing four country-specific parameters. Relating the agrarian with the industrial sector, a data collapse over all countries and all years supports the applicability of our approach. Depending on the parameter ranges, country development exhibits different transfer properties. Most countries follow three of eight characteristic paths. The types are not random but show distinct geographic and development patterns.

  16. Composite Nozzle/Thrust Chambers Analyzed for Low-Cost Boosters

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    1999-01-01

    The Low Cost Booster Technology Program is an initiative to minimize the cost of future liquid engines by using advanced materials and innovative designs, and by reducing engine complexity. NASA Marshall Space Flight Center s 60K FASTRAC Engine is one example where these design philosophies have been put into practice. This engine burns a liquid kerosene/oxygen mixture. It uses a one-piece, polymer composite thrust chamber/nozzle that is constructed of a tape-wrapped silica phenolic liner, a metallic injector interface ring, and a filament-wound epoxy overwrap. A cooperative effort between NASA Lewis Research Center s Structures Division and Marshall is underway to perform a finite element analysis of the FASTRAC chamber/nozzle under all the loading and environmental conditions that it will experience during its lifetime. The chamber/nozzle is a complex composite structure. Of its three different materials, the two composite components have distinctly different fiber architectures and, consequently, require separate material model descriptions. Since the liner is tape wrapped, it is orthotropic in the nozzle global coordinates; and since the overwrap is filament wound, it is treated as a monoclinic material. Furthermore, the wind angle on the overwrap varies continuously along the length of the chamber/nozzle.

  17. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation

    USGS Publications Warehouse

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L.; Steele, Andrew

    2013-01-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

  18. The ghosts of trees past: savanna trees create enduring legacies in plant species composition.

    PubMed

    Stahlheber, Karen A; Crispin, Kimberly L; Anton, Cassidy; D'Antonio, Carla M

    2015-09-01

    Isolated trees in savannas worldwide are known to modify their local environment and interact directly with neighboring plants. Less is known about how related tree species differ in their impacts on surrounding communities, how the effects of trees vary between years, and how composition might change following loss of the tree. To address these knowledge gaps, we explored the following questions: How do savanna trees influence the surrounding composition of herbaceous plants? Is the influence of trees consistent across different species and years? How does this change following the death of the tree? We surveyed herbaceous species composition and environmental attributes surrounding living and dead evergreen and deciduous Quercus trees in California (USA) savannas across several years that differed in their total precipitation. Oak trees of all species created distinct, homogenous understory communities dominated by exotic grasses across several sites. The composition of the low-diversity understory communities showed less interannual variation than open grassland, despite a two-fold difference in precipitation between the driest and wettest year. Vegetation composition was correlated with variation in soil properties, which were strongly affected by trees. Oaks also influenced the communities beyond the edge of the crown, but this depended on site and oak species. Low-diversity understory communities persisted up to 43 years following the death of the tree. A gradual decline in the effect of trees on the physical, environment following death did not result in vegetation becoming more similar to open grassland over time. The presence of long-lasting legacies of past tree crowns highlights the difficulty of assigning control of the current distribution of herbaceous species in grassland to their contemporary environment.

  19. Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island.

    PubMed

    Yun, Juanli; Deng, Yongcui; Zhang, Hongxun

    2017-08-01

    Intertidal mangrove wetlands are of great economic and ecological importance. The regular influence of tides has led to the microbial communities in these wetlands differing significantly from those in other habitats. In this study, we investigated the microbiomes of the two largest mangrove wetlands in Hainan Island, China, which have different levels of anthropogenic protection. Soil samples were collected from the root zone of 13 mangrove species. The microbial composition, including key functional groups, was assessed using Illumina sequencing. Bioinformatics analysis showed that there was a significant difference in the microbiomes between the protected Bamen Bay and the unprotected Dongzhai Bay. The overall microbiome was assigned into 78 phyla and Proteobacteria was the most abundant phylum at both sites. In the protected wetland, there were fewer marine-related microbial communities, such as sulfate-reducing bacteria, and more terrestrial-related communities, such as Verrucomicrobia methanotrophs. We also observed distinct microbial compositions among the different mangrove species at the protected site. Our data suggest that the different microbiomes of the two mangrove wetlands are the result of a complex interaction of the different environmental variables at the two sites.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongfang; Voigt, Thomas B.; Kent, Angela D.

    Here, bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. × giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M. × giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soilmore » conditions and plant compartments on assembly of the M. × giganteus-associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. × giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.« less

  1. Lipid Gymnastics: Tethers and Fingers in membrane

    NASA Astrophysics Data System (ADS)

    Tayebi, Lobat; Miller, Gregory; Parikh, Atul

    2009-03-01

    A significant body of evidence now links local mesoscopic structure (e.g., shape and composition) of the cell membrane with its function; the mechanisms by which cellular membranes adopt the specific shapes remain poorly understood. Among all the different structures adopted by cellular membranes, the tubular shape is one of the most surprising one. While their formation is typically attributed to the reorganization of membrane cytoskeleton, many exceptions exist. We report the instantaneous formation of tubular membrane mesophases following the hydration under specific thermal conditions. The shapes emerge in a bimodal way where we have two distinct diameter ranges for tubes, ˜20μm and ˜1μm, namely fat fingers and narrow tethers. We study the roughening of hydrated drops of 3 lipids in 3 different spontaneous curvatures at various temp. and ionic strength to figure out the dominant effect in selection of tethers and fingers. Dynamics of the tubes are of particular interest where we observe four distinct steps of birth, coiling, uncoiling and retraction with different lifetime on different thermal condition. These dynamics appear to reflect interplay between membrane elasticity, surface adhesion, and thermal or hydrodynamic gradient.

  2. Recycling of Chrome Tanned Leather Dust in Acrylonitrile Butadiene Rubber

    NASA Astrophysics Data System (ADS)

    El-Sabbagh, Salwa H.; Mohamed, Ola A.

    2010-06-01

    Concerns on environmental waste problem caused by chrome tanned leather wastes in huge amount have caused an increasing interest in developing this wastes in many composite formation. This leather dust was used as filler in acrylonitrile butadiene rubber (NBR) before treatment and after treatment with ammonia solution and sod. formate. Different formulations of NBR/ leather dust (untreated-treated with ammonia solution—treated with sod. formate) composites are prepared. The formed composite exhibit a considerable improvement in some of their properties such as rheometric characteristics especially with composites loaded with treated leather dust. Tensile strength, modulus at 100% elongation, hardness and youngs modulus were improved then by further loading start to be steady or decrease. Cross linking density in toluene were increased by incorporation of leather dust treated or untreated resulting in decreases in equilibrium swelling. Distinct increase in the ageing coefficient of both treated and untreated leather with drop in NBR vulcanizates without leather dust. Addition of leather dust treated or untreated exhibit better thermal stability.

  3. The Mineralogy and Petrology of Anomalous Eucrite Emmaville

    NASA Technical Reports Server (NTRS)

    Barrett, T. J.; Mittlefehldt, D. W.; Ross, D. K.; Greenwood, R. C.; Anand, M.; Franchi, I. A.; Grady, M. M.; Charlier, B. L. A.

    2015-01-01

    It has long been known that certain basaltic achondrites share similarities with eucrites. These eucrite-like achondrites have distinct isotopic compositions and petrologic characteristics indicative of formation on a separate parent body from the howardite-eucrite-diogenite (HED) clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller isotopic variations but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The Emmaville eucrite has a delta O-17 value of -0.137 plus or minus 0.024 per mille (1 sigma), which is substantially different from the eucrite mean of -0.246 plus or minus 0.014 per mille (2 sigma), but similar to those of A-881394 and Bunburra Rockhole (BR). Currently little data exist for Emmaville in terms of petrology or bulk composition. Studying anomalous eucrites allows us to more completely understand the numbers of asteroids represented by eucrite- like basalts and thus constrain the heterogeneity of the HED suite. In this study, we present our preliminary petrological and mineral composition results for Emmaville.

  4. Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources

    DOE PAGES

    Mangold, N.; Thompson, L. M.; Forni, O.; ...

    2016-03-16

    The Curiosity rover has analyzed various detrital sedimentary rocks at Gale Crater, among which fluvial and lacustrine rocks are predominant. Conglomerates correspond both to the coarsest sediments analyzed and the least modified by chemical alteration, enabling us to link their chemistry to that of source rocks on the Gale Crater rims. Here, we report the results of six conglomerate targets analyzed by Alpha-Particle X-ray Spectrometer and 40 analyzed by ChemCam. The bulk chemistry derived by both instruments suggests two distinct end-members for the conglomerate compositions. The first group (Darwin type) is typical of conglomerates analyzed before sol 540; it hasmore » a felsic alkali-rich composition, with a Na 2O/K 2O > 5. The second group (Kimberley type) is typical of conglomerates analyzed between sols 540 and 670 in the vicinity of the Kimberley waypoint; it has an alkali-rich potassic composition with Na 2O/K 2O < 2. The variety of chemistry and igneous textures (when identifiable) of individual clasts suggest that each conglomerate type is a mixture of multiple source rocks. Conglomerate compositions are in agreement with most of the felsic alkali-rich float rock compositions analyzed in the hummocky plains. The average composition of conglomerates can be taken as a proxy of the average igneous crust composition at Gale Crater. Finally, the differences between the composition of conglomerates and that of finer-grained detrital sediments analyzed by the rover suggest modifications by diagenetic processes (especially for Mg enrichments in fine-grained rocks), physical sorting, and mixing with finer-grained material of different composition.« less

  5. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise.

    PubMed

    Reveillaud, Julie; Reddington, Emily; McDermott, Jill; Algar, Christopher; Meyer, Julie L; Sylva, Sean; Seewald, Jeffrey; German, Christopher R; Huber, Julie A

    2016-06-01

    Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid-Cayman Rise each exhibits novel geologic settings and distinctively hydrogen-rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic-influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen-utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.

    PubMed

    Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang

    2015-01-01

    High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2.

  7. Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films.

    PubMed

    Liu, Gang; Ling, Qi-Dan; Teo, Eric Yeow Hwee; Zhu, Chun-Xiang; Chan, D Siu-Hung; Neoh, Koon-Gee; Kang, En-Tang

    2009-07-28

    By varying the carbon nanotube (CNT) content in poly(N-vinylcarbazole) (PVK) composite thin films, the electrical conductance behavior of an indium-tin oxide/PVK-CNT/aluminum (ITO/PVK-CNT/Al) sandwich structure can be tuned in a controlled manner. Distinctly different electrical conductance behaviors, such as (i) insulator behavior, (ii) bistable electrical conductance switching effects (write-once read-many-times (WORM) memory effect and rewritable memory effect), and (iii) conductor behavior, are discernible from the current density-voltage characteristics of the composite films. The turn-on voltage of the two bistable conductance switching devices decreases and the ON/OFF state current ratio of the WORM device increases with the increase in CNT content of the composite film. Both the WORM and rewritable devices are stable under a constant voltage stress or a continuous pulse voltage stress, with an ON/OFF state current ratio in excess of 10(3). The conductance switching effects of the composite films have been attributed to electron trapping in the CNTs of the electron-donating/hole-transporting PVK matrix.

  8. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.

    PubMed

    Di Giallonardo, Francesca; Schlub, Timothy E; Shi, Mang; Holmes, Edward C

    2017-04-15

    Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and whether dinucleotide composition can be used to accurately predict host species. Using a comparative analysis, we show that dinucleotide composition has a strong phylogenetic association across different RNA virus families, such that dinucleotide composition can predict the family from which a virus sequence has been isolated. Conversely, dinucleotide composition has a poorer predictive power for the different host species within a virus family and across different virus families, indicating that the host has a relatively small impact on the dinucleotide composition of a virus genome. Copyright © 2017 American Society for Microbiology.

  9. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    PubMed Central

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology. PMID:15301692

  10. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors.

    PubMed

    Farroni, Jeffrey S; McCool, Brian A

    2004-08-09

    Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The beta-amino acid taurine possessed 30-50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for beta-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology.

  11. Self-efficacy difference among patients with cancer with different socioeconomic status: application of latent class analysis and standardization and decomposition analysis.

    PubMed

    Yuan, Changrong; Wei, Chunlan; Wang, Jichuan; Qian, Huijuan; Ye, Xianghong; Liu, Yingyan; Hinds, Pamela S

    2014-06-01

    Although the relationship between partial socioeconomic status (SES) and self-efficacy has been studied in previous studies, few research have examined self-efficacy difference among patients with cancer with different SES. A cross-sectional survey involving 764 patients with cancer was completed. Latent class analysis (LCA) was applied to identify distinct groups of patients with cancer using four SES indicators (education, income, employment status and health insurance status). Standardization and decomposition analysis (SDA) was then used to examine differences in patients' self-efficacy among SES groups and the components of the differences attributed to confounding factors, such as gender, age, anxiety, depression and social support. Participants were classified into four distinctive SES groups via using LCA method, and the observed self-efficacy level significantly varied by SES groups; as theorized, higher self-efficacy was associated with higher SES. The self-efficacy differences by SES groups were decomposed into "real" group differences and factor component effects that are attributed to group differences in confounding factor compositions. Self-efficacy significantly varies by SES. Social support significantly confounded the observed differences in self-efficacy between different SES groups among Chinese patients with cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Wind and sunlight shape microbial diversity in surface waters of the North Pacific Subtropical Gyre

    PubMed Central

    Bryant, Jessica A; Aylward, Frank O; Eppley, John M; Karl, David M; Church, Matthew J; DeLong, Edward F

    2016-01-01

    Few microbial time-series studies have been conducted in open ocean habitats having low seasonal variability such as the North Pacific Subtropical Gyre (NPSG), where surface waters experience comparatively mild seasonal variation. To better describe microbial seasonal variability in this habitat, we analyzed rRNA amplicon and shotgun metagenomic data over two years at the Hawaii Ocean Time-series Station ALOHA. We postulated that this relatively stable habitat might reveal different environmental factors that influence planktonic microbial community diversity than those previously observed in more seasonally dynamic habitats. Unexpectedly, the data showed that microbial diversity at 25 m was positively correlated with average wind speed 3 to 10 days prior to sampling. In addition, microbial community composition at 25 m exhibited significant correlations with solar irradiance. Many bacterial groups whose relative abundances varied with solar radiation corresponded to taxa known to exhibit strong seasonality in other oceanic regions. Network co-correlation analysis of 25 m communities showed seasonal transitions in composition, and distinct successional cohorts of co-occurring phylogenetic groups. Similar network analyses of metagenomic data also indicated distinct seasonality in genes originating from cyanophage, and several bacterial clades including SAR116 and SAR324. At 500 m, microbial community diversity and composition did not vary significantly with any measured environmental parameters. The minimal seasonal variability in the NPSG facilitated detection of more subtle environmental influences, such as episodic wind variation, on surface water microbial diversity. Community composition in NPSG surface waters varied in response to solar irradiance, but less dramatically than reported in other ocean provinces. PMID:26645474

  13. Wind and sunlight shape microbial diversity in surface waters of the North Pacific Subtropical Gyre.

    PubMed

    Bryant, Jessica A; Aylward, Frank O; Eppley, John M; Karl, David M; Church, Matthew J; DeLong, Edward F

    2016-06-01

    Few microbial time-series studies have been conducted in open ocean habitats having low seasonal variability such as the North Pacific Subtropical Gyre (NPSG), where surface waters experience comparatively mild seasonal variation. To better describe microbial seasonal variability in this habitat, we analyzed rRNA amplicon and shotgun metagenomic data over two years at the Hawaii Ocean Time-series Station ALOHA. We postulated that this relatively stable habitat might reveal different environmental factors that influence planktonic microbial community diversity than those previously observed in more seasonally dynamic habitats. Unexpectedly, the data showed that microbial diversity at 25 m was positively correlated with average wind speed 3 to 10 days prior to sampling. In addition, microbial community composition at 25 m exhibited significant correlations with solar irradiance. Many bacterial groups whose relative abundances varied with solar radiation corresponded to taxa known to exhibit strong seasonality in other oceanic regions. Network co-correlation analysis of 25 m communities showed seasonal transitions in composition, and distinct successional cohorts of co-occurring phylogenetic groups. Similar network analyses of metagenomic data also indicated distinct seasonality in genes originating from cyanophage, and several bacterial clades including SAR116 and SAR324. At 500 m, microbial community diversity and composition did not vary significantly with any measured environmental parameters. The minimal seasonal variability in the NPSG facilitated detection of more subtle environmental influences, such as episodic wind variation, on surface water microbial diversity. Community composition in NPSG surface waters varied in response to solar irradiance, but less dramatically than reported in other ocean provinces.

  14. Soil microbial community response to precipitation change in a semi-arid ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cregger, Melissa; Schadt, Christopher Warren; McDowell, Nathan

    2012-01-01

    Microbial communities regulate many belowground carbon cycling processes; thus, the impact of climate change on the struc- ture and function of soil microbial communities could, in turn, impact the release or storage of carbon in soils. Here we used a large-scale precipitation manipulation ( 18%, 50%, or ambient) in a pi on-juniper woodland (Pinus edulis-Juniperus mono- sperma) to investigate how changes in precipitation amounts altered soil microbial communities as well as what role seasonal variation in rainfall and plant composition played in the microbial community response. Seasonal variability in precipitation had a larger role in determining the composition of soilmore » microbial communities in 2008 than the direct effect of the experimental precipitation treatments. Bacterial and fungal communities in the dry, relatively moisture-limited premonsoon season were compositionally distinct from communities in the monsoon season, when soil moisture levels and periodicity varied more widely across treatments. Fungal abundance in the drought plots during the dry premonsoon season was particularly low and was 4.7 times greater upon soil wet-up in the monsoon season, suggesting that soil fungi were water limited in the driest plots, which may result in a decrease in fungal degradation of carbon substrates. Additionally, we found that both bacterial and fungal communities beneath pi on pine and juniper were distinct, suggesting that microbial functions beneath these trees are different. We conclude that predicting the response of microbial communities to climate change is highly dependent on seasonal dynam- ics, background climatic variability, and the composition of the associated aboveground community.« less

  15. Growing Actin Networks Form Lamellipodium and Lamellum by Self-Assembly

    PubMed Central

    Huber, Florian; Käs, Josef; Stuhrmann, Björn

    2008-01-01

    Many different cell types are able to migrate by formation of a thin actin-based cytoskeletal extension. Recently, it became evident that this extension consists of two distinct substructures, designated lamellipodium and lamellum, which differ significantly in their kinetic and kinematic properties as well as their biochemical composition. We developed a stochastic two-dimensional computer simulation that includes chemical reaction kinetics, G-actin diffusion, and filament transport to investigate the formation of growing actin networks in migrating cells. Model parameters were chosen based on experimental data or theoretical considerations. In this work, we demonstrate the system's ability to form two distinct networks by self-organization. We found a characteristic transition in mean filament length as well as a distinct maximum in depolymerization flux, both within the first 1–2 μm. The separation into two distinct substructures was found to be extremely robust with respect to initial conditions and variation of model parameters. We quantitatively investigated the complex interplay between ADF/cofilin and tropomyosin and propose a plausible mechanism that leads to spatial separation of, respectively, ADF/cofilin- or tropomyosin-dominated compartments. Tropomyosin was found to play an important role in stabilizing the lamellar actin network. Furthermore, the influence of filament severing and annealing on the network properties is explored, and simulation data are compared to existing experimental data. PMID:18708450

  16. Lifestyle and geographic insights into the distinct gut microbiota in elderly women from two different geographic locations.

    PubMed

    Shin, Ji-Hee; Sim, Minju; Lee, Joo-Young; Shin, Dong-Mi

    2016-12-12

    A large number of microorganisms reside within the gastrointestinal tract, especially in the colon, and play important roles in human health and disease. The composition of the human gut microbiota is determined by intrinsic host factors and environmental factors. While investigating environmental factors to promote human health is of great interest, few studies have focused on their effect on the gut microbiota. This study aimed to investigate differences in gut microbiota composition according to lifestyle and geographical area, even in people with similar genetic background. We enrolled ten and nine elderly women in their seventies from island and inland areas, respectively. Fecal samples were obtained from individuals, and bacterial 16S ribosomal RNA genes were analyzed by next-generation sequencing to define the gut microbiota composition. We assessed their diet, which can influence the gut microbial community. We also conducted physical examination and determined the physical activity levels of the subjects. The inland subjects had a significantly higher rectal temperature, systolic blood pressure, and heart rate and a significantly lower physical activity score than the island subjects. Fecal samples from the island group showed a tendency to have greater microbial diversity than those from the inland group. Interestingly, the microbial community composition differed significantly between the two groups. Catenibacterium was enriched in subjects from the island area. Catenibacterium showed a negative correlation with rectal temperature and a positive correlation with the dietary level of animal fat. In contrast, Butyricimonas was enriched in the inland subjects. A positive correlation was found between Butyricimonas and mean arterial pressure. This study identified differences in the gut microbiota composition between elderly women from different parts of South Korea, and our findings suggest that further studies of the human gut microbiota should evaluate aspects of the living environment.

  17. Extensive gene remodeling in the viral world: new evidence for nongradual evolution in the mobilome network.

    PubMed

    Jachiet, Pierre-Alain; Colson, Philippe; Lopez, Philippe; Bapteste, Eric

    2014-08-07

    Complex nongradual evolutionary processes such as gene remodeling are difficult to model, to visualize, and to investigate systematically. Despite these challenges, the creation of composite (or mosaic) genes by combination of genetic segments from unrelated gene families was established as an important adaptive phenomena in eukaryotic genomes. In contrast, almost no general studies have been conducted to quantify composite genes in viruses. Although viral genome mosaicism has been well-described, the extent of gene mosaicism and its rules of emergence remain largely unexplored. Applying methods from graph theory to inclusive similarity networks, and using data from more than 3,000 complete viral genomes, we provide the first demonstration that composite genes in viruses are 1) functionally biased, 2) involved in key aspects of the arm race between cells and viruses, and 3) can be classified into two distinct types of composite genes in all viral classes. Beyond the quantification of the widespread recombination of genes among different viruses of the same class, we also report a striking sharing of genetic information between viruses of different classes and with different nucleic acid types. This latter discovery provides novel evidence for the existence of a large and complex mobilome network, which appears partly bound by the sharing of genetic information and by the formation of composite genes between mobile entities with different genetic material. Considering that there are around 10E31 viruses on the planet, gene remodeling appears as a hugely significant way of generating and moving novel sequences between different kinds of organisms on Earth. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. A comparative analysis of benthic nematode assemblages from Zostera noltii beds before and after a major vegetation collapse

    NASA Astrophysics Data System (ADS)

    Materatski, Patrick; Vafeiadou, Anna-Maria; Ribeiro, Rui; Moens, Tom; Adão, Helena

    2015-12-01

    Benthic nematodes are widely regarded as very suitable organisms to monitor potential ecological effects of natural and anthropogenic disturbances in aquatic ecosystems. During 2008, the seagrass beds of Zostera noltii located in the Mira estuary (SW Portugal) disappeared completely. However, during 2009, slight symptoms of natural recovery were observed, a process which has since evolved intermittently. This study aims to investigate changes in patterns of nematode density, diversity, and trophic composition between two distinct habitat conditions: "before" the collapse of seagrass beds, and during the early recovery "after" the seagrass habitat loss, through the analysis of: i) temporal and spatial distribution patterns of nematode communities, and ii) the most important environmental variables influencing the nematode assemblages. The following hypotheses were tested: i) there would be differences in nematode assemblage density, biodiversity and trophic composition during both ecological conditions, "before" and "after"; and ii) there would be differences in nematode assemblage density, biodiversity and trophic composition at different sampling occasions during both ecological conditions. Nematode density and diversity were significantly different between the two ecological situations. A higher density was recorded before, but a higher diversity was evident after the collapse of Z. noltii. In spite of the disturbance caused by the seagrass habitat loss in the Mira estuary, the nematode trophic composition did not significantly differ between the before and after seagrass collapse situations. Despite the significant differences found among sampling occasions, a consistent temporal pattern was not evident. The response of nematode communities following this extreme event exhibited considerable resistance and resilience to the new environmental conditions.

  19. Factors affecting the bacterial community composition and heterotrophic production of Columbia River estuarine turbidity maxima.

    PubMed

    Herfort, Lydie; Crump, Byron C; Fortunato, Caroline S; McCue, Lee Ann; Campbell, Victoria; Simon, Holly M; Baptista, António M; Zuber, Peter

    2017-12-01

    Estuarine turbidity maxima (ETM) function as hotspots of microbial activity and diversity in estuaries, yet, little is known about the temporal and spatial variability in ETM bacterial community composition. To determine which environmental factors affect ETM bacterial populations in the Columbia River estuary, we analyzed ETM bacterial community composition (Sanger sequencing and amplicon pyrosequencing of 16S rRNA gene) and bulk heterotrophic production ( 3 H-leucine incorporation rates). We collected water 20 times to cover five ETM events and obtained 42 samples characterized by different salinities, turbidities, seasons, coastal regimes (upwelling vs. downwelling), locations, and particle size. Spring and summer populations were distinct. All May samples had similar bacterial community composition despite having different salinities (1-24 PSU), but summer non-ETM bacteria separated into marine, freshwater, and brackish assemblages. Summer ETM bacterial communities varied depending on coastal upwelling or downwelling conditions and on the sampling site location with respect to tidal intrusion during the previous neap tide. In contrast to ETM, whole (>0.2 μm) and free-living (0.2-3 μm) assemblages of non-ETM waters were similar to each other, indicating that particle-attached (>3 μm) non-ETM bacteria do not develop a distinct community. Brackish water type (ETM or non-ETM) is thus a major factor affecting particle-attached bacterial communities. Heterotrophic production was higher in particle-attached than free-living fractions in all brackish waters collected throughout the water column during the rise to decline of turbidity through an ETM event (i.e., ETM-impacted waters). However, free-living communities showed higher productivity prior to or after an ETM event (i.e., non-ETM-impacted waters). This study has thus found that Columbia River ETM bacterial communities vary based on seasons, salinity, sampling location, and particle size, with the existence of three particle types characterized by different bacterial communities in ETM, ETM-impacted, and non-ETM-impacted brackish waters. Taxonomic analysis suggests that ETM key biological function is to remineralize organic matter. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. New numerical approaches for modeling thermochemical convection in a compositionally stratified fluid

    NASA Astrophysics Data System (ADS)

    Puckett, Elbridge Gerry; Turcotte, Donald L.; He, Ying; Lokavarapu, Harsha; Robey, Jonathan M.; Kellogg, Louise H.

    2018-03-01

    Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions. Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB. These regions have been associated with lower mantle structures known as large low shear velocity provinces (LLSVPS) below Africa and the South Pacific. The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves. Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle. Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods. Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or 'artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm. We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method that carries a scalar quantity representing the location of each compositional field. All four algorithms are implemented in the open source finite element code ASPECT, which we use to compute the velocity, pressure, and temperature associated with the underlying flow field. We compare the performance of these four algorithms on three problems, including computing an approximation to the solution of an initially compositionally stratified fluid at Ra =105 with buoyancy numbers B that vary from no stratification at B = 0 to stratified flow at large B .

  1. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water

    PubMed Central

    Frank, Alexander H.; Garcia, Juan A. L.; Herndl, Gerhard J.

    2016-01-01

    Summary To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep‐water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. PMID:26914787

  2. U-Th-Pb age of the Barwell chondrite - Anatomy of a 'discordant' meteorite

    NASA Technical Reports Server (NTRS)

    Unruh, D. M.; Tatsumoto, M.; Hutchison, R.

    1979-01-01

    A Pb-Pb internal isochron for the Barwell L5-6 chondrite yields an age of 4.530 plus or minus 0.005 billion years, using the measured U-238/U-235 ratio of 135.24 plus or minus .17. If the terrestrial U isotope composition is used, an age of 4.559 billion years is obtained. The Pb isotopic composition is distinctly different from that of a terrestrial contaminant found in the fusion crust of the Barwell stone. When the U-Th-Pb data are plotted on the concordia diagram, the data define a line that intersects the concordia curve at approximately 4.53 and 0 billion years, and nearly all of the data plot above the concordia curve, regardless of the initial Pb correction. This discordancy and the Pb isotopic composition of the triolite are attributed to a recent reequilibration of Pb and not to terrestrial contamination.

  3. The oxygen isotope composition of Almahata Sitta

    NASA Astrophysics Data System (ADS)

    Rumble, Douglas; Zolensky, Michael E.; Friedrich, Jon M.; Jenniskens, Peter; Shaddad, Muawia H.

    2010-10-01

    Eleven fragments of the meteorite Almahata Sitta (AHS) have been analyzed for oxygen isotopes. The fragments were separately collected as individual stones from the meteorite's linear strewn field in the Nubian Desert. Each of the fragments represents a sample of a different and distinct portion of asteroid 2008 TC3. Ten of the fragments span the same range of values of δ18O, δ17O, and Δ17O, and follow the same trend along the carbonaceous chondrite anhydrous minerals (CCAM) line as monomict and polymict members of the ureilite family of meteorites. The oxygen isotope composition of fragment #25 is consistent with its resemblance petrographically to an H5 ordinary chondrite. Our results demonstrate that a single small asteroidal parent body, asteroid 2008 TC3, only 4 m in length, encompassed the entire range of variation in oxygen isotope compositions measured for monomict and polymict ureilites.

  4. Amphibian beta diversity in the Brazilian Atlantic Forest: contrasting the roles of historical events and contemporary conditions at different spatial scales.

    PubMed

    da Silva, Fernando Rodrigues; Almeida-Neto, Mário; Arena, Mariana Victorino Nicolosi

    2014-01-01

    Current patterns of biodiversity distribution result from a combination of historical and contemporary processes. Here, we compiled checklists of amphibian species to assess the roles of long-term climate stability (Quaternary oscillations), contemporary environmental gradients and geographical distance as determinants of change in amphibian taxonomic and phylogenetic composition in the Brazilian Atlantic Forest. We calculated beta diversity as both variation in species composition (CBD) and phylogenetic differentiation (PBD) among the assemblages. In both cases, overall beta diversity was partitioned into two basic components: species replacement and difference in species richness. Our results suggest that the CBD and PBD of amphibians are determined by spatial turnover. Geographical distance, current environmental gradients and long-term climatic conditions were complementary predictors of the variation in CBD and PBD of amphibian species. Furthermore, the turnover components between sites from different regions and between sites within the stable region were greater than between sites within the unstable region. On the other hand, the proportion of beta-diversity due to species richness difference for both CBD and PBD was higher between sites in the unstable region than between sites in the stable region. The high turnover components from CBD and PBD between sites in unstable vs stable regions suggest that these distinct regions have different biogeographic histories. Sites in the stable region shared distinct clades that might have led to greater diversity, whereas sites in the unstable region shared close relatives. Taken together, these results indicate that speciation, environmental filtering and limited dispersal are complementary drivers of beta-diversity of amphibian assemblages in the Brazilian Atlantic Forest.

  5. A 1400 km geochemical transect along the Central American Arc: Summary of mafic Holocene volcanism from Guatemala to Panama

    NASA Astrophysics Data System (ADS)

    Geldmacher, J.; Hoernle, K.; Gill, J. B.; Hauff, F.; Heydolph, K.

    2016-12-01

    It is generally accepted that subducted oceanic crust and sediments contribute to the composition of arc magmas. Systematic variations of input parameters (including age, subduction angle, and chemical composition of the subducting material) make the Central American Volcanic Arc (CAVA), which extends from Guatemala in the northwest through El Salvador, Honduras, Nicaragua, Costa Rica and Panama to the southeast, a prime study object. We present a comprehensive (major and trace element and Sr-Nd-Pb-Hf isotope data) and consistent (all data generated in the same labs using the same methods and data reduction procedures) compilation of published and unpublished Holocene mafic volcanic rocks sampled along the entire arc. New data include Sr and, for the first time, Hf isotope data from the entire CAVA as well as major and trace element data for 43 samples from southern Nicaragua and central Costa Rica from which only isotopic compositions were previously published. The combined elemental and isotopic data confirm the influence of distinct subduction components on the composition of CAVA magmas. Along-arc geochemical variations (especially delta 208Pb/204Pb) of volcanic front magmas in Costa Rica and Panama have been explained by the different compositions of seamounts/ridges of the isotopically zoned Galápagos hotspot track that covers the subducting Cocos Plate in this sector of the arc (Hoernle et al. 2008, Nature 451). Our new data confirm this relationship with arc lavas from Costa Rica having higher 87Sr/86Sr ratios than those from western Panama reflecting a similar spatial-compositional distinction in the subducting hotspot track beneath them. In contrast, 176Hf/177Hf shows no comparable variations in this sector of the arc, indicating that the Hf is primarily derived from the mantle wedge rather than the subducting slab. Although small degree hydrous melts are believed to fertilize the mantle wedge beneath Costa Rica, residual zircon may hold back the Hf.

  6. Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products.

    PubMed

    Kim, Sunah; Rossmassler, Karen; Broeckling, Corey D; Galloway, Sarah; Prenni, Jessica; De Long, Susan K

    2017-11-15

    Limited knowledge of optimal microbial community composition for PPCP biotreatment, and of the microbial phylotypes that drive biotransformation within mixed microbial communities, has hindered the rational design and operation of effective and reliable biological PPCP treatment technologies. Herein, bacterial community composition was investigated as an isolated variable within batch biofilm reactors via comparison of PPCP removals for three distinct inocula. Inocula pre-acclimated to model PPCPs were derived from activated sludge (AS), ditch sediment historically-impacted by wastewater treatment plant effluent (Sd), and material from laboratory-scale soil aquifer treatment (SAT) columns. PPCP removals were found to be substantially higher for AS- and Sd-derived inocula compared to the SAT-derived inocula despite comparable biomass. Removal patterns differed among the 6 model compounds examined (diclofenac, 5-fluorouracil, gabapentin, gemfibrozil, ibuprofen, and triclosan) indicating differences in biotransformation mechanisms. Sphingomonas, Beijerinckia, Methylophilus, and unknown Cytophagaceae were linked with successful PPCP biodegradation via next-generation sequencing of 16S rRNA genes over time. Results indicate the criticality of applying engineering approaches to control bacterial community compositions in biotreatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Geographic patterns of fishes and jellyfish in Puget Sound surface waters

    USGS Publications Warehouse

    Rice, Casimir A.; Duda, Jeffrey J.; Greene, Correigh M.; Karr, James R.

    2012-01-01

    We explored patterns of small pelagic fish assemblages and biomass of gelatinous zooplankton (jellyfish) in surface waters across four oceanographic subbasins of greater Puget Sound. Our study is the first to collect data documenting biomass of small pelagic fishes and jellyfish throughout Puget Sound; sampling was conducted opportunistically as part of a juvenile salmon survey of daytime monthly surface trawls at 52 sites during May–August 2003. Biomass composition differed spatially and temporally, but spatial differences were more distinct. Fish dominated in the two northern basins of Puget Sound, whereas jellyfish dominated in the two southern basins. Absolute and relative abundance of jellyfish, hatchery Chinook salmon Oncorhynchus tshawytscha, and chum salmon O. keta decreased with increasing latitude, whereas the absolute and relative abundance of most fish species and the average fish species richness increased with latitude. The abiotic factors with the strongest relationship to biomass composition were latitude, water clarity, and sampling date. Further study is needed to understand the spatial and temporal heterogeneity in the taxonomic composition we observed in Puget Sound surface waters, especially as they relate to natural and anthropogenic influences.

  8. Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay-Thousand Islands coral reef complex.

    PubMed

    Cleary, D F R; Polónia, A R M; Renema, W; Hoeksema, B W; Rachello-Dolmen, P G; Moolenbeek, R G; Budiyanto, A; Yahmantoro; Tuti, Y; Giyanto; Draisma, S G A; Prud'homme van Reine, W F; Hariyanto, R; Gittenberger, A; Rikoh, M S; de Voogd, N J

    2016-09-30

    Substrate cover, water quality parameters and assemblages of corals, fishes, sponges, echinoderms, ascidians, molluscs, benthic foraminifera and macroalgae were sampled across a pronounced environmental gradient in the Jakarta Bay-Thousand Islands reef complex. Inshore sites mainly consisted of sand, rubble and turf algae with elevated temperature, dissolved oxygen, pH and chlorophyll concentrations and depauperate assemblages of all taxa. Live coral cover was very low inshore and mainly consisted of sparse massive coral heads and a few encrusting species. Faunal assemblages were more speciose and compositionally distinct mid- and offshore compared to inshore. There were, however, small-scale differences among taxa. Certain midshore sites, for example, housed assemblages resembling those typical of the inshore environment but this differed depending on the taxon. Substrate, water quality and spatial variables together explained from 31% (molluscs) to 72% (foraminifera) of the variation in composition. In general, satellite-derived parameters outperformed locally measured parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Factorial structure of the 'ToM Storybooks': A test evaluating multiple components of Theory of Mind.

    PubMed

    Bulgarelli, Daniela; Testa, Silvia; Molina, Paola

    2015-06-01

    This study examined the factorial structure of the Theory of Mind (ToM) Storybooks, a comprehensive 93-item instrument tapping the five components in Wellman's model of ToM (emotion recognition, understanding of desire and beliefs, ability to distinguish between physical and mental entities, and awareness of the link between perception and knowledge). A sample of 681 three- to eight-year-old Italian children was divided into three age groups to assess whether factorial structure varied across different age ranges. Partial credit model analysis was applied to the data, leading to the empirical identification of 23 composite variables aggregating the ToM Storybooks items. Confirmatory factor analysis was then conducted on the composite variables, providing support for the theoretical model. There were partial differences in the specific composite variables making up the dimensions for each of the three age groups. A single test evaluating distinct dimensions of ToM is a valuable resource for clinical practice which may be used to define differential profiles for specific populations. © 2014 The British Psychological Society.

  10. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems

    USGS Publications Warehouse

    Kellerman, Anne M.; Guillemette, François; Podgorski, David C.; Aiken, George R.; Butler, Kenna D.; Spencer, Robert G. M.

    2018-01-01

    The link between composition and reactivity of dissolved organic matter (DOM) is central to understanding the role aquatic systems play in the global carbon cycle; yet, unifying concepts driving molecular composition have yet to be established. We characterized 37 DOM isolates from diverse aquatic ecosystems, including their stable and radiocarbon isotopes (δ13C-dissolved organic carbon (DOC) and Δ14C-DOC), optical properties (absorbance and fluorescence), and molecular composition (ultrahigh resolution mass spectrometry). Isolates encompassed end-members of allochthonous and autochthonous DOM from sites across the United States, the Pacific Ocean, and Antarctic lakes. Modern Δ14C-DOC and optical properties reflecting increased aromaticity, such as carbon specific UV absorbance at 254 nm (SUVA254), were directly related to polyphenolic and polycyclic aromatic compounds, whereas enriched δ13C-DOC and optical properties reflecting autochthonous end-members were positively correlated to more aliphatic compounds. Furthermore, the two sets of autochthonous end-members (Pacific Ocean and Antarctic lakes) exhibited distinct molecular composition due to differences in extent of degradation. Across all sites and end-members studied, we find a consistent shift in composition with aging, highlighting the persistence of certain biomolecules concurrent with degradation time.

  11. Effects of land use on arbuscular mycorrhizal fungal communities in Estonia.

    PubMed

    Sepp, Siim-Kaarel; Jairus, Teele; Vasar, Martti; Zobel, Martin; Öpik, Maarja

    2018-04-01

    Arbuscular mycorrhizal (AM) fungal communities vary across habitat types, as well as across different land use types. Most relevant research, however, has focused on agricultural or other severely human-impacted ecosystems. Here, we compared AM fungal communities across six habitat types: calcareous grassland, overgrown ungrazed calcareous grassland, wooded meadow, farmyard lawn, boreonemoral forest, and boreonemoral forest clear-cut, exhibiting contrasting modes of land use. AM fungi in the roots of a single host plant species, Prunella vulgaris, and in its rhizosphere soil were identified using 454-sequencing from a total of 103 samples from 12 sites in Estonia. Mean AM fungal taxon richness per sample did not differ among habitats. AM fungal community composition, however, was significantly different among habitat types. Both abandonment and land use intensification (clearcutting; trampling combined with frequent mowing) changed AM fungal community composition. The AM fungal communities in different habitat types were most similar in the roots of the single host plant species and most distinct in soil samples, suggesting a non-random pattern in host-fungal taxon interactions. The results show that AM fungal taxon composition is driven by habitat type and land use intensity, while the plant host may act as an additional filter between the available and realized AM fungal species pool.

  12. Minor and trace element geochemistry of volcanic rocks dredged from the Galapagos spreading center: role of crystal fractionation and mantle heterogeneity.

    USGS Publications Warehouse

    Clague, D.A.; Frey, F.A.; Thompson, G.; Rindge, S.

    1981-01-01

    A wide range of rock types (abyssal tholeiite, Fe-Ti-rich basalt, andesite, and rhyodacite) were dredged from near 95oW and 85oW on the Galapagos spreading center. Computer modeling of major element compositions has shown that these rocks could be derived from common parental magmas by successive degrees of fractional crystallization. However, the P2O5/K2O ratio implies distinct mantle source compositions for the two areas. These source regions also have different rare earth element (REE) abundance patterns. The sequence of fractionated lavas differs for the two areas and indicates earlier fractionation of apatite and titanomagnetite in the lavas from 95oW. The mantle source regions for these two areas are interpreted to be depleted in incompatible (and volatile?) elements, although the source region beneath 95oW is less severely depleted in La and K. -Authors

  13. Quantifying similarity of pore-geometry in nanoporous materials

    DOE PAGES

    Lee, Yongjin; Barthel, Senja D.; Dłotko, Paweł; ...

    2017-05-23

    In most applications of nanoporous materials the pore structure is as important as the chemical composition as a determinant of performance. For example, one can alter performance in applications like carbon capture or methane storage by orders of magnitude by only modifying the pore structure. For these applications it is therefore important to identify the optimal pore geometry and use this information to find similar materials. But, the mathematical language and tools to identify materials with similar pore structures, but different composition, has been lacking. We develop a pore recognition approach to quantify similarity of pore structures and classify themmore » using topological data analysis. This then allows us to identify materials with similar pore geometries, and to screen for materials that are similar to given top-performing structures. Using methane storage as a case study, we also show that materials can be divided into topologically distinct classes requiring different optimization strategies.« less

  14. Mitochondrial lipids in neurodegeneration.

    PubMed

    Aufschnaiter, Andreas; Kohler, Verena; Diessl, Jutta; Peselj, Carlotta; Carmona-Gutierrez, Didac; Keller, Walter; Büttner, Sabrina

    2017-01-01

    Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.

  15. The nanoparticle protein corona formed in human blood or human blood fractions.

    PubMed

    Lundqvist, Martin; Augustsson, Cecilia; Lilja, Malin; Lundkvist, Kristoffer; Dahlbäck, Björn; Linse, Sara; Cedervall, Tommy

    2017-01-01

    The protein corona formed around nanoparticles in protein-rich fluids plays an important role for nanoparticle biocompatibility, as found in several studies during the last decade. Biological fluids have complex compositions and the molecular components interact and function together in intricate networks. Therefore, the process to isolate blood or the preparation of blood derivatives may lead to differences in the composition of the identified protein corona around nanoparticles. Here, we show distinct differences in the protein corona formed in whole blood, whole blood with EDTA, plasma, or serum. Furthermore, the ratio between particle surface area to protein concentration influences the detected corona. We also show that the nanoparticle size per se influences the formed protein corona due to curvature effects. These results emphasize the need of investigating the formation and biological importance of the protein corona in the same environment as the nanoparticles are intended for or released into.

  16. Characterization of Mesoamerican jade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, R.L.; Sayre, E.V.; van Zelst, L.

    1983-11-23

    Jadeite occurring in the Motague River Valley of Guatemala has been characterized by neutron activation analysis and forms two district, phase-related groups. Comparison of the compositional profiles of Mayan jadeite artifacts reveals many specimens having profiles matching those of the Montagua source. Of particular interest are the large number of jadeite artifacts which show internal similarity yet have compositional patterns which are significantly different from the Montagua samples and Montagua-related artifacts. A few of the analyzed Costa Rican artifacts show patterns similar to those of the Motagua yet the vast majority fall within one of the two Costa Rican compositionalmore » groups. When considering the non-Motagua related Mayan artifacts, the analytical approach appears to be sufficiently sensitive so as to distinguish differences between the Chrome-green and Chichen-green material. Even two Honduran site specific groups of albite - cultural jade - form distinct groups.« less

  17. Comparison of the estrogenic potencies of standardized soy extracts by immature rat uterotrophic bioassay.

    PubMed

    de Lima Toccafondo Vieira, Manuela; Duarte, Rodrigo Ferreira; Campos, Ligia Maria Moreira; Nunan, Elzíria de Aguiar

    2008-01-01

    Soy phytoestrogens, isoflavones, are a primary class of plant-based estrogen alternatives being sold over the counter nowadays. Genistein, daidzein and glycitein are the major isoflavones found in soybeans, as aglycones and glycosides. Each isoflavone shows distinctive estrogenic activity and pharmacokinetics. Soy dry extracts, employed as pharmaceutical raw material for manufacturing isoflavone supplements, are standardized to contain 40% of total isoflavones, but the amount of each isoflavone is highly diverse. The influence of these compositional differences on the estrogenic potency of soy extracts was evaluated by uterotrophic bioassay. Five commercial samples of standardized soy dry extract, homogeneously suspended in arachis oil, were administered per os in serial doses (125-4150 mg/kg bw/day) to immature female rats for 3 days. Soy extract samples with considerable diversity in isoflavone composition revealed different estrogenic potencies. Our results indicate a need of standardization of the individual isoflavone content in soy extracts.

  18. Changes in Lipidome Composition during Brain Development in Humans, Chimpanzees, and Macaque Monkeys

    PubMed Central

    Li, Qian; Bozek, Katarzyna; Xu, Chuan; Guo, Yanan; Sun, Jing; Pääbo, Svante; Sherwood, Chet C.; Hof, Patrick R.; Ely, John J.; Li, Yan; Willmitzer, Lothar

    2017-01-01

    Lipids are essential components of the brain. Here, we conducted a comprehensive mass spectrometry-based analysis of lipidome composition in the prefrontal cortex of 40 humans, 40 chimpanzees, and 40 rhesus monkeys over postnatal development and adulthood. Of the 11,772 quantified lipid peaks, 7,589 change significantly along the lifespan. More than 60% of these changes occur prior to adulthood, with less than a quarter associated with myelination progression. Evolutionarily, 36% of the age-dependent lipids exhibit concentration profiles distinct to one of the three species; 488 (18%) of them were unique to humans. In both humans and chimpanzees, the greatest extent of species-specific differences occurs in early development. Human-specific lipidome differences, however, persist over most of the lifespan and reach their peak from 20 to 35 years of age, when compared with chimpanzee-specific ones. PMID:28158622

  19. Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery.

    PubMed

    Mehari, Fanuel; Rohde, Maximillian; Kanawade, Rajesh; Knipfer, Christian; Adler, Werner; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael

    2016-10-01

    In the present study, the elemental compositions of fat and nerve tissue during their plasma mediated laser ablation are studied in the context of tissue differentiation for laser surgery applications by using Laser-Induced Breakdown Spectroscopy (LIBS). Tissue samples of porcine fat and nerve were prepared as ex vivo experimental objects. Plasma mediated laser ablation is performed using an Nd : YAG laser in open air and under normal stray light conditions. The performed measurements suggest that the two tissue types show a high similarity in terms of qualitative elemental composition while at the same time revealing a distinct difference in the concentration of the constituent elements. Different analysis approaches are evaluated and discussed to optimize the tissue-differentiation performance of the LIBS approach. Plasma mediated laser tissue ablation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Differentiation of commercial vermiculite based on statistical analysis of bulk chemical data: Fingerprinting vermiculite from Libby, Montana U.S.A

    USGS Publications Warehouse

    Gunter, M.E.; Singleton, E.; Bandli, B.R.; Lowers, H.A.; Meeker, G.P.

    2005-01-01

    Major-, minor-, and trace-element compositions, as determined by X-ray fluorescence (XRF) analysis, were obtained on 34 samples of vermiculite to ascertain whether chemical differences exist to the extent of determining the source of commercial products. The sample set included ores from four deposits, seven commercially available garden products, and insulation from four attics. The trace-element distributions of Ba, Cr, and V can be used to distinguish the Libby vermiculite samples from the garden products. In general, the overall composition of the Libby and South Carolina deposits appeared similar, but differed from the South Africa and China deposits based on simple statistical methods. Cluster analysis provided a good distinction of the four ore types, grouped the four attic samples with the Libby ore, and, with less certainty, grouped the garden samples with the South Africa ore.

  1. Comparison of membrane ATPases from extreme halophiles isolated from ancient salt deposits

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Sulzner, Michael; Egelseer, Eva; Norton, Cynthia F.; Hochstein, Lawrence I.

    1993-01-01

    Halophilic microorganisms were isolated from Triassic and Permian salt deposits. Two were rods and grew as red colonies; another was a coccus and produced pink colonies. The rods lysed in solutions that lacked added sodium chloride. Growth of all isolates was inhibited by aphidicolin and their bulk-proteins were acidic as judged from isoelectric focusing. Therefore, these organisms were tentatively identified as extreme halophiles. Whole cell proteins patterns of the isolates following gel electrophoresis were distinct and differed from those of representative type strains of halophilic bacteria. The membrane ATPases from the rods were similar to the enzyme from Halobacterium saccharovorum with respect to subunit composition, enzymatic properties and immunological cross-reaction, but differed slightly in amino acid composition. If the age of the microbial isolated is similar to that of the salt deposits, they can be considered repositories of molecular information of great evolutionary interest.

  2. Comparison of Membrane ATPases from Extreme Halophiles Isolated from Ancient Salt Deposits

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Sulzner, Michael; Egelseer, Eva; Norton, Cynthia F.; Hochstein, Lawrence I.

    1993-01-01

    Halophilic microorganisms were isolated from Triassic and Permian salt deposits. Two were rods and grew as red colonies; another was a coccus and produced pink colonies. The rods lysed in solutions that lacked added sodium chloride. Growth of all isolates was inhibited by aphidicolin and their bulk proteins were acidic as judged from isoelectric focusing. Therefore, these organisms were tentatively identified as extreme halophiles. Whole cell proteins patterns of the isolates following gel electrophoresis were distinct and differed from those of representative type strains of halophilic bacteria. The membrane ATPases from the rods were similar to the enzyme from Halobacterium saccharovorum with respect to sub unit composition. enzymatic properties and immunological cross-reaction, but differed slightly in amino acid composition. If the age of the microbial isolated is similar to that of the salt deposits, they can be considered repositories of molecular information of great evolutionary interest.

  3. Biomaterials for Tissue Engineering

    PubMed Central

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  4. Microbiomes of Muricea californica and M. fruticosa: Comparative Analyses of Two Co-occurring Eastern Pacific Octocorals.

    PubMed

    Holm, Johanna B; Heidelberg, Karla B

    2016-01-01

    Octocorals are sources of novel but understudied microbial diversity. Conversely, scleractinian or reef-building coral microbiomes have been heavily examined in light of the threats of climate change. Muricea californica and Muricea fruticosa are two co-occurring species of gorgonian octocoral abundantly found in the kelp forests of southern California, and thus provide an excellent basis to determine if octocoral microbiomes are host specific. Using Illumina MiSeq amplicon sequencing and replicate samples, we evaluated the microbiomes collected from multiple colonies of both species of Muricea to measure both inter- and intra-colony microbiome variabilities. In addition, microbiomes from overlying sea water and nearby zoanthids (another benthic invertebrate) were also included in the analysis to evaluate whether bacterial taxa specifically associate with octocorals. This is also the first report of microbiomes from these species of Muricea. We show that microbiomes isolated from each sample type are distinct, and specifically, that octocoral species type had the greatest effect on predicting the composition of the Muricea microbiome. Bacterial taxa contributing to compositional differences include distinct strains of Mycoplasma associated with either M. californica or M. fruticosa, an abundance of Spirochaetes observed on M. californica, and a greater diversity of γ-Proteobacteria associated with M. fruticosa. Many of the bacterial taxa contributing to these differences are known for their presence in photosymbiont-containing invertebrate microbiomes.

  5. Microbiomes of Muricea californica and M. fruticosa: Comparative Analyses of Two Co-occurring Eastern Pacific Octocorals

    PubMed Central

    Holm, Johanna B.; Heidelberg, Karla B.

    2016-01-01

    Octocorals are sources of novel but understudied microbial diversity. Conversely, scleractinian or reef-building coral microbiomes have been heavily examined in light of the threats of climate change. Muricea californica and Muricea fruticosa are two co-occurring species of gorgonian octocoral abundantly found in the kelp forests of southern California, and thus provide an excellent basis to determine if octocoral microbiomes are host specific. Using Illumina MiSeq amplicon sequencing and replicate samples, we evaluated the microbiomes collected from multiple colonies of both species of Muricea to measure both inter- and intra-colony microbiome variabilities. In addition, microbiomes from overlying sea water and nearby zoanthids (another benthic invertebrate) were also included in the analysis to evaluate whether bacterial taxa specifically associate with octocorals. This is also the first report of microbiomes from these species of Muricea. We show that microbiomes isolated from each sample type are distinct, and specifically, that octocoral species type had the greatest effect on predicting the composition of the Muricea microbiome. Bacterial taxa contributing to compositional differences include distinct strains of Mycoplasma associated with either M. californica or M. fruticosa, an abundance of Spirochaetes observed on M. californica, and a greater diversity of γ-Proteobacteria associated with M. fruticosa. Many of the bacterial taxa contributing to these differences are known for their presence in photosymbiont-containing invertebrate microbiomes. PMID:27445997

  6. Oxygen isotopes as a tracer of phosphate sources and cycling in aquatic systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Paytan, A.

    2013-12-01

    The oxygen isotopic composition of phosphate can provide valuable information about sources and processes affecting phosphorus as it moves through hydrologic systems. Applications of this technique in soil and water have become more common in recent years due to improvements in extraction methods and instrument capabilities, and studies in multiple aquatic environments have demonstrated that some phosphorus sources may have distinct isotopic compositions within a given system. Under normal environmental conditions, the oxygen-phosphorus bonds in dissolved inorganic phosphate (DIP) can only be broken by enzymatic activity. Biological cycling of DIP will bring the phosphate oxygen into a temperature-dependent equilibrium with the surrounding water, overprinting any existing isotopic source signals. However, studies conducted in a wide range of estuarine, freshwater, and groundwater systems have found that the phosphate oxygen is often out of biological equilibrium with the water, suggesting that it is common for at least a partial isotopic source signal to be retained in aquatic systems. Oxygen isotope analysis on various potential phosphate sources such as synthetic and organic fertilizers, animal waste, detergents, and septic/wastewater treatment plant effluents show that these sources span a wide range of isotopic compositions, and although there is considerable overlap between the source groups, sources may be isotopically distinct within a given study area. Recent soil studies have shown that isotopic analysis of phosphate oxygen is also useful for understanding microbial cycling across different phosphorus pools, and may provide insights into controls on phosphorus leaching. Combining stable isotope information from soil and water studies will greatly improve our understanding of complex phosphate cycling, and the increasing use of this isotopic technique across different environments will provide new information regarding anthropogenic phosphate inputs and controls on biological cycling within hydrologic systems.

  7. HD 104860 and HD 192758: Two Debris Disks Newly Imaged in Scattered Light with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Choquet, É.; Bryden, G.; Perrin, M. D.; Soummer, R.; Augereau, J.-C.; Chen, C. H.; Debes, J. H.; Gofas-Salas, E.; Hagan, J. B.; Hines, D. C.; Mawet, D.; Morales, F.; Pueyo, L.; Rajan, A.; Ren, B.; Schneider, G.; Stark, C. C.; Wolff, S.

    2018-02-01

    We present the first scattered-light images of two debris disks around the F8 star HD 104860 and the F0V star HD 192758, respectively ∼45 and ∼67 pc away. We detected these systems in the F110W and F160W filters through our reanalysis of archival Hubble Space Telescope (HST) NICMOS data with modern starlight-subtraction techniques. Our image of HD 104860 confirms the morphology previously observed by Herschel in thermal emission with a well-defined ring at a radius of ∼114 au inclined by ∼58°. Although the outer edge profile is consistent with dynamical evolution models, the sharp inner edge suggests sculpting by unseen perturbers. Our images of HD 192758 reveal a disk at radius ∼95 au inclined by ∼59°, never resolved so far. These disks have low scattering albedos of 10% and 13%, respectively, inconsistent with water ice grain compositions. They are reminiscent of several other disks with similar inclination and scattering albedos: Fomalhaut, HD 92945, HD 202628, and HD 207129. They are also very distinct from brighter disks in the same inclination bin, which point to different compositions between these two populations. Varying scattering albedo values can be explained by different grain porosities, chemical compositions, or grain size distributions, which may indicate distinct formation mechanisms or dynamical processes at work in these systems. Finally, these faint disks with large infrared excesses may be representative of an underlying population of systems with low albedo values. Searches with more sensitive instruments on HST or on the James Webb Space Telescope and using state-of-the art starlight-subtraction methods may help discover more of such faint systems.

  8. Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denner, Darcy R.; Sangwan, Naseer; Becker, Julia B.

    The lung has a diverse microbiome that is modest in biomass. This microbiome differs in asthmatic patients compared with control subjects, but the effects of clinical characteristics on the microbial community composition and structure are not clear. OBJECTIVES: We examined whether the composition and structure of the lower airway microbiome correlated with clinical characteristics of chronic persistent asthma, including airflow obstruction, use of corticosteroid medications, and presence of airway eosinophilia. METHODS: DNA was extracted from endobronchial brushings and bronchoalveolar lavage fluid collected from 39 asthmatic patients and 19 control subjects, along with negative control samples. 16S rRNA V4 amplicon sequencingmore » was used to compare the relative abundance of bacterial genera with clinical characteristics. RESULTS: Differential feature selection analysis revealed significant differences in microbial diversity between brush and lavage samples from asthmatic patients and control subjects. Lactobacillus, Pseudomonas, and Rickettsia species were significantly enriched in samples from asthmatic patients, whereas Prevotella, Streptococcus, and Veillonella species were enriched in brush samples from control subjects. Generalized linear models on brush samples demonstrated oral corticosteroid use as an important factor affecting the relative abundance of the taxa that were significantly enriched in asthmatic patients. In addition, bacterial α-diversity in brush samples from asthmatic patients was correlated with FEV1 and the proportion of lavage eosinophils. CONCLUSION: The diversity and composition of the bronchial airway microbiome of asthmatic patients is distinct from that of nonasthmatic control subjects and influenced by worsening airflow obstruction and corticosteroid use. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.« less

  9. The Crystal Stratigraphy of Ontong Java Plateau Plagioclase Pegacrysts: New Insights into the Evolution of LIP Magmas.

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Kinman, W. S.

    2003-12-01

    The Ontong Java Plateau (OJP) is the world's largest LIP made up of 2 isotopically distinct lava types that comprise the Singgalo and Kwaimbaita formations (Tejada et al., 2002, J.Pet 43:449). Some Kwaimbaita basaltic flows contain plagioclase-rich cumulate xenoliths. As plagioclase is stable over a range of magmatic conditions, microanalysis of this phase allows the evolution of the parent magma(s) to be constrained (cf. Davidson & Tepley, 1997, Science 275:826). This crystal stratigraphy approach has been applied to cm-size plagioclase megacrysts from three basaltic units (5B, 6, and 7) recovered at ODP Leg 192 Site 1183. Core-to-rim trace element variations were quantified by LA-ICP-MS, major elements by EPMA, and compositional backscatter SEM imaging was used to investigate the subtle compositional zoning and textural features within the plagioclases. All 5 OJP megacrysts sampled show little core-to-rim anorthite variation (82 mol % An +/- 5%); An-rich plagioclase crystals are resistant to re-equilibration and are more likely to retain magmatic trace element signatures (Blundy & Wood, 1991, GCA 55:193). The Unit 7 (oldest) plagioclase contains a relatively Sr, Ga, REE, and Ti poor core bounded by a resorption surface and a relatively Sr, Ga, REE, and Ti rich zone suggesting this crystal was exposed to 2 compositionally distinct magmas. The Unit 6 plagioclase contains a relatively Sr, Ga, REE, and Ti poor core with increasing abundances toward the rim, consistent with evolution through fractional crystallization. This megacryst also contains a distinct resorption surface bounded by a core-like Sr, REE, and Ti poor zone. The three Unit 5B plagioclases display core-to-rim Sr and Ba increases with little core-to-rim REE and Ga variations. The uppermost Unit 5B crystal (youngest) exhibits a core-to-rim decrease in Ti, while the lower 2 crystals display the opposite relationship. We suggest the textural and trace element variations seen in OJP plagioclase megacrysts are again evidence of magma mixing. Reconstructed liquids suggest at least two distinct mixing end members: an enriched end member, similar to Singgalo-type lavas, and a depleted end member, similar to Kwaimbaita type lavas. As the Singgalo- and Kwaimbaita-type basalts are isotopically distinct (I(Sr) = 0.7041 and 0.7038, resp.), Sr isotope determinations of the different plagioclase zones through microdrilling is planned for the near future to test this hypothesis. If correct, it suggests that both the Kwaimbaita and Singgalo sources were active at the same time, which is in contrast to the stratigraphy determined by whole-rock compositions.

  10. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis.

    PubMed

    Klimesova, Klara; Jiraskova Zakostelska, Zuzana; Tlaskalova-Hogenova, Helena

    2018-01-01

    Host's physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distinct epithelial layers organization and different oxygen levels. A few obligate anaerobic strains inhabiting the oral cavity are involved in the pathogenesis of oral diseases. Interestingly, these microbiota components are also enriched in gut inflammatory and tumor tissue. An altered microbiota composition - dysbiosis - and formation of polymicrobial biofilms seem to play important roles in the development of oral diseases and colorectal cancer. In this review, we describe the differences in composition of commensal microbiota in the oral cavity and large intestine and the mechanisms by which microbiota affect the inflammatory and carcinogenic response of the host.

  11. Isotopic evolution of the idaho batholith and Challis intrusive province, Northern US Cordillera

    USGS Publications Warehouse

    Gaschnig, Richard M.; Vervoort, J.D.; Lewis, R.S.; Tikoff, B.

    2011-01-01

    The Idaho batholith and spatially overlapping Challis intrusive province in the North American Cordillera have a history of magmatism spanning some 55 Myr. New isotopic data from the ???98 Ma to 54 Ma Idaho batholith and ???51 Ma to 43 Ma Challis intrusions, coupled with recent geochronological work, provide insights into the evolution of magmatism in the Idaho segment of the Cordillera. Nd and Hf isotopes show clear shifts towards more evolved compositions through the batholith's history and Pb isotopes define distinct fields correlative with the different age and compositionally defined suites of the batholith, whereas the Sr isotopic compositions of the various suites largely overlap. The subsequent Challis magmatism shows the full range of isotopic compositions seen in the batholith. These data suggest that the early suites of metaluminous magmatism (98-87 Ma) represent crust-mantle hybrids. Subsequent voluminous Atlanta peraluminous suite magmatism (83-67 Ma) results primarily from melting of different crustal components. This can be attributed to crustal thickening, resulting from either subduction processes or an outboard terrane collision. A later, smaller crustal melting episode, in the northern Idaho batholith, resulted in the Bitterroot peraluminous suite (66-54 Ma) and tapped different crustal sources. Subsequent Challis magmatism was derived from both crust and mantle sources and corresponds to extensional collapse of the over-thickened crust. ?? The Author 2011. Published by Oxford University Press. All rights reserved.

  12. Light-Induced Changes in Fatty Acid Profiles of Specific Lipid Classes in Several Freshwater Phytoplankton Species

    PubMed Central

    Wacker, Alexander; Piepho, Maike; Harwood, John L.; Guschina, Irina A.; Arts, Michael T.

    2016-01-01

    We tested the influence of two light intensities [40 and 300 μmol PAR / (m2s)] on the fatty acid composition of three distinct lipid classes in four freshwater phytoplankton species. We chose species of different taxonomic classes in order to detect potentially similar reaction characteristics that might also be present in natural phytoplankton communities. From samples of the bacillariophyte Asterionella formosa, the chrysophyte Chromulina sp., the cryptophyte Cryptomonas ovata and the zygnematophyte Cosmarium botrytis we first separated glycolipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine) as well as non-polar lipids (triacylglycerols), before analyzing the fatty acid composition of each lipid class. High variation in the fatty acid composition existed among different species. Individual fatty acid compositions differed in their reaction to changing light intensities in the four species. Although no generalizations could be made for species across taxonomic classes, individual species showed clear but small responses in their ecologically-relevant omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in terms of proportions and of per tissue carbon quotas. Knowledge on how lipids like fatty acids change with environmental or culture conditions is of great interest in ecological food web studies, aquaculture, and biotechnology, since algal lipids are the most important sources of omega-3 long-chain PUFA for aquatic and terrestrial consumers, including humans. PMID:27014290

  13. Identification of Cellulose-Responsive Bacterial and Fungal Communities in Geographically and Edaphically Different Soils by Using Stable Isotope Probing

    PubMed Central

    Eichorst, Stephanie A.

    2012-01-01

    Many bacteria and fungi are known to degrade cellulose in culture, but their combined response to cellulose in different soils is unknown. Replicate soil microcosms amended with [13C]cellulose were used to identify bacterial and fungal communities responsive to cellulose in five geographically and edaphically different soils. The diversity and composition of the cellulose-responsive communities were assessed by DNA-stable isotope probing combined with Sanger sequencing of small-subunit and large-subunit rRNA genes for the bacterial and fungal communities, respectively. In each soil, the 13C-enriched, cellulose-responsive communities were of distinct composition compared to the original soil community or 12C-nonenriched communities. The composition of cellulose-responsive taxa, as identified by sequence operational taxonomic unit (OTU) similarity, differed in each soil. When OTUs were grouped at the bacterial order level, we found that members of the Burkholderiales, Caulobacteriales, Rhizobiales, Sphingobacteriales, Xanthomonadales, and the subdivision 1 Acidobacteria were prevalent in the 13C-enriched DNA in at least three of the soils. The cellulose-responsive fungi were identified as members of the Trichocladium, Chaetomium, Dactylaria, and Arthrobotrys genera, along with two novel Ascomycota clusters, unique to one soil. Although similarities were identified in higher-level taxa among some soils, the composition of cellulose-responsive bacteria and fungi was generally unique to a certain soil type, suggesting a strong potential influence of multiple edaphic factors in shaping the community. PMID:22287013

  14. Study on preparation of ultrafine amorphous particles by chemical reduction

    NASA Astrophysics Data System (ADS)

    Song, Xu; Yusheng, Xu; Huali, Jiang; Qing, Xue

    1993-04-01

    Ultrafine amorphous FeNiB powder was prepared by potassium borohydride reduction by mixing the aqueous solutions in a bath of supersonic oscillator. Different mixing ratios of potassium borohydride to metal salt were applied. Analysis of the composition of the sample and the Fe 2+ and Ni 2+ remaining in the filtrate after preparation shows that a quantity of KBH 4 about 1.5 times the stoichiometrical quantity is enough. Mössbauer measurements were performed at room temperature and it was found that excess KBH 4 makes no distinct difference in the spectra of the samples.

  15. Petrologic and Oxygen-Isotopic Investigations of Eucritic and Anomalous Mafic Achondrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Greenwood, R. C.; Peng, Z. X.; Ross, D. K.; Berger, E. L.; Barrett, T. J.

    2016-01-01

    The most common asteroidal igneous meteorites are eucrite-type basalts and gabbros rocks composed of ferroan pigeonite and augite, calcic plagioclase, silica, ilmenite, troilite, Ca-phosphate, chromite and Fe-metal. These rocks are thought to have formed on a single asteroid along with howardites and diogenites (HEDs). However, Northwest Africa (NWA) 011 is mineralogically identical to eucrites, but has an O-isotopic composition distinct from them and was derived from a different asteroid. Modern analyses with higher precision have shown that some eucrites have smaller O-isotopic differences that are nevertheless well-resolved from the group mean.

  16. Compositional threshold for Nuclear Waste Glass Durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-04-24

    Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.

  17. Constraints on Martian Soil Composition as Inferred from Viking XRFS and Pathfinder APXS and IMP Data

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Crisp, J. A.

    2000-01-01

    With the successful operation of the Alpha Proton X-Ray Spectrometer (APXS) during 1997's Mars Pathfinder (MPF) mission, geochemistry data are now available from three sites on Mars. APXS raw spectra for six soils and five rocks have been converted to compositional abundances. The Viking Lander X-Ray Fluorescence Spectrometer (XRFS) successfully measured elemental abundances of nine soils at Viking 1 and eight soils at Viking 2. Although the three landing sites are located in different parts of Mars, the soils exhibit broad similarities, with an iron-rich chemistry similar to that of palagonite. However, the Pathfinder sods show some significant differences from Viking soils, notably an enrichment in silica and depletion in sulfur. The XRFS samples consisted of near-surface and deep (up to 22 cm) soils acquired by a collector head at the cod of a retractable boom. It was possible to collect and analyze pebbles as large a 2 cm, but only sod, some in the form of consolidated clods, was sampled. In contrast, the APXS measured materials in situ. This resulted in MPF "rock" analyses that probably had a significant dust component and, as explored here, "soil" analyses that may have contained a rocky component We examine several possibilities to explain these differences and other attributes of the APXS and XRFS data sets: 1) The APXS soil measurements actually sampled a mixture of Viking-like soil and small bits of high-silica, low-sulfur rock, 2) The soils were derived from high-silica rocks mixed with a minor component of globally-homogenized dust; these soils are chemically distinct and have a separate geologic history from the Viking soils. 3) The weathering environment was different at the Pathfinder landing site compared to the Viking sites, and 4) Uncertainties in the XRFS and APXS measurements result in reported elemental abundances different than those that are actually present We show that none of the possibilities can be discounted, but that an MPF soil distinct in composition from Viking sods is best supported by the available data.

  18. Age and whole rock glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal tephrostratigraphy

    NASA Astrophysics Data System (ADS)

    Santacroce, Roberto; Cioni, Raffaello; Marianelli, Paola; Sbrana, Alessandro; Sulpizio, Roberto; Zanchetta, Giovanni; Donahue, Douglas J.; Joron, Jean Louis

    2008-10-01

    A review of compositional data of the major explosive eruptions of Vesuvius is presented, comparing compositions (major elements) of whole rock with glass shards from the proximal deposits, hopefully useful for long-distance correlation. A critical review of published and new geochronological data is also provided. All available 14C ages are calibrated to give calendar ages useful for the reconstruction of the volcanological evolution of the volcanic complex. The pyroclastic deposits of the four major Plinian eruptions (22,000 yr cal BP "Pomici di Base", 8900 yr cal BP "Mercato Pumice", 4300 yr cal BP "Avellino Pumice", and A.D. 79 "Pompeii Pumice") are widely dispersed and allow a four-folded, Plinian to Plinian, stratigraphic division: 1. B-M (between Pomici di Base and Mercato); 2. M-A (between Mercato and Avellino); 3. A-P (between Avellino and Pompeii); 4. P-XX (from the Pompeii Pumice to the last erupted products of the XXth century). Within each interval, the age, lithologic and compositional features of pyroclastic deposits of major eruptions, potentially useful for tephrostratigraphic purposes on distal areas, are briefly discussed. The Vesuvius rocks are mostly high Potassic products, widely variable in terms of their silica saturation. They form three groups, different for both composition and age: 1. slightly undersaturated, older than Mercato eruption; 2. mildly undersaturated, from Mercato to Pompeii eruptions; 3. highly undersaturated, younger than Pompeii eruption. For whole rock analyses, the peculiar variations in contents of some major and trace elements as well as different trends in element/element ratios, allow a clear, unequivocal, easy diagnosis of the group they belong. Glass analyses show large compositional overlap between different groups, but selected element vs. element plots are distinctive for the three groups. The comparative analysis of glass and whole rock major element compositions provides reliable geochemical criteria helping in the recognition, frequently not obvious, of distal products from the different single eruptions.

  19. Interactive effects between plant functional types and soil factors on tundra species diversity and community composition.

    PubMed

    Iturrate-Garcia, Maitane; O'Brien, Michael J; Khitun, Olga; Abiven, Samuel; Niklaus, Pascal A; Schaepman-Strub, Gabriela

    2016-11-01

    Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristics. However, despite the importance of different PFT for community assembly and ecosystem functioning, research has mainly focused on vascular plants. Here, we established a set of observational plots in two contrasting habitats in northeastern Siberia in order to assess the relationship between species diversity and community composition with soil variables, as well as the relationship between vegetation cover and species diversity for two PFT (nonvascular and vascular). We found that nonvascular species diversity decreased with soil acidity and moisture and, to a lesser extent, with soil temperature and active layer thickness. In contrast, no such correlation was found for vascular species diversity. Differences in community composition were found mainly along soil acidity and moisture gradients. However, the proportion of variation in composition explained by the measured soil variables was much lower for nonvascular than for vascular species when considering the PFT separately. We also found different relationships between vegetation cover and species diversity according the PFT and habitat. In support of niche differentiation theory, species diversity and community composition were related to edaphic factors. The distinct relationships found for nonvascular and vascular species suggest the importance of considering multiple PFT when assessing species diversity and composition and their interaction with edaphic factors. Synthesis : Identifying vegetation responses to edaphic factors is a first step toward a better understanding of vegetation-soil feedbacks under climate change. Our results suggest that incorporating differential responses of PFT is important for predicting vegetation shifts, primary productivity, and in turn, ecosystem functioning in a changing climate.

  20. Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon.

    PubMed

    Ganz, Julia; Kaslin, Jan; Hochmann, Sarah; Freudenreich, Dorian; Brand, Michael

    2010-08-15

    Adult telencephalic neurogenesis is a conserved trait of all vertebrates studied. It has been investigated in detail in rodents, but very little is known about the composition of neurogenic niches and the cellular nature of progenitors in nonmammalian vertebrates. To understand the components of the progenitor zones in the adult zebrafish telencephalon and the link between glial characteristics and progenitor state, we examined whether canonical glial markers are colocalized with proliferation markers. In the adult zebrafish telencephalon, we identify heterogeneous progenitors that reside in two distinct glial domains. We find that the glial composition of the progenitor zone is linked to its proliferative behavior. Analyzing both fast-cycling proliferating cells as well as slowly cycling progenitors, we find four distinct progenitor types characterized by differential expression of glial markers. Importantly, a significant proportion of progenitors do not display typical radial glia characteristics. By blocking or activating Fgf signaling by misexpression of a dominant negative Fgf-receptor 1 or Fgf8a, respectively, we find that ventral and dorsal progenitors in the telencephalon also differ in their requirement for Fgf signaling. Together with data on the expression of Fgf signaling components in the ventricular zone of the telencephalon, this suggests that Fgf signaling directly regulates proliferation of specific subsets of adult telencephalic progenitors in vivo. Taken together our results show that adult neural progenitor cells are heterogeneous with their respect to distribution into two distinct glial domains and their dependence upon Fgf signaling as a proliferative cue in the zebrafish telencephalon.

  1. Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer's disease.

    PubMed

    Zhang, Xiuming; Mormino, Elizabeth C; Sun, Nanbo; Sperling, Reisa A; Sabuncu, Mert R; Yeo, B T Thomas

    2016-10-18

    We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer's disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala), a subcortical atrophy factor (striatum, thalamus, and cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal, and lateral occipital cortices). To explore the influence of each factor in early AD, atrophy factor compositions were inferred in beta-amyloid-positive (Aβ+) mild cognitively impaired (MCI) and cognitively normal (CN) participants. All three factors were associated with memory decline across the entire clinical spectrum, whereas the cortical factor was associated with executive function decline in Aβ+ MCI participants and AD dementia patients. Direct comparison between factors revealed that the temporal factor showed the strongest association with memory, whereas the cortical factor showed the strongest association with executive function. The subcortical factor was associated with the slowest decline for both memory and executive function compared with temporal and cortical factors. These results suggest that distinct patterns of atrophy influence decline across different cognitive domains. Quantification of this heterogeneity may enable the computation of individual-level predictions relevant for disease monitoring and customized therapies. Factor compositions of participants and code used in this article are publicly available for future research.

  2. Bythaelurus bachi n. sp., a new deep-water catshark (Carcharhiniformes, Scyliorhinidae) from the southwestern Indian Ocean, with a review of Bythaelurus species and a key to their identification.

    PubMed

    Weigmann, Simon; Ebert, David A; Clerkin, Paul J; Stehmann, Matthias F W; Naylor, Gavin J P

    2016-12-19

    A new deep-water catshark, Bythaelurus bachi, is described based on 44 specimens caught on the southern Madagascar Ridge in the southwestern Indian Ocean. The new species is the only stout-bodied Bythaelurus with oral papillae in the region and is distinguished from all congeners by the plain beige to light gray-brown coloration, high diversity in dermal denticle morphology, and presence of composite oral papillae. Despite resemblance in body shape, Bythaelurus bachi n. sp. is distinguished from its closest congener, B. naylori Ebert & Clerkin, 2015, by the presence of numerous large, partially composite papillae on the tongue and roof of the mouth (vs. papillae lacking), plain light coloration (vs. medium to dark brown ground color, light fin edges and a distinctly dark dusky-colored snout), only slightly enlarged dermal denticles on the anterior upper caudal-fin margin (vs. dermal denticles distinctly enlarged), a higher diversity in dermal denticle morphology in general, and smaller maximum size and size at maturity. The distinction of both species is also supported by molecular results. The new species differs from all other congeners in the western Indian Ocean in the stout body shape of large specimens, coloration, larger size, as well as several morphometrics, including larger claspers, longer eyes and dorsal fins, and shorter pelvic-anal and pelvic-caudal spaces. The genus is reviewed, a key to its species given.

  3. Different glycoforms of prostate-specific membrane antigen are intracellularly transported through their association with distinct detergent-resistant membranes.

    PubMed

    Castelletti, Deborah; Alfalah, Marwan; Heine, Martin; Hein, Zeynep; Schmitte, Ruth; Fracasso, Giulio; Colombatti, Marco; Naim, Hassan Y

    2008-01-01

    Hormone-refractory prostate carcinomas as well as the neovasculature of different tumours express high levels of PSMA (prostate-specific membrane antigen). PSMA is a type II-transmembrane glycoprotein and a potential tumour marker for both diagnosis and passive immunotherapy. Here, we report on the association of PSMA with DRMs (detergent-resistant membranes) at different stages of the protein maturation pathway in human prostate carcinoma LNCaP cells. At least three PSMA glycoforms were biochemically identified based on their extractability behaviour in different non-ionic detergents. In particular, one precursor glycoform of PSMA is associated with Tween 20-insoluble DRMs, whereas the complex glycosylated protein segregates into membrane structures that are insoluble in Lubrol WX and display a different lipid composition. Association of PSMA with these membranes occurs in the Golgi compartment together with the acquisition of a native conformation. PSMA homodimers reach the plasma membrane of LNCaP cells in Lubrol WX-insoluble lipid/protein complexes. At the steady state, the majority of PSMA remains within these membrane microdomains at the cell surface. We conclude that the intracellular transport of PSMA occurs through populations of DRMs distinct for each biosynthetic form and cellular compartment.

  4. The glycerophospholipid inventory of Pseudomonas putida is conserved between strains and enables growth condition‐related alterations

    PubMed Central

    Rühl, Jana; Hein, Eva‐Maria; Hayen, Heiko; Schmid, Andreas; Blank, Lars M.

    2012-01-01

    Summary Microorganisms, such as Pseudomonas putida, utilize specific physical properties of cellular membrane constituents, mainly glycerophospholipids, to (re‐)adjust the membrane barrier to environmental stresses. Building a basis for membrane composition/function studies, we inventoried the glycerophospholipids of different Pseudomonas and challenged membranes of growing cells with n‐butanol. Using a new high‐resolution liquid chromatography/mass spectrometry (LC/MS) method, 127 glycerophospholipid species [e.g. phosphatidylethanolamine PE(32:1)] with up to five fatty acid combinations were detected. The glycerophospholipid inventory consists of 305 distinct glycerophospholipids [e.g. PE(16:0/16:1)], thereof 14 lyso‐glycerophospholipids, revealing conserved compositions within the four investigated pseudomonads P. putida KT2440, DOT‐T1E, S12 and Pseudomonas sp. strain VLB120. Furthermore, we addressed the influence of environmental conditions on the glycerophospholipid composition of Pseudomonas via long‐time exposure to the sublethal n‐butanol concentration of 1% (v/v), focusing on: (i) relative amounts of glycerophospholipid species, (ii) glycerophospholipid head group composition, (iii) fatty acid chain length, (iv) degree of saturation and (v) cis/trans isomerization of unsaturated fatty acids. Observed alterations consist of changing head group compositions and for the solvent‐sensitive strain KT2440 diminished fatty acid saturation degrees. Minor changes in the glycerophospholipid composition of the solvent‐tolerant strains P. putida S12 and Pseudomonas sp. VLB120 suggest different strategies of the investigated Pseudomonas to maintain the barrier function of cellular membranes. PMID:21895997

  5. Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests.

    PubMed

    Lamarre, Greg P A; Hérault, Bruno; Fine, Paul V A; Vedel, Vincent; Lupoli, Roland; Mesones, Italo; Baraloto, Christopher

    2016-01-01

    Arthropods represent most of global biodiversity, with the highest diversity found in tropical rain forests. Nevertheless, we have a very incomplete understanding of how tropical arthropod communities are assembled. We conducted a comprehensive mass sampling of arthropod communities within three major habitat types of lowland Amazonian rain forest, including terra firme clay, white-sand and seasonally flooded forests in Peru and French Guiana. We examined how taxonomic and functional composition (at the family level) differed across these habitat types in the two regions. The overall arthropod community composition exhibited strong turnover among habitats and between regions. In particular, seasonally flooded forest habitats of both regions comprised unique assemblages. Overall, 17·7% (26 of 147) of arthropod families showed significant preferences for a particular habitat type. We present a first reproducible arthropod functional classification among the 147 taxa based on similarity among 21 functional traits describing feeding source, major mouthparts and microhabitats inhabited by each taxon. We identified seven distinct functional groups whose relative abundance contrasted strongly across the three habitats, with sap and leaf feeders showing higher abundances in terra firme clay forest. Our novel arthropod functional classification provides an important complement to link these contrasting patterns of composition to differences in forest functioning across geographical and environmental gradients. This study underlines that both environment and biogeographical processes are responsible for driving arthropod taxonomic composition while environmental filtering is the main driver of the variance in functional composition. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  6. Minor Elements in Nakhlite Pyroxenes: Does Cr Record Changes in REDOX Conditions during Crystallization?

    NASA Technical Reports Server (NTRS)

    McKay, G.; Schwandt, C.; Le, L.; Mikouchi, T.

    2007-01-01

    Nakhlites are olivine-bearing clinopyroxene cumulates. Based on petrographic characteristics, they may be divided into groups that cooled at different rates and may have been formed at different depths in a single flow. The order of cooling rate from slowest to fastest is NWA998

  7. COMPOSITIONAL SIMILARITIES AND DISTINCTIONS BETWEEN TITAN’S EVAPORITIC TERRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKenzie, S. M.; Barnes, Jason W., E-mail: mack3108@vandals.uidaho.edu

    2016-04-10

    We document the similarities in composition between the equatorial basins Tui Regio, Hotei Regio, and other 5-μm-bright materials, notably the north polar evaporites, by investigating the presence and extent of an absorption feature at 4.92 μm. In most observations, Woytchugga Lacuna, Ontario Lacus, MacKay Lacus, deposits near Fensal, some of the lakes and dry lake beds south of Ligeia, and the southern shores of Kraken Mare share the absorption feature at 4.92 μm observed in the spectra of Tui and Hotei. Besides Woytchugga and at Fensal, these 5-μm-bright deposits are geomorphologically substantiated evaporites. Thus, the similarity in composition strengthens themore » hypothesis that Tui and Hotei once contained liquid. Other evaporite deposits, however, do not show the 4.92 μm absorption, notably Muggel Lacus and the shores of Ligeia Mare at the north pole. This difference in composition suggests that there is more than one kind of soluble material in Titan’s lakes that can create evaporite and/or that the surface properties at the Visual and Infrared Mapping Spectrometer wavelength scale are not uniform between the different deposits (crystal size, abundance, etc.). Our results indicate that the surface structure, composition, and formation history of Titan’s evaporites may be at least as dynamic and complex as their Earth counterparts.« less

  8. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed Central

    Kawai, Y; Moribayashi, A

    1982-01-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica. Images PMID:6284719

  9. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed

    Kawai, Y; Moribayashi, A

    1982-08-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica.

  10. Composition and diversity of mucosa-associated microbiota along the entire length of the pig gastrointestinal tract; dietary influences.

    PubMed

    Kelly, Jennifer; Daly, Kristian; Moran, Andrew W; Ryan, Sheila; Bravo, David; Shirazi-Beechey, Soraya P

    2017-04-01

    Mucosa-associated microbial populations of the gastrointestinal tract are in intimate contact with the outer mucus layer. This proximity offers these populations a higher potential, than lumenal microbiota, in exerting effects on the host. Functional characteristics of the microbiota and influences of host-physiology shape the composition and activity of the mucosa-associated bacterial community. We have shown previously that inclusion of an artificial sweetener, SUCRAM, included in the diet of weaning piglets modulates the composition of lumenal-residing gut microbiota and reduces weaning-related gastrointestinal disorders. In this study, using Illumina sequencing we characterised the mucosa-associated microbiota along the length of the intestine of piglets, and determined the effect of SUCRAM supplementation on mucosa-associated populations. There were clear distinctions in the composition of mucosa-associated microbiota, between small and large intestine, concordant with differences in regional oxygen distribution and nutrient provision by the host. There were significant differences in the composition of mucosa-associated compared with lumenal microbiota in pig caecum. Dietary supplementation with SUCRAM affected mucosa-associated bacterial community structure along the length of the intestinal tract. Most notably, there was a substantial reduction in predominant Campylobacter populations proposing that SUCRAM supplementation of swine diet has potential for reducing meat contamination and promoting food safety. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Intriguing differences and similarities in the surface compositions of the icy Saturnian and Galilean satellites

    NASA Astrophysics Data System (ADS)

    Hibbitts, C.

    2006-12-01

    Many materials in addition to water ice have been discovered in the surfaces of the icy Galilean and Saturnian satellites. Spacecraft infrared spectroscopy show intriguing differences and similarities suggestive of variations in primordial compositions and subsequent alteration. However, within the diverse compositions in their surfaces are similarities that cross between the systems. For instance, when nonice material is detected on these satellites, it is always hydrated. CO2 is detected in both systems where it is trapped in a host material except possibly for Enceladus where it may be deposited as ice from plumes [1-7]. Satellites in both systems contain aromatic hydrocarbons [8] and possibly CN-bearing materials [9]. The surfaces of Callisto, Ganymede, Europa, Iapetus, Phoebe, Hyperion, and Dione each contain some low albedo non-ice materials. The spectra have a broad 3-micron absorption feature due to structural OH or adsorbed water. However, the band is not sharp like a well-ordered clay mineral but broad, similar in some regards to less well-structured palagonite, goethite, or Murchison meteorite. The hydration of Jovian satellite nonice materials is greater for surfaces that have experienced more tectonism and alteration (i.e. increases from Callisto inward to Europa). The nonice material on Callisto appears to be a single composition (though itself possibly a mixture) that is slightly hydrated [10]. The nonice material on Europa is also of uniform composition everywhere observed, a very heavily hydrated material, perhaps a salt, hydrated SO4 (i.e. sulfuric acid), or both, that either originates from the subsurface ocean, radiolytically altered surface material, or both [11-13]. Ganymede appears to contain two types nonice materials; one an unidentified heavily hydrated material spectrally distinct from the Europa hydrate [11] and a second much less-abundant, less hydrated material spectrally similar to the Callisto nonice material that is largely associated with dark ray craters, possibly impactor contamination or desiccated Ganymede hydrate. The nonice materials on Phoebe and Iapetus is redder (from 1-2.5 microns) than the reddest material on the Galilean satellites (on Callisto) and compositionally different from each other. Iapetus appears to contain some (more) tholin material than Phoebe [14]. The CO2 on both satellites is similar to the CO2 detected in the nonice materials on Callisto and Ganymede with a reflectance minimum ~ 4.258 microns. The spectrum of the CO2 detected on Hyperion and Dione is distinct from that on Iapetus and Phoebe, having a reflectance minimum 10nm shorter at ~ 4.246 microns. This suggests a different bonding energy and possibly a different host material. In summary, the compositions of the icy Galilean satellites reflect the evolutionary state of their surfaces. The compositions of the icy Saturnian satellites are also complex, but with the exception of Enceladus, do not yet show any obvious dependencies on surface structure. There may some commonality in primordial compositions between the satellites of the two systems. References: [1]1Carlson et al., (1996) Science; [2] McCord et al., (1998) J. Geophys. Res.;[3] Hibbitts et al., (2000), J. Geophys. Res; [4] Hibbitts et al., (2003) J. Geophys. Res; [5] Clark et al., (2005) Nature; [6] Buratti et al., (2005) Astrophys. J.; [7] Brown et al., (2006) , Icarus; [8] Clark et al., (2005), Fall AGU; [9] Cruikshank et al., (2005), DPS [10] Calvin et al., (1991), Icarus; [11] McCord et al., 2000; [12]Carlson et al., 1999; [13]Orlando et al., (2005) Icarus; [14] Owens et al., (2001) Icarus;.

  12. Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis.

    PubMed

    Moss, C W; Wallace, P L; Hollis, D G; Weaver, R E

    1988-03-01

    We determined phenotypic characteristics, cellular fatty acid composition, and isoprenoid quinone content of representative strains of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. All organisms contained ubiquinone with eight isoprene units as the major isoprenolog, but distinct differences were observed in fatty acid composition. Twenty-eight of the original collection of CDC group EO-2 strains were further identified as P. immobilis, EO-2, or EO-3 by distinctive cellular fatty acid profiles, cellular morphology, and pigment production. The cellular fatty acid compositions of M-5 and M-6 were similar but were clearly different from those of other organisms. The genus Acinetobacter was differentiated from other organisms in the study by small amounts of 2-hydroxydodecanoic acid (2-OH-12:0), and P. immobilis was differentiated by small amounts of decanoic acid (10:0) and a branched-chain 17-carbon acid (i-17:0). All Moraxella species were distinguished by small amounts of decanoic acid (10:0) and the absence of i-17:0. M. bovis, M. nonliquefaciens, and some strains of M. lacunata formed a single fatty acid group, while M. osloensis, M. phenylpyruvica, M. atlantae, and other strains of M. lacunata (M. lacunata II) had species-specific fatty acid profiles. O. urethralis differed from Moraxella species by the presence of large amounts (49%) of cis-vaccenic acid (18:1 omega 7c), small amounts (1%) of 3-hydroxyhexadecanoate (3-OH-16:0), and the absence of 10:0 and 3-hydroxydodecanoate (3-OH-12:0). The combined use of chemical data and a small number of conventional tests permitted rapid identification and differentiation of these organisms from each other and from related organisms.

  13. Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis.

    PubMed Central

    Moss, C W; Wallace, P L; Hollis, D G; Weaver, R E

    1988-01-01

    We determined phenotypic characteristics, cellular fatty acid composition, and isoprenoid quinone content of representative strains of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. All organisms contained ubiquinone with eight isoprene units as the major isoprenolog, but distinct differences were observed in fatty acid composition. Twenty-eight of the original collection of CDC group EO-2 strains were further identified as P. immobilis, EO-2, or EO-3 by distinctive cellular fatty acid profiles, cellular morphology, and pigment production. The cellular fatty acid compositions of M-5 and M-6 were similar but were clearly different from those of other organisms. The genus Acinetobacter was differentiated from other organisms in the study by small amounts of 2-hydroxydodecanoic acid (2-OH-12:0), and P. immobilis was differentiated by small amounts of decanoic acid (10:0) and a branched-chain 17-carbon acid (i-17:0). All Moraxella species were distinguished by small amounts of decanoic acid (10:0) and the absence of i-17:0. M. bovis, M. nonliquefaciens, and some strains of M. lacunata formed a single fatty acid group, while M. osloensis, M. phenylpyruvica, M. atlantae, and other strains of M. lacunata (M. lacunata II) had species-specific fatty acid profiles. O. urethralis differed from Moraxella species by the presence of large amounts (49%) of cis-vaccenic acid (18:1 omega 7c), small amounts (1%) of 3-hydroxyhexadecanoate (3-OH-16:0), and the absence of 10:0 and 3-hydroxydodecanoate (3-OH-12:0). The combined use of chemical data and a small number of conventional tests permitted rapid identification and differentiation of these organisms from each other and from related organisms. Images PMID:3356788

  14. The origin of soil organic matter controls its composition and bioreactivity across a mesic boreal forest latitudinal gradient.

    PubMed

    Kohl, Lukas; Philben, Michael; Edwards, Kate A; Podrebarac, Frances A; Warren, Jamie; Ziegler, Susan E

    2018-02-01

    Warmer climates have been associated with reduced bioreactivity of soil organic matter (SOM) typically attributed to increased diagenesis; the combined biological and physiochemical transformation of SOM. In addition, cross-site studies have indicated that ecosystem regime shifts, associated with long-term climate warming, can affect SOM properties through changes in vegetation and plant litter production thereby altering the composition of soil inputs. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming, however, remains poorly understood. To address this issue we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids analysis), and isotopic composition of plant litter and SOM across a well-constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. The observed climate effects on vascular plant litter chemistry, however, explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer relative to cooler forests. These results indicate that climate change induced decreases in the proportion of moss inputs not only impacts SOM chemistry but also increases the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils. © 2017 John Wiley & Sons Ltd.

  15. Day-night differences in the composition and sources of carbonaceous aerosol at a polluted regional background site in the Netherlands

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Broekema, Elise; Holzinger, Rupert; Röckmann, Thomas; Meijer, Harro

    2017-04-01

    The origin of carbonaceous aerosol differs during day- and night-time, because emissions from major sources such as traffic, biomass combustion, and secondary organic aerosol formation show a distinct diurnal pattern. Moreover, photochemical processing and evaporation of semi-volatile organic compounds are enhanced during day-time, due to the availability of sunlight and higher temperatures. Assessing day-night differences in sources and chemical composition can give an indication of the importance of local/regional carbon sources and processing, since day-night differences should be averaged out during long-range transport. If local sources dominate, one could expect a strong diurnal variation in the source profile, but if long-range transport dominates the diurnal variation would be much weaker. In this study we measure the isotopic (14C and 13C) and detailed chemical composition of the organic fraction of the aerosol on high volume PM2.5 filter samples that were collected separately during day and night time. Radiocarbon (14C) measurements are used to estimate three main aerosol sources of organic and elemental carbon (OC and EC): Fossil fuel combustion (ff), biomass combustion (bb), and biogenic sources (bio). The detailed chemical and stable isotopic composition are measured at different desorption temperatures from the filter, which separates the more and less refractory organic compounds. The composition of the organic aerosol is measured using an thermal-desporption Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) method (Holzinger et al, 2010) and the stable isotopic composition is measured using a thermal desorption IRMS method (Dusek et al., 2013). Source apportionment results using 14C show that the contribution of fossil fuel combustion to EC and OC is higher during day-time than during night-time. This is valid for all seasons. During night-time biomass combustion plays a bigger role as a source of carbonaceous aerosol. Even in the summer, when biomass combustion is a small source, its relative contribution increases between 19:00 and 07:00. However, the diurnal changes in source contributions are relatively moderate (e.g., the biomass burning contribution to TC increased from 31% to 43% for the winter sample with the most distinct day-night difference.) This highlights the importance of long-range transport as a source of the carbonaceous aerosol in this region. First results from chemical composition measurements on four of the samples show that the concentration of less refractory organic carbon (desorption temperature up to 200 °C) increases at night-time much more strongly than the concentration of the more refractory carbon. Similarly, the concentration of small organic compounds with m/z < 100 also increases more strongly than heavier compounds. This indicates partitioning of semi-volatile OC as a possible additional night-time source. The chemical composition will be studied in more detail, focusing on diurnal changes in O/C ratios, individual compounds and compound classes, such as hydrocarbons or organic acids. Dusek, U., Meusinger, C., Oyama, B., Ramon, W., de Wilde, P., Holzinger, R., and Röckmann, T.: A thermal desorption system for measuring δ 13 C ratios on organic aerosol, Journal of aerosol science, 66, 72-82, 2013. Holzinger, R., Williams, J., Herrmann, F., Lelieveld, J., Donahue, N., Röckmann, T., 2010. Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols. Atmospheric chemistry and physics 10, 2257-2267.

  16. Bronze Age pottery from the Aeolian Islands: definition of Temper Compositional Reference Units by an integrated mineralogical and microchemical approach

    NASA Astrophysics Data System (ADS)

    Brunelli, D.; Levi, S. T.; Fragnoli, P.; Renzulli, A.; Santi, P.; Paganelli, E.; Martinelli, M. C.

    2013-12-01

    An integrated microchemical-petrographic approach is here proposed to discriminate the provenance of archaeological pottery artefacts from distinct production centres. Our study focuses on a statistically significant sampling ( n=186) of volcanic temper-bearing potteries representative of the manufacturing and dispersion among the islands of the Aeolian Archipelago during the Bronze Age. The widespread establishment of new settlements and the abundant recovery of Aeolian-made ceramic in southern Italy attest for the increased vitality of the Archipelago during the Capo Graziano culture (Early Bronze Age-Middle Bronze Age 2; 2300-1430 BC). Potteries from three of the main known ancient communities (Lipari, Filicudi and Stromboli) have been studied integrating old collections and newly excavated material. Volcanic tempers have been first investigated through multivariate analyses of relative abundances of mineral and rock clasts along with petrographic characters. In addition, we performed in-situ mineral chemistry microanalyses by Electron Microprobe and Laser Ablation—Inductively Coupled Plasma Mass Spectrometry to assess major and trace element composition of the most common mineral phases. Four Temper Compositional Reference Units have been recognised based on compositional trends. Two units (AI and AX) are unequivocally distinct by their peculiar trace element enrichment and petrographic composition; they mostly contain samples from the sites of Lipari and Stromboli, respectively. Units AIV and AVIII, restricted to the sites of Filicudi and Stromboli, show distinct petrographic characters but overlapped geochemical fingerprints.

  17. Magma mixing in granite petrogenesis: Insights from biotite inclusions in quartz and feldspar of Mesozoic granites from South China

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zhao, Zi-Fu; Zheng, Yong-Fei

    2016-06-01

    Magma mixing is a common process in granite petrogenesis. The major element composition of biotites in granites is primarily controlled by the composition of magmas from which they crystallized. Biotite grains enclosed in quartz and feldspars of granites are naturally protected by their host minerals, so that their compositions are likely original and can potentially be used to track the magma mixing. This is illustrated by a combined study of matrix and inclusion biotites from Mesozoic granites in the Nanling Range, South China. Three granite samples have been used in this study: one two-mica granite and two biotite granites. The biotites of different occurrences in the two-mica granite have no compositional distinctions. Biotites in the two-mica granite have higher Al2O3 and lower MgO than those in the biotite granites. The former is consistent with biotites from typical S-type granites of metasedimentary origin. In contrast, biotites from the biotite granites can be categorized into different groups based on their paragenetic minerals and geochemical compositions. They have relatively low aluminous saturation indices but higher Mg numbers, falling in the transitional field between typical S- and I-type granites. In addition, there are two contrasting zircon populations with nearly identical U-Pb ages in the biotite granites. One shows clearly oscillatory zonings in CL images, whereas the other is totally dark and often overgrew on the former one. The zircons with oscillatory zonings have higher δ18O values than the dark ones, indicating their growth from two compositionally different magmas, respectively, with different sources. An integrated interpretation of all these data indicates that mixing of two different magmas was responsible for the petrogenesis of biotite granites. Therefore, the study of biotite inclusions provides insights into the magma mixing in granite petrogenesis.

  18. Complex Processes from Dynamical Architectures with Time-Scale Hierarchy

    PubMed Central

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor

    2011-01-01

    The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes. PMID:21347363

  19. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model.

    PubMed

    Diesner, Susanne C; Bergmayr, Cornelia; Pfitzner, Barbara; Assmann, Vera; Krishnamurthy, Durga; Starkl, Philipp; Endesfelder, David; Rothballer, Michael; Welzl, Gerhard; Rattei, Thomas; Eiwegger, Thomas; Szépfalusi, Zsolt; Fehrenbach, Heinz; Jensen-Jarolim, Erika; Hartmann, Anton; Pali-Schöll, Isabella; Untersmayr, Eva

    2016-12-01

    In our mouse model, gastric acid-suppression is associated with antigen-specific IgE and anaphylaxis development. We repeatedly observed non-responder animals protected from food allergy. Here, we aimed to analyse reasons for this protection. Ten out of 64 mice, subjected to oral ovalbumin (OVA) immunizations under gastric acid-suppression, were non-responders without OVA-specific IgE or IgG1 elevation, indicating protection from allergy. In these non-responders, allergen challenges confirmed reduced antigen uptake and lack of anaphylactic symptoms, while in allergic mice high levels of mouse mast-cell protease-1 and a body temperature reduction, indicative for anaphylaxis, were determined. Upon OVA stimulation, significantly lower IL-4, IL-5, IL-10 and IL-13 levels were detected in non-responders, while IL-22 was significantly higher. Comparison of fecal microbiota revealed differences of bacterial communities on single bacterial Operational-Taxonomic-Unit level between the groups, indicating protection from food allergy being associated with a distinct microbiota composition in a non-responding phenotype in this mouse model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Spatial organization of the gastrointestinal microbiota in urban Canada geese

    USGS Publications Warehouse

    Drovetski, Sergei V.; O'Mahoney, Michael; Ransome, Emma J.; Matterson, Kenan O.; Lim, Haw Chuan; Chesser, Terry; Graves, Gary R.

    2018-01-01

    Recent reviews identified the reliance on fecal or cloacal samples as a significant limitation hindering our understanding of the avian gastrointestinal (gut) microbiota and its function. We investigated the microbiota of the esophagus, duodenum, cecum, and colon of a wild urban population of Canada goose (Branta canadensis). From a population sample of 30 individuals, we sequenced the V4 region of the 16S SSU rRNA on an Illumina MiSeq and obtained 8,628,751 sequences with a median of 76,529 per sample. These sequences were assigned to 420 bacterial OTUs and a single archaeon. Firmicutes, Proteobacteria, and Bacteroidetes accounted for 90% of all sequences. Microbiotas from the four gut regions differed significantly in their richness, composition, and variability among individuals. Microbial communities of the esophagus were the most distinctive whereas those of the colon were the least distinctive, reflecting the physical downstream mixing of regional microbiotas. The downstream mixing of regional microbiotas was also responsible for the majority of observed co-occurrence patterns among microbial families. Our results indicate that fecal and cloacal samples inadequately represent the complex patterns of richness, composition, and variability of the gut microbiota and obscure patterns of co-occurrence of microbial lineages.

  1. Fish-based indicators of estuarine condition that do not require reference data

    NASA Astrophysics Data System (ADS)

    Tweedley, James R.; Warwick, Richard M.; Hallett, Chris S.; Potter, Ian C.

    2017-05-01

    The species composition of fish communities in 15 microtidal estuaries in south-western Australia, ranging from permanently-open to normally-closed, is shown to be related to the geomorphological and hydrological regimes and not to environmental condition. This study then explored the effectiveness of using qualitative taxonomic distinctness and ABC curves for fish data as indicators of the environmental condition in nearshore, shallow waters of these estuaries and, in the case of taxonomic distinctness, also of their offshore, deeper waters. Neither of these indices require spatial or temporal reference data, which may be either prohibitively expensive and time-consuming to collect or unavailable. Taxonomic distinctness, in both nearshore and offshore waters, varied consistently among estuaries in relation to their recorded environmental status, and is thus a good indicator of overall estuarine condition. ABC analyses, however, did not prove a good measure of the environmental condition of the estuaries, because their results largely reflect differences in accessibility of the estuary to marine estuarine-opportunist species and especially those that grow to a larger size. It is concluded that taxonomic distinctness indices provide a rapid and cost-effective method for assessing the environmental condition of estuaries, particularly those with limited spatial or temporal reference data.

  2. Evidence from Polymict Ureilite Meteorites for a Single "Rubble-Pile" Ureilite Parent Asteroid Gardened by Several Distinct Impactors

    NASA Technical Reports Server (NTRS)

    Downes, Hilary; Mittlefehldt, David W.; Kita, Noriko T.; Valley, John W.

    2008-01-01

    Ureilites are ultramafic achondrite meteorites that have experienced igneous processing whilst retaining heterogeneity in mg# and oxygen isotope ratios. Polymict ureilites represent material derived from the surface of the ureilite parent asteroid(s). Electron microprobe analysis of more than 500 olivine and pyroxene clasts in six polymict ureilites reveals that they cover a statistically identical range of compositions to that shown by all known monomict ureilites. This is considered to be convincing evidence for derivation from a single parent asteroid. Many of the polymict ureilites also contain clasts that have identical compositions to the anomalously high Mn/Mg olivines and pyroxenes from the Hughes 009 monomict ureilite (here termed the Hughes cluster ). Four of the six samples also contain distinctive ferroan lithic clasts that have been derived from oxidized impactors. The presence of several common distinctive lithologies within the polymict ureilites is additional evidence that the ureilites were derived from a single parent asteroid. Olivine in a large lithic clast of augite-bearing ureilitic has an mg# of 97, extending the compositional range of known ureilite material. Our study confirms that ureilitic olivine clasts with mg#s < 85 are much more common than those with mg# > 85, which also show more variable Mn contents, including the melt-inclusion bearing "Hughes cluster" ureilites. We interpret this to indicate that the parent ureilite asteroid was disrupted by a major impact at a time when melt was still present in regions with a bulk mg# > 85, giving rise to the two types of ureilites: common ferroan ones that were already residual after melting and less common magnesian ones that were still partially molten when disruption occurred, some of which are the result of interaction of melts with residual mantle during disruption. A single daughter asteroid re-accreted from the disrupted remnants of the mantle of the proto-ureilite asteroid, giving rise to a "rubble-pile" body that had material of a wide variety of compositions and shock states present on its surface. The analysed polymict ureilite meteorites represent regolith that subsequently formed on this asteroidal surface, including impact-derived material from at least six different meteoritic sources.

  3. Delineating ecological regions in marine systems: Integrating physical structure and community composition to inform spatial management in the eastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Baker, Matthew R.; Hollowed, Anne B.

    2014-11-01

    Characterizing spatial structure and delineating meaningful spatial boundaries have useful applications to understanding regional dynamics in marine systems, and are integral to ecosystem approaches to fisheries management. Physical structure and drivers combine with biological responses and interactions to organize marine systems in unique ways at multiple scales. We apply multivariate statistical methods to define spatially coherent ecological units or ecoregions in the eastern Bering Sea. We also illustrate a practical approach to integrate data on species distribution, habitat structure and physical forcing mechanisms to distinguish areas with distinct biogeography as one means to define management units in large marine ecosystems. We use random forests to quantify the relative importance of habitat and environmental variables to the distribution of individual species, and to quantify shifts in multispecies assemblages or community composition along environmental gradients. Threshold shifts in community composition are used to identify regions with distinct physical and biological attributes, and to evaluate the relative importance of predictor variables to determining regional boundaries. Depth, bottom temperature and frontal boundaries were dominant factors delineating distinct biological communities in this system, with a latitudinal divide at approximately 60°N. Our results indicate that distinct climatic periods will shift habitat gradients and that dynamic physical variables such as temperature and stratification are important to understanding temporal stability of ecoregion boundaries. We note distinct distribution patterns among functional guilds and also evidence for resource partitioning among individual species within each guild. By integrating physical and biological data to determine spatial patterns in community composition, we partition ecosystems along ecologically significant gradients. This may provide a basis for defining spatial management units or serve as a baseline index for analyses of structural shifts in the physical environment, species abundance and distribution, and community dynamics over time.

  4. Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size-classes of modern marine sediments from the Washington coast

    NASA Astrophysics Data System (ADS)

    Keil, Richard G.; Tsamakis, Elizabeth; Giddings, J. Calvin; Hedges, John I.

    1998-04-01

    In order to examine relationships of organic matter source, composition, and diagenesis with particle size and mineralogy in modern marine depositional regimes, sediments from the continental shelf and slope along the Northwest Pacific rim (Washington coast, USA) were sorted into hydrodynamic size fractions (sand: >250, 63-250 μm; silt: 35-63, 17-35, 8-17, 3-8 μm; and clay-sized: 1-3, 0.5-1, <0.5 μm). The size fractions were then density fractionated to separate distinct organic debris from mineral-associated organic matter, and the various separates were analyzed for their amino acid, aldose, and lignin compositions. The composition of organic matter in the separates changes markedly as a function of particle size and density. Large compositional differences were observed between the clay-sized fractions (dominated mineralogically by smectites), the sand-sized mineral-associated isolates (quartz-rich), and floated coarse organic matter (dominated by vascular plant debris). Organic matter intimately associated with the clay-sized fractions shows the most extensive diagenetic alteration, as reflected in high abundances of nonprotein amino acids (especially β-alanine), elevated lignin phenol acid/aldehyde ratios, and high relative concentrations of the deoxyhexoses fucose and rhamnose. Organic matter in the silt fractions, though degraded, is not as diagenetically altered as in the clay fractions. Enrichment of pollen grains in the silt-size material is reflected by high cinnamic acid to ferulic acid lignin phenol ratios. The highest pollen biochemical signal is observed in the silt fractions of the deepest station (1835 m), where pollen abundances are also highest. Organic matter tightly bound in the silt and sand-sized fractions are enriched in aldoses and show indications of enhanced microbial biomass as reflected by high weight percentages of ribose. Distinct organic debris was composed of relatively unaltered vascular plant remains as reflected by high lignin phenol yields and low acid/aldehyde ratios. Clay-size fractions are enriched in nitrogenous components, as reflected by elevated yields of total and basic amino acids (especially lysine). Silt- and sand-size fractions rich in quartz and albite show slightly higher yields of neutral amino acids. Consistent trends across all size classes and among the different depositional settings illustrates that only a small portion of the organic matter is present as distinct organic debris (e.g. pollen, vascular plant tissues, etc.), but that this debris can be isolated in specific size classes. The data for surface-associated organic matter are consistent with, but not conclusive of, selective partitioning of some organic matter to specific mineral surfaces. The dominant size class-specific trends in organic matter composition are due to changes in both source and diagenetic alteration.

  5. Impact of gas chromatography and mass spectrometry combined with gas chromatography and olfactometry for the sex differentiation of Baccharis articulata by the analysis of volatile compounds.

    PubMed

    Minteguiaga, Manuel; Umpiérrez, Noelia; Fariña, Laura; Falcão, Manuel A; Xavier, Vanessa B; Cassel, Eduardo; Dellacassa, Eduardo

    2015-09-01

    The Baccharis genus has more than 400 species of aromatic plants. However, only approximately 50 species have been studied in oil composition to date. From these studies, very few take into consideration differences between male and female plants, which is a significant and distinctive factor in Baccharis in the Asteraceae family. Baccharis articulata is a common shrub that grows wild in south Brazil, northern and central Argentina, Bolivia, Paraguay and Uruguay. It is considered to be a medicinal plant and is employed in traditional medicine. We report B. articulata male and female volatile composition obtained by simultaneous distillation-extraction technique and analyzed by gas chromatography with mass spectrometry. Also, an assessment of aromatic differences between volatile extracts was evaluated by gas chromatography with olfactometry. The results show a very similar chemical composition between male and female extracts, with a high proportion of terpene compounds of which β-pinene, limonene and germacrene D are the main components. Despite the chemical similarity, great differences in aromatic profile were found: male plant samples exhibited the strongest odorants in number and intensity of aromatic attributes. These differences explain field observations which indicate differences between male and female flower aroma, and might be of ecological significance in the attraction of pollinating insects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. UHPLC-Q-TOF-MS-based metabolomics approach to compare the saponin compositions of Xueshuantong injection and Xuesaitong injection.

    PubMed

    Yao, Changliang; Yang, Wenzhi; Zhang, Jingxian; Qiu, Shi; Chen, Ming; Shi, Xiaojian; Pan, Huiqin; Wu, Wanying; Guo, Dean

    2017-02-01

    Various traditional Chinese medicine preparations developed from Notoginseng total saponins, including Xueshuantong injection and Xuesaitong injection, are extensively used in China to treat cardiocerebrovascular diseases. However, the difference of their saponin compositions remains unknown. An ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry based metabolomics approach was developed to probe the saponin discrimination between Xueshuantong and Xuesaitong and the related factors by large sample analysis. A highly efficient chromatographic separation was achieved on an HSS T3 column within 20 min with the holistic metabolites information recorded in the negative MS E mode. A six-step data pretreatment procedure mainly based on Progenesis QI and mass defect filtering was established. Pattern recognition chemometrics was used to discover the potential saponin markers. The saponin composition of Wuzhou Xueshuantong showed distinct discrimination from the other products. Wuzhou Xueshuantong contains more abundant protopanaxatriol-type noto-R 1 , Rg 1 , Re, and protopanaxadiol-type Rb 1 , but less Rd and other low-polarity protopanaxadiol-type ginsenosides. These differences could not directly correlate to the use of different parts of Panax notoginseng, but possibly to the different preparation techniques employed by different manufacturers. These results are beneficial to the establishment of pharmacopoeia standards and the assessment of the efficacy and adverse drug reactions for these homologous products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of long-term drainage on microbial community composition vary between peatland types

    NASA Astrophysics Data System (ADS)

    Urbanová, Zuzana; Barta, Jiri

    2016-04-01

    Peatlands represent an important reservoir of carbon, but their functioning can be threatened by water level drawdown caused by climate or land use change. Knowledge of how microbial communities respond to long-term drainage in different peatland types could help improve predictions of the effect of climate change on these ecosystems. We investigated the effect of long-term drainage on microbial community composition in bog, fen and spruce swamp forests (SSF) in the Sumava Mountains (Czech Republic), using high-throughput barcoded sequencing, in relation to peat biochemical properties. Longterm drainage had substantial effects, which depended strongly on peatland type, on peat biochemical properties and microbial community composition. The effect of drainage was most apparent on fen, followed by SSF, and lowest on bog. Long-term drainage led to lower pH, reduced peat decomposability and increased bulk density, which was reflected by reduced microbial activity. Bacterial diversity decreased and Acidobacteria became the dominant phylum on drained sites, reflecting a convergence in bacterial community composition across peatlands after long-term drainage. The archaeal communities changed very strongly and became similar across drained peatlands. Overall, the characteristic differences between distinct peatland types under natural conditions were diminished by long-term drainage. Bog represented a relatively resilient system while fen seemed to be very sensitive to environmental changes.

  8. Composite biodegradable biopolymer coatings of silk fibroin - Poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications

    NASA Astrophysics Data System (ADS)

    Miroiu, Floralice Marimona; Stefan, Nicolaie; Visan, Anita Ioana; Nita, Cristina; Luculescu, Catalin Romeo; Rasoga, Oana; Socol, Marcela; Zgura, Irina; Cristescu, Rodica; Craciun, Doina; Socol, Gabriel

    2015-11-01

    Composite silk fibroin-poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) (SF-PHBV) biodegradable coatings were grown by Matrix Assisted Pulsed Laser Evaporation on titanium substrates. Their physico-chemical properties and particularly the degradation behavior in simulated body fluid at 37 °C were studied as first step of applicability in local controlled release for tissue regeneration applications. SF and PHBV, natural biopolymers with excellent biocompatibility, but different biodegradability and tensile strength properties, were combined in a composite to improve their properties as coatings for biomedical uses. FTIR analyses showed the stoichiometric transfer from targets to coatings by the presence in the spectra of the main absorption maxima characteristic of both polymers. XRD investigations confirmed the FTIR results showing differences in crystallization behavior with respect to the SF and PHBV content. Contact angle values obtained through wettability measurements indicated the MAPLE deposited coatings were highly hydrophilic; surfaces turning hydrophobic with the increase of the PHBV component. Degradation assays proved that higher PHBV contents resulted in enhanced resistance and a slower degradation rate of composite coatings in SBF. Distinct drug-release schemes could be obtained by adjusting the SF:PHBV ratio to controllably tuning the coatings degradation rate, from rapid-release formulas, where SF predominates, to prolonged sustained ones, for larger PHBV content.

  9. Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying

    NASA Astrophysics Data System (ADS)

    Löbel, M.; Lindner, T.; Kohrt, C.; Lampke, T.

    2017-03-01

    High Entropy Alloys (HEA) are gaining increasing interest due to their unique combination of properties. Especially the combination of high mechanical strength and hardness with distinct ductility makes them attractive for numerous applications. One interesting alloy system that exhibits excellent properties in bulk state is AlCoCrFeNiTi. A high strength, wear resistance and high-temperature resistance are the necessary requirements for the application in surface engineering. The suitability of blended, mechanically ball milled and inert gas atomized feedstock powders for the development of atmospheric plasma sprayed (APS) coatings is investigated in this study. The ball milled and inert gas atomized powders were characterized regarding their particle morphology, phase composition, chemical composition and powder size distribution. The microstructure and phase composition of the thermal spray coatings produced with different feedstock materials was investigated and compared with the feedstock material. Furthermore, the Vickers hardness (HV) was measured and the wear behavior under different tribological conditions was tested in ball-on-disk, oscillating wear and scratch tests. The results show that all produced feedstock materials and coatings exhibit a multiphase composition. The coatings produced with inert gas atomized feedstock material provide the best wear resistance and the highest degree of homogeneity.

  10. Density Of The Continental Roots: Compositional And Thermal Effects

    NASA Astrophysics Data System (ADS)

    Kaban, M. K.; Schwintzer, P.; Artemieva, I.; Mooney, W. D.

    We use gravity, thermal, and seismic data to examine how the density and composi- tion of lithospheric roots vary beneath the cratons. Our interpretation is based on the gravity anomalies calculated by subtracting the gravitational effects of bathymetry, to- pography, and the crust from the observed gravity field, and the residual topography that characterizes the isostatic state of the lithosphere. We distinguish the effects of temperature and compositional variations in producing lithospheric density anomalies using two independent temperature constrains: based on interpretation of the surface heat flow data and estimated from global seismic tomography data. We find that in situ lithospheric density differs significantly between individual cratons, with the most dense values found beneath Eurasia and the least dense values beneath South Africa. This demonstrates that there is not a simple compensation of thermal and composition effects. We present a new gravity anomaly map that was corrected for crustal density structure and lithospheric temperatures. This map reveals differences in lithospheric composition, that are the result of the petrologic processes that have formed and mod- ified the lithosphere. All significant negative gravity anomalies are found in cratonic regions. In contrast, positive gravity anomalies are found in two distinct regions: near ocean-continent and continent-continent subduction zones, and within some continen- tal interiors. The origin of the latter positive anomalies is uncertain.

  11. Compositional Variation in Apollo 16 Impact-Melt Breccias and Inferences for the Geology and Bombardment History of the Central Highlands of the Moon

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.

    1994-01-01

    High-precision data for the concentrations of a number of lithophile and siderophile elements were obtained on multiple subsamples from 109 impact-melt rocks and breccias (mostly crystalline) from the Apollo 16 site. Compositions of nearly all Apollo 16 melt rocks fall on one of two trends of increasing Sm concentration with increasing Sc concentration. The Eastern trend (lower Sm/Sc, Mg/Fe, and Sm/Yb ratios) consists of compositional groups 3 and 4 of previous classification schemes. These melt rocks are feldspathic, poor in incompatible and siderophile elements, and appear to have provenance in the Descartes formation to the east of the site. The Western trend (higher Sm/Sc. Mg/Fe, and Sm/ Yb ratios) consists of compositional groups 1 and 2. These relatively mafic, KREEP-bearing breccias are a major component (approx.35%) of the Cayley plains west of the site and are unusual, compared to otherwise similar melt breccias from other sites, in having high concentrations of Fe-Ni metal ( 1-2 %). The metal is the carrier of the low-Ir/Au (approx. 0.3 x chondritic) siderophile-element signature that is characteristic of the Apollo 16 site. Four compositionally distinct groups (1M, 1F, 2DB, and 2NR) of Western-trend melt breccias occur that are each represented by at least six samples. Compositional group 1 or previous classification schemes (the 'poikilitic' or 'LKFM' melt breccias) can be subdivided into two groups. Group 1M (represented by six samples, including 60315) is characterized by lower Al2O3 concentrations, higher MgO and alkali concentrations, and higher Mg/Fe and Cr/Sc ratios than group 1F (represented by fifteen samples, including 65015). Group 1M also has siderophile-element concentrations averaging about twice those of group lF and Ir/Au and Ir/Ni ratios that are even lower than those of other Western-trend melt rocks (Ir/Au = 0.24 +/- 0.03. CI-normalized). At the mafic extreme of group 2 ('VHA' melt breccias), the melt lithology occurring as clasts in feldspathic fragmental breccias from North Ray crater (group 2NR) is compositionally distinct from the melt lithology ofdimict breccias from the Cayley plains (group 2DB) in having higher concentrations of Sc, Cr, and heavy rare earth elements and lower concentrations of siderophile elements. The distinct siderophile-element signature (high absolute abundances, low Ir/Au ratio) suggest that the four groups ofmafic melt breccia are all somehow related. Ratios ofsome lithophile elements also suggest that they are more closely related to each other than then, are to melt breccias from other Apoll sites. However, none of the breccia compositions can be related to any of the others by any simple process of igneous fractionation or mixing involving common lunar materials. Thus, the origin of the four groups of mafic melt breccia is enigmatic. If they were produced in only one or two impacts, then a mechanism exists for generating regimes of impact-melt breccia in a single impact that are substantially different from each other in composition. For various reasons, including the problem of delivering large volumes of four different types of melt to the Apollo 16 site, it is unlikely that any of these breccias were produced in basin-forming impacts. If they were produced in as many as four crater-forming impacts, then the unusual siderophile-element signature is difficult to explain. Possible explanations are (1) the four groups of melt breccia all contain metal from a single, earlier impact, (2) they were each formed by related metal-rich meteoroids, or (3) some common postimpact process has resulted in metal of similar composition in each of four melt pools. Within a compositional group, most intrasample and intersample variation in lithophile element concentrations is caused by differences among samples in the proportion of a component of normative anorthosite or noritic anorthosite. In most cases, this compositional variation probably reflects variation in clast abundance. For group 2DB (and probably 2NR), differences in abundance of a component of ferroan anorthosite (estimated Al2O3 approx. 32%) accounts for the compositional variation. For groups 1M and 1F, the anorthositic component is more mafic (estimated Al203 approx. 26%). Some group-2 samples may be related by a troctolitic component of varying abundance.

  12. Subunit Compositions of the RNA-Silencing Enzymes Pol IV and Pol V Reveal Their Origins as Specialized Forms of RNA Polymerase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ream, Thomas S.; Haag, J. R.; Wierzbicki, A. T.

    2009-01-30

    In addition to RNA polymerases I, II, and III, the essential RNA polymerases present in all eukaryotes, plants have two additional nuclear RNA polymerases, abbreviated as Pol IV and Pol V, that play nonredundant roles in siRNA-directed DNA methylation and gene silencing. We show that Arabidopsis Pol IV and Pol V are composed of subunits that are paralogous or identical to the 12 subunits of Pol II. Four subunits of Pol IV are distinct from their Pol II paralogs, six subunits of Pol V are distinct from their Pol II paralogs, and four subunits differ between Pol IV and Polmore » V. Importantly, the subunit differences occur in key positions relative to the template entry and RNA exit paths. Our findings support the hypothesis that Pol IV and Pol V are Pol II-like enzymes that evolved specialized roles in the production of noncoding transcripts for RNA silencing and genome defense.« less

  13. Differential tolerance to cyanobacterial exposure between geographically distinct populations of Perca fluviatilis.

    PubMed

    Persson, Karl-Johan; Bergström, Kristofer; Mazur-Marzec, Hannah; Legrand, Catherine

    2013-12-15

    Toxic cyanobacterial blooms are an important problem worldwide. Cyanobacteria may negatively impact young-of-the-year (YOY) fish directly (toxin production, turbidity, decrease in water quality) or indirectly (trophic toxin transfer, changes in prey species composition). Here we test whether there are any differences in cyanobacterial tolerance between four geographically distinct populations of European perch (Perca fluviatilis). We show that P. fluviatilis may develop tolerance against cyanobacteria demonstrated by the ability of individuals from a marine site (exposed to annual cyanobacterial blooms) to increase their detoxification more than individuals from an oligotrophic site (rarely exposed to cyanobacteria). Our results also revealed significant interaction effects between genotypes within a population and response to cyanobacterial exposure in terms of absolute growth and detoxification activity. This genotype by treatment interaction may result in local adaptations to cyanobacterial exposure in P. fluviatilis. Hence, the sensitivity against cyanobacterial exposure may differ between within species populations increasing the importance of local management of fish populations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Compositional structure of the asteroid belt.

    PubMed

    Gradie, J; Tedesco, E

    1982-06-25

    The distribution of compositional types among the asteroids is found to vary systematically with heliocentric distance. Seven distinct peaks in the relative proportion of the compositional types E, R, S, M, F, C, P, and D are found from 1.8 to 5.2 astronomical units. The inferred composition of the asteroids in each semimajor axis region is consistent with the theory that the asteroids accreted from the solar nebula at or near their present locations.

  15. Biochemical composition of deep-sea decapod crustaceans with two different benthic life strategies off the Portuguese south coast

    NASA Astrophysics Data System (ADS)

    Rosa, R.; Nunes, M. L.

    2003-01-01

    The objectives of the present study were to characterize the benthic life strategies of Aristeus antennatus (Crustacea: Penaeidea), Parapenaeus longirostris (Crustacea: Penaeidea) and Nephrops norvegicus (Crustacea: Astacidea) on the basis of biochemical composition (proximate chemical composition, total lipids, glycogen and cholesterol contents), and its response to biological and environmental factors (sex, maturation, reproduction, food availability and depth) into account. The specimens were collected at depths between 200 and 600 m off the Portuguese south coast (Algarve). The nektobenthic species ( A. antennatus and P. longirostris) showed higher protein, lipid, cholesterol and glycogen contents, and lower moisture content in the muscle than the benthic-endobenthic species ( N. norvegicus). Consequently, the energy content of the nektobenthic species was also higher. Principal component analyses were used to assess the relationship between the different biochemical contents and to relate them to the biotic and abiotic factors. Depth seems to have the most important role in the observed trends of the biochemical composition. The increase of the ovarian lipid levels occurs as a result of the maturation process. The highest values were obtained in mature N. norvegicus females. The differences can be due to maternal investment (lipid metabolism of the female is geared to the provision of egg lipid), since N. norvegicus produce large lecithotrophic eggs. The biochemical differences observed in the three species did not seem to be due to distinct trophic strategies, but instead were a consequence of depth, which may have a significant interspecific effect on food intake. It was also evident that reproductive cycle has profound effects upon the biochemistry of the three species. Gonadal maturation has large associated energy costs due to the increase in biosynthetic work. Moreover, the biochemical composition would be influenced by or synchronized with seasonal feeding activity or food availability.

  16. [Community structure of soil meso- and micro-fauna in different habitats of urbanized region].

    PubMed

    Qin, Zhong; Zhang, Jia-en; Li, Qing-fang

    2009-12-01

    Investigations were made in May, June, and November 2007 and January 2008 to study the structural characteristics and their seasonal variations of soil meso- and micro-fauna communities in six habitats of three land use types (forest land, constructed grassland and farmland) in Tianhe District of Guangzhou City. The horizontal spatial distribution of soil fauna differed with habitat. During the investigation periods, the Botanical Garden of South China Agricultural University had the highest individual number (1286) of soil mesa- and micro-fauna, while the farmland, especially in the Fenghuang Street area, had the lowest number of individuals and groups. The seasonal variation of the individual number was in order of autumn (1815) > spring (1623) > winter (1365) > summer (1276). Hierarchical clustering and detrended correspondence analysis also showed that the community composition of soil meso- and micro-fauna in different habitats exhibited distinct seasonal variation. In the same seasons, the community structure and composition of soil meso- and micro-fauna in different habitats were correlated to the degrees of human interferences and the properties of soil environment.

  17. In Vitro Reconstitution of Autophagosome-Lysosome Fusion.

    PubMed

    Diao, J; Li, L; Lai, Y; Zhong, Q

    2017-01-01

    SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) proteins are a highly regulated class of membrane proteins lying in the center of membrane fusion. In conjunction with accessory proteins, SNAREs drive efficient merger of two distinct lipid bilayers into one interconnected structure. This chapter describes our fluorescence resonance energy transfer (FRET)-based proteoliposome fusion assays for the roles of various SNARE proteins, accessory proteins, and effects of different lipid compositions on membrane fusion involved in autophagy. © 2017 Elsevier Inc. All rights reserved.

  18. Local unitary invariants for N-qubit pure states

    NASA Astrophysics Data System (ADS)

    Sharma, S. Shelly; Sharma, N. K.

    2010-11-01

    The concept of negativity font, a basic unit of multipartite entanglement, is introduced. Transformation properties of determinants of negativity fonts under local unitary (LU) transformations are exploited to obtain relevant N-qubit polynomial invariants and construct entanglement monotones from first principles. It is shown that entanglement monotones that detect the entanglement of specific parts of the composite system may be constructed to distinguish between states with distinct types of entanglement. The structural difference between entanglement monotones for an odd and even number of qubits is brought out.

  19. Crystallization of Na2O-SiO2 gel and glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Weinberg, M. C.

    1984-01-01

    The crystallization behavior of a 19 wt pct soda silica gel and gel-derived glass was compared to that of the ordinary glass of the same composition. Both bulk and ground glass samples were utilized. X-ray diffraction measurements were made to identify the crystalline phases and gauge the extent of crystallization. It was found that the gel crystallized in a distinctive manner, while the gel glass behavior was not qualitatively different from that of the ordinary glass.

  20. Equilibrated moisture content of several carbon phenolics and their relationship to resin, fiber, and interface properties

    NASA Technical Reports Server (NTRS)

    Stokes, E. H.

    1991-01-01

    This study focuses on the relationship between relative humidity and the equilibrated moisture content of several variants of two distinctly different carbon phenolic composites. One of the materials gives a typical exponential relationship between RH and equilibrated moisture content while the second gives an inverse sigmoidal relationship with the largest increase in moisture between 45-60 percent relative humidity. The possible relationship between the shape of the curves and the nature of the material constituents is discussed.

  1. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog

    PubMed Central

    Sapers, Haley M.; Ronholm, Jennifer; Raymond-Bouchard, Isabelle; Comrey, Raven; Osinski, Gordon R.; Whyte, Lyle G.

    2017-01-01

    While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island. The hypersaline springs on Axel Heiberg represent a unique analog to putative subsurface aquifers on Mars. The Martian subsurface represents the longest-lived potentially habitable environment on Mars and a better understanding of the microbial communities on Earth that thrive in analog conditions will help direct future life detection missions. The microbial mats sampled on Axel Heiberg are only visible during the summer months in seasonal flood plains formed by melt water and run-off from the proximal spring. Targeted-amplicon sequencing revealed that not only does the bacterial composition of the two mat communities differ substantially from the sediment community of the proximal cold spring, but that the mat communities are distinct from any other microbial community in proximity to the Arctic springs studied to date. All samples are dominated by Gammaproteobacteria: Thiotichales is dominant within the spring samples while Alteromonadales comprises a significant component of the mat communities. The two mat samples differ in their Thiotichales:Alteromonadales ratio and contribution of Bacteroidetes to overall diversity. The red mats have a greater proportion of Alteromonadales and Bacteroidetes reads. The distinct bacterial composition of the mat bacterial communities suggests that the spring communities are not sourced from the surface, and that seasonal melt events create ephemerally habitable niches with distinct microbial communities in the Canadian high arctic. The finding that these surficial complex microbial communities exist in close proximity to perennial springs demonstrates the existence of a transiently habitable niche in an important Mars analog site. PMID:29312221

  2. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog.

    PubMed

    Sapers, Haley M; Ronholm, Jennifer; Raymond-Bouchard, Isabelle; Comrey, Raven; Osinski, Gordon R; Whyte, Lyle G

    2017-01-01

    While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island. The hypersaline springs on Axel Heiberg represent a unique analog to putative subsurface aquifers on Mars. The Martian subsurface represents the longest-lived potentially habitable environment on Mars and a better understanding of the microbial communities on Earth that thrive in analog conditions will help direct future life detection missions. The microbial mats sampled on Axel Heiberg are only visible during the summer months in seasonal flood plains formed by melt water and run-off from the proximal spring. Targeted-amplicon sequencing revealed that not only does the bacterial composition of the two mat communities differ substantially from the sediment community of the proximal cold spring, but that the mat communities are distinct from any other microbial community in proximity to the Arctic springs studied to date. All samples are dominated by Gammaproteobacteria: Thiotichales is dominant within the spring samples while Alteromonadales comprises a significant component of the mat communities. The two mat samples differ in their Thiotichales:Alteromonadales ratio and contribution of Bacteroidetes to overall diversity. The red mats have a greater proportion of Alteromonadales and Bacteroidetes reads. The distinct bacterial composition of the mat bacterial communities suggests that the spring communities are not sourced from the surface, and that seasonal melt events create ephemerally habitable niches with distinct microbial communities in the Canadian high arctic. The finding that these surficial complex microbial communities exist in close proximity to perennial springs demonstrates the existence of a transiently habitable niche in an important Mars analog site.

  3. Forensic microbiology: Evolving from discriminating distinct microbes to characterizing entire microbial communities on decomposing remains

    USDA-ARS?s Scientific Manuscript database

    The body of an animal encompasses a multitude of compositionally and functionally unique microbial environments, from the skin to the gastrointestinal system. Each of these systems harbor microbial communities that have adapted in order to cohabitate with their specific host resulting in a distinct...

  4. Chondritic Earth: comparisons, guidelines and status

    NASA Astrophysics Data System (ADS)

    McDonough, W. F.

    2014-12-01

    The chemical and isotopic composition of the Earth is rationally understood within the context of the chondritic reference frame, without recourse to hidden reservoirs, collision erosion, or strict interpretation of an enstatite chondrite model. Challenges to interpreting the array of recent and disparate chemical and isotopic observations from meteorites need to be understood as rich data harvests that inform us of the compositional heterogeneity in the early solar system. Our ability to resolve small, significant compositional differences between chondrite families provide critical insights into integrated compositional signatures at differing annuli distances from the Sun (i.e., 1-6 AU). Rigorous evaluation of chondritic models for planets requires treatment of both statistical and systematic uncertainties - to date these efforts are uncommonly practiced. Planetary olivine to pyroxene ratio reflects fO2 and temperature potentials in the nebular, given possible ISM compositional conditions; thus this ratio is a non-unique parameter of terrestrial bodies. Consequently the Mg/Si value of a planet (ie., olivine to pyroxene ratio) is a free variable; there is no singular chondritic Mg/Si value. For the Earth, there is an absence of physical and chemical evidence requiring a major element, chemical distinction between the upper and lower mantle, within uncertainties. Early Earth differentiation likely occurred, but there is an absence of chemical and isotopic evidence of its imprint. Chondrites, peridotites, komatiites, and basalts (ancient and modern) reveal a coherent picture of a chondritic compositional Earth, with compositionally affinities to enstatite chondrites. At present results from geoneutrino studies non-uniquely support these conclusions. Future experiments can provide true transformative insights into the Earth's thermal budget, define compositional BSE models, and will restrict discussions on Earth dynamics and its thermal evolution.

  5. Anatexis, hybridization and the modification of ancient crust: Mesozoic plutonism in the Old Woman Mountains area, California

    USGS Publications Warehouse

    Miller, C.F.; Wooden, J.L.

    1994-01-01

    A compositionally expanded array of granitic (s.l.) magmas intruded the > 2 Ga crust of the Old Woman Mountains area between 160 and 70 Ma. These magmas were emplaced near the eastern (inland) edge of the Jurassic/Cretaceous arcs of western North America, in an area where magma flux, especially during the Jurassic, was considerably lower than to the west. The Jurassic intrusives and over half of the Cretaceous intrusives are predominantly metaluminous and variable in composition; a major Cretaceous suite comprises only peraluminous monzogranite. Only the Jurassic intrusions show clear evidence for the presence of mafic liquids. All units, including the most mafic rocks, reveal isotopic evidence for a significant crustal component. However, none of the Mesozoic intrusives matches in isotopic composition either average pre-intrusion crust or any major unit of the exposed crust. Elemental inconsistencies also preclude closed system derivation from exposed crust. Emplacement of these magmas, which doubled the volume of the mid- to upper crust, did not dramatically change its elemental composition. It did, however, affect its Nd and especially Sr isotopic composition and modify some of the distinctive aspects of the elemental chemistry. We propose that Jurassic magmatism was open-system, with a major influx of mantle-derived mafic magma interacting strongly with the ancient crust. Mesozoic crustal thickening may have led to closed-system crustal melting by the Late Cretaceous, but the deep crust had been profoundly modified by earlier Mesozoic hybridization so that crustal melts did not simply reflect the original crustal composition. The clear evidence for a crustal component in magmas of the Old Woman Mountains area may not indicate any fundamental differences from the processes at work elsewhere in this or other magmatic arcs where the role of pre-existing crust is less certain. Rather, a compositionally distinctive, very old crust may simply have yielded a more readily identifiable crustal fingerprint. The same processes that were involved here-mafic magma influx, hybridization, and remelting of hybridized crust-are likely to be typical of arc settings. ?? 1994.

  6. Lieve Laurens, Ph.D. | NREL

    Science.gov Websites

    Research Interests Dynamic biochemical composition of bioenergy-relevant biomass Coproduct development from lipid streams. Lieve Laurens's research interests in this realm are primarily focused on analytical selective, quantitative tradeoffs in biochemical composition of three strains of algae, grown in distinct

  7. Plant and soil effects on bacterial communities associated with Miscanthus  ×  giganteus rhizosphere and rhizomes

    DOE PAGES

    Li, Dongfang; Voigt, Thomas B.; Kent, Angela D.

    2015-02-11

    Here, bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. × giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M. × giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soilmore » conditions and plant compartments on assembly of the M. × giganteus-associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. × giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.« less

  8. Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia)

    PubMed Central

    Newcomb, James M.; Sakurai, Akira; Lillvis, Joshua L.; Gunaratne, Charuni A.; Katz, Paul S.

    2012-01-01

    How neural circuit evolution relates to behavioral evolution is not well understood. Here the relationship between neural circuits and behavior is explored with respect to the swimming behaviors of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudipleura is a diverse monophyletic clade of sea slugs among which only a small percentage of species can swim. Swimming falls into a limited number of categories, the most prevalent of which are rhythmic left–right body flexions (LR) and rhythmic dorsal–ventral body flexions (DV). The phylogenetic distribution of these behaviors suggests a high degree of homoplasy. The central pattern generator (CPG) underlying DV swimming has been well characterized in Tritonia diomedea and in Pleurobranchaea californica. The CPG for LR swimming has been elucidated in Melibe leonina and Dendronotus iris, which are more closely related. The CPGs for the categorically distinct DV and LR swimming behaviors consist of nonoverlapping sets of homologous identified neurons, whereas the categorically similar behaviors share some homologous identified neurons, although the exact composition of neurons and synapses in the neural circuits differ. The roles played by homologous identified neurons in categorically distinct behaviors differ. However, homologous identified neurons also play different roles even in the swim CPGs of the two LR swimming species. Individual neurons can be multifunctional within a species. Some of those functions are shared across species, whereas others are not. The pattern of use and reuse of homologous neurons in various forms of swimming and other behaviors further demonstrates that the composition of neural circuits influences the evolution of behaviors. PMID:22723353

  9. Plant and soil effects on bacterial communities associated with Miscanthus  ×  giganteus rhizosphere and rhizomes

    DOE PAGES

    Li, Dongfang; Voigt, Thomas B.; Kent, Angela D.

    2015-04-30

    Here, bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. × giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M. × giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soilmore » conditions and plant compartments on assembly of the M. × giganteus-associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. × giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.« less

  10. Genetic resources for maize cell wall biology.

    PubMed

    Penning, Bryan W; Hunter, Charles T; Tayengwa, Reuben; Eveland, Andrea L; Dugard, Christopher K; Olek, Anna T; Vermerris, Wilfred; Koch, Karen E; McCarty, Donald R; Davis, Mark F; Thomas, Steven R; McCann, Maureen C; Carpita, Nicholas C

    2009-12-01

    Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.

  11. Faecal microbiota of healthy adults in south India: Comparison of a tribal & a rural population.

    PubMed

    Ramadass, Balamurugan; Rani, B Sandya; Pugazhendhi, Srinivasan; John, K R; Ramakrishna, Balakrishnan S

    2017-02-01

    The relevance of the gut microbiota to human health is increasingly appreciated. The objective of this study was to compare the gut microbiota of a group of adult tribals with that of healthy adult villagers in Tamil Nadu, India. Faeces were collected from 10 healthy tribal adults (TAs) in the Jawadhi hills and from 10 healthy villagers [rural adults (RAs)] in Vellore district, Tamil Nadu. DNA was extracted, and 456 bp segments comprising hypervariable regions 3 and 4 of the 16S rRNA gene were amplified, barcoded and 454 sequenced. Totally 227,710 good-quality reads were analyzed. TAs consumed a millets-based diet, ate pork every day, and did not consume milk or milk products. RAs consumed a rice-based diet with meat intake once a week. In both groups, Firmicutes was the most abundant phylum, followed by Proteobacteria, Bacteroidetes and Actinobacteria. The median Firmicutes-to-Bacteroidetes ratio was 34.0 in TA and 92.9 in RA groups. Actinobacteria were significantly low in TA, possibly due to non-consumption of milk. Clostridium constituted the most abundant genus in both groups, but was significantly more abundant in TAs than RAs, while Streptococcus was significantly more abundant in RA (P<0.05). Analyses of genetic distance revealed that the microbiota were distinctly different between TA and RA, and principal component analysis using 550 distinct taxonomically identifiable sequences revealed a clear separation of microbiota composition in the two groups. Phylogenetic analysis of major microbiota indicated clustering of microbial groups at different major branch points for TAs and RAs. Phylum Firmicutes and genus Clostridium constituted the bulk of the faecal microbiota, while significant differences in composition between the groups were probably due to differences in diet and lifestyle.

  12. Inorganic profile of some Brazilian medicinal plants obtained from ethanolic extract and ''in natura'' samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, M.O.M.; de Sousa, P.T.; Salvador, V.L.R.

    The Anadenathera macrocarpa, Schinus molle, Hymenaea courbaril, Cariniana legalis, Solidago microglossa and Stryphnodendron barbatiman, were collected ''in natura'' samples (leaves, flowers, barks and seeds) from different commercial suppliers. The pharmaco-active compounds in ethanolic extracts had been made by the Mato Grosso Federal University (UFMT). The energy-dispersive x-ray fluorescence (ED-XRF) spectrometry was used for the elemental analysis in different parts of the plants and respective ethanolic extracts. The Ca, Cl, Cu, Fe, K, Mg, Mn, Na, Ni, P, Rb, S, Sr and Zn concentrations were determined by the fundamental parameters method. Some specimens showed a similar inorganic profile for ''in natura''more » and ethanolic extract samples and some ones showed a distinct inorganic profile. For example, the Anadenathera macrocarpa showed a similar concentration in Mg, P, Cu, Zn and Rb elements in ''in natura'' and ethanolic extract samples; however very different concentration in Na, S, Cl, K , Ca, Mn, Fe and Sr was observed in distinctive samples. The Solidago microglossa showed the K, Ca, Cl, S, Mg, P and Fe elements as major constituents in both samples, suggesting that the extraction process did not affect in a considerable way the ''in natura'' inorganic composition. The elemental composition of the different parts of the plants (leaves, flowers, barks and seeds) has been also determined. For example, the Schinus molle specimen showed P, K, Cl and Ca elements as major constituents in the seeds, Mg, K and Sr in the barks and Mg, S, Cl and Mn in the leaves, demonstrating a differentiated elementary distribution. These inorganic profiles will contribute to evaluate the quality control of the Brazilian herbaceous trade and also will assist to identify which parts of the medicinal plants has greater therapeutic effect.« less

  13. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; Boyer, Joseph N.; Jaffé, Rudolf

    2013-09-01

    The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.

  14. Comparative studies on polyphenolic profile and antimicrobial activity of propolis samples selected from distinctive geographical areas of Hungary.

    PubMed

    Molnár, Szabolcs; Mikuska, Kata; Patonay, Katalin; Sisa, Krisztina; Daood, Hussein G; Némedi, Erzsébet; Kiss, Attila

    2017-06-01

    The present paper reports about a comparative survey on the chemical composition, antioxidant activity and in vitro antimicrobial activity of selected propolis samples collected in Hungary. The total levels of polyphenolic compounds including flavonoids in ethanolic extracts of propolis were assessed. The major constituents of ethanolic extracts of propolis were analysed by gas chromatography/mass spectrometry analysis. Total phenolic content was determined spectrophotometrically using a Folin-Ciocalteu reagent. Free radical scavenging activities were evaluated by means of 2,2-diphenyl-1-picrylhydrazyl assay. In vitro inhibitory activity was investigated against eight different bacterial strains by agar well diffusion assay. An extensive comparison was carried out regarding general parameters and specific polyphenolic components. The experimental data led to the observation that there is considerable variability in terms of the quality and the biological value of the distinctive propolis samples. These findings confirm the hypothesis of the study; versatile experimental results are required for proper, well-reasoned, balanced and standardised industrial applications. The major flavonoid components were found to be chrysin and pinocembrin; however, versatile minor components were also detected. The total polyphenol content of ethanolic extracts of propolis ranged between 104.6 mg/g and 286.9 mg/g (gallic acid equivalent). The radical scavenging activity of ethanolic extracts of propolis varied between 101.7 mg/g and 286.9 mg/g (ascorbic acid equivalent). As the quality of propolis depends on the season, vegetation and the area of collection, marked differences were found among the different products examined in terms of both composition and general characteristics. The studied samples exhibited significant differences in term of antimicrobial activities.

  15. Faecal microbiota of healthy adults in south India: Comparison of a tribal & a rural population

    PubMed Central

    Ramadass, Balamurugan; Rani, B. Sandya; Pugazhendhi, Srinivasan; John, K.R.; Ramakrishna, Balakrishnan S.

    2017-01-01

    Background & objectives: The relevance of the gut microbiota to human health is increasingly appreciated. The objective of this study was to compare the gut microbiota of a group of adult tribals with that of healthy adult villagers in Tamil Nadu, India. Methods: Faeces were collected from 10 healthy tribal adults (TAs) in the Jawadhi hills and from 10 healthy villagers [rural adults (RAs)] in Vellore district, Tamil Nadu. DNA was extracted, and 456 bp segments comprising hypervariable regions 3 and 4 of the 16S rRNA gene were amplified, barcoded and 454 sequenced. Results: Totally 227,710 good-quality reads were analyzed. TAs consumed a millets-based diet, ate pork every day, and did not consume milk or milk products. RAs consumed a rice-based diet with meat intake once a week. In both groups, Firmicutes was the most abundant phylum, followed by Proteobacteria, Bacteroidetes and Actinobacteria. The median Firmicutes-to-Bacteroidetes ratio was 34.0 in TA and 92.9 in RA groups. Actinobacteria were significantly low in TA, possibly due to non-consumption of milk. Clostridium constituted the most abundant genus in both groups, but was significantly more abundant in TAs than RAs, while Streptococcus was significantly more abundant in RA (P<0.05). Analyses of genetic distance revealed that the microbiota were distinctly different between TA and RA, and principal component analysis using 550 distinct taxonomically identifiable sequences revealed a clear separation of microbiota composition in the two groups. Phylogenetic analysis of major microbiota indicated clustering of microbial groups at different major branch points for TAs and RAs. Interpretation & conclusions: Phylum Firmicutes and genus Clostridium constituted the bulk of the faecal microbiota, while significant differences in composition between the groups were probably due to differences in diet and lifestyle. PMID:28639601

  16. Patterns of Deep-Water Coral Diversity in the Caribbean Basin and Adjacent Southern Waters: An Approach based on Records from the R/V Pillsbury Expeditions

    PubMed Central

    Hernández-Ávila, Iván

    2014-01-01

    The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200–2000 m depth) than on the upper continental shelf (60–200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges. PMID:24671156

  17. Spectrophotometry of Artemisia tridentata to quantitatively determine subspecies

    USGS Publications Warehouse

    Richardson, Bryce; Boyd, Alicia; Tobiasson, Tanner; Germino, Matthew

    2018-01-01

    Ecological restoration is predicated on our abilities to discern plant taxa. Taxonomic identification is a first step in ensuring that plants are appropriately adapted to the site. An example of the need to identify taxonomic differences comes from big sagebrush (Artemisia tridentata). This species is composed of three predominant subspecies occupying distinct environmental niches, but overlap and hybridization are common in ecotones. Restoration of A. tridentata largely occurs using wildland collected seed, but there is uncertainty in the identification of subspecies or mix of subspecies from seed collections. Laboratory techniques that can determine subspecies composition would be desirable to ensure that subspecies match the restoration site environment. In this study, we use spectrophotometry to quantify chemical differences in the water-soluble compound, coumarin. Ultraviolet (UV) absorbance of A. tridentata subsp. vaseyana showed distinct differences among A.t. tridentata and wyomingensis. No UV absorbance differences were detected between A.t. tridentata and wyomingensis. Analyses of samples from > 600 plants growing in two common gardens showed that UV absorbance was unaffected by environment. Moreover, plant tissues (leaves and seed chaff) explained only a small amount of the variance. UV fluorescence of water-eluted plant tissue has been used for many years to indicate A.t. vaseyana; however, interpretation has been subjective. Use of spectrophotometry to acquire UV absorbance provides empirical results that can be used in seed testing laboratories using the seed chaff present with the seed to certify A. tridentata subspecies composition. On the basis of our methods, UV absorbance values 3.1 would indicate either A.t. tridentata or wyomingensis. UV absorbance values between 2.7 and 3.1 would indicate a mixture of A.t. vaseyana and the other two subspecies.

  18. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.

    PubMed

    Thein-Han, W W; Shah, J; Misra, R D K

    2009-09-01

    A potential approach to achieving the objective of favorably modulating the biological response of implantable biopolymers combined with good mechanical properties is to consider compounding the biopolymer with a bioactive nanocrystalline ceramic biomimetic material with high surface area. The processing of silicone rubber (SR)-nanohydroxyapatite (nHA) composite involved uniform dispersion of nHA via shear mixing and ultrasonication, followed by compounding at sub-ambient temperature, and high-pressure solidification when the final curing reaction occurs. The high-pressure solidification approach enabled the elastomer to retain the high elongation of SR even in the presence of the reinforcement material, nHA. The biological response of the nanostructured composite in terms of initial cell attachment, cell viability and proliferation was consistently greater on SR-5wt.% nHA composite surface compared to pure SR. Furthermore, in the nanocomposite, cell spreading, morphology and density were distinctly different from that of pure SR. Pre-osteoblasts grown on SR-nHA were well spread, flat, large in size with a rough cell surface, and appeared as a group. In contrast, these features were less pronounced in SR (e.g. smooth cell surface, not well spread). Interestingly, an immunofluorescence study illustrated distinct fibronectin expression level, and stronger vinculin focal adhesion contacts associated with abundant actin stress fibers in pre-osteoblasts grown on the nanocomposite compared to SR, implying enhanced cell-substrate interaction. This finding was consistent with the total protein content and SDS-PAGE analysis. The study leads us to believe that further increase in nHA content in the SR matrix beyond 5wt.% will encourage even greater cellular response. The integration of cellular and molecular biology with materials science and engineering described herein provides a direction for the development of a new generation of nanostructured materials.

  19. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    During this period the research program addressed the following three topics: (1) composite materials; (2) precipitation static (P-Static); and (3) antenna technology. On the topic of Composite Materials our main efforts were directed toward making measurements on several new samples of composite materials made available to ASU by Stanford Research Institute (SRI) through the efforts of Mr. Frank Casler of AVRADA. These samples can be classified into three distinct materials with each material having its own distinct electrical properties. In addition, attempts were made to make predictions of the effects on antenna patterns by composite materials. This will take a greater emphasis in the next reporting period. In Precipitation Static (P-Static), the main effort was devoted toward developing a Voltage Finite-Difference Time-Domain computer code to account for the voltage variation on a conducting body as the primary source of corona discharge, instead of the electric field. Due to complexities stemming from the interactions between the potentials, the fields, and current sources, the decision was made to begin with a simple two-dimensional problem without the corona discharge and check our programs in a series of simple models, culminating in the full corona discharge problem. This report deals with the first stage of such development. During this reporting period, the main effort in Antenna Technology was toward the design, fabrication, and testing of a cavity-backed slot antenna using ferrite material. Using the ferrite material available to us during this period, the resonances of this antenna were around 5 and 8 GHz. Attempts will be made to model such an antenna and to lower its resonance down into the VHF and UHF bands.

  20. Heterogeneous pumice populations in the 2.08-Ma Cerro Galán Ignimbrite: Implications for magma recharge and ascent preceding a large-volume silicic eruption

    USGS Publications Warehouse

    Wright, Heather M.; Folkes, Christopher B.; Cas, Ray A.F.; Cashman, Katharine V.

    2011-01-01

    Triggering mechanisms of large silicic eruptions remain a critical unsolved problem. We address this question for the ~2.08-Ma caldera-forming eruption of Cerro Galán volcano, Argentina, which produced distinct pumice populations of two colors: grey (5%) and white (95%) that we believe may hold clues to the onset of eruptive activity. We demonstrate that the color variations correspond to both textural and compositional variations between the clast types. Both pumice types have bulk compositions of high-K, high-silica dacite to low-silica rhyolite, but there are sufficient compositional differences (e.g., ~150 ppm lower Ba at equivalent SiO2 content and 0.03 wt.% higher TiO2 in white pumice than grey) to suggest that the two pumice populations are not related by simple fractionation. Trace element concentrations in crystals mimic bulk variations between clast types, with grey pumice containing elevated Ba, Cu, Pb, and Zn concentrations in both bulk samples (average Cu, Pb, and Zn concentrations are 27, 35, and 82 in grey pumice vs. 11, 19, and 60 in white pumice) and biotite phenocrysts and white pumice showing elevated Li concentrations in biotite and plagioclase phenocrysts. White and grey clasts are also texturally distinct: White pumice clasts contain abundant phenocrysts (44–57%), lack microlites, and have highly evolved groundmass glass compositions (76.4–79.6 wt.% SiO2), whereas grey pumice clasts contain a lower percentage of phenocrysts/microphenocrysts (35–49%), have abundant microlites, and have less evolved groundmass glass compositions (69.4–73.8 wt.% SiO2). There is also evidence for crystal transfer between magma producing white and grey pumice. Thin highly evolved melt rims surround some fragmental crystals in grey pumice clasts and appear to have come from magma that produced white pumice. Furthermore, based on crystal compositions, white bands within banded pumice contain crystals originating in grey magma. Finally, only grey pumice clasts form breadcrusted surface textures. We interpret these compositional and textural variations to indicate distinct magma batches, where grey pumice originated from an originally deeper, more volatile-rich dacite recharge magma that ascended through and mingled with the volumetrically dominant, more highly crystalline chamber that produced white pumice. Shortly before eruption, the grey pumice magma stalled within shallow fractures, forming a vanguard magma phase whose ascent may have provided a trigger for eruption of the highly crystalline rhyodacite magma. We suggest that in the case of the Cerro Galán eruption, grey pumice provides evidence not only for cryptic silicic recharge in a large caldera system but also a probable trigger for the eruption.

  1. Heterogeneous pumice populations in the 2.08-Ma Cerro Galán Ignimbrite: implications for magma recharge and ascent preceding a large-volume silicic eruption

    NASA Astrophysics Data System (ADS)

    Wright, Heather M. N.; Folkes, Chris B.; Cas, Raymond A. F.; Cashman, Katharine V.

    2011-12-01

    Triggering mechanisms of large silicic eruptions remain a critical unsolved problem. We address this question for the ~2.08-Ma caldera-forming eruption of Cerro Galán volcano, Argentina, which produced distinct pumice populations of two colors: grey (5%) and white (95%) that we believe may hold clues to the onset of eruptive activity. We demonstrate that the color variations correspond to both textural and compositional variations between the clast types. Both pumice types have bulk compositions of high-K, high-silica dacite to low-silica rhyolite, but there are sufficient compositional differences (e.g., ~150 ppm lower Ba at equivalent SiO2 content and 0.03 wt.% higher TiO2 in white pumice than grey) to suggest that the two pumice populations are not related by simple fractionation. Trace element concentrations in crystals mimic bulk variations between clast types, with grey pumice containing elevated Ba, Cu, Pb, and Zn concentrations in both bulk samples (average Cu, Pb, and Zn concentrations are 27, 35, and 82 in grey pumice vs. 11, 19, and 60 in white pumice) and biotite phenocrysts and white pumice showing elevated Li concentrations in biotite and plagioclase phenocrysts. White and grey clasts are also texturally distinct: White pumice clasts contain abundant phenocrysts (44-57%), lack microlites, and have highly evolved groundmass glass compositions (76.4-79.6 wt.% SiO2), whereas grey pumice clasts contain a lower percentage of phenocrysts/microphenocrysts (35-49%), have abundant microlites, and have less evolved groundmass glass compositions (69.4-73.8 wt.% SiO2). There is also evidence for crystal transfer between magma producing white and grey pumice. Thin highly evolved melt rims surround some fragmental crystals in grey pumice clasts and appear to have come from magma that produced white pumice. Furthermore, based on crystal compositions, white bands within banded pumice contain crystals originating in grey magma. Finally, only grey pumice clasts form breadcrusted surface textures. We interpret these compositional and textural variations to indicate distinct magma batches, where grey pumice originated from an originally deeper, more volatile-rich dacite recharge magma that ascended through and mingled with the volumetrically dominant, more highly crystalline chamber that produced white pumice. Shortly before eruption, the grey pumice magma stalled within shallow fractures, forming a vanguard magma phase whose ascent may have provided a trigger for eruption of the highly crystalline rhyodacite magma. We suggest that in the case of the Cerro Galán eruption, grey pumice provides evidence not only for cryptic silicic recharge in a large caldera system but also a probable trigger for the eruption.

  2. Factors affecting plant species composition of hedgerows: relative importance and hierarchy

    NASA Astrophysics Data System (ADS)

    Deckers, Bart; Hermy, Martin; Muys, Bart

    2004-07-01

    Although there has been a clear quantitative and qualitative decline in traditional hedgerow network landscapes during last century, hedgerows are crucial for the conservation of rural biodiversity, functioning as an important habitat, refuge and corridor for numerous species. To safeguard this conservation function, insight in the basic organizing principles of hedgerow plant communities is needed. The vegetation composition of 511 individual hedgerows situated within an ancient hedgerow network landscape in Flanders, Belgium was recorded, in combination with a wide range of explanatory variables, including a selection of spatial variables. Non-parametric statistics in combination with multivariate data analysis techniques were used to study the effect of individual explanatory variables. Next, variables were grouped in five distinct subsets and the relative importance of these variable groups was assessed by two related variation partitioning techniques, partial regression and partial canonical correspondence analysis, taking into account explicitly the existence of intercorrelations between variables of different factor groups. Most explanatory variables affected significantly hedgerow species richness and composition. Multivariate analysis showed that, besides adjacent land use, hedgerow management, soil conditions, hedgerow type and origin, the role of other factors such as hedge dimensions, intactness, etc., could certainly not be neglected. Furthermore, both methods revealed the same overall ranking of the five distinct factor groups. Besides a predominant impact of abiotic environmental conditions, it was found that management variables and structural aspects have a relatively larger influence on the distribution of plant species in hedgerows than their historical background or spatial configuration.

  3. Composition and automated crystal orientation mapping of rapid solidification products in hypoeutectic Al-4 at.%Cu alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweiacker, K. W.; Liu, Can; Gordillo, M. A.

    Rmore » apid solidification can produce metastable phases and unusual microstructure modifications in multi-component alloys during additive manufacturing or laser beam welding. Composition and phase mapping by transmission electron microscopy have been used in this paper to characterize the morphologically distinct zones developing in hypoeutectic Al-4 at.% Cu alloy after pulsed laser melting for different crystal growth rate regimes. Deviations of the compositions of the alloy phases from equilibrium predictions and unique orientation relationships between the solidification transformation products have been determined. Specifically, for the columnar growth zone at solidification rates of 0.8 m s - 1 < v < v a = 1.8 m s - 1 , two distinct orientation relationships were established between the concomitantly forming non-equilibrium phases, supersaturated α-Al solid solution and the discontinuously distributed α-Al 2Cu-based θ'-phase, which can be described as {110} θ ∥ {001} α, [001] θ ∥ [110] α and {001} θ ∥ {001} α, [100] θ ∥ [100] α. These orientation relationships permit formation of coherent interphase interfaces with low interfacial free energy. Finally, this endows a kinetic advantage to the thermodynamically less stable θ'-Al 2Cu phase relative to the more stable equilibrium θ-Al 2Cu phase during formation of the morphologically modified eutectic of the columnar growth zone grains, since repeated nucleation is required to establish the discontinuous distribution of θ'-Al 2Cu phase.« less

  4. Composition and automated crystal orientation mapping of rapid solidification products in hypoeutectic Al-4 at.%Cu alloys

    DOE PAGES

    Zweiacker, K. W.; Liu, Can; Gordillo, M. A.; ...

    2017-12-05

    Rmore » apid solidification can produce metastable phases and unusual microstructure modifications in multi-component alloys during additive manufacturing or laser beam welding. Composition and phase mapping by transmission electron microscopy have been used in this paper to characterize the morphologically distinct zones developing in hypoeutectic Al-4 at.% Cu alloy after pulsed laser melting for different crystal growth rate regimes. Deviations of the compositions of the alloy phases from equilibrium predictions and unique orientation relationships between the solidification transformation products have been determined. Specifically, for the columnar growth zone at solidification rates of 0.8 m s - 1 < v < v a = 1.8 m s - 1 , two distinct orientation relationships were established between the concomitantly forming non-equilibrium phases, supersaturated α-Al solid solution and the discontinuously distributed α-Al 2Cu-based θ'-phase, which can be described as {110} θ ∥ {001} α, [001] θ ∥ [110] α and {001} θ ∥ {001} α, [100] θ ∥ [100] α. These orientation relationships permit formation of coherent interphase interfaces with low interfacial free energy. Finally, this endows a kinetic advantage to the thermodynamically less stable θ'-Al 2Cu phase relative to the more stable equilibrium θ-Al 2Cu phase during formation of the morphologically modified eutectic of the columnar growth zone grains, since repeated nucleation is required to establish the discontinuous distribution of θ'-Al 2Cu phase.« less

  5. Distinctive Intestinal Lactobacillus Communities in 6-Month-Old Infants From Rural Malawi and Southwestern Finland.

    PubMed

    Aakko, Juhani; Endo, Akihito; Mangani, Charles; Maleta, Kenneth; Ashorn, Per; Isolauri, Erika; Salminen, Seppo

    2015-12-01

    Our aim was to compare the composition and diversity of Lactobacillus microbiota in infants living in Malawi and Southwestern Finland. The composition and diversity of the Lactobacillus group was analyzed in the feces of healthy 6-month-old infants living in rural Malawi (n = 44) and Southwestern Finland (n = 31), using the quantitative polymerase chain reaction method and PCR-denaturing gradient gel electrophoresis fingerprinting. Malawian infants had higher counts of lactobacilli than their Finnish counterparts (7.45 log cells/g vs 6.86 log cells/g, P < 0.001, respectively) and the Lactobacillus community was richer and more diverse in the Malawian infants. Leuconostoc citreum and Weissella confusa were the predominant species in both study groups, but Malawian infants were more often colonized by these species (100% vs 74.2%, P < 0.001; 95.5% vs 41.9%, P < 0.001, respectively). Moreover, Lactobacillus ruminis, Lactobacillus gasseri, Lactobacillus acidophilus, and Lactobacillus mucosae were detected more often in the Malawian infants (59.1% vs 0.0%, P < 0.001; 38.6% vs 9.7%, P = 0.004; 29.5% vs 0.0%, P < 0.001; 22.7% vs 3.2%, P = 0.017, respectively). Lactobacillus casei group species, however, were only detected in the Finnish infants. Malawian infants have a more abundant Lactobacillus microbiota with a distinct composition compared with Finnish infants. The environment, including diet and hygiene, may be among the factors influencing these differences.

  6. Understanding the evolution of Mammalian brain structures; the need for a (new) cerebrotype approach.

    PubMed

    Willemet, Romain

    2012-05-18

    The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular ("mosaic evolution") to coordinated changes in brain structure size ("concerted evolution") or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a "taxon cerebrotype". In other taxa, no clear pattern is found, reflecting heterogeneity of the species' lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex "space" of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution.

  7. Understanding the Evolution of Mammalian Brain Structures; the Need for a (New) Cerebrotype Approach

    PubMed Central

    Willemet, Romain

    2012-01-01

    The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular (“mosaic evolution”) to coordinated changes in brain structure size (“concerted evolution”) or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a “taxon cerebrotype”. In other taxa, no clear pattern is found, reflecting heterogeneity of the species’ lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex “space” of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution. PMID:24962772

  8. The Residual Polar Caps of Mars: Geological Differences and Possible Consequences

    NASA Technical Reports Server (NTRS)

    Thomas, P. C.; Sullivan, R.; Ingersoll, A. P.; Murray, B. C.; Danielson, G. E.; Herkenhoff, K. E.; Soderblom, L.; Malin, M. C.; Edgett, K. S.; James, P. B.

    2000-01-01

    The Martian polar regions have been known to have thick layered sequences (presumed to consist of silicates and ice), CO2 seasonal frost, and residual frosts that remain through the summer: H2O in the north, largely CO2 in the south. The relationship of the residual frosts to the underlying layered deposits could not be determined from Viking images. The Mars Orbiter Camera on Mars Global Surveyor has provided a 50-fold increase in resolution that shows more differences between the two poles. The north residual cap surface has rough topography of pits, cracks, and knobs, suggestive of ablational forms. This topography is less than a few meters in height, and grades in to surfaces exposing the layers underneath. In contrast, the south residual cap has distinctive collapse and possibly ablational topography emplaced in four or more layers, each approx. two meters thick. The top surface has polygonal depressions suggestive of thermal contraction cracks. The collapse and erosional forms include circular and cycloidal depressions, long sinuous troughs, and nearly parallel sets of troughs. The distinctive topography occurs throughout the residual cap area, but not outside it. Unconformities exposed in polar layers, or other layered materials, do not approximate the topography seen on the south residual cap. The coincidence of a distinct geologic feature, several layers modified by collapse, ablation, and mass movement with the residual cap indicates a distinct composition and/or climate compared to both the remainder of the south polar layered units and those in the north.

  9. Use of a multi-isotope and multi-tracer approach including organic matter isotopes for quantifying nutrient contributions from agricultural vs wastewater sources

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Silva, S. R.; Young, M. B.

    2013-12-01

    While nutrient isotopes are a well-established tool for quantifying nutrients inputs from agricultural vs wastewater treatment plant (WWTP) sources, we have found that combining nutrient isotopes with the C, N, and S isotopic compositions of dissolved and particulate organic matter, as part of a comprehensive multi-isotope and multi-tracer approach, is a much more diagnostic approach. The main reasons why organic matter C-N-S isotopes are a useful adjunct to studies of nutrient sources and biogeochemical processes are that the dissolved and particulate organic matter associated with (1) different kinds of animals (e.g., humans vs cows) often have distinctive isotopic compositions reflecting the different diets of the animals, and (2) the different processes associated with the different land uses (e.g., in the WWTP or associated with different crop types) often result in significant differences in the isotopic compositions of the organics. The analysis of the δ34S of particulate organic matter (POM) and dissolved organic matter (DOM) has been found to be especially useful for distinguishing and quantifying water, nutrient, and organic contributions from different land uses in aquatic systems where much of the organic matter is aquatic in origin. In such environments, the bacteria and algae incorporate S from sulfate and sulfide that is isotopically labeled by the different processes associated with different land uses. We have found that there is ~35 permil range in δ34S of POM along the river-estuary continuum in the San Joaquin/Sacramento River basin, with low values associated with sulfate reduction in the upstream wetlands and high values associated with tidal inputs of marine water into the estuary. Furthermore, rice agriculture results in relatively low δ34S values whereas WWTP effluent in the Sacramento River produces distinctly higher values than upstream of the WWTP, presumably because SO2 is used to treat chlorinated effluent. The fish living downstream of these different land uses become isotopically labeled by the environments, making δ34S a useful tracer of fish derived from these different environments. This presentation will use examples from several large-scale river and wetlands studies to demonstrate useful applications of POM and DOM isotopes for environmental monitoring studies, and will discuss the relative merits of different methods for the collection and analysis of POM and DOM samples for C, N, and S isotopes.

  10. Spectrally based mapping of riverbed composition

    USGS Publications Warehouse

    Legleiter, Carl; Stegman, Tobin K.; Overstreet, Brandon T.

    2016-01-01

    Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader range of fluvial environments is needed to substantiate our initial results, this case study suggests that bed composition in shallow, clear-flowing rivers potentially could be mapped remotely.

  11. Digital image processing based identification of nodes and internodes of chopped biomass stems

    USDA-ARS?s Scientific Manuscript database

    Chemical composition of biomass feedstock is an important parameter for optimizing the yield and economics of various bioconversion pathways. Although understandably, the chemical composition of biomass varies among species, varieties, and plant components, there is distinct variation even among ste...

  12. Facile formation of metallic bismuth/bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity.

    PubMed

    Zhang, Liping; Ghimire, Pramila; Phuriragpitikhon, Jenjira; Jiang, Baojiang; Gonçalves, Alexandre A S; Jaroniec, Mietek

    2018-03-01

    Bismuth/bismuth oxide heterojunction on porous carbon (Bi 0 /Bi 2 O 3 @C) was successfully prepared by a surfactant-assisted sol-gel method. This composite photocatalyst was fabricated by depositing Bi 2 O 3 and metallic bismuth nanoparticles (NPs) on porous carbon sheets. Bi NPs were created by in-situ reduction of Bi 2 O 3 with amorphous carbon. During the synthesis, bismuth and carbon precursors were mixed in different ratios, resulting in distinct amounts of metallic bismuth in the composites. The composites showed large specific surface area and pore volume as well as strong light absorption ability due to the existing carbon. In addition, the plasmonic bismuth NPs were found to behave as a noble metal, which is able to generate hot charge carriers under visible light irradiation. Photocatalytic performance of the Bi 0 /Bi 2 O 3 @C composites was investigated by degradation of methylene blue. It turned out that the composites showed much higher efficiency as compared to bare Bi 2 O 3 , which may be attributed to the synergistic effects of porous structures, improved optical absorption, and surface plasmon resonance. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The effect of phosphomonoesterases on the oxygen isotope composition of phosphate

    NASA Astrophysics Data System (ADS)

    von Sperber, Christian; Kries, Hajo; Tamburini, Federica; Bernasconi, Stefano M.; Frossard, Emmanuel

    2014-01-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. During the enzymatic hydrolysis an isotopic fractionation (ε) occurs leaving an imprint on the oxygen isotope composition of the released Pi which might be used to trace phosphorus in the environment. Therefore, enzymatic assays with acid phosphatases from wheat germ and potato tuber and alkaline phosphatase from Escherichia coli were prepared in order to determine the oxygen isotope fractionation caused by these enzymes. Adenosine 5‧ monophosphate and glycerol phosphate were used as substrates. The oxygen isotope fractionation caused by acid phosphatases is 20-30‰ smaller than for alkaline phosphatases, resulting in a difference of 5-7.5‰ in δ18O of Pi depending on the enzyme. We attribute the enzyme dependence of the isotopic fractionation to distinct reaction mechanisms of the two types of phosphatases. The observed difference is large enough to distinguish between the two enzymatic processes in environmental samples. These findings show that the oxygen isotope composition of Pi can be used to trace different enzymatic processes, offering an analytical tool that might contribute to a better understanding of the P-cycle in the environment.

  14. Variation of oil composition in vicinity of Arbuckle Mountains, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemmels, I.; Walters, C.C.

    1987-08-01

    Fifteen oils in an 8-county area in the vicinity of the Arbuckle Mountains were classified into 6 oil types: stable platform type, Mill Creek syncline type, Joiner City field type, Gloeocapsamorpha type, Hoover field A-type; and Fitts field type. The stable platform, Mill Creek syncline, and Joiner City field types have a common element (diminished C/sub 32/ hopane) and are thought to be derived from distinctly different facies of the Woodford Formation. The Viola Limestone oil is typical of oil generated from Ordovician rocks. The Hoover field A-type has an element of Ordovician composition and is thought to have beenmore » derived from an Arbuckle Group shale. The Fitts field oil has a unique composition and has not been assigned to a source. The variation of oil composition in the vicinity of the Arbuckle Mountains is attributed to (1) the large number of potential source rocks, (2) the variety of facies going from the stable platform into the southern Oklahoma aulacogen, and (3) biodegradation of oils in shallow reservoirs.« less

  15. Chemical composition of crystalline rock fragments from Luna 16 and Luna 20 fines

    NASA Technical Reports Server (NTRS)

    Cimbalnikova, A.; Palivcova, M.; Frana, J.; Mastalka, A.

    1977-01-01

    The chemical composition (bulk, rare earth, and trace elements) of the Luna 16 mare regolith and luna 20 highland regolith is discussed. The rock samples considered are 14 basaltic rock fragments (Luna 16) and 13 rock fragments of the ANT suite (Luna 20). On the basis of bulk composition, two types of basaltic rocks have been differentiated and defined in the Luna 16 regolith: mare basalts (fundamental crystalline rocks of Mare Fecunditatis) and high-alumina basalts. The bulk analyses of rock fragments of the ANT suite also enabled distinction of two rock types: anorthositic norites and troctolites and/or spinal-troctolites (the most abundant crystalline rocks of the highland region, the landing site of luna 20), and anorthosites. The chemical compositions of Luna 16 and Luna 20 regolith samples are compared. Differences in the chemistry of the Luna 16 mare regolith and that of mare basalts are discussed. The chemical affinity between the Luna 20 highland regolith and (a) anorthositic norites and (b) troctolites and/or spinel-troctolites has been ascertained.

  16. Investigating the link between fish community structure and environmental state in deep-time

    NASA Astrophysics Data System (ADS)

    Sibert, E. C.

    2017-12-01

    In the modern ocean, a bottom-up ecological viewpoint posits that the composition of plankton communities is often a function of ambient oceanographic conditions, including nutrient concentrations and water temperature. Thus, certain plankton species or communities can be associated with specific oceanographic conditions, giving them potential as carriers of paleoceanographic information. Furthermore, consumer groups, such as fish, depend on the structure and composition of these plankton, and therefore different plankton communities will support different types of fish. In addition, fish have their own physiological constraints for surviving in particular environments, such as oxygen demand, and metabolic rate, causing certain clades to be selectively associated with different water mass characteristics. Thus, the relative or absolute abundances of different fish species or groups could shed light on shifting oxygen concentrations, temperature, or primary productivity in the past. To assess whether fish communities have sufficient environmental control to provide paleoceanographic insights, I use a variety of morphological, phylogenetic, and ecological statistical approaches, to correlate modern fish communities from around the world with environmental variables. I then apply these principles to a series of ichthyolith assemblages from the Cretaceous and Cenozoic, across both space and time, to assess whether fish community composition, abundance, or other characteristics can be predictive of ocean temperature or export productivity. I find that while the abundance of fish fossils in deep-sea cores is often, though not always, correlated with certain export production and temperature proxies, community composition appears to vary independently of these variables on long timescales, driven more by evolutionary processes. However, there are distinct differences in contemporary communities in different locations, suggesting that there is potential in using fish community composition in well-constrained systems. Furthermore, when fish community structure or abundance diverges from the expected state, this may provide significant insight into the structure and functioning of marine ecosystems.

  17. Tracing subducted crustal materials in the mantle by using magnesium isotopes

    NASA Astrophysics Data System (ADS)

    Teng, F. Z.

    2016-12-01

    Recent studies show that some continental basalt, mantle-metasomatised peridotite and cratonic eclogite have heterogeneous Mg isotopic compositions. These isotopically distinct Mg isotopic compositions have been explained by the incorporation of subducted materials in their mantle sources though the detailed mechanisms are still not well understood. In particular, how Mg-poor crustal materials can modify Mg isotopic systematics of Mg-rich mantle is unknown. Subduction zones are the most efficient sites for crust and mantle interactions, hence should be where the most prominent Mg isotopic variation occurs. However, to date, little is known on Mg isotope systematics in the subduction factory. Here I first review and report new Mg isotopic data for arc lava, subarc peridotite and the subducted slab (marine sediment, altered basalt and abyssal peridotite), then use them to constrain the origins of mantle Mg isotopic heterogeneity and lay the foundation for using Mg isotopes as new tools for tracing crust-mantle interactions. The main conclusions are 1) fluid-rock interactions can modify Mg isotopic systematics of abyssal peridotites; 2) island arc lavas have non-MORB Mg isotopic compositions, reflecting distinct surbarc mantle Mg isotopic signature; 3) continental arcs have non-MORB Mg isotopic compositions, likely resulting from crustal contamination and 4) the isotopically heterogeneous continental basalts are mainly produced by mixing of isotopically distinct magmas instead of being partial melting products of metasomatised mantle peridotites.

  18. Crashworthiness simulation of composite automotive structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botkin, M E; Johnson, N L; Simunovic, S

    1998-06-01

    In 1990 the Automotive Composites Consortium (ACC) began the investigation of crash worthiness simulation methods for composite materials. A contract was given to Livermore Software Technology Corporation (LSTC) to implement a new damage model in LS-DYNA3D TM specifically for composite structures. This model is in LS-DYNA3D TM and is in use by the ACC partners. In 1994 USCAR, a partnership of American auto companies, entered into a partnership called SCAAP (Super Computing Automotive Applications Partnership) for the express purpose of working with the National Labs on computational oriented research. A CRADA (Cooperative Research and Development Agreement) was signed with Lawrencemore » Livermore National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Argonne National Laboratory, and Los Alamos National Laboratory to work in three distinctly different technical areas, one of which was composites material modeling for crash worthiness. Each Laboratory was assigned a specific modeling task. The ACC was responsible for the technical direction of the composites project and provided all test data for code verification. All new models were to be implemented in DYNA3D and periodically distributed to all partners for testing. Several new models have been developed and implemented. Excellent agreement has been shown between tube crush simulation and experiments.« less

  19. The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian

    NASA Astrophysics Data System (ADS)

    Herd, Christopher D. K.; Walton, Erin L.; Agee, Carl B.; Muttik, Nele; Ziegler, Karen; Shearer, Charles K.; Bell, Aaron S.; Santos, Alison R.; Burger, Paul V.; Simon, Justin I.; Tappa, Michael J.; McCubbin, Francis M.; Gattacceca, Jérôme; Lagroix, France; Sanborn, Matthew E.; Yin, Qing-Zhu; Cassata, William S.; Borg, Lars E.; Lindvall, Rachel E.; Kruijer, Thomas S.; Brennecka, Gregory A.; Kleine, Thorsten; Nishiizumi, Kunihiko; Caffee, Marc W.

    2017-12-01

    Northwest Africa (NWA) 8159 is an augite-rich shergottite, with a mineralogy dominated by Ca-, Fe-rich pyroxene, plagioclase, olivine, and magnetite. NWA 8159 crystallized from an evolved melt of basaltic composition under relatively rapid conditions of cooling, likely in a surface lava flow or shallow sill. Redox conditions experienced by the melt shifted from relatively oxidizing (with respect to known Martian lithologies, ∼QFM) on the liquidus to higher oxygen fugacity (∼QFM + 2) during crystallization of the groundmass, and under subsolidus conditions. This shift resulted in the production of orthopyroxene and magnetite replacing olivine phenocryst rims. NWA 8159 contains both crystalline and shock-amorphized plagioclase (An50-62), often observed within a single grain; based on known calibrations we bracket the peak shock pressure experienced by NWA 8159 to between 15 and 23 GPa. The bulk composition of NWA 8159 is depleted in LREE, as observed for Tissint and other depleted shergottites; however, NWA 8159 is distinct from all other martian lithologies in its bulk composition and oxygen fugacity. We obtain a Sm-Nd formation age of 2.37 ± 0.25 Ga for NWA 8159, which represents an interval in Mars geologic time which, until recently, was not represented in the other martian meteorite types. The bulk rock 147Sm/144Nd value of 0.37 ± 0.02 is consistent with it being derived directly from its source and the high initial ε143Nd value indicates this source was geochemically highly depleted. Cr, Nd, and W isotopic compositions further support a unique mantle source. While the rock shares similarities with the 2.4-Ga NWA 7635 meteorite, there are notable distinctions between the two meteorites that suggest differences in mantle source compositions and conditions of crystallization. Nevertheless, the two samples may be launch-paired. NWA 8159 expands the known basalt types, ages and mantle sources within the Mars sample suite to include a second igneous unit from the early Amazonian.

  20. Relict chondrules in primitive achondrites: Remnants from their precursor parent bodies

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; McCoy, Timothy J.; Gardner-Vandy, Kathryn

    2017-05-01

    We studied the petrography, analyzed the chemical compositions, constrained the closure temperatures (via geothermometry), and determined the oxidation states of relict chondrules in Campo del Cielo (IAB iron meteorite), Graves Nunataks (GRA) 98028 (acapulcoite), and Netschaëvo (IIE iron meteorite) to constrain their formation conditions and investigate links to known meteorite groups. Despite having been thermally metamorphosed, mineral phases within relict chondrules retain information about their precursor compositions. The sizes and textures of relict chondrules, and silicate and chromite compositions indicate that Campo del Cielo, GRA 98028, and Netschaëvo had distinct parent bodies that were similar to, but different from, known chondrite groups. To determine the utility of relict chondrule sizes in thermally metamorphosed meteorites, we determined the chondrule size distributions in the LL chondrites Semarkona (LL3.00), Soko-Banja (LL4), Siena (LL5), and Saint-Séverin (LL6), and the H chondrites Clovis (No. 1) (H3.6), Kesen (H4), Arbol Solo (H5), and Estacado (H6). As expected, mean chondrule diameters increase with degree of thermal metamorphism. We find that Campo del Cielo and GRA 98028 were reduced during thermal metamorphism, consistent with previous studies, indicating that their precursors were initially more FeO-rich than their current compositions. In contrast to previous studies, we find no evidence for reduction of silicates in Netschaëvo. Normal zoning of olivine in Netschaëvo is consistent with crystallization and suggests its silicates are near their primary FeO-contents. The presence of elongated chromite grains along olivine grain boundaries in Netschaëvo indicates formation during thermal metamorphism under oxidizing conditions. Due to the absence of reduction and the composition of chromite being distinct from that of metamorphosed H chondrites, we conclude that Netschaëvo, and by extension the IIE iron meteorites, are not from the H chondrite parent body.

  1. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    NASA Astrophysics Data System (ADS)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other contexts is also warranted.

  2. High Time- and Size-Resolved Measurements of PM and Chemical Composition from Coal Combustion: Implications for the EC Formation Process.

    PubMed

    Han, Yong; Chen, Yingjun; Ahmad, Saud; Feng, Yanli; Zhang, Fan; Song, Wenhuai; Cao, Fang; Zhang, Yanlin; Yang, Xin; Li, Jun; Zhang, Gan

    2018-06-05

    Inefficient coal combustion is a significant source of elemental carbon (EC) air pollution in China, but there is a limited understanding of EC's formation processes. In this study, high time-resolved particle number size distributions (PNSDs) and size-resolved chemical compositions were obtained from the combustion of four bituminous coals burned in a quartz tube furnace at 500 and 800 °C. Based on the distinct characteristics of PNSD, the flaming stage was divided into the first-flaming stage (with a PNSD peak at 0.3-0.4 μm) and the second-flaming stage (with a PNSD peak at 0.1-0.15 μm). For the size-segregated EC and OC measurements, more soot-EC was observed in particles larger than 0.3 μm, whereas the smaller ones possessed more char-EC. The results indicated that gas-phase and direct-conversion EC generation mechanisms dominate different burning stages. The analysis of 16 parent PAHs showed more high-molecular-weight PAHs in the second-flaming stage particles, which supports the idea of different formation processes for char-EC and soot-EC. For all four coals, the PNSD and chemical compositions shared a similar trend, confirming that the different formation processes of EC in different flaming stages were common. This study provides novel information concerning EC formation.

  3. Mass coral bleaching causes biotic homogenization of reef fish assemblages.

    PubMed

    Richardson, Laura E; Graham, Nicholas A J; Pratchett, Morgan S; Eurich, Jacob G; Hoey, Andrew S

    2018-04-06

    Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait-based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system-wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small-bodied, algal-farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances. © 2018 John Wiley & Sons Ltd.

  4. Melodic cues for metre.

    PubMed

    Vos, P G; van Dijk, A; Schomaker, L

    1994-01-01

    A method of time-series analysis and a time-beating experiment were used to test the structural and perceptual validity of notated metre. Autocorrelation applied to the flow of melodic intervals between notes from thirty fragments of compositions for solo instruments by J S Bach strongly supported the validity of bar length specifications. Time-beating data, obtained with four stimuli from the same set, played in an expressionless mode, and presented under categorically distinct tempos to different subgroups of musically trained subjects, were rather inconsistent with respect to tapped bar lengths. However, taps were most frequently given to the events in the stimuli that corresponded with the first beats according to the score notations. No significant effects of tempo on tapping patterns were observed. The findings are discussed in comparison with other examinations of metre inference from musical compositions.

  5. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities

    PubMed Central

    Cole, Jessica K; Peacock, Joseph P; Dodsworth, Jeremy A; Williams, Amanda J; Thompson, Daniel B; Dong, Hailiang; Wu, Geng; Hedlund, Brian P

    2013-01-01

    Great Boiling Spring is a large, circumneutral, geothermal spring in the US Great Basin. Twelve samples were collected from water and four different sediment sites on four different dates. Microbial community composition and diversity were assessed by PCR amplification of a portion of the small subunit rRNA gene using a universal primer set followed by pyrosequencing of the V8 region. Analysis of 164 178 quality-filtered pyrotags clearly distinguished sediment and water microbial communities. Water communities were extremely uneven and dominated by the bacterium Thermocrinis. Sediment microbial communities grouped according to temperature and sampling location, with a strong, negative, linear relationship between temperature and richness at all taxonomic levels. Two sediment locations, Site A (87–80 °C) and Site B (79 °C), were predominantly composed of single phylotypes of the bacterial lineage GAL35 (p̂=36.1%), Aeropyrum (p̂=16.6%), the archaeal lineage pSL4 (p̂=15.9%), the archaeal lineage NAG1 (p̂=10.6%) and Thermocrinis (p̂=7.6%). The ammonia-oxidizing archaeon ‘Candidatus Nitrosocaldus' was relatively abundant in all sediment samples <82 °C (p̂=9.51%), delineating the upper temperature limit for chemolithotrophic ammonia oxidation in this spring. This study underscores the distinctness of water and sediment communities in GBS and the importance of temperature in driving microbial diversity, composition and, ultimately, the functioning of biogeochemical cycles. PMID:23235293

  6. Cannabis - from cultivar to chemovar.

    PubMed

    Hazekamp, A; Fischedick, J T

    2012-01-01

    The medicinal use of Cannabis is increasing as countries worldwide are setting up official programs to provide patients with access to safe sources of medicinal-grade Cannabis. An important question that remains to be answered is which of the many varieties of Cannabis should be made available for medicinal use. Drug varieties of Cannabis are commonly distinguished through the use of popular names, with a major distinction being made between Indica and Sativa types. Although more than 700 different cultivars have already been described, it is unclear whether such classification reflects any relevant differences in chemical composition. Some attempts have been made to classify Cannabis varieties based on chemical composition, but they have mainly been useful for forensic applications, distinguishing drug varieties, with high THC content, from the non-drug hemp varieties. The biologically active terpenoids have not been included in these approaches. For a clearer understanding of the medicinal properties of the Cannabis plant, a better classification system, based on a range of potentially active constituents, is needed. The cannabinoids and terpenoids, present in high concentrations in Cannabis flowers, are the main candidates. In this study, we compared cultivars obtained from multiple sources. Based on the analysis of 28 major compounds present in these samples, followed by principal component analysis (PCA) of the quantitative data, we were able to identify the Cannabis constituents that defined the samples into distinct chemovar groups. The study indicates the usefulness of a PCA approach for chemotaxonomic classification of Cannabis varieties. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Evaluating the influence of chemical weathering on the composition of the continental crust using lithium and its isotopes

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Liu, X.

    2011-12-01

    The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" of the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems document the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 8×10^9 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.

  8. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences.

    PubMed

    Cope, Emily K; Goldberg, Andrew N; Pletcher, Steven D; Lynch, Susan V

    2017-05-12

    Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by persistent sinonasal inflammation and sinus microbiome dysbiosis. The basis of this heterogeneity is poorly understood. We sought to address the hypothesis that a limited number of compositionally distinct pathogenic bacterial microbiota exist in CRS patients and invoke discrete immune responses and clinical phenotypes in CRS patients. Sinus brushings from patients with CRS (n = 59) and healthy individuals (n = 10) collected during endoscopic sinus surgery were analyzed using 16S rRNA gene sequencing, predicted metagenomics, and RNA profiling of the mucosal immune response. We show that CRS patients cluster into distinct sub-groups (DSI-III), each defined by specific pattern of bacterial co-colonization (permutational multivariate analysis of variance (PERMANOVA); p = 0.001, r 2  = 0.318). Each sub-group was typically dominated by a pathogenic family: Streptococcaceae (DSI), Pseudomonadaceae (DSII), Corynebacteriaceae [DSIII(a)], or Staphylococcaceae [DSIII(b)]. Each pathogenic microbiota was predicted to be functionally distinct (PERMANOVA; p = 0.005, r 2  = 0.217) and encode uniquely enriched gene pathways including ansamycin biosynthesis (DSI), tryptophan metabolism (DSII), two-component response [DSIII(b)], and the PPAR-γ signaling pathway [DSIII(a)]. Each is also associated with significantly distinct host immune responses; DSI, II, and III(b) invoked a variety of pro-inflammatory, T H 1 responses, while DSIII(a), which exhibited significantly increased incidence of nasal polyps (Fisher's exact; p = 0.034, relative risk = 2.16), primarily induced IL-5 expression (Kruskal Wallis; q = 0.045). A large proportion of CRS patient heterogeneity may be explained by the composition of their sinus bacterial microbiota and related host immune response-features which may inform strategies for tailored therapy in this patient population.

  9. The Relation of Codon Bias to Tissue-Specific Gene Expression in Arabidopsis thaliana

    PubMed Central

    Camiolo, Salvatore; Farina, Lorenzo; Porceddu, Andrea

    2012-01-01

    The codon composition of coding sequences plays an important role in the regulation of gene expression. Herein, we report systematic differences in the usage of synonymous codons among Arabidopsis thaliana genes that are expressed specifically in distinct tissues. Although we observed that both regionally and transcriptionally associated mutational biases were associated significantly with codon bias, they could not explain the observed differences fully. Similarly, given that transcript abundances did not account for the differences in codon usage, it is unlikely that selection for translational efficiency can account exclusively for the observed codon bias. Thus, we considered the possible evolution of codon bias as an adaptive response to the different abundances of tRNAs in different tissues. Our analysis demonstrated that in some cases, codon usage in genes that were expressed in a broad range of tissues was influenced primarily by the tissue in which the gene was expressed maximally. On the basis of this finding we propose that genes that are expressed in certain tissues might show a tissue-specific compositional signature in relation to codon usage. These findings might have implications for the design of transgenes in relation to optimizing their expression. PMID:22865738

  10. A record of igneous evolution in Elysium, a major martian volcanic province

    PubMed Central

    Susko, David; Karunatillake, Suniti; Kodikara, Gayantha; Skok, J. R.; Wray, James; Heldmann, Jennifer; Cousin, Agnes; Judice, Taylor

    2017-01-01

    A major knowledge gap exists on how eruptive compositions of a single martian volcanic province change over time. Here we seek to fill that gap by assessing the compositional evolution of Elysium, a major martian volcanic province. A unique geochemical signature overlaps with the southeastern flows of this volcano, which provides the context for this study of variability of martian magmatism. The southeastern lava fields of Elysium Planitia show distinct chemistry in the shallow subsurface (down to several decimeters) relative to the rest of the martian mid-to-low latitudes (average crust) and flows in northwest Elysium. By impact crater counting chronology we estimated the age of the southeastern province to be 0.85 ± 0.08 Ga younger than the northwestern fields. This study of the geochemical and temporal differences between the NW and SE Elysium lava fields is the first to demonstrate compositional variation within a single volcanic province on Mars. We interpret the geochemical and temporal differences between the SE and NW lava fields to be consistent with primary magmatic processes, such as mantle heterogeneity or change in depth of melt formation within the martian mantle due to crustal loading. PMID:28233797

  11. Main photoautotrophic components of biofilms in natural draft cooling towers.

    PubMed

    Hauer, Tomáš; Čapek, Petr; Böhmová, Petra

    2016-05-01

    While photoautotrophic organisms are an important component of biofilms that live in certain regions of natural draft cooling towers, little is known about these communities. We therefore examined 18 towers at nine sites to identify the general patterns of community assembly in three distinct tower parts, and we examined how community structures differ depending on geography. We also compared the newly acquired data with previously published data. The bottom sections of draft cooling towers are mainly settled by large filamentous algae, primarily Cladophora glomerata. The central portions of towers host a small amount of planktic algae biomass originating in the cooling water. The upper fourths of towers are colonized by biofilms primarily dominated by cyanobacteria, e.g., members of the genera Gloeocapsa and Scytonema. A total of 41 taxa of phototrophic microorganisms were identified. Species composition of the upper fourth of all towers was significantly affected by cardinal position. There was different species composition at positions facing north compared to positions facing south. West- and east-facing positions were transitory and highly similar to each other in terms of species composition. Biofilms contribute to the degradation of paint coatings inside towers.

  12. Multiscale Pigment Analysis of Medieval Illuminated Manuscripts

    NASA Astrophysics Data System (ADS)

    Sestak, Erica; Manukyan, Khachatur; Wiescher, Michael; Gura, David

    2017-09-01

    Three medieval illuminated manuscripts (codd. Lat. b. 1; Lat. b. 2; Lat. e. 4), housed at the University of Notre Dame's Hesburgh Library, vary in style, pigments, scribes, and regions, despite all three being Psalters used in the Late Middle Ages. XRF and Raman spectroscopy, which provided the elemental and molecular composition of the pigments, respectively, were used to analyze the pigments' compositions in an attempt to narrow further the manuscripts' possible origins. This experimental investigation emphasizes the importance of understanding the history of the manuscript through their pigments. Codd. Lat. b. 1 and Lat. b. 2 are Latinate German Psalters from the fifteenth century likely used in Katharinenkloster in Nuremberg. While there are visible differences in style within each Psalter, the variations in some of the pigment compositions, such as the inconstant presence of zinc, suggest different admixtures. Cod. Lat. e. 4 is a Latinate English Psalter from the fourteenth century, and it was written by two scribes and illuminated by two distinct painters. It is currently being tested to determine whether there are any correlations between the scribes and painters. These physical analyses will clarify the origins and provenances of the manuscripts.

  13. Allochthonous carbon is a major regulator to bacterial growth and community composition in subarctic freshwaters

    PubMed Central

    Roiha, Toni; Peura, Sari; Cusson, Mathieu; Rautio, Milla

    2016-01-01

    In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodies for a one complete year we show how terrestrial and algal carbon compounds vary in a range of freshwaters and how differential organic carbon quality is linked to bacterial metabolism and community composition. We show that terrestrial drainage and associated nutrients supported higher bacterial growth in ponds and river mouths that were influenced by fresh terrestrial carbon than in large lakes with carbon from algal production. Bacterial diversity, however, was lower at sites influenced by terrestrial carbon inputs. Bacterial community composition was highly variable among different water bodies and especially influenced by concentrations of dissolved organic carbon (DOC), fulvic acids, proteins and nutrients. Furthermore, a distinct preference was found for terrestrial vs. algal carbon among certain bacterial tribes. The results highlight the contribution of the numerous ponds to cycling of terrestrial carbon in the changing subarctic and arctic regions. PMID:27686416

  14. Allochthonous carbon is a major regulator to bacterial growth and community composition in subarctic freshwaters.

    PubMed

    Roiha, Toni; Peura, Sari; Cusson, Mathieu; Rautio, Milla

    2016-09-30

    In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodies for a one complete year we show how terrestrial and algal carbon compounds vary in a range of freshwaters and how differential organic carbon quality is linked to bacterial metabolism and community composition. We show that terrestrial drainage and associated nutrients supported higher bacterial growth in ponds and river mouths that were influenced by fresh terrestrial carbon than in large lakes with carbon from algal production. Bacterial diversity, however, was lower at sites influenced by terrestrial carbon inputs. Bacterial community composition was highly variable among different water bodies and especially influenced by concentrations of dissolved organic carbon (DOC), fulvic acids, proteins and nutrients. Furthermore, a distinct preference was found for terrestrial vs. algal carbon among certain bacterial tribes. The results highlight the contribution of the numerous ponds to cycling of terrestrial carbon in the changing subarctic and arctic regions.

  15. About Tagish Lake as a Potential Parent Body for Polar Micrometeorites; Clues from their Hydrogen Isotopic Compositions

    NASA Technical Reports Server (NTRS)

    Engrand, C.; Gounelle, M.; Zolensky, M. E.; Duprat, J.

    2003-01-01

    The origin of the Antarctic micrometeorites (AMMs) is still a matter of debate. Their closest meteoritic counterparts are the C2 chondrites, but the match is not perfect, and the parent body(ies) of the AMMs is(are) still to be identified. Tagish Lake is a new meteorite fall which bears similarity with CI1 and CM2 chondrites, but is distinct from both. Based on the mineralogy of phyllosilicates, Noguchi et al. proposed that the phyllosilicate-rich AMMs and the Tagish Lake meteorites could derive from similar asteroids. The hydrogen isotopic compositions of extra-terrestrial samples can be used to get some insight on their origin. The D/H ratios of AMMs and of Tagish Lake have been measured, but using different analytical techniques. They are therefore not directly comparable. We performed additional hydrogen isotopic analyses of fragments of Tagish Lake using the same experimental setup previously used for the measurement of the hydrogen isotopic composition of AMMs. In this work, we could also analyze separately both lithologies of Tagish Lake (carbonate-poor and -rich). The distributions of delta D values measured in the two lithologies of Tagish Lake are very similar, indicating that fluids with similar hydrogen isotopic compositions altered the meteorite on the parent body for the two lithologies. Yet, the hydrogen isotopic composition of Tagish Lake is different from that of AMMs, suggesting that they do not derive from the same parent body.

  16. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  17. Variation in Phytochemical Composition Reveals Distinct Divergence of Aloe vera (L.) Burm.f. From Other Aloe Species: Rationale Behind Selective Preference of Aloe vera in Nutritional and Therapeutic Use

    PubMed Central

    Dey, Priyankar; Dutta, Somit; Chowdhury, Anurag; Das, Abhaya Prasad; Chaudhuri, Tapas Kumar

    2017-01-01

    In the present study, we have phytochemically characterized 5 different abundant Aloe species, including Aloe vera (L.) Burm.f., using silylation followed by Gas Chromatography-Mass Spectrometry technique and compared the data using multivariate statistical analysis. The results demonstrated clear distinction of the overall phytochemical profile of A vera, highlighted by its divergent spatial arrangement in the component plot. Lowest correlation of the phytochemical profiles were found between A vera and A aristata Haw. (−0.626), whereas highest correlation resided between A aristata and A aspera Haw. (0.899). Among the individual phytochemicals, palmitic acid was identified in highest abundance cumulatively, and carboxylic acids were the most predominant phytochemical species in all the Aloe species. Compared to A vera, linear correlation analysis revealed highest and lowest correlation with A aspera (R 2 = 0.9162) and A aristata (R 2 = 0.6745), respectively. Therefore, A vera demonstrated distinct spatial allocation, reflecting its greater phytochemical variability. PMID:29228808

  18. Protein kinases are associated with multiple, distinct cytoplasmic granules in quiescent yeast cells.

    PubMed

    Shah, Khyati H; Nostramo, Regina; Zhang, Bo; Varia, Sapna N; Klett, Bethany M; Herman, Paul K

    2014-12-01

    The cytoplasm of the eukaryotic cell is subdivided into distinct functional domains by the presence of a variety of membrane-bound organelles. The remaining aqueous space may be further partitioned by the regulated assembly of discrete ribonucleoprotein (RNP) complexes that contain particular proteins and messenger RNAs. These RNP granules are conserved structures whose importance is highlighted by studies linking them to human disorders like amyotrophic lateral sclerosis. However, relatively little is known about the diversity, composition, and physiological roles of these cytoplasmic structures. To begin to address these issues, we examined the cytoplasmic granules formed by a key set of signaling molecules, the protein kinases of the budding yeast Saccharomyces cerevisiae. Interestingly, a significant fraction of these proteins, almost 20%, was recruited to cytoplasmic foci specifically as cells entered into the G0-like quiescent state, stationary phase. Colocalization studies demonstrated that these foci corresponded to eight different granules, including four that had not been reported previously. All of these granules were found to rapidly disassemble upon the resumption of growth, and the presence of each was correlated with cell viability in the quiescent cultures. Finally, this work also identified new constituents of known RNP granules, including the well-characterized processing body and stress granule. The composition of these latter structures is therefore more varied than previously thought and could be an indicator of additional biological activities being associated with these complexes. Altogether, these observations indicate that quiescent yeast cells contain multiple distinct cytoplasmic granules that may make important contributions to their long-term survival. Copyright © 2014 by the Genetics Society of America.

  19. Profound effects of cardiopulmonary bypass priming solutions on the fibrin part of clot formation: an ex vivo evaluation using rotation thromboelastometry.

    PubMed

    Brinkman, Arinda C M; Romijn, Johannes W A; van Barneveld, Lerau J M; Greuters, Sjoerd; Veerhoek, Dennis; Vonk, Alexander B A; Boer, Christa

    2010-06-01

    Dilutional coagulopathy as a consequence of cardiopulmonary bypass (CPB) system priming may also be affected by the composition of the priming solution. The direct effects of distinct priming solutions on fibrinogen, one of the foremost limiting factors during dilutional coagulopathy, have been minimally evaluated. Therefore, the authors investigated whether hemodilution with different priming solutions distinctly affects the fibrinogen-mediated step in whole blood clot formation. Prospective observational laboratory study. University hospital laboratory. Eight male healthy volunteers. Blood samples diluted with gelatin-, albumin-, or hydroxyethyl starch (HES)-based priming solutions were ex-vivo evaluated for clot formation by rotational thromboelastometry. The intrinsic pathway (INTEM) coagulation time increased from 186 +/- 19 seconds to 205 +/- 16, 220 +/- 17, and 223 +/- 18 seconds after dilution with gelatin-, albumin-, or HES-containing prime solutions (all p < 0.05 v baseline). The extrinsic pathway (EXTEM) coagulation time was only minimally affected by hemodilution. Moreover, all 3 priming solutions significantly reduced the INTEM and EXTEM maximum clot firmness. The HES-containing priming solution induced the largest decrease in the maximum clot firmness attributed to fibrinogen, from 13 +/- 1 mm (baseline) to 6 +/- 1 mm (p < 0.01 v baseline). All studied priming solutions prolonged coagulation time and decreased clot formation, but the fibrinogen-limiting effect was the most profound for the HES-containing priming solution. These results suggest that the composition of priming solutions may distinctly affect blood clot formation, in particular with respect to the fibrinogen component in hemostasis. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.

    PubMed

    Adamson, David N; Mustafi, Debarshi; Zhang, John X J; Zheng, Bo; Ismagilov, Rustem F

    2006-09-01

    This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.

  1. Assessment of Dry Powder Inhaler Carrier Targeted Design: A Comparative Case Study of Diverse Anomeric Compositions and Physical Properties of Lactose.

    PubMed

    Pinto, Joana T; Zellnitz, Sarah; Guidi, Tomaso; Roblegg, Eva; Paudel, Amrit

    2018-06-19

    The pulmonary administration landscape has rapidly advanced in recent years. Targeted design of particles by spray-drying for dry powder inhaler development offers an invaluable tool for engineering of new carriers. In this work, different formulation and process aspects of spray-drying were exploited to produce new lactose carriers. Using an integrated approach, lactose was spray-dried in the presence of polyethylene glycol 200 (PEG 200), and the in vitro performance of the resulting particles was compared with other grades of lactose with varying anomeric compositions and/or physical properties. The anomeric composition of lactose in lactose-PEG 200 feed solutions of variable compositions was analyzed via polarimetry at different temperatures. These results were correlated with the solid-state and anomeric composition of the resulting spray-dried particles using modulated differential scanning calorimetry and wide-angle X-ray scattering. The distinct selected grades of lactose were characterized in terms of their micromeritic properties using laser diffraction, helium pycnometry, and gas adsorption, and their particle surface morphologies were evaluated via scanning electron microscopy. Adhesive mixtures of the different lactose carriers with inhalable-sized salbutamol sulfate, as a model drug, were prepared in low doses and evaluated for their blend homogeneity and aerodynamic performance using a Next Generation Impactor. Characterization of the spray-dried particles revealed that predominantly crystalline (in an anomeric ratio 0.8:1 of α to β) spherical particles with a mean size of 50.9 ± 0.4 μm could be produced. Finally, it was apparent that micromeritic, in particular, the shape, and surface properties (inherent to solid-state and anomeric composition) of carrier particles dominantly control DPI delivery. This provided an insight into the relatively inferior performance of the adhesive blends containing the spherical spray-dried lactose-PEG 200 composites.

  2. Apollo 15 green glass - Compositional distribution and petrogenesis

    NASA Technical Reports Server (NTRS)

    Steele, Alison M.; Colson, Russell O.; Korotev, Randy L.; Haskin, Larry A.

    1992-01-01

    We have characterized a comprehensive suite of individual green-glass beads from Apollo 15 soil to determine interelement behavior and to constrain petrogenetic relationships. We analyzed 365 particles for trace elements by instrumental neutron activation analysis and analyzed 52 of them, selected to cover the compositional ranges observed for trace elements, for major elements by electron microprobe analysis. We confirm the observation of Delano (1979) that the beads comprise discrete compositional groups, although two of the groups he defined are further split on the basis of trace-element compositions. Each of the resulting seven groups has distinct average rare-earth abundances. The coherence between major- and trace-element data was masked in previous studies by imprecision, correlated error, and nonrepresentative sampling of the different groups. Most of the compositional characteristics of the green glasses can be explained by a model for batch equilibrium melting of a nearly homogeneous, ultramafic source region, when the complicating effects of high pressure and low oxygen fugacity are taken into account. The previously puzzling behavior of Ni and Co as apparently incompatible elements may arise from partial reduction of those elements to the zero oxidation state, resulting in low mineral/melt partition coefficients. The model also offers explanations for why the green glasses form boomerang-shaped trends on many two-element variation diagrams and why certain compositions (Groups A and D) are more abundant than glasses with other compositions.

  3. Geochemical comparison of impact glasses from lunar meteorites ALHA81005 and MAC88105 and Apollo 16 regolith 64001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delano, J.W.

    1991-11-01

    Most glasses that occur in lunar highland regolith are quenched droplets of impact melt. The chemical compositions of these glasses are equivalent, in the absence of volatile losses, to the original target materials. The compositional range of impact glasses in a regolith reflects the chemical diversity that existed throughout the region up to the time of system closure (e.g., breccia formation). Since these glasses are a product of widespread and random sampling, both in terms of space and time, they can be used for geochemical exploration of the Moon. The major-element compositions of impact glasses occurring in three samples ofmore » lunar feldspathic regolith (ALHA81005; MAC88105; Apollo 16 64001) have been determined by electron microprobe. The glass populations among these three unrelated samples are compositionally distinct. While most of the impact glasses within each of these three samples are compositionally similar to the regolith in which they are found, up to 40% of the impact glasses are different. Some of the compositionally exotic glasses were ballistically transported from other areas of the Moon and thereby provide information about the compositional range of regoliths that exist elsewhere. Since the geological setting of the Apollo 16 region is well known compared to the source areas of the lunar meteorites, the Apollo 16 glasses provide a ground truth for interpretations.« less

  4. CARAPACE: a novel composite advanced robotic actuator powering assistive compliant exoskeleton: preliminary design.

    PubMed

    Masia, Lorenzo; Cappello, Leonardo; Morasso, Pietro; Lachenal, Xavier; Pirrera, Alberto; Weaver, Paul; Mattioni, Filippo

    2013-06-01

    A novel actuator is introduced that combines an elastically compliant composite structure with conventional electromechanical elements. The proposed design is analogous to that used in Series Elastic Actuators, its distinctive feature being that the compliant composite part offers different stable configurations. In other words, its elastic potential presents points of local minima that correspond to robust stable positions (multistability). This potential is known a priori as a function of the structural geometry, thus providing tremendous benefits in terms of control implementation. Such knowledge enables the complexities arising from the additional degrees of freedom associated with link deformations to be overcome and uncover challenges that extends beyond those posed by standard rigidlink robot dynamics. It is thought that integrating a multistable elastic element in a robotic transmission can provide new scenarios in the field of assistive robotics, as the system may help a subject to stand or carry a load without the need for an active control effort by the actuators.

  5. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    PubMed

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Phenolic acids and methylxanthines composition and antioxidant properties of mate (Ilex paraguariensis) residue.

    PubMed

    Vieira, Manoela A; Maraschin, Marcelo; Pagliosa, Cristiane M; Podestá, Rossana; de Simas, Karina N; Rockenbach, Ismael Ivan; Amboni, Renata D de M C; Amante, Edna R

    2010-04-01

    Ilex paraguariensis is known to contain compounds with antioxidant properties, such as phenolic acids, and its stimulant properties are attributed to methylxanthines, such as caffeine. The aims of this study were to evaluate the phenolic, methylxanthinic, and tannin composition of a mate residue (mate powder), to compare the quali-quantitative phenolic composition and the antioxidant potential of extracts obtained from distinct solvent systems. Among the extracts prepared with different solvents, the 80% methanol extract showed the highest total polyphenol content (11.51 g/100 g) and antioxidant activity. HPLC analysis showed that 4,5 dicaffeoylquinic acid is the major component of the phenolic fraction of mate powder. The caffeine, theobromine, and tannin contents in mate powder were 1.01, 0.10, and 0.29 g/100 g, respectively. Consumption of mate powder would significantly contribute to antioxidant and stimulant intake, providing high amounts of phenolic acids, tannins, and methylxanthines with biological effects potentially beneficial for human health. This article contributes to the minimization of residues in yerba-mate processing.

  7. Phenolic and Aroma Composition of White Wines Produced by Prolonged Maceration and Maturation in Wooden Barrels

    PubMed Central

    Jedrejčić, Nikolina; Ganić, Karin Kovačević; Staver, Mario; Peršurić, Đordano

    2015-01-01

    Summary To investigate the phenolic and aroma composition of Malvazija istarska (Vitis vinifera L.) white wines produced by an unconventional technology comprising prolonged maceration followed by maturation in wooden barrels, representative samples were subjected to analysis by UV/Vis spectrometry, high-performance liquid chromatography, and gas chromatography-mass spectrometry. When compared to standard wines, the investigated samples contained higher levels of dry extract, volatile acidity, lactic acid, phenols, colour intensity, antioxidant activity, majority of monoterpenes, C13-norisoprenoids, methanol, higher alcohols, ethyl acetate, branched-chain esters and esters of hydroxy and dicarboxylic acids, ethylphenols, furans, and acetals, as well as lower levels of malic acid, β-damascenone, straight-chain fatty acids, ethyl and acetate esters. It was estimated that maceration had a stronger influence on phenols, and maturation on volatile aromas. Despite different vintages and technological details, the investigated wines showed a relative homogeneity in the composition, representing a clear and distinctive type. PMID:27904375

  8. Differential incorporation of docosahexaenoic acid into distinct cholesterol-rich membrane raft domains.

    PubMed

    Duraisamy, Yasotha; Lambert, Daniel; O'Neill, Catherine A; Padfield, Philip J

    2007-09-07

    We investigated the influence of docosahexaenoic acid (DHA) on the fatty acid and protein compositions of two populations of membrane rafts present in Caco-2 cells. DHA (100 microM) had no significant influence on the fatty acid or protein compositions of tight junction-associated, Lubrol insoluble, membrane rafts. However, DHA did significantly alter the fatty acid and protein compositions of "archetypal" Triton X-100 insoluble membrane rafts. The DHA content of the raft lipids increased 25-fold and was accompanied by a redistribution of src and fyn out of the rafts. DHA also increased Caco-2 cell monolayer permeability producing a 95% drop in transepithelial electrical resistance and a 8.56-fold increase in the flux of dextran. In conclusion, the data demonstrate that DHA does not increase permeability through modifying the TJ-associated rafts. The data do, however, show that DHA is differentially incorporated into different classes of membrane rafts, which has significant implications to our understanding of how omega-3 PUFAs modulate plasma membrane organization and cell function.

  9. Aesthetic composite veneers for an adult patient with amelogenesis imperfecta: a case report.

    PubMed

    Brignall, Ian; Mehta, Shamir B; Banerji, Subir; Millar, Brian J

    2011-11-01

    This case has been presented as part of the continual assessment requirement for the MSc in Aesthetic Dentistry, King's College Dental Institute. Amelogenesis imperfecta (AI) is a hereditary disorder of enamel formation, affecting both the permanent and deciduous dentitions. It can be classified into hypoplastic, hypomaturation and hypocalcified types and presents with different hereditary patterns. The aim of this article is to provide an overview of amelogenesis imperfecta, including a detailed case report for an aesthetically concerned adult patient presenting in general practice with a Witkop's Type IA defect managed with the placement of direct, layered resin composite veneers. Amelogenesis imperfecta patients are susceptible to the restorative cycle of replacement restorations like any other patient, but start with a distinct disadvantage.This case report demonstrates a minimally invasive, relatively simple and cost-effective option for the aesthetic correction of a case of hypoplastic amelogenesis imperfecta with layered composite veneers. Dent Update 2011; 38:594-603

  10. Light influence in the nutritional composition of Brassica oleracea sprouts.

    PubMed

    Vale, A P; Santos, J; Brito, N V; Peixoto, V; Carvalho, Rosa; Rosa, E; Oliveira, M Beatriz P P

    2015-07-01

    Brassica sprouts are considered a healthy food product, whose nutritional quality can be influenced by several factors. The aim of this work was to monitor the nutritional composition changes promoted by different sprouting conditions of four varieties of Brassica oleracea (red cabbage, broccoli, Galega kale and Penca cabbage). Sprouts were grown under light/darkness cycles and complete darkness. Standard AOAC methods were applied for nutritional value evaluation, while chromatographic methods with UV-VIS and FID detection were used to determine the free amino acids and fatty acids, respectively. Mineral content was analyzed by atomic absorption spectrometry. Sprouts composition revealed them as an excellent source of protein and dietary fiber. Selenium content was one of the most distinctive feature of sprouts, being the sprouting conditions determinant for the free amino acid and fatty acids profile. The use of complete darkness was beneficial to the overall nutritional quality of the brassica sprouts studied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Dynamically Switching the Polarization State of Light Based on the Phase Transition of Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Jia, Zhi-Yong; Shu, Fang-Zhou; Gao, Ya-Jun; Cheng, Feng; Peng, Ru-Wen; Fan, Ren-Hao; Liu, Yongmin; Wang, Mu

    2018-03-01

    There have been great endeavors devoted to manipulating the polarization state of light by plasmonic nanostructures in recent decades. However, the topic of active polarizers has attracted much less attention. We present a composite plasmonic nanostructure consisting of vanadium dioxide that can dynamically modulate the polarization state of the reflected light through a thermally induced phase transition of vanadium dioxide. We design a system consisting of anisotropic plasmonic nanostructures with vanadium dioxide that exhibits distinct reflections subjected to different linearly polarized incidence at room temperature and in the heated state. Under a particular linearly polarized incidence, the polarization state of the reflected light changes at room temperature, and reverts to its original polarization state above the phase-transition temperature. The composite structure can also be used to realize a dynamically switchable infrared image, wherein a pattern can be visualized at room temperature while it disappears above the phase-transition temperature. The composite structure could be potentially used for versatile optical modulators, molecular detection, and polarimetric imaging.

  12. Grape cluster microclimate influences the aroma composition of Sauvignon blanc wine.

    PubMed

    Martin, Damian; Grose, Claire; Fedrizzi, Bruno; Stuart, Lily; Albright, Abby; McLachlan, Andrew

    2016-11-01

    New Zealand Sauvignon blanc (SB) wines are characterised by a distinctive combination of tropical-fruity and green-herbaceous aromatic compounds. The influence of sunlight exposure of grape clusters on juice and wine composition was investigated, with the aim of manipulating aromatic compounds in SB wine. In the absence of basal leaf removal SB clusters naturally exposed to sunlight were riper than shaded clusters, evidenced by higher total soluble solids (TSS) and proline, and lower malic acid, 3-isobutyl-2-methoxypyrazine (IBMP) and arginine. Volatile thiols in wines did not differ between shaded and exposed clusters. At equivalent TSS, cluster exposure had little or no effect on malic acid concentration. Conversely, wine from shaded clusters had almost double the IBMP concentration of wine from exposed clusters at equivalent TSS. The effects on SB juice and wine composition of natural variations in cluster microclimate are not comparable with the effects of cluster exposure created through leaf removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Clinical reactivity of celery cultivars in allergic patients: Role of Api g 1.

    PubMed

    Dölle, S; Welter, S; Ruppel, E; Lehmann, K; Schwarz, D; Jensen-Jarolim, E; Zieglmayer, P; Franken, P; Worm, M

    2018-04-01

    Celery (Apium graveolens L.) is a vegetable consumed world-wide. Celery stalks and celeriac roots are often ingredients in convenient food products like spice blends and soups. In this study, we examined the allergenicity of distinct celeriac cultivars. Sixteen celery-allergic patients were identified using a double-blind, placebo-controlled food challenge. Ten different celeriac cultivars were used for skin prick testing in the patients. Two cultivars were further applied for oral food challenges; their protein composition was analysed by immunoblotting, and contents of major allergen Api g 1 were quantified. From the 10 investigated celeriac cultivars, two cultivars elicited significantly different skin reactivity ("Anita": 5.0 [2.0-12.0] mm vs "Prinz": 7.0 [3.0-9.5] mm; P = .047). Moreover, "Anita" induced fewer symptoms after a controlled oral-celeriac challenge in 14 patient (P < .001). The protein profiles on 2DE protein gels showed distinct protein patterns and higher protein amounts of Api g 1 in "Prinz" than in "Anita." Taken together, the data from this study suggest that cultivar Anita is better tolerated in celery-allergic patients than "Prinz." Differences in the protein expression profile between the cultivars, particularly the different content of Api g 1, could cause the different allergenicity. © 2018 John Wiley & Sons Ltd.

  14. Microbial community structure and density under different tree species in an acid forest soil (Morvan, France).

    PubMed

    Lejon, David P H; Chaussod, Rémi; Ranger, Jacques; Ranjard, Lionel

    2005-11-01

    Overexploitation of forests to increase wood production has led to the replacement of native forest by large areas of monospecific tree plantations. In the present study, the effects of different monospecific tree cover plantations on density and composition of the indigenous soil microbial community are described. The experimental site of "Breuil-Chenue" in the Morvan (France) was the site of a comparison of a similar mineral soil under Norway spruce (Picea abies), Douglas fir (Pseudotuga menziesii), oak (Quercus sessiflora), and native forest [mixed stand dominated by oak and beech (Fagus sylvatica)]. Sampling was performed during winter (February) at three depths (0-5, 5-10, and 10-15 cm). Abundance of microorganisms was estimated via microbial biomass measurements, using the fumigation-extraction method. The genetic structure of microbial communities was investigated using the bacterial- and fungal-automated ribosomal intergenic spacer analysis (B-ARISA and F-ARISA, respectively) DNA fingerprint. Only small differences in microbial biomass were observed between tree species, the highest values being recorded under oak forest and the lowest under Douglas fir. B- and F-ARISA community profiles of the different tree covers clustered separately, but noticeable similarities were observed for soils under Douglas fir and oak. A significant stratification was revealed under each tree species by a decrease in microbial biomass with increasing depths and by distinct microbial communities for each soil layer. Differences in density and community composition according to tree species and depth were related to soil physicochemical characteristics and organic matter composition.

  15. Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes.

    PubMed

    Kreznar, Julia H; Keller, Mark P; Traeger, Lindsay L; Rabaglia, Mary E; Schueler, Kathryn L; Stapleton, Donald S; Zhao, Wen; Vivas, Eugenio I; Yandell, Brian S; Broman, Aimee Teo; Hagenbuch, Bruno; Attie, Alan D; Rey, Federico E

    2017-02-14

    Genetic variation drives phenotypic diversity and influences the predisposition to metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in diabetes-related phenotypes and gut microbiota composition among the different mouse strains in response to the dietary challenge and identified taxa associated with these traits. Follow-up microbiota transplant experiments showed that altering the composition of the gut microbiota modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring microbial communities with enhanced capacity for processing dietary sugars and for generating hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic and phenotypic diversity observed among mouse strains and provide a link between the gut microbiome and insulin secretion. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Divergent Relationships between Fecal Microbiota and Metabolome following Distinct Antibiotic-Induced Disruptions.

    PubMed

    Choo, Jocelyn M; Kanno, Tokuwa; Zain, Nur Masirah Mohd; Leong, Lex E X; Abell, Guy C J; Keeble, Julie E; Bruce, Kenneth D; Mason, A James; Rogers, Geraint B

    2017-01-01

    The intestinal microbiome plays an essential role in regulating many aspects of host physiology, and its disruption through antibiotic exposure has been implicated in the development of a range of serious pathologies. The complex metabolic relationships that exist between members of the intestinal microbiota and the potential redundancy in functional pathways mean that an integrative analysis of changes in both structure and function are needed to understand the impact of antibiotic exposure. We used a combination of next-generation sequencing and nuclear magnetic resonance (NMR) metabolomics to characterize the effects of two clinically important antibiotic treatments, ciprofloxacin and vancomycin-imipenem, on the intestinal microbiomes of female C57BL/6 mice. This assessment was performed longitudinally and encompassed both antibiotic challenge and subsequent microbiome reestablishment. Both antibiotic treatments significantly altered the microbiota and metabolite compositions of fecal pellets during challenge and recovery. Spearman's correlation analysis of microbiota and NMR data revealed that, while some metabolites could be correlated with individual operational taxonomic units (OTUs), frequently multiple OTUs were associated with a significant change in a given metabolite. Furthermore, one metabolite, arginine, can be associated with increases/decreases in different sets of OTUs under differing conditions. Taken together, these findings indicate that reliance on shifts in one data set alone will generate an incomplete picture of the functional effect of antibiotic intervention. A full mechanistic understanding will require knowledge of the baseline microbiota composition, combined with both a comparison and an integration of microbiota, metabolomics, and phenotypic data. IMPORTANCE Despite the fundamental importance of antibiotic therapies to human health, their functional impact on the intestinal microbiome and its subsequent ability to recover are poorly understood. Much research in this area has focused on changes in microbiota composition, despite the interdependency and overlapping functions of many members of the microbial community. These relationships make prediction of the functional impact of microbiota-level changes difficult, while analyses based on the metabolome alone provide relatively little insight into the taxon-level changes that underpin changes in metabolite levels. Here, we used combined microbiota and metabolome profiling to characterize changes associated with clinically important antibiotic combinations with distinct effects on the gut. Correlation analysis of changes in the metabolome and microbiota indicate that a combined approach will be essential for a mechanistic understanding of the functional impact of distinct antibiotic classes.

  17. Enhancing the Mechanical Toughness of Epoxy-Resin Composites Using Natural Silk Reinforcements

    DOE PAGES

    Yang, Kang; Wu, Sujun; Guan, Juan; ...

    2017-09-20

    Strong and tough epoxy composites are developed using a less-studied fibre reinforcement, that of natural silk. Two common but structurally distinct silks from the domestic B. mori/Bm and the wild A. pernyi/Ap silkworms are selected in fabric forms. We show that the toughening effects on silk-epoxy composites or SFRPs are dependent on the silk species and the volume fraction of silk. Both silks enhance the room-temperature tensile and flexural mechanical properties of the composite, whereas the more resilient Ap silk shows a more pronounced toughening effect and a lower critical reinforcement volume for the brittle-ductile transition. Specifically, our 60 vol.%more » Ap-SFRP displays a three-fold elevation in tensile and flexural strength, as compared to pure epoxy resin, with an order of magnitude higher breaking energy via a distinct, ductile failure mode. Importantly, the 60 vol.% Ap-SFRP remains ductile with 7% flexural elongation at lower temperatures (-50 °C). Under impact, these SFRPs show significantly improved energy absorption, and the 60 vol.% Ap-SFRP has an impact strength some eight times that of pure epoxy resin. Lastly, the findings demonstrate both marked toughening and strengthening effects for epoxy composites from natural silk reinforcements, which presents opportunities for mechanically superior and "green" structural composites.« less

  18. An optimized regulating method for composting phosphorus fractions transformation based on biochar addition and phosphate-solubilizing bacteria inoculation.

    PubMed

    Wei, Yuquan; Zhao, Yue; Wang, Huan; Lu, Qian; Cao, Zhenyu; Cui, Hongyang; Zhu, Longji; Wei, Zimin

    2016-12-01

    The study was conducted to investigate the influence of biochar and/or phosphate-solubilizing bacteria (PSB) inoculants on microbial biomass, bacterial community composition and phosphorus (P) fractions during kitchen waste composting amended with rock phosphate (RP). There were distinct differences in the physic-chemical parameters, the proportion of P fractions and bacterial diversity in different treatments. The contribution of available P fractions increased during composting especially in the treatment with the addition of PSB and biochar. Redundancy analysis showed that bacterial compositions were significantly influenced by P content, inoculation and biochar. Variance partitioning further showed that synergy of inoculated PSB and indigenous bacterial communities and the joint effect between biochar and bacteria explained the largest two proportion of the variation in P fractions. Therefore, the combined application of PSB and biochar to improve the inoculation effect and an optimized regulating method were suggested based on the distribution of P fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA.

    PubMed

    SIGAL, N; SENEZ, J C; LEGALL, J; SEBALD, M

    1963-06-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315-1318. 1963-The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c(3) and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin ("nigrificans" and "orientis") are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively.

  20. Ca2+-induced phase separation in black lipid membranes and its effect on the transport of a hydrophobic ion.

    PubMed

    Miller, A; Schmidt, G; Eibl, H; Knoll, W

    1985-03-14

    Voltage jump-current relaxation studies have been performed with dipicrylamine-doped black membranes of binary lipid mixtures. As in the case of the carrier-mediated ion transport (Schmidt, G., Eibl, H. and Knoll, W. (1982) J. Membrane Biol. 70, 147-155) no evidence was found that the neutral lipid phosphatidylcholine (DPMPC) and the charged phosphatidic acid (DPMPA) are heterogeneously distributed in the membrane over the whole range of composition. However, besides a continuous dilution of the surface charges of DPMPA by the addition of DPMPC molecules, different structural properties of mixed membranes influence the kinetics of the dipicrylamine transport. The addition of Ca2+ to the electrolyte induces a lipid phase separation within the membrane into two fluid phases of distinctly different characteristics of the translocation of hydrophobic ions. Thus, it is possible to determine a preliminary composition phase diagram for the DPMPA/DPMPC mixtures as a function of the Ca2+ concentration.

  1. Long-term effects of timber harvesting on forest soil communities and their catabolic capacity

    NASA Astrophysics Data System (ADS)

    Mohn, W. W.

    2016-12-01

    We examined the effect of forest harvesting on metagenomes of soil communities in ecozones across North America. The overall effect of harvesting on community composition was very small relative to major differences between soil horizons and among geographically distinct ecozones. However, in some ecozones, harvesting substantially altered bacterial and fungal community composition and diminished the genetic potential for biomass decomposition while increasing the potential for nitrogen cycling. Stable isotope probing identified populations involved in hemicellulose and cellulose decomposition. Known cellulolytic organisms were found in the organic soil layer, while novel cellulolytic organisms were identified in the mineral soil layer. Lignolytic populations identified were mainly bacterial, and metagenomics analysis identified lignin degradation enzymes in the genomes of some of these populations. In some ecozones, cellulolytic and hemicellulolytic populations were substantially impacted by harvesting. Soil carbon, nitrogen and pH were related to the relative susceptibility of forest soil communities in the different ecozones to harvesting impacts.

  2. Microarray analyses of Xylella fastidiosa provide evidence of coordinated transcription control of laterally transferred elements.

    PubMed

    Nunes, Luiz R; Rosato, Yoko B; Muto, Nair H; Yanai, Giane M; da Silva, Vivian S; Leite, Daniela B; Gonçalves, Edmilson R; de Souza, Alessandra A; Coletta-Filho, Helvécio D; Machado, Marcos A; Lopes, Silvio A; de Oliveira, Regina Costa

    2003-04-01

    Genetically distinct strains of the plant bacterium Xylella fastidiosa (Xf) are responsible for a variety of plant diseases, accounting for severe economic damage throughout the world. Using as a reference the genome of Xf 9a5c strain, associated with citrus variegated chlorosis (CVC), we developed a microarray-based comparison involving 12 Xf isolates, providing a thorough assessment of the variation in genomic composition across the group. Our results demonstrate that Xf displays one of the largest flexible gene pools characterized to date, with several horizontally acquired elements, such as prophages, plasmids, and genomic islands (GIs), which contribute up to 18% of the final genome. Transcriptome analysis of bacteria grown under different conditions shows that most of these elements are transcriptionally active, and their expression can be influenced in a coordinated manner by environmental stimuli. Finally, evaluation of the genetic composition of these laterally transferred elements identified differences that may help to explain the adaptability of Xf strains to infect such a wide range of plant species.

  3. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents.

    PubMed

    Peasura, Napassorn; Laohakunjit, Natta; Kerdchoechuen, Orapin; Wanlapa, Sorada

    2015-11-01

    Ulva intestinalis, a tubular green seaweed, is a rich source of nutrient, especially sulphated polysaccharides. Sulphated polysaccharides from U. intestinalis were extracted with distilled water, 0.1N HCl, and 0.1N NaOH at 80°C for 1, 3, 6, 12, and 24h to study the effect of the extraction solvent and time on their chemical composition and antioxidant activity. Different types of solvents and extraction time had a significant influence on the chemical characteristics and antioxidant activity (p<0.05). Monosaccharide composition and FT-IR spectra analyses revealed that sulphated polysaccharides from all solvent extractions have a typical sugar backbone (glucose, rhamnose, and sulphate attached at C-2 or C-3 of rhamnose). Sulphated polysaccharides extracted with acid exhibited greater antioxidant activity than did those extracted with distilled water and alkali. The results indicated that solvent extraction could be an efficacious method for enhancing antioxidant activity by distinct molecular weight and chemical characteristic of sulphated polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Transported biofilms and their influence on subsequent macrofouling colonization.

    PubMed

    Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B

    2017-05-01

    Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.

  5. Distinct antimicrobial peptide expression determines host species-specific bacterial associations

    PubMed Central

    Franzenburg, Sören; Walter, Jonas; Künzel, Sven; Wang, Jun; Baines, John F.; Bosch, Thomas C. G.; Fraune, Sebastian

    2013-01-01

    Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations. PMID:24003149

  6. Host influence in the genomic composition of flaviviruses: A multivariate approach.

    PubMed

    Simón, Diego; Fajardo, Alvaro; Sóñora, Martín; Delfraro, Adriana; Musto, Héctor

    2017-10-28

    Flaviviruses present substantial differences in their host range and transmissibility. We studied the evolution of base composition, dinucleotide biases, codon usage and amino acid frequencies in the genus Flavivirus within a phylogenetic framework by principal components analysis. There is a mutual interplay between the evolutionary history of flaviviruses and their respective vectors and/or hosts. Hosts associated to distinct phylogenetic groups may be driving flaviviruses at different pace and through various sequence landscapes, as can be seen for viruses associated with Aedes or Culex spp., although phylogenetic inertia cannot be ruled out. In some cases, viruses face even opposite forces. For instance, in tick-borne flaviviruses, while vertebrate hosts exert pressure to deplete their CpG, tick vectors drive them to exhibit GC-rich codons. Within a vertebrate environment, natural selection appears to be acting on the viral genome to overcome the immune system. On the other side, within an arthropod environment, mutational biases seem to be the dominant forces. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Spontaneous formation of spiral-like patterns with distinct periodic physical properties by confined electrodeposition of Co-In disks

    NASA Astrophysics Data System (ADS)

    Golvano-Escobal, Irati; Gonzalez-Rosillo, Juan Carlos; Domingo, Neus; Illa, Xavi; López-Barberá, José Francisco; Fornell, Jordina; Solsona, Pau; Aballe, Lucia; Foerster, Michael; Suriñach, Santiago; Baró, Maria Dolors; Puig, Teresa; Pané, Salvador; Nogués, Josep; Pellicer, Eva; Sort, Jordi

    2016-07-01

    Spatio-temporal patterns are ubiquitous in different areas of materials science and biological systems. However, typically the motifs in these types of systems present a random distribution with many possible different structures. Herein, we demonstrate that controlled spatio-temporal patterns, with reproducible spiral-like shapes, can be obtained by electrodeposition of Co-In alloys inside a confined circular geometry (i.e., in disks that are commensurate with the typical size of the spatio-temporal features). These patterns are mainly of compositional nature, i.e., with virtually no topographic features. Interestingly, the local changes in composition lead to a periodic modulation of the physical (electric, magnetic and mechanical) properties. Namely, the Co-rich areas show higher saturation magnetization and electrical conductivity and are mechanically harder than the In-rich ones. Thus, this work reveals that confined electrodeposition of this binary system constitutes an effective procedure to attain template-free magnetic, electric and mechanical surface patterning with specific and reproducible shapes.

  8. The geology and geochemistry of Isla Floreana, Galápagos: A different type of late-stage ocean island volcanism: Chapter 6 in The Galápagos: A natural laboratory for the earth sciences

    USGS Publications Warehouse

    Harpp, Karen S.; Geist, Dennis J.; Koleszar, Alison M.; Christensen, Branden; Lyons, John; Sabga, Melissa; Rollins, Nathan; Harpp, Karen S.; Mittelstaedt, Eric; d'Ozouville, Noémi; Graham, David W

    2014-01-01

    Isla Floreana, the southernmost volcano in the Galápagos Archipelago, has erupted a diverse suite of alkaline basalts continually since 1.5 Ma. Because these basalts have different compositions than xenoliths and older lavas from the deep submarine sector of the volcano, Floreana is interpreted as being in a rejuvenescent or late-stage phase of volcanism. Most lavas contain xenoliths, or their disaggregated remains. The xenolithic debris and large ranges in composition, including during single eruptions, indicate that the magmas do not reside in crustal magma chambers, unlike magmas in the western Galápagos. Floreana lavas have distinctive trace element compositions that are rich in fluid-immobile elements (e.g., Ta, Nb, Th, Zr) and even richer in fluid-mobile elements (e.g., Ba, Sr, Pb). Rare earth element (REE) patterns are light REE-enriched and distinctively concave-up. Neodymium isotopic ratios are comparable to those from Fernandina, at the core of the Galápagos plume, but Floreana has the most radiogenic Sr and Pb isotopic ratios in the archipelago. These trace element patterns and isotopic ratios are attributed to a mixed source originating within the Galápagos plume, which includes depleted upper mantle, plume material rich in TITAN elements (Ti, Ta, Nb), and recycled oceanic crust that has undergone partial dehydration in an ancient subduction zone. Because Floreana lies at the periphery of the Galápagos plume, melting occurs mostly in the spinel zone, and enriched components dominate; the Floreana recycled mantle component influence is detectable in volcanoes along the entire southern periphery of the archipelago as well. Floreana is the only Galápagos volcano known to have undergone late-stage volcanism. Here, however, the secondary stage activity is more compositionally enriched than the shield-building phase, in contrast to what is observed in Hawai‘i, suggesting that the mechanism driving late-stage volcanism may vary among ocean island provinces.

  9. Comparison of species-resolved energy spectra from ACE EPAM and Van Allen Probes RBSPICE

    NASA Astrophysics Data System (ADS)

    Patterson, J.; Manweiler, J. W.; Armstrong, T. P.; Lanzerotti, L. J.; Gerrard, A. J.; Gkioulidou, M.

    2013-12-01

    We present a comparison between energy spectra measured by the Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM) instrument and the Van Allen Probe Ion Composition Experiment (RBSPICE) for two significant and distinct events in early 2013. The first is an impulsive solar particle event on March 17th. While intense, this event presented no significant surprises in terms of its composition or anisotropy characteristics, thus providing a good baseline for response of the trapped radiation belts as observed by the Van Allen Probes. The second solar event occurred late May 22nd and early May 23rd. This event has a much greater concentration of medium and heavy ions than the St. Patrick's Day event, as well as having very peculiar energy spectra with evidence of two distinct populations. During the St. Patrick's Day Event, the energy spectra for helium, carbon, oxygen, neon, silicon, and iron all show the same spectral power law slope -3.1. The event shows strong anisotropy with intensities differing by a factor of four for both protons and Z>1 ions. The late May event also has strong anisotropy, and in the same directions as the St. Patrick's Day Event, but with very different composition and energy spectra. The spectra are much harder with power law spectral slopes of -0.5. Additionally, there is a significant spectral bump at 3 MeV/nuc for helium that is not present in the spectra of the heavier ions. The intensities of the heavier ions, however, show an increase that is an order of magnitude greater than the increase seen for helium. The March 17 RBSPICE observations show multiple injection events lasting for less than an hour each during the Van Allen Probes B apogees. These injections are seen in protons as well as Helium and only somewhat observed in Oxygen. Spectral slopes for the observations range from approximately -5 during quiet times to double peaked events with a spectral slope of approximately -2 at the beginning of the injection for the Helium observations. The data from the May 22 storm are currently being analyzed and will be integrated into the presentation of our work.

  10. Application of DRIFTS, NMR, and py-MBMS to characterize the effects of soil science oxidation assays on soil organic matter composition in a Mollic Xerofluvent

    USDA-ARS?s Scientific Manuscript database

    To evaluate whether commonly employed chemical treatments remove structurally distinct fractions of soil organic matter (SOM), a Mollic Xerofluvent under agricultural use was subjected to three distinct oxidation treatments: potassium permanganate (KMnO4), sodium hypochlorite (NaOCl), and hydrogen p...

  11. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer.

    PubMed

    Carstens, Julienne L; Correa de Sampaio, Pedro; Yang, Dalu; Barua, Souptik; Wang, Huamin; Rao, Arvind; Allison, James P; LeBleu, Valerie S; Kalluri, Raghu

    2017-04-27

    The exact nature and dynamics of pancreatic ductal adenocarcinoma (PDAC) immune composition remains largely unknown. Desmoplasia is suggested to polarize PDAC immunity. Therefore, a comprehensive evaluation of the composition and distribution of desmoplastic elements and T-cell infiltration is necessary to delineate their roles. Here we develop a novel computational imaging technology for the simultaneous evaluation of eight distinct markers, allowing for spatial analysis of distinct populations within the same section. We report a heterogeneous population of infiltrating T lymphocytes. Spatial distribution of cytotoxic T cells in proximity to cancer cells correlates with increased overall patient survival. Collagen-I and αSMA + fibroblasts do not correlate with paucity in T-cell accumulation, suggesting that PDAC desmoplasia may not be a simple physical barrier. Further exploration of this technology may improve our understanding of how specific stromal composition could impact T-cell activity, with potential impact on the optimization of immune-modulatory therapies.

  12. The contribution of vapor deposition to amorphous rims on lunar soil grains. [Abstract only

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Mckay, D. S.

    1994-01-01

    Recent analysis analytical electron microscope study of lunar soils showed that the approximately 60-nm-wide amorphous rims surrounding many lunar soils grains exhibit distinct compositional differences from their hosts. On average, the amorphous rim compositions reflect the local bulk soil composition with the exceptions of Si and S, which are enriched relative to the bulk soil. These chemical trends led us to propose that the amorphous rims were in fact deposits of impact-generated vapors produced during regolith gardening, a hypothesis that runs contrary to the generally accepted view that the rims are produced through amorphization of the outer parts of mineral grains by interaction with the solar wind. Analytical data are reported for amorphous rims on individual minerals in lunar soils in order to show that the magnitude of the chemical differences between rim and host are so great that they require a major addition of foreign elements to the grain surfaces. The average composition of amorphous rims is listed as a function of host mineralogy as determined in microtone thin sections using energy-dispersive X-ray spectrometry in the transmission electron microscope. As the host mineral becomes chemically more complex, the chemical differences are not as clear. The average rim compositions are remarkably similar and are independent of the host grain mineralogy. Whether there are 'sputtering' or radiation effects superimposed on the vapor-deposited material can be debated. We do not explicitly exclude the effects of radiation damage as a contributing factor to the formation of amorphous rims; we are merely emphasizing the major role played by condensed vapors in the formation of amorphous rims on lunar soil grains.

  13. A study of atmospheric mixing of trace gases by aerial sampling with a multi-rotor drone

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chung; Chang, Chih-Yuan; Wang, Jia-Lin; Lin, Ming-Ren; Ou-Yang, Chang-Feng; Pan, Hsiang-Hsu; Chen, Yen-Chen

    2018-07-01

    We exploited a novel sampling vehicle, a multi-rotor drone carrying a remote-controlled whole air sampling device, to collect aerial samples with high sample integrity and preservation conditions. An array of 106 volatile organic compounds (VOCs), CO, CH4, and CO2 were analyzed and compared between the aerial samples (300-m height) and the ground-level samples in pairs to inspect for vertical mixing of the trace gases at a coastal site under three different meteorological conditions of local circulation, frontal passage, and high-pressure peripheral circulation. A rather homogeneous composition was observed for the sample pairs immediately after the frontal passage, indicating a well-mixed condition below 300 m. In contrast, inhomogeneous mixing was observed for the sample pairs under the other two conditions (local circulation and high-pressure peripheral circulation), suggesting different layers of air masses. Furthermore, information of unique source markers, composition profiles, and lifetimes of compounds were used to differentiate the origins of the air masses aloft and at the surface to substantiate the observed inhomogeneity. The study demonstrates that, with the availability of the near-surface aerial sampling coupling with in-laboratory analysis, detailed compositions of trace gases can now be readily obtained with superior data quality. Based on the distinctive chemical compositions, the sources, transport, and atmospheric mixing of the airborne pollutants in the near-surface atmosphere can be better studied and understood.

  14. Host Genotype and Nitrogen Form Shape the Root Microbiome of Pinus radiata.

    PubMed

    Gallart, Marta; Adair, Karen L; Love, Jonathan; Meason, Dean F; Clinton, Peter W; Xue, Jianming; Turnbull, Matthew H

    2018-02-01

    A central challenge in community ecology is understanding the role that phenotypic variation among genotypes plays in structuring host-associated communities. While recent studies have investigated the relationship between plant genotype and the composition of soil microbial communities, the effect of genotype-by-environment interactions on the plant microbiome remains unclear. In this study, we assessed the influence of tree genetics (G), nitrogen (N) form and genotype-by-environment interaction (G x N) on the composition of the root microbiome. Rhizosphere communities (bacteria and fungi) and root-associated fungi (including ectomycorrhizal and saprotrophic guilds) were characterised in two genotypes of Pinus radiata with contrasting physiological responses to exogenous organic or inorganic N supply. Genotype-specific responses to N form influenced the composition of the root microbiome. Specifically, (1) diversity and composition of rhizosphere bacterial and root-associated fungal communities differed between genotypes that had distinct responses to N form, (2) shifts in the relative abundance of individual taxa were driven by the main effects of N form or host genotype and (3) the root microbiome of the P. radiata genotype with the most divergent growth responses to organic and inorganic N was most sensitive to differences in N form. Our results show that intraspecific variation in tree response to N form has significant consequences for the root microbiome of P. radiata, demonstrating the importance of genotype-by-environment interactions in shaping host-associated communities.

  15. Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries.

    PubMed

    Kittelmann, Sandra; Janssen, Peter H

    2011-03-01

    The structure and variability of ciliate protozoal communities in the rumens of domestic New Zealand ruminants feeding on different diets was investigated. The relative abundance of ciliates compared with bacteria was similar across all samples. However, molecular fingerprinting of communities showed ruminant-specific differences in species composition. Community compositions of cattle were significantly influenced by diet. In contrast, diet effects in deer and sheep were weaker than the animal-to-animal variation. Cloning and sequencing of almost-full-length 18S rRNA genes from representative samples revealed that New Zealand ruminants were colonized by at least nine genera of ciliates and allowed the assignment of samples to two distinct community types. Cattle contained A-type communities, with most sequences closely related to those of the genera Polyplastron and Ostracodinium. Deer and sheep (with one exception) harboured B-type communities, with the majority of sequences belonging to the genera Epidinium and Eudiplodinium. It has been suggested that species composition of ciliate communities may impact methane formation in ruminants, with the B-type producing more methane. Therefore, manipulation of ciliate communities may be a means of mitigating methane emissions from grazing sheep and deer in New Zealand. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Distinct mutations in yeast TAF(II)25 differentially affect the composition of TFIID and SAGA complexes as well as global gene expression patterns.

    PubMed

    Kirschner, Doris B; vom Baur, Elmar; Thibault, Christelle; Sanders, Steven L; Gangloff, Yann-Gaël; Davidson, Irwin; Weil, P Anthony; Tora, Làszlò

    2002-05-01

    The RNA polymerase II transcription factor TFIID, composed of the TATA-binding protein (TBP) and TBP-associated factors (TAF(II)s), nucleates preinitiation complex formation at protein-coding gene promoters. SAGA, a second TAF(II)-containing multiprotein complex, is involved in transcription regulation in Saccharomyces cerevisiae. One of the essential protein components common to SAGA and TFIID is yTAF(II)25. We define a minimal evolutionarily conserved 91-amino-acid region of TAF(II)25 containing a histone fold domain that is necessary and sufficient for growth in vivo. Different temperature-sensitive mutations of yTAF(II)25 or chimeras with the human homologue TAF(II)30 arrested cell growth at either the G(1) or G(2)/M cell cycle phase and displayed distinct phenotypic changes and gene expression patterns. Immunoprecipitation studies revealed that TAF(II)25 mutation-dependent gene expression and phenotypic changes correlated at least partially with the integrity of SAGA and TFIID. Genome-wide expression analysis revealed that the five TAF(II)25 temperature-sensitive mutant alleles individually affect the expression of between 18 and 33% of genes, whereas taken together they affect 64% of all class II genes. Thus, different yTAF(II)25 mutations induce distinct phenotypes and affect the regulation of different subsets of genes, demonstrating that no individual TAF(II) mutant allele reflects the full range of its normal functions.

  17. Robust algorithm for aligning two-dimensional chromatograms.

    PubMed

    Gros, Jonas; Nabi, Deedar; Dimitriou-Christidis, Petros; Rutler, Rebecca; Arey, J Samuel

    2012-11-06

    Comprehensive two-dimensional gas chromatography (GC × GC) chromatograms typically exhibit run-to-run retention time variability. Chromatogram alignment is often a desirable step prior to further analysis of the data, for example, in studies of environmental forensics or weathering of complex mixtures. We present a new algorithm for aligning whole GC × GC chromatograms. This technique is based on alignment points that have locations indicated by the user both in a target chromatogram and in a reference chromatogram. We applied the algorithm to two sets of samples. First, we aligned the chromatograms of twelve compositionally distinct oil spill samples, all analyzed using the same instrument parameters. Second, we applied the algorithm to two compositionally distinct wastewater extracts analyzed using two different instrument temperature programs, thus involving larger retention time shifts than the first sample set. For both sample sets, the new algorithm performed favorably compared to two other available alignment algorithms: that of Pierce, K. M.; Wood, Lianna F.; Wright, B. W.; Synovec, R. E. Anal. Chem.2005, 77, 7735-7743 and 2-D COW from Zhang, D.; Huang, X.; Regnier, F. E.; Zhang, M. Anal. Chem.2008, 80, 2664-2671. The new algorithm achieves the best matches of retention times for test analytes, avoids some artifacts which result from the other alignment algorithms, and incurs the least modification of quantitative signal information.

  18. Phenolics in Primula veris L. and P. elatior (L.) Hill Raw Materials

    PubMed Central

    Mirgos, Małgorzata; Kosakowska, Olga; Szymborska-Sandhu, Izabela; Węglarz, Zenon

    2017-01-01

    Primula veris L. and Primula elatior (L.) Hill represent medicinal plants used for the production of herbal teas and preparations with antioxidant and expectorant activity. Flowers and roots of both species possess the same biological activity. In the presented study, raw materials of wild growing P. veris and P. elatior were compared in terms of the content and composition of phenolic compounds using a fast and simple HPLC-DAD method. The study showed that flowers of both species were rich in flavonoids. However, P. veris flowers were characterized with a distinctly higher content of isorhamnetin-3-O-glucoside, astragalin, and (+)-catechin, whereas P. elatior occurred to be a richer source of rutoside and isorhamnetin-3-O-rutinoside. Hyperoside was found exclusively in P. elatior flowers. Phenolic glycosides (primverin and primulaverin) were identified only in the roots. Their content was about ten times higher in P. veris in comparison with P. elatior underground organs. The obtained results clearly show that both Primula species differ distinctly in terms of the content and composition of phenolic compounds. The compounds differentiating both species to the highest degree (hyperoside, in flowers, as well as primverin and primulaverin, in the roots) may be useful chemical markers in the identification and evaluation of both species. PMID:28835753

  19. Two chemically distinct light-absorbing pools of urban organic aerosols: A comprehensive multidimensional analysis of trends.

    PubMed

    Paula, Andreia S; Matos, João T V; Duarte, Regina M B O; Duarte, Armando C

    2016-02-01

    The chemical and light-absorption dynamics of organic aerosols (OAs), a master variable in the atmosphere, have yet to be resolved. This study uses a comprehensive multidimensional analysis approach for exploiting simultaneously the compositional changes over a molecular size continuum and associated light-absorption (ultraviolet absorbance and fluorescence) properties of two chemically distinct pools of urban OAs chromophores. Up to 45% of aerosol organic carbon (OC) is soluble in water and consists of a complex mixture of fluorescent and UV-absorbing constituents, with diverse relative abundances, hydrophobic, and molecular weight (Mw) characteristics between warm and cold periods. In contrast, the refractory alkaline-soluble OC pool (up to 18%) is represented along a similar Mw and light-absorption continuum throughout the different seasons. Results suggest that these alkaline-soluble chromophores may actually originate from primary OAs sources in the urban site. This work shows that the comprehensive multidimensional analysis method is a powerful and complementary tool for the characterization of OAs fractions. The great diversity in the chemical composition and optical properties of OAs chromophores, including both water-soluble and alkaline-soluble OC, may be an important contribution to explain the contrasting photo-reactivity and atmospheric behavior of OAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Cuticular hydrocarbon phenotypes do not indicate cryptic species in fungus-growing termites (Isoptera: Macrotermitinae).

    PubMed

    Marten, Andreas; Kaib, Manfred; Brandl, Roland

    2009-05-01

    In several termite species, distinct differences in the composition of cuticular hydrocarbons among colonies correspond to high genetic divergence of mitochondrial DNA sequences. These observations suggest that hydrocarbon phenotypes represent cryptic species. Different cuticular hydrocarbon phenotypes also are found among colonies of fungus-growing termites of the genus Macrotermes. To determine if these hydrocarbon differences in Macrotermes also indicate cryptic species, we sequenced the mitochondrial CO I gene from species in West and East Africa. Among individuals of a supposed species but belonging to different cuticular hydrocarbon phenotypes, the genetic distances are much smaller than distances between species. Unlike what has been observed in other termites, Macrotermes hydrocarbon phenotypes do not represent cryptic species. Our findings suggest fundamental differences in the evolution and/or function of cuticular hydrocarbons among different termite lineages.

  1. High Diversity of the Saliva Microbiome in Batwa Pygmies

    PubMed Central

    Schroeder, Roland; Creasey, Jean L.; Li, Mingkun; Stoneking, Mark

    2011-01-01

    We describe the saliva microbiome diversity in Batwa Pygmies, a former hunter-gatherer group from Uganda, using next-generation sequencing of partial 16S rRNA sequences. Microbial community diversity in the Batwa is significantly higher than in agricultural groups from Sierra Leone and the Democratic Republic of Congo. We found 40 microbial genera in the Batwa, which have previously not been described in the human oral cavity. The distinctive composition of the salvia microbiome of the Batwa may have been influenced by their recent different lifestyle and diet. PMID:21858083

  2. Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies.

    PubMed

    Rahmani, Elior; Zaitlen, Noah; Baran, Yael; Eng, Celeste; Hu, Donglei; Galanter, Joshua; Oh, Sam; Burchard, Esteban G; Eskin, Eleazar; Zou, James; Halperin, Eran

    2016-05-01

    In epigenome-wide association studies (EWAS), different methylation profiles of distinct cell types may lead to false discoveries. We introduce ReFACTor, a method based on principal component analysis (PCA) and designed for the correction of cell type heterogeneity in EWAS. ReFACTor does not require knowledge of cell counts, and it provides improved estimates of cell type composition, resulting in improved power and control for false positives in EWAS. Corresponding software is available at http://www.cs.tau.ac.il/~heran/cozygene/software/refactor.html.

  3. Local environment effects in the magnetic properties and electronic structure of disordered FePt

    NASA Astrophysics Data System (ADS)

    Khan, Saleem Ayaz; Minár, Ján; Ebert, Hubert; Blaha, Peter; Šipr, Ondřej

    2017-01-01

    Local aspects of magnetism of disordered FePt are investigated by ab initio fully relativistic full-potential calculations, employing the supercell approach and the coherent potential approximation (CPA). The focus is on trends of the spin and orbital magnetic moments with chemical composition and with bond lengths around the Fe and Pt atoms. A small but distinct difference between average magnetic moments obtained when using the supercells and when relying on the CPA is identified and linked to the neglect of the Madelung potential in the CPA.

  4. Mercury's complex exosphere: results from MESSENGER's third flyby.

    PubMed

    Vervack, Ronald J; McClintock, William E; Killen, Rosemary M; Sprague, Ann L; Anderson, Brian J; Burger, Matthew H; Bradley, E Todd; Mouawad, Nelly; Solomon, Sean C; Izenberg, Noam R

    2010-08-06

    During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal altitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere.

  5. Conservation issues: California chaparral

    USGS Publications Warehouse

    Halsey, Richard W.; Keeley, Jon E.

    2016-01-01

    California chaparral, a sclerophyllous shrub-dominated plant community shaped by a Mediterranean-type climate and infrequent, high-intensity fire, is one of the most biodiverse and threatened habitats on Earth. Distinct forms of chaparral, distinguished by differing species composition, geography, and edaphic characteristics, can cover thousands of hectares with dense vegetation or be restricted to smaller communities identified by the presence of endemic species. To maintain the biodiversity of chaparral, protective land management actions will be required to mitigate the loss due to the impacts of human population growth, development, climate change, and increased fire frequencies.

  6. Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis

    PubMed Central

    Irwin, Scott M.; Driver, Emily; Lyon, Edward; Schrupp, Christopher; Ryan, Gavin; Gonzalez-Juarrero, Mercedes; Basaraba, Randall J.; Nuermberger, Eric L.; Lenaerts, Anne J.

    2015-01-01

    ABSTRACT Cost-effective animal models that accurately reflect the pathological progression of pulmonary tuberculosis are needed to screen and evaluate novel tuberculosis drugs and drug regimens. Pulmonary disease in humans is characterized by a number of heterogeneous lesion types that reflect differences in cellular composition and organization, extent of encapsulation, and degree of caseous necrosis. C3HeB/FeJ mice have been increasingly used to model tuberculosis infection because they produce hypoxic, well-defined granulomas exhibiting caseous necrosis following aerosol infection with Mycobacterium tuberculosis. A comprehensive histopathological analysis revealed that C3HeB/FeJ mice develop three morphologically distinct lesion types in the lung that differ with respect to cellular composition, degree of immunopathology and control of bacterial replication. Mice displaying predominantly the fulminant necrotizing alveolitis lesion type had significantly higher pulmonary bacterial loads and displayed rapid and severe immunopathology characterized by increased mortality, highlighting the pathological role of an uncontrolled granulocytic response in the lung. Using a highly sensitive novel fluorescent acid-fast stain, we were able to visualize the spatial distribution and location of bacteria within each lesion type. Animal models that better reflect the heterogeneity of lesion types found in humans will permit more realistic modeling of drug penetration into solid caseous necrotic lesions and drug efficacy testing against metabolically distinct bacterial subpopulations. A more thorough understanding of the pathological progression of disease in C3HeB/FeJ mice could facilitate modulation of the immune response to produce the desired pathology, increasing the utility of this animal model. PMID:26035867

  7. The origin of soil organic matter controls its composition and bioreactivity across a mesic boreal forest latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Kohl, L.; Philben, M. J.; Edwards, K. A.; Podrebarac, F. A.; Jamie, W.; Ziegler, S. E.

    2017-12-01

    Warmer climates have been associated with reduced soil organic matter (SOM) bioreactivity, lower respiration rates at a given temperature, which is typically attributed to the presence of more decomposed SOM. Cross site studies, however, indicate that ecosystem regime shifts associated with long-term climate warming can affect SOM properties through changes in vegetation and plant litter inputs to soils. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming remains poorly understood. To address this, we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids), and isotopic composition of plant litter and SOM across a well-constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. Climate effects on vascular plant litter chemistry explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer forests. These results indicate that a climate induced decrease in the proportion of moss inputs will not only impact SOM chemistry but also increase the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils.

  8. Hydrotreatment of bio-oil distillates produced from pyrolysis and hydrothermal liquefaction of duckweed: A comparison study.

    PubMed

    Wang, Feng; Tian, Ye; Zhang, Cai-Cai; Xu, Yu-Ping; Duan, Pei-Gao

    2018-09-15

    A comprehensive comparison of hydrothermal liquefaction (HTL) to the pyrolysis of duckweed was conducted to determine the yields and components of the crude bio-oils and their distillates. The upgrading behaviors of the distillates were thoroughly investigated with the use of used engine oil as a solvent. With all other variables fixed, HTL produced crude bio-oil with a lower H/C ratio (1.28 ± 0.03) than pyrolysis did (1.45 ± 0.04). However, its distillates had a higher H/C ratio (1.60 ± 0.05) and total yield (66.1 ± 2.0 wt%) than pyrolysis (1.46 ± 0.04 and 47.2 ± 1.4 wt%, respectively). Phenolics and nitrogenous heterocycles constituted relatively major proportions of the two crude bio-oils and most of their distillates. Obvious differences in molecular composition between the two crude bio-oils and their distillates were ascribed to the distinct impacts of HTL and pyrolysis and were affected by the distillate temperature. Co-hydrotreating with used engine oil (UEO) provided the upgraded bio-oils much higher H/C ratios (~1.78 ± 0.05) and higher heating values (~45.5 ± 1.4 MJ·kg -1 ), as well as much lower contents of N, O and S compared to their initial distillates. Aromatics and alkanes constituted a large proportion in most of upgraded bio-oils. N removal from the pyrolysis distillates was easier than from the HTL distillates. Distinct differences in yields and molecular compositions for the upgraded bio-oils were also attributed to the different influences associated with the two conversion routes. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Isotopic ratio and vertical distribution of radionuclides in soil affected by the accident of Fukushima Dai-ichi nuclear power plants.

    PubMed

    Fujiwara, Takeshi; Saito, Takumi; Muroya, Yusa; Sawahata, Hiroyuki; Yamashita, Yuji; Nagasaki, Shinya; Okamoto, Koji; Takahashi, Hiroyuki; Uesaka, Mitsuru; Katsumura, Yosuke; Tanaka, Satoru

    2012-11-01

    The results of γ analyses of soil samples obtained from 50 locations in Fukushima prefecture on April 20, 2011, revealed the presence of a spectrum of radionuclides resulted from the accident of the Fukushima Dai-ichi nuclear power plant (FDNPP). The sum γ radioactivity concentration ranged in more than 3 orders of magnitude, depending on the sampling locations. The contamination of soils in the northwest of the FDNPP was considerable. The (131)I/(137)Cs activity ratios of the soil samples plotted as a function of the distance from the F1 NPPs exhibited three distinctive patterns. Such patterns would reflect not only the different deposition behaviors of these radionuclides, but also on the conditions of associated release events such as temperature and compositions and physicochemical forms of released radionuclides. The (136)Cs/(137)Cs activity ratio, on the other hand, was considered to only reflect the difference in isotopic compositions of source materials. Two locations close to the NPP in the northwest direction were found to be depleted in short-lived (136)Cs. This likely suggested the presence of distinct sources with different (136)Cs/(137)Cs isotopic ratios, although their details were unknown at present. Vertical γ activity profiles of (131)I and (137)Cs were also investigated, using 20-30 cm soil cores in several locations. About 70% or more of the radionuclides were present in the uppermost 2-cm regions. It was found that the profiles of (131)I/(137)Cs activity ratios showed maxima in the 2-4 cm regions, suggesting slightly larger migration of the former nuclide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Genetic Resources for Maize Cell Wall Biology1[C][W][OA

    PubMed Central

    Penning, Bryan W.; Hunter, Charles T.; Tayengwa, Reuben; Eveland, Andrea L.; Dugard, Christopher K.; Olek, Anna T.; Vermerris, Wilfred; Koch, Karen E.; McCarty, Donald R.; Davis, Mark F.; Thomas, Steven R.; McCann, Maureen C.; Carpita, Nicholas C.

    2009-01-01

    Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions. PMID:19926802

  11. Comparison of facial morphologies between adult Chinese and Houstonian Caucasian populations using three-dimensional imaging.

    PubMed

    Wirthlin, J; Kau, C H; English, J D; Pan, F; Zhou, H

    2013-09-01

    The objective of this study was to compare the facial morphologies of an adult Chinese population to a Houstonian white population. Three-dimensional (3D) images were acquired via a commercially available stereophotogrammetric camera system, 3dMDface™. Using the system, 100 subjects from a Houstonian population and 71 subjects from a Chinese population were photographed. A complex mathematical algorithm was performed to generate a composite facial average (one for males and one for females) for each subgroup. The computer-generated facial averages were then superimposed based on a previously validated superimposition method. The facial averages were evaluated for differences. Distinct facial differences were evident between the subgroups evaluated. These areas included the nasal tip, the peri-orbital area, the malar process, the labial region, the forehead, and the chin. Overall, the mean facial difference between the Chinese and Houstonian female averages was 2.73±2.20mm, while the difference between the Chinese and Houstonian males was 2.83±2.20mm. The percent similarity for the female population pairings and male population pairings were 10.45% and 12.13%, respectively. The average adult Chinese and Houstonian faces possess distinct differences. Different populations and ethnicities have different facial features and averages that should be considered in the planning of treatment. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: Implications for evolution of the subcontinental lithospheric mantle

    USGS Publications Warehouse

    Mukasa, S.B.; Wilshire, H.G.

    1997-01-01

    Ultramafic and mafic xenoliths from the Cima volcanic field, southern California, provide evidence of episodic modification of the upper mantle and underplating of the crust beneath a portion of the southern Basin and Range province. The upper mantle xenoliths include spinel peridotite and anhydrous and hydrous pyroxenite, some cut by igneous-textured pyroxenite-gabbro veins and dikes and some by veins of amphibole ?? plagioclase. Igneous-textured pyroxenites and gabbros like the dike rocks also occur abundantly as isolated xenoliths inferred to represent underplated crust. Mineral and whole rock trace element compositions among and within the different groups of xenoliths are highly variable, reflecting multiple processes that include magma-mantle wall rock reactions, episodic intrusion and it filtration of basaltic melts of varied sources into the mantle wall rock, and fractionation. Nd, Sr, and Pb isotopic compositions mostly of clinopyroxene and plagioclase mineral separates show distinct differences between mantle xenoliths (??Nd = -5.7 to +3.4; 87Sr/86Sr = 0.7051 - 0.7073; 206Pb/204Pb = 19.045 - 19.195) and the igneous-textured xenoliths (??Nd = +7.7 to +11.7; 87Sr/86Sr = 0.7027 - 0.7036 with one carbonate-affected outlier at 0.7054; and 206Pb/204Pb = 18.751 - 19.068), so that they cannot be related. The igneous-textured pyroxenites and gabbros are similar in their isotopic compositions to the host basaltic rocks, which have ??Nd of+5.1 to +9.3; 87Sr/86Sr of 0.7028 - 0.7050, and 206Pb/204Pb of 18.685 - 21.050. The igneous-textured pyroxenites and gabbros are therefore inferred to be related to the host rocks as earlier cogenetic intrusions in the mantle and in the lower crust. Two samples of peridotite, one modally metasomatized by amphibole and the other by plagioclase, have isotopic compositions intermediate between the igneous-textured xenoliths and the mantle rock, suggesting mixing, but also derivation of the metasomatizing magmas from two separate and distinct sources. Sm-Nd two-mineral "isochrons" yield apparent ages for petrographically identical rocks believed to be coeval ranging from -0 to 113 ?? 26 Ma, indicating the unreliability of dating these rocks with this method. Amphibole and plagioclase megacrysts are isotopically like the host basalts and probably originate by mechanical breakup of veins comagmatic with the host basaltic rocks. Unlike other Basin and Range localities, Cima Cr-diopside group isotopic compositions do not overlap with those of the host basalts. Copyright 1997 by the American Geophysical Union.

  13. Trafficking to the Apical and Basolateral Membranes in Polarized Epithelial Cells

    PubMed Central

    Stoops, Emily H.

    2014-01-01

    Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type–specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells. PMID:24652803

  14. Definition of Drosophila hemocyte subsets by cell-type specific antigens.

    PubMed

    Kurucz, Eva; Váczi, B; Márkus, R; Laurinyecz, Barbara; Vilmos, P; Zsámboki, J; Csorba, Kinga; Gateff, Elisabeth; Hultmark, D; Andó, I

    2007-01-01

    We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.

  15. Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants

    PubMed Central

    Li, Shundai; Bashline, Logan; Zheng, Yunzhen; Xin, Xiaoran; Huang, Shixin; Kong, Zhaosheng; Kim, Seong H.; Cosgrove, Daniel J.; Gu, Ying

    2016-01-01

    Cellulose, often touted as the most abundant biopolymer on Earth, is a critical component of the plant cell wall and is synthesized by plasma membrane-spanning cellulose synthase (CESA) enzymes, which in plants are organized into rosette-like CESA complexes (CSCs). Plants construct two types of cell walls, primary cell walls (PCWs) and secondary cell walls (SCWs), which differ in composition, structure, and purpose. Cellulose in PCWs and SCWs is chemically identical but has different physical characteristics. During PCW synthesis, multiple dispersed CSCs move along a shared linear track in opposing directions while synthesizing cellulose microfibrils with low aggregation. In contrast, during SCW synthesis, we observed swaths of densely arranged CSCs that moved in the same direction along tracks while synthesizing cellulose microfibrils that became highly aggregated. Our data support a model in which distinct spatiotemporal features of active CSCs during PCW and SCW synthesis contribute to the formation of cellulose with distinct structure and organization in PCWs and SCWs of Arabidopsis thaliana. This study provides a foundation for understanding differences in the formation, structure, and organization of cellulose in PCWs and SCWs. PMID:27647923

  16. Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants.

    PubMed

    Li, Shundai; Bashline, Logan; Zheng, Yunzhen; Xin, Xiaoran; Huang, Shixin; Kong, Zhaosheng; Kim, Seong H; Cosgrove, Daniel J; Gu, Ying

    2016-10-04

    Cellulose, often touted as the most abundant biopolymer on Earth, is a critical component of the plant cell wall and is synthesized by plasma membrane-spanning cellulose synthase (CESA) enzymes, which in plants are organized into rosette-like CESA complexes (CSCs). Plants construct two types of cell walls, primary cell walls (PCWs) and secondary cell walls (SCWs), which differ in composition, structure, and purpose. Cellulose in PCWs and SCWs is chemically identical but has different physical characteristics. During PCW synthesis, multiple dispersed CSCs move along a shared linear track in opposing directions while synthesizing cellulose microfibrils with low aggregation. In contrast, during SCW synthesis, we observed swaths of densely arranged CSCs that moved in the same direction along tracks while synthesizing cellulose microfibrils that became highly aggregated. Our data support a model in which distinct spatiotemporal features of active CSCs during PCW and SCW synthesis contribute to the formation of cellulose with distinct structure and organization in PCWs and SCWs of Arabidopsis thaliana This study provides a foundation for understanding differences in the formation, structure, and organization of cellulose in PCWs and SCWs.

  17. Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2016-01-01

    The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm. PMID:27786300

  18. Differences between the bacterial community structures of first- and multi-year Arctic sea ice in the Lincoln Sea.

    NASA Astrophysics Data System (ADS)

    Hatam, I.; Beckers, J. F.; Haas, C.; Lanoil, B. D.

    2014-12-01

    The Arctic sea ice composition is shifting from predominantly thick perennial ice (multiyear ice -MYI) to thinner, seasonal ice (first year ice -FYI). The effects of the shift on the Arctic ecosystem and macro-organisms of the Arctic Ocean have been the focus of many studies and have also been extensively debated in the public domain. The effect of this shift on the microbial constituents of the Arctic sea ice has been grossly understudied, although it is a vast habitat for a microbial community that plays a key role in the biogeochemical cycles and energy flux of the Arctic Ocean. MYI and FYI differ in many chemical and physical attributes (e.g. bulk salinity, brine volume, thickness and age), therefore comparing and contrasting the structure and composition of microbial communities from both ice types will be crucial to our understanding of the challenges that the Arctic Ocean ecosystem faces as MYI cover continues to decline. Here, we contend that due to the differences in abiotic conditions, differences in bacterial community structure will be greater between samples from different ice types than within samples from the same ice type. We also argue that since FYI is younger, its community structure will be closer to that of the surface sea water (SW). To test this hypotheses, we extracted DNA and used high throughput sequencing to sequence V1-V3 regions of the bacterial 16s rRNA gene from 10 sea ice samples (5 for each ice type) and 4 surface sea water (SW) collected off the shore of Northern Ellesmere Island, NU, CAN, during the month of May from 2010-2012. Our results showed that observed richness was higher in FYI than MYI. FYI and MYI shared 26% and 36% of their observed richness respectively. While FYI shared 23% of its observed richness with SW, MYI only shared 17%. Both ice types showed similar levels of endemism (61% of the observed richness). This high level of endemism results in the grouping of microbial communities from MYI, FYI, and SW to three distinct groups when looking at membership (jclass dissimilarity index, tested by AMOVA). However, when looking at composition (θYC dissimilarity index) while communities from MYI and SW samples still clustered as two distinct groups, communities from FYI samples show no significant clustering (tested by AMOVA).

  19. Lipids as a principle for the identification of Archaebacteria

    NASA Technical Reports Server (NTRS)

    Tornabene, T. G.; Lloyd, R. E.; Holzer, G.; Oro, J.

    1980-01-01

    The 'Archaebacteria' consist of several distinct subgroups including methanogens, extreme halophiles and specific thermoacidophiles. These bacteria are distinct from other bacteria with respect to their characteristic RNA compositions, the absence of muramic acid in the cell walls and the predominance of nonsaponifable lipids. The lipid composition of the Archaebacteria consists of isoprenoid and hydroisoprenoid hydrocarbons and isopranyl glycerol ether lipids. The pathways for the biosynthesis of the lipid components are those shared by most microorganisms and demonstrate a close relationship; however, an independent line of descent is indicated by the formation of the isopranyl glycerol ether lipids. This discontinuity formulates a point for delineating the early stages of biological evolution and for dividing bacteria into two subgroups.

  20. Highlighting patterns of fungal diversity and composition shaped by ocean currents using the East China Sea as a model.

    PubMed

    Li, Wei; Wang, Mengmeng; Pan, Haoqin; Burgaud, Gaëtan; Liang, Shengkang; Guo, Jiajia; Luo, Tian; Li, Zhaoxia; Zhang, Shoumei; Cai, Lei

    2018-01-01

    How ocean currents shape fungal transport, dispersal and more broadly fungal biogeography remains poorly understood. The East China Sea (ECS) is a complex and dynamic habitat with different water masses blending microbial communities. The internal transcribed spacer 2 region of fungal rDNA was analysed in water and sediment samples directly collected from the coastal (CWM), Kuroshio (KSWM), Taiwan warm (TWM) and the shelf mixed water mass (MWM), coupled with hydrographic properties measurements, to determine how ocean currents impact the fungal community composition. Almost 9k fungal operational taxonomic units (OTUs) spanning six phyla, 25 known classes, 102 orders and 694 genera were obtained. The typical terrestrial and freshwater fungal genus, Byssochlamys, was dominant in the CWM, while increasing abundance of a specific OTU affiliated with Aspergillus was revealed from coastal to open ocean water masses (TWM and KSWM). Compared with water samples, sediment harboured an increased diversity with distinct fungal communities. The proximity of the Yangtze and Qiantang estuaries homogenizes the surface water and sediment communities. A significant influence of ocean currents on community structure was found, which is believed to reduce proportionally the variation explained by environmental parameters at the scale of the total water masses. Dissolved oxygen and depth were identified as the major parameters structuring the fungal community. Our results indicate that passive fungal dispersal driven by ocean currents and river run-off, in conjunction with the distinct hydrographic conditions of individual water masses, shapes the fungal community composition and distribution pattern in the ECS. © 2017 John Wiley & Sons Ltd.

  1. Polytopic vector analysis in igneous petrology: Application to lunar petrogenesis

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Ehrlich, R.

    1993-01-01

    Lunar samples represent a heterogeneous assemblage of rocks with complex inter-relationships that are difficult to decipher using standard petrogenetic approaches. These inter-relationships reflect several distinct petrogenetic trends as well as thermomechanical mixing of distinct components. Additional complications arise from the unequal quality of chemical analyses and from the fact that many samples (e.g., breccia clasts) are too small to be representative of the system from which they derived. Polytopic vector analysis (PVA) is a multi-variate procedure used as a tool for exploratory data analysis. PVA allows the analyst to classify samples and clarifies relationships among heterogenous samples with complex petrogenetic histories. It differs from orthogonal factor analysis in that it uses non-orthogonal multivariate sample vectors to extract sample endmember compositions. The output from a Q-mode (sample based) factor analysis is the initial step in PVA. The Q-mode analysis, using criteria established by Miesch and Klovan and Miesch, is used to determine the number of endmembers in the data system. The second step involves determination of endmembers and mixing proportions with all output expressed in the same geochemical variable as the input. The composition of endmembers is derived by analysis of the variability of the data set. Endmembers need not be present in the data set, nor is it necessary for their composition to be known a priori. A set of any endmembers defines a 'polytope' or classification figure (triangle for a three component system, tetrahedron for a four component system, a 'five-tope' in four dimensions for five component system, et cetera).

  2. Biodiversity loss in seagrass meadows due to local invertebrate fisheries and harbour activities

    NASA Astrophysics Data System (ADS)

    Nordlund, Lina Mtwana; Gullström, Martin

    2013-12-01

    Seagrass meadows provide a wide variety of ecosystem services, but their distribution and health are adversely affected by man. In the present study, we examined the influence of coastal exploitation in terms of invertebrate harvesting and harbour activity on invertebrate community composition in subtropical seagrass meadows at Inhaca Island, Mozambique, in the Western Indian Ocean. There was a fivefold higher invertebrate density and biomass, and clearly higher invertebrate species richness, in the protected (control) site compared to the two exploited sites. The causes for the clear differences between protected and exploited sites were probably a result of (1) the directional outtake of large edible or saleable invertebrates (mostly molluscs) and the absence of boat traffic in the harvested site, and (2) harbour activities. Invertebrate community composition in the two exploited sites also differed (although less clear), which was likely due to inherent distinction in type of disturbance. Our findings revealed that protection of seagrass habitat is necessary and that disturbances of different origin might require different forms of management and conservation. Designing protected areas is however a complex process due to competition for use and space with activities such as invertebrate harvesting and harbours.

  3. Characterization of 3D interconnected microstructural network in mixed ionic and electronic conducting ceramic composites

    NASA Astrophysics Data System (ADS)

    Harris, William M.; Brinkman, Kyle S.; Lin, Ye; Su, Dong; Cocco, Alex P.; Nakajo, Arata; Degostin, Matthew B.; Chen-Wiegart, Yu-Chen Karen; Wang, Jun; Chen, Fanglin; Chu, Yong S.; Chiu, Wilson K. S.

    2014-04-01

    The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions.The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06684c

  4. The Effect of Composition, Size, and Solubility on Acute Pulmonary Injury in Rats Following Exposure to Mexico City Ambient Particulate Matter Samples

    EPA Science Inventory

    Particulate matter (PM) associated metals contribute to the adverse cardiopulmonary effects following exposure to air pollution. Here, we investigated how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity d...

  5. If Maslow Created a Composition Course: A New Look at Motivation in the Classroom.

    ERIC Educational Resources Information Center

    Boone, Beth; Hill, Ada S.

    The needs hierarchy developed by Abraham Maslow lends itself to the composition classroom. The hierarchy depicts five distinct need levels through which an individual travels: basic, safety/security, belonging/peer acceptance, ego/esteem, and self-actualization. From teacher observations and students' comments, need levels can be assessed and…

  6. School Composition and Peer Effects in Distinctive Organizational Settings

    ERIC Educational Resources Information Center

    Marks, Helen M.

    2002-01-01

    This chapter reviews the research on school composition and peer effects from three comparative perspectives--Catholic and public schools, single-sex and coeducational schools, and small and large schools. Most of the research is sociological, focuses on high schools, and draws on national samples. The chapter seeks to discern cumulative trends in…

  7. Can biotic indicators distinguish between natural and anthropogenic environmental stress in estuaries?

    NASA Astrophysics Data System (ADS)

    Tweedley, J. R.; Warwick, R. M.; Potter, I. C.

    2015-08-01

    Because estuaries are naturally stressed, due to variations in salinity, organic loadings, sediment stability and oxygen concentrations over both spatial and temporal scales, it is difficult both to set baseline reference conditions and to distinguish between natural and anthropogenic environmental stresses. This contrasts with the situation in marine coastal and offshore locations. A very large benthic macroinvertebrate dataset and matching concentrations for seven toxic heavy metals (i.e. Cr, Ni, Cu, Zn, Cd, Hg and Pb), compiled over three years as part of the UK's National Marine Monitoring Programme (NMMP) for 27 subtidal sites in 16 estuaries and 34 coastal marine sites in the United Kingdom, have been analysed. The results demonstrate that species composition and most benthic biotic indicators (number of taxa, overall density, Shannon-Wiener diversity, Simpson's index and AZTI's Marine Biotic Index [AMBI]) for sites in estuarine and coastal areas were significantly different, reflecting natural differences between these two environments. Shannon-Wiener diversity and AMBI were not significantly correlated either with overall heavy metal contaminant loadings or with individual heavy metal concentrations ('normalized' as heavy metal/aluminium ratios) in estuaries. In contrast, average taxonomic distinctness (Δ+) and variation in taxonomic distinctness (Λ+) did not differ significantly between estuarine and coastal environments, i.e. they were unaffected by natural differences between these two environments, but both were significantly correlated with overall heavy metal concentrations. Furthermore, Δ+ was correlated significantly with the Cu, Zn, Cd, Hg and Pb concentrations and Λ+ was correlated significantly with the Cr, Ni, Cu, Cd and Hg concentrations. Thus, one or both of these two taxonomic distinctness indices are significantly correlated with the concentrations for each of these seven heavy metals. These taxonomic distinctness indices are therefore considered appropriate indicators of anthropogenic disturbance in estuaries, as they allow a regional reference condition to be set from which significant departures can then be determined.

  8. Phosphoglucose isomerase from bananas: partial characterization and relation to main changes in carbohydrate composition during ripening.

    PubMed

    Cordenunsi, B R; Oliveira do Nascimento, J R; Vieira da Mota, R; Lajolo, F M

    2001-10-01

    Some characteristics of phosphoglucose isomerase (PGI, EC 5.3.1.9) from banana were measured during fruit ripening of three banana cultivars. In banana, PGI was present as two dimeric isoenzymes, named PGI1 and PGI2, which had similar native molecular masses but differed in relation to heat stability and isoelectric point. Total PGI activity showed a distinct two-step change during fruit ripening. Before the climacteric period, PGI activity gradually decreased with the starch content, then its activity began to increase with sucrose accumulation. The ratio of PGI1, and PGI2 was constant, indicating that both enzymes would be involved in starch degradation and sucrose synthesis. PGI activity and changes in carbohydrate composition suggests the existence of some control to fit the requirements of the intense carbon flow from starch to sucrose.

  9. Shifts in phylogenetic diversity of archaeal communities in mangrove sediments at different sites and depths in southeastern Brazil.

    PubMed

    Mendes, Lucas William; Taketani, Rodrigo Gouvêa; Navarrete, Acácio Aparecido; Tsai, Siu Mui

    2012-06-01

    This study focused on the structure and composition of archaeal communities in sediments of tropical mangroves in order to obtain sufficient insight into two Brazilian sites from different locations (one pristine and another located in an urban area) and at different depth levels from the surface. Terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene fragments was used to scan the archaeal community structure, and 16S rRNA gene clone libraries were used to determine the community composition. Redundancy analysis of T-RFLP patterns revealed differences in archaeal community structure according to location, depth and soil attributes. Parameters such as pH, organic matter, potassium and magnesium presented significant correlation with general community structure. Furthermore, phylogenetic analysis revealed a community composition distributed differently according to depth where, in shallow samples, 74.3% of sequences were affiliated with Euryarchaeota and 25.7% were shared between Crenarchaeota and Thaumarchaeota, while for the deeper samples, 24.3% of the sequences were affiliated with Euryarchaeota and 75.7% with Crenarchaeota and Thaumarchaeota. Archaeal diversity measurements based on 16S rRNA gene clone libraries decreased with increasing depth and there was a greater difference between depths (<18% of sequences shared) than sites (>25% of sequences shared). Taken together, our findings indicate that mangrove ecosystems support a diverse archaeal community; it might possibly be involved in nutrient cycles and are affected by sediment properties, depth and distinct locations. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. Valles Marineris dune fields as compared with other martian populations: Diversity of dune compositions, morphologies, and thermophysical properties

    NASA Astrophysics Data System (ADS)

    Chojnacki, Matthew; Burr, Devon M.; Moersch, Jeffrey E.

    2014-02-01

    Planetary dune field properties and their bulk bedform morphologies relate to regional wind patterns, sediment supply, climate, and topography. On Mars, major occurrences of spatially contiguous low-albedo sand dunes are primarily found in three major topographic settings: impact craters, high-latitude basins, and linear troughs or valleys, the largest being the Valles Marineris (VM) rift system. As one of the primary present day martian sediment sinks, VM holds nearly a third of the non-polar dune area on Mars. Moreover, VM differs from other regions due to its unusual geologic, topographic, and atmospheric setting. Herein, we test the overarching hypothesis that VM dune fields are compositionally, morphologically, and thermophysically distinct from other low- and mid-latitude (50°N-50°S latitude) dune fields. Topographic measurements of dune fields and their underlying terrains indicate slopes, roughnesses, and reliefs to be notably greater for those in VM. Variable VM dune morphologies are shown with topographically-related duneforms (climbing, falling, and echo dunes) located among spur-and-gully wall, landslide, and chaotic terrains, contrasting most martian dunes found in more topographically benign locations (e.g., craters, basins). VM dune fields superposed on Late Amazonian landslides are constrained to have formed and/or migrated over >10s of kilometers in the last 50 My to 1 Gy. Diversity of detected dune sand compositions, including unaltered ultramafic minerals and glasses (e.g., high and low-calcium pyroxene, olivine, Fe-bearing glass), and alteration products (hydrated sulfates, weathered Fe-bearing glass), is more pronounced in VM. Observations show heterogeneous sand compositions exist at the regional-, basinal-, dune field-, and dune-scales. Although not substantially greater than elsewhere, unambiguous evidence for recent dune activity in VM is indicated from pairs of high-resolution images that include: dune deflation, dune migration, slip face modification (e.g., alcoves), and ripple modification or migration, at varying scales (10s-100s m2). We conclude that VM dune fields are qualitatively and quantitatively distinct from other low- and mid-latitude dune fields, most readily attributable to the rift's unusual setting. Moreover, results imply dune field properties and aeolian processes on Mars can be largely influenced by regional environment, which may have their own distinctive set of boundary conditions, rather than a globally homogenous collection of aeolian sediment and bedforms.

  11. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how theymore » interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. In conclusion, different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.« less

  12. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    DOE PAGES

    De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.; ...

    2015-04-23

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how theymore » interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. In conclusion, different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.« less

  13. Geochemical characteristics of Cretaceous carbonatites from Angola

    NASA Astrophysics Data System (ADS)

    Alberti, A.; Castorina, F.; Censi, P.; Comin-Chiaramonti, P.; Gomes, C. B.

    1999-12-01

    The Early Cretaceous (138-130 Ma) carbonatites and associated alkaline rocks of Angola belong to the Paraná-Angola-Etendeka Province and occur as ring complexes and other central-type intrusions along northeast trending tectonic lineaments, parallel to the trend of coeval Namibian alkaline complexes. Most of the Angolan carbonatite-alkaline bodies are located along the apical part of the Moçamedes Arch, a structure representing the African counterpart of the Ponta Grossa Arch in southern Brazil, where several alkaline-carbonatite complexes were also emplaced in the Early Cretaceous. Geochemical and isotopic (C, 0, Sr and Nd) characteristics determined for five carbonatitic occurrences indicate that: (1) the overall geochemical composition, including the OC isotopes, is within the range of the Early and Late Cretaceous Brazilian occurrences from the Paraná Basin; (2) the La versus {La}/{Yb} relationships are consistent with the exsolution of CO i2-rich melts from trachyphonolitic magmas; and (3) the {143Nd}/{144Nd} and {87Sr}/{86Sr} initial ratios are similar to the initial isotopic ratios (129 Ma) of alkaline complexes in northwest Namibia. In contrast, the Lupongola carbonatites have a distinctly different {143Nd}/{144Nd} initial ratio, suggesting a different source. The Angolan carbonatites have SrNd isotopic compositions ranging from bulk earth to time-integrated depleted sources. Since those from eastern Paraguay (at the western fringe of the Paraná-Angola-Etendeka Province) and Brazil appear to be related to mantle-derived melts with time-integrated enriched or B.E. isotopic characteristics, it is concluded that the carbonatites of the Paraná-Angola-Etendeka Province have compositionally distinct mantle sources. Such mantle heterogeneity is attributed to 'metasomatic processes', which would have occurred at ca 0.6-0.7 Ga (Angola, northwest Namibia and Brazil) and ca 1.8 Ga (eastern Paraguay), as suggested by Nd-model ages.

  14. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission of New Minerals and Mineral Names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1998-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission of New Minerals and Mineral Names. In a working definition of a zeolite mineral used for review, interrupted tetrahedral framework structures are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundance in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr.-Ba: chabazite-Ca.-Na.-K; clinoptilolite-K, -Na, -Ca: dachiardite-Ca, -Na; erionite-K, -Ca: faujasite-Na, -Ca, -Na: paulingite-K. -Ca; phillipsite-Na, -Ca, -Ka; stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data. IZA structure-type symbols, space-group symmetry; unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite, and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.

  15. Dry/Wet Cycles Change the Activity and Population Dynamics of Methanotrophs in Rice Field Soil

    PubMed Central

    Ma, Ke; Conrad, Ralf

    2013-01-01

    The methanotrophs in rice field soil are crucial in regulating the emission of methane. Drainage substantially reduces methane emission from rice fields. However, it is poorly understood how drainage affects microbial methane oxidation. Therefore, we analyzed the dynamics of methane oxidation rates, composition (using terminal restriction fragment length polymorphism [T-RFLP]), and abundance (using quantitative PCR [qPCR]) of methanotroph pmoA genes (encoding a subunit of particulate methane monooxygenase) and their transcripts over the season and in response to alternate dry/wet cycles in planted paddy field microcosms. In situ methane oxidation accounted for less than 15% of total methane production but was enhanced by intermittent drainage. The dry/wet alternations resulted in distinct effects on the methanotrophic communities in different soil compartments (bulk soil, rhizosphere soil, surface soil). The methanotrophic communities of the different soil compartments also showed distinct seasonal dynamics. In bulk soil, potential methanotrophic activity and transcription of pmoA were relatively low but were significantly stimulated by drainage. In contrast, however, in the rhizosphere and surface soils, potential methanotrophic activity and pmoA transcription were relatively high but decreased after drainage events and resumed after reflooding. While type II methanotrophs dominated the communities in the bulk soil and rhizosphere soil compartments (and to a lesser extent also in the surface soil), it was the pmoA of type I methanotrophs that was mainly transcribed under flooded conditions. Drainage affected the composition of the methanotrophic community only minimally but strongly affected metabolically active methanotrophs. Our study revealed dramatic dynamics in the abundance, composition, and activity of the various type I and type II methanotrophs on both a seasonal and a spatial scale and showed strong effects of dry/wet alternation cycles, which enhanced the attenuation of methane flux into the atmosphere. PMID:23770899

  16. Two mantle sources, two plumbing systems: Tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province

    USGS Publications Warehouse

    Arndt, N.; Chauvel, C.; Czamanske, G.; Fedorenko, V.

    1998-01-01

    Rocks of two distinctly different magma series are found in a ???4000-m-thick sequence of lavas and tuffs in the Maymecha River basin which is part of the Siberian flood-volcanic province. The tholeiites are typical low-Ti continental flood basalts with remarkably restricted, petrologically evolved compositions. They have basaltic MgO contents, moderate concentrations of incompatible trace elements, moderate fractionation of incompatible from compatible elements, distinct negative Ta(Nb) anomalies, and ??Nd values of 0 to + 2. The primary magmas were derived from a relatively shallow mantle source, and evolved in large crustal magma chambers where they acquired their relatively uniform compositions and became contaminated with continental crust. An alkaline series, in contrast, contains a wide range of rock types, from meymechite and picrite to trachytes, with a wide range of compositions (MgO from 0.7 to 38 wt%, SiO2 from 40 to 69 wt%, Ce from 14 to 320 ppm), high concentrations of incompatible elements and extreme fractionation of incompatible from compatible elements (Al2O3/TiO2 ??? 1; Sm/Yb up to 11). These rocks lack Ta(Nb) anomalies and have a broad range of ??Nd values, from -2 to +5. The parental magmas are believed to have formed by low-degree melting at extreme mantle depths (>200 km). They bypassed the large crustal magma chambers and ascended rapidly to the surface, a consequence, perhaps, of high volatile contents in the primary magmas. The tholeiitic series dominates the lower part of the sequence and the alkaline series the upper part; at the interface, the two types are interlayered. The succession thus provides evidence of a radical change in the site of mantle melting, and the simultaneous operation of two very different crustal plumbing systems, during the evolution of this flood-volcanic province. ?? Springer-Verlag 1998.

  17. A Chlorine-Centric Perspective on Fluid-Mediated Processes at Convergent Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Selverstone, J.

    2014-12-01

    The release and migration of metamorphic fluids from subducting slabs into overlying mantle is widely recognized as a major mechanism in producing arc geochemical signatures and returning fluid-mobile elements to earth's crust and surface environments. Although the magnitudes of many geochemical fluxes are well constrained, the processes whereby mass transfer occurs in different portions of the subduction system are less well known. Chlorine stable isotopes provide a new perspective on some of these processes: Cl is hydrophilic, but decarbonation reactions favor Cl retention in minerals. Cl also shows less isotopic fractionation than other fluid-sensitive systems and may thus preserve evidence of specific fluid sources and/or fluid mixing events. Detailed studies of sedimentary sequences show that individual beds are isotopically homogeneous but large heterogeneities in δ37Cl exist across beds on a cm to m scale and vary as a function of depositional environment. Compositionally correlative medium-, high-, and ultrahigh-pressure metamorphic sequences in the Alps record decreases of 30-50% in Cl contents in the earliest stages of metamorphism, but little change thereafter. No statistically significant change in isotopic composition occurs during prograde metamorphism of individual horizons, and the same large degree of isotopic heterogeneity (up to 6‰) persists throughout the prograde devolatilization history of the rocks. Likewise, analysis of HP/UHP serpentinites and altered oceanic crust show that heterogeneous protolith compositions are preserved during transport to sub-arc depths, despite large-scale devolatilization. However, upward transport of rocks within the subduction channel results in highly localized interaction with isotopically distinct, Cl-bearing fluid packets. Overlying forearc wedge rocks also record heterogeneous and channelized interaction with distinct fluid components with different δ37Cl. Within-layer fluid compartmentalization during continuous devolatilization reactions must thus be reconciled with discontinuous, cross-layer fluid percolation out of the slab and into the wedge. The resulting implications of the chlorine data for recent mechanical models of slab-to-wedge fluid transport will be discussed.

  18. Numerical Investigation of Shock Wave Propagation in Bone-Like Tissue

    NASA Astrophysics Data System (ADS)

    Nelms, Matt; Rajendran, Arunachalam

    In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The penetration resistant fish scale was modeled by simulating a plate impact test configuration using ABAQUS®finite element (FE) software. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile bone. The geometry and variation of elastic modulus were determined from high-resolution scanning electron microscopy and dynamic nanoindentation experimentation to develop an idealized computational model for RVE-based FE simulations. The numerical analysis shows the effects of different functional material property variations on the stress histories and energy dissipation generated by wave propagation. Given the constitutive behaviors of the two layers are distinctly different, a brittle tensile damage model was employed to describe the ganoine and Drucker-Prager plasticity was used for the nonlinear response of the bone.

  19. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation

    NASA Astrophysics Data System (ADS)

    Zeng, Zhirui; Tice, Michael M.

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms.

  20. Influence of porosity and composition of supports on the methanogenic biofilm characteristics developed in a fixed bed anaerobic reactor.

    PubMed

    Picanço, A P; Vallero, M V; Gianotti, E P; Zaiat, M; Blundi, C E

    2001-01-01

    This paper reports on the influence of the material porosity on the anaerobic biomass adhesion on four different inert matrices: polyurethane foam, PVC, refractory brick and special ceramic. The biofilm development was performed in a fixed-bed anaerobic reactor containing all the support materials and fed with a synthetic wastewater containing protein, lipids and carbohydrates. The data obtained from microscopic analysis and kinetic assays indicated that the material porosity has a crucial importance in the retention of the anaerobic biomass. The polyurethane foam particles and the special ceramic were found to present better retentive properties than the PVC and the refractory brick. The large specific surface area, directly related to material porosity, is fundamental to provide a large amount of attached biomass. However, different supports can provide specific conditions for the adherence of distinct microorganism types. The microbiological exams revealed a distinction in the support colonization. A predominance of methanogenic archaeas resembling Methanosaeta was observed both in the refractory brick and the special ceramic. Methanosarcina-like microorganisms were predominant in the PVC and the polyurethane foam matrices.

Top