Sample records for distinct downstream pathways

  1. Diverse Developmental Disorders from The One Ring: Distinct Molecular Pathways Underlie the Cohesinopathies

    PubMed Central

    Horsfield, Julia A.; Print, Cristin G.; Mönnich, Maren

    2012-01-01

    The multi-subunit protein complex, cohesin, is responsible for sister chromatid cohesion during cell division. The interaction of cohesin with DNA is controlled by a number of additional regulatory proteins. Mutations in cohesin, or its regulators, cause a spectrum of human developmental syndromes known as the “cohesinopathies.” Cohesinopathy disorders include Cornelia de Lange Syndrome and Roberts Syndrome. The discovery of novel roles for chromatid cohesion proteins in regulating gene expression led to the idea that cohesinopathies are caused by dysregulation of multiple genes downstream of mutations in cohesion proteins. Consistent with this idea, Drosophila, mouse, and zebrafish cohesinopathy models all show altered expression of developmental genes. However, there appears to be incomplete overlap among dysregulated genes downstream of mutations in different components of the cohesion apparatus. This is surprising because mutations in all cohesion proteins would be predicted to affect cohesin’s roles in cell division and gene expression in similar ways. Here we review the differences and similarities between genetic pathways downstream of components of the cohesion apparatus, and discuss how such differences might arise, and contribute to the spectrum of cohesinopathy disorders. We propose that mutations in different elements of the cohesion apparatus have distinct developmental outcomes that can be explained by sometimes subtly different molecular effects. PMID:22988450

  2. Altered Gene Regulation and Synaptic Morphology in "Drosophila" Learning and Memory Mutants

    ERIC Educational Resources Information Center

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in "Drosophila" have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in "radish" ("rsh") mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways…

  3. Roles of STATs signaling in cardiovascular diseases.

    PubMed

    Kishore, Raj; Verma, Suresh K

    2012-04-01

    In cardiac and many other systems, chronic stress activates avfamily of structurally and functionally conserved receptors and their downstream signaling molecules that entail tyrosine, serine or threonine phosphorylation to transfer the messages to the genetic machinery. However, the activation of the Janus kinases (JAKs) and their downstream signal transducer and activator of transcription (STATs) proteins is both characteristic of and unique to cytokine and growth factor signaling which plays a central role in heart physiology. Dysregulation of JAK-STAT signaling is associated with various cardiovascular diseases. The molecular signaling and specificity of the JAK-STAT pathway are modulated at many levels by distinct regulatory proteins. Here, we review recent studies on the regulation of the STAT signaling pathway that will enhance our ability to design rational therapeutic strategies for stress-induced heart failure.

  4. Survivin Selectively Modulates Genes Deregulated in Human Leukemia Stem Cells

    PubMed Central

    Fukuda, Seiji; Abe, Mariko; Onishi, Chie; Taketani, Takeshi; Purevsuren, Jamiyan; Yamaguchi, Seiji; Conway, Edward M.; Pelus, Louis M.

    2011-01-01

    ITD-Flt3 mutations are detected in leukemia stem cells (LSCs) in acute myeloid leukemia (AML) patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC) function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit+, Sca-1+, and lineageneg (KSL) cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3+ KSL cells but not in normal CD34neg KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy. PMID:21253548

  5. Coordination of the recruitment of the FANCD2 and PALB2 Fanconi anemia proteins by an ubiquitin signaling network.

    PubMed

    Bick, Gregory; Zhang, Fan; Meetei, A Ruhikanta; Andreassen, Paul R

    2017-06-01

    Fanconi anemia (FA) is a chromosome instability syndrome and the 20 identified FA proteins are organized into two main arms which are thought to function at distinct steps in the repair of DNA interstrand crosslinks (ICLs). These two arms include the upstream FA pathway, which culminates in the monoubiquitination of FANCD2 and FANCI, and downstream breast cancer (BRCA)-associated proteins that interact in protein complexes. How, and whether, these two groups of FA proteins are integrated is unclear. Here, we show that FANCD2 and PALB2, as indicators of the upstream and downstream arms, respectively, colocalize independently of each other in response to DNA damage induced by mitomycin C (MMC). We also show that ubiquitin chains are induced by MMC and colocalize with both FANCD2 and PALB2. Our finding that the RNF8 E3 ligase has a role in recruiting FANCD2 and PALB2 also provides support for the hypothesis that the two branches of the FA-BRCA pathway are coordinated by ubiquitin signaling. Interestingly, we find that the RNF8 partner, MDC1, as well as the ubiquitin-binding protein, RAP80, specifically recruit PALB2, while a different ubiquitin-binding protein, FAAP20, functions only in the recruitment of FANCD2. Thus, FANCD2 and PALB2 are not recruited in a single linear pathway, rather we define how their localization is coordinated and integrated by a network of ubiquitin-related proteins. We propose that such regulation may enable upstream and downstream FA proteins to act at distinct steps in the repair of ICLs.

  6. The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors.

    PubMed

    Je, Byoung Il; Xu, Fang; Wu, Qingyu; Liu, Lei; Meeley, Robert; Gallagher, Joseph P; Corcilius, Leo; Payne, Richard J; Bartlett, Madelaine E; Jackson, David

    2018-03-15

    Meristems contain groups of indeterminate stem cells, which are maintained by a feedback loop between CLAVATA ( CLV ) and WUSCHEL ( WUS ) signaling. CLV signaling involves the secretion of the CLV3 peptide and its perception by a number of Leucine-Rich-Repeat (LRR) receptors, including the receptor-like kinase CLV1 and the receptor-like protein CLV2 coupled with the CORYNE (CRN) pseudokinase. CLV2, and its maize ortholog FASCIATED EAR2 (FEA2) appear to function in signaling by CLV3 and several related CLV3/EMBRYO-SURROUNDING REGION (CLE) peptide ligands. Nevertheless, how signaling specificity is achieved remains unknown. Here we show that FEA2 transmits signaling from two distinct CLE peptides, the maize CLV3 ortholog ZmCLE7 and ZmFON2-LIKE CLE PROTEIN1 (ZmFCP1) through two different candidate downstream effectors, the alpha subunit of the maize heterotrimeric G protein COMPACT PLANT2 (CT2), and ZmCRN. Our data provide a novel framework to understand how diverse signaling peptides can activate different downstream pathways through common receptor proteins. © 2018, Je et al.

  7. Postsynaptic localization of PSD-95 is regulated by all three pathways downstream of TrkB signaling.

    PubMed

    Yoshii, Akira; Constantine-Paton, Martha

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptor TrkB regulate synaptic plasticity. TrkB triggers three downstream signaling pathways; Phosphatidylinositol 3-kinase (PI3K), Phospholipase Cγ (PLCγ) and Mitogen activated protein kinases/Extracellular signal-regulated kinases (MAPK/ERK). We previously showed two distinct mechanisms whereby BDNF-TrkB pathway controls trafficking of PSD-95, which is the major scaffold at excitatory synapses and is critical for synapse maturation. BDNF activates the PI3K-Akt pathway and regulates synaptic delivery of PSD-95 via vesicular transport (Yoshii and Constantine-Paton, 2007). BDNF-TrkB signaling also triggers PSD-95 palmitoylation and its transport to synapses through the phosphorylation of the palmitoylation enzyme ZDHHC8 by a protein kinase C (PKC; Yoshii etal., 2011). The second study used PKC inhibitors chelerythrine as well as a synthetic zeta inhibitory peptide (ZIP) which was originally designed to block the brain-specific PKC isoform protein kinase Mϖ (PKMϖ). However, recent studies raise concerns about specificity of ZIP. Here, we assessed the contribution of TrkB and its three downstream pathways to the synaptic distribution of endogenous PSD-95 in cultured neurons using chemical and genetic interventions. We confirmed that TrkB, PLC, and PI3K were critical for the postsynaptic distribution of PSD-95. Furthermore, suppression of MAPK/ERK also disrupted PSD-95 expression. Next, we examined the contribution of PKC. While both chelerythrine and ZIP suppressed the postsynaptic localization of PSD-95, RNA interference for PKMϖ did not have a significant effect. This result suggests that the ZIP peptide, widely used as the "specific" PKMϖ antagonist by many investigators may block a PKC variant other than PKMϖ such as PKCλ/ι. Our results indicate that TrkB regulates postsynaptic localization of PSD-95 through all three downstream pathways, but also recommend further work to identify other PKC variants that regulate palmitoylation and synaptic localization of PSD-95.

  8. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains.

    PubMed

    Bücherl, Christoph A; Jarsch, Iris K; Schudoma, Christian; Segonzac, Cécile; Mbengue, Malick; Robatzek, Silke; MacLean, Daniel; Ott, Thomas; Zipfel, Cyril

    2017-03-06

    Cell surface receptors govern a multitude of signalling pathways in multicellular organisms. In plants, prominent examples are the receptor kinases FLS2 and BRI1, which activate immunity and steroid-mediated growth, respectively. Intriguingly, despite inducing distinct signalling outputs, both receptors employ common downstream signalling components, which exist in plasma membrane (PM)-localised protein complexes. An important question is thus how these receptor complexes maintain signalling specificity. Live-cell imaging revealed that FLS2 and BRI1 form PM nanoclusters. Using single-particle tracking we could discriminate both cluster populations and we observed spatiotemporal separation between immune and growth signalling platforms. This finding was confirmed by visualising FLS2 and BRI1 within distinct PM nanodomains marked by specific remorin proteins and differential co-localisation with the cytoskeleton. Our results thus suggest that signalling specificity between these pathways may be explained by the spatial separation of FLS2 and BRI1 with their associated signalling components within dedicated PM nanodomains.

  9. The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2

    PubMed Central

    Fridh, Veronica; Rittinger, Katrin

    2012-01-01

    Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-κB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs. PMID:22470564

  10. The Hedgehog Signal Transduction Network

    PubMed Central

    Robbins, David J.; Fei, Dennis Liang; Riobo, Natalia A.

    2013-01-01

    Hedgehog (Hh) proteins regulate the development of a wide range of metazoan embryonic and adult structures, and disruption of Hh signaling pathways results in various human diseases. Here, we provide a comprehensive review of the signaling pathways regulated by Hh, consolidating data from a diverse array of organisms in a variety of scientific disciplines. Similar to the elucidation of many other signaling pathways, our knowledge of Hh signaling developed in a sequential manner centered on its earliest discoveries. Thus, our knowledge of Hh signaling has for the most part focused on elucidating the mechanism by which Hh regulates the Gli family of transcription factors, the so-called “canonical” Hh signaling pathway. However, in the past few years, numerous studies have shown that Hh proteins can also signal through Gli-independent mechanisms collectively referred to as “noncanonical” signaling pathways. Noncanonical Hh signaling is itself subdivided into two distinct signaling modules: (i) those not requiring Smoothened (Smo) and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, Hh signaling is now proposed to occur through a variety of distinct context-dependent signaling modules that have the ability to crosstalk with one another to form an interacting, dynamic Hh signaling network. PMID:23074268

  11. Different downstream signalling of CCK1 receptors regulates distinct functions of CCK in pancreatic beta cells.

    PubMed

    Ning, Shang-lei; Zheng, Wen-shuai; Su, Jing; Liang, Nan; Li, Hui; Zhang, Dao-lai; Liu, Chun-hua; Dong, Jun-hong; Zhang, Zheng-kui; Cui, Min; Hu, Qiao-Xia; Chen, Chao-chao; Liu, Chang-hong; Wang, Chuan; Pang, Qi; Chen, Yu-xin; Yu, Xiao; Sun, Jin-peng

    2015-11-01

    Cholecystokinin (CCK) is secreted by intestinal I cells and regulates important metabolic functions. In pancreatic islets, CCK controls beta cell functions primarily through CCK1 receptors, but the signalling pathways downstream of these receptors in pancreatic beta cells are not well defined. Apoptosis in pancreatic beta cell apoptosis was evaluated using Hoechst-33342 staining, TUNEL assays and Annexin-V-FITC/PI staining. Insulin secretion and second messenger production were monitored using ELISAs. Protein and phospho-protein levels were determined by Western blotting. A glucose tolerance test was carried out to examine the functions of CCK-8s in streptozotocin-induced diabetic mice. The sulfated carboxy-terminal octapeptide CCK26-33 amide (CCK-8s) activated CCK1 receptors and induced accumulation of both IP3 and cAMP. Whereas Gq -PLC-IP3 signalling was required for the CCK-8s-induced insulin secretion under low-glucose conditions, Gs -PKA/Epac signalling contributed more strongly to the CCK-8s-mediated insulin secretion in high-glucose conditions. CCK-8s also promoted formation of the CCK1 receptor/β-arrestin-1 complex in pancreatic beta cells. Using β-arrestin-1 knockout mice, we demonstrated that β-arrestin-1 is a key mediator of both CCK-8s-mediated insulin secretion and of its the protective effect against apoptosis in pancreatic beta cells. The anti-apoptotic effects of β-arrestin-1 occurred through cytoplasmic late-phase ERK activation, which activates the 90-kDa ribosomal S6 kinase-phospho-Bcl-2-family protein pathway. Knowledge of different CCK1 receptor-activated downstream signalling pathways in the regulation of distinct functions of pancreatic beta cells could be used to identify biased CCK1 receptor ligands for the development of new anti-diabetic drugs. © 2015 The British Pharmacological Society.

  12. GABA-CREB signalling regulates maturation and survival of newly generated neurons in the adult hippocampus

    PubMed Central

    Jagasia, Ravi; Steib, Kathrin; Englberger, Elisabeth; Herold, Sabine; Faus-Kessler, Theresa; Saxe, Michael; Gage, Fred H.; Song, Hongjun; Lie, D. Chichung

    2009-01-01

    Survival and integration of new neurons in the hippocampal circuit are rate-limiting steps in adult hippocampal neurogenesis. Neuronal network activity is a major regulator of these processes, yet little is known about the respective downstream signalling pathways. Here, we investigate the role of CREB signalling in adult hippocampal neurogenesis. CREB is activated in new granule neurons during a distinct developmental period. Loss of CREB function in a cell-autonomous fashion impairs dendritic development, decreases the expression of the neurogenic transcription factor NeuroD and of the neuronal microtubule associated protein, DCX, and compromises the survival of newborn neurons. In addition, GABA-mediated excitation regulates CREB activation at early developmental stages. Importantly, developmental defects following loss of GABA-mediated excitation can be compensated by enhanced CREB signalling. These results indicate that CREB signalling is a central pathway in adult hippocampal neurogenesis, regulating the development and survival of new hippocampal neurons downstream of GABA-mediated excitation. PMID:19553437

  13. Murine natural killer immunoreceptors use distinct proximal signaling complexes to direct cell function

    PubMed Central

    May, Rebecca M.; Okumura, Mariko; Hsu, Chin-Jung; Bassiri, Hamid; Yang, Enjun; Rak, Gregory; Mace, Emily M.; Philip, Naomi H.; Zhang, Weiguo; Baumgart, Tobias; Orange, Jordan S.; Nichols, Kim E.

    2013-01-01

    Signaling pathways leading to natural killer (NK)–cell effector function are complex and incompletely understood. Here, we investigated the proximal signaling pathways downstream of the immunotyrosine-based activation motif (ITAM) bearing activating receptors. We found that the adaptor molecule SH2 domain-containing leukocyte protein of 76 kD (SLP-76) is recruited to microclusters at the plasma membrane in activated NK cells and that this is required for initiation of downstream signaling and multiple NK-cell effector functions in vitro and in vivo. Surprisingly, we found that 2 types of proximal signaling complexes involving SLP-76 were formed. In addition to the canonical membrane complex formed between SLP-76 and linker for activation of T cells (LAT) family members, a novel LAT family–independent SLP-76–dependent signaling pathway was identified. The LAT family–independent pathway involved the SH2 domain of SLP-76 and adhesion and degranulation-promoting adaptor protein (ADAP). Both the LAT family–dependent and ADAP-dependent pathway contributed to interferon-gamma production and cytotoxicity; however, they were not essential for other SLP-76–dependent events, including phosphorylation of AKT and extracellular signal–related kinase and cellular proliferation. These results demonstrate that NK cells possess an unexpected bifurcation of proximal ITAM-mediated signaling, each involving SLP-76 and contributing to optimal NK-cell function. PMID:23407547

  14. Drug targeting of oncogenic pathways in melanoma.

    PubMed

    Fecher, Leslie A; Amaravadi, Ravi K; Schuchter, Lynn M; Flaherty, Keith T

    2009-06-01

    Melanoma continues to be one of the most aggressive and morbid malignancies once metastatic. Overall survival for advanced unresectable melanoma has not changed over the past several decades. However, the presence of some long-term survivors of metastatic melanoma highlights the heterogeneity of this disease and the potential for improved outcomes. Current research is uncovering the molecular and genetic scaffolding of normal and aberrant cell function. The known oncogenic pathways in melanoma and the attempts to develop therapy for them are discussed. The targeting of certain cellular processes, downstream of the common genetic alterations, for which the issues of target and drug validation are somewhat distinct, are also highlighted.

  15. mTOR plays critical roles in pancreatic cancer stem cells through specific and stemness-related functions

    NASA Astrophysics Data System (ADS)

    Matsubara, Shyuichiro; Ding, Qiang; Miyazaki, Yumi; Kuwahata, Taisaku; Tsukasa, Koichiro; Takao, Sonshin

    2013-11-01

    Pancreatic cancer is characterized by near-universal mutations in KRAS. The mammalian target of rapamycin (mTOR), which functions downstream of RAS, has divergent effects on stem cells. In the present study, we investigated the significance of the mTOR pathway in maintaining the properties of pancreatic cancer stem cells. The mTOR inhibitor, rapamycin, reduced the viability of CD133+ pancreatic cancer cells and sphere formation which is an index of self-renewal of stem-like cells, indicating that the mTOR pathway functions to maintain cancer stem-like cells. Further, rapamycin had different effects on CD133+ cells compared to cyclopamine which is an inhibitor of the Hedgehog pathway. Thus, the mTOR pathway has a distinct role although both pathways maintain pancreatic cancer stem cells. Therefore, mTOR might be a promising target to eliminate pancreatic cancer stem cells.

  16. Distinct Pathways Regulate Syk Protein Activation Downstream of Immune Tyrosine Activation Motif (ITAM) and hemITAM Receptors in Platelets*

    PubMed Central

    Manne, Bhanu Kanth; Badolia, Rachit; Dangelmaier, Carol; Eble, Johannes A.; Ellmeier, Wilfried; Kahn, Mark; Kunapuli, Satya P.

    2015-01-01

    Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor. PMID:25767114

  17. Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks

    PubMed Central

    Behar, Marcelo; Dohlman, Henrik G.; Elston, Timothy C.

    2007-01-01

    Intracellular signaling pathways that share common components often elicit distinct physiological responses. In most cases, the biochemical mechanisms responsible for this signal specificity remain poorly understood. Protein scaffolds and cross-inhibition have been proposed as strategies to prevent unwanted cross-talk. Here, we report a mechanism for signal specificity termed “kinetic insulation.” In this approach signals are selectively transmitted through the appropriate pathway based on their temporal profile. In particular, we demonstrate how pathway architectures downstream of a common component can be designed to efficiently separate transient signals from signals that increase slowly over time. Furthermore, we demonstrate that upstream signaling proteins can generate the appropriate input to the common pathway component regardless of the temporal profile of the external stimulus. Our results suggest that multilevel signaling cascades may have evolved to modulate the temporal profile of pathway activity so that stimulus information can be efficiently encoded and transmitted while ensuring signal specificity. PMID:17913886

  18. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis

    DOE PAGES

    Chang, Katherine Noelani; Zhong, Shan; Weirauch, Matthew T.; ...

    2013-06-11

    The gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signalingmore » pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways.« less

  19. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis

    PubMed Central

    Chang, Katherine Noelani; Zhong, Shan; Weirauch, Matthew T; Hon, Gary; Pelizzola, Mattia; Li, Hai; Huang, Shao-shan Carol; Schmitz, Robert J; Urich, Mark A; Kuo, Dwight; Nery, Joseph R; Qiao, Hong; Yang, Ally; Jamali, Abdullah; Chen, Huaming; Ideker, Trey; Ren, Bing; Bar-Joseph, Ziv; Hughes, Timothy R; Ecker, Joseph R

    2013-01-01

    The gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signaling pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways. DOI: http://dx.doi.org/10.7554/eLife.00675.001 PMID:23795294

  20. DISCO interacting protein 2 determines direction of axon projection under the regulation of c-Jun N-terminal kinase in the Drosophila mushroom body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitta, Yohei; Brain Research Institute, Niigata University; Sugie, Atsushi

    Precisely controlled axon guidance for complex neuronal wiring is essential for appropriate neuronal function. c-Jun N-terminal kinase (JNK) was found to play a role in axon guidance recently as well as in cell proliferation, protection and apoptosis. In spite of many genetic and molecular studies on these biological processes regulated by JNK, how JNK regulates axon guidance accurately has not been fully explained thus far. To address this question, we use the Drosophila mushroom body (MB) as a model since the α/β axons project in two distinct directions. Here we show that DISCO interacting protein 2 (DIP2) is required formore » the accurate direction of axonal guidance. DIP2 expression is under the regulation of Basket (Bsk), the Drosophila homologue of JNK. We additionally found that the Bsk/DIP2 pathway is independent from the AP-1 transcriptional factor complex pathway, which is directly activated by Bsk. In conclusion, our findings revealed DIP2 as a novel effector downstream of Bsk modulating the direction of axon projection. - Highlights: • DIP2 is required for accurate direction of axon guidance in Drosophila mushroom body. • DIP2 is a downstream of JNK in the axon guidance of Drosophila mushroom body neuron. • JNK/DIP2 pathway is independent from JNK/AP-1 transcriptional factor complex pathway.« less

  1. ABI3, a component of the WAVE2 complex, is potentially regulated by PI3K/AKT pathway

    PubMed Central

    Moraes, Lais; Zanchin, Nilson I.T.; Cerutti, Janete M.

    2017-01-01

    We previously reported that ABI3 expression is lost in follicular thyroid carcinomas and its restoration significantly inhibited cell growth, invasiveness, migration, and reduced tumor growth in vivo. The mechanistic basis by which ABI3 exerts its tumor suppressive effects is not fully understood. In this study, we show that ABI3 is a phosphoprotein. Using proteomic array analysis, we showed that ABI3 modulated distinct cancer-related pathways in thyroid cancer cells. The KEA analysis found that PI3K substrates were enriched and forced expression of ABI3 markedly decreased the phosphorylation of AKT and the downstream-targeted protein pGSK3β. We next used immunoprecipitation combined with mass spectrometry to identify ABI3-interacting proteins that may be involved in modulating/integrating signaling pathways. We identified 37 ABI3 partners, including several components of the canonical WAVE regulatory complex (WRC) such as WAVE2/CYF1P1/NAP1, suggesting that ABI3 function might be regulated through WRC. Both, pharmacological inhibition of the PI3K/AKT pathway and mutation at residue S342 of ABI3, which is predicted to be phosphorylated by AKT, provided evidences that the non-phosphorylated form of ABI3 is preferentially present in the WRC protein complex. Collectively, our findings suggest that ABI3 might be a downstream mediator of the PI3K/AKT pathway that might disrupt WRC via ABI3 phosphorylation. PMID:28978070

  2. ABI3, a component of the WAVE2 complex, is potentially regulated by PI3K/AKT pathway.

    PubMed

    Moraes, Lais; Zanchin, Nilson I T; Cerutti, Janete M

    2017-09-15

    We previously reported that ABI3 expression is lost in follicular thyroid carcinomas and its restoration significantly inhibited cell growth, invasiveness, migration, and reduced tumor growth in vivo . The mechanistic basis by which ABI3 exerts its tumor suppressive effects is not fully understood. In this study, we show that ABI3 is a phosphoprotein. Using proteomic array analysis, we showed that ABI3 modulated distinct cancer-related pathways in thyroid cancer cells. The KEA analysis found that PI3K substrates were enriched and forced expression of ABI3 markedly decreased the phosphorylation of AKT and the downstream-targeted protein pGSK3β. We next used immunoprecipitation combined with mass spectrometry to identify ABI3-interacting proteins that may be involved in modulating/integrating signaling pathways. We identified 37 ABI3 partners, including several components of the canonical WAVE regulatory complex (WRC) such as WAVE2/CYF1P1/NAP1, suggesting that ABI3 function might be regulated through WRC. Both, pharmacological inhibition of the PI3K/AKT pathway and mutation at residue S342 of ABI3, which is predicted to be phosphorylated by AKT, provided evidences that the non-phosphorylated form of ABI3 is preferentially present in the WRC protein complex. Collectively, our findings suggest that ABI3 might be a downstream mediator of the PI3K/AKT pathway that might disrupt WRC via ABI3 phosphorylation.

  3. Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide

    PubMed Central

    Omura, Hiroki; Oikawa, Daisuke; Nakane, Takanori; Kato, Megumi; Ishii, Ryohei; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu

    2016-01-01

    In the innate immune system, pattern recognition receptors (PRRs) specifically recognize ligands derived from bacteria or viruses, to trigger the responsible downstream pathways. DEAD box protein 41 (DDX41) is an intracellular PRR that triggers the downstream pathway involving the adapter STING, the kinase TBK1, and the transcription factor IRF3, to activate the type I interferon response. DDX41 is unique in that it recognizes two different ligands; i.e., double-stranded DNA (dsDNA) and cyclic dinucleotides (CDN), via its DEAD domain. However, the structural basis for the ligand recognition by the DDX41 DEAD domain has remained elusive. Here, we report two crystal structures of the DDX41 DEAD domain in apo forms, at 1.5 and 2.2 Å resolutions. A comparison of the two crystal structures revealed the flexibility in the ATP binding site, suggesting its formation upon ATP binding. Structure-guided functional analyses in vitro and in vivo demonstrated the overlapped binding surface for dsDNA and CDN, which is distinct from the ATP-binding site. We propose that the structural rearrangement of the ATP binding site is crucial for the release of ADP, enabling the fast turnover of DDX41 for the dsDNA/CDN-induced STING activation pathway. PMID:27721487

  4. Mobile Gibberellin Directly Stimulates Arabidopsis Hypocotyl Xylem Expansion[W][OA

    PubMed Central

    Ragni, Laura; Nieminen, Kaisa; Pacheco-Villalobos, David; Sibout, Richard; Schwechheimer, Claus; Hardtke, Christian S.

    2011-01-01

    Secondary growth of the vasculature results in the thickening of plant structures and continuously produces xylem tissue, the major biological carbon sink. Little is known about the developmental control of this quantitative trait, which displays two distinct phases in Arabidopsis thaliana hypocotyls. The later phase of accelerated xylem expansion resembles the secondary growth of trees and is triggered upon flowering by an unknown, shoot-derived signal. We found that flowering-dependent hypocotyl xylem expansion is a general feature of herbaceous plants with a rosette growth habit. Flowering induction is sufficient to trigger xylem expansion in Arabidopsis. By contrast, neither flower formation nor elongation of the main inflorescence is required. Xylem expansion also does not depend on any particular flowering time pathway or absolute age. Through analyses of natural genetic variation, we found that ERECTA acts locally to restrict xylem expansion downstream of the gibberellin (GA) pathway. Investigations of mutant and transgenic plants indicate that GA and its signaling pathway are both necessary and sufficient to directly trigger enhanced xylogenesis. Impaired GA signaling did not affect xylem expansion systemically, suggesting that it acts downstream of the mobile cue. By contrast, the GA effect was graft transmissible, suggesting that GA itself is the mobile shoot-derived signal. PMID:21498678

  5. Distinct pathways regulate Syk protein activation downstream of immune tyrosine activation motif (ITAM) and hemITAM receptors in platelets.

    PubMed

    Manne, Bhanu Kanth; Badolia, Rachit; Dangelmaier, Carol; Eble, Johannes A; Ellmeier, Wilfried; Kahn, Mark; Kunapuli, Satya P

    2015-05-01

    Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells

    PubMed Central

    Ding, Husheng; McDonald, Jennifer S.; Yun, Seongseok; Schneider, Paula A.; Peterson, Kevin L.; Flatten, Karen S.; Loegering, David A.; Oberg, Ann L.; Riska, Shaun M.; Huang, Shengbing; Sinicrope, Frank A.; Adjei, Alex A.; Karp, Judith E.; Meng, X. Wei; Kaufmann, Scott H.

    2014-01-01

    Although farnesyltransferase inhibitors have shown promising activity in relapsed lymphoma and sporadic activity in acute myelogenous leukemia, their mechanism of cytotoxicity is incompletely understood, making development of predictive biomarkers difficult. In the present study, we examined the action of tipifarnib in human acute myelogenous leukemia cell lines and clinical samples. In contrast to the Ras/MEK/ERK pathway-mediated Bim upregulation that is responsible for tipifarnib-induced killing of malignant lymphoid cells, inhibition of Rheb-induced mTOR signaling followed by dose-dependent upregulation of Bax and Puma occurred in acute myelogenous leukemia cell lines undergoing tipifarnib-induced apoptosis. Similar Bax and Puma upregulation occurred in serial bone marrow samples harvested from a subset of acute myelogenous leukemia patients during tipifarnib treatment. Expression of FTI-resistant Rheb M184L, like knockdown of Bax or Puma, diminished tipifarnib-induced killing. Further analysis demonstrated that increased Bax and Puma levels reflect protein stabilization rather than increased gene expression. In U937 cells selected for tipifarnib resistance, neither inhibition of signaling downstream of Rheb nor Bax and Puma stabilization occurred. Collectively, these results not only identify a pathway downstream from Rheb that contributes to tipifarnib cytotoxicity in human acute myelogenous leukemia cells, but also demonstrate that FTI-induced killing of lymphoid versus myeloid cells reflects distinct biochemical mechanisms downstream of different farnesylated substrates. (ClinicalTrials.gov identifier NCT00602771) PMID:23996484

  7. Genetic regulation of mammalian gonad development.

    PubMed

    Eggers, Stefanie; Ohnesorg, Thomas; Sinclair, Andrew

    2014-11-01

    Sex-specific gonadal development starts with formation of the bipotential gonad, which then differentiates into either a mature testis or an ovary. This process is dependent on activation of either the testis-specific or the ovary-specific pathway while the opposite pathway is continuously repressed. A network of transcription factors tightly regulates initiation and maintenance of these distinct pathways; disruption of these networks can lead to disorders of sex development in humans and male-to-female or female-to-male sex reversal in mice. Sry is the Y-linked master switch that is both required and sufficient to drive the testis-determining pathway. Another key component of the testis pathway is Sox9, which acts immediately downstream of Sry. In contrast to the testis pathway, no single sex-determining factor has been identified in the ovary pathway; however, multiple genes, such as Foxl2, Rspo1, Ctnnb1, and Wnt4, seem to work synergistically and in parallel to ensure proper ovary development. Our understanding of the regulatory networks that underpin testis and ovary development has grown substantially over the past two decades.

  8. SDF-1 signaling via the CXCR4-TCR heterodimer requires PLC-β3 and PLC-γ1 for distinct cellular responses 1

    PubMed Central

    Kremer, Kimberly N.; Clift, Ian C.; Miamen, Alexander G.; Bamidele, Adebowale O.; Qian, Nan-Xin; Humphreys, Troy D.; Hedin, Karen E.

    2011-01-01

    The CXCR4 chemokine receptor is a G protein-coupled receptor (GPCR) that signals in T lymphocytes by forming a heterodimer with the T cell antigen receptor (TCR). CXCR4 and TCR functions are consequently highly cross-regulated, affecting T cell immune activation, cytokine secretion, and T cell migration. The CXCR4-TCR heterodimer stimulates T cell migration and activation of the ERK MAP kinase and downstream AP-1-dependent cytokine transcription in response to SDF-1, the sole chemokine ligand of CXCR4. These responses require Gi-type G proteins as well as TCR ITAM domains and the ZAP-70 tyrosine kinase, thus indicating that the CXCR4-TCR heterodimer signals to integrate GPCR-associated and TCR-associated signaling molecules in response to SDF-1. Yet, the phospholipase C (PLC) isozymes responsible for coupling the CXCR4-TCR heterodimer to distinct downstream cellular responses are incompletely characterized. Here, we demonstrate that PLC activity is required for SDF-1 to induce ERK activation, migration, and CXCR4 endocytosis in human T cells. SDF-1 signaling via the CXCR4-TCR heterodimer uses PLC-β3 to activate the Ras-ERK pathway and increase intracellular Ca2+ concentrations, while PLC-γ1 is dispensable for these outcomes. In contrast, PLC-γ1, but not PLC-β3, is required for SDF-1-mediated migration, via a mechanism independent of LAT. These results increase understanding of the signaling mechanisms employed by the CXCR4-TCR heterodimer, characterize new roles for PLC-β3 and PLC-γ1 in T cells, and suggest that multiple PLCs may also be activated downstream of other chemokine receptors in order to distinctly regulate migration versus other signaling functions. PMID:21705626

  9. Antipsychotics activate the TGFβ pathway effector SMAD3

    PubMed Central

    Cohen, T.; Sundaresh, S.; Levine, F.

    2014-01-01

    Although effective in treating an array of neurological disorders, antipsychotics are associated with deleterious metabolic side effects. Through high-throughput screening, we previously identified phenothiazine antipsychotics as modulators of the human insulin promoter. Here, we extended our initial finding to structurally diverse typical and atypical antipsychotics. We then identified the TGFβ pathway as being involved in the effect of antipsychotics on the insulin promoter, finding that antipsychotics activated SMAD3, a downstream effector of the TGFβ pathway, through a receptor distinct from the TGFβ receptor family and known neurotransmitter receptor targets of antipsychotics. Of note, antipsychotics that do not cause metabolic side effects did not activate SMAD3. In vivo relevance was demonstrated by reanalysis of gene expression data from human brains treated with antipsychotics, which showed altered expression of SMAD3 responsive genes. This work raises the possibility that antipsychotics could be designed that retain beneficial CNS activity while lacking deleterious metabolic side effects. PMID:22290122

  10. Bimodal antagonism of PKA signalling by ARHGAP36.

    PubMed

    Eccles, Rebecca L; Czajkowski, Maciej T; Barth, Carolin; Müller, Paul Markus; McShane, Erik; Grunwald, Stephan; Beaudette, Patrick; Mecklenburg, Nora; Volkmer, Rudolf; Zühlke, Kerstin; Dittmar, Gunnar; Selbach, Matthias; Hammes, Annette; Daumke, Oliver; Klussmann, Enno; Urbé, Sylvie; Rocks, Oliver

    2016-10-07

    Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease.

  11. Bimodal antagonism of PKA signalling by ARHGAP36

    PubMed Central

    Eccles, Rebecca L.; Czajkowski, Maciej T.; Barth, Carolin; Müller, Paul Markus; McShane, Erik; Grunwald, Stephan; Beaudette, Patrick; Mecklenburg, Nora; Volkmer, Rudolf; Zühlke, Kerstin; Dittmar, Gunnar; Selbach, Matthias; Hammes, Annette; Daumke, Oliver; Klussmann, Enno; Urbé, Sylvie; Rocks, Oliver

    2016-01-01

    Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease. PMID:27713425

  12. Src kinases and ERK activate distinct responses to Stitcher receptor tyrosine kinase signaling during wound healing in Drosophila.

    PubMed

    Tsarouhas, Vasilios; Yao, Liqun; Samakovlis, Christos

    2014-04-15

    Metazoans have evolved efficient mechanisms for epidermal repair and survival following injury. Several cellular responses and key signaling molecules that are involved in wound healing have been identified in Drosophila, but the coordination of cytoskeletal rearrangements and the activation of gene expression during barrier repair are poorly understood. The Ret-like receptor tyrosine kinase (RTK) Stitcher (Stit, also known as Cad96Ca) regulates both re-epithelialization and transcriptional activation by Grainy head (Grh) to induce restoration of the extracellular barrier. Here, we describe the immediate downstream effectors of Stit signaling in vivo. Drk (Downstream of receptor kinase) and Src family tyrosine kinases bind to the same docking site in the Stit intracellular domain. Drk is required for the full activation of transcriptional responses but is dispensable for re-epithelialization. By contrast, Src family kinases (SFKs) control both the assembly of a contractile actin ring at the wound periphery and Grh-dependent activation of barrier-repair genes. Our analysis identifies distinct pathways mediating injury responses and reveals an RTK-dependent activation mode for Src kinases and their central functions during epidermal wound healing in vivo.

  13. Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model.

    PubMed

    Yang, Zhao; Yang, Fan; Zhang, Daolai; Liu, Zhixin; Lin, Amy; Liu, Chuan; Xiao, Peng; Yu, Xiao; Sun, Jin-Peng

    2017-09-01

    Seven transmembrane G protein-coupled receptors (GPCRs) are often phosphorylated at the C terminus and on intracellular loops in response to various extracellular stimuli. Phosphorylation of GPCRs by GPCR kinases and certain other kinases can promote the recruitment of arrestin molecules. The arrestins critically regulate GPCR functions not only by mediating receptor desensitization and internalization, but also by redirecting signaling to G protein-independent pathways via interactions with numerous downstream effector molecules. Accumulating evidence over the past decade has given rise to the phospho-barcode hypothesis, which states that ligand-specific phosphorylation patterns of a receptor direct its distinct functional outcomes. Our recent work using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance ( 19 F-NMR) spectroscopy led to the flute model, which provides preliminary insight into the receptor phospho-coding mechanism, by which receptor phosphorylation patterns are recognized by an array of phosphate-binding pockets on arrestin and are translated into distinct conformations. These selective conformations are recognized by various effector molecules downstream of arrestin. The phospho-barcoding mechanism enables arrestin to recognize a wide range of phosphorylation patterns of GPCRs, contributing to their diverse functions. Copyright © 2017 by The Author(s).

  14. Small nucleoli are a cellular hallmark of longevity

    PubMed Central

    Tiku, Varnesh; Jain, Chirag; Raz, Yotam; Nakamura, Shuhei; Heestand, Bree; Liu, Wei; Späth, Martin; Suchiman, H. Eka. D.; Müller, Roman-Ulrich; Slagboom, P. Eline; Partridge, Linda; Antebi, Adam

    2017-01-01

    Animal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa. PMID:28853436

  15. Small nucleoli are a cellular hallmark of longevity.

    PubMed

    Tiku, Varnesh; Jain, Chirag; Raz, Yotam; Nakamura, Shuhei; Heestand, Bree; Liu, Wei; Späth, Martin; Suchiman, H Eka D; Müller, Roman-Ulrich; Slagboom, P Eline; Partridge, Linda; Antebi, Adam

    2016-08-30

    Animal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa.

  16. Plant cell surface receptor-mediated signaling - a common theme amid diversity.

    PubMed

    He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong

    2018-01-29

    Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.

  17. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c

    PubMed Central

    Mootha, Vamsi K.; Wei, Michael C.; Buttle, Karolyn F.; Scorrano, Luca; Panoutsakopoulou, Vily; Mannella, Carmen A.; Korsmeyer, Stanley J.

    2001-01-01

    Multiple apoptotic pathways release cytochrome c from the mitochondrial intermembrane space, resulting in the activation of downstream caspases. In vivo activation of Fas (CD95) resulted in increased permeability of the mitochondrial outer membrane and depletion of cytochrome c stores. Serial measurements of oxygen consumption, NADH redox state and membrane potential revealed a loss of respiratory state transitions. This tBID-induced respiratory failure did not require any caspase activity. At early time points, re-addition of exogenous cytochrome c markedly restored respiratory functions. Over time, however, mitochondria showed increasing irreversible respiratory dysfunction as well as diminished calcium buffering. Electron microscopy and tomographic reconstruction revealed asymmetric mitochondria with blebs of herniated matrix, distended inner membrane and partial loss of cristae structure. Thus, apoptogenic redistribution of cytochrome c is responsible for a distinct program of mitochondrial respiratory dysfunction, in addition to the activation of downstream caspases. PMID:11179211

  18. Alternative Mating Type Configurations (a/α versus a/a or α/α) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways

    PubMed Central

    Srikantha, Thyagarajan; Huang, Guanghua; Garnaas, Adam M.; Soll, David R.

    2011-01-01

    Similar multicellular structures can evolve within the same organism that may have different evolutionary histories, be controlled by different regulatory pathways, and play similar but nonidentical roles. In the human fungal pathogen Candida albicans, a quite extraordinary example of this has occurred. Depending upon the configuration of the mating type locus (a/α versus a/a or α/α), C. albicans forms alternative biofilms that appear similar morphologically, but exhibit dramatically different characteristics and are regulated by distinctly different signal transduction pathways. Biofilms formed by a/α cells are impermeable to molecules in the size range of 300 Da to 140 kDa, are poorly penetrated by human polymorphonuclear leukocytes (PMNs), and are resistant to antifungals. In contrast, a/a or α/α biofilms are permeable to molecules in this size range, are readily penetrated by PMNs, and are susceptible to antifungals. By mutational analyses, a/α biofilms are demonstrated to be regulated by the Ras1/cAMP pathway that includes Ras1→Cdc35→cAMP(Pde2—|)→Tpk2(Tpk1)→Efg1→Tec1→Bcr1, and a/a biofilms by the MAP kinase pathway that includes Mfα→Ste2→ (Ste4, Ste18, Cag1)→Ste11→Hst7→Cek2(Cek1)→Tec1. These observations suggest the hypothesis that while the upstream portion of the newly evolved pathway regulating a/a and α/α cell biofilms was derived intact from the upstream portion of the conserved pheromone-regulated pathway for mating, the downstream portion was derived through modification of the downstream portion of the conserved pathway for a/α biofilm formation. C. albicans therefore forms two alternative biofilms depending upon mating configuration. PMID:21829325

  19. Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination

    PubMed Central

    Voegele, Antje; Linkies, Ada; Müller, Kerstin; Leubner-Metzger, Gerhard

    2011-01-01

    Germination of endospermic seeds is partly regulated by the micropylar endosperm, which acts as constraint to radicle protrusion. Gibberellin (GA) signalling pathways control coat-dormancy release, endosperm weakening, and organ expansion during seed germination. Three GIBBERELLIN INSENSITIVE DWARF1 (GID1) GA receptors are known in Arabidopsis thaliana: GID1a, GID1b, and GID1c. Molecular phylogenetic analysis of angiosperm GID1s reveals that they cluster into two eudicot (GID1ac, GID1b) groups and one monocot group. Eudicots have at least one gene from each of the two groups, indicating that the different GID1 receptors fulfil distinct roles during plant development. A comparative Brassicaceae approach was used, in which gid1 mutant and whole-seed transcript analyses in Arabidopsis were combined with seed-tissue-specific analyses of its close relative Lepidium sativum (garden cress), for which three GID1 orthologues were cloned. GA signalling via the GID1ac receptors is required for Arabidopsis seed germination, GID1b cannot compensate for the impaired germination of the gid1agid1c mutant. Transcript expression patterns differed temporarily, spatially, and hormonally, with GID1b being distinct from GID1ac in both species. Endosperm weakening is mediated, at least in part, through GA-induced genes encoding cell-wall-modifying proteins. A suppression subtraction hybridization (SSH) cDNA library enriched for sequences that are highly expressed during early germination in the micropylar endosperm contained expansins and xyloglucan endo-transglycosylases/hydrolases (XTHs). Their transcript expression patterns in both species strongly suggest that they are regulated by distinct GID1-mediated GA signalling pathways. The GID1ac and GID1b pathways seem to fulfil distinct regulatory roles during Brassicaceae seed germination and seem to control their downstream targets distinctly. PMID:21778177

  20. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program.

    PubMed

    Morrison-Nozik, Alexander; Anand, Priti; Zhu, Han; Duan, Qiming; Sabeh, Mohamad; Prosdocimo, Domenick A; Lemieux, Madeleine E; Nordsborg, Nikolai; Russell, Aaron P; MacRae, Calum A; Gerber, Anthony N; Jain, Mukesh K; Haldar, Saptarsi M

    2015-12-08

    Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming.

  1. Elucidating structural and molecular mechanisms of β-arrestin-biased agonism at GPCRs via MS-based proteomics.

    PubMed

    Xiao, Kunhong; Sun, Jinpeng

    2018-01-01

    The discovery of β-arrestin-dependent GPCR signaling has led to an exciting new field in GPCR pharmacology: to develop "biased agonists" that can selectively target a specific downstream signaling pathway that elicits beneficial therapeutic effects without activating other pathways that elicit negative side effects. This new trend in GPCR drug discovery requires us to understand the structural and molecular mechanisms of β-arrestin-biased agonism, which largely remain unclear. We have used cutting-edge mass spectrometry (MS)-based proteomics, combined with systems, chemical and structural biology to study protein function, macromolecular interaction, protein expression and posttranslational modifications in the β-arrestin-dependent GPCR signaling. These high-throughput proteomic studies have provided a systems view of β-arrestin-biased agonism from several perspectives: distinct receptor phosphorylation barcode, multiple receptor conformations, distinct β-arrestin conformations, and ligand-specific signaling. The information obtained from these studies offers new insights into the molecular basis of GPCR regulation by β-arrestin and provides a potential platform for developing novel therapeutic interventions through GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Three alpha-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in the homothallic fungus Sordaria macrospora.

    PubMed

    Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2008-09-01

    Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different alpha-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Deltagsa1, Deltagsa2, and Deltagsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Galpha-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Deltagsa1Deltagsa2 and Deltagsa1Deltagsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Galpha-subunits, two recently generated Deltapre strains were crossed with all Deltagsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three DeltagsaDeltasac1 double mutants and one Deltagsa2Deltagsa3Deltasac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1-GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Galpha-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora.

  3. Spatial distribution of intermingling pools of projection neurons with distinct targets: A 3D analysis of the commissural ganglia in Cancer borealis.

    PubMed

    Follmann, Rosangela; Goldsmith, Christopher John; Stein, Wolfgang

    2017-06-01

    Projection neurons play a key role in carrying long-distance information between spatially distant areas of the nervous system and in controlling motor circuits. Little is known about how projection neurons with distinct anatomical targets are organized, and few studies have addressed their spatial organization at the level of individual cells. In the paired commissural ganglia (CoGs) of the stomatogastric nervous system of the crab Cancer borealis, projection neurons convey sensory, motor, and modulatory information to several distinct anatomical regions. While the functions of descending projection neurons (dPNs) which control downstream motor circuits in the stomatogastric ganglion are well characterized, their anatomical distribution as well as that of neurons projecting to the labrum, brain, and thoracic ganglion have received less attention. Using cell membrane staining, we investigated the spatial distribution of CoG projection neurons in relation to all CoG neurons. Retrograde tracing revealed that somata associated with different axonal projection pathways were not completely spatially segregated, but had distinct preferences within the ganglion. Identified dPNs had diameters larger than 70% of CoG somata and were restricted to the most medial and anterior 25% of the ganglion. They were contained within a cluster of motor neurons projecting through the same nerve to innervate the labrum, indicating that soma position was independent of function and target area. Rather, our findings suggest that CoG neurons projecting to a variety of locations follow a generalized rule: for all nerve pathway origins, the soma cluster centroids in closest proximity are those whose axons project down that pathway. © 2017 Wiley Periodicals, Inc.

  4. Mechanisms of disordered neurodegenerative function: concepts and facts about the different roles of the protein kinase RNA-like endoplasmic reticulum kinase (PERK).

    PubMed

    Taalab, Yasmeen M; Ibrahim, Nour; Maher, Ahmed; Hassan, Mubashir; Mohamed, Wael; Moustafa, Ahmed A; Salama, Mohamed; Johar, Dina; Bernstein, Larry

    2018-06-27

    Neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease, Parkinson's disease, prion disease, and amyotrophic lateral sclerosis, are a dissimilar group of disorders that share a hallmark feature of accumulation of abnormal intraneuronal or extraneuronal misfolded/unfolded protein and are classified as protein misfolding disorders. Cellular and endoplasmic reticulum (ER) stress activates multiple signaling cascades of the unfolded protein response (UPR). Consequently, translational and transcriptional alterations in target gene expression occur in response directed toward restoring the ER capacity of proteostasis and reestablishing the cellular homeostasis. Evidences from in vitro and in vivo disease models indicate that disruption of ER homeostasis causes abnormal protein aggregation that leads to synaptic and neuronal dysfunction. However, the exact mechanism by which it contributes to disease progression and pathophysiological changes remains vague. Downstream signaling pathways of UPR are fully integrated, yet with diverse unexpected outcomes in different disease models. Three well-identified ER stress sensors have been implicated in UPR, namely, inositol requiring enzyme 1, protein kinase RNA-activated-like ER kinase (PERK), and activating transcription factor 6. Although it cannot be denied that each of the involved stress sensor initiates a distinct downstream signaling pathway, it becomes increasingly clear that shared pathways are crucial in determining whether or not the UPR will guide the cells toward adaptive prosurvival or proapoptotic responses. We review a body of work on the mechanism of neurodegenerative diseases based on oxidative stress and cell death pathways with emphasis on the role of PERK.

  5. Motor pathway convergence predicts syllable repertoire size in oscine birds

    PubMed Central

    Moore, Jordan M.; Székely, Tamás; Büki, József; DeVoogd, Timothy J.

    2011-01-01

    Behavioral specializations are frequently associated with expansions of the brain regions controlling them. This principle of proper mass spans sensory, motor, and cognitive abilities and has been observed in a wide variety of vertebrate species. Yet, it is unknown if this concept extrapolates to entire neural pathways or how selection on a behavioral capacity might otherwise shape circuit structure. We investigate these questions by comparing the songs and neuroanatomy of 49 species from 17 families of songbirds, which vary immensely in the number of unique song components they produce and possess a conserved neural network dedicated to this behavior. We find that syllable repertoire size is strongly related to the degree of song motor pathway convergence. Repertoire size is more accurately predicted by the number of neurons in higher motor areas relative to that in their downstream targets than by the overall number of neurons in the song motor pathway. Additionally, the convergence values along serial premotor and primary motor projections account for distinct portions of the behavioral variation. These findings suggest that selection on song has independently shaped different components of this hierarchical pathway, and they elucidate how changes in pathway structure could have underlain elaborations of this learned motor behavior. PMID:21918109

  6. Quantifying ubiquitin signaling.

    PubMed

    Ordureau, Alban; Münch, Christian; Harper, J Wade

    2015-05-21

    Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), including phosphorylation. Flux through such pathways is dictated by the fractional stoichiometry of distinct modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events, illustrated with the PINK1/PARKIN pathway. A key feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Degradation of Benzene by Pseudomonas veronii 1YdBTEX2 and 1YB2 Is Catalyzed by Enzymes Encoded in Distinct Catabolism Gene Clusters.

    PubMed

    de Lima-Morales, Daiana; Chaves-Moreno, Diego; Wos-Oxley, Melissa L; Jáuregui, Ruy; Vilchez-Vargas, Ramiro; Pieper, Dietmar H

    2016-01-01

    Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Differential Costs of Two Distinct Resistance Mechanisms Induced by Different Herbivore Species in Arabidopsis1

    PubMed Central

    Reichelt, Michael; van Doorn, Arjen; Schuurink, Robert C.

    2016-01-01

    Plants respond to herbivory with the induction of resistance, mediated by distinct phytohormonal signaling pathways and their interactions. Phloem feeders are known to induce plant resistance via the salicylic acid pathway, whereas biting-chewing herbivores induce plant resistance mainly via the jasmonate pathway. Here, we show that a specialist caterpillar (biting-chewing herbivore) and a specialist aphid (phloem feeder) differentially induce resistance against Pieris brassicae caterpillars in Arabidopsis (Arabidopsis thaliana) plants. Caterpillar feeding induces resistance through the jasmonate signaling pathway that is associated with the induction of kaempferol 3,7-dirhamnoside, whereas aphid feeding induces resistance via a novel mechanism involving sinapoyl malate. The role of sinapoyl malate is confirmed through the use of a mutant compromised in the biosynthesis of this compound. Caterpillar-induced resistance is associated with a lower cost in terms of plant growth reduction than aphid-induced resistance. A strong constitutive resistance against P. brassicae caterpillars in combination with a strong growth attenuation in plants of a transfer DNA (T-DNA) insertion mutant of WRKY70 (wrky70) suggest that the WRKY70 transcription factor, a regulator of downstream responses mediated by jasmonate-salicylic acid signaling cross talk, is involved in the negative regulation of caterpillar resistance and in the tradeoff between growth and defense. In conclusion, different mechanisms of herbivore-induced resistance come with different costs, and a functional WRKY70 transcription factor is required for the induction of low-cost resistance. PMID:26603653

  9. Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana.

    PubMed

    Dortay, Hakan; Mehnert, Nijuscha; Bürkle, Lukas; Schmülling, Thomas; Heyl, Alexander

    2006-10-01

    The signal of the plant hormone cytokinin is perceived by membrane-located sensor histidine kinases and transduced by other members of the plant two-component system. In Arabidopsis thaliana, 28 two-component system proteins (phosphotransmitters and response regulators) act downstream of three receptors, transmitting the signal from the membrane to the nucleus and modulating the cellular response. Although the principal signaling mechanism has been elucidated, redundancy in the system has made it difficult to understand which of the many components interact to control the downstream biological processes. Here, we present a large-scale interaction study comprising most members of the Arabidopsis cytokinin signaling pathway. Using the yeast two-hybrid system, we detected 42 new interactions, of which more than 90% were confirmed by in vitro coaffinity purification. There are distinct patterns of interaction between protein families, but only a few interactions between proteins of the same family. An interaction map of this signaling pathway shows the Arabidopsis histidine phosphotransfer proteins as hubs, which interact with members from all other protein families, mostly in a redundant fashion. Domain-mapping experiments revealed the interaction domains of the proteins of this pathway. Analyses of Arabidopsis histidine phosphotransfer protein 5 mutant proteins showed that the presence of the canonical phospho-accepting histidine residue is not required for the interactions. Interaction of A-type response regulators with Arabidopsis histidine phosphotransfer proteins but not with B-type response regulators suggests that their known activity in feedback regulation may be realized by interfering at the level of Arabidopsis histidine phosphotransfer protein-mediated signaling. This study contributes to our understanding of the protein interactions of the cytokinin-signaling system and provides a framework for further functional studies in planta.

  10. Atox1 Contains Positive Residues That Mediate Membrane Association and Aid Subsequent Copper Loading

    PubMed Central

    Flores, Adrian G.; Unger, Vinzenz M.

    2013-01-01

    Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein-protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution. PMID:24036897

  11. Atox1 contains positive residues that mediate membrane association and aid subsequent copper loading.

    PubMed

    Flores, Adrian G; Unger, Vinzenz M

    2013-12-01

    Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein-protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here, we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution.

  12. Pathogenic Fungi Regulate Immunity by Inducing Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Rieber, Nikolaus; Singh, Anurag; Öz, Hasan; Carevic, Melanie; Bouzani, Maria; Amich, Jorge; Ost, Michael; Ye, Zhiyong; Ballbach, Marlene; Schäfer, Iris; Mezger, Markus; Klimosch, Sascha N.; Weber, Alexander N.R.; Handgretinger, Rupert; Krappmann, Sven; Liese, Johannes; Engeholm, Maik; Schüle, Rebecca; Salih, Helmut Rainer; Marodi, Laszlo; Speckmann, Carsten; Grimbacher, Bodo; Ruland, Jürgen; Brown, Gordon D.; Beilhack, Andreas; Loeffler, Juergen; Hartl, Dominik

    2015-01-01

    Summary Despite continuous contact with fungi, immunocompetent individuals rarely develop pro-inflammatory antifungal immune responses. The underlying tolerogenic mechanisms are incompletely understood. Using both mouse models and human patients, we show that infection with the human pathogenic fungi Aspergillus fumigatus and Candida albicans induces a distinct subset of neutrophilic myeloid-derived suppressor cells (MDSCs), which functionally suppress T and NK cell responses. Mechanistically, pathogenic fungi induce neutrophilic MDSCs through the pattern recognition receptor Dectin-1 and its downstream adaptor protein CARD9. Fungal MDSC induction is further dependent on pathways downstream of Dectin-1 signaling, notably reactive oxygen species (ROS) generation as well as caspase-8 activity and interleukin-1 (IL-1) production. Additionally, exogenous IL-1β induces MDSCs to comparable levels observed during C. albicans infection. Adoptive transfer and survival experiments show that MDSCs are protective during invasive C. albicans infection, but not A. fumigatus infection. These studies define an innate immune mechanism by which pathogenic fungi regulate host defense. PMID:25771792

  13. A Functional Genetic Link between Distinct Developmental Language Disorders

    PubMed Central

    Vernes, Sonja C.; Newbury, Dianne F.; Abrahams, Brett S.; Winchester, Laura; Nicod, Jérôme; Groszer, Matthias; Alarcón, Maricela; Oliver, Peter L.; Davies, Kay E.; Geschwind, Daniel H.; Monaco, Anthony P.; Fisher, Simon E.

    2009-01-01

    BACKGROUND Rare mutations affecting the FOXP2 transcription factor cause a monogenic speech and language disorder. We hypothesized that neural pathways downstream of FOXP2 influence more common phenotypes, such as specific language impairment. METHODS We performed genomic screening for regions bound by FOXP2 using chromatin immunoprecipitation, which led us to focus on one particular gene that was a strong candidate for involvement in language impairments. We then tested for associations between single-nucleotide polymorphisms (SNPs) in this gene and language deficits in a well-characterized set of 184 families affected with specific language impairment. RESULTS We found that FOXP2 binds to and dramatically down-regulates CNTNAP2, a gene that encodes a neurexin and is expressed in the developing human cortex. On analyzing CNTNAP2 polymorphisms in children with typical specific language impairment, we detected significant quantitative associations with nonsense-word repetition, a heritable behavioral marker of this disorder (peak association, P = 5.0×10-5 at SNP rs17236239). Intriguingly, this region coincides with one associated with language delays in children with autism. CONCLUSIONS The FOXP2-CNTNAP2 pathway provides a mechanistic link between clinically distinct syndromes involving disrupted language. PMID:18987363

  14. Canceling actions involves a race between basal ganglia pathways

    PubMed Central

    Schmidt, Robert; Leventhal, Daniel K.; Mallet, Nicolas; Chen, Fujun; Berke, Joshua D.

    2013-01-01

    Salient cues can prompt the rapid interruption of planned actions. It has been proposed that fast, reactive behavioral inhibition involves specific basal ganglia pathways, and we tested this by comparing activity in multiple rat basal ganglia structures during performance of a stop-signal task. Subthalamic nucleus (STN) neurons showed low-latency responses to Stop cues, irrespective of whether actions were successfully canceled or not. By contrast, neurons downstream in the substantia nigra pars reticulata (SNr) responded to Stop cues only in trials with successful cancellation. Recordings and simulations together indicate that this sensorimotor gating arises from the relative timing of two distinct inputs to neurons in the SNr dorsolateral “core” subregion: cue-related excitation from STN and movement-related inhibition from striatum. Our results support race models of action cancellation, with successful stopping requiring Stop cue information to be transmitted from STN to SNr before increased striatal input creates a point of no return. PMID:23852117

  15. Quantifying Ubiquitin Signaling

    PubMed Central

    Ordureau, Alban; Münch, Christian; Harper, J. Wade

    2015-01-01

    Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), most notably phosphorylation. Flux through such pathways is typically dictated by the fractional stoichiometry of distinct regulatory modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events. A key regulatory feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. PMID:26000850

  16. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different frommore » those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.« less

  17. Three α-Subunits of Heterotrimeric G Proteins and an Adenylyl Cyclase Have Distinct Roles in Fruiting Body Development in the Homothallic Fungus Sordaria macrospora

    PubMed Central

    Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2008-01-01

    Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different α-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Δgsa1, Δgsa2, and Δgsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Gα-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Δgsa1Δgsa2 and Δgsa1Δgsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Gα-subunits, two recently generated Δpre strains were crossed with all Δgsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three ΔgsaΔsac1 double mutants and one Δgsa2Δgsa3Δsac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1–GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Gα-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora. PMID:18723884

  18. Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast.

    PubMed

    Jenks, M Harley; O'Rourke, Thomas W; Reines, Daniel

    2008-06-01

    The IMD2 gene in Saccharomyces cerevisiae is regulated by intracellular guanine nucleotides. Regulation is exerted through the choice of alternative transcription start sites that results in synthesis of either an unstable short transcript terminating upstream of the start codon or a full-length productive IMD2 mRNA. Start site selection is dictated by the intracellular guanine nucleotide levels. Here we have mapped the polyadenylation sites of the upstream, unstable short transcripts that form a heterogeneous family of RNAs of approximately 200 nucleotides. The switch from the upstream to downstream start sites required the Rpb9 subunit of RNA polymerase II. The enzyme's ability to locate the downstream initiation site decreased exponentially as the start was moved downstream from the TATA box. This suggests that RNA polymerase II's pincer grip is important as it slides on DNA in search of a start site. Exosome degradation of the upstream transcripts was highly dependent upon the distance between the terminator and promoter. Similarly, termination was dependent upon the Sen1 helicase when close to the promoter. These findings extend the emerging concept that distinct modes of termination by RNA polymerase II exist and that the distance of the terminator from the promoter, as well as its sequence, is important for the pathway chosen.

  19. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling.

    PubMed Central

    Denhardt, D T

    1996-01-01

    The features of three distinct protein phosphorylation cascades in mammalian cells are becoming clear. These signalling pathways link receptor-mediated events at the cell surface or intracellular perturbations such as DNA damage to changes in cytoskeletal structure, vesicle transport and altered transcription factor activity. The best known pathway, the Ras-->Raf-->MEK-->ERK cascade [where ERK is extracellular-signal-regulated kinase and MEK is mitogen-activated protein (MAP) kinase/ERK kinase], is typically stimulated strongly by mitogens and growth factors. The other two pathways, stimulated primarily by assorted cytokines, hormones and various forms of stress, predominantly utilize p21 proteins of the Rho family (Rho, Rac and CDC42), although Ras can also participate. Diagnostic of each pathway is the MAP kinase component, which is phosphorylated by a unique dual-specificity kinase on both tyrosine and threonine in one of three motifs (Thr-Glu-Tyr, Thr-Phe-Tyr or Thr-Gly-Tyr), depending upon the pathway. In addition to activating one or more protein phosphorylation cascades, the initiating stimulus may also mobilize a variety of other signalling molecules (e.g. protein kinase C isoforms, phospholipid kinases, G-protein alpha and beta gamma subunits, phospholipases, intracellular Ca2+). These various signals impact to a greater or lesser extent on multiple downstream effectors. Important concepts are that signal transmission often entails the targeted relocation of specific proteins in the cell, and the reversible formation of protein complexes by means of regulated protein phosphorylation. The signalling circuits may be completed by the phosphorylation of upstream effectors by downstream kinases, resulting in a modulation of the signal. Signalling is terminated and the components returned to the ground state largely by dephosphorylation. There is an indeterminant amount of cross-talk among the pathways, and many of the proteins in the pathways belong to families of closely related proteins. The potential for more than one signal to be conveyed down a pathway simultaneously (multiplex signalling) is discussed. The net effect of a given stimulus on the cell is the result of a complex intracellular integration of the intensity and duration of activation of the individual pathways. The specific outcome depends on the particular signalling molecules expressed by the target cells and on the dynamic balance among the pathways. PMID:8836113

  20. Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways.

    PubMed

    Neubrand, Veronika E; Cesca, Fabrizia; Benfenati, Fabio; Schiavo, Giampietro

    2012-04-15

    An increasing body of evidence suggests that several membrane receptors--in addition to activating distinct signalling cascades--also engage in substantial crosstalk with each other, thereby adjusting their signalling outcome as a function of specific input information. However, little is known about the molecular mechanisms that control their coordination and integration of downstream signalling. A protein that is likely to have a role in this process is kinase-D-interacting substrate of 220 kDa [Kidins220, also known as ankyrin repeat-rich membrane spanning (ARMS), hereafter referred to as Kidins220/ARMS]. Kidins220/ARMS is a conserved membrane protein that is preferentially expressed in the nervous system and interacts with the microtubule and actin cytoskeleton. It interacts with neurotrophin, ephrin, vascular endothelial growth factor (VEGF) and glutamate receptors, and is a common downstream target of several trophic stimuli. Kidins220/ARMS is required for neuronal differentiation and survival, and its expression levels modulate synaptic plasticity. Kidins220/ARMS knockout mice show developmental defects mainly in the nervous and cardiovascular systems, suggesting a crucial role for this protein in modulating the cross talk between different signalling pathways. In this Commentary, we summarise existing knowledge regarding the physiological functions of Kidins220/ARMS, and highlight some interesting directions for future studies on the role of this protein in health and disease.

  1. Prediction of target genes for miR-140-5p in pulmonary arterial hypertension using bioinformatics methods.

    PubMed

    Li, Fangwei; Shi, Wenhua; Wan, Yixin; Wang, Qingting; Feng, Wei; Yan, Xin; Wang, Jian; Chai, Limin; Zhang, Qianqian; Li, Manxiang

    2017-12-01

    The expression of microRNA (miR)-140-5p is known to be reduced in both pulmonary arterial hypertension (PAH) patients and monocrotaline-induced PAH models in rat. Identification of target genes for miR-140-5p with bioinformatics analysis may reveal new pathways and connections in PAH. This study aimed to explore downstream target genes and relevant signaling pathways regulated by miR-140-5p to provide theoretical evidences for further researches on role of miR-140-5p in PAH. Multiple downstream target genes and upstream transcription factors (TFs) of miR-140-5p were predicted in the analysis. Gene ontology (GO) enrichment analysis indicated that downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF-miRNA-mRNA network, the important downstream target genes of miR-140-5p were PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, LAMC1, TLR4, and CREB. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these verified targets were in accordance with our present prediction. Other predicted targets still need further verification in vivo and in vitro .

  2. Male sex determination: insights into molecular mechanisms

    PubMed Central

    McClelland, Kathryn; Bowles, Josephine; Koopman, Peter

    2012-01-01

    Disorders of sex development often arise from anomalies in the molecular or cellular networks that guide the differentiation of the embryonic gonad into either a testis or an ovary, two functionally distinct organs. The activation of the Y-linked gene Sry (sex-determining region Y) and its downstream target Sox9 (Sry box-containing gene 9) triggers testis differentiation by stimulating the differentiation of Sertoli cells, which then direct testis morphogenesis. Once engaged, a genetic pathway promotes the testis development while actively suppressing genes involved in ovarian development. This review focuses on the events of testis determination and the struggle to maintain male fate in the face of antagonistic pressure from the underlying female programme. PMID:22179516

  3. Plant Rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro.

    PubMed

    Dorjgotov, Dulguun; Jurca, Manuela E; Fodor-Dunai, Csilla; Szucs, Attila; Otvös, Krisztina; Klement, Eva; Bíró, Judit; Fehér, Attila

    2009-04-02

    Plants have evolved distinct mechanisms to link Rho-type (Rop) GTPases to downstream signaling pathways as compared to other eukaryotes. Here, experimental data are provided that members of the Medicago, as well as Arabidopsis, receptor-like cytoplasmic kinase family (RLCK Class VI) were strongly and specifically activated by GTP-bound Rop GTPases in vitro. Deletion analysis indicated that the residues implicated in the interaction might be distributed on various parts of the kinases. Using a chimaeric Rop GTPase protein, the importance of the Rho-insert region in kinase activation could also be verified. These data strengthen the possibility that RLCKs may serve as Rop GTPase effectors in planta.

  4. Genetic dissection of TrkB activated signalling pathways required for specific aspects of the taste system

    PubMed Central

    2014-01-01

    Background Neurotrophin-4 (NT-4) and brain derived neurotrophic factor (BDNF) bind to the same receptor, Ntrk2/TrkB, but play distinct roles in the development of the rodent gustatory system. However, the mechanisms underlying these processes are lacking. Results Here, we demonstrate, in vivo, that single or combined point mutations in major adaptor protein docking sites on TrkB receptor affect specific aspects of the mouse gustatory development, known to be dependent on BDNF or NT-4. In particular, mice with a mutation in the TrkB-SHC docking site had reduced gustatory neuron survival at both early and later stages of development, when survival is dependent on NT-4 and BDNF, respectively. In addition, lingual innervation and taste bud morphology, both BDNF-dependent functions, were altered in these mutants. In contrast, mutation of the TrkB-PLCγ docking site alone did not affect gustatory neuron survival. Moreover, innervation to the tongue was delayed in these mutants and taste receptor expression was altered. Conclusions We have genetically dissected pathways activated downstream of the TrkB receptor that are required for specific aspects of the taste system controlled by the two neurotrophins NT-4 and BDNF. In addition, our results indicate that TrkB also regulate the expression of specific taste receptors by distinct signalling pathways. These results advance our knowledge of the biology of the taste system, one of the fundamental sensory systems crucial for an organism to relate to the environment. PMID:25256039

  5. Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies.

    PubMed

    Cuthbert, Peter C; Stanford, Lianne E; Coba, Marcelo P; Ainge, James A; Fink, Ann E; Opazo, Patricio; Delgado, Jary Y; Komiyama, Noboru H; O'Dell, Thomas J; Grant, Seth G N

    2007-03-07

    Understanding the mechanisms whereby information encoded within patterns of action potentials is deciphered by neurons is central to cognitive psychology. The multiprotein complexes formed by NMDA receptors linked to synaptic membrane-associated guanylate kinase (MAGUK) proteins including synapse-associated protein 102 (SAP102) and other associated proteins are instrumental in these processes. Although humans with mutations in SAP102 show mental retardation, the physiological and biochemical mechanisms involved are unknown. Using SAP102 knock-out mice, we found specific impairments in synaptic plasticity induced by selective frequencies of stimulation that also required extracellular signal-regulated kinase signaling. This was paralleled by inflexibility and impairment in spatial learning. Improvement in spatial learning performance occurred with extra training despite continued use of a suboptimal search strategy, and, in a separate nonspatial task, the mutants again deployed a different strategy. Double-mutant analysis of postsynaptic density-95 and SAP102 mutants indicate overlapping and specific functions of the two MAGUKs. These in vivo data support the model that specific MAGUK proteins couple the NMDA receptor to distinct downstream signaling pathways. This provides a mechanism for discriminating patterns of synaptic activity that lead to long-lasting changes in synaptic strength as well as distinct aspects of cognition in the mammalian nervous system.

  6. Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers in T Cells

    PubMed Central

    Jun, Jesse E.; Rubio, Ignacio; Roose, Jeroen P.

    2013-01-01

    The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells. PMID:24027568

  7. Regulation of Transient Receptor Potential channels by the phospholipase C pathway

    PubMed Central

    Rohacs, Tibor

    2013-01-01

    Transient Receptor Potential (TRP) channels were discovered while analyzing visual mutants in drosophila. The protein encoded by the transient receptor potential (trp) gene is a Ca2+ permeable cation channel activated downstream of the phospholipase C (PLC) pathway. While searching for homologues in other organisms, a surprisingly large number of mammalian TRP channels were cloned. The regulation of TRP channels is quite diverse, but many of them are either activated downstream of the PLC pathway, or modulated by it. This review will summarize the current knowledge on regulation of TRP channels by the PLC pathway, with special focus on TRPC-s, which can be considered as effectors of the PLC pathway, and the heat and capsaicin sensitive TRPV1, which is modulated by the PLC pathway in a complex manner. PMID:23916247

  8. The Evolutionary Fate of the Genes Encoding the Purine Catabolic Enzymes in Hominoids, Birds, and Reptiles

    PubMed Central

    Keebaugh, Alaine C.; Thomas, James W.

    2010-01-01

    Gene loss has been proposed to play a major role in adaptive evolution, and recent studies are beginning to reveal its importance in human evolution. However, the potential consequence of a single gene-loss event upon the fates of functionally interrelated genes is poorly understood. Here, we use the purine metabolic pathway as a model system in which to explore this important question. The loss of urate oxidase (UOX) activity, a necessary step in this pathway, has occurred independently in the hominoid and bird/reptile lineages. Because the loss of UOX would have removed the functional constraint upon downstream genes in this pathway, these downstream genes are generally assumed to have subsequently deteriorated. In this study, we used a comparative genomics approach to empirically determine the fate of UOX itself and the downstream genes in five hominoids, two birds, and a reptile. Although we found that the loss of UOX likely triggered the genetic deterioration of the immediate downstream genes in the hominoids, surprisingly in the birds and reptiles, the UOX locus itself and some of the downstream genes were present in the genome and predicted to encode proteins. To account for the variable pattern of gene retention and loss after the inactivation of UOX, we hypothesize that although gene loss is a common fate for genes that have been rendered obsolete due to the upstream loss of an enzyme a metabolic pathway, it is also possible that same lack of constraint will foster the evolution of new functions or allow the optimization of preexisting alternative functions in the downstream genes, thereby resulting in gene retention. Thus, adaptive single-gene losses have the potential to influence the long-term evolutionary fate of functionally interrelated genes. PMID:20106906

  9. The evolutionary fate of the genes encoding the purine catabolic enzymes in hominoids, birds, and reptiles.

    PubMed

    Keebaugh, Alaine C; Thomas, James W

    2010-06-01

    Gene loss has been proposed to play a major role in adaptive evolution, and recent studies are beginning to reveal its importance in human evolution. However, the potential consequence of a single gene-loss event upon the fates of functionally interrelated genes is poorly understood. Here, we use the purine metabolic pathway as a model system in which to explore this important question. The loss of urate oxidase (UOX) activity, a necessary step in this pathway, has occurred independently in the hominoid and bird/reptile lineages. Because the loss of UOX would have removed the functional constraint upon downstream genes in this pathway, these downstream genes are generally assumed to have subsequently deteriorated. In this study, we used a comparative genomics approach to empirically determine the fate of UOX itself and the downstream genes in five hominoids, two birds, and a reptile. Although we found that the loss of UOX likely triggered the genetic deterioration of the immediate downstream genes in the hominoids, surprisingly in the birds and reptiles, the UOX locus itself and some of the downstream genes were present in the genome and predicted to encode proteins. To account for the variable pattern of gene retention and loss after the inactivation of UOX, we hypothesize that although gene loss is a common fate for genes that have been rendered obsolete due to the upstream loss of an enzyme a metabolic pathway, it is also possible that same lack of constraint will foster the evolution of new functions or allow the optimization of preexisting alternative functions in the downstream genes, thereby resulting in gene retention. Thus, adaptive single-gene losses have the potential to influence the long-term evolutionary fate of functionally interrelated genes.

  10. Potential fluid mechanic pathways of platelet activation.

    PubMed

    Shadden, Shawn C; Hendabadi, Sahar

    2013-06-01

    Platelet activation is a precursor for blood clotting, which plays leading roles in many vascular complications and causes of death. Platelets can be activated by chemical or mechanical stimuli. Mechanically, platelet activation has been shown to be a function of elevated shear stress and exposure time. These contributions can be combined by considering the cumulative stress or strain on a platelet as it is transported. Here, we develop a framework for computing a hemodynamic-based activation potential that is derived from a Lagrangian integral of strain rate magnitude. We demonstrate that such a measure is generally maximized along, and near to, distinguished material surfaces in the flow. The connections between activation potential and these structures are illustrated through stenotic flow computations. We uncover two distinct structures that may explain observed thrombus formation at the apex and downstream of stenoses. More broadly, these findings suggest fundamental relationships may exist between potential fluid mechanic pathways for mechanical platelet activation and the mechanisms governing their transport.

  11. Potential fluid mechanic pathways of platelet activation

    PubMed Central

    Shadden, Shawn C.; Hendabadi, Sahar

    2012-01-01

    Platelet activation is a precursor for blood clotting, which plays leading roles in many vascular complications and causes of death. Platelets can be activated by chemical or mechanical stimuli. Mechanically, platelet activation has been shown to be a function of elevated shear stress and exposure time. These contributions can be combined by considering the cumulative stress or strain on a platelet as it is transported. Here we develop a framework for computing a hemodynamic-based activation potential that is derived from a Lagrangian integral of strain rate magnitude. We demonstrate that such a measure is generally maximized along, and near to, distinguished material surfaces in the flow. The connections between activation potential and these structures are illustrated through stenotic flow computations. We uncover two distinct structures that may explain observed thrombus formation at the apex and downstream of stenoses. More broadly, these findings suggest fundamental relationships may exist between potential fluid mechanic pathways for mechanical platelet activation and the mechanisms governing their transport. PMID:22782543

  12. Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.

    PubMed

    Ratheesh, Aparna; Biebl, Julia; Vesela, Jana; Smutny, Michael; Papusheva, Ekaterina; Krens, S F Gabriel; Kaufmann, Walter; Gyoergy, Attila; Casano, Alessandra Maria; Siekhaus, Daria E

    2018-05-07

    Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics

    PubMed Central

    Williams, Grace R.; Bethard, Jennifer R.; Berkaw, Mary N.; Nagel, Alexis K.; Luttrell, Louis M.; Ball, Lauren E.

    2015-01-01

    The type 1 parathyroid hormone receptor (PTH1R) is a key regulator of calcium homeostasis and bone turnover. Here, we employed SILAC-based quantitative mass spectrometry combined with bioinformatic pathways analysis to examine global changes in protein phosphorylation following short-term stimulation of endogenously expressed PTH1R in osteoblastic cells in vitro. Following 5 min exposure to the conventional agonist, PTH(1-34), we detected significant changes in the phosphorylation of 224 distinct proteins. Kinase substrate motif enrichment demonstrated that consensus motifs for PKA and CAMK2 were the most heavily upregulated within the phosphoproteome, while consensus motifs for mitogen-activated protein kinases were strongly downregulated. Signaling pathways analysis identified ERK1/2 and AKT as important nodal kinases in the downstream network and revealed strong regulation of small GTPases involved in cytoskeletal rearrangement, cell motility, and focal adhesion complex signaling. Our data illustrate the utility of quantitative mass spectrometry in measuring dynamic changes in protein phosphorylation following GPCR activation. PMID:26160508

  14. Role of Smad signaling in kidney disease.

    PubMed

    Zhang, Yanhua; Wang, Songyan; Liu, Shengmao; Li, Chunguang; Wang, Ji

    2015-12-01

    Smads are the key intermediates of canonical transforming growth factor-beta (TGF-β) signaling. These intermediates are divided into three distinct subgroups based on their role in TGF-β family signal transduction: Receptor-regulated Smads (R-Smads) 1, 2, 3, 5 and 8, common Smad4, and inhibitory Smads6 and 7. TGF-β signaling through Smad pathway involves phosphorylation, ubiquitination, sumoylation, acetylation, and protein-protein interactions with mitogen-activated protein kinases, PI3K-Akt/PKB, and Wnt/GSK-3. Several studies have suggested that upregulation or downregulation of TGF-β/Smad signaling pathways may be a pathogenic mechanism in the progression of chronic kidney disease. Smad2 and 3 are the two major downstream R-Smads in TGF-β-mediated renal fibrosis, while Smad7 also controls renal inflammation. In this review, we characterize the role of Smads in kidney disease, describe the molecular mechanisms, and discuss the potential of Smads as a therapeutic target in chronic kidney disease.

  15. A Genome-Wide Screen Indicates Correlation between Differentiation and Expression of Metabolism Related Genes

    PubMed Central

    Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation. PMID:23717462

  16. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

    PubMed

    Roy, Priti; Kumar, Brijesh; Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.

  17. Hyperthyroidism, but not hypertension, impairs PITX2 expression leading to Wnt-microRNA-ion channel remodeling

    PubMed Central

    Lozano-Velasco, Estefanía; Wangensteen, Rosemary; Quesada, Andrés; Garcia-Padilla, Carlos; Osorio, Julia A.; Ruiz-Torres, María Dolores; Aranega, Amelia

    2017-01-01

    PITX2 is a homeobox transcription factor involved in embryonic left/right signaling and more recently has been associated to cardiac arrhythmias. Genome wide association studies have pinpointed PITX2 as a major player underlying atrial fibrillation (AF). We have previously described that PITX2 expression is impaired in AF patients. Furthermore, distinct studies demonstrate that Pitx2 insufficiency leads to complex gene regulatory network remodeling, i.e. Wnt>microRNAs, leading to ion channel impairment and thus to arrhythmogenic events in mice. Whereas large body of evidences has been provided in recent years on PITX2 downstream signaling pathways, scarce information is available on upstream pathways influencing PITX2 in the context of AF. Multiple risk factors are associated to the onset of AF, such as e.g. hypertension (HTN), hyperthyroidism (HTD) and redox homeostasis impairment. In this study we have analyzed whether HTN, HTD and/or redox homeostasis impact on PITX2 and its downstream signaling pathways. Using rat models for spontaneous HTN (SHR) and experimentally-induced HTD we have observed that both cardiovascular risk factors lead to severe Pitx2 downregulation. Interesting HTD, but not SHR, leads to up-regulation of Wnt signaling as well as deregulation of multiple microRNAs and ion channels as previously described in Pitx2 insufficiency models. In addition, redox signaling is impaired in HTD but not SHR, in line with similar findings in atrial-specific Pitx2 deficient mice. In vitro cell culture analyses using gain- and loss-of-function strategies demonstrate that Pitx2, Zfhx3 and Wnt signaling influence redox homeostasis in cardiomyocytes. Thus, redox homeostasis seems to play a pivotal role in this setting, providing a regulatory feedback loop. Overall these data demonstrate that HTD, but not HTN, can impair Pitx2>>Wnt pathway providing thus a molecular link to AF. PMID:29194452

  18. Sonic Hedgehog functions through dynamic changes in temporal competence in the developing ventral telencephalon

    PubMed Central

    Sousa, Vitor H.; Fishell, Gord

    2010-01-01

    Morphogens act during development to provide graded spatial information that controls patterning and cell lineage specification in the nervous system. The role of morphogen signaling in instructing the expression of downstream effector transcription factors has been well established. However, a key requirement for morphogen signaling is the existence of functional intracellular machinery able to mediate the appropriate response in target cells. Here we suggest that dynamic changes in the temporal responses to Shh in the developing ventral telencephalon occur through alterations in progenitor competence. We suggest these developmental changes in competence are mediated by a transcriptional mechanism that intrinsically integrates information from the distinct signaling pathways that act to pattern the telencephalic neuroepithelium. PMID:20466536

  19. Monte Carlo Study Elucidates the Type 1/Type 2 Choice in Apoptotic Death Signaling in Healthy and Cancer Cells

    PubMed Central

    Raychaudhuri, Subhadip; Raychaudhuri, Somkanya C

    2013-01-01

    Apoptotic cell death is coordinated through two distinct (type 1 and type 2) intracellular signaling pathways. How the type 1/type 2 choice is made remains a central problem in the biology of apoptosis and has implications for apoptosis related diseases and therapy. We study the problem of type 1/type 2 choice in silico utilizing a kinetic Monte Carlo model of cell death signaling. Our results show that the type 1/type 2 choice is linked to deterministic versus stochastic cell death activation, elucidating a unique regulatory control of the apoptotic pathways. Consistent with previous findings, our results indicate that caspase 8 activation level is a key regulator of the choice between deterministic type 1 and stochastic type 2 pathways, irrespective of cell types. Expression levels of signaling molecules downstream also regulate the type 1/type 2 choice. A simplified model of DISC clustering elucidates the mechanism of increased active caspase 8 generation and type 1 activation in cancer cells having increased sensitivity to death receptor activation. We demonstrate that rapid deterministic activation of the type 1 pathway can selectively target such cancer cells, especially if XIAP is also inhibited; while inherent cell-to-cell variability would allow normal cells stay protected. PMID:24709706

  20. Pheromone-Induced Morphogenesis Improves Osmoadaptation Capacity by Activating the HOG MAPK Pathway**

    PubMed Central

    Baltanás, Rodrigo; Bush, Alan; Couto, Alicia; Durrieu, Lucía; Hohmann, Stefan; Colman-Lerner, Alejandro

    2013-01-01

    Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. Here, we investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell-wall integrity response (CWI). Although these MAPK pathways share components with each and a third MAPK pathway, the high osmolarity response (HOG), they are normally only activated by distinct stimuli, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity- dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the “shmooing” morphogenetic process. Activation required the polarisome, the cell wall integrity MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover that improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to enable responses to yeast to multiple stimuli. PMID:23612707

  1. Binary agonist surface patterns prime platelets for downstream adhesion in flowing whole blood.

    PubMed

    Eichinger, Colin D; Hlady, Vladimir

    2017-04-28

    As platelets encounter damaged vessels or biomaterials, they interact with a complex milieu of surface-bound agonists, from exposed subendothelium to adsorbed plasma proteins. It has been shown that an upstream, surface-immobilized agonist is capable of priming platelets for enhanced adhesion downstream. In this study, binary agonists were integrated into the upstream position of flow cells and the platelet priming response was measured by downstream adhesion in flowing whole blood. A nonadditive response was observed in which platelets transiently exposed to two agonists exhibited greater activation and downstream adhesion than that from the sum of either agonist alone. Antibody blocking of one of the two upstream agonists eliminated nonadditive activation and downstream adhesion. Crosstalk between platelet activation pathways likely led to a synergistic effect which created an enhanced activation response in the platelet population. The existence of synergy between platelet priming pathways is a concept that has broad implications for the field of biomaterials hemocompatibility and platelet activity testing.

  2. Src-dependent EGFR transactivation regulates lung inflammation via downstream signaling involving ERK1/2, PI3Kδ/Akt and NFκB induction in a murine asthma model.

    PubMed

    El-Hashim, Ahmed Z; Khajah, Maitham A; Renno, Waleed M; Babyson, Rhema S; Uddin, Mohib; Benter, Ibrahim F; Ezeamuzie, Charles; Akhtar, Saghir

    2017-08-30

    The molecular mechanisms underlying asthma pathogenesis are poorly characterized. In this study, we investigated (1) whether Src mediates epidermal growth factor receptor (EGFR) transactivation; (2) if ERK1/2, PI3Kδ/Akt and NF-κB are signaling effectors downstream of Src/EGFR activation; and (3) if upstream inhibition of Src/EGFR is more effective in downregulating the allergic inflammation than selective inhibition of downstream signaling pathways. Allergic inflammation resulted in increased phosphorylation of EGFR, Akt, ERK1/2 and IκB in the lung tissues from ovalbumin (OVA)-challenged BALB/c mice. Treatment with inhibitors of Src (SU6656) or EGFR (AG1478) reduced EGFR phosphorylation and downstream signaling which resulted in the inhibition of the OVA-induced inflammatory cell influx in bronchoalveolar lavage fluid (BALF), perivascular and peribronchial inflammation, fibrosis, goblet cell hyper/metaplasia and airway hyper-responsiveness. Treatment with pathway-selective inhibitors for ERK1/2 (PD89059) and PI3Kδ/Akt (IC-87114) respectively, or an inhibitor of NF-κB (BAY11-7085) also reduced the OVA-induced asthmatic phenotype but to a lesser extent compared to Src/EGFR inhibition. Thus, Src via EGFR transactivation and subsequent downstream activation of multiple pathways regulates the allergic airway inflammatory response. Furthermore, a broader upstream inhibition of Src/EGFR offers an attractive therapeutic alternative in the treatment of asthma relative to selectively targeting the individual downstream signaling effectors.

  3. SignaLink 2 – a signaling pathway resource with multi-layered regulatory networks

    PubMed Central

    2013-01-01

    Background Signaling networks in eukaryotes are made up of upstream and downstream subnetworks. The upstream subnetwork contains the intertwined network of signaling pathways, while the downstream regulatory part contains transcription factors and their binding sites on the DNA as well as microRNAs and their mRNA targets. Currently, most signaling and regulatory databases contain only a subsection of this network, making comprehensive analyses highly time-consuming and dependent on specific data handling expertise. The need for detailed mapping of signaling systems is also supported by the fact that several drug development failures were caused by undiscovered cross-talk or regulatory effects of drug targets. We previously created a uniformly curated signaling pathway resource, SignaLink, to facilitate the analysis of pathway cross-talks. Here, we present SignaLink 2, which significantly extends the coverage and applications of its predecessor. Description We developed a novel concept to integrate and utilize different subsections (i.e., layers) of the signaling network. The multi-layered (onion-like) database structure is made up of signaling pathways, their pathway regulators (e.g., scaffold and endocytotic proteins) and modifier enzymes (e.g., phosphatases, ubiquitin ligases), as well as transcriptional and post-transcriptional regulators of all of these components. The user-friendly website allows the interactive exploration of how each signaling protein is regulated. The customizable download page enables the analysis of any user-specified part of the signaling network. Compared to other signaling resources, distinctive features of SignaLink 2 are the following: 1) it involves experimental data not only from humans but from two invertebrate model organisms, C. elegans and D. melanogaster; 2) combines manual curation with large-scale datasets; 3) provides confidence scores for each interaction; 4) operates a customizable download page with multiple file formats (e.g., BioPAX, Cytoscape, SBML). Non-profit users can access SignaLink 2 free of charge at http://SignaLink.org. Conclusions With SignaLink 2 as a single resource, users can effectively analyze signaling pathways, scaffold proteins, modifier enzymes, transcription factors and miRNAs that are important in the regulation of signaling processes. This integrated resource allows the systems-level examination of how cross-talks and signaling flow are regulated, as well as provide data for cross-species comparisons and drug discovery analyses. PMID:23331499

  4. SignaLink 2 - a signaling pathway resource with multi-layered regulatory networks.

    PubMed

    Fazekas, Dávid; Koltai, Mihály; Türei, Dénes; Módos, Dezső; Pálfy, Máté; Dúl, Zoltán; Zsákai, Lilian; Szalay-Bekő, Máté; Lenti, Katalin; Farkas, Illés J; Vellai, Tibor; Csermely, Péter; Korcsmáros, Tamás

    2013-01-18

    Signaling networks in eukaryotes are made up of upstream and downstream subnetworks. The upstream subnetwork contains the intertwined network of signaling pathways, while the downstream regulatory part contains transcription factors and their binding sites on the DNA as well as microRNAs and their mRNA targets. Currently, most signaling and regulatory databases contain only a subsection of this network, making comprehensive analyses highly time-consuming and dependent on specific data handling expertise. The need for detailed mapping of signaling systems is also supported by the fact that several drug development failures were caused by undiscovered cross-talk or regulatory effects of drug targets. We previously created a uniformly curated signaling pathway resource, SignaLink, to facilitate the analysis of pathway cross-talks. Here, we present SignaLink 2, which significantly extends the coverage and applications of its predecessor. We developed a novel concept to integrate and utilize different subsections (i.e., layers) of the signaling network. The multi-layered (onion-like) database structure is made up of signaling pathways, their pathway regulators (e.g., scaffold and endocytotic proteins) and modifier enzymes (e.g., phosphatases, ubiquitin ligases), as well as transcriptional and post-transcriptional regulators of all of these components. The user-friendly website allows the interactive exploration of how each signaling protein is regulated. The customizable download page enables the analysis of any user-specified part of the signaling network. Compared to other signaling resources, distinctive features of SignaLink 2 are the following: 1) it involves experimental data not only from humans but from two invertebrate model organisms, C. elegans and D. melanogaster; 2) combines manual curation with large-scale datasets; 3) provides confidence scores for each interaction; 4) operates a customizable download page with multiple file formats (e.g., BioPAX, Cytoscape, SBML). Non-profit users can access SignaLink 2 free of charge at http://SignaLink.org. With SignaLink 2 as a single resource, users can effectively analyze signaling pathways, scaffold proteins, modifier enzymes, transcription factors and miRNAs that are important in the regulation of signaling processes. This integrated resource allows the systems-level examination of how cross-talks and signaling flow are regulated, as well as provide data for cross-species comparisons and drug discovery analyses.

  5. Line differences in Cor/Lea and fructan biosynthesis-related gene transcript accumulation are related to distinct freezing tolerance levels in synthetic wheat hexaploids.

    PubMed

    Yokota, Hirokazu; Iehisa, Julio C M; Shimosaka, Etsuo; Takumi, Shigeo

    2015-03-15

    In common wheat, cultivar differences in freezing tolerance are considered to be mainly due to allelic differences at two major loci controlling freezing tolerance. One of the two loci, Fr-2, is coincident with a cluster of genes encoding C-repeat binding factors (CBFs), which induce downstream Cor/Lea genes during cold acclimation. Here, we conducted microarray analysis to study comprehensive changes in gene expression profile under long-term low-temperature (LT) treatment and to identify other LT-responsive genes related to cold acclimation in leaves of seedlings and crown tissues of a synthetic hexaploid wheat line. The microarray analysis revealed marked up-regulation of a number of Cor/Lea genes and fructan biosynthesis-related genes under the long-term LT treatment. For validation of the microarray data, we selected four synthetic wheat lines that contain the A and B genomes from the tetraploid wheat cultivar Langdon and the diverse D genomes originating from different Aegilops tauschii accessions with distinct levels of freezing tolerance after cold acclimation. Quantitative RT-PCR showed increased transcript levels of the Cor/Lea, CBF, and fructan biosynthesis-related genes in more freezing-tolerant lines than in sensitive lines. After a 14-day LT treatment, a significant difference in fructan accumulation was observed among the four lines. Therefore, the fructan biosynthetic pathway is associated with cold acclimation in development of wheat freezing tolerance and is another pathway related to diversity in freezing tolerance, in addition to the CBF-mediated Cor/Lea expression pathway. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Target of rapamycin complex 2 signals to downstream effector yeast protein kinase 2 (Ypk2) through adheres-voraciously-to-target-of-rapamycin-2 protein 1 (Avo1) in Saccharomyces cerevisiae.

    PubMed

    Liao, Hsien-Ching; Chen, Mei-Yu

    2012-02-24

    The conserved Ser/Thr kinase target of rapamycin (TOR) serves as a central regulator in controlling cell growth-related functions. There exist two distinct TOR complexes, TORC1 and TORC2, each coupling to specific downstream effectors and signaling pathways. In Saccharomyces cerevisiae, TORC2 is involved in regulating actin organization and maintaining cell wall integrity. Ypk2 (yeast protein kinase 2), a member of the cAMP-dependent, cGMP-dependent, and PKC (AGC) kinase family, is a TORC2 substrate known to participate in actin and cell wall regulation. Employing avo3(ts) mutants with defects in TORC2 functions that are suppressible by active Ypk2, we investigated the molecular interactions involved in mediating TORC2 signaling to Ypk2. GST pulldown assays in yeast lysates demonstrated physical interactions between Ypk2 and components of TORC2. In vitro binding assays revealed that Avo1 directly binds to Ypk2. In avo3(ts) mutants, the TORC2-Ypk2 interaction was reduced and could be restored by AVO1 overexpression, highlighting the important role of Avo1 in coupling TORC2 to Ypk2. The interaction was mapped to an internal region (amino acids 600-840) of Avo1 and a C-terminal region of Ypk2. Ypk2(334-677), a truncated form of Ypk2 containing the Avo1-interacting region, was able to interfere with Avo1-Ypk2 interaction in vitro. Overexpressing Ypk2(334-677) in yeast cells resulted in a perturbation of TORC2 functions, causing defective cell wall integrity, aberrant actin organization, and diminished TORC2-dependent Ypk2 phosphorylation evidenced by the loss of an electrophoretic mobility shift. Together, our data support the conclusion that the direct Avo1-Ypk2 interaction is crucial for TORC2 signaling to the downstream Ypk2 pathway.

  7. New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals.

    PubMed

    Qi, Jingjing; Yu, Yong; Akilli Öztürk, Özlem; Holland, Jane D; Besser, Daniel; Fritzmann, Johannes; Wulf-Goldenberg, Annika; Eckert, Klaus; Fichtner, Iduna; Birchmeier, Walter

    2016-10-01

    We have previously identified a 115-gene signature that characterises the metastatic potential of human primary colon cancers. The signature included the canonical Wnt target gene BAMBI, which promoted experimental metastasis in mice. Here, we identified three new direct Wnt target genes from the signature, and studied their functions in epithelial-mesenchymal transition (EMT), cell migration and experimental metastasis. We examined experimental liver metastases following injection of selected tumour cells into spleens of NOD/SCID mice. Molecular and cellular techniques were used to identify direct transcription target genes of Wnt/β-catenin signals. Microarray analyses and experiments that interfered with cell migration through inhibitors were performed to characterise downstream signalling systems. Three new genes from the colorectal cancer (CRC) metastasis signature, BOP1, CKS2 and NFIL3, were identified as direct transcription targets of β-catenin/TCF4. Overexpression and knocking down of these genes in CRC cells promoted and inhibited, respectively, experimental metastasis in mice, EMT and cell motility in culture. Cell migration was repressed by interfering with distinct signalling systems through inhibitors of PI3K, JNK, p38 mitogen-activated protein kinase and/or mTOR. Gene expression profiling identified a series of migration-promoting genes, which were induced by BOP1, CKS2 and NFIL3, and could be repressed by inhibitors that are specific to these pathways. We identified new direct Wnt/β-catenin target genes, BOP1, CKS2 and NFIL3, which induced EMT, cell migration and experimental metastasis of CRC cells. These genes crosstalk with different downstream signalling systems, and activate migration-promoting genes. These pathways and downstream genes may serve as therapeutic targets in the treatment of CRC metastasis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo.

    PubMed

    Parisi, Federica; Riccardo, Sara; Daniel, Margaret; Saqcena, Mahesh; Kundu, Nandini; Pession, Annalisa; Grifoni, Daniela; Stocker, Hugo; Tabak, Esteban; Bellosta, Paola

    2011-09-27

    Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways converge at GSK3β to control Myc protein stability, while our genetic analysis shows that insulin and TOR pathways have different requirements for Myc activity during development of the eye, suggesting that Myc might be differentially induced by these pathways during growth or proliferation of cells that make up the ommatidia.

  9. Seasonal and downstream alterations of dissolved organic matter and dissolved inorganic ions in a human-impacted mountainous tributary of the Yellow River, China.

    PubMed

    Zhang, Shurong; Bai, Yijuan; Wen, Xin; Ding, Aizhong; Zhi, Jianhui

    2018-04-22

    Human activities impose important disturbances on both organic and inorganic chemistry in fluvial systems. In this study, we investigated the intra-annual and downstream variations of dissolved organic carbon (DOC), dissolved organic matter (DOM) excitation-emission matrix fluorescence (EEM) with parallel factor analysis (PARAFAC), major ions, and dissolved inorganic nitrogen (DIN) species in a mountainous tributary of the Yellow River, China. Both DOM quantity and quality, as represented by DOC and DOM fluorescence respectively, changed spatially and seasonally in the studied region. Fluorescence intensity of tryptophan-like components (C3) were found much higher at the populated downstream regions than in the undisturbed forested upstream regions. Seasonally, stronger fluorescence intensity of protein-like components (C3 and C4) was observed in the low-flow period (December) and in the medium-flow period (March) than in the high-flow period (May), particularly for the downstream reaches, reflecting the dominant impacts of wastewater pollution in the downstream regions. In contrast to the protein-like fluorescence, humic-like fluorescence components C1 and C2 exhibited distinctly higher intensity in the high-flow period with smaller spatial variation indicating strong flushing effect of increasing water discharge on terrestrial-sourced humic-like materials in the high-flow period. Pollution-affected dissolved inorganic ions, particularly Na + , Cl - , and NH 4 + -N, showed similar spatial and seasonal variations with protein-like fluorescence of DOM. The significant positive correlations between protein-like fluorescence of DOM and pollution-affected ions, particularly Na + , Cl - , and NH 4 + -N, suggested that there were similar pollution sources and transportation pathways of both inorganic and organic pollutants in the region. The combination of DOM fluorescence properties and inorganic ions could provide an important reference for the pollution source characterization and river basin management.

  10. A novel acetylation cycle of transcription co-activator Yes-associated protein that is downstream of Hippo pathway is triggered in response to SN2 alkylating agents.

    PubMed

    Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi

    2012-06-22

    Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to S(N)2 alkylating agents. We show that after treatment of cells with the S(N)2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by S(N)2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage.

  11. A Novel Acetylation Cycle of Transcription Co-activator Yes-associated Protein That Is Downstream of Hippo Pathway Is Triggered in Response to SN2 Alkylating Agents*

    PubMed Central

    Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi

    2012-01-01

    Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to SN2 alkylating agents. We show that after treatment of cells with the SN2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by SN2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage. PMID:22544757

  12. Minireview: More Than Just a Hammer: Ligand “Bias” and Pharmaceutical Discovery

    PubMed Central

    2014-01-01

    Conventional orthosteric drug development programs targeting G protein-coupled receptors (GPCRs) have focused on the concepts of agonism and antagonism, in which receptor structure determines the nature of the downstream signal and ligand efficacy determines its intensity. Over the past decade, the emerging paradigms of “pluridimensional efficacy” and “functional selectivity” have revealed that GPCR signaling is not monolithic, and that ligand structure can “bias” signal output by stabilizing active receptor states in different proportions than the native ligand. Biased ligands are novel pharmacologic entities that possess the unique ability to qualitatively change GPCR signaling, in effect creating “new receptors” with distinct efficacy profiles driven by ligand structure. The promise of biased agonism lies in this ability to engender “mixed” effects not attainable using conventional agonists or antagonists, promoting therapeutically beneficial signals while antagonizing deleterious ones. Indeed, arrestin pathway-selective agonists for the type 1 parathyroid hormone and angiotensin AT1 receptors, and G protein pathway-selective agonists for the GPR109A nicotinic acid and μ-opioid receptors, have demonstrated unique, and potentially therapeutic, efficacy in cell-based assays and preclinical animal models. Conversely, activating GPCRs in “unnatural” ways may lead to downstream biological consequences that cannot be predicted from prior knowledge of the actions of the native ligand, especially in the case of ligands that selectively activate as-yet poorly characterized G protein-independent signaling networks mediated via arrestins. Although much needs to be done to realize the clinical potential of functional selectivity, biased GPCR ligands nonetheless appear to be important new additions to the pharmacologic toolbox. PMID:24433041

  13. Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms

    PubMed Central

    2011-01-01

    Background Evolutionary theories of aging propose that longevity evolves as a competition between reproduction and somatic maintenance for a finite pool of resources. Reproduction is thought to shorten lifespan by depleting resources from processes promoting somatic maintenance. Maternal yolk production, vitellogenesis, represents a significant maternal cost for reproduction and is suppressed under genetic and environmental conditions that extend lifespan. However, little is known about the pathways regulating vitellogenesis in response to prolongevity cues. Results In order to identify mechanisms that suppress vitellogenesis under prolongevity conditions, we studied factors regulating vitellogenesis in C. elegans nematodes. In C. elegans, vitellogenesis is depressed in the absence of insulin-like signaling (IIS). We found that the C. elegans daf-2/IIS pathway regulates vitellogenesis through two mechanisms. vit-2 transcript levels in daf-2 mutants were indirectly regulated through a germline-dependent signal, and could be rescued by introduction of daf-2(+) sperm. However, yolk protein (YP) levels in daf-2 mutants were also regulated by germline-independent posttranscriptional mechanisms. Conclusions C. elegans vitellogenesis is regulated transcriptionally and posttranscriptionally in response to environmental and reproductive cues. The daf-2 pathway suppressed vitellogenesis through transcriptional mechanisms reflecting reproductive phenotypes, as well as distinct posttranscriptional mechanisms. This study reveals that pleiotropic effects of IIS pathway mutations can converge on a common downstream target, vitellogenesis, as a mechanism to modulate longevity. PMID:21749693

  14. Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway

    PubMed Central

    Mauser, Jonathon F.; Prehoda, Kenneth E.

    2012-01-01

    During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud). PMID:22253744

  15. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants

    PubMed Central

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168

  16. Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie

    PubMed Central

    Parker, Joseph; Struhl, Gary

    2015-01-01

    Organ growth is controlled by patterning signals that operate locally (e.g., Wingless/Ints [Wnts], Bone Morphogenetic Proteins [BMPs], and Hedgehogs [Hhs]) and scaled by nutrient-dependent signals that act systemically (e.g., Insulin-like peptides [ILPs] transduced by the Target of Rapamycin [TOR] pathway). How cells integrate these distinct inputs to generate organs of the appropriate size and shape is largely unknown. The transcriptional coactivator Yorkie (Yki, a YES-Associated Protein, or YAP) acts downstream of patterning morphogens and other tissue-intrinsic signals to promote organ growth. Yki activity is regulated primarily by the Warts/Hippo (Wts/Hpo) tumour suppressor pathway, which impedes nuclear access of Yki by a cytoplasmic tethering mechanism. Here, we show that the TOR pathway regulates Yki by a separate and novel mechanism in the Drosophila wing. Instead of controlling Yki nuclear access, TOR signaling governs Yki action after it reaches the nucleus by allowing it to gain access to its target genes. When TOR activity is inhibited, Yki accumulates in the nucleus but is sequestered from its normal growth-promoting target genes—a phenomenon we term “nuclear seclusion.” Hence, we posit that in addition to its well-known role in stimulating cellular metabolism in response to nutrients, TOR also promotes wing growth by liberating Yki from nuclear seclusion, a parallel pathway that we propose contributes to the scaling of wing size with nutrient availability. PMID:26474042

  17. Induction of Terpene Biosynthesis in Berries of Microvine Transformed with VvDXS1 Alleles.

    PubMed

    Dalla Costa, Lorenza; Emanuelli, Francesco; Trenti, Massimiliano; Moreno-Sanz, Paula; Lorenzi, Silvia; Coller, Emanuela; Moser, Sergio; Slaghenaufi, Davide; Cestaro, Alessandro; Larcher, Roberto; Gribaudo, Ivana; Costantini, Laura; Malnoy, Mickael; Grando, M Stella

    2017-01-01

    Terpenoids, especially monoterpenes, are major aroma-impact compounds in grape and wine. Previous studies highlighted a key regulatory role for grapevine 1-deoxy-D-xylulose 5-phosphate synthase 1 (VvDXS1), the first enzyme of the methylerythritol phosphate pathway for isoprenoid precursor biosynthesis. Here, the parallel analysis of VvDXS1 genotype and terpene concentration in a germplasm collection demonstrated that VvDXS1 sequence has a very high predictive value for the accumulation of monoterpenes and also has an influence on sesquiterpene levels. A metabolic engineering approach was applied by expressing distinct VvDXS1 alleles in the grapevine model system "microvine" and assessing the effects on downstream pathways at transcriptional and metabolic level in different organs and fruit developmental stages. The underlying goal was to investigate two potential perturbation mechanisms, the former based on a significant over-expression of the wild-type (neutral) VvDXS1 allele and the latter on the ex-novo expression of an enzyme with increased catalytic efficiency from the mutated (muscat) VvDXS1 allele. The integration of the two VvDXS1 alleles in distinct microvine lines was found to alter the expression of several terpenoid biosynthetic genes, as assayed through an ad hoc developed TaqMan array based on cDNA libraries of four aromatic cultivars. In particular, enhanced transcription of monoterpene, sesquiterpene and carotenoid pathway genes was observed. The accumulation of monoterpenes in ripe berries was higher in the transformed microvines compared to control plants. This effect is predominantly attributed to the improved activity of the VvDXS1 enzyme coded by the muscat allele, whereas the up-regulation of VvDXS1 plays a secondary role in the increase of monoterpenes.

  18. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways.

    PubMed

    Deng, Youping; Xu, Hu; Riedel, Heimo

    2007-02-15

    The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.

  19. naked cuticle targets dishevelled to antagonize Wnt signal transduction

    PubMed Central

    Rousset, Raphaël; Mack, Judith A.; Wharton, Keith A.; Axelrod, Jeffrey D.; Cadigan, Ken M.; Fish, Matthew P.; Nusse, Roel; Scott, Matthew P.

    2001-01-01

    In Drosophila embryos the protein Naked cuticle (Nkd) limits the effects of the Wnt signal Wingless (Wg) during early segmentation. nkd loss of function results in segment polarity defects and embryonic death, but how nkd affects Wnt signaling is unknown. Using ectopic expression, we find that Nkd affects, in a cell-autonomous manner, a transduction step between the Wnt signaling components Dishevelled (Dsh) and Zeste-white 3 kinase (Zw3). Zw3 is essential for repressing Wg target-gene transcription in the absence of a Wg signal, and the role of Wg is to relieve this inhibition. Our double-mutant analysis shows that, in contrast to Zw3, Nkd acts when the Wg pathway is active to restrain signal transduction. Yeast two hybrid and in vitro experiments indicate that Nkd directly binds to the basic-PDZ region of Dsh. Specially timed Nkd overexpression is capable of abolishing Dsh function in a distinct signaling pathway that controls planar-cell polarity. Our results suggest that Nkd acts directly through Dsh to limit Wg activity and thus determines how efficiently Wnt signals stabilize Armadillo (Arm)/β-catenin and activate downstream genes. PMID:11274052

  20. Biomechanical force in blood development: extrinsic physical cues drive pro-hematopoietic signaling

    PubMed Central

    Lee, Hyun Jung; Li, Nan; Evans, Siobahn M.; Diaz, Miguel F.; Wenzel, Pamela L.

    2013-01-01

    The hematopoietic system is dynamic during development and in adulthood, undergoing countless spatial and temporal transitions during the course of one’s life. Microenvironmental cues in the many unique hematopoietic niches differ, characterized by distinct soluble molecules, membrane-bound factors, and biophysical features that meet the changing needs of the blood system. Research from the last decade has revealed the importance of substrate elasticity and biomechanical force in determination of stem cell fate. Our understanding of the role of these factors in hematopoiesis is still relatively poor; however, the developmental origin of blood cells from the endothelium promts a model for comparison. Many endothelial mechanical sensors and second messenger systems may also determine hematopoietic stem cell fate, self renewal, and homing behaviors. Further, the intimate contact of hematopoietic cells with mechanosensitive cell types, including osteoblasts, endothelial cells, mesenchymal stem cells, and pericytes, places them in close proximity to paracrine signaling downstream of mechanical signals. The objective of this review is to present an overview of the sensors and intracellular signaling pathways activated by mechanical cues and highlight the role of mechanotransductive pathways in hematopoiesis. PMID:23850217

  1. Application of Signaling Pathway-Based Adverse Outcome Pathways and High Throughput Toxicokinetic-PBPK for Developmental Cardiac Malformations

    EPA Science Inventory

    Associating putative molecular initiating events (MIE) with downstream cell signaling pathways and modeling fetal exposure kinetics is an important challenge for integration in developmental systems toxicology. Here, we describe an integrative systems toxicology model for develop...

  2. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells.

    PubMed

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-11-09

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment.

  3. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells

    PubMed Central

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-01-01

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment. PMID:27827420

  4. Light adaptation alters the source of inhibition to the mouse retinal OFF pathway

    PubMed Central

    Mazade, Reece E.

    2013-01-01

    Sensory systems must avoid saturation to encode a wide range of stimulus intensities. One way the retina accomplishes this is by using both dim-light-sensing rod and bright-light-sensing cone photoreceptor circuits. OFF cone bipolar cells are a key point in this process, as they receive both excitatory input from cones and inhibitory input from AII amacrine cells via the rod pathway. However, in addition to AII amacrine cell input, other inhibitory inputs from cone pathways also modulate OFF cone bipolar cell light signals. It is unknown how these inhibitory inputs to OFF cone bipolar cells change when switching between rod and cone pathways or whether all OFF cone bipolar cells receive rod pathway input. We found that one group of OFF cone bipolar cells (types 1, 2, and 4) receive rod-mediated inhibitory inputs that likely come from the rod-AII amacrine cell pathway, while another group of OFF cone bipolar cells (type 3) do not. In both cases, dark-adapted rod-dominant light responses showed a significant contribution of glycinergic inhibition, which decreased with light adaptation and was, surprisingly, compensated by an increase in GABAergic inhibition. As GABAergic input has distinct timing and spatial spread from glycinergic input, a shift from glycinergic to GABAergic inhibition could significantly alter OFF cone bipolar cell signaling to downstream OFF ganglion cells. Larger GABAergic input could reflect an adjustment of OFF bipolar cell spatial inhibition, which may be one mechanism that contributes to retinal spatial sensitivity in the light. PMID:23926034

  5. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    PubMed

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of reference genomes can impact comprehensive annotation of metatranscriptomes. Consequently, beyond the application of standardized pipelines, additional caution must be taken when interpreting their output and performing downstream, microbiome-specific, analyses. The pipeline used in these analyses along with a tutorial has been made freely available for download from our project website: http://www.compsysbio.org/microbiome .

  6. Small acidic protein 1 and SCFTIR1 ubiquitin proteasome pathway act in concert to induce 2,4-dichlorophenoxyacetic acid-mediated alteration of actin in Arabidopsis roots.

    PubMed

    Takahashi, Maho; Umetsu, Kana; Oono, Yutaka; Higaki, Takumi; Blancaflor, Elison B; Rahman, Abidur

    2017-03-01

    2,4-Dichlorophenoxyacetic acid (2,4-D), a functional analogue of auxin, is used as an exogenous source of auxin as it evokes physiological responses like the endogenous auxin, indole-3-acetic acid (IAA). Previous molecular analyses of the auxin response pathway revealed that IAA and 2,4-D share a common mode of action to elicit downstream physiological responses. However, recent findings with 2,4-D-specific mutants suggested that 2,4-D and IAA might also use distinct pathways to modulate root growth in Arabidopsis. Using genetic and cellular approaches, we demonstrate that the distinct effects of 2,4-D and IAA on actin filament organization partly dictate the differential responses of roots to these two auxin analogues. 2,4-D but not IAA altered the actin structure in long-term and short-term assays. Analysis of the 2,4-D-specific mutant aar1-1 revealed that small acidic protein 1 (SMAP1) functions positively to facilitate the 2,4-D-induced depolymerization of actin. The ubiquitin proteasome mutants tir1-1 and axr1-12, which show enhanced resistance to 2,4-D compared with IAA for inhibition of root growth, were also found to have less disrupted actin filament networks after 2,4-D exposure. Consistently, a chemical inhibitor of the ubiquitin proteasome pathway mitigated the disrupting effects of 2,4-D on the organization of actin filaments. Roots of the double mutant aar1-1 tir1-1 also showed enhanced resistance to 2,4-D-induced inhibition of root growth and actin degradation compared with their respective parental lines. Collectively, these results suggest that the effects of 2,4-D on actin filament organization and root growth are mediated through synergistic interactions between SMAP1 and SCF TIR 1 ubiquitin proteasome components. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  7. Diet and Energy-Sensing Inputs Affect TorC1-Mediated Axon Misrouting but Not TorC2-Directed Synapse Growth in a Drosophila Model of Tuberous Sclerosis

    PubMed Central

    Dimitroff, Brian; Lee, Hyun-Gwan; Zhao, Na; O'Connor, Michael B.; Neufeld, Thomas P.; Selleck, Scott B.

    2012-01-01

    The Target of Rapamycin (TOR) growth regulatory system is influenced by a number of different inputs, including growth factor signaling, nutrient availability, and cellular energy levels. While the effects of TOR on cell and organismal growth have been well characterized, this pathway also has profound effects on neural development and behavior. Hyperactivation of the TOR pathway by mutations in the upstream TOR inhibitors TSC1 (tuberous sclerosis complex 1) or TSC2 promotes benign tumors and neurological and behavioral deficits, a syndrome known as tuberous sclerosis (TS). In Drosophila, neuron-specific overexpression of Rheb, the direct downstream target inhibited by Tsc1/Tsc2, produced significant synapse overgrowth, axon misrouting, and phototaxis deficits. To understand how misregulation of Tor signaling affects neural and behavioral development, we examined the influence of growth factor, nutrient, and energy sensing inputs on these neurodevelopmental phenotypes. Neural expression of Pi3K, a principal mediator of growth factor inputs to Tor, caused synapse overgrowth similar to Rheb, but did not disrupt axon guidance or phototaxis. Dietary restriction rescued Rheb-mediated behavioral and axon guidance deficits, as did overexpression of AMPK, a component of the cellular energy sensing pathway, but neither was able to rescue synapse overgrowth. While axon guidance and behavioral phenotypes were affected by altering the function of a Tor complex 1 (TorC1) component, Raptor, or a TORC1 downstream element (S6k), synapse overgrowth was only suppressed by reducing the function of Tor complex 2 (TorC2) components (Rictor, Sin1). These findings demonstrate that different inputs to Tor signaling have distinct activities in nervous system development, and that Tor provides an important connection between nutrient-energy sensing systems and patterning of the nervous system. PMID:22319582

  8. Acute inactivation of the replicative helicase in human cells triggers MCM8–9-dependent DNA synthesis

    PubMed Central

    Natsume, Toyoaki; Nishimura, Kohei; Minocherhomji, Sheroy; Bhowmick, Rahul; Hickson, Ian D.; Kanemaki, Masato T.

    2017-01-01

    DNA replication fork progression can be disrupted at difficult to replicate loci in the human genome, which has the potential to challenge chromosome integrity. This replication fork disruption can lead to the dissociation of the replisome and the formation of DNA damage. To model the events stemming from replisome dissociation during DNA replication perturbation, we used a degron-based system for inducible proteolysis of a subunit of the replicative helicase. We show that MCM2-depleted cells activate a DNA damage response pathway and generate replication-associated DNA double-strand breaks (DSBs). Remarkably, these cells maintain some DNA synthesis in the absence of MCM2, and this requires the MCM8–9 complex, a paralog of the MCM2–7 replicative helicase. We show that MCM8–9 functions in a homologous recombination-based pathway downstream from RAD51, which is promoted by DSB induction. This RAD51/MCM8–9 axis is distinct from the recently described RAD52-dependent DNA synthesis pathway that operates in early mitosis at common fragile sites. We propose that stalled replication forks can be restarted in S phase via homologous recombination using MCM8–9 as an alternative replicative helicase. PMID:28487407

  9. Tryptophan 2,3-Dioxygenfase and Indoleamine 2,3-Dioxygenase 1 Make Separate, Tissue-Specific Contributions to Basal and Inflammation-Induced Kynurenine Pathway Metabolism in Mice

    PubMed Central

    Larkin, Paul B.; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Funakoshi, Hiroshi; Nakamura, Toshikazu; Schwarcz, Robert; Muchowski, Paul J.

    2018-01-01

    In mammals, the majority of the essential amino acid tryptophan is degraded via the kynurenine pathway (KP). Several KP metabolites play distinct physiological roles, often linked to immune system functions, and may also be causally involved in human diseases including neurodegenerative disorders, schizophrenia and cancer. Pharmacological manipulation of the KP has therefore become an active area of drug development. To target the pathway effectively, it is important to understand how specific KP enzymes control levels of the bioactive metabolites in vivo. Here, we conducted a comprehensive biochemical characterization of mice with a targeted deletion of either tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), the two initial rate-limiting enzymes of the KP. These enzymes catalyze the same reaction, but differ in biochemical characteristics and expression patterns. We measured KP metabolite levels and enzyme activities and expression in several tissues in basal and immune-stimulated conditions. Although our study revealed several unexpected downstream effects on KP metabolism in both knockout mice, the results were essentially consistent with TDO-mediated control of basal KP metabolism and a role of IDO in phenomena involving stimulation of the immune system. PMID:27392942

  10. The proinflammatory cytokine interleukin-18 alters multiple signaling pathways to inhibit natural killer cell death

    USGS Publications Warehouse

    Hodge, D.L.; Subleski, J.J.; Reynolds, D.A.; Buschman, M.D.; Schill, W.B.; Burkett, M.W.; Malyguine, A.M.; Young, H.A.

    2006-01-01

    The proinflammatory cytokine, interleukin-18 (IL-18), is a natural killer (NK) cell activator that induces NK cell cytotoxicity and interferon-?? (IFN-??) expression. In this report, we define a novel role for IL-18 as an NK cell protective agent. Specifically, IL-18 prevents NK cell death initiated by different and distinct stress mechanisms. IL-18 reduces NK cell self-destruction during NK-targeted cell killing, and in the presence of staurosporin, a potent apoptotic inducer, IL-18 reduces caspase-3 activity. The critical regulatory step in this process is downstream of the mitochondrion and involves reduced cleavage and activation of caspase-9 and caspase-3. The ability of IL-18 to regulate cell survival is not limited to a caspase death pathway in that IL-18 augments tumor necrosis factor (TNF) signaling, resulting in increased and prolonged mRNA expression of c-apoptosis inhibitor 2 (cIAP2), a prosurvival factor and caspase-3 inhibitor, and TNF receptor-associated factor 1 (TRAF1), a prosurvival protein. The cumulative effects of IL-18 define a novel role for this cytokine as a molecular survival switch that functions to both decrease cell death through inhibition of the mitochondrial apoptotic pathway and enhance TNF induction of prosurvival factors. ?? Mary Ann Liebert, Inc.

  11. Noncanonical control of C. elegans germline apoptosis by the insulin/IGF-1 and Ras/MAPK signaling pathways.

    PubMed

    Perrin, A J; Gunda, M; Yu, B; Yen, K; Ito, S; Forster, S; Tissenbaum, H A; Derry, W B

    2013-01-01

    The insulin/IGF-1 pathway controls a number of physiological processes in the nematode worm Caenorhabditis elegans, including development, aging and stress response. We previously found that the Akt/PKB ortholog AKT-1 dampens the apoptotic response to genotoxic stress in the germline by negatively regulating the p53-like transcription factor CEP-1. Here, we report unexpected rearrangements to the insulin/IGF-1 pathway, whereby the insulin-like receptor DAF-2 and 3-phosphoinositide-dependent protein kinase PDK-1 oppose AKT-1 to promote DNA damage-induced apoptosis. While DNA damage does not affect phosphorylation at the PDK-1 site Thr350/Thr308 of AKT-1, it increased phosphorylation at Ser517/Ser473. Although ablation of daf-2 or pdk-1 completely suppressed akt-1-dependent apoptosis, the transcriptional activation of CEP-1 was unaffected, suggesting that daf-2 and pdk-1 act independently or downstream of cep-1 and akt-1. Ablation of the akt-1 paralog akt-2 or the downstream target of the insulin/IGF-1 pathway daf-16 (a FOXO transcription factor) restored sensitivity to damage-induced apoptosis in daf-2 and pdk-1 mutants. In addition, daf-2 and pdk-1 mutants have reduced levels of phospho-MPK-1/ERK in their germ cells, indicating that the insulin/IGF-1 pathway promotes Ras signaling in the germline. Ablation of the Ras effector gla-3, a negative regulator of mpk-1, restored sensitivity to apoptosis in daf-2 mutants, suggesting that gla-3 acts downstream of daf-2. In addition, the hypersensitivity of let-60/Ras gain-of-function mutants to damage-induced apoptosis was suppressed to wild-type levels by ablation of daf-2. Thus, insulin/IGF-1 signaling selectively engages AKT-2/DAF-16 to promote DNA damage-induced germ cell apoptosis downstream of CEP-1 through the Ras pathway.

  12. Evolution of amino acid metabolism inferred through cladistic analysis.

    PubMed

    Cunchillos, Chomin; Lecointre, Guillaume

    2003-11-28

    Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.

  13. Two decades of leukemia oncoprotein epistasis: the MLL1 paradigm for epigenetic deregulation in leukemia

    PubMed Central

    Li, Bin E.; Ernst, Patricia

    2015-01-01

    MLL1, located on human chromosome 11, is disrupted in distinct recurrent chromosomal translocations in several leukemia subsets. Studying the MLL1 gene and its oncogenic variants has provided a paradigm for understanding cancer initiation and maintenance through aberrant epigenetic gene regulation. Here we review the historical development of model systems to recapitulate oncogenic MLL1-rearrangement (MLL-r) alleles encoding mixed-lineage leukemia fusion proteins (MLL-FPs) or internal gene rearrangement products. These largely mouse and human cell/xenograft systems have been generated and used to understand how MLL-r alleles affect diverse pathways to result in a highly penetrant, drug-resistant leukemia. The particular features of the animal models influenced the conclusions of mechanisms of transformation. We discuss significant downstream enablers, inhibitors, effectors, and collaborators of MLL-r leukemia, including molecules that directly interact with MLL-FPs and endogenous mixed-lineage leukemia protein, direct target genes of MLL-FPs, and other pathways that have proven to be influential in supporting or suppressing the leukemogenic activity of MLL-FPs. The use of animal models has been complemented with patient sample, genome-wide analyses to delineate the important genomic and epigenomic changes that occur in distinct subsets of MLL-r leukemia. Collectively, these studies have resulted in rapid progress toward developing new strategies for targeting MLL-r leukemia and general cell-biological principles that may broadly inform targeting aberrant epigenetic regulators in other cancers. PMID:25264566

  14. Separate transcriptionally regulated pathways specify distinct classes of sister dendrites in a nociceptive neuron.

    PubMed

    O'Brien, Barbara M J; Palumbos, Sierra D; Novakovic, Michaela; Shang, Xueying; Sundararajan, Lakshmi; Miller, David M

    2017-12-15

    The dendritic processes of nociceptive neurons transduce external signals into neurochemical cues that alert the organism to potentially damaging stimuli. The receptive field for each sensory neuron is defined by its dendritic arbor, but the mechanisms that shape dendritic architecture are incompletely understood. Using the model nociceptor, the PVD neuron in C. elegans, we determined that two types of PVD lateral branches project along the dorsal/ventral axis to generate the PVD dendritic arbor: (1) Pioneer dendrites that adhere to the epidermis, and (2) Commissural dendrites that fasciculate with circumferential motor neuron processes. Previous reports have shown that the LIM homeodomain transcription factor MEC-3 is required for all higher order PVD branching and that one of its targets, the claudin-like membrane protein HPO-30, preferentially promotes outgrowth of pioneer branches. Here, we show that another MEC-3 target, the conserved TFIIA-like zinc finger transcription factor EGL-46, adopts the alternative role of specifying commissural dendrites. The known EGL-46 binding partner, the TEAD transcription factor EGL-44, is also required for PVD commissural branch outgrowth. Double mutants of hpo-30 and egl-44 show strong enhancement of the lateral branching defect with decreased numbers of both pioneer and commissural dendrites. Thus, HPO-30/Claudin and EGL-46/EGL-44 function downstream of MEC-3 and in parallel acting pathways to direct outgrowth of two distinct classes of PVD dendritic branches. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. In TCR-Stimulated T-cells, N-ras Regulates Specific Genes and Signal Transduction Pathways

    PubMed Central

    Lynch, Stephen J.; Zavadil, Jiri; Pellicer, Angel

    2013-01-01

    It has been recently shown that N-ras plays a preferential role in immune cell development and function; specifically: N-ras, but not H-ras or K-ras, could be activated at and signal from the Golgi membrane of immune cells following a low level T-cell receptor stimulus. The goal of our studies was to test the hypothesis that N-ras and H-ras played distinct roles in immune cells at the level of the transcriptome. First, we showed via mRNA expression profiling that there were over four hundred genes that were uniquely differentially regulated either by N-ras or H-ras, which provided strong evidence in favor of the hypothesis that N-ras and H-ras have distinct functions in immune cells. We next characterized the genes that were differentially regulated by N-ras in T cells following a low-level T-cell receptor stimulus. Of the large pool of candidate genes that were differentially regulated by N-ras downstream of TCR ligation, four genes were verified in qRT-PCR-based validation experiments (Dntt, Slc9a6, Chst1, and Lars2). Finally, although there was little overlap between individual genes that were regulated by N-ras in unstimulated thymocytes and stimulated CD4+ T-cells, there was a nearly complete correspondence between the signaling pathways that were regulated by N-ras in these two immune cell types. PMID:23755101

  16. The Drosophila L1CAM homolog Neuroglian signals through distinct pathways to control different aspects of mushroom body axon development

    PubMed Central

    Goossens, Tim; Kang, Yuan Y.; Wuytens, Gunther; Zimmermann, Pascale; Callaerts-Végh, Zsuzsanna; Pollarolo, Giulia; Islam, Rafique; Hortsch, Michael; Callaerts, Patrick

    2011-01-01

    The spatiotemporal integration of adhesion and signaling during neuritogenesis is an important prerequisite for the establishment of neuronal networks in the developing brain. In this study, we describe the role of the L1-type CAM Neuroglian protein (NRG) in different steps of Drosophila mushroom body (MB) neuron axonogenesis. Selective axon bundling in the peduncle requires both the extracellular and the intracellular domain of NRG. We uncover a novel role for the ZO-1 homolog Polychaetoid (PYD) in axon branching and in sister branch outgrowth and guidance downstream of the neuron-specific isoform NRG-180. Furthermore, genetic analyses show that the role of NRG in different aspects of MB axonal development not only involves PYD, but also TRIO, SEMA-1A and RAC1. PMID:21389050

  17. The Drosophila L1CAM homolog Neuroglian signals through distinct pathways to control different aspects of mushroom body axon development.

    PubMed

    Goossens, Tim; Kang, Yuan Y; Wuytens, Gunther; Zimmermann, Pascale; Callaerts-Végh, Zsuzsanna; Pollarolo, Giulia; Islam, Rafique; Hortsch, Michael; Callaerts, Patrick

    2011-04-01

    The spatiotemporal integration of adhesion and signaling during neuritogenesis is an important prerequisite for the establishment of neuronal networks in the developing brain. In this study, we describe the role of the L1-type CAM Neuroglian protein (NRG) in different steps of Drosophila mushroom body (MB) neuron axonogenesis. Selective axon bundling in the peduncle requires both the extracellular and the intracellular domain of NRG. We uncover a novel role for the ZO-1 homolog Polychaetoid (PYD) in axon branching and in sister branch outgrowth and guidance downstream of the neuron-specific isoform NRG-180. Furthermore, genetic analyses show that the role of NRG in different aspects of MB axonal development not only involves PYD, but also TRIO, SEMA-1A and RAC1.

  18. Chordin and dickkopf-1b are essential for the formation of head structures through activation of the FGF signaling pathway in zebrafish.

    PubMed

    Tanaka, Shingo; Hosokawa, Hiroshi; Weinberg, Eric S; Maegawa, Shingo

    2017-04-15

    The ability of the Spemann organizer to induce dorsal axis formation is dependent on downstream factors of the maternal Wnt/β-catenin signaling pathway. The fibroblast growth factor (FGF) signaling pathway has been identified as one of the downstream components of the maternal Wnt/β-catenin signaling pathway. The ability of the FGF signaling pathway to induce the formation of a dorsal axis with a complete head structure requires chordin (chd) expression; however, the molecular mechanisms involved in this developmental process, due to activation of FGF signaling, remain unclear. In this study, we showed that activation of the FGF signaling pathway induced the formation of complete head structures through the expression of chd and dickkopf-1b (dkk1b). Using the organizer-deficient maternal mutant, ichabod, we identified dkk1b as a novel downstream factor in the FGF signaling pathway. We also demonstrate that dkk1b expression is necessary, after activation of the FGF signaling pathway, to induce neuroectoderm patterning along the anteroposterior (AP) axis and for formation of complete head structures. Co-injection of chd and dkk1b mRNA resulted in the formation of a dorsal axis with a complete head structure in ichabod embryos, confirming the role of these factors in this developmental process. Unexpectedly, we found that chd induced dkk1b expression in ichabod embryos at the shield stage. However, chd failed to maintain dkk1b expression levels in cells of the shield and, subsequently, in the cells of the prechordal plate after mid-gastrula stage. In contrast, activation of the FGF signaling pathway maintained the dkk1b expression from the beginning of gastrulation to early somitogenesis. In conclusion, activation of the FGF signaling pathway induces the formation of a dorsal axis with a complete head structure through the expression of chd and subsequent maintenance of dkk1b expression levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance.

    PubMed

    Sevelda, Florian; Mayr, Lisa; Kubista, Bernd; Lötsch, Daniela; van Schoonhoven, Sushilla; Windhager, Reinhard; Pirker, Christine; Micksche, Michael; Berger, Walter

    2015-11-02

    Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients.

  20. Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia.

    PubMed

    Seiki, Stephanie; Frishman, William H

    2009-01-01

    Hypercholesterolemia is a major risk factor for the development of atherosclerotic vascular diseases. The most popular agents for cholesterol reduction are the statin drugs, which are competitive inhibitors of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase, the primary rate-limiting enzyme in the hepatic biosynthesis of cholesterol. Although relatively safe and effective, the available statins can cause elevations in liver enzymes and myopathy. Squalene synthase is another enzyme that is downstream to HMG-CoA reductase in the cholesterol synthesis pathway and modulates the first committed step of hepatic cholesterol biosynthesis at the final branch point of the cholesterol biosynthetic pathway. Squalene epoxidase and oxidosqualene cyclase are other enzymes that act distally to squalene synthase. Pharmacologic inhibitors of these downstream enzymes have been developed, which may reduce low-density lipoprotein cholesterol and reduce the myopathy side effect seen with upstream inhibition of HMG-CoA. At this juncture, one squalene synthase inhibitor, lapaquistat (TAK-475) is in active clinical trials as a monotherapy, but there have been suggestions of increased hepatotoxicity with the drug.

  1. The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways*

    PubMed Central

    Kovacevic, Zaklina; Menezes, Sharleen V.; Sahni, Sumit; Kalinowski, Danuta S.; Bae, Dong-Hun; Lane, Darius J. R.; Richardson, Des R.

    2016-01-01

    N-MYC downstream-regulated gene-1 (NDRG1) is a potent growth and metastasis suppressor that acts through its inhibitory effects on a wide variety of cellular signaling pathways, including the TGF-β pathway, protein kinase B (AKT)/PI3K pathway, RAS, etc. To investigate the hypothesis that its multiple effects could be regulated by a common upstream effector, the role of NDRG1 on the epidermal growth factor receptor (EGFR) and other members of the ErbB family, namely human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3), was examined. We demonstrate that NDRG1 markedly decreased the expression and activation of EGFR, HER2, and HER3 in response to the epidermal growth factor (EGF) ligand, while also inhibiting formation of the EGFR/HER2 and HER2/HER3 heterodimers. In addition, NDRG1 also decreased activation of the downstream MAPKK in response to EGF. Moreover, novel anti-tumor agents of the di-2-pyridylketone class of thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, which markedly up-regulate NDRG1, were found to inhibit EGFR, HER2, and HER3 expression and phosphorylation in cancer cells. However, the mechanism involved appeared dependent on NDRG1 for di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, but was independent of this metastasis suppressor for di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone. This observation demonstrates that small structural changes in thiosemicarbazones result in marked alterations in molecular targeting. Collectively, these results reveal a mechanism for the extensive downstream effects on cellular signaling attributed to NDRG1. Furthermore, this study identifies a novel approach for the treatment of tumors resistant to traditional EGFR inhibitors. PMID:26534963

  2. On the Nature of Expansion of Paget’s Disease of Bone

    DTIC Science & Technology

    2012-10-01

    signaling pathway. Gene expression normalized to normal adjacent bone samples. 5 Global expression analysis revealed genes downstream of the Hedgehog ... Hedgehog (Hh) signaling pathway (Figure 5). Again, as in the TLR signaling pathway, specific elements of the Hh signaling pathway showed increased...mutations upregulated expression of genes in the Hedgehog signaling pathway. 7. Discovery that an osteoblastic cell line (PSV10) derived from a PDB

  3. AKT in cancer: new molecular insights and advances in drug development

    PubMed Central

    Mundi, Prabhjot S.; Sachdev, Jasgit; McCourt, Carolyn

    2016-01-01

    The phosphatidylinositol‐3 kinase (PI3K)–AKT pathway is one of the most commonly dysregulated pathways in all of cancer, with somatic mutations, copy number alterations, aberrant epigenetic regulation and increased expression in a number of cancers. The carefully maintained homeostatic balance of cell division and growth on one hand, and programmed cell death on the other, is universally disturbed in tumorigenesis, and downstream effectors of the PI3K–AKT pathway play an important role in this disturbance. With a wide array of downstream effectors involved in cell survival and proliferation, the well‐characterized direct interactions of AKT make it a highly attractive yet elusive target for cancer therapy. Here, we review the salient features of this pathway, evidence of its role in promoting tumorigenesis and recent progress in the development of therapeutic agents that target AKT. PMID:27232857

  4. Transcriptomic effects-based monitoring for endocrine active chemicals: Assessing relative contribution of treated wastewater to downstream pollution

    USGS Publications Warehouse

    Martinovic-Weigelt, Dalma; Mehinto, Alvine C.; Ankley, Gerald T.; Denslow, Nancy D.; Barber, Larry B.; Lee, Kathy E.; King, Ryan J.; Schoenfuss, Heiko L.; Schroeder, Anthony L.; Villeneuve, Daniel L.

    2014-01-01

    The present study investigated whether a combination of targeted analytical chemistry information with unsupervised, data-rich biological methodology (i.e., transcriptomics) could be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The effects of WWTP effluents on fish exposed to ambient, receiving waters were studied at three locations with distinct WWTP and watershed characteristics. At each location, 4 d exposures of male fathead minnows to the WWTP effluent and upstream and downstream ambient waters were conducted. Transcriptomic analyses were performed on livers using 15 000 feature microarrays, followed by a canonical pathway and gene set enrichment analyses. Enrichment of gene sets indicative of teleost brain–pituitary–gonadal–hepatic (BPGH) axis function indicated that WWTPs serve as an important source of endocrine active chemicals (EACs) that affect the BPGH axis (e.g., cholesterol and steroid metabolism were altered). The results indicated that transcriptomics may even pinpoint pertinent adverse outcomes (i.e., liver vacuolization) and groups of chemicals that preselected chemical analytes may miss. Transcriptomic Effects-Based monitoring was capable of distinguishing sites, and it reflected chemical pollution gradients, thus holding promise for assessment of relative contributions of point sources to pollution and the efficacy of pollution remediation.

  5. Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling.

    PubMed

    Kishore, Ayush; Hall, Randy A

    2017-06-09

    Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα 12/13 -mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gα q/11 -mediated or β-arrestin-mediated signaling but rather involves liberation of Gβγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Characterization of additional components of the environmental pH-sensing complex in the pathogenic fungus Cryptococcus neoformans.

    PubMed

    Pianalto, Kaila M; Ost, Kyla S; Brown, Hannah E; Alspaugh, J Andrew

    2018-05-16

    Pathogenic microorganisms must adapt to changes in their immediate surroundings, including alterations in pH, to survive the shift from the external environment to that of the infected host. In the basidiomycete fungal pathogen Cryptococcus neoformans , these pH changes are primarily sensed by the fungal-specific, alkaline pH-sensing Rim/Pal pathway. The C. neoformans Rim pathway has diverged significantly from that described in ascomycete fungi. We recently identified the C. neoformans putative pH sensor Rra1, which activates the Rim pathway in response to elevated pH. In this study, we probed the function of Rra1 by analyzing its cellular localization and performing protein co-immunoprecipitation to identify potential Rra1 interactors. We found that Rra1 does not strongly colocalize or interact with immediate downstream Rim pathway components. However, these experiments identified a novel Rra1 interactor, the previously uncharacterized C. neoformans nucleosome assembly protein 1 (Nap1), which was required for Rim pathway activation. We observed that Nap1 specifically binds to the C-terminal tail of the Rra1 sensor, likely promoting Rra1 protein stability. This function of Nap1 is conserved in fungi closely related to C. neoformans that contain Rra1 orthologs, but not in the more distantly-related ascomycete fungus Saccharomyces cerevisiae In conclusion, our findings have revealed the sophisticated, yet distinct, molecular mechanisms by which closely and distantly related microbial phyla rapidly adapt to environmental signals and changes such as alterations in pH. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Stress transgenerationally programs metabolic pathways linked to altered mental health.

    PubMed

    Kiss, Douglas; Ambeskovic, Mirela; Montina, Tony; Metz, Gerlinde A S

    2016-12-01

    Stress is among the primary causes of mental health disorders, which are the most common reason for disability worldwide. The ubiquity of these disorders, and the costs associated with them, lends a sense of urgency to the efforts to improve prediction and prevention. Down-stream metabolic changes are highly feasible and accessible indicators of pathophysiological processes underlying mental health disorders. Here, we show that remote and cumulative ancestral stress programs central metabolic pathways linked to mental health disorders. The studies used a rat model consisting of a multigenerational stress lineage (the great-great-grandmother and each subsequent generation experienced stress during pregnancy) and a transgenerational stress lineage (only the great-great-grandmother was stressed during pregnancy). Urine samples were collected from adult male F4 offspring and analyzed using 1 H NMR spectroscopy. The results of variable importance analysis based on random variable combination were used for unsupervised multivariate principal component analysis and hierarchical clustering analysis, as well as metabolite set enrichment analysis (MSEA) and pathway analysis. We identified distinct metabolic profiles associated with the multigenerational and transgenerational stress phenotype, with consistent upregulation of hippurate and downregulation of tyrosine, threonine, and histamine. MSEA and pathway analysis showed that these metabolites are involved in catecholamine biosynthesis, immune responses, and microbial host interactions. The identification of metabolic signatures linked to ancestral programming assists in the discovery of gene targets for future studies of epigenetic regulation in pathogenic processes. Ultimately, this research can lead to biomarker discovery for better prediction and prevention of mental health disorders.

  8. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revet, Ingrid; Huizenga, Gerda; Chan, Alvin

    Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneuralmore » gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.« less

  9. Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control.

    PubMed

    Avet-Rochex, Amélie; Carvajal, Nancy; Christoforou, Christina P; Yeung, Kelvin; Maierbrugger, Katja T; Hobbs, Carl; Lalli, Giovanna; Cagin, Umut; Plachot, Cedric; McNeill, Helen; Bateman, Joseph M

    2014-09-01

    Neuronal differentiation is exquisitely controlled both spatially and temporally during nervous system development. Defects in the spatiotemporal control of neurogenesis cause incorrect formation of neural networks and lead to neurological disorders such as epilepsy and autism. The mTOR kinase integrates signals from mitogens, nutrients and energy levels to regulate growth, autophagy and metabolism. We previously identified the insulin receptor (InR)/mTOR pathway as a critical regulator of the timing of neuronal differentiation in the Drosophila melanogaster eye. Subsequently, this pathway has been shown to play a conserved role in regulating neurogenesis in vertebrates. However, the factors that mediate the neurogenic role of this pathway are completely unknown. To identify downstream effectors of the InR/mTOR pathway we screened transcriptional targets of mTOR for neuronal differentiation phenotypes in photoreceptor neurons. We identified the conserved gene unkempt (unk), which encodes a zinc finger/RING domain containing protein, as a negative regulator of the timing of photoreceptor differentiation. Loss of unk phenocopies InR/mTOR pathway activation and unk acts downstream of this pathway to regulate neurogenesis. In contrast to InR/mTOR signalling, unk does not regulate growth. unk therefore uncouples the role of the InR/mTOR pathway in neurogenesis from its role in growth control. We also identified the gene headcase (hdc) as a second downstream regulator of the InR/mTOR pathway controlling the timing of neurogenesis. Unk forms a complex with Hdc, and Hdc expression is regulated by unk and InR/mTOR signalling. Co-overexpression of unk and hdc completely suppresses the precocious neuronal differentiation phenotype caused by loss of Tsc1. Thus, Unk and Hdc are the first neurogenic components of the InR/mTOR pathway to be identified. Finally, we show that Unkempt-like is expressed in the developing mouse retina and in neural stem/progenitor cells, suggesting that the role of Unk in neurogenesis may be conserved in mammals.

  10. Plasma Glycoproteomics Reveals Sepsis Outcomes Linked to Distinct Proteins in Common Pathways

    PubMed Central

    DeLeon-Pennell, Kristine Y.; Nguyen, Nguyen T.; de Castro Brás, Lisandra E.; Flynn, Elizabeth R.; Cannon, Presley L.; Griswold, Michael E.; Jin, Yu-Fang; Puskarich, Michael A.; Jones, Alan E.; Lindsey, Merry L.

    2015-01-01

    Objective Sepsis remains a predominant cause of mortality in the ICU, yet strategies to increase survival have proved largely unsuccessful. This study aimed to identify proteins linked to sepsis outcomes using a glycoproteomic approach to target extracellular proteins that trigger downstream pathways and direct patient outcomes. Design Plasma was obtained from the LacTATEs cohort. N-linked plasma glycopeptides were quantified by solid-phase extraction coupled with mass spectrometry. Glycopeptides were assigned to proteins using RefSeq and visualized in a heat map. Protein differences were validated by immunoblotting, and proteins were mapped for biological processes using Database for Annotation, Visualization and Integrated Discovery and for functional pathways using Kyoto Encyclopedia of Genes and Genomes databases. Setting Hospitalized care. Measurements and Main Results A total of 501 glycopeptides corresponding to 234 proteins were identified. Of these, 66 glycopeptides were unique to the survivor group and corresponded to 54 proteins, 60 were unique to the nonsurvivor group and corresponded to 43 proteins, and 375 were common responses between groups and corresponded to 137 proteins. Immunoblotting showed that nonsurvivors had increased total kininogen; decreased total cathepsin-L1, vascular cell adhesion molecule, periostin, and neutrophil gelatinase–associated lipocalin; and a two-fold decrease in glycosylated clusterin (all p < 0.05). Kyoto Encyclopedia of Genes and Genomes analysis identified six enriched pathways. Interestingly, survivors relied on the extrinsic pathway of the complement and coagulation cascade, whereas nonsurvivors relied on the intrinsic pathway. Conclusion This study identifies proteins linked to patient outcomes and provides insight into unexplored mechanisms that can be investigated for the identification of novel therapeutic targets. (Crit Care Med 2015; XX:00–00) PMID:26086942

  11. Analysis of Differentially Expressed Genes and Signaling Pathways Related to Intramuscular Fat Deposition in Skeletal Muscle of Sex-Linked Dwarf Chickens

    PubMed Central

    Ye, Yaqiong; Lin, Shumao; Mu, Heping; Tang, Xiaohong; Ou, Yangdan; Chen, Jian; Ma, Yongjiang; Li, Yugu

    2014-01-01

    Intramuscular fat (IMF) plays an important role in meat quality. However, the molecular mechanisms underlying IMF deposition in skeletal muscle have not been addressed for the sex-linked dwarf (SLD) chicken. In this study, potential candidate genes and signaling pathways related to IMF deposition in chicken leg muscle tissue were characterized using gene expression profiling of both 7-week-old SLD and normal chickens. A total of 173 differentially expressed genes (DEGs) were identified between the two breeds. Subsequently, 6 DEGs related to lipid metabolism or muscle development were verified in each breed based on gene ontology (GO) analysis. In addition, KEGG pathway analysis of DEGs indicated that some of them (GHR, SOCS3, and IGF2BP3) participate in adipocytokine and insulin signaling pathways. To investigate the role of the above signaling pathways in IMF deposition, the gene expression of pathway factors and other downstream genes were measured by using qRT-PCR and Western blot analyses. Collectively, the results identified potential candidate genes related to IMF deposition and suggested that IMF deposition in skeletal muscle of SLD chicken is regulated partially by pathways of adipocytokine and insulin and other downstream signaling pathways (TGF-β/SMAD3 and Wnt/catenin-β pathway). PMID:24757673

  12. The ATM and Rad3-Related (ATR) Protein Kinase Pathway Is Activated by Herpes Simplex Virus 1 and Required for Efficient Viral Replication.

    PubMed

    Edwards, Terri G; Bloom, David C; Fisher, Chris

    2018-03-15

    The ATM and Rad3-related (ATR) protein kinase and its downstream effector Chk1 are key sensors and organizers of the DNA damage response (DDR) to a variety of insults. Previous studies of herpes simplex virus 1 (HSV-1) showed no evidence for activation of the ATR pathway. Here we demonstrate that both Chk1 and ATR were phosphorylated by 3 h postinfection (h.p.i.). Activation of ATR and Chk1 was observed using 4 different HSV-1 strains in multiple cell types, while a specific ATR inhibitor blocked activation. Mechanistic studies point to early viral gene expression as a key trigger for ATR activation. Both pATR and pChk1 localized to the nucleus within viral replication centers, or associated with their periphery, by 3 h.p.i. Significant levels of pATR and pChk1 were also detected in the cytoplasm, where they colocalized with ICP4 and ICP0. Proximity ligation assays confirmed that pATR and pChk1 were closely and specifically associated with ICP4 and ICP0 in both the nucleus and cytoplasm by 3 h.p.i., but not with ICP8 or ICP27, presumably in a multiprotein complex. Chemically distinct ATR and Chk1 inhibitors blocked HSV-1 replication and infectious virion production, while inhibitors of ATM, Chk2, and DNA-dependent protein kinase (DNA-PK) did not. Together our data show that HSV-1 activates the ATR pathway at early stages of infection and that ATR and Chk1 kinase activities play important roles in HSV-1 replication fitness. These findings indicate that the ATR pathway may provide insight for therapeutic approaches. IMPORTANCE Viruses have evolved complex associations with cellular DNA damage response (DDR) pathways, which sense troublesome DNA structures formed during infection. The first evidence for activation of the ATR pathway by HSV-1 is presented. ATR is activated, and its downstream target Chk1 is robustly phosphorylated, during early stages of infection. Both activated proteins are found in the nucleus associated with viral replication compartments and in the cytoplasm associated with viral proteins. We also demonstrate that both ATR and Chk1 kinase activities are important for viral replication. The findings suggest that HSV-1 activates ATR and Chk1 during early stages of infection and utilizes the enzymes to promote its own replication. The observation may be exploitable for antiviral approaches. Copyright © 2018 American Society for Microbiology.

  13. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    PubMed

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  14. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    PubMed Central

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  15. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    PubMed

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity.

    PubMed

    Azim, Kasum; Angonin, Diane; Marcy, Guillaume; Pieropan, Francesca; Rivera, Andrea; Donega, Vanessa; Cantù, Claudio; Williams, Gareth; Berninger, Benedikt; Butt, Arthur M; Raineteau, Olivier

    2017-03-01

    Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ) is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs) and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP), to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases.

  17. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    PubMed

    Ray, Poulomi; Chapman, Susan C

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  18. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling

    PubMed Central

    Ray, Poulomi; Chapman, Susan C.

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis. PMID:26237312

  19. Linear signaling in the Toll-Dorsal pathway of Drosophila: activated Pelle kinase specifies all threshold outputs of gene expression while the bHLH protein Twist specifies a subset.

    PubMed

    Stathopoulos, Angelike; Levine, Michael

    2002-07-01

    Differential activation of the Toll receptor leads to the formation of a broad Dorsal nuclear gradient that specifies at least three patterning thresholds of gene activity along the dorsoventral axis of precellular embryos. We investigate the activities of the Pelle kinase and Twist basic helix-loop-helix (bHLH) transcription factor in transducing Toll signaling. Pelle functions downstream of Toll to release Dorsal from the Cactus inhibitor. Twist is an immediate-early gene that is activated upon entry of Dorsal into nuclei. Transgenes misexpressing Pelle and Twist were introduced into different mutant backgrounds and the patterning activities were visualized using various target genes that respond to different thresholds of Toll-Dorsal signaling. These studies suggest that an anteroposterior gradient of Pelle kinase activity is sufficient to generate all known Toll-Dorsal patterning thresholds and that Twist can function as a gradient morphogen to establish at least two distinct dorsoventral patterning thresholds. We discuss how the Dorsal gradient system can be modified during metazoan evolution and conclude that Dorsal-Twist interactions are distinct from the interplay between Bicoid and Hunchback, which pattern the anteroposterior axis.

  20. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales

    USGS Publications Warehouse

    Freeman, Mary C.; Pringle, C.M.; Jackson, C.R.

    2007-01-01

    Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large-scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.

  1. Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22.

    PubMed

    Sharma, Akash; Heinze, Svenia D; Wu, Yanli; Kohlbrenner, Tea; Morilla, Ian; Brunner, Claudia; Wimmer, Ernst A; van de Zande, Louis; Robinson, Mark D; Beukeboom, Leo W; Bopp, Daniel

    2017-05-12

    Across species, animals have diverse sex determination pathways, each consisting of a hierarchical cascade of genes and its associated regulatory mechanism. Houseflies have a distinctive polymorphic sex determination system in which a dominant male determiner, the M-factor, can reside on any of the chromosomes. We identified a gene, Musca domestica male determiner ( Mdmd ), as the M-factor. Mdmd originated from a duplication of the spliceosomal factor gene CWC22 ( nucampholin ). Targeted Mdmd disruption results in complete sex reversal to fertile females because of a shift from male to female expression of the downstream genes transformer and doublesex The presence of Mdmd on different chromosomes indicates that Mdmd translocated to different genomic sites. Thus, an instructive signal in sex determination can arise by duplication and neofunctionalization of an essential splicing regulator. Copyright © 2017, American Association for the Advancement of Science.

  2. New Perspectives on Pharyngeal Dorsoventral Patterning in Development and Evolution of the Vertebrate Jaw

    PubMed Central

    Medeiros, Daniel Meulemans; Crump, J. Gage

    2012-01-01

    Patterning of the vertebrate facial skeleton involves the progressive partitioning of neural-crest-derived skeletal precursors into distinct subpopulations along the anteroposterior (AP) and dorsoventral (DV) axes. Recent evidence suggests that complex interactions between multiple signaling pathways, in particular Endothelin-1 (Edn1), Bone Morphogenetic Protein (BMP), and Jagged-Notch, are needed to pattern skeletal precursors along the DV axis. Rather than directly determining the morphology of individual skeletal elements, these signals appear to act through several families of transcription factors, including Dlx, Msx, and Hand, to establish dynamic zones of skeletal differentiation. Provocatively, this patterning mechanism is largely conserved from mouse and zebrafish to the jawless vertebrate, lamprey. This implies that the diversification of the vertebrate facial skeleton, including the evolution of the jaw, was driven largely by modifications downstream of a conversed pharyngeal DV patterning program. PMID:22960284

  3. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5.

    PubMed

    Nezich, Catherine L; Wang, Chunxin; Fogel, Adam I; Youle, Richard J

    2015-08-03

    The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats-generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy.

  4. Star-PAP Control of BIK Expression and Apoptosis Is Regulated by Nuclear PIPKIα and PKCδ Signaling

    PubMed Central

    Li, Weimin; Laishram, Rakesh S.; Ji, Zhe; Barlow, Christy A.; Tian, Bin; Anderson, Richard A.

    2012-01-01

    SUMMARY BIK protein is an initiator of mitochondrial apoptosis and BIK expression is induced by pro-apoptotic signals including DNA damage. Here we demonstrate that 3′-end processing and expression of BIK mRNA are controlled by the nuclear PI4,5P2-regulated poly(A) polymerase Star-PAP downstream of DNA damage. Nuclear PKCδ is a key mediator of apoptosis and DNA damage stimulates PKCδ association with the Star-PAP complex where PKCδ is required for Star-PAP-dependent BIK expression. PKCδ binds the PI4,5P2-generating enzyme PIPKIα, which is essential for PKCδ interaction with the Star-PAP complex and PKCδ activity is directly stimulated by PI4,5P2. Features in the BIK 3′-UTR uniquely define Star-PAP specificity and may block canonical PAP activity toward BIK mRNA. This reveals a nuclear phosphoinositide signaling nexus where PIPKIα, PI4,5P2 and PKCδ regulate Star-PAP control of BIK expression and induction of apoptosis. This pathway is distinct from the Star-PAP-mediated oxidative stress pathway indicating signal-specific regulation of mRNA 3′-end processing. PMID:22244330

  5. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy.

    PubMed

    Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang

    2014-01-07

    A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O(6)-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids.

  6. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy

    PubMed Central

    Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang

    2014-01-01

    A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O6-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids. PMID:24367102

  7. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    ERIC Educational Resources Information Center

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  8. Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131.

    PubMed

    Soultanova, Aichurek; Voigt, Anja; Chubanov, Vladimir; Gudermann, Thomas; Meyerhof, Wolfgang; Boehm, Ulrich; Kummer, Wolfgang

    2015-11-01

    The thymus is the site of T cell maturation which includes positive selection in the cortex and negative selection in the medulla. Acetylcholine is locally produced in the thymus and cholinergic signaling influences the T cell development. We recently described a distinct subset of medullary epithelial cells in the murine thymus which express the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and components of the canonical taste transduction cascade, i.e. transient receptor potential melastatin-like subtype 5 channel (TRPM5), phospholipase Cβ(2), and Gα-gustducin. Such a chemical phenotype is characteristic for chemosensory cells of mucosal surfaces which utilize bitter receptors for detection of potentially hazardous compounds and cholinergic signaling to initiate avoidance reflexes. We here demonstrate mRNA expression of bitter receptors Tas2r105, Tas2r108, and Tas2r131 in the murine thymus. Using a Tas2r131-tauGFP reporter mouse we localized the expression of this receptor to cholinergic cells expressing the downstream elements of the taste transduction pathway. These cells are distinct from the medullary thymic epithelial cells which promiscuously express tissue-restricted self-antigens during the process of negative selection, since double-labeling immunofluorescence showed no colocalization of autoimmune regulator (AIRE), the key mediator of negative selection, and TRPM5. These data demonstrate the presence of bitter taste-sensing signaling in cholinergic epithelial cells in the thymic medulla and opens a discussion as to what is the physiological role of this pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Apigenin attenuates isoflurane-induced cognitive dysfunction via epigenetic regulation and neuroinflammation in aged rats.

    PubMed

    Chen, Lin; Xie, Wenji; Xie, Wenqin; Zhuang, Weiqiang; Jiang, Changcheng; Liu, Naizhen

    2017-11-01

    Post operational cognitive dysfunction (POCD) occurs in patients after anesthesia and surgery. Abnormal histone acetylation and neuroinflammation are key factors in the pathogenesis of cognitive impairment. Apigenin not only has an anti-inflammatory activity but also modifies histone acetylation. We aimed to investigate whether apigenin can attenuate isoflurane exposure-induced cognitive decline by regulating histone acetylation and inflammatory signaling. Spatial learning and memory were assessed by Morris water maze test. Levels of histone acetylation, BDNF and downstream signaling, and inflammatory components were analyzed. Isoflurane exposure in aged rats lead to impaired spatial learning and memory. These rats exhibited dysregulated histone H3K9 and H4K12 acetylation, which was accompanied by reduced BDNF expression and suppressed BDNF downstream signaling pathway. Apigenin restored histone acetylation and BDNF signaling. Apigenin also suppressed isoflurane exposure induced upregulation of proinflammatory cytokines and NFκB signaling pathway. Memory impairment induced by isoflurane exposure is associated with dysregulated histone acetylation in the hippocampus, which affects BDNF expression and hence BDNF downstream signaling pathway. Apigenin recovers cognitive function by restoring histone acetylation and suppressing neuroinflammation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, C.-H.; Department of Nursing, Hungkuang University, Sha Lu, Taichung, Taiwan; Tseng, T.-H.

    In our previous study, penta-acetyl geniposide ((AC){sub 5}GP) is suggested to induce tumor cell apoptosis through the specific activation of PKC{delta}. However, the downstream signal pathway of PKC{delta} has not yet been investigated. It was shown that JNK may play an important role in the regulation of apoptosis and could be a possible downstream signal of PKC{delta} isoforms. In the present study, we investigate whether JNK is involved in (AC){sub 5}GP induced apoptosis. The result reveals that (AC){sub 5}GP induces JNK activation and c-Jun phosphorylation thus stimulating the expression of Fas-L and Fas. Using SP600125 to block JNK activation showsmore » that (AC){sub 5}GP-mediated apoptosis and related proteins expression are attenuated. Furthermore, we find that the (AC){sub 5}GP induces apoptosis through the activation of JNK/Jun/Fas L/Fas/caspase 8/caspase 3, a mitochondria-independent pathway. The JNK pathway is suggested to be the downstream signal of PKC{delta}, since rottlerin impedes (AC){sub 5}GP-induced JNK activation. Therefore, (AC){sub 5}GP mediates cell death via activation of PKC{delta}/JNK/FasL cascade signaling.« less

  11. Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways.

    PubMed

    Chin, Chen-Shan; Chubukov, Victor; Jolly, Emmitt R; DeRisi, Joe; Li, Hao

    2008-06-17

    The dynamic features of a genetic network's response to environmental fluctuations represent essential functional specifications and thus may constrain the possible choices of network architecture and kinetic parameters. To explore the connection between dynamics and network design, we have analyzed a general regulatory architecture that is commonly found in many metabolic pathways. Such architecture is characterized by a dual control mechanism, with end product feedback inhibition and transcriptional regulation mediated by an intermediate metabolite. As a case study, we measured with high temporal resolution the induction profiles of the enzymes in the leucine biosynthetic pathway in response to leucine depletion, using an automated system for monitoring protein expression levels in single cells. All the genes in the pathway are known to be coregulated by the same transcription factors, but we observed drastically different dynamic responses for enzymes upstream and immediately downstream of the key control point-the intermediate metabolite alpha-isopropylmalate (alphaIPM), which couples metabolic activity to transcriptional regulation. Analysis based on genetic perturbations suggests that the observed dynamics are due to differential regulation by the leucine branch-specific transcription factor Leu3, and that the downstream enzymes are strictly controlled and highly expressed only when alphaIPM is available. These observations allow us to build a simplified mathematical model that accounts for the observed dynamics and can correctly predict the pathway's response to new perturbations. Our model also suggests that transient dynamics and steady state can be separately tuned and that the high induction levels of the downstream enzymes are necessary for fast leucine recovery. It is likely that principles emerging from this work can reveal how gene regulation has evolved to optimize performance in other metabolic pathways with similar architecture.

  12. β-Catenin destruction complex-independent regulation of Hippo–YAP signaling by APC in intestinal tumorigenesis

    PubMed Central

    Cai, Jing; Maitra, Anirban; Anders, Robert A.; Taketo, Makoto M.; Pan, Duojia

    2015-01-01

    Mutations in Adenomatous polyposis coli (APC) underlie familial adenomatous polyposis (FAP), an inherited cancer syndrome characterized by the widespread development of colorectal polyps. APC is best known as a scaffold protein in the β-catenin destruction complex, whose activity is antagonized by canonical Wnt signaling. Whether other effector pathways mediate APC's tumor suppressor function is less clear. Here we report that activation of YAP, the downstream effector of the Hippo signaling pathway, is a general hallmark of tubular adenomas from FAP patients. We show that APC functions as a scaffold protein that facilitates the Hippo kinase cascade by interacting with Sav1 and Lats1. Consistent with the molecular link between APC and the Hippo signaling pathway, genetic analysis reveals that YAP is absolutely required for the development of APC-deficient adenomas. These findings establish Hippo–YAP signaling as a critical effector pathway downstream from APC, independent from its involvement in the β-catenin destruction complex. PMID:26193883

  13. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia

    PubMed Central

    Degryse, S; de Bock, C E; Demeyer, S; Govaerts, I; Bornschein, S; Verbeke, D; Jacobs, K; Binos, S; Skerrett-Byrne, D A; Murray, H C; Verrills, N M; Van Vlierberghe, P; Cools, J; Dun, M D

    2018-01-01

    Mutations in the interleukin-7 receptor (IL7R) or the Janus kinase 3 (JAK3) kinase occur frequently in T-cell acute lymphoblastic leukemia (T-ALL) and both are able to drive cellular transformation and the development of T-ALL in mouse models. However, the signal transduction pathways downstream of JAK3 mutations remain poorly characterized. Here we describe the phosphoproteome downstream of the JAK3(L857Q)/(M511I) activating mutations in transformed Ba/F3 lymphocyte cells. Signaling pathways regulated by JAK3 mutants were assessed following acute inhibition of JAK1/JAK3 using the JAK kinase inhibitors ruxolitinib or tofacitinib. Comprehensive network interrogation using the phosphoproteomic signatures identified significant changes in pathways regulating cell cycle, translation initiation, mitogen-activated protein kinase and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling, RNA metabolism, as well as epigenetic and apoptotic processes. Key regulatory proteins within pathways that showed altered phosphorylation following JAK inhibition were targeted using selumetinib and trametinib (MEK), buparlisib (PI3K) and ABT-199 (BCL2), and found to be synergistic in combination with JAK kinase inhibitors in primary T-ALL samples harboring JAK3 mutations. These data provide the first detailed molecular characterization of the downstream signaling pathways regulated by JAK3 mutations and provide further understanding into the oncogenic processes regulated by constitutive kinase activation aiding in the development of improved combinatorial treatment regimens. PMID:28852199

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, In-Hyun; Erbay, Ebru; Nuzzi, Paul

    The protein kinase mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation and growth, with the ribosomal subunit S6 kinase 1 (S6K1) as one of the key downstream signaling effectors. A critical role of mTOR signaling in skeletal muscle differentiation has been identified recently, and an unusual regulatory mechanism independent of mTOR kinase activity and S6K1 is revealed. An mTOR pathway has also been reported to regulate skeletal muscle hypertrophy, but the regulatory mechanism is not completely understood. Here, we report the investigation of mTOR's function in insulin growth factor I (IGF-I)-induced C2C12 myotube hypertrophy. Added atmore » a later stage when rapamycin no longer had any effect on normal myocyte differentiation, rapamycin completely blocked myocyte hypertrophy as measured by myotube diameter. Importantly, a concerted increase of average myonuclei per myotube was observed in IGF-I-stimulated myotubes, which was also inhibited by rapamycin added at a time when it no longer affected normal differentiation. The mTOR protein level, its catalytic activity, its phosphorylation on Ser2448, and the activity of S6K1 were all found increased in IGF-I-stimulated myotubes compared to unstimulated myotubes. Using C2C12 cells stably expressing rapamycin-resistant forms of mTOR and S6K1, we provide genetic evidence for the requirement of mTOR and its downstream effector S6K1 in the regulation of myotube hypertrophy. Our results suggest distinct mTOR signaling mechanisms in different stages of skeletal muscle development: While mTOR regulates the initial myoblast differentiation in a kinase-independent and S6K1-independent manner, the hypertrophic function of mTOR requires its kinase activity and employs S6K1 as a downstream effector.« less

  15. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules.

    PubMed

    Miah, S M Shahjahan; Hughes, Tracey L; Campbell, Kerry S

    2008-03-01

    KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.

  16. Antimitochondrial Autoantibodies in Pemphigus Vulgaris

    PubMed Central

    Marchenko, Steve; Chernyavsky, Alexander I.; Arredondo, Juan; Gindi, Vivian; Grando, Sergei A.

    2010-01-01

    A loss of epidermal cohesion in pemphigus vulgaris (PV) results from autoantibody action on keratinocytes (KCs) activating the signaling kinases and executioner caspases that damage KCs, causing their shrinkage, detachment from neighboring cells, and rounding up (apoptolysis). In this study, we found that PV antibody binding leads to activation of epidermal growth factor receptor kinase, Src, p38 MAPK, and JNK in KCs with time pattern variations from patient to patient. Both extrinsic and intrinsic apoptotic pathways were also activated. Although Fas ligand neutralizing antibody could inhibit the former pathway, the mechanism of activation of the latter remained unknown. PV antibodies increased cytochrome c release, suggesting damage to mitochondria. The immunoblotting experiments revealed penetration of PVIgG into the subcellular mitochondrial fraction. The antimitochondrial antibodies from different PV patients recognized distinct combinations of antigens with apparent molecular sizes of 25, 30, 35, 57, 60, and 100 kDa. Antimitochondrial antibodies were pathogenic because their absorption abolished the ability of PVIgG to cause keratinocyte detachment both in vitro and in vivo. The downstream signaling of antimitochondrial antibodies involved JNK and late p38 MAPK activation, whereas the signaling of anti-desmoglein 3 (Dsg3) antibody involved JNK and biphasic p38 MAPK activation. Using KCs grown from Dsg3−/− mice, we determined that Dsg3 did not serve as a surrogate antigen allowing antimitochondrial antibodies to enter KCs. The PVIgG-induced activation of epidermal growth factor receptor and Src was affected neither in Dsg3−/− KCs nor due to absorption of antimitochondrial antibodies. These results demonstrated that apoptolysis in PV is a complex process initiated by at least three classes of autoantibodies directed against desmosomal, mitochondrial, and other keratinocyte self-antigens. These autoantibodies synergize with the proapoptotic serum and tissue factors to trigger both extrinsic and intrinsic pathways of cell death and break the epidermal cohesion, leading to blisters. Further elucidation of the primary signaling events downstream of PV autoantigens will be crucial for the development of a more successful therapy for PV patients. PMID:20007702

  17. Role of Host Type IA Phosphoinositide 3-Kinase Pathway Components in Invasin-Mediated Internalization of Yersinia enterocolitica.

    PubMed

    Dowd, Georgina C; Bhalla, Manmeet; Kean, Bernard; Thomas, Rowan; Ireton, Keith

    2016-06-01

    Many bacterial pathogens subvert mammalian type IA phosphoinositide 3-kinase (PI3K) in order to induce their internalization into host cells. How PI3K promotes internalization is not well understood. Also unclear is whether type IA PI3K affects different pathogens through similar or distinct mechanisms. Here, we performed an RNA interference (RNAi)-based screen to identify components of the type IA PI3K pathway involved in invasin-mediated entry of Yersinia enterocolitica, an enteropathogen that causes enteritis and lymphadenitis. The 69 genes targeted encode known upstream regulators or downstream effectors of PI3K. A similar RNAi screen was previously performed with the food-borne bacterium Listeria monocytogenes The results of the screen with Y. enterocolitica indicate that at least nine members of the PI3K pathway are needed for invasin-mediated entry. Several of these proteins, including centaurin-α1, Dock180, focal adhesion kinase (FAK), Grp1, LL5α, LL5β, and PLD2 (phospholipase D2), were recruited to sites of entry. In addition, centaurin-α1, FAK, PLD2, and mTOR were required for remodeling of the actin cytoskeleton during entry. Six of the human proteins affecting invasin-dependent internalization also promote InlB-mediated entry of L. monocytogenes Our results identify several host proteins that mediate invasin-induced effects on the actin cytoskeleton and indicate that a subset of PI3K pathway components promote internalization of both Y. enterocolitica and L. monocytogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Phosphorylation state of mu-opioid receptor determines the alternative recycling of receptor via Rab4 or Rab11 pathway.

    PubMed

    Wang, Feifei; Chen, Xiaoqing; Zhang, Xiaoqing; Ma, Lan

    2008-08-01

    Agonist-induced phosphorylation, internalization, and intracellular trafficking of G protein-coupled receptors are critical in regulating both cellular responsiveness and signal transduction. The current study investigated the role of receptor phosphorylation state in regulation of agonist-induced internalization and intracellular trafficking of mu-opioid receptor (MOR). Our results showed that after agonist stimulation, the recycle of a mutant MOR that lacks the C-terminal residues after Asn(362) (MOR362T) was greatly decreased, whereas a C-terminal phosphorylation sites-mutated MOR (MOR3A), which is deficient in agonist-induced phosphorylation recycled back to the membrane at a level comparable to that of the wild-type receptor, however, interestingly at a slower rate. Inhibition of functions of either Rab4 or Rab11 by dominant-negative mutants and small interfering RNA both significantly impaired the recycling of the wild-type MOR, whereas the recycling of the phosphorylation-deficient mutant was only inhibited by the dominant-negative mutant and small interfering RNA of Rab11, suggesting that the recycling of nonphosphorylated MOR is exclusively via Rab11-mediated pathway. Furthermore, phosphorylated MOR was observed accumulated in Rab5- and Rab4-, but not Rab11-positive vesicles. Our data indicate that both phosphorylated and nonphosphorylated MOR internalize via Rab5-dependent pathway after agonist stimulation, and the phosphorylated and nonphosphorylated MORs recycle through distinct vesicular trafficking pathways mediated by Rab4 and Rab11, respectively, which may ultimately lead to differential cellular responsiveness or downstream signaling.

  19. Identification of a mutant locus that bypasses the BsgA protease requirement for social development in Myxococcus xanthus.

    PubMed

    Cusick, John K; Hager, Elizabeth; Gill, Ronald E

    2015-01-01

    The BsgA protease is required for the earliest morphological changes observed in Myxococcus xanthus development. We hypothesize that the BsgA protease is required to cleave an inhibitor of the developmental program, and isolation of genetic bypass suppressors of a bsgA mutant was used to identify signaling components controlling development downstream of the BsgA protease. Strain M955 was created by transposon mutagenesis of a bsgA mutant followed by screening for strains that could develop despite the absence of the BsgA protease. Strain M955 was able to aggregate, form fruiting bodies, and partially restored the production of viable spores in comparison to the parental bsgA mutant. The bsgA Tn5Ω955 strain partially restored developmental expression to a subset of genes normally induced during development, and expressed one developmentally induced fusion at higher amounts during vegetative growth in comparison to wild-type cells. The transposon in strain M955 was localized to a Ribonuclease D homolog that appears to exist in an operon with a downstream aminopeptidase-encoding gene. The identification of a third distinct bypass suppressor of the BsgA protease suggests that the BsgA protease may regulate a potentially complex pathway during the initiation of the M. xanthus developmental program. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Caffeic Acid Phenethyl Ester Induces N-myc Downstream Regulated Gene 1 to Inhibit Cell Proliferation and Invasion of Human Nasopharyngeal Cancer Cells

    PubMed Central

    Chiang, Kun-Chun; Yang, Shih-Wei; Chang, Kai-Ping; Feng, Tsui-Hsia; Chang, Kang-Shuo; Tsui, Ke-Hung; Shin, Yi-Syuan; Chen, Chiu-Chun; Chao, Mei

    2018-01-01

    Caffeic acid phenethyl ester (CAPE), a bioactive component extracted from propolis, is widely studied due to its anti-cancer effect. Nasopharyngeal carcinoma (NPC) is distinct from other head and neck carcinomas and has a high risk of distant metastases. N-myc downstream regulated gene 1 (NDRG1) is demonstrated as a tumor suppressor gene in several cancers. Our result showed that CAPE treatment could repress NPC cell growth, through induction of S phase cell cycle arrest, and invasion. CAPE treatment stimulated NDRG1 expression in NPC cells. NDRG1 knockdown increased NPC cell proliferation and invasion and rendered NPC cells less responsive to CAPE growth-inhibiting effect, indicating CAPE repressed NPC cell growth partly through NDRG1indcution. CAPE treatment increased phosphorylation of ERK, JNK, and p38 in a dose- and time-dependent manner. Pre-treatments by inhibitors of ERK (PD0325901), JNK (SP600125), or p38 (SB201290), respectively, all could partly inhibit the CAPE effect on NDRG1 induction in NPC cells. Further, STAT3 activity was also repressed by CAPE in NPC cells. In summary, CAPE attenuates NPC cell proliferation and invasion by upregulating NDRG1 expression via MAPK pathway and by inhibiting phosphorylation of STAT3. Considering the poor prognosis of NPC patients with metastasis, CAPE could be a promising agent against NPC. PMID:29738439

  1. Activated AKT/PKB signaling in C. elegans uncouples temporally distinct outputs of DAF-2/insulin-like signaling

    PubMed Central

    Gami, Minaxi S; Iser, Wendy B; Hanselman, Keaton B; Wolkow, Catherine A

    2006-01-01

    Background In the nematode, Caenorhabditis elegans, a conserved insulin-like signaling pathway controls larval development, stress resistance and adult lifespan. AGE-1, a homolog of the p110 catalytic subunit of phosphoinositide 3-kinases (PI3K) comprises the major known effector pathway downstream of the insulin receptor, DAF-2. Phospholipid products of AGE-1/PI3K activate AKT/PKB kinase signaling via PDK-1. AKT/PKB signaling antagonizes nuclear translocation of the DAF-16/FOXO transcription factor. Reduced AGE-1/PI3K signaling permits DAF-16 to direct dauer larval arrest and promote long lifespan in adult animals. In order to study the downstream effectors of AGE-1/PI3K signaling in C. elegans, we conducted a genetic screen for mutations that suppress the constitutive dauer arrest phenotype of age-1(mg109) animals. Results This report describes mutations recovered in a screen for suppressors of the constitutive dauer arrest (daf-C) phenotype of age-1(mg109). Two mutations corresponded to alleles of daf-16. Two mutations were gain-of-function alleles in the genes, akt-1 and pdk-1, encoding phosphoinositide-dependent serine/threonine kinases. A fifth mutation, mg227, located on chromosome X, did not correspond to any known dauer genes, suggesting that mg227 may represent a new component of the insulin pathway. Genetic epistasis analysis by RNAi showed that reproductive development in age-1(mg109);akt-1(mg247) animals was dependent on the presence of pdk-1. Similarly, reproductive development in age-1(mg109);pdk-1(mg261) animals was dependent on akt-1. However, reproductive development in age-1(mg109); mg227 animals required only akt-1, and pdk-1 activity was dispensable in this background. Interestingly, while mg227 suppressed dauer arrest in age-1(mg109) animals, it enhanced the long lifespan phenotype. In contrast, akt-1(mg247) and pdk-1(mg261) did not affect lifespan or stress resistance, while both daf-16 alleles fully suppressed these phenotypes. Conclusion A screen for suppressors of PI3K mutant phenotypes identified activating mutations in two known pathway components, providing insights into their regulation. In particular, the interdependence of akt-1 and pdk-1, even in activated forms, supports the existence of AGE-1-independent pathways for these phospholipid-dependent kinases. Phenotypic analysis of these alleles shows that the larval and adult outputs of AGE-1/PI3K are fully separable in these mutants. PMID:17020605

  2. Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium.

    PubMed

    Wang, Chongyang; Huang, Yong; Zhang, Zuotao; Wang, Hui

    2018-04-25

    With the close relationship between saline environments and industry, polycyclic aromatic hydrocarbons (PAHs) accumulate in saline/hypersaline environments. Therefore, PAHs degradation by halotolerant/halophilic bacteria has received increasing attention. In this study, the metabolic pathway of phenanthrene degradation by halophilic consortium CY-1 was first studied which showed a single upstream pathway initiated by dioxygenation at the C1 and C2 positions, and at several downstream pathways, including the catechol pathway, gentisic acid pathway and protocatechuic acid pathway. The effects of salinity on the community structure and expression of catabolic genes were further studied by a combination of high-throughput sequencing, catabolic gene clone library and real-time PCR. Pure cultures were also isolated from consortium CY-1 to investigate the contribution made by different microbes in the PAH-degrading process. Marinobacter is the dominant genus that contributed to the upstream degradation of phenanthrene especially in high salt content. Genus Halomonas made a great contribution in transforming intermediates in the subsequent degradation of catechol by using catechol 1,2-dioxygenase (C12O). Other microbes were predicted to be mediating bacteria that were able to utilize intermediates via different downstream pathways. Salinity was investigated to have negative effects on both microbial diversity and activity of consortium CY-1 and consortium CY-1 was found with a high degree of functional redundancy in saline environments.

  3. [Effects of Biejiajian Pills on Wnt signal pathway signal molecules β-catenin/TCF4 complex activities and downstream proteins cyclin D1 and MMP-2 in hepatocellular carcinoma cells].

    PubMed

    Wen, Bin; Sun, Haitao; He, Songqi; Cheng, Yang; Jia, Wenyan; Fan, Eryan; Pang, Jie

    2014-12-01

    To study the effect of Biejiajian Pills on Wnt signal pathway and the mechanisms underlying its action to suppress the invasiveness of hepatocellular carcinoma. HepG2 cells cultured in the serum of rats fed with Biejiajian Pills for 48 h were examined for β-catenin expression using immunofluorescence, β-catenin/TCF4 complex activity with luciferase, and expressions of the downstream proteins cyclin D1 and MMP-2 using qRT-PCR. Biejiajian Pills-treated sera significantly reduced the expressions of cytoplasmic and nuclear β-catenin protein, cyclin D1 and MMP-2 proteins and lowered the activities of β-catenin/TCF4 complex. Biejiajian Pills may serve as a potential anti-tumor agent, whose effect might be mediated by inhibiting the Wnt/β-catenin pathway.

  4. Metabolite profiling of antidepressant drug action reveals novel drug targets beyond monoamine elevation.

    PubMed

    Webhofer, C; Gormanns, P; Tolstikov, V; Zieglgänsberger, W; Sillaber, I; Holsboer, F; Turck, C W

    2011-12-13

    Currently used antidepressants elevate monoamine levels in the synaptic cleft. There is good reason to assume that this is not the only source for antidepressant therapeutic activities and that secondary downstream effects may be relevant for alleviating symptoms of depression. We attempted to elucidate affected biochemical pathways downstream of monoamine reuptake inhibition by interrogating metabolomic profiles in DBA/2Ola mice after chronic paroxetine treatment. Metabolomic changes were investigated using gas chromatography-mass spectrometry profiling and group differences were analyzed by univariate and multivariate statistics. Pathways affected by antidepressant treatment were related to energy metabolism, amino acid metabolism and hormone signaling. The identified pathways reveal further antidepressant therapeutic action and represent targets for drug development efforts. A comparison of the central nervous system with blood plasma metabolite alterations identified GABA, galactose-6-phosphate and leucine as biomarker candidates for assessment of antidepressant treatment effects in the periphery.

  5. Msx genes are important apoptosis effectors downstream of the Shh/Gli3 pathway in the limb.

    PubMed

    Lallemand, Yvan; Bensoussan, Vardina; Cloment, Cécile Saint; Robert, Benoît

    2009-07-15

    In tetrapods, the anteroposterior (AP) patterning of the limb is under the control of the antagonistic activities of the secreted factor Sonic hedgehog (Shh) and Gli3R, the truncated repressor form of the transcription factor Gli3. In this report, we show that Msx1 and Msx2 are targets and downstream effectors of Gli3R. Consequently, in Shh null mutants, Msx genes are overexpressed and, furthermore, partially responsible for the limb phenotype. This is exemplified by the fact that reducing Msx activity in Shh mutants partially restores a normal limb development. Finally, we show that the main action of the Msx genes, in both normal and Shh(-/-) limb development, is to control cell death in the mesenchyme. We propose that, in the limb, Msx genes act downstream of the Shh/Gli3 pathway by transducing BMP signaling and that, in the absence of Shh signaling, their deregulation contributes to the extensive apoptosis that impairs limb development.

  6. The Emerging Role of the Hippo Pathway in Lung Cancers: Clinical Implications.

    PubMed

    Teoh, Seong Lin; Das, Srijit

    2017-11-30

    The incidence of lung cancers has increased globally. Increased exposure to tobacco, passive smoking, less consumption of vegetables and fruits and occupational exposure to asbestos, arsenic and chromium are the main risk factors. The pathophysiology of lung cancer is complex and not well understood. Various microRNAs, genes and pathways are associated with lung cancers. The genes involved in lung cancers produce proteins involved in cell growth, differentiation, different cell cycles, apoptosis, immune modulation, tumor spread and progression. The Hippo pathway (also known as the Salvador-Warts-Hippo pathway) is the latest emerging concept in cancers. The Hippo pathway plays an important role in controlling the size of the tissue and organ by virtue of its action on cell proliferation and apoptosis. In the present review, we highlight the mammalian Hippo pathway, role of its core members, its upstream regulators, downstream effectors and the resistance cases in lung cancers. Specific interaction of Mer with cell surface hyaluronan receptor CD44 is vital in cell contact inhibition, thereby activating Hippo pathway. Both transcription co-activators YAP and TAZ (also known as WWTR1, being homologs of Drosophila Yki) are important regulators of proliferation and apoptosis, and serve as major downstream effectors of the Hippo pathway. Mutation of NF2, the upstream regulator of Hippo pathway is linked to the cancers. Targeting YAP and TAZ may be important for future drug delivery and treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application.

  8. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines

    PubMed Central

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-01-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  9. Understanding the origin of non-immune cell-mediated weakness in the idiopathic inflammatory myopathies - potential role of ER stress pathways.

    PubMed

    Lightfoot, Adam P; Nagaraju, Kanneboyina; McArdle, Anne; Cooper, Robert G

    2015-11-01

    Discussion of endoplasmic reticulum (ER) stress pathway activation in idiopathic inflammatory myopathies (IIM), and downstream mechanisms causative of muscle weakness. In IIM, ER stress is an important pathogenic process, but how it causes muscle dysfunction is unknown. We discuss relevant pathways modified in response to ER stress in IIM: reactive oxygen species (ROS) generation and mitochondrial dysfunction, and muscle cytokine (myokine) generation. First, ER stress pathway activation can induce changes in mitochondrial bioenergetics and ROS production. ROS can oxidize cellular components, causing muscle contractile dysfunction and energy deficits. Novel compounds targeting ROS generation and/or mitochondrial dysfunction can improve muscle function in several myopathologies. Second, recent research has demonstrated that skeletal muscle produces multiple myokines. It is suggested that these play a role in causing muscle weakness. Myokines are capable of immune cell recruitment, thus contributing to perturbed muscle function. A characterization of myokines in IIM would clarify their pathogenic role, and so identify new therapeutic targets. ER stress pathway activation is clearly of etiological relevance in IIM. Research to better understand mechanisms of weakness downstream of ER stress is now required, and which may discover new therapeutic targets for nonimmune cell-mediated weakness.

  10. The Hippo signaling pathway in liver regeneration and tumorigenesis.

    PubMed

    Hong, Lixin; Cai, Yabo; Jiang, Mingting; Zhou, Dawang; Chen, Lanfen

    2015-01-01

    The Hippo signaling pathway is an evolutionarily conserved signaling module that plays critical roles in liver size control and tumorigenesis. The Hippo pathway consists of a core kinase cascade in which the mammalian Ste20-like kinases (Mst1/2, orthologs of Drosophila Hippo) and their cofactor Salvador (Sav1) form a complex to phosphorylate and activate the large tumor suppressor (Lats1/2). Lats1/2 kinases in turn phosphorylate and inhibit the transcription co-activators, the Yes-associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ), two major downstream effectors of the Hippo pathway. Losses of the Hippo pathway components induce aberrant hepatomegaly and tumorigenesis, in which YAP coordinates regulation of cell proliferation and apoptosis and plays an essential role. This review summarizes the current findings of the regulation of Hippo signaling in liver regeneration and tumorigenesis, focusing on how the loss of tumor suppressor components of the Hippo pathway results in liver cancers and discussing the molecular mechanisms that regulate the expression and activation of its downstream effector YAP in liver tumorigenesis. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  11. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants

    PubMed Central

    Walworth, Aaron E.; Chai, Benli; Song, Guo-qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora (‘VcFT-Aurora’), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in ‘VcFT-Aurora’. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these VcFT downstream genes. These results suggest that VcFT’s down-stream genes appear conserved in blueberry. PMID:27271296

  12. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    PubMed

    Walworth, Aaron E; Chai, Benli; Song, Guo-Qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora'), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these VcFT downstream genes. These results suggest that VcFT's down-stream genes appear conserved in blueberry.

  13. Differential temporal control of Foxa.a and Zic-r.b specifies brain versus notochord fate in the ascidian embryo.

    PubMed

    Ikeda, Tatsuro; Satou, Yutaka

    2017-01-01

    In embryos of an invertebrate chordate, Ciona intestinalis, two transcription factors, Foxa.a and Zic-r.b, are required for specification of the brain and the notochord, which are derived from distinct cell lineages. In the brain lineage, Foxa.a and Zic-r.b are expressed with no temporal overlap. In the notochord lineage, Foxa.a and Zic-r.b are expressed simultaneously. In the present study, we found that the temporally non-overlapping expression of Foxa.a and Zic-r.b in the brain lineage was regulated by three repressors: Prdm1-r.a (formerly called BZ1), Prdm1-r.b (BZ2) and Hes.a. In morphant embryos of these three repressor genes, Foxa.a expression was not terminated at the normal time, and Zic-r.b was precociously expressed. Consequently, Foxa.a and Zic-r.b were expressed simultaneously, which led to ectopic activation of Brachyury and its downstream pathways for notochord differentiation. Thus, temporal controls by transcriptional repressors are essential for specification of the two distinct fates of brain and notochord by Foxa.a and Zic-r.b Such a mechanism might enable the repeated use of a limited repertoire of transcription factors in developmental gene regulatory networks. © 2017. Published by The Company of Biologists Ltd.

  14. Combined effects of aging and inflammation on renin-angiotensin system mediate mitochondrial dysfunction and phenotypic changes in cardiomyopathies.

    PubMed

    Burks, Tyesha N; Marx, Ruth; Powell, Laura; Rucker, Jasma; Bedja, Djahida; Heacock, Elisa; Smith, Barbara J; Foster, D Brian; Kass, David; O'Rourke, Brian; Walston, Jeremy D; Abadir, Peter M

    2015-05-20

    Although the effects of aging and inflammation on the health of the cardiac muscle are well documented, the combined effects of aging and chronic inflammation on cardiac muscle are largely unknown. The renin-angiotensin system (RAS) has been linked independently to both aging and inflammation, but is understudied in the context of their collective effect. Thus, we investigated localized cardiac angiotensin II type I and type II receptors (AT(1)R, AT(2)R), downstream effectors, and phenotypic outcomes using mouse models of the combination of aging and inflammation and compared it to a model of aging and a model of inflammation. We show molecular distinction in the combined effect of aging and inflammation as compared to each independently. The combination maintained an increased AT(1)R:AT(2)R and expression of Nox2 and exhibited the lowest activity of antioxidants. Despite signaling pathway differences, the combined effect shared phenotypic similarities with aging including oxidative damage, fibrosis, and hypertrophy. These phenotypic similarities have dubbed inflammatory conditions as premature aging, but they are, in fact, molecularly distinct. Moreover, treatment with an AT(1)R blocker, losartan, selectively reversed the signaling changes and ameliorated adverse phenotypic effects in the combination of aging and inflammation as well as each independently.

  15. Combined effects of aging and inflammation on renin-angiotensin system mediate mitochondrial dysfunction and phenotypic changes in cardiomyopathies

    PubMed Central

    Burks, Tyesha N.; Marx, Ruth; Powell, Laura; Rucker, Jasma; Bedja, Djahida; Heacock, Elisa; Smith, Barbara J.; Foster, D. Brian; Kass, David; O'Rourke, Brian; Walston, Jeremy D.; Abadir, Peter M.

    2015-01-01

    Although the effects of aging and inflammation on the health of the cardiac muscle are well documented, the combined effects of aging and chronic inflammation on cardiac muscle are largely unknown. The renin-angiotensin system (RAS) has been linked independently to both aging and inflammation, but is understudied in the context of their collective effect. Thus, we investigated localized cardiac angiotensin II type I and type II receptors (AT1R, AT2R), downstream effectors, and phenotypic outcomes using mouse models of the combination of aging and inflammation and compared it to a model of aging and a model of inflammation. We show molecular distinction in the combined effect of aging and inflammation as compared to each independently. The combination maintained an increased AT1R:AT2R and expression of Nox2 and exhibited the lowest activity of antioxidants. Despite signaling pathway differences, the combined effect shared phenotypic similarities with aging including oxidative damage, fibrosis, and hypertrophy. These phenotypic similarities have dubbed inflammatory conditions as premature aging, but they are, in fact, molecularly distinct. Moreover, treatment with an AT1R blocker, losartan, selectively reversed the signaling changes and ameliorated adverse phenotypic effects in the combination of aging and inflammation as well as each independently. PMID:26221650

  16. Stalk-dependent and Stalk-independent Signaling by the Adhesion G Protein-coupled Receptors GPR56 (ADGRG1) and BAI1 (ADGRB1).

    PubMed

    Kishore, Ayush; Purcell, Ryan H; Nassiri-Toosi, Zahra; Hall, Randy A

    2016-02-12

    The adhesion G protein-coupled receptors (aGPCRs) are a large yet poorly understood family of seven-transmembrane proteins. A defining characteristic of the aGPCR family is the conserved GAIN domain, which has autoproteolytic activity and can cleave the receptors near the first transmembrane domain. Several aGPCRs, including ADGRB1 (BAI1 or B1) and ADGRG1 (GPR56 or G1), have been found to exhibit significantly increased constitutive activity when truncated to mimic GAIN domain cleavage (ΔNT). Recent reports have suggested that the new N-terminal stalk, which is revealed by GAIN domain cleavage, can directly activate aGPCRs as a tethered agonist. We tested this hypothesis in studies on two distinct aGPCRs, B1 and G1, by engineering mutant receptors lacking the entire NT including the stalk (B1- and G1-SL, with "SL" indicating "stalkless"). These receptors were evaluated in a battery of signaling assays and compared with full-length wild-type and cleavage-mimicking (ΔNT) forms of the two receptors. We found that B1-SL, in multiple assays, exhibited robust signaling activity, suggesting that the membrane-proximal stalk region is not necessary for its activation. For G1, however, the results were mixed, with the SL mutant exhibiting robust activity in several signaling assays (including TGFα shedding, activation of NFAT luciferase, and β-arrestin recruitment) but reduced activity relative to ΔNT in a distinct assay (activation of SRF luciferase). These data support a model in which the activation of certain pathways downstream of aGPCRs is stalk-dependent, whereas signaling to other pathways is stalk-independent. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A Role for MORE AXILLARY GROWTH1 (MAX1) in Evolutionary Diversity in Strigolactone Signaling Upstream of MAX21[C][W][OA

    PubMed Central

    Challis, Richard J.; Hepworth, Jo; Mouchel, Céline; Waites, Richard; Leyser, Ottoline

    2013-01-01

    Strigolactones (SLs) are carotenoid-derived phytohormones with diverse roles. They are secreted from roots as attractants for arbuscular mycorrhizal fungi and have a wide range of endogenous functions, such as regulation of root and shoot system architecture. To date, six genes associated with SL synthesis and signaling have been molecularly identified using the shoot-branching mutants more axillary growth (max) of Arabidopsis (Arabidopsis thaliana) and dwarf (d) of rice (Oryza sativa). Here, we present a phylogenetic analysis of the MAX/D genes to clarify the relationships of each gene with its wider family and to allow the correlation of events in the evolution of the genes with the evolution of SL function. Our analysis suggests that the notion of a distinct SL pathway is inappropriate. Instead, there may be a diversity of SL-like compounds, the response to which requires a D14/D14-like protein. This ancestral system could have been refined toward distinct ligand-specific pathways channeled through MAX2, the most downstream known component of SL signaling. MAX2 is tightly conserved among land plants and is more diverged from its nearest sister clade than any other SL-related gene, suggesting a pivotal role in the evolution of SL signaling. By contrast, the evidence suggests much greater flexibility upstream of MAX2. The MAX1 gene is a particularly strong candidate for contributing to diversification of inputs upstream of MAX2. Our functional analysis of the MAX1 family demonstrates the early origin of its catalytic function and both redundancy and functional diversification associated with its duplication in angiosperm lineages. PMID:23424248

  18. Annexins - scaffolds modulating PKC localization and signaling.

    PubMed

    Hoque, Monira; Rentero, Carles; Cairns, Rose; Tebar, Francesc; Enrich, Carlos; Grewal, Thomas

    2014-06-01

    Spatial and temporal organization of signal transduction is critical to link different extracellular stimuli with distinct cellular responses. A classical example of hormones and growth factors creating functional diversity is illustrated by the multiple signaling pathways activated by the protein kinase C (PKC) family of serine/threonine protein kinases. The molecular requirements for diacylglycerol (DAG) and calcium (Ca(2+)) to promote PKC membrane translocation, the hallmark of PKC activation, have been clarified. However, the underlying mechanisms that establish selectivity of individual PKC family members to facilitate differential substrate phosphorylation and varied signal output are still not fully understood. It is now well believed that the coordinated control and functional diversity of PKC signaling involves the formation of PKC isozyme-specific protein complexes in certain subcellular sites. In particular, interaction of PKC isozymes with compartment and signal-organizing scaffolds, including receptors for activated C-kinase (RACKs), A-kinase-anchoring proteins (AKAPs), 14-3-3, heat shock proteins (HSP), and importins target PKC isozymes to specific cellular locations, thereby delivering PKC isozymes into close proximity of their substrates. In addition, several annexins (Anx), including AnxA1, A2, A5 and A6, display specific and distinct abilities to interact and promote membrane targeting of different PKC isozymes. Together with the ability of annexins to create specific membrane microenvironments, this is likely to enable PKCs to phosphorylate certain substrates and regulate their downstream effector pathways in specific cellular sites. This review aims to summarize the capacity of annexins to modulate the localization and activity of PKC family members and participate in the spatiotemporal regulation of PKC signaling in health and disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The catalytic region and PEST domain of PTPN18 distinctly regulate the HER2 phosphorylation and ubiquitination barcodes.

    PubMed

    Wang, Hong-Mei; Xu, Yun-Fei; Ning, Shang-Lei; Yang, Du-Xiao; Li, Yi; Du, Yu-Jie; Yang, Fan; Zhang, Ya; Liang, Nan; Yao, Wei; Zhang, Ling-Li; Gu, Li-Chuan; Gao, Cheng-Jiang; Pang, Qi; Chen, Yu-Xin; Xiao, Kun-Hong; Ma, Rong; Yu, Xiao; Sun, Jin-Peng

    2014-09-01

    The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes. Enzymologic characterization and three crystal structures of PTPN18 in complex with HER2 phospho-peptides revealed the molecular basis for the recognition between PTPN18 and specific HER2 phosphorylation sites, which assumes two distinct conformations. Unique structural properties of PTPN18 contribute to the regulation of sub-cellular phosphorylation networks downstream of HER2, which are required for inhibition of HER2-mediated cell growth and migration. Whereas the catalytic domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation of HER2 on pY(1112), the PEST domain of PTPN18 promotes K48-linked HER2 ubiquitination and its rapid destruction via the proteasome pathway and an HER2 negative feedback loop. In agreement with the negative regulatory role of PTPN18 in HER2 signaling, the HER2/PTPN18 ratio was correlated with breast cancer stage. Taken together, our study presents a structural basis for selective HER2 dephosphorylation, a previously uncharacterized mechanism for HER2 degradation and a novel function for the PTPN18 PEST domain. The new regulatory role of the PEST domain in the ubiquitination pathway will broaden our understanding of the functions of other important PEST domain-containing phosphatases, such as LYP and PTPN12.

  20. Building an Adverse Outcome Pathway Framework through HTS Data and Literature Mining Integration (FutureToxII)

    EPA Science Inventory

    Interpreting EPA’s ToxCast in vitro assay data in the context of Adverse Outcome Pathway (AOP) development is a significant challenge. While chemical activation in these assays may shed light on the molecular initiating event, the downstream effect of these activities at higher ...

  1. Structural basis of death domain signaling in the p75 neurotrophin receptor

    PubMed Central

    Lin, Zhi; Tann, Jason Y; Goh, Eddy TH; Kelly, Claire; Lim, Kim Buay; Gao, Jian Fang; Ibanez, Carlos F

    2015-01-01

    Death domains (DDs) mediate assembly of oligomeric complexes for activation of downstream signaling pathways through incompletely understood mechanisms. Here we report structures of complexes formed by the DD of p75 neurotrophin receptor (p75NTR) with RhoGDI, for activation of the RhoA pathway, with caspase recruitment domain (CARD) of RIP2 kinase, for activation of the NF-kB pathway, and with itself, revealing how DD dimerization controls access of intracellular effectors to the receptor. RIP2 CARD and RhoGDI bind to p75NTR DD at partially overlapping epitopes with over 100-fold difference in affinity, revealing the mechanism by which RIP2 recruitment displaces RhoGDI upon ligand binding. The p75NTR DD forms non-covalent, low-affinity symmetric dimers in solution. The dimer interface overlaps with RIP2 CARD but not RhoGDI binding sites, supporting a model of receptor activation triggered by separation of DDs. These structures reveal how competitive protein-protein interactions orchestrate the hierarchical activation of downstream pathways in non-catalytic receptors. DOI: http://dx.doi.org/10.7554/eLife.11692.001 PMID:26646181

  2. The unfolded protein response in melanocytes: activation in response to chemical stressors of the endoplasmic reticulum and tyrosinase misfolding.

    PubMed

    Manga, Prashiela; Bis, Sabina; Knoll, Kristen; Perez, Beremis; Orlow, Seth J

    2010-10-01

    Accumulation of proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), comprising three signaling pathways initiated by Ire1, Perk and Atf6 respectively. Unfolded protein response activation was compared in chemically stressed murine wildtype melanocytes and mutant melanocytes that retain tyrosinase in the ER. Thapsigargin, an ER stressor, activated all pathways in wildtype melanocytes, triggering Caspase 12-mediated apoptosis at toxic doses. Albino melanocytes expressing mutant tyrosinase showed evidence of ER stress with increased Ire1 expression, but the downstream effector, Xbp1, was not activated even following thapsigargin treatment. Attenuation of Ire1 signaling was recapitulated in wildtype melanocytes treated with thapsigargin for 8 days, with diminished Xbp1 activation observed after 4 days. Atf6 was also activated in albino melanocytes, with no response to thapsigargin, while the Perk pathway was not activated and thapsigargin treatment elicited robust expression of the downstream effector CCAAT-enhancer-binding protein homologous protein. Thus, melanocytes adapt to ER stress by attenuating two UPR pathways.

  3. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior

    PubMed Central

    Li, Suyan; Kumar T, Peeyush; Joshee, Sampada; Kirschstein, Timo; Subburaju, Sivan; Khalili, Jahan S; Kloepper, Jonas; Du, Chuang; Elkhal, Abdallah; Szabó, Gábor; Jain, Rakesh K; Köhling, Rüdiger; Vasudevan, Anju

    2018-01-01

    The cerebral cortex is essential for integration and processing of information that is required for most behaviors. The exquisitely precise laminar organization of the cerebral cortex arises during embryonic development when neurons migrate successively from ventricular zones to coalesce into specific cortical layers. While radial glia act as guide rails for projection neuron migration, pre-formed vascular networks provide support and guidance cues for GABAergic interneuron migration. This study provides novel conceptual and mechanistic insights into this paradigm of vascular-neuronal interactions, revealing new mechanisms of GABA and its receptor-mediated signaling via embryonic forebrain endothelial cells. With the use of two new endothelial cell specific conditional mouse models of the GABA pathway (Gabrb3ΔTie2-Cre and VgatΔTie2-Cre), we show that partial or complete loss of GABA release from endothelial cells during embryogenesis results in vascular defects and impairs long-distance migration and positioning of cortical interneurons. The downstream effects of perturbed endothelial cell-derived GABA signaling are critical, leading to lasting changes to cortical circuits and persistent behavioral deficits. Furthermore, we illustrate new mechanisms of activation of GABA signaling in forebrain endothelial cells that promotes their migration, angiogenesis and acquisition of blood-brain barrier properties. Our findings uncover and elucidate a novel endothelial GABA signaling pathway in the CNS that is distinct from the classical neuronal GABA signaling pathway and shed new light on the etiology and pathophysiology of neuropsychiatric diseases, such as autism spectrum disorders, epilepsy, anxiety, depression and schizophrenia. PMID:29086765

  4. Paramyxovirus V Proteins Interact with the RIG-I/TRIM25 Regulatory Complex and Inhibit RIG-I Signaling.

    PubMed

    Sánchez-Aparicio, Maria T; Feinman, Leighland J; García-Sastre, Adolfo; Shaw, Megan L

    2018-03-15

    Paramyxovirus V proteins are known antagonists of the RIG-I-like receptor (RLR)-mediated interferon induction pathway, interacting with and inhibiting the RLR MDA5. We report interactions between the Nipah virus V protein and both RIG-I regulatory protein TRIM25 and RIG-I. We also observed interactions between these host proteins and the V proteins of measles virus, Sendai virus, and parainfluenza virus. These interactions are mediated by the conserved C-terminal domain of the V protein, which binds to the tandem caspase activation and recruitment domains (CARDs) of RIG-I (the region of TRIM25 ubiquitination) and to the SPRY domain of TRIM25, which mediates TRIM25 interaction with the RIG-I CARDs. Furthermore, we show that V interaction with TRIM25 and RIG-I prevents TRIM25-mediated ubiquitination of RIG-I and disrupts downstream RIG-I signaling to the mitochondrial antiviral signaling protein. This is a novel mechanism for innate immune inhibition by paramyxovirus V proteins, distinct from other known V protein functions such as MDA5 and STAT1 antagonism. IMPORTANCE The host RIG-I signaling pathway is a key early obstacle to paramyxovirus infection, as it results in rapid induction of an antiviral response. This study shows that paramyxovirus V proteins interact with and inhibit the activation of RIG-I, thereby interrupting the antiviral signaling pathway and facilitating virus replication. Copyright © 2018 American Society for Microbiology.

  5. Sphingosine 1-Phosphate (S1P) Signaling in Glioblastoma Multiforme—A Systematic Review

    PubMed Central

    Mahajan-Thakur, Shailaja; Bien-Möller, Sandra; Marx, Sascha; Schroeder, Henry

    2017-01-01

    The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central regulator in the development of several cancer types. In recent years, intriguing information has become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM), the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5) and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq, and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its receptors in GBM. We further highlight the current insights into the signaling pathways considered fundamental for regulating the cellular processes in GMB and ultimately patient prognosis. PMID:29149079

  6. Novel modeling of cancer cell signaling pathways enables systematic drug repositioning for distinct breast cancer metastases.

    PubMed

    Zhao, Hong; Jin, Guangxu; Cui, Kemi; Ren, Ding; Liu, Timothy; Chen, Peikai; Wong, Solomon; Li, Fuhai; Fan, Yubo; Rodriguez, Angel; Chang, Jenny; Wong, Stephen T C

    2013-10-15

    A new type of signaling network element, called cancer signaling bridges (CSB), has been shown to have the potential for systematic and fast-tracked drug repositioning. On the basis of CSBs, we developed a computational model to derive specific downstream signaling pathways that reveal previously unknown target-disease connections and new mechanisms for specific cancer subtypes. The model enables us to reposition drugs based on available patient gene expression data. We applied this model to repurpose known or shelved drugs for brain, lung, and bone metastases of breast cancer with the hypothesis that cancer subtypes have their own specific signaling mechanisms. To test the hypothesis, we addressed specific CSBs for each metastasis that satisfy (i) CSB proteins are activated by the maximal number of enriched signaling pathways specific to a given metastasis, and (ii) CSB proteins are involved in the most differential expressed coding genes specific to each breast cancer metastasis. The identified signaling networks for the three types of breast cancer metastases contain 31, 15, and 18 proteins and are used to reposition 15, 9, and 2 drug candidates for the brain, lung, and bone metastases. We conducted both in vitro and in vivo preclinical experiments as well as analysis on patient tumor specimens to evaluate the targets and repositioned drugs. Of special note, we found that the Food and Drug Administration-approved drugs, sunitinib and dasatinib, prohibit brain metastases derived from breast cancer, addressing one particularly challenging aspect of this disease. ©2013 AACR.

  7. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins*

    PubMed Central

    Inaba, Satomi; Numoto, Nobutaka; Ogawa, Shuhei; Morii, Hisayuki; Ikura, Teikichi; Abe, Ryo; Ito, Nobutoshi; Oda, Masayuki

    2017-01-01

    Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases. PMID:27927989

  8. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins.

    PubMed

    Inaba, Satomi; Numoto, Nobutaka; Ogawa, Shuhei; Morii, Hisayuki; Ikura, Teikichi; Abe, Ryo; Ito, Nobutoshi; Oda, Masayuki

    2017-01-20

    Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways.

    PubMed

    Kahlert, U D; Mooney, S M; Natsumeda, M; Steiger, H-J; Maciaczyk, J

    2017-01-01

    Cancer stem-like cells (CSCs) are thought to be the main cause of tumor occurrence, progression and therapeutic resistance. Strong research efforts in the last decade have led to the development of several tailored approaches to target CSCs with some very promising clinical trials underway; however, until now no anti-CSC therapy has been approved for clinical use. Given the recent improvement in our understanding of how onco-proteins can manipulate cellular metabolic networks to promote tumorigenesis, cancer metabolism research may well lead to innovative strategies to identify novel regulators and downstream mediators of CSC maintenance. Interfering with distinct stages of CSC-associated metabolics may elucidate novel, more efficient strategies to target this highly malignant cell population. Here recent discoveries regarding the metabolic properties attributed to CSCs in glioblastoma (GBM) and malignant colorectal cancer (CRC) were summarized. The association between stem cell markers, the response to hypoxia and other environmental stresses including therapeutic insults as well as developmentally conserved signaling pathways with alterations in cellular bioenergetic networks were also discussed. The recent developments in metabolic imaging to identify CSCs were also summarized. This summary should comprehensively update basic and clinical scientists on the metabolic traits of CSCs in GBM and malignant CRC. © 2016 UICC.

  10. Statins impact primary embryonic mouse neural stem cell survival, cell death, and fate through distinct mechanisms.

    PubMed

    Carson, Ross A; Rudine, Anthony C; Tally, Serena J; Franks, Alexis L; Frahm, Krystle A; Waldman, Jacob K; Silswal, Neerupma; Burale, Suban; Phan, James V; Chandran, Uma R; Monaghan, A Paula; DeFranco, Donald B

    2018-01-01

    Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in the cholesterol biosynthesis pathway (CBP), and are used for the prevention of cardiovascular disease. The anti-inflammatory effects of statins may also provide therapeutic benefits and have led to their use in clinical trials for preeclampsia, a pregnancy-associated inflammatory condition, despite their current classification as category X (i.e. contraindicated during pregnancy). In the developing neocortex, products of the CBP play essential roles in proliferation and differentiation of neural stem-progenitor cells (NSPCs). To understand how statins could impact the developing brain, we studied effects of pravastatin and simvastatin on primary embryonic NSPC survival, proliferation, global transcription, and cell fate in vitro. We found that statins dose dependently decrease NSPC expansion by promoting cell death and autophagy of NSPCs progressing through the G1 phase of the cell cycle. Genome-wide transcriptome analysis demonstrates an increase in expression of CBP genes following pravastatin treatment, through activation of the SREBP2 transcription factor. Co-treatment with farnesyl pyrophosphate (FPP), a CBP metabolite downstream of HMG-CoA reductase, reduces SREBP2 activation and pravastatin-induced PARP cleavage. Finally, pravastatin and simvastatin differentially alter NSPC cell fate and mRNA expression during differentiation, through a non-CBP dependent pathway.

  11. Novel Paradigms for Dialysis Vascular Access: Downstream Vascular Biology–Is There a Final Common Pathway?

    PubMed Central

    2013-01-01

    Summary Vascular access dysfunction is a major cause of morbidity and mortality in hemodialysis patients. The most common cause of vascular access dysfunction is venous stenosis from neointimal hyperplasia within the perianastomotic region of an arteriovenous fistula and at the graft-vein anastomosis of an arteriovenous graft. There have been few, if any, effective treatments for vascular access dysfunction because of the limited understanding of the pathophysiology of venous neointimal hyperplasia formation. This review will (1) describe the histopathologic features of hemodialysis access stenosis; (2) discuss novel concepts in the pathogenesis of neointimal hyperplasia development, focusing on downstream vascular biology; (3) highlight future novel therapies for treating downstream biology; and (4) discuss future research areas to improve our understanding of downstream biology and neointimal hyperplasia development. PMID:23990166

  12. Type 1 Cannabinoid Receptor Ligands Display Functional Selectivity in a Cell Culture Model of Striatal Medium Spiny Projection Neurons*

    PubMed Central

    Laprairie, Robert B.; Bagher, Amina M.; Kelly, Melanie E. M.; Dupré, Denis J.; Denovan-Wright, Eileen M.

    2014-01-01

    Modulation of type 1 cannabinoid receptor (CB1) activity has been touted as a potential means of treating addiction, anxiety, depression, and neurodegeneration. Different agonists of CB1 are known to evoke varied responses in vivo. Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor that can signal through multiple pathways. To understand cannabinoid-specific functional selectivity, different groups have examined the effect of individual cannabinoids on various signaling pathways in heterologous expression systems. In the current study, we compared the functional selectivity of six cannabinoids, including two endocannabinoids (2-arachidonyl glycerol (2-AG) and anandamide (AEA)), two synthetic cannabinoids (WIN55,212-2 and CP55,940), and two phytocannabinoids (cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC)) on arrestin2-, Gαi/o-, Gβγ-, Gαs-, and Gαq-mediated intracellular signaling in the mouse STHdhQ7/Q7 cell culture model of striatal medium spiny projection neurons that endogenously express CB1. In this system, 2-AG, THC, and CP55,940 were more potent mediators of arrestin2 recruitment than other cannabinoids tested. 2-AG, AEA, and WIN55,212-2, enhanced Gαi/o and Gβγ signaling, with 2-AG and AEA treatment leading to increased total CB1 levels. 2-AG, AEA, THC, and WIN55,212-2 also activated Gαq-dependent pathways. CP55,940 and CBD both signaled through Gαs. CP55,940, but not CBD, activated downstream Gαs pathways via CB1 targets. THC and CP55,940 promoted CB1 internalization and decreased CB1 protein levels over an 18-h period. These data demonstrate that individual cannabinoids display functional selectivity at CB1 leading to activation of distinct signaling pathways. To effectively match cannabinoids with therapeutic goals, these compounds must be screened for their signaling bias. PMID:25037227

  13. Elucidating the Functional Roles of Spatial Organization in Cross-Membrane Signal Transduction by a Hybrid Simulation Method.

    PubMed

    Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao

    2016-07-01

    The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional importance of spatial organization in cross-membrane signal transduction. The method can be applied to any specific signaling pathway in cells.

  14. Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy.

    PubMed

    Zhang, Yi-Xiang; van Oosterwijk, Jolieke G; Sicinska, Ewa; Moss, Samuel; Remillard, Stephen P; van Wezel, Tom; Bühnemann, Claudia; Hassan, Andrew B; Demetri, George D; Bovée, Judith V M G; Wagner, Andrew J

    2013-07-15

    Chondrosarcomas are notoriously resistant to cytotoxic chemotherapeutic agents. We sought to identify critical signaling pathways that contribute to their survival and proliferation, and which may provide potential targets for rational therapeutic interventions. Activation of receptor tyrosine kinases (RTK) was surveyed using phospho-RTK arrays. S6 phosphorylation and NRAS mutational status were examined in chondrosarcoma primary tumor tissues. siRNA or small-molecule inhibitors against RTKs or downstream signaling proteins were applied to chondrosarcoma cells and changes in biochemical signaling, cell cycle, and cell viability were determined. In vivo antitumor activity of BEZ235, a phosphoinositide 3-kinase (PI3K)/mTOR inhibitor, was evaluated in a chondrosarcoma xenograft model. Several RTKs were identified as critical mediators of cell growth, but the RTK dependencies varied among cell lines. In exploration of downstream signaling pathways, strong S6 phosphorylation was found in 69% of conventional chondrosarcomas and 44% of dedifferentiated chondrosarcomas. Treatment with BEZ235 resulted in dramatic reduction in the growth of all chondrosarcoma cell lines. Tumor growth was similarly inhibited in a xenograft model of chondrosarcoma. In addition, chondrosarcoma cells with an NRAS mutation were sensitive to treatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor. Functional NRAS mutations were found in 12% of conventional central chondrosarcomas. RTKs are commonly activated in chondrosarcoma, but because of their considerable heterogeneity, targeted inhibition of the PI3K/mTOR pathway represents a rational therapeutic strategy. Chondrosarcomas with NRAS mutations may benefit from treatment with MEK inhibitors.

  15. Targeting Prolyl Peptidases in Triple-Negative Breast Cancer

    DTIC Science & Technology

    2017-02-01

    cell survival. We identified a protein called PRCP (prolylcarboxypeptidase) that promotes metastasis and survival in breast cancer cells. We found...PRCP/PREP inhibition reduces IRS1 and IRS2 protein levels, blocks proliferation, and induces death in multiple TNBC cell lines of different sub-types...2 are adaptor proteins that mediate signaling downstream of both IGF-1R and EGFR/ErbB3 [6-8]. Pathways activated downstream of IRS-1/2 include the

  16. Phosphodiesterase type 5 and cancers: progress and challenges

    PubMed Central

    Barone, Ines; Giordano, Cinzia; Bonofiglio, Daniela; Andò, Sebastiano; Catalano, Stefania

    2017-01-01

    Cancers are an extraordinarily heterogeneous collection of diseases with distinct genetic profiles and biological features that directly influence response patterns to various treatment strategies as well as clinical outcomes. Nevertheless, our growing understanding of cancer cell biology and tumor progression is gradually leading towards rational, tailored medical treatments designed to destroy cancer cells by exploiting the unique cellular pathways that distinguish them from normal healthy counterparts. Recently, inhibition of the activity of phosphodiesterase type 5 (PDE5) is emerging as a promising approach to restore normal intracellular cyclic guanosine monophosphate (cGMP) signalling, and thereby resulting into the activation of various downstream molecules to inhibit proliferation, motility and invasion of certain cancer cells. In this review, we present an overview of the experimental and clinical evidences highlighting the role of PDE5 in the pathogenesis and prevention of various malignancies. Current data are still not sufficient to draw conclusive statements for cancer patient management, but could provide further rational for testing PDE5-targeting drugs as anticancer agents in clinical settings. PMID:29228762

  17. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer.

    PubMed

    Vallejo, Adrian; Perurena, Naiara; Guruceaga, Elisabet; Mazur, Pawel K; Martinez-Canarias, Susana; Zandueta, Carolina; Valencia, Karmele; Arricibita, Andrea; Gwinn, Dana; Sayles, Leanne C; Chuang, Chen-Hua; Guembe, Laura; Bailey, Peter; Chang, David K; Biankin, Andrew; Ponz-Sarvise, Mariano; Andersen, Jesper B; Khatri, Purvesh; Bozec, Aline; Sweet-Cordero, E Alejandro; Sage, Julien; Lecanda, Fernando; Vicent, Silve

    2017-02-21

    KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identification of a common transcriptional signature across mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1. High FOSL1 expression identifies mutant KRAS lung and pancreatic cancer patients with the worst survival outcome. Furthermore, FOSL1 genetic inhibition is detrimental to both KRAS-driven tumour types. Mechanistically, FOSL1 links the KRAS oncogene to components of the mitotic machinery, a pathway previously postulated to function orthogonally to oncogenic KRAS. FOSL1 targets include AURKA, whose inhibition impairs viability of mutant KRAS cells. Lastly, combination of AURKA and MEK inhibitors induces a deleterious effect on mutant KRAS cells. Our findings unveil KRAS downstream effectors that provide opportunities to treat KRAS-driven cancers.

  18. ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity

    PubMed Central

    Badoual, Mathilde; Asmussen, Hannelore; Patel, Heather; Whitmore, Leanna; Horwitz, Alan Rick

    2015-01-01

    RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front–back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions of migratory fibroblasts and the head of dendritic spines. We have found that the two ROCK isoforms, ROCK1 and ROCK2, differentially regulate distinct molecular pathways downstream of RhoA, and their coordinated activities drive polarity in both cell migration and synapse formation. In particular, ROCK1 forms the stable actomyosin filament bundles that initiate front–back and dendritic spine polarity. In contrast, ROCK2 regulates contractile force and Rac1 activity at the leading edge of migratory cells and the spine head of neurons; it also specifically regulates cofilin-mediated actin remodeling that underlies the maturation of adhesions and the postsynaptic density of dendritic spines. PMID:26169356

  19. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids.

    PubMed

    Hornung, Veit; Hartmann, Rune; Ablasser, Andrea; Hopfner, Karl-Peter

    2014-08-01

    Recent discoveries in the field of innate immunity have highlighted the existence of a family of nucleic acid-sensing proteins that have similar structural and functional properties. These include the well-known oligoadenylate synthase (OAS) family proteins and the recently identified OAS homologue cyclic GMP-AMP (cGAMP) synthase (cGAS). The OAS proteins and cGAS are template-independent nucleotidyltransferases that, once activated by double-stranded nucleic acids in the cytosol, produce unique classes of 2'-5'-linked second messenger molecules, which - through distinct mechanisms - have crucial antiviral functions. 2'-5'-linked oligoadenylates limit viral propagation through the activation of the enzyme RNase L, which degrades host and viral RNA, and 2'-5'-linked cGAMP activates downstream signalling pathways to induce de novo antiviral gene expression. In this Progress article, we describe the striking functional and structural similarities between OAS proteins and cGAS, and highlight their roles in antiviral immunity.

  20. The Cryptococcus neoformans Capsule: a Sword and a Shield

    PubMed Central

    O'Meara, Teresa R.

    2012-01-01

    Summary: The human fungal pathogen Cryptococcus neoformans is characterized by its ability to induce a distinct polysaccharide capsule in response to a number of host-specific environmental stimuli. The induction of capsule is a complex biological process encompassing regulation at multiple steps, including the biosynthesis, transport, and maintenance of the polysaccharide at the cell surface. By precisely regulating the composition of its cell surface and secreted polysaccharides, C. neoformans has developed intricate ways to establish chronic infection and dormancy in the human host. The plasticity of the capsule structure in response to various host conditions also underscores the complex relationship between host and parasite. Much of this precise regulation of capsule is achieved through the transcriptional responses of multiple conserved signaling pathways that have been coopted to regulate this C. neoformans-specific virulence-associated phenotype. This review focuses on specific host stimuli that trigger the activation of the signal transduction cascades and on the downstream transcriptional responses that are required for robust encapsulation around the cell. PMID:22763631

  1. Sensory Neuron Fates Are Distinguished by a Transcriptional Switch that Regulates Dendrite Branch Stabilization

    PubMed Central

    Smith, Cody J.; O’Brien, Timothy; Chatzigeorgiou, Marios; Spencer, W. Clay; Feingold-Link, Elana; Husson, Steven J.; Hori, Sayaka; Mitani, Shohei; Gottschalk, Alexander; Schafer, William R.; Miller, David M.

    2013-01-01

    SUMMARY Sensory neurons adopt distinct morphologies and functional modalities to mediate responses to specific stimuli. Transcription factors and their downstream effectors orchestrate this outcome but are incompletely defined. Here, we show that different classes of mechanosensory neurons in C. elegans are distinguished by the combined action of the transcription factors MEC-3, AHR-1, and ZAG-1. Low levels of MEC-3 specify the elaborate branching pattern of PVD nociceptors, whereas high MEC-3 is correlated with the simple morphology of AVM and PVM touch neurons. AHR-1 specifies AVM touch neuron fate by elevating MEC-3 while simultaneously blocking expression of nociceptive genes such as the MEC-3 target, the claudin-like membrane protein HPO-30, that promotes the complex dendritic branching pattern of PVD. ZAG-1 exercises a parallel role to prevent PVM from adopting the PVD fate. The conserved dendritic branching function of the Drosophila AHR-1 homolog, Spineless, argues for similar pathways in mammals. PMID:23889932

  2. Modular Representation of Luminance Polarity In the Superficial Layers Of Primary Visual Cortex

    PubMed Central

    Smith, Gordon B.; Whitney, David E.; Fitzpatrick, David

    2016-01-01

    Summary The spatial arrangement of luminance increments (ON) and decrements (OFF) falling on the retina provides a wealth of information used by central visual pathways to construct coherent representations of visual scenes. But how the polarity of luminance change is represented in the activity of cortical circuits remains unclear. Using wide-field epifluorescence and two-photon imaging we demonstrate a robust modular representation of luminance polarity (ON or OFF) in the superficial layers of ferret primary visual cortex. Polarity-specific domains are found with both uniform changes in luminance and single light/dark edges, and include neurons selective for orientation and direction of motion. The integration of orientation and polarity preference is evident in the selectivity and discrimination capabilities of most layer 2/3 neurons. We conclude that polarity selectivity is an integral feature of layer 2/3 neurons, ensuring that the distinction between light and dark stimuli is available for further processing in downstream extrastriate areas. PMID:26590348

  3. A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib

    PubMed Central

    Yang, Lida; Kaur, Harmandeep; Pestel, Jenny; Looso, Mario; Nolte, Hendrik; Krishnan, Ramesh K.; Bünemann, Moritz; Offermanns, Stefan; Swiercz, Jakub M.

    2017-01-01

    Semaphorins comprise a large family of ligands that regulate key cellular functions through their receptors, plexins. In this study, we show that the transmembrane semaphorin 4A (Sema4A) can also function as a receptor, rather than a ligand, and transduce signals triggered by the binding of Plexin-B1 through reverse signaling. Functionally, reverse Sema4A signaling regulates the migration of various cancer cells as well as dendritic cells. By combining mass spectrometry analysis with small interfering RNA screening, we identify the polarity protein Scrib as a downstream effector of Sema4A. We further show that binding of Plexin-B1 to Sema4A promotes the interaction of Sema4A with Scrib, thereby removing Scrib from its complex with the Rac/Cdc42 exchange factor βPIX and decreasing the activity of the small guanosine triphosphatase Rac1 and Cdc42. Our data unravel a role for Plexin-B1 as a ligand and Sema4A as a receptor and characterize a reverse signaling pathway downstream of Sema4A, which controls cell migration. PMID:28007914

  4. A splice donor mutation in NAA10 results in the dysregulation of the retinoic acid signaling pathway and causes Lenz microphthalmia syndrome

    PubMed Central

    Esmailpour, Taraneh; Riazifar, Hamidreza; Liu, Linan; Donkervoort, Sandra; Huang, Vincent H; Madaan, Shreshtha; Shoucri, Bassem M; Busch, Anke; Wu, Jie; Towbin, Alexander; Chadwick, Robert B; Sequeira, Adolfo; Vawter, Marquis P; Sun, Guoli; Johnston, Jennifer J; Biesecker, Leslie G; Kawaguchi, Riki; Sun, Hui; Kimonis, Virginia; Huang, Taosheng

    2014-01-01

    Introduction Lenz microphthalmia syndrome (LMS) is a genetically heterogeneous X-linked disorder characterised by microphthalmia/anophthalmia, skeletal abnormalities, genitourinary malformations, and anomalies of the digits, ears, and teeth. Intellectual disability and seizure disorders are seen in about 60% of affected males. To date, no gene has been identified for LMS in the microphthalmia syndrome 1 locus (MCOPS1). In this study, we aim to find the disease-causing gene for this condition. Methods and results Using exome sequencing in a family with three affected brothers, we identified a mutation in the intron 7 splice donor site (c.471+2T→A) of the N-acetyltransferase NAA10 gene. NAA10 has been previously shown to be mutated in patients with Ogden syndrome, which is clinically distinct from LMS. Linkage studies for this family mapped the disease locus to Xq27-Xq28, which was consistent with the locus of NAA10. The mutation co-segregated with the phenotype and cDNA analysis showed aberrant transcripts. Patient fibroblasts lacked expression of full length NAA10 protein and displayed cell proliferation defects. Expression array studies showed significant dysregulation of genes associated with genetic forms of anophthalmia such as BMP4, STRA6, and downstream targets of BCOR and the canonical WNT pathway. In particular, STRA6 is a retinol binding protein receptor that mediates cellular uptake of retinol/vitamin A and plays a major role in regulating the retinoic acid signalling pathway. A retinol uptake assay showed that retinol uptake was decreased in patient cells. Conclusions We conclude that the NAA10 mutation is the cause of LMS in this family, likely through the dysregulation of the retinoic acid signalling pathway. PMID:24431331

  5. Alterations in ubiquitin ligase Siah-2 and its corepressor N-CoR after P-MAPA immunotherapy and anti-androgen therapy: new therapeutic opportunities for non-muscle invasive bladder cancer

    PubMed Central

    Garcia, Patrick Vianna; Apolinário, Letícia Montanholi; Böckelmann, Petra Karla; Nunes, Iseu da Silva; Duran, Nelson; Fávaro, Wagner José

    2015-01-01

    The present study describes the role of the ubiquitin ligase Siah-2 and corepressor N-CoR in controlling androgen receptor (AR) and estrogen receptors (ERα and ERβ) signaling in an appropriate animal model (Fischer 344 female rats) of non-muscle invasive bladder cancer (NMIBC), especially under conditions of anti-androgen therapy with flutamide. Furthermore, this study describes the mechanisms of a promising therapeutic alternative for NMIBC based on Protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) intravesical immunotherapy combined with flutamide, involving the interaction among steroid hormone receptors, their regulators and Toll-like receptors (TLRs). Our results demonstrated that increased Siah-2 and AR protein levels and decreased N-CoR, cytochrome P450 (CYP450) and estrogen receptors levels played a critical role in the urothelial carcinogenesis, probably leading to escape of urothelial cancer cells from immune system attack. P-MAPA immunotherapy led to distinct activation of innate immune system TLRs 2 and 4-mediated, resulting in increase of interferon signaling pathway, which was more effective in recovering the immunosuppressive tumor immune microenvironment and in recovering the bladder histology features than BCG (Bacillus Calmette-Guerin) treatments. The AR blockade therapy was important in the modulating of downstream molecules of TLR2 and TLR4 signaling pathway, decreasing the inflammatory cytokines signaling and enhancing the interferon signaling pathway when associated with P-MAPA. Taken together, the data obtained suggest that interferon signaling pathway activation and targeting AR and Siah-2 signals by P-MAPA intravesical immunotherapy alone and/ or in combination with AR blockade may provide novel therapeutic approaches for NMIBC. PMID:26191134

  6. Alterations in ubiquitin ligase Siah-2 and its corepressor N-CoR after P-MAPA immunotherapy and anti-androgen therapy: new therapeutic opportunities for non-muscle invasive bladder cancer.

    PubMed

    Garcia, Patrick Vianna; Apolinário, Letícia Montanholi; Böckelmann, Petra Karla; da Silva Nunes, Iseu; Duran, Nelson; Fávaro, Wagner José

    2015-01-01

    The present study describes the role of the ubiquitin ligase Siah-2 and corepressor N-CoR in controlling androgen receptor (AR) and estrogen receptors (ERα and ERβ) signaling in an appropriate animal model (Fischer 344 female rats) of non-muscle invasive bladder cancer (NMIBC), especially under conditions of anti-androgen therapy with flutamide. Furthermore, this study describes the mechanisms of a promising therapeutic alternative for NMIBC based on Protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) intravesical immunotherapy combined with flutamide, involving the interaction among steroid hormone receptors, their regulators and Toll-like receptors (TLRs). Our results demonstrated that increased Siah-2 and AR protein levels and decreased N-CoR, cytochrome P450 (CYP450) and estrogen receptors levels played a critical role in the urothelial carcinogenesis, probably leading to escape of urothelial cancer cells from immune system attack. P-MAPA immunotherapy led to distinct activation of innate immune system TLRs 2 and 4-mediated, resulting in increase of interferon signaling pathway, which was more effective in recovering the immunosuppressive tumor immune microenvironment and in recovering the bladder histology features than BCG (Bacillus Calmette-Guerin) treatments. The AR blockade therapy was important in the modulating of downstream molecules of TLR2 and TLR4 signaling pathway, decreasing the inflammatory cytokines signaling and enhancing the interferon signaling pathway when associated with P-MAPA. Taken together, the data obtained suggest that interferon signaling pathway activation and targeting AR and Siah-2 signals by P-MAPA intravesical immunotherapy alone and/ or in combination with AR blockade may provide novel therapeutic approaches for NMIBC.

  7. Diel Metagenomics and Metatranscriptomics of Elkhorn Slough Hypersaline Microbial Mat

    NASA Astrophysics Data System (ADS)

    Lee, J.; Detweiler, A. M.; Everroad, R. C.; Bebout, L. E.; Weber, P. K.; Pett-Ridge, J.; Bebout, B.

    2014-12-01

    To understand the variation in gene expression associated with the daytime oxygenic phototrophic and nighttime fermentation regimes seen in hypersaline microbial mats, a contiguous mat piece was subjected to sampling at regular intervals over a 24-hour diel period. Additionally, to understand the impact of sulfate reduction on biohydrogen consumption, molybdate was added to a parallel experiment in the same run. 4 metagenome and 12 metatranscriptome Illumina HiSeq lanes were completed over day / night, and control / molybdate experiments. Preliminary comparative examination of noon and midnight metatranscriptomic samples mapped using bowtie2 to reference genomes has revealed several notable results about the dominant mat-building cyanobacterium Microcoleus chthonoplastes PCC 7420. Dominant cyanobacterium M. chthonoplastes PCC 7420 shows expression in several pathways for nitrogen scavenging, including nitrogen fixation. Reads mapped to M. chthonoplastes PCC 7420 shows expression of two starch storage and utilization pathways, one as a starch-trehalose-maltose-glucose pathway, another through UDP-glucose-cellulose-β-1,4 glucan-glucose pathway. The overall trend of gene expression was primarily light driven up-regulation followed by down-regulation in dark, while much of the remaining expression profile appears to be constitutive. Co-assembly of quality-controlled reads from 4 metagenomes was performed using Ray Meta with progressively smaller K-mer sizes, with bins identified and filtered using principal component analysis of coverages from all libraries and a %GC filter, followed by reassembly of the remaining co-assembly reads and binned reads. Despite having relatively similar abundance profiles in each metagenome, this binning approach was able to distinctly resolve bins from dominant taxa, but also sulfate reducing bacteria that are desired for understanding molybdate inhibition. Bins generated from this iterative assembly process will be used for downstream mapping of transcriptomic reads as well as isolation efforts for Cyanobacteria-associated bacteria.

  8. The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula.

    PubMed

    Mertens, Jan; Pollier, Jacob; Vanden Bossche, Robin; Lopez-Vidriero, Irene; Franco-Zorrilla, José Manuel; Goossens, Alain

    2016-01-01

    Plants respond to stresses by producing a broad spectrum of bioactive specialized metabolites. Hormonal elicitors, such as jasmonates, trigger a complex signaling circuit leading to the concerted activation of specific metabolic pathways. However, for many specialized metabolic pathways, the transcription factors involved remain unknown. Here, we report on two homologous jasmonate-inducible transcription factors of the basic helix-loop-helix family, TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR1 (TSAR1) and TSAR2, which direct triterpene saponin biosynthesis in Medicago truncatula. TSAR1 and TSAR2 are coregulated with and transactivate the genes encoding 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE1 (HMGR1) and MAKIBISHI1, the rate-limiting enzyme for triterpene biosynthesis and an E3 ubiquitin ligase that controls HMGR1 levels, respectively. Transactivation is mediated by direct binding of TSARs to the N-box in the promoter of HMGR1. In transient expression assays in tobacco (Nicotiana tabacum) protoplasts, TSAR1 and TSAR2 exhibit different patterns of transactivation of downstream triterpene saponin biosynthetic genes, hinting at distinct functionalities within the regulation of the pathway. Correspondingly, overexpression of TSAR1 or TSAR2 in M. truncatula hairy roots resulted in elevated transcript levels of known triterpene saponin biosynthetic genes and strongly increased the accumulation of triterpene saponins. TSAR2 overexpression specifically boosted hemolytic saponin biosynthesis, whereas TSAR1 overexpression primarily stimulated nonhemolytic soyasaponin biosynthesis. Both TSARs also activated all genes of the precursor mevalonate pathway but did not affect sterol biosynthetic genes, pointing to their specific role as regulators of specialized triterpene metabolism in M. truncatula. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer

    PubMed Central

    Oran, Amanda R.; Adams, Clare M.; Zhang, Xiao-yong; Gennaro, Victoria J.; Pfeiffer, Harla K.; Mellert, Hestia S.; Seidel, Hans E.; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R.; Shen, Chen; Rigoutsos, Isidore; King, Michael P.; Cotney, Justin L.; Arnold, Jamie J.; Sharma, Suresh D.; Martinez, Ubaldo E.; Vakoc, Christopher R.; Chodosh, Lewis A.; Thompson, James E.; Bradner, James E.; Cameron, Craig E.; Shadel, Gerald S.; Eischen, Christine M.; McMahon, Steven B.

    2016-01-01

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors. PMID:27590350

  10. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer.

    PubMed

    Oran, Amanda R; Adams, Clare M; Zhang, Xiao-Yong; Gennaro, Victoria J; Pfeiffer, Harla K; Mellert, Hestia S; Seidel, Hans E; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R; Shen, Chen; Rigoutsos, Isidore; King, Michael P; Cotney, Justin L; Arnold, Jamie J; Sharma, Suresh D; Martinez-Outschoorn, Ubaldo E; Vakoc, Christopher R; Chodosh, Lewis A; Thompson, James E; Bradner, James E; Cameron, Craig E; Shadel, Gerald S; Eischen, Christine M; McMahon, Steven B

    2016-11-08

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors.

  11. TEAD1 mediates the oncogenic activities of Hippo-YAP1 signaling in osteosarcoma.

    PubMed

    Chai, Jiwei; Xu, Shijie; Guo, Fengbo

    2017-06-24

    Hippo signaling pathway is an evolutionarily conserved developmental network that governs the downstream transcriptional co-activators, YAP and TAZ, which bind to and activate the output of TEADs that responsible for cell proliferation, apoptosis, and stem cell self renewal. Emerging evidence has shown the tumor suppressor properties of Hippo signaling. However, limited knowledge is available concerning the downstream transcription factors of Hippo pathway in osteosarcoma (OS). In this study, we demonstrated that TEAD1 was the major transcription factor of Hippo signaling pathway in OS. Genetic silencing of TEAD1 suppressed multiple malignant phenotypes of OS cells including cell proliferation, apoptosis resistance, and invasive potential. Mechanistically, we showed that TEAD1 largely exerted its transcriptional control of its functional targets, PTGS2 and CYR61. Collectively, this work identifies the YAP1/TEAD1 complex as the representative dysregulated profile of Hippo signaling in OS and provides proof-of-principle that targeting TEAD1 may be a therapeutic strategy of osteosarcoma. Copyright © 2017. Published by Elsevier Inc.

  12. Synergistic anti-tumor effect of 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 on human melanoma.

    PubMed

    Calero, R; Morchon, E; Martinez-Argudo, I; Serrano, R

    2017-10-10

    Drug resistance by MAPK signaling recovery or activation of alternative signaling pathways, such as PI3K/AKT/mTOR, is an important factor that limits the long-term efficacy of targeted therapies in melanoma patients. In the present study, we investigated the phospho-proteomic profile of RTKs and its correlation with downstream signaling pathways in human melanoma. We found that tyrosine kinase receptors expression correlated with the expression of pivotal downstream components of the RAS/RAF/MAPK and PI3K/AKT/mTOR pathways in melanoma cell lines and tumors. We also found high expression of HSP90 and the PI3K/AKT/mTOR pathway proteins, 4EBP1 and AKT compared with healthy tissue and this correlated with poor overall survival of melanoma patients. The combination of the HSP90 inhibitor 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 showed a synergistic activity decreasing melanoma cell growth, inducing apoptosis and targeting simultaneously the MAPK and PI3K/AKT/mTOR pathways. These results demonstrate that the combination of HSP90 and PI3K/mTOR inhibitors could be an effective therapeutic strategy that target the main survival pathways in melanoma and must be considered to overcome resistance to BRAF inhibitors in melanoma patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthetic Routes to Methylerythritol Phosphate Pathway Intermediates and Downstream Isoprenoids

    PubMed Central

    Jarchow-Choy, Sarah K; Koppisch, Andrew T; Fox, David T

    2014-01-01

    Isoprenoids constitute the largest class of natural products with greater than 55,000 identified members. They play essential roles in maintaining proper cellular function leading to maintenance of human health, plant defense mechanisms against predators, and are often exploited for their beneficial properties in the pharmaceutical and nutraceutical industries. Most impressively, all known isoprenoids are derived from one of two C5-precursors, isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). In order to study the enzyme transformations leading to the extensive structural diversity found within this class of compounds there must be access to the substrates. Sometimes, intermediates within a biological pathway can be isolated and used directly to study enzyme/pathway function. However, the primary route to most of the isoprenoid intermediates is through chemical catalysis. As such, this review provides the first exhaustive examination of synthetic routes to isoprenoid and isoprenoid precursors with particular emphasis on the syntheses of intermediates found as part of the 2C-methylerythritol 4-phosphate (MEP) pathway. In addition, representative syntheses are presented for the monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), triterpenes (C30) and tetraterpenes (C40). Finally, in some instances, the synthetic routes to substrate analogs found both within the MEP pathway and downstream isoprenoids are examined. PMID:25009443

  14. Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1

    PubMed Central

    Pedruzzi, Ivo; Bürckert, Niels; Egger, Pascal; De Virgilio, Claudio

    2000-01-01

    The Saccharomyces cerevisiae protein kinase Rim15 was identified previously as a component of the Ras/cAMP pathway acting immediately downstream of cAMP-dependent protein kinase (cAPK) to control a broad range of adaptations in response to nutrient limitation. Here, we show that the zinc finger protein Gis1 acts as a dosage-dependent suppressor of the rim15Δ defect in nutrient limitation-induced transcriptional derepression of SSA3. Loss of Gis1 results in a defect in transcriptional derepression upon nutrient limitation of various genes that are negatively regulated by the Ras/cAMP pathway (e.g. SSA3, HSP12 and HSP26). Tests of epistasis as well as transcriptional analyses of Gis1-dependent expression indicate that Gis1 acts in this pathway downstream of Rim15 to mediate transcription from the previously identified post-diauxic shift (PDS) element. Accordingly, deletion of GIS1 partially suppresses, and overexpression of GIS1 exacerbates the growth defect of mutant cells that are compromised for cAPK activity. Moreover, PDS element-driven expression, which is negatively regulated by the Ras/cAMP pathway and which is induced upon nutrient limitation, is almost entirely dependent on the presence of Gis1. PMID:10835355

  15. Mechanisms of action of nonpeptide hormones on resveratrol-induced antiproliferation of cancer cells.

    PubMed

    Lin, Hung-Yun; Hsieh, Meng-Ti; Cheng, Guei-Yun; Lai, Hsuan-Yu; Chin, Yu-Tang; Shih, Ya-Jung; Nana, André Wendindondé; Lin, Shin-Ying; Yang, Yu-Chen S H; Tang, Heng-Yuan; Chiang, I-Jen; Wang, Kuan

    2017-09-01

    Nonpeptide hormones, such as thyroid hormone, dihydrotestosterone, and estrogen, have been shown to stimulate cancer proliferation via different mechanisms. Aside from their cytosolic or membrane-bound receptors, there are receptors on integrin α v β 3 for nonpeptide hormones. Interaction between hormones and integrin α v β 3 can induce signal transduction and eventually stimulate cancer cell proliferation. Resveratrol induces inducible COX-2-dependent antiproliferation via integrin α v β 3 . Resveratrol and hormone-induced signals are both transduced by activated extracellular-regulated kinases 1 and 2 (ERK1/2); however, hormones promote cell proliferation, while resveratrol induces antiproliferation in cancer cells. Hormones inhibit resveratrol-stimulated phosphorylation of p53 on Ser15, resveratrol-induced nuclear COX-2 accumulation, and formation of p53-COX-2 nuclear complexes. Subsequently, hormones impair resveratrol-induced COX-2-/p53-dependent gene expression. The inhibitory effects of hormones on resveratrol action can be blocked by different antagonists of specific nonpeptide hormone receptors but not integrin α v β 3 blockers. Results suggest that nonpeptide hormones inhibit resveratrol-induced antiproliferation in cancer cells downstream of the interaction between ligand and receptor and ERK1/2 activation to interfere with nuclear COX-2 accumulation. Thus, the surface receptor sites for resveratrol and nonpeptide hormones are distinct and can induce discrete ERK1/2-dependent downstream antiproliferation biological activities. It also indicates the complex pathways by which antiproliferation is induced by resveratrol in various physiological hormonal environments. . © 2017 New York Academy of Sciences.

  16. XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits.

    PubMed

    Fang, Hai; Knezevic, Bogdan; Burnham, Katie L; Knight, Julian C

    2016-12-13

    Biological interpretation of genomic summary data such as those resulting from genome-wide association studies (GWAS) and expression quantitative trait loci (eQTL) studies is one of the major bottlenecks in medical genomics research, calling for efficient and integrative tools to resolve this problem. We introduce eXploring Genomic Relations (XGR), an open source tool designed for enhanced interpretation of genomic summary data enabling downstream knowledge discovery. Targeting users of varying computational skills, XGR utilises prior biological knowledge and relationships in a highly integrated but easily accessible way to make user-input genomic summary datasets more interpretable. We show how by incorporating ontology, annotation, and systems biology network-driven approaches, XGR generates more informative results than conventional analyses. We apply XGR to GWAS and eQTL summary data to explore the genomic landscape of the activated innate immune response and common immunological diseases. We provide genomic evidence for a disease taxonomy supporting the concept of a disease spectrum from autoimmune to autoinflammatory disorders. We also show how XGR can define SNP-modulated gene networks and pathways that are shared and distinct between diseases, how it achieves functional, phenotypic and epigenomic annotations of genes and variants, and how it enables exploring annotation-based relationships between genetic variants. XGR provides a single integrated solution to enhance interpretation of genomic summary data for downstream biological discovery. XGR is released as both an R package and a web-app, freely available at http://galahad.well.ox.ac.uk/XGR .

  17. Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis.

    PubMed

    Sinha Roy, Rituparna; Soni, Shivani; Harfouche, Rania; Vasudevan, Pooja R; Holmes, Oliver; de Jonge, Hugo; Rowe, Arthur; Paraskar, Abhimanyu; Hentschel, Dirk M; Chirgadze, Dimitri; Blundell, Tom L; Gherardi, Ermanno; Mashelkar, Raghunath A; Sengupta, Shiladitya

    2010-08-03

    Therapeutic angiogenesis is an emerging paradigm for the management of ischemic pathologies. Proangiogenic Therapy is limited, however, by the current inability to deliver angiogenic factors in a sustained manner at the site of pathology. In this study, we investigated a unique nonglycosylated active fragment of hepatocyte growth factor/scatter factor, 1K1, which acts as a potent angiogenic agent in vitro and in a zebrafish embryo and a murine matrigel implant model. Furthermore, we demonstrate that nanoformulating 1K1 for sustained release temporally alters downstream signaling through the mitogen activated protein kinase pathway, and amplifies the angiogenic outcome. Merging protein engineering and nanotechnology offers exciting possibilities for the treatment of ischemic disease, and furthermore allows the selective targeting of downstream signaling pathways, which translates into discrete phenotypes.

  18. Ubiquitylation and the Fanconi Anemia Pathway

    PubMed Central

    Garner, Elizabeth; Smogorzewska, Agata

    2012-01-01

    The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability. PMID:21605559

  19. Genomic pathway analysis reveals that EZH2 and HDAC4 represent mutually exclusive epigenetic pathways across human cancers

    PubMed Central

    2013-01-01

    Background Alterations in epigenetic marks, including methylation or acetylation, are common in human cancers. For many epigenetic pathways, however, direct measures of activity are unknown, making their role in various cancers difficult to assess. Gene expression signatures facilitate the examination of patterns of epigenetic pathway activation across and within human cancer types allowing better understanding of the relationships between these pathways. Methods We used Bayesian regression to generate gene expression signatures from normal epithelial cells before and after epigenetic pathway activation. Signatures were applied to datasets from TCGA, GEO, CaArray, ArrayExpress, and the cancer cell line encyclopedia. For TCGA data, signature results were correlated with copy number variation and DNA methylation changes. GSEA was used to identify biologic pathways related to the signatures. Results We developed and validated signatures reflecting downstream effects of enhancer of zeste homolog 2(EZH2), histone deacetylase(HDAC) 1, HDAC4, sirtuin 1(SIRT1), and DNA methyltransferase 2(DNMT2). By applying these signatures to data from cancer cell lines and tumors in large public repositories, we identify those cancers that have the highest and lowest activation of each of these pathways. Highest EZH2 activation is seen in neuroblastoma, hepatocellular carcinoma, small cell lung cancer, and melanoma, while highest HDAC activity is seen in pharyngeal cancer, kidney cancer, and pancreatic cancer. Across all datasets studied, activation of both EZH2 and HDAC4 is significantly underrepresented. Using breast cancer and glioblastoma as examples to examine intrinsic subtypes of particular cancers, EZH2 activation was highest in luminal breast cancers and proneural glioblastomas, while HDAC4 activation was highest in basal breast cancer and mesenchymal glioblastoma. EZH2 and HDAC4 activation are associated with particular chromosome abnormalities: EZH2 activation with aberrations in genes from the TGF and phosphatidylinositol pathways and HDAC4 activation with aberrations in inflammatory and chemokine related genes. Conclusion Gene expression patterns can reveal the activation level of epigenetic pathways. Epigenetic pathways define biologically relevant subsets of human cancers. EZH2 activation and HDAC4 activation correlate with growth factor signaling and inflammation, respectively, and represent two distinct states for cancer cells. This understanding may allow us to identify targetable drivers in these cancer subsets. PMID:24079712

  20. Proliferation of murine c-kit(pos) cardiac stem cells stimulated with IGF-1 is associated with Akt-1 mediated phosphorylation and nuclear export of FoxO3a and its effect on downstream cell cycle regulators.

    PubMed

    Johnson, Ann Mary; Kartha, C C

    2014-04-01

    Insulin-like growth factor-1 (IGF-1) is known to promote proliferation in many cell types including c-kit(pos) cardiac stem cells (CSCs). Downstream signaling pathways of IGF-1 induced CSC proliferation have not been investigated. An important downstream target of IGF-1/Akt-1 signaling is FoxO3a, a key negative regulator of cell-cycle progression. We studied the effect of IGF-1 on proliferation of c-kit(pos) murine CSCs and found that IGF-1-mediated cell proliferation is associated with FoxO3a phosphorylation and inactivation of its transcriptional activity. PI3 inhibitors LY294002 and Wortmannin abolished the effect of IGF-1 on FoxO3a phosphorylation indicating that FoxO3a phosphorylation is mediated by PI3/Akt-1 pathway. In cells with FoxO3a translocation to the cytoplasm, there is decreased expression of cell-cycle inhibitors such as p27(kip1) and p57(kip2) and increased expression of CyclinD1. Our study provides evidence that IGF-1 induced CSC proliferation could be the result of FoxO3a inactivation and its downstream effect on cell-cycle regulators.

  1. The Development of Novel Small Molecule Inhibitors of the Phosphoinositide-3-Kinase Pathway Through High-Throughput Cell-Based Screens

    DTIC Science & Technology

    2005-02-01

    Akt in the P13K pathway. Given the emerging data for a positive feedback loop induced by mTOR inhibition, a bispecific 5 inhibitor might be attractive...cells relatively sensitive to rapamycin are also sensitive to thioridazine. PTEN null cells are known to be preferentially sensitized to mTOR ...a potent mTOR inhibitor, a downstream protein kinase in the Akt pathway. Rapamycin showed strong growth inhibitory effect in PTEN-null cells but 786

  2. The Hippo signaling pathway in stem cell biology and cancer

    PubMed Central

    Mo, Jung-Soon; Park, Hyun Woo; Guan, Kun-Liang

    2014-01-01

    The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer. PMID:24825474

  3. Disease implications of the Hippo/YAP pathway

    PubMed Central

    Plouffe, Steven W; Hong, Audrey W; Guan, Kun-Liang

    2015-01-01

    The Hippo signaling pathway is important for controlling organ size and tissue homeostasis. Originally identified in Drosophila melanogaster, the core components of the Hippo pathway are highly conserved in mammals. The Hippo pathway can be modulated by a wide range of stimuli, including G protein coupled receptor (GPCR) signaling, changes in the actin cytoskeleton, cell-cell contact, and cell polarity. When activated, the Hippo pathway functions as a tumor suppressor to limit cell growth. However, dysregulation by genetic inactivation of core pathway components, or amplification or gene fusion of its downstream effectors, results in increased cell proliferation and decreased apoptosis and differentiation. Not surprisingly, this can lead to tissue overgrowth, tumorigenesis, and many other diseases. PMID:25702974

  4. beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures.

    PubMed

    Ye, Ping; Hu, Qichen; Liu, Hedi; Yan, Yun; D'ercole, A Joseph

    2010-07-01

    By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether beta-catenin, a molecule that is a downstream target of glycogen synthase kinase-3beta (GSK3beta) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases beta-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3beta. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in beta-catenin and cyclin D1 mRNA, while suppression of GSK3beta activity simulated IGF-I actions. Knocking-down beta-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that beta-catenin is an important downstream molecule in the PI3-Akt-GSK3beta pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. Copyright 2010 Wiley-Liss, Inc.

  5. Caged mudsnail Potamopyrgus antipodarum (Gray) as an integrated field biomonitoring tool: exposure assessment and reprotoxic effects of water column contamination.

    PubMed

    Gust, M; Gagné, F; Berlioz-Barbier, A; Besse, J P; Buronfosse, T; Tournier, M; Tutundjian, R; Garric, J; Cren-Olivé, C

    2014-05-01

    This study highlights the usefulness of gastropods for water quality monitoring. Gastropods were caged upstream and downstream of an effluent discharge. Exposure was assessed by measurement of organic contaminants in water. Contamination of the Potamopyrgus antipodarum mudsnail was also measured using innovative techniques at the end of the 42 days of exposure. Biological effects were measured at the individual level (growth, reproduction) and subindividual level (energy reserves, vitellin-like proteins, steroid levels, expression of genes involved in estrogen signaling pathways), thus providing a better understanding of reprotoxic effects. The effluent was mainly contaminated by pharmaceutical compounds, as was the mudsnail. The highest concentrations were measured for oxazepam and were higher than 2 mg/kg downstream of the effluent discharge. Alkylphenols, bisphenol A, and vertebrate-like sex-steroid hormones were also bioaccumulated by the mudsnail downstream of the effluent. The combined use of water and snail contamination provided a complete exposure assessment. Exposure was further linked to biological effects. The mudsnail was shown to be a better adapted species for in situ exposures than Valvata piscinalis. Reproduction was sharply decreased after 6 weeks of exposure in the mudsnail. Feeding issues were excluded, confirming the toxic origin. These effects were related to estrogen signaling pathways using genomic analysis. Genes coding for proteins involved in nongenomic signaling pathways were inhibited, and those of genomic pathway repressors were induced. These results suggest that the chemical contamination due to the effluent discharge altered steroid control of reproduction and blocked the transition between oocyte and unshelled embryo, resulting in a drastic decrease of embryo production, while survival was not affected. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Wogonin inhibits the proliferation and invasion, and induces the apoptosis of HepG2 and Bel7402 HCC cells through NF‑κB/Bcl-2, EGFR and EGFR downstream ERK/AKT signaling.

    PubMed

    Liu, Xiaodong; Tian, Shuo; Liu, Mei; Jian, Lingyan; Zhao, Limei

    2016-10-01

    The anticancer effects of the natural flavonoid, wogonin, have been reported. However, its molecular mechanisms of action have not yet been fully explored. In the present study, we aimed to examine the molecular mechanisms of action of wogonin and its effects on the biological behavior of the HepG2 and Bel7402 hepatocellular carcinoma (HCC) cell lines. We also examined the effects of wogonin on nuclear factor-κB (NF-κB)/Bcl-2 and epidermal growth factor receptor (EGFR) signaling, as well as on downstream pathways of EGFR, namely extracellular signal-regulated kinase (ERK)/AKT signaling. We found that treatment with wogonin inhibited the proliferation and invasion, and induced the apoptosis of the HepG2 and Bel7402 cells. In addition, treatment with wogonin decreased cyclin D1, cyclin E, CDK4/6, Bcl-2 and matrix metalloproteinase 2 (MMP2) expression, and promoted the cleavage of caspase-3 and caspase-9 in a concentration-dependent manner. Further experiments revealed that wogonin inhibited NF-κB/Bcl-2 signaling by decreasing the IκB and p65 phosphorylation levels. Wogonin also inhibited the activation of the EGFR (Tyr845) signaling pathway, and that of downstream pathways of EGFR, namely ERK/AKT/MMP2 signaling. The depletion of EGFR by siRNA partly abolished the inhibitory effects of wogonin on cyclin D1, MMP2 expression. On the whole, our our findings demonstrate that wogonin effectively suppresses the proliferation, invasion and survival of HCC cells through the modulation of the NF-κB and EGFR signaling pathways.

  7. cPLA2α Gene Activation by IL-1β is Dependent on an Upstream Kinase pathway, Enzymatic Activation and Downstream 15-lipoxygenase Activity: A Positive Feedback Loop

    PubMed Central

    Walters, Jewell N.; Bickford, Justin S.; Beachy, Dawn E.; Newsom, Kimberly J.; Herlihy, John-David H.; Peck, Molly V.; Qiu, Xiaolei; Nick, Harry S.

    2011-01-01

    Cytosolic phospholipase A2α (cPLA2α) is the most widely studied member of the Group IV PLA2 family. The enzyme is Ca2+-dependent with specificity for phospholipid substrates containing arachidonic acid. As the pinnacle of the arachidonic acid pathway, cPLA2α has a primary role in the biosynthesis of a diverse family of eicosanoid metabolites, with potent physiological, inflammatory and pathological consequences. cPLA2α activity is regulated by pro-inflammatory stimuli through pathways involving increased intracellular Ca2+ levels, phosphorylation coupled to increased enzymatic activity and de novo gene transcription. This study addresses the signal transduction pathways for protein phosphorylation and gene induction following IL-1β stimulation in human fetal lung fibroblasts. Our results utilizing both inhibitors and kinase-deficient cells demonstrate that cPLA2α is phosphorylated within 10 min of IL-1β treatment, an event requiring p38 MAPK as well as the upstream kinase, MKK3/MKK6. Inhibition of p38 MAPK also blocks the phosphorylation of a downstream, nuclear kinase, MSK-1. Our results further demonstrate that the activities of both cPLA2α and a downstream lipoxygenase (15-LOX2) are required for IL-1β-dependent induction of cPLA2α mRNA expression. Overall, these data support an MKK3/MKK6→p38 MAPK→MSK-1→cPLA2α→15-LOX2-dependent, positive feedback loop where a protein’s enzymatic activity is required to regulate its own gene induction by a pro-inflammatory stimulus. PMID:21771656

  8. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans.

    PubMed

    Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-02-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. Copyright © 2016 by the Genetics Society of America.

  9. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal.

    PubMed

    Yan, Kelley S; Janda, Claudia Y; Chang, Junlei; Zheng, Grace X Y; Larkin, Kathryn A; Luca, Vincent C; Chia, Luis A; Mah, Amanda T; Han, Arnold; Terry, Jessica M; Ootani, Akifumi; Roelf, Kelly; Lee, Mark; Yuan, Jenny; Li, Xiao; Bolen, Christopher R; Wilhelmy, Julie; Davies, Paige S; Ueno, Hiroo; von Furstenberg, Richard J; Belgrader, Phillip; Ziraldo, Solongo B; Ordonez, Heather; Henning, Susan J; Wong, Melissa H; Snyder, Michael P; Weissman, Irving L; Hsueh, Aaron J; Mikkelsen, Tarjei S; Garcia, K Christopher; Kuo, Calvin J

    2017-05-11

    The canonical Wnt/β-catenin signalling pathway governs diverse developmental, homeostatic and pathological processes. Palmitoylated Wnt ligands engage cell-surface frizzled (FZD) receptors and LRP5 and LRP6 co-receptors, enabling β-catenin nuclear translocation and TCF/LEF-dependent gene transactivation. Mutations in Wnt downstream signalling components have revealed diverse functions thought to be carried out by Wnt ligands themselves. However, redundancy between the 19 mammalian Wnt proteins and 10 FZD receptors and Wnt hydrophobicity have made it difficult to attribute these functions directly to Wnt ligands. For example, individual mutations in Wnt ligands have not revealed homeostatic phenotypes in the intestinal epithelium-an archetypal canonical, Wnt pathway-dependent, rapidly self-renewing tissue, the regeneration of which is fueled by proliferative crypt Lgr5 + intestinal stem cells (ISCs). R-spondin ligands (RSPO1-RSPO4) engage distinct LGR4-LGR6, RNF43 and ZNRF3 receptor classes, markedly potentiate canonical Wnt/β-catenin signalling, and induce intestinal organoid growth in vitro and Lgr5 + ISCs in vivo. However, the interchangeability, functional cooperation and relative contributions of Wnt versus RSPO ligands to in vivo canonical Wnt signalling and ISC biology remain unknown. Here we identify the functional roles of Wnt and RSPO ligands in the intestinal crypt stem-cell niche. We show that the default fate of Lgr5 + ISCs is to differentiate, unless both RSPO and Wnt ligands are present. However, gain-of-function studies using RSPO ligands and a new non-lipidated Wnt analogue reveal that these ligands have qualitatively distinct, non-interchangeable roles in ISCs. Wnt proteins are unable to induce Lgr5 + ISC self-renewal, but instead confer a basal competency by maintaining RSPO receptor expression that enables RSPO ligands to actively drive and specify the extent of stem-cell expansion. This functionally non-equivalent yet cooperative interaction between Wnt and RSPO ligands establishes a molecular precedent for regulation of mammalian stem cells by distinct priming and self-renewal factors, with broad implications for precise control of tissue regeneration.

  10. Projection-specific visual feature encoding by layer 5 cortical subnetworks

    PubMed Central

    Lur, Gyorgy; Vinck, Martin A.; Tang, Lan; Cardin, Jessica A.; Higley, Michael J.

    2016-01-01

    Summary Primary neocortical sensory areas act as central hubs, distributing afferent information to numerous cortical and subcortical structures. However, it remains unclear whether each downstream target receives distinct versions of sensory information. We used in vivo calcium imaging combined with retrograde tracing to monitor visual response properties of three distinct subpopulations of projection neurons in primary visual cortex. While there is overlap across the groups, on average corticotectal (CT) cells exhibit lower contrast thresholds and broader tuning for orientation and spatial frequency in comparison to corticostriatal (CS) cells, while corticocortical (CC) cells have intermediate properties. Noise correlational analyses support the hypothesis that CT cells integrate information across diverse layer 5 populations, whereas CS and CC cells form more selectively interconnected groups. Overall, our findings demonstrate the existence of functional subnetworks within layer 5 that may differentially route visual information to behaviorally relevant downstream targets. PMID:26972011

  11. Mining pathway associations for disease-related pathway activity analysis based on gene expression and methylation data.

    PubMed

    Lee, Hyeonjeong; Shin, Miyoung

    2017-01-01

    The problem of discovering genetic markers as disease signatures is of great significance for the successful diagnosis, treatment, and prognosis of complex diseases. Even if many earlier studies worked on identifying disease markers from a variety of biological resources, they mostly focused on the markers of genes or gene-sets (i.e., pathways). However, these markers may not be enough to explain biological interactions between genetic variables that are related to diseases. Thus, in this study, our aim is to investigate distinctive associations among active pathways (i.e., pathway-sets) shown each in case and control samples which can be observed from gene expression and/or methylation data. The pathway-sets are obtained by identifying a set of associated pathways that are often active together over a significant number of class samples. For this purpose, gene expression or methylation profiles are first analyzed to identify significant (active) pathways via gene-set enrichment analysis. Then, regarding these active pathways, an association rule mining approach is applied to examine interesting pathway-sets in each class of samples (case or control). By doing so, the sets of associated pathways often working together in activity profiles are finally chosen as our distinctive signature of each class. The identified pathway-sets are aggregated into a pathway activity network (PAN), which facilitates the visualization of differential pathway associations between case and control samples. From our experiments with two publicly available datasets, we could find interesting PAN structures as the distinctive signatures of breast cancer and uterine leiomyoma cancer, respectively. Our pathway-set markers were shown to be superior or very comparable to other genetic markers (such as genes or gene-sets) in disease classification. Furthermore, the PAN structure, which can be constructed from the identified markers of pathway-sets, could provide deeper insights into distinctive associations between pathway activities in case and control samples.

  12. Investigation of terpene diversification across multiple sequenced plant genomes

    PubMed Central

    Boutanaev, Alexander M.; Moses, Tessa; Zi, Jiachen; Nelson, David R.; Mugford, Sam T.; Peters, Reuben J.; Osbourn, Anne

    2015-01-01

    Plants produce an array of specialized metabolites, including chemicals that are important as medicines, flavors, fragrances, pigments and insecticides. The vast majority of this metabolic diversity is untapped. Here we take a systematic approach toward dissecting genetic components of plant specialized metabolism. Focusing on the terpenes, the largest class of plant natural products, we investigate the basis of terpene diversity through analysis of multiple sequenced plant genomes. The primary drivers of terpene diversification are terpenoid synthase (TS) “signature” enzymes (which generate scaffold diversity), and cytochromes P450 (CYPs), which modify and further diversify these scaffolds, so paving the way for further downstream modifications. Our systematic search of sequenced plant genomes for all TS and CYP genes reveals that distinct TS/CYP gene pairs are found together far more commonly than would be expected by chance, and that certain TS/CYP pairings predominate, providing signals for key events that are likely to have shaped terpene diversity. We recover TS/CYP gene pairs for previously characterized terpene metabolic gene clusters and demonstrate new functional pairing of TSs and CYPs within previously uncharacterized clusters. Unexpectedly, we find evidence for different mechanisms of pathway assembly in eudicots and monocots; in the former, microsyntenic blocks of TS/CYP gene pairs duplicate and provide templates for the evolution of new pathways, whereas in the latter, new pathways arise by mixing and matching of individual TS and CYP genes through dynamic genome rearrangements. This is, to our knowledge, the first documented observation of the unique pattern of TS and CYP assembly in eudicots and monocots. PMID:25502595

  13. Hyperglycemic Conditions Prime Cells for RIP1-dependent Necroptosis*

    PubMed Central

    LaRocca, Timothy J.; Sosunov, Sergey A.; Shakerley, Nicole L.; Ten, Vadim S.; Ratner, Adam J.

    2016-01-01

    Necroptosis is a RIP1-dependent programmed cell death (PCD) pathway that is distinct from apoptosis. Downstream effector pathways of necroptosis include formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS), both of which depend on glycolysis. This suggests that increased cellular glucose may prime necroptosis. Here we show that exposure to hyperglycemic levels of glucose enhances necroptosis in primary red blood cells (RBCs), Jurkat T cells, and U937 monocytes. Pharmacologic or siRNA inhibition of RIP1 prevented the enhanced death, confirming it as RIP1-dependent necroptosis. Hyperglycemic enhancement of necroptosis depends upon glycolysis with AGEs and ROS playing a role. Total levels of RIP1, RIP3, and mixed lineage kinase domain-like (MLKL) proteins were increased following treatment with high levels of glucose in Jurkat and U937 cells and was not due to transcriptional regulation. The observed increase in RIP1, RIP3, and MLKL protein levels suggests a potential positive feedback mechanism in nucleated cell types. Enhanced PCD due to hyperglycemia was specific to necroptosis as extrinsic apoptosis was inhibited by exposure to high levels of glucose. Hyperglycemia resulted in increased infarct size in a mouse model of brain hypoxia-ischemia injury. The increased infarct size was prevented by treatment with nec-1s, strongly suggesting that increased necroptosis accounts for exacerbation of this injury in conditions of hyperglycemia. This work reveals that hyperglycemia represents a condition in which cells are extraordinarily susceptible to necroptosis, that local glucose levels alter the balance of PCD pathways, and that clinically relevant outcomes may depend on glucose-mediated effects on PCD. PMID:27129772

  14. β-Adrenergic induced SR Ca2+ leak is mediated by an Epac-NOS pathway.

    PubMed

    Pereira, Laëtitia; Bare, Dan J; Galice, Samuel; Shannon, Thomas R; Bers, Donald M

    2017-07-01

    Cardiac β-adrenergic receptors (β-AR) and Ca 2+ -Calmodulin dependent protein kinase (CaMKII) regulate both physiological and pathophysiological Ca 2+ signaling. Elevated diastolic Ca 2+ leak from the sarcoplasmic reticulum (SR) contributes to contractile dysfunction in heart failure and to arrhythmogenesis. β-AR activation is known to increase SR Ca 2+ leak via CaMKII-dependent phosphorylation of the ryanodine receptor. Two independent and reportedly parallel pathways have been implicated in this β-AR-CaMKII cascade, one involving exchange protein directly activated by cAMP (Epac2) and another involving nitric oxide synthase 1 (NOS1). Here we tested whether Epac and NOS function in a single series pathway to increase β-AR induced and CaMKII-dependent SR Ca 2+ leak. Leak was measured as both Ca 2+ spark frequency and tetracaine-induced shifts in SR Ca 2+ , in mouse and rabbit ventricular myocytes. Direct Epac activation by 8-CPT (8-(4-chlorophenylthio)-2'-O-methyl-cAMP) mimicked β-AR-induced SR Ca 2+ leak, and both were blocked by NOS inhibition. The same was true for myocyte CaMKII activation (assessed via a FRET-based reporter) and ryanodine receptor phosphorylation. Inhibitor and phosphorylation studies also implicated phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) downstream of Epac and above NOS activation in this pathway. We conclude that these two independently characterized parallel pathways function mainly via a single series arrangement (β-AR-cAMP-Epac-PI3K-Akt-NOS1-CaMKII) to mediate increased SR Ca 2+ leak. Thus, for β-AR activation the cAMP-PKA branch effects inotropy and lusitropy (by effects on Ca 2+ current and SR Ca 2+ -ATPase), this cAMP-Epac-NOS pathway increases pathological diastolic SR Ca 2+ leak. This pathway distinction may allow novel SR Ca 2+ leak therapeutic targeting in treatment of arrhythmias in heart failure that spare the inotropic and lusitropic effects of the PKA branch. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face

    PubMed Central

    Barske, Lindsey; Askary, Amjad; Zuniga, Elizabeth; Balczerski, Bartosz; Bump, Paul; Nichols, James T.; Crump, J. Gage

    2016-01-01

    The intricate shaping of the facial skeleton is essential for function of the vertebrate jaw and middle ear. While much has been learned about the signaling pathways and transcription factors that control facial patterning, the downstream cellular mechanisms dictating skeletal shapes have remained unclear. Here we present genetic evidence in zebrafish that three major signaling pathways − Jagged-Notch, Endothelin1 (Edn1), and Bmp − regulate the pattern of facial cartilage and bone formation by controlling the timing of cartilage differentiation along the dorsoventral axis of the pharyngeal arches. A genomic analysis of purified facial skeletal precursors in mutant and overexpression embryos revealed a core set of differentiation genes that were commonly repressed by Jagged-Notch and induced by Edn1. Further analysis of the pre-cartilage condensation gene barx1, as well as in vivo imaging of cartilage differentiation, revealed that cartilage forms first in regions of high Edn1 and low Jagged-Notch activity. Consistent with a role of Jagged-Notch signaling in restricting cartilage differentiation, loss of Notch pathway components resulted in expanded barx1 expression in the dorsal arches, with mutation of barx1 rescuing some aspects of dorsal skeletal patterning in jag1b mutants. We also identified prrx1a and prrx1b as negative Edn1 and positive Bmp targets that function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Simultaneous loss of jag1b and prrx1a/b better rescued lower facial defects of edn1 mutants than loss of either pathway alone, showing that combined overactivation of Jagged-Notch and Bmp/Prrx1 pathways contribute to the absence of cartilage differentiation in the edn1 mutant lower face. These findings support a model in which Notch-mediated restriction of cartilage differentiation, particularly in the second pharyngeal arch, helps to establish a distinct skeletal pattern in the upper face. PMID:27058748

  16. PTPRS Regulates Colorectal Cancer RAS Pathway Activity by Inactivating Erk and Preventing Its Nuclear Translocation.

    PubMed

    Davis, Thomas B; Yang, Mingli; Schell, Michael J; Wang, Heiman; Ma, Le; Pledger, W Jack; Yeatman, Timothy J

    2018-06-18

    Colorectal cancer (CRC) growth and progression is frequently driven by RAS pathway activation through upstream growth factor receptor activation or through mutational activation of KRAS or BRAF. Here we describe an additional mechanism by which the RAS pathway may be modulated in CRC. PTPRS, a receptor-type protein tyrosine phosphatase, appears to regulate RAS pathway activation through ERK. PTPRS modulates ERK phosphorylation and subsequent translocation to the nucleus. Native mutations in PTPRS, present in ~10% of CRC, may reduce its phosphatase activity while increasing ERK activation and downstream transcriptional signaling.

  17. Mitochondrial and Chloroplast Stress Responses Are Modulated in Distinct Touch and Chemical Inhibition Phases1[OPEN

    PubMed Central

    Ivanova, Aneta; Millar, A. Harvey; Whelan, James

    2016-01-01

    Previous studies have identified a range of transcription factors that modulate retrograde regulation of mitochondrial and chloroplast functions in Arabidopsis (Arabidopsis thaliana). However, the relative importance of these regulators and whether they act downstream of separate or overlapping signaling cascades is still unclear. Here, we demonstrate that multiple stress-related signaling pathways, with distinct kinetic signatures, converge on overlapping gene sets involved in energy organelle function. The transcription factor ANAC017 is almost solely responsible for transcript induction of marker genes around 3 to 6 h after chemical inhibition of organelle function and is a key regulator of mitochondrial and specific types of chloroplast retrograde signaling. However, an independent and highly transient gene expression phase, initiated within 10 to 30 min after treatment, also targets energy organelle functions, and is related to touch and wounding responses. Metabolite analysis demonstrates that this early response is concurrent with rapid changes in tricarboxylic acid cycle intermediates and large changes in transcript abundance of genes encoding mitochondrial dicarboxylate carrier proteins. It was further demonstrated that transcription factors AtWRKY15 and AtWRKY40 have repressive regulatory roles in this touch-responsive gene expression. Together, our results show that several regulatory systems can independently affect energy organelle function in response to stress, providing different means to exert operational control. PMID:27208304

  18. Integrating genomics and proteomics data to predict drug effects using binary linear programming.

    PubMed

    Ji, Zhiwei; Su, Jing; Liu, Chenglin; Wang, Hongyan; Huang, Deshuang; Zhou, Xiaobo

    2014-01-01

    The Library of Integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding of biology by cataloging changes in gene expression and signal transduction that occur when cells are exposed to a variety of perturbations. It is helpful for understanding cell pathways and facilitating drug discovery. Here, we developed a novel approach to infer cell-specific pathways and identify a compound's effects using gene expression and phosphoproteomics data under treatments with different compounds. Gene expression data were employed to infer potential targets of compounds and create a generic pathway map. Binary linear programming (BLP) was then developed to optimize the generic pathway topology based on the mid-stage signaling response of phosphorylation. To demonstrate effectiveness of this approach, we built a generic pathway map for the MCF7 breast cancer cell line and inferred the cell-specific pathways by BLP. The first group of 11 compounds was utilized to optimize the generic pathways, and then 4 compounds were used to identify effects based on the inferred cell-specific pathways. Cross-validation indicated that the cell-specific pathways reliably predicted a compound's effects. Finally, we applied BLP to re-optimize the cell-specific pathways to predict the effects of 4 compounds (trichostatin A, MS-275, staurosporine, and digoxigenin) according to compound-induced topological alterations. Trichostatin A and MS-275 (both HDAC inhibitors) inhibited the downstream pathway of HDAC1 and caused cell growth arrest via activation of p53 and p21; the effects of digoxigenin were totally opposite. Staurosporine blocked the cell cycle via p53 and p21, but also promoted cell growth via activated HDAC1 and its downstream pathway. Our approach was also applied to the PC3 prostate cancer cell line, and the cross-validation analysis showed very good accuracy in predicting effects of 4 compounds. In summary, our computational model can be used to elucidate potential mechanisms of a compound's efficacy.

  19. Angiotensin II regulation of neuromodulation: downstream signaling mechanism from activation of mitogen-activated protein kinase.

    PubMed

    Lu, D; Yang, H; Raizada, M K

    1996-12-01

    Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.

  20. Crk synergizes with epidermal growth factor for epithelial invasion and morphogenesis and is required for the met morphogenic program.

    PubMed

    Lamorte, Louie; Rodrigues, Sonia; Naujokas, Monica; Park, Morag

    2002-10-04

    Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor, stimulates cell spreading, cell dispersal, and the inherent morphogenic program of various epithelial cell lines. Although both hepatocyte growth factor and epidermal growth factor (EGF) can activate downstream signaling pathways in Madin-Darby canine kidney epithelial cells, EGF fails to promote the breakdown of cell-cell junctional complexes and initiate an invasive morphogenic program. We have undertaken a strategy to identify signals that synergize with EGF in this process. We provide evidence that the overexpression of the CrkII adapter protein complements EGF-stimulated pathways to induce cell dispersal in two-dimensional cultures and cell invasion and branching morphogenesis in three-dimensional collagen gels. This finding correlates with the ability of CrkII to promote the breakdown of adherens junctions in stable cell lines and the ability of EGF to stimulate enhanced Rac activity in cells overexpressing CrkII. We have previously shown that the Gab1-docking protein is required for branching morphogenesis downstream of the Met receptor. Consistent with a role for CrkII in promoting EGF-dependent branching morphogenesis, the binding of Gab1 to CrkII is required for the branching morphogenic program downstream of Met. Together, our data support a role for the CrkII adapter protein in epithelial invasion and morphogenesis and underscores the importance of considering the synergistic actions of signaling pathways in cancer progression.

  1. Atorvastatin attenuates experimental contrast-induced acute kidney injury: a role for TLR4/MyD88 signaling pathway.

    PubMed

    Yue, Rongzheng; Zuo, Chuan; Zeng, Jing; Su, Baihai; Tao, Ye; Huang, Songmin; Zeng, Rui

    2017-11-01

    To investigate the protective effect of different atorvastatin doses on contrast-induced acute kidney injury and the related mechanism. Healthy male Sprague-Dawley (SD) rats were randomly divided into the blank control group, experimental control group and different-dose atorvastatin groups. A rat model of contrast-induced acute kidney injury was established. We detected changes in serum creatinine (Scr) and blood urea nitrogen (BUN) before and after model establishment, observed and scored renal tubular injury, analyzed rat renal cell apoptosis, and measure the expression of signal pathway proteins and downstream inflammatory factors. After contrast agent injection, the Scr and BUN levels of the experimental control group were significantly increased, the different doses applied in the atorvastatin group significantly reduced the Scr and BUN levels (p < .05) and ameliorated the contrast-induced acute kidney injury (p < .05) and significantly reduced Toll-like receptor 4 (TLR4), Myeloid differentiation factor 88 (Myd88), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) protein expression and relative mRNA expression levels (p < .05) and significantly decreased expression levels of downstream inflammatory factors (p < .05). Different atorvastatin doses have protective effects on contrast-induced acute renal tubular injury in rats, possibly by targeting TLR4, suppressing TLR4 expression, regulating the TLR4/Myd88 signaling pathway, and inhibiting the expression of downstream inflammatory factors.

  2. Conformational Transition Pathways of Epidermal Growth Factor Receptor Kinase Domain from Multiple Molecular Dynamics Simulations and Bayesian Clustering.

    PubMed

    Li, Yan; Li, Xiang; Ma, Weiya; Dong, Zigang

    2014-08-12

    The epidermal growth factor receptor (EGFR) is aberrantly activated in various cancer cells and an important target for cancer treatment. Deep understanding of EGFR conformational changes between the active and inactive states is of pharmaceutical interest. Here we present a strategy combining multiply targeted molecular dynamics simulations, unbiased molecular dynamics simulations, and Bayesian clustering to investigate transition pathways during the activation/inactivation process of EGFR kinase domain. Two distinct pathways between the active and inactive forms are designed, explored, and compared. Based on Bayesian clustering and rough two-dimensional free energy surfaces, the energy-favorable pathway is recognized, though DFG-flip happens in both pathways. In addition, another pathway with different intermediate states appears in our simulations. Comparison of distinct pathways also indicates that disruption of the Lys745-Glu762 interaction is critically important in DFG-flip while movement of the A-loop significantly facilitates the conformational change. Our simulations yield new insights into EGFR conformational transitions. Moreover, our results verify that this approach is valid and efficient in sampling of protein conformational changes and comparison of distinct pathways.

  3. Interference of silibinin with IGF-1R signalling pathways protects human epidermoid carcinoma A431 cells from UVB-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weiwei; Otkur, Wuxiyar; Li, Lingzhi

    Highlights: ► Silibinin protects A431 cells from UVB irradiation-induced apoptosis. ► Up-regulation of the IGF-1R-JNK/ERK pathways by UVB induces cell apoptosis. ► Silibinin inhibits IGF-1R pathways to repress caspase-8-mediated apoptosis. -- Abstract: Ultraviolet B (UVB) from sunlight is a major cause of cutaneous lesion. Silibinin, a traditional hepatic protectant, elicits protective effects against UVB-induced cellular damage. In A431 cells, the insulin-like growth factor-1 receptor (IGF-1R) was markedly up-regulated by UVB irradiation. The activation of the IGF-1R signalling pathways contributed to apoptosis of the cells rather than rescuing the cells from death. Up-regulated IGF-1R stimulated downstream mitogen-activated protein kinases (MAPKs), suchmore » as c-Jun N-terminal kinases (JNK) and extracellular signal-regulated protein kinases 1/2 (ERK1/2). The subsequent activation of caspase-8 and caspase-3 led to apoptosis. The activation of IGF-1R signalling pathways is the cause of A431 cell death. The pharmacological inhibitors and the small interfering RNA (siRNA) targeting IGF-1R suppressed the downstream activation of JNK/ERK-caspases to help the survival of the UVB-irradiated A431 cells. Indeed, silibinin treatment suppressed the IGF-1R-JNK/ERK pathways and thus protected the cells from UVB-induced apoptosis.« less

  4. A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib.

    PubMed

    Sun, Tianliang; Yang, Lida; Kaur, Harmandeep; Pestel, Jenny; Looso, Mario; Nolte, Hendrik; Krasel, Cornelius; Heil, Daniel; Krishnan, Ramesh K; Santoni, Marie-Josée; Borg, Jean-Paul; Bünemann, Moritz; Offermanns, Stefan; Swiercz, Jakub M; Worzfeld, Thomas

    2017-01-02

    Semaphorins comprise a large family of ligands that regulate key cellular functions through their receptors, plexins. In this study, we show that the transmembrane semaphorin 4A (Sema4A) can also function as a receptor, rather than a ligand, and transduce signals triggered by the binding of Plexin-B1 through reverse signaling. Functionally, reverse Sema4A signaling regulates the migration of various cancer cells as well as dendritic cells. By combining mass spectrometry analysis with small interfering RNA screening, we identify the polarity protein Scrib as a downstream effector of Sema4A. We further show that binding of Plexin-B1 to Sema4A promotes the interaction of Sema4A with Scrib, thereby removing Scrib from its complex with the Rac/Cdc42 exchange factor βPIX and decreasing the activity of the small guanosine triphosphatase Rac1 and Cdc42. Our data unravel a role for Plexin-B1 as a ligand and Sema4A as a receptor and characterize a reverse signaling pathway downstream of Sema4A, which controls cell migration. © 2017 Sun et al.

  5. PI3K Activation in Neural Stem Cells Drives Tumorigenesis which can be Ameliorated by Targeting the cAMP Response Element Binding (CREB) Protein.

    PubMed

    Daniel, Paul M; Filiz, Gulay; Brown, Daniel V; Christie, Michael; Waring, Paul M; Zhang, Yi; Haynes, John M; Pouton, Colin; Flanagan, Dustin; Vincan, Elizabeth; Johns, Terrance G; Montgomery, Karen; Phillips, Wayne A; Mantamadiotis, Theo

    2018-04-30

    Hyperactivation of PI3K signaling is common in cancers but the precise role of the pathway in glioma biology remains to be determined. Some understanding of PI3K signaling mechanisms in brain cancer comes from studies on neural stem/progenitor cells, where signals transmitted via the PI3K pathway cooperate with other intracellular pathways and downstream transcription factors to regulate critical cell functions. To investigate the role for the PI3K pathway in glioma initiation and development, we generated a mouse model targeting the inducible expression of a PIK3CAH1047A oncogenic mutant and deletion of the PI3K negative regulator, PTEN, to neural stem/progenitor cells (NSPCs). Expression of a Pik3caH1047A was sufficient to generate tumors with oligodendroglial features but simultaneous loss of PTEN was required for the development of invasive, high-grade glioma. Pik3caH1047A-PTEN mutant NSPCs exhibited enhanced neurosphere formation which correlated with increased WNT signaling, while loss of CREB in Pik3caH1047A-Pten mutant tumors led to longer symptom-free survival in mice. Taken together, our findings present a novel mouse model for glioma demonstrating that the PI3K pathway is important for initiation of tumorigenesis and that disruption of downstream CREB signaling attenuates tumor expansion.

  6. Epistatic role of base excision repair and mismatch repair pathways in mediating cisplatin cytotoxicity

    PubMed Central

    Kothandapani, Anbarasi; Sawant, Akshada; Dangeti, Venkata Srinivas Mohan Nimai; Sobol, Robert W.; Patrick, Steve M.

    2013-01-01

    Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase β (Polβ) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polβ in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polβ in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polβ misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin. PMID:23761438

  7. SH2 Domains Recognize Contextual Peptide Sequence Information to Determine Selectivity*

    PubMed Central

    Liu, Bernard A.; Jablonowski, Karl; Shah, Eshana E.; Engelmann, Brett W.; Jones, Richard B.; Nash, Piers D.

    2010-01-01

    Selective ligand recognition by modular protein interaction domains is a primary determinant of specificity in signaling pathways. Src homology 2 (SH2) domains fulfill this capacity immediately downstream of tyrosine kinases, acting to recruit their host polypeptides to ligand proteins harboring phosphorylated tyrosine residues. The degree to which SH2 domains are selective and the mechanisms underlying selectivity are fundamental to understanding phosphotyrosine signaling networks. An examination of interactions between 50 SH2 domains and a set of 192 phosphotyrosine peptides corresponding to physiological motifs within FGF, insulin, and IGF-1 receptor pathways indicates that individual SH2 domains have distinct recognition properties and exhibit a remarkable degree of selectivity beyond that predicted by previously described binding motifs. The underlying basis for such selectivity is the ability of SH2 domains to recognize both permissive amino acid residues that enhance binding and non-permissive amino acid residues that oppose binding in the vicinity of the essential phosphotyrosine. Neighboring positions affect one another so local sequence context matters to SH2 domains. This complex linguistics allows SH2 domains to distinguish subtle differences in peptide ligands. This newly appreciated contextual dependence substantially increases the accessible information content embedded in the peptide ligands that can be effectively integrated to determine binding. This concept may serve more broadly as a paradigm for subtle recognition of physiological ligands by protein interaction domains. PMID:20627867

  8. Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation

    PubMed Central

    Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho

    2015-01-01

    Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346

  9. U2AF1 mutations alter splice site recognition in hematological malignancies.

    PubMed

    Ilagan, Janine O; Ramakrishnan, Aravind; Hayes, Brian; Murphy, Michele E; Zebari, Ahmad S; Bradley, Philip; Bradley, Robert K

    2015-01-01

    Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains. © 2015 Ilagan et al.; Published by Cold Spring Harbor Laboratory Press.

  10. ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation.

    PubMed

    Alarcon, Vernadeth B; Marikawa, Yusuke

    2018-01-01

    In placental mammalian development, the first cell differentiation produces two distinct lineages that emerge according to their position within the embryo: the trophectoderm (TE, placenta precursor) differentiates in the surface, while the inner cell mass (ICM, fetal body precursor) forms inside. Here, we discuss how such position-dependent lineage specifications are regulated by the RHOA subfamily of small GTPases and RHO-associated coiled-coil kinases (ROCK). Recent studies in mouse show that activities of RHO/ROCK are required to promote TE differentiation and to concomitantly suppress ICM formation. RHO/ROCK operate through the HIPPO signaling pathway, whose cell position-specific modulation is central to establishing unique gene expression profiles that confer cell fate. In particular, activities of RHO/ROCK are essential in outside cells to promote nuclear localization of transcriptional co-activators YAP/TAZ, the downstream effectors of HIPPO signaling. Nuclear localization of YAP/TAZ depends on the formation of apicobasal polarity in outside cells, which requires activities of RHO/ROCK. We propose models of how RHO/ROCK regulate lineage specification and lay out challenges for future investigations to deepen our understanding of the roles of RHO/ROCK in preimplantation development. Finally, as RHO/ROCK may be inhibited by certain pharmacological agents, we discuss their potential impact on human preimplantation development in relation to fertility preservation in women.

  11. Antitumor Lipids--Structure, Functions, and Medical Applications.

    PubMed

    Kostadinova, Aneliya; Topouzova-Hristova, Tanya; Momchilova, Albena; Tzoneva, Rumiana; Berger, Martin R

    2015-01-01

    Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels. © 2015 Elsevier Inc. All rights reserved.

  12. Postsynaptic density protein transcripts are differentially modulated by minocycline alone or in add-on to haloperidol: Implications for treatment resistant schizophrenia.

    PubMed

    Buonaguro, Elisabetta F; Tomasetti, Carmine; Chiodini, Paolo; Marmo, Federica; Latte, Gianmarco; Rossi, Rodolfo; Avvisati, Livia; Iasevoli, Felice; de Bartolomeis, Andrea

    2017-04-01

    In this study, we investigated whether minocycline, a second-generation tetracycline proposed as an add-on to antipsychotics in treatment-resistant schizophrenia (TRS), may affect the expression of Homer and Arc postsynaptic density (PSD) transcripts, implicated in synaptic regulation. Minocycline was administered alone or with haloperidol in rats exposed or not to ketamine, mimicking acute glutamatergic psychosis or naturalistic conditions, respectively. Arc expression was significantly reduced by minocycline compared with controls. Minocycline in combination with haloperidol also significantly reduced Arc expression compared with both controls and haloperidol alone. Moreover, haloperidol/minocycline combination significantly affected Arc expression in cortical regions, while haloperidol alone was ineffective on cortical gene expression. These results suggest that minocycline may strongly affect the expression of Arc as mediated by haloperidol, both in terms of quantitative levels and of topography of haloperidol-related expression. It is noteworthy that no significant pre-treatment effect was found, suggesting that pre-exposure to ketamine did not grossly affect gene expression. Minocycline was not found to significantly affect haloperidol-related Homer1a expression. No significant changes in Homer1b/c expression were observed. These results are consistent with previous observations that minocycline may modulate postsynaptic glutamatergic transmission, affecting distinct downstream pathways initiated by N-methyl-D-aspartate (NMDA) receptor modulation, i.e. Arc-mediated but not Homer1a-mediated pathways.

  13. Significance of duon mutations in cancer genomes

    NASA Astrophysics Data System (ADS)

    Yadav, Vinod Kumar; Smith, Kyle S.; Flinders, Colin; Mumenthaler, Shannon M.; de, Subhajyoti

    2016-06-01

    Functional mutations in coding regions not only affect the structure and function of the protein products, but may also modulate their expression in some cases. This class of mutations, recently dubbed “duon mutations” due to their dual roles, can potentially have major impacts on downstream pathways. However their significance in diseases such as cancer remain unclear. In a survey covering 4606 samples from 19 cancer types, and integrating allelic expression, overall mRNA expression, regulatory motif perturbation, and chromatin signatures in one composite index called REDACT score, we identified potential duon mutations. Several such mutations are detected in known cancer genes in multiple cancer types. For instance a potential duon mutation in TP53 is associated with increased expression of the mutant allelic gene copy, thereby possibly amplifying the functional effects on the downstream pathways. Another potential duon mutation in SF3B1 is associated with abnormal splicing and changes in angiogenesis and matrix degradation related pathways. Our findings emphasize the need to interrogate the mutations in coding regions beyond their obvious effects on protein structures.

  14. Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons.

    PubMed

    Welsbie, Derek S; Mitchell, Katherine L; Jaskula-Ranga, Vinod; Sluch, Valentin M; Yang, Zhiyong; Kim, Jessica; Buehler, Eugen; Patel, Amit; Martin, Scott E; Zhang, Ping-Wu; Ge, Yan; Duan, Yukan; Fuller, John; Kim, Byung-Jin; Hamed, Eman; Chamling, Xitiz; Lei, Lei; Fraser, Iain D C; Ronai, Ze'ev A; Berlinicke, Cynthia A; Zack, Donald J

    2017-06-21

    Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. GSK3β regulates AKT-induced central nervous system axon regeneration via an eIF2Bε-dependent, mTORC1-independent pathway.

    PubMed

    Guo, Xinzheng; Snider, William D; Chen, Bo

    2016-03-14

    Axons fail to regenerate after central nervous system (CNS) injury. Modulation of the PTEN/mTORC1 pathway in retinal ganglion cells (RGCs) promotes axon regeneration after optic nerve injury. Here, we report that AKT activation, downstream of Pten deletion, promotes axon regeneration and RGC survival. We further demonstrate that GSK3β plays an indispensable role in mediating AKT-induced axon regeneration. Deletion or inactivation of GSK3β promotes axon regeneration independently of the mTORC1 pathway, whereas constitutive activation of GSK3β reduces AKT-induced axon regeneration. Importantly, we have identified eIF2Bε as a novel downstream effector of GSK3β in regulating axon regeneration. Inactivation of eIF2Bε reduces both GSK3β and AKT-mediated effects on axon regeneration. Constitutive activation of eIF2Bε is sufficient to promote axon regeneration. Our results reveal a key role of the AKT-GSK3β-eIF2Bε signaling module in regulating axon regeneration in the adult mammalian CNS.

  16. Simulation of wake effects between two wind farms

    NASA Astrophysics Data System (ADS)

    Hansen, K. S.; Réthoré, P.-E.; Palma, J.; Hevia, B. G.; Prospathopoulos, J.; Peña, A.; Ott, S.; Schepers, G.; Palomares, A.; van der Laan, M. P.; Volker, P.

    2015-06-01

    SCADA data, recorded on the downstream wind farm, has been used to identify flow cases with visible clustering effects. The inflow condition is derived from a partly undisturbed wind turbine, due to lack of mast measurements. The SCADA data analysis concludes that centre of the deficit for the downstream wind farm with disturbed inflow has a distinct visible maximum deficit zone located only 5-10D downstream from the entrance. This zone, representing 20-30% speed reduction, increases and moves downstream for increasing cluster effect and is not visible outside a flow sector of 20-30°. The eight flow models represented in this benchmark include both RANS models, mesoscale models and engineering models. The flow cases, identified according to the wind speed level and inflow sector, have been simulated and validated with the SCADA results. The model validation concludes that all models more or less are able to predict the location and size of the deficit zone inside the downwind wind farm.

  17. A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations | Office of Cancer Genomics

    Cancer.gov

    Molecular alterations involving the PI3K/Akt/mTOR pathway (including mutation, copy number, protein, or RNA) were examined across 11,219 human cancers representing 32 major types. Within specific mutated genes, frequency, mutation hotspot residues, in silico predictions, and functional assays were all informative in distinguishing the subset of genetic variants more likely to have functional relevance. Multiple oncogenic pathways including PI3K/Akt/mTOR converged on similar sets of downstream transcriptional targets.

  18. Engineering metabolic pathways in plants by multigene transformation.

    PubMed

    Zorrilla-López, Uxue; Masip, Gemma; Arjó, Gemma; Bai, Chao; Banakar, Raviraj; Bassie, Ludovic; Berman, Judit; Farré, Gemma; Miralpeix, Bruna; Pérez-Massot, Eduard; Sabalza, Maite; Sanahuja, Georgina; Vamvaka, Evangelia; Twyman, Richard M; Christou, Paul; Zhu, Changfu; Capell, Teresa

    2013-01-01

    Metabolic engineering in plants can be used to increase the abundance of specific valuable metabolites, but single-point interventions generally do not improve the yields of target metabolites unless that product is immediately downstream of the intervention point and there is a plentiful supply of precursors. In many cases, an intervention is necessary at an early bottleneck, sometimes the first committed step in the pathway, but is often only successful in shifting the bottleneck downstream, sometimes also causing the accumulation of an undesirable metabolic intermediate. Occasionally it has been possible to induce multiple genes in a pathway by controlling the expression of a key regulator, such as a transcription factor, but this strategy is only possible if such master regulators exist and can be identified. A more robust approach is the simultaneous expression of multiple genes in the pathway, preferably representing every critical enzymatic step, therefore removing all bottlenecks and ensuring completely unrestricted metabolic flux. This approach requires the transfer of multiple enzyme-encoding genes to the recipient plant, which is achieved most efficiently if all genes are transferred at the same time. Here we review the state of the art in multigene transformation as applied to metabolic engineering in plants, highlighting some of the most significant recent advances in the field.

  19. Intersecting Roles of Protein Tyrosine Kinase and Calcium Signaling During Fertilization

    PubMed Central

    Kinsey, William H.

    2012-01-01

    The oocyte is a highly specialized cell that must respond to fertilization with a preprogrammed series of signal transduction events that establish a block to polyspermy, trigger resumption of the cell cycle and execution of a developmental program. The fertilization-induced calcium transient is a key signal that initiates the process of oocyte activation and studies over the last several years have examined the signaling pathways that act upstream and downstream of this calcium transient. Protein tyrosine kinase signaling was found to be an important component of the upstream pathways that stimulated calcium release at fertilization in oocytes from animals that fertilize externally, but a similar pathway has not been found in mammals which fertilize internally. The following review will examine the diversity of signaling in oocytes from marine invertebrates, amphibians, fish and mammals in an attempt to understand the basis for the observed differences. In addition to the pathways upstream of the fertilization-induced calcium transient, recent studies are beginning to unravel the role of protein tyrosine kinase signaling downstream of the calcium transient. The PYK2 kinase was found to respond to fertilization in the zebrafish system and seems to represent a novel component of the response of the oocyte to fertilization. The potential impact of impaired PTK signaling in oocyte quality will also be discussed. PMID:23201334

  20. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Dongyun; Li Jingxia; Gao Jimin

    2009-02-15

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cellmore » transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.« less

  1. Role of JAK/STAT signaling in neuroepithelial stem cell maintenance and proliferation in the Drosophila optic lobe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Yonggang; Zhou, Liya

    2011-07-15

    Highlights: {yields} JAK/STAT activity is graded in the Drosophila optic lobe neuroepithelium. {yields} Inactivation of JAK signaling causes disintegration of the optic lobe neuroepithelium and depletion of the neuroepithelial stem cells. {yields} JAK pathway overactivation promotes neuroepithelial overgrowth. {yields} Notch signaling acts downstream of JAK/STAT to promote neuroepithelial growth and expansion. -- Abstract: During Drosophila optic lobe development, proliferation and differentiation must be tightly modulated to reach its normal size for proper functioning. The JAK/STAT pathway plays pleiotropic roles in Drosophila development and in the larval brain, has been shown to inhibit medulla neuroblast formation. In this study, we findmore » that JAK/STAT activity is required for the maintenance and proliferation of the neuroepithelial stem cells in the optic lobe. In loss-of-function JAK/STAT mutant brains, the neuroepithelial cells lose epithelial cell characters and differentiate prematurely while ectopic activation of this pathway is sufficient to induce neuroepithelial overgrowth in the optic lobe. We further show that Notch signaling acts downstream of JAK/STAT to control the maintenance and growth of the optic lobe neuroepithelium. Thus, in addition to its role in suppression of neuroblast formation, the JAK/STAT pathway is necessary and sufficient for optic lobe neuroepithelial growth.« less

  2. Nested effects models for learning signaling networks from perturbation data.

    PubMed

    Fröhlich, Holger; Tresch, Achim; Beissbarth, Tim

    2009-04-01

    Targeted gene perturbations have become a major tool to gain insight into complex cellular processes. In combination with the measurement of downstream effects via DNA microarrays, this approach can be used to gain insight into signaling pathways. Nested Effects Models were first introduced by Markowetz et al. as a probabilistic method to reverse engineer signaling cascades based on the nested structure of downstream perturbation effects. The basic framework was substantially extended later on by Fröhlich et al., Markowetz et al., and Tresch and Markowetz. In this paper, we present a review of the complete methodology with a detailed comparison of so far proposed algorithms on a qualitative and quantitative level. As an application, we present results on estimating the signaling network between 13 genes in the ER-alpha pathway of human MCF-7 breast cancer cells. Comparison with the literature shows a substantial overlap.

  3. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    NASA Astrophysics Data System (ADS)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  4. Akirins, highly conserved nuclear proteins, required for NF-κB dependent gene expression in Drosophila and mice

    PubMed Central

    Goto, Akira; Matsushita, Kazufumi; Gesellchen, Viola; Chamy, Laure El; Kuttenkeuler, David; Takeuchi, Osamu; Hoffmann, Jules A.; Akira, Shizuo; Boutros, Michael; Reichhart, Jean-Marc

    2009-01-01

    During a genome-wide RNAi screen, we isolated CG8580 as a gene involved in the innate immune response of Drosophila. CG8580, which we named Akirin, acts in parallel with the NF-κB transcription factor downstream of the Imd pathway and was required for defense against Gram-negative bacteria. Akirin is highly conserved and the human genome contains two homologues, one of which was able to rescue the loss of function phenotype in Drosophila cells. Akirins had a strict nuclear localization. Knockout of both Akirin homologues in mice revealed that one had an essential function downstream of Toll-like receptor, tumor necrosis factor and interleukin 1-β (IL-1β) signaling pathways leading to the production of IL-6. Thus, Akirin is a conserved nuclear factor required for innate immune responses. PMID:18066067

  5. GM-CSF treatment is not effective in congenital neutropenia patients due to its inability to activate NAMPT signaling.

    PubMed

    Koch, Corinna; Samareh, Bardia; Morishima, Tatsuya; Mir, Perihan; Kanz, Lothar; Zeidler, Cornelia; Skokowa, Julia; Welte, Karl

    2017-03-01

    Severe congenital neutropenia (CN) is a bone marrow failure syndrome characterized by an absolute neutrophil count (ANC) below 500 cells/μL and recurrent, life-threatening bacterial infections. Treatment with granulocyte colony-stimulating factor (G-CSF) increases the ANC in the majority of CN patients. In contrary, granulocyte-monocyte colony-stimulating factor (GM-CSF) fails to increase neutrophil numbers in CN patients in vitro and in vivo, suggesting specific defects in signaling pathways downstream of GM-CSF receptor. Recently, we detected that G-CSF induces granulopoiesis in CN patients by hyperactivation of nicotinamide phosphoribosyl transferase (NAMPT)/Sirtuin 1 signaling in myeloid cells. Here, we demonstrated that, in contrast to G-CSF, GM-CSF failed to induce NAMPT-dependent granulopoiesis in CN patients. We further identified NAMPT signaling as an essential downstream effector of the GM-CSF pathway in myelopoiesis.

  6. Psychiatric disorders: The psychiatrist's contribution to sport.

    PubMed

    Currie, Alan; Johnston, Allan

    2016-12-01

    Athletes experience a range of mental health problems with at least an equivalent prevalence to the general population. This chapter explores the psychiatrist's role in sport, along a pathway of mental healthcare from 'upstream' prevention, screening, and early detection of mental stress to 'downstream' assessment, treatment, rehabilitation, and recovery from mental illness. At each stage on this pathway the psychiatrist has a broad spectrum of bio-psycho-social strategies to employ in clinical practice. Upstream, the importance of psychological resilience is described along with the concept of mental 'pre-habilitation' (a term usually associated with the prevention of physical injury). Alongside these preventative measures, early detection is improved by education, increased awareness, and by the use of effective mental health screening measures. Further downstream ready access to psychiatric expertise and good collaboration between the psychiatrist and the world of sport improve access to treatment, delivery of that treatment, rehabilitation, and return to sport during recovery.

  7. RIPK1 and PGAM5 Control Leishmania Replication through Distinct Mechanisms.

    PubMed

    Farias Luz, Nivea; Balaji, Sakthi; Okuda, Kendi; Barreto, Aline Silva; Bertin, John; Gough, Peter J; Gazzinelli, Ricardo; Almeida, Roque P; Bozza, Marcelo T; Borges, Valeria M; Chan, Francis Ka-Ming

    2016-06-15

    Leishmaniasis is an important parasitic disease found in the tropics and subtropics. Cutaneous and visceral leishmaniasis affect an estimated 1.5 million people worldwide. Despite its human health relevance, relatively little is known about the cell death pathways that control Leishmania replication in the host. Necroptosis is a recently identified form of cell death with potent antiviral effects. Receptor interacting protein kinase 1 (RIPK1) is a critical kinase that mediates necroptosis downstream of death receptors and TLRs. Heme, a product of hemoglobin catabolism during certain intracellular pathogen infections, is also a potent inducer of macrophage necroptosis. We found that human visceral leishmaniasis patients exhibit elevated serum levels of heme. Therefore, we examined the impact of heme and necroptosis on Leishmania replication. Indeed, heme potently inhibited Leishmania replication in bone marrow-derived macrophages. Moreover, we found that inhibition of RIPK1 kinase activity also enhanced parasite replication in the absence of heme. We further found that the mitochondrial phosphatase phosphoglycerate mutase family member 5 (PGAM5), a putative downstream effector of RIPK1, was also required for inhibition of Leishmania replication. In mouse infection, both PGAM5 and RIPK1 kinase activity are required for IL-1β expression in response to Leishmania However, PGAM5, but not RIPK1 kinase activity, was directly responsible for Leishmania-induced IL-1β secretion and NO production in bone marrow-derived macrophages. Collectively, these results revealed that RIPK1 and PGAM5 function independently to exert optimal control of Leishmania replication in the host. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. Signal Transduction Pathways through TRK‐A and TRK‐B Receptors in Human Neuroblastoma Cells

    PubMed Central

    Kuroda, Hiroshi; Horii, Yoshihiro; Moritake, Hiroshi; Tanaka, Takeo; Hattori, Seisuke

    2001-01-01

    Little is known about the signal transduction pathways of TRK family receptors in neuroblastoma (NB) cells. In this study, an NB cell line, designated MP‐N‐TS, was established from an adrenal tumor taken from a 2‐year‐old boy. This cell line expressed both TRK‐A and TRK‐B receptors, which is rare in a single NB cell line. Therefore, the MP‐N‐TS cell line was used to determine whether the signal transduction through these constitutive receptors is functional. Three neurotrophins, nerve growth factor (NGF), brain‐derived neurotrophic factor (BDNF) and neurotrophin‐4/ 5 (NT‐4/5), induced tyrosine phosphorylation of panTRK, and BDNF and NT‐4/5 induced tyrosine phosphorylation of TRK‐B. Tyrosine phosphorylation of panTRK and/or TRK‐B by the neurotro‐phins was inhibited in the presence of a tyrosine kinase inhibitor K252a. Tyrosine phosphorylation of Src homologous and collagen (She), extracellular signal‐regulated kinase (ERK)‐l and ERK‐2, and phospholipase C‐γl (PLC‐γl) was increased by the three neurotrophins and the increase was inhibited in the presence of K252a. Activation of Ras, detected as the GTP‐bound form of Ras, was induced by the three neurotrophins. The neurotrophins did not modulate the expressions of TRK‐A or TRK‐B mRNA, but they did induce the expression of c‐fos mRNA. Exogenous NGF induced weak neurite outgrowth, whereas exogenous BDNF and NT‐4/5 induced distinct neurite outgrowth. Exogenous BDNF and NT‐4/5 increased the number of viable cells, while NGF did not. Our results demonstrate that the signal transduction pathways through TRK‐A and TRK‐B in MP‐N‐TS cells are functional and similar, and the main downstream signaling pathways from the three neurotrophins are mitogen‐activated protein kinase (MAPK) cascades through She, activated Ras, ERK‐1 and ERK‐2, and the transduction pathway through PLC‐γl. Further, BDNF and NT‐4/5 increased cell viability. The MP‐N‐TS cell line should be useful for clarifying the TRK‐A and TRK‐B signaling pathways responsible for the different prognoses in patients with NB. PMID:11223544

  9. Combination of two insulin-like growth factor-I receptor inhibitory antibodies targeting distinct epitopes leads to an enhanced antitumor response.

    PubMed

    Dong, Jianying; Demarest, Stephen J; Sereno, Arlene; Tamraz, Susan; Langley, Emma; Doern, Adam; Snipas, Tracey; Perron, Keli; Joseph, Ingrid; Glaser, Scott M; Ho, Steffan N; Reff, Mitchell E; Hariharan, Kandasamy

    2010-09-01

    The insulin-like growth factor-I receptor (IGF-IR) is a cell surface receptor tyrosine kinase that mediates cell survival signaling and supports tumor progression in multiple tumor types. We identified a spectrum of inhibitory IGF-IR antibodies with diverse binding epitopes and ligand-blocking properties. By binding distinct inhibitory epitopes, two of these antibodies, BIIB4 and BIIB5, block both IGF-I and IGF-II binding to IGF-IR using competitive and allosteric mechanisms, respectively. Here, we explored the inhibitory effects of combining BIIB4 and BIIB5. In biochemical assays, the combination of BIIB4 and BIIB5 improved both the potency and extent of IGF-I and IGF-II blockade compared with either antibody alone. In tumor cells, the combination of BIIB4 and BIIB5 accelerated IGF-IR downregulation and more efficiently inhibited IGF-IR activation as well as downstream signaling, particularly AKT phosphorylation. In several carcinoma cell lines, the antibody combination more effectively inhibited ligand-driven cell growth than either BIIB4 or BIIB5 alone. Notably, the enhanced tumor growth-inhibitory activity of the BIIB4 and BIIB5 combination was much more pronounced at high ligand concentrations, where the individual antibodies exhibited substantially reduced activity. Compared with single antibodies, the BIIB4 and BIIB5 combination also significantly further enhanced the antitumor activity of the epidermal growth factor receptor inhibitor erlotinib and the mTOR inhibitor rapamycin. Moreover, in osteosarcoma and hepatocellular carcinoma xenograft models, the BIIB4 and BIIB5 combination significantly reduced tumor growth to a greater degree than each single antibody. Taken together, our results suggest that targeting multiple distinct inhibitory epitopes on IGF-IR may be a more effective strategy of affecting the IGF-IR pathway in cancer.

  10. Activity-dependent signaling mechanisms regulating adult hippocampal neural stem cells and their progeny.

    PubMed

    Crowther, Andrew J; Song, Juan

    2014-08-01

    Adult neural stem cells (NSCs) reside in a restricted microenvironment, where their development is controlled by subtle and presently underexplored cues. This raises a significant question: what instructions must be provided by this supporting niche to regulate NSC development and functions? Signaling from the niche is proposed to control many aspects of NSC behavior, including balancing the quiescence and proliferation of NSCs, determining the cell division mode (symmetric versus asymmetric), and preventing premature depletion of stem cells to maintain neurogenesis throughout life. Interactions between neurogenic niches and NSCs also govern the homeostatic regulation of adult neurogenesis under diverse physiological, environmental, and pathological conditions. An important implication from revisiting many previously-identifi ed regulatory factors is that most of them (e.g., the antidepressant fluoxetine and exercise) affect gross neurogenesis by acting downstream of NSCs at the level of intermediate progenitors and neuroblasts, while leaving the NSC pool unaffected. Therefore, it is critically important to address how various niche components, signaling pathways, and environmental stimuli differentially regulate distinct stages of adult neurogenesis.

  11. Membrane receptor location defines receptor interaction with signaling proteins in a polarized epithelium.

    PubMed

    Amsler, K; Kuwada, S K

    1999-01-01

    Signal transduction from receptors is mediated by the interaction of activated receptors with proximate downstream signaling proteins. In polarized epithelial cells, the membrane is divided into subdomains: the apical and basolateral membranes. Membrane receptors may be present in one or both subdomains. Using a combination of immunoprecipitation and Western blot analyses, we tested the hypothesis that a tyrosine kinase growth factor receptor, epidermal growth factor receptor (EGFR), interacts with distinct signaling proteins when present at the apical vs. basolateral membrane of a polarized renal epithelial cell. We report here that tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma) was induced only when basolateral EGFR was activated. In contrast, tyrosine phosphorylation of several other signaling proteins was increased by activation of receptor at either surface. All signaling proteins were distributed diffusely throughout the cytoplasm; however, PLC-gamma protein also displayed a concentration at lateral cell borders. These results demonstrate that in polarized epithelial cells the array of signaling pathways initiated by activation of a membrane receptor is defined, at least in part, by the membrane location of the receptor.

  12. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy.

    PubMed

    Papadopoulos, Chrisovalantis; Kirchner, Philipp; Bug, Monika; Grum, Daniel; Koerver, Lisa; Schulze, Nina; Poehler, Robert; Dressler, Alina; Fengler, Sven; Arhzaouy, Khalid; Lux, Vanda; Ehrmann, Michael; Weihl, Conrad C; Meyer, Hemmo

    2017-01-17

    Rupture of endosomes and lysosomes is a major cellular stress condition leading to cell death and degeneration. Here, we identified an essential role for the ubiquitin-directed AAA-ATPase, p97, in the clearance of damaged lysosomes by autophagy. Upon damage, p97 translocates to lysosomes and there cooperates with a distinct set of cofactors including UBXD1, PLAA, and the deubiquitinating enzyme YOD1, which we term ELDR components for Endo-Lysosomal Damage Response. Together, they act downstream of K63-linked ubiquitination and p62 recruitment, and selectively remove K48-linked ubiquitin conjugates from a subpopulation of damaged lysosomes to promote autophagosome formation. Lysosomal clearance is also compromised in MEFs harboring a p97 mutation that causes inclusion body myopathy and neurodegeneration, and damaged lysosomes accumulate in affected patient tissue carrying the mutation. Moreover, we show that p97 helps clear late endosomes/lysosomes ruptured by endocytosed tau fibrils. Thus, our data reveal an important mechanism of how p97 maintains lysosomal homeostasis, and implicate the pathway as a modulator of degenerative diseases. © 2016 The Authors.

  13. Stress-response transcription factors Msn2 and Msn4 couple TORC2-Ypk1 signaling and mitochondrial respiration to ATG8 gene expression and autophagy.

    PubMed

    Vlahakis, Ariadne; Lopez Muniozguren, Nerea; Powers, Ted

    2017-01-01

    Macroautophagy/autophagy is a starvation and stress-induced catabolic process critical for cellular homeostasis and adaptation. Several Atg proteins are involved in the formation of the autophagosome and subsequent degradation of cytoplasmic components, a process termed autophagy flux. Additionally, the expression of several Atg proteins, in particular Atg8, is modulated transcriptionally, yet the regulatory mechanisms involved remain poorly understood. Here we demonstrate that the AGC kinase Ypk1, target of the rapamycin-insensitive TORC2 signaling pathway, controls ATG8 expression by repressing the heterodimeric Zinc-finger transcription factors Msn2 and Msn4. We find that Msn2 and Msn4 promote ATG8 expression downstream of the histone deacetylase complex (HDAC) subunit Ume6, a previously identified negative regulator of ATG8 expression. Moreover, we demonstrate that TORC2-Ypk1 signaling is functionally linked to distinct mitochondrial respiratory complexes. Surprisingly, we find that autophagy flux during amino acid starvation is also dependent upon Msn2-Msn4 activity, revealing a broad role for these transcription factors in the autophagy response.

  14. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana.

    PubMed

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-01-01

    Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts.

  15. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana

    PubMed Central

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-01-01

    Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts. PMID:26451798

  16. Monitoring substrate enables real-time regulation of a protein localization pathway.

    PubMed

    Ito, Koreaki; Mori, Hiroyuki; Chiba, Shinobu

    2018-06-01

    Protein localization machinery supports cell survival and physiology, suggesting the potential importance of its expression regulation. Here, we summarize a remarkable scheme of regulation, which allows real-time feedback regulation of the machinery expression. A class of regulatory nascent polypeptides, called monitoring substrates, undergoes force-sensitive translation arrest. The resulting ribosome stalling on the mRNA then affects mRNA folding to expose the ribosome-binding site of the downstream target gene and upregulate its translation. The target gene encodes a component of the localization machinery, whose physical action against the monitoring substrate leads to arrest cancellation. Thus, this scheme of feedback loop allows the cell to adjust the amount of the machinery to correlate inversely with the effectiveness of the process at a given moment. The system appears to have emerged late in evolution, in which a narrow range of organisms selected a distinct monitoring substrate-machinery combination. Currently, regulatory systems of SecM-SecA, VemP-SecDF2 and MifM-YidC2 are known to occur in different bacterial species.

  17. Protein Kinase Cδ Promotes Transitional B Cell-Negative Selection and Limits Proximal B Cell Receptor Signaling To Enforce Tolerance

    PubMed Central

    Zikherman, Julie; Lau, Tannia; Leitges, Michael; Weiss, Arthur

    2014-01-01

    Protein kinase Cδ (PKCδ) deficiency causes autoimmune pathology in humans and mice and is crucial for the maintenance of B cell homeostasis. However, the mechanisms underlying autoimmune disease in PKCδ deficiency remain poorly defined. Here, we address the antigen-dependent and -independent roles of PKCδ in B cell development, repertoire selection, and antigen responsiveness. We demonstrate that PKCδ is rapidly phosphorylated downstream of both the B cell receptor (BCR) and the B cell-activating factor (BAFF) receptor. We found that PKCδ is essential for antigen-dependent negative selection of splenic transitional B cells and is required for activation of the proapoptotic Ca2+-Erk pathway that is selectively activated during B cell-negative selection. Unexpectedly, we also identified a previously unrecognized role for PKCδ as a proximal negative regulator of BCR signaling that substantially impacts survival and proliferation of mature follicular B cells. As a consequence of these distinct roles, PKCδ deficiency leads to the survival and development of a B cell repertoire that is not only aberrantly autoreactive but also hyperresponsive to antigen stimulation. PMID:24515435

  18. Differential role of glycolipid-enriched membrane domains in glycoprotein VI- and integrin-mediated phospholipase Cgamma2 regulation in platelets.

    PubMed Central

    Wonerow, Peter; Obergfell, Achim; Wilde, Jonathan I; Bobe, Régis; Asazuma, Naoki; Brdicka, Tomás; Leo, Albrecht; Schraven, Burkhart; Horejsí, Václav; Shattil, Sanford J; Watson, Steve P

    2002-01-01

    The platelet collagen receptor glycoprotein VI (GPVI) and the fibrinogen receptor integrin alphaIIbbeta3 trigger intracellular signalling cascades involving the tyrosine kinase Syk, the adapter SLP-76 and phospholipase Cgamma2 (PLCgamma2). Similar pathways are activated downstream of immune receptors in lymphocytes, where they have been localized in part to glycolipid-enriched membrane domains (GEMs). Here we provide several lines of evidence that GPVI-mediated tyrosine phosphorylation of PLCgamma2 in platelets is dependent on GEM-organized signalling and utilizes the GEM resident adapter protein LAT (linker for activation of T cells). In sharp contrast, although fibrinogen binding to platelets stimulates alphaIIbbeta3-dependent activation of Syk and tyrosine phosphorylation of SLP-76 and PLCgamma2, it does not utilize GEMs to promote these responses or to support platelet aggregation. These results establish that GPVI and alphaIIbbeta3 trigger distinct patterns of receptor signalling in platelets, leading to tyrosine phosphorylation of PLCgamma2, and they highlight the role of GEMs in compartmentalizing signalling reactions involved in haemostasis. PMID:12049640

  19. Decomposing Oncogenic Transcriptional Signatures to Generate Maps of Divergent Cellular States.

    PubMed

    Kim, Jong Wook; Abudayyeh, Omar O; Yeerna, Huwate; Yeang, Chen-Hsiang; Stewart, Michelle; Jenkins, Russell W; Kitajima, Shunsuke; Konieczkowski, David J; Medetgul-Ernar, Kate; Cavazos, Taylor; Mah, Clarence; Ting, Stephanie; Van Allen, Eliezer M; Cohen, Ofir; Mcdermott, John; Damato, Emily; Aguirre, Andrew J; Liang, Jonathan; Liberzon, Arthur; Alexe, Gabriella; Doench, John; Ghandi, Mahmoud; Vazquez, Francisca; Weir, Barbara A; Tsherniak, Aviad; Subramanian, Aravind; Meneses-Cime, Karina; Park, Jason; Clemons, Paul; Garraway, Levi A; Thomas, David; Boehm, Jesse S; Barbie, David A; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2017-08-23

    The systematic sequencing of the cancer genome has led to the identification of numerous genetic alterations in cancer. However, a deeper understanding of the functional consequences of these alterations is necessary to guide appropriate therapeutic strategies. Here, we describe Onco-GPS (OncoGenic Positioning System), a data-driven analysis framework to organize individual tumor samples with shared oncogenic alterations onto a reference map defined by their underlying cellular states. We applied the methodology to the RAS pathway and identified nine distinct components that reflect transcriptional activities downstream of RAS and defined several functional states associated with patterns of transcriptional component activation that associates with genomic hallmarks and response to genetic and pharmacological perturbations. These results show that the Onco-GPS is an effective approach to explore the complex landscape of oncogenic cellular states across cancers, and an analytic framework to summarize knowledge, establish relationships, and generate more effective disease models for research or as part of individualized precision medicine paradigms. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The Enigma of Tripeptidyl-Peptidase II: Dual Roles in Housekeeping and Stress

    PubMed Central

    Preta, Giulio; de Klark, Rainier; Gavioli, Riccardo; Glas, Rickard

    2010-01-01

    The tripeptidyl-peptidase II complex consists of repeated 138 kDa subunits, assembled into two twisted strands that form a high molecular weight complex (>5 MDa). TPPII, like many other cytosolic peptidases, plays a role in the ubiquitin-proteasome pathway downstream of the proteasome as well as in the production and destruction of MHC class I antigens and degradation of neuropeptides. Tripeptidyl-peptidase II activity is increased in cells with an increased demand for protein degradation, but whether degradation of cytosolic peptides is the only cell biological role for TPPII has remained unclear. Recent data indicated that TPPII translocates into the nucleus to control DNA damage responses in malignant cells, supporting that cytosolic “housekeeping peptidases” may have additional roles in cell biology, besides their contribution to protein turnover. Overall, TPPII has an emerging importance in several cancer-related fields, such as metabolism, cell death control, and control of genome integrity; roles that are not understood in detail. The present paper reviews the cell biology of TPPII and discusses distinct roles for TPPII in the nucleus and cytosol. PMID:20847939

  1. VH1/BRL2 receptor-like kinase interacts with vascular-specific adaptor proteins VIT and VIK to influence leaf venation.

    PubMed

    Ceserani, Teresa; Trofka, Anna; Gandotra, Neeru; Nelson, Timothy

    2009-03-01

    VH1/BRL2 is a receptor-like kinase of the BRI1 family with a role in vascular development. In developing Arabidopsis leaves it is expressed first in ground cells and then becomes restricted to provascular and procambial cells as venation forms. We isolated proteins interacting with the activated (phosphorylated) cytoplasmic domain of VH1/BRL2, and found that most belong to three processes: proteasome activity, vesicle traffic and intracellular signal transduction. Two adaptor proteins are included that we named VIT [VH1-interacting tetratricopeptide repeat (TPR)-containing protein] and VIK (VH1-interacting kinase), which are co-expressed in the same cells as VH1/BRL2 at two distinct time points in vein differentiation. Mutation of either adaptor or of VH1 results in vein pattern defects and in alterations in response to auxin and brassinosteroids. We propose that these two adaptors facilitate the diversification and amplification of a ligand signal perceived by VH1/BRL2 in multiple downstream pathways affecting venation.

  2. Inhibition of the Ras-ERK pathway in mitotic COS7 cells is due to the inability of EGFR/Raf to transduce EGF signaling to downstream proteins.

    PubMed

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Ma, Yue

    2016-06-01

    Although previous studies have shown that Ras-ERK signaling in mitosis is closed due to the inhibition of signal transduction, the events involved in the molecular mechanisms are still unclear. In the present study, we investigated the Ras-ERK signaling pathway in mitotic COS7 cells. The results demonstrated that treatment with epidermal growth factor (EGF) failed to increase the endocytosis of EGF-EGFR (EGF receptor) complexes in mitotic COS7 cells, although a large amount of endosomes were found in asynchronous COS7 cells. Clathrin expression levels in mitotic COS7 cells were inhibited whereas caveolin expression levels in mitotic COS7 cells were almost unaffected. Y1068 and Y1086 residues of EGFR in the mitotic COS7 cells were activated. However, Grb2 and Shc in the mitotic COS7 cells did not bind to activated EGFR. Ras activity was inhibited in the mitotic COS7 cells whereas its downstream protein, Raf, was obviously phosphorylated by EGF in mitosis. Treatment with phorbol 12-myristate 13-acetate (PMA) also increased the phosphorylation levels of Raf in the mitotic COS7 cells. Nevertheless, Raf phosphorylation in mitosis was significantly inhibited by AG1478. Lastly, activation of EGF-mediated MEK and ERK in the mitotic COS7 cells was obviously inhibited. In summary, our results suggest that the Ras-ERK pathway is inhibited in mitotic COS7 cells which may be the dual result of the difficulty in the transduction of EGF signaling by EGFR or Raf to downstream proteins.

  3. BDNF promotes the growth of human neurons through crosstalk with the Wnt/β-catenin signaling pathway via GSK-3β.

    PubMed

    Yang, Jin-Wei; Ru, Jin; Ma, Wei; Gao, Yan; Liang, Zhang; Liu, Jia; Guo, Jian-Hui; Li, Li-Yan

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal growth; however, the downstream regulatory mechanisms remain unclear. In this study, we investigated whether BDNF exerts its neurotrophic effects through the Wnt/β-catenin signaling pathway in human embryonic spinal cord neurons in vitro. We found that neuronal growth (soma size and average neurite length) was increased by transfection with a BDNF overexpression plasmid. Western blotting and real-time quantitative PCR showed that expression of the BDNF pathway components TrkB, PI3K, Akt and PLC-γ was increased by BDNF overexpression. Furthermore, the Wnt signaling factors Wnt, Frizzled and Dsh and the downstream target β-catenin were upregulated, whereas GSK-3β was downregulated. In contrast, when BDNF signaling was downregulated with BDNF siRNA, the growth of neurons was decreased. Furthermore, BDNF signaling factors, Wnt pathway components and β-catenin were all downregulated, whereas GSK-3β was upregulated. This suggests that BDNF affects the growth of neurons in vitro through crosstalk with Wnt signaling, and that GSK-3β may be a critical factor linking these two pathways. To evaluate this possibility, we treated neurons with 6-bromoindirubin-3'-oxime (BIO), a small molecule GSK-3β inhibitor. BIO reduced the effects of BDNF upregulation/downregulation on soma size and average neurite length, and suppressed the impact of BDNF modulation on the Wnt signaling pathway. Taken together, our findings suggest that BDNF promotes the growth of neurons in vitro through crosstalk with the Wnt/β-catenin signaling pathway, and that this interaction may be mediated by GSK-3β. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python.

    PubMed

    Andrew, Audra L; Perry, Blair W; Card, Daren C; Schield, Drew R; Ruggiero, Robert P; McGaugh, Suzanne E; Choudhary, Amit; Secor, Stephen M; Castoe, Todd A

    2017-05-02

    Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth.

  5. Akt3 is a privileged first responder in isozyme-specific electrophile response.

    PubMed

    Long, Marcus J C; Parvez, Saba; Zhao, Yi; Surya, Sanjna L; Wang, Yiran; Zhang, Sheng; Aye, Yimon

    2017-03-01

    Isozyme-specific post-translational regulation fine tunes signaling events. However, redundancy in sequence or activity renders links between isozyme-specific modifications and downstream functions uncertain. Methods to study this phenomenon are underdeveloped. Here we use a redox-targeting screen to reveal that Akt3 is a first-responding isozyme sensing native electrophilic lipids. Electrophile modification of Akt3 modulated downstream pathway responses in cells and Danio rerio (zebrafish) and markedly differed from Akt2-specific oxidative regulation. Digest MS sequencing identified Akt3 C119 as the privileged cysteine that senses 4-hydroxynonenal. A C119S Akt3 mutant was hypomorphic for all downstream phenotypes shown by wild-type Akt3. This study documents isozyme-specific and chemical redox signal-personalized physiological responses.

  6. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  7. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    PubMed

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  8. In vivo functional analysis of L-rhamnose metabolic pathway in Aspergillus niger: a tool to identify the potential inducer of RhaR.

    PubMed

    Khosravi, Claire; Kun, Roland Sándor; Visser, Jaap; Aguilar-Pontes, María Victoria; de Vries, Ronald P; Battaglia, Evy

    2017-11-06

    The genes of the non-phosphorylative L-rhamnose catabolic pathway have been identified for several yeast species. In Schefferomyces stipitis, all L-rhamnose pathway genes are organized in a cluster, which is conserved in Aspergillus niger, except for the lra-4 ortholog (lraD). The A. niger cluster also contains the gene encoding the L-rhamnose responsive transcription factor (RhaR) that has been shown to control the expression of genes involved in L-rhamnose release and catabolism. In this paper, we confirmed the function of the first three putative L-rhamnose utilisation genes from A. niger through gene deletion. We explored the identity of the inducer of the pathway regulator (RhaR) through expression analysis of the deletion mutants grown in transfer experiments to L-rhamnose and L-rhamnonate. Reduced expression of L-rhamnose-induced genes on L-rhamnose in lraA and lraB deletion strains, but not on L-rhamnonate (the product of LraB), demonstrate that the inducer of the pathway is of L-rhamnonate or a compound downstream of it. Reduced expression of these genes in the lraC deletion strain on L-rhamnonate show that it is in fact a downstream product of L-rhamnonate. This work showed that the inducer of RhaR is beyond L-rhamnonate dehydratase (LraC) and is likely to be the 2-keto-3-L-deoxyrhamnonate.

  9. Genomic Analysis of Circadian Clock-, Light-, and Growth-Correlated Genes Reveals PHYTOCHROME-INTERACTING FACTOR5 as a Modulator of Auxin Signaling in Arabidopsis1[C][W][OA

    PubMed Central

    Nozue, Kazunari; Harmer, Stacey L.; Maloof, Julin N.

    2011-01-01

    Plants exhibit daily rhythms in their growth, providing an ideal system for the study of interactions between environmental stimuli such as light and internal regulators such as the circadian clock. We previously found that two basic loop-helix-loop transcription factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, integrate light and circadian clock signaling to generate rhythmic plant growth in Arabidopsis (Arabidopsis thaliana). Here, we use expression profiling and real-time growth assays to identify growth regulatory networks downstream of PIF4 and PIF5. Genome-wide analysis of light-, clock-, or growth-correlated genes showed significant overlap between the transcriptomes of clock-, light-, and growth-related pathways. Overrepresentation analysis of growth-correlated genes predicted that the auxin and gibberellic acid (GA) hormone pathways both contribute to diurnal growth control. Indeed, lesions of GA biosynthesis genes retarded rhythmic growth. Surprisingly, GA-responsive genes are not enriched among genes regulated by PIF4 and PIF5, whereas auxin pathway and response genes are. Consistent with this finding, the auxin response is more severely affected than the GA response in pif4 pif5 double mutants and in PIF5-overexpressing lines. We conclude that at least two downstream modules participate in diurnal rhythmic hypocotyl growth: PIF4 and/or PIF5 modulation of auxin-related pathways and PIF-independent regulation of the GA pathway. PMID:21430186

  10. Coagulation factor VIIa-mediated protease-activated receptor 2 activation leads to β-catenin accumulation via the AKT/GSK3β pathway and contributes to breast cancer progression.

    PubMed

    Roy, Abhishek; Ansari, Shabbir A; Das, Kaushik; Prasad, Ramesh; Bhattacharya, Anindita; Mallik, Suman; Mukherjee, Ashis; Sen, Prosenjit

    2017-08-18

    Cell migration and invasion are very characteristic features of cancer cells that promote metastasis, which is one of the most common causes of mortality among cancer patients. Emerging evidence has shown that coagulation factors can directly mediate cancer-associated complications either by enhancing thrombus formation or by initiating various signaling events leading to metastatic cancer progression. It is well established that, apart from its distinct role in blood coagulation, coagulation factor FVIIa enhances aggressive behaviors of breast cancer cells, but the underlying signaling mechanisms still remain elusive. To this end, we investigated FVIIa's role in the migration and invasiveness of the breast cancer cell line MDA-MB-231. Consistent with previous observations, we observed that FVIIa increased the migratory and invasive potential of these cells. We also provide molecular evidence that protease-activated receptor 2 activation followed by PI3K-AKT activation and GSK3β inactivation is involved in these processes and that β-catenin, a well known tumor-regulatory protein, contributes to this signaling pathway. The pivotal role of β-catenin was further indicated by the up-regulation of its downstream targets cyclin D1, c-Myc, COX-2, MMP-7, MMP-14, and Claudin-1. β-Catenin knockdown almost completely attenuated the FVIIa-induced enhancement of breast cancer migration and invasion. These findings provide a new perspective to counteract the invasive behavior of breast cancer, indicating that blocking PI3K-AKT pathway-dependent β-catenin accumulation may represent a potential therapeutic approach to control breast cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Biased ligand quantification in drug discovery: from theory to high throughput screening to identify new biased μ opioid receptor agonists

    PubMed Central

    Winpenny, David; Clark, Mellissa

    2016-01-01

    Background and Purpose Biased GPCR ligands are able to engage with their target receptor in a manner that preferentially activates distinct downstream signalling and offers potential for next generation therapeutics. However, accurate quantification of ligand bias in vitro is complex, and current best practice is not amenable for testing large numbers of compound. We have therefore sought to apply ligand bias theory to an industrial scale screening campaign for the identification of new biased μ receptor agonists. Experimental Approach μ receptor assays with appropriate dynamic range were developed for both Gαi‐dependent signalling and β‐arrestin2 recruitment. Δlog(Emax/EC50) analysis was validated as an alternative for the operational model of agonism in calculating pathway bias towards Gαi‐dependent signalling. The analysis was applied to a high throughput screen to characterize the prevalence and nature of pathway bias among a diverse set of compounds with μ receptor agonist activity. Key Results A high throughput screening campaign yielded 440 hits with greater than 10‐fold bias relative to DAMGO. To validate these results, we quantified pathway bias of a subset of hits using the operational model of agonism. The high degree of correlation across these biased hits confirmed that Δlog(Emax/EC50) was a suitable method for identifying genuine biased ligands within a large collection of diverse compounds. Conclusions and Implications This work demonstrates that using Δlog(Emax/EC50), drug discovery can apply the concept of biased ligand quantification on a large scale and accelerate the deliberate discovery of novel therapeutics acting via this complex pharmacology. PMID:26791140

  12. Voltage-dependent neuromodulation of Na+ channels by D1-like dopamine receptors in rat hippocampal neurons.

    PubMed

    Cantrell, A R; Scheuer, T; Catterall, W A

    1999-07-01

    Activation of D1-like dopamine (DA) receptors reduces peak Na+ current in acutely isolated hippocampal neurons through phosphorylation of the alpha subunit of the Na+ channel by cAMP-dependent protein kinase (PKA). Here we report that neuromodulation of Na+ currents by DA receptors via PKA is voltage-dependent in the range of -110 to -70 mV and is also sensitive to concurrent activation of protein kinase C (PKC). Depolarization enhanced the ability of D1-like DA receptors to reduce peak Na+ currents via the PKA pathway. Similar voltage-dependent modulation was observed when PKA was activated directly with the membrane-permeant PKA activator DCl-cBIMPS (cBIMPS; 20 microM), indicating that the membrane potential dependence occurs downstream of PKA. PKA activation caused only a small (-2.9 mV) shift in the voltage dependence of steady-state inactivation and had no effect on slow inactivation or on the rates of entry into the fast or slow inactivated states, suggesting that another mechanism is responsible for coupling of membrane potential changes to PKA modulation. Activation of PKC with a low concentration of the membrane-permeant diacylglycerol analog oleylacetyl glycerol also potentiated modulation by SKF 81297 or cBIMPS, and these effects were most striking at hyperpolarized membrane potentials where PKA modulation was not stimulated by membrane depolarization. Thus, activation of D1-like DA receptors causes a strong reduction in Na+ current via the PKA pathway, but it is effective primarily when it is combined with depolarization or activation of PKC. The convergence of these three distinct signaling modalities on the Na+ channel provides an intriguing mechanism for integration of information from multiple signaling pathways in the hippocampus and CNS.

  13. Glutathione peroxidase mimic ebselen improves glucose-stimulated insulin secretion in murine islets.

    PubMed

    Wang, Xinhui; Yun, Jun-Won; Lei, Xin Gen

    2014-01-10

    Glutathione peroxidase (GPX) mimic ebselen and superoxide dismutase (SOD) mimic copper diisopropylsalicylate (CuDIPs) were used to rescue impaired glucose-stimulated insulin secretion (GSIS) in islets of GPX1 and(or) SOD1-knockout mice. Ebselen improved GSIS in islets of all four tested genotypes. The rescue in the GPX1 knockout resulted from a coordinated transcriptional regulation of four key GSIS regulators and was mediated by the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-mediated signaling pathways. In contrast, CuDIPs improved GSIS only in the SOD1 knockout and suppressed gene expression of the PGC-1α pathway. Islets from the GPX1 and(or) SOD1 knockout mice provided metabolically controlled intracellular hydrogen peroxide (H2O2) and superoxide conditions for the present study to avoid confounding effects. Bioinformatics analyses of gene promoters and expression profiles guided the search for upstream signaling pathways to link the ebselen-initiated H2O2 scavenging to downstream key events of GSIS. The RNA interference was applied to prove PGC-1α as the main mediator for that link. Our study revealed a novel metabolic use and clinical potential of ebselen in rescuing GSIS in the GPX1-deficient islets and mice, along with distinct differences between the GPX and SOD mimics in this regard. These findings highlight the necessities and opportunities of discretional applications of various antioxidant enzyme mimics in treating insulin secretion disorders. REBOUND TRACK: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Regina Brigelius-Flohe, Vadim Gladyshev, Dexing Hou, and Holger Steinbrenner.

  14. Vaccinia Virus Protein C6 Inhibits Type I IFN Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2.

    PubMed

    Stuart, Jennifer H; Sumner, Rebecca P; Lu, Yongxu; Snowden, Joseph S; Smith, Geoffrey L

    2016-12-01

    The type I interferon (IFN) response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV) strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs) in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3) complex to the interferon stimulated response element (ISRE). Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion.

  15. The bHLH transcription factor, hairy, refines the terminal cell fate in the Drosophila embryonic trachea.

    PubMed

    Zhan, Yaoyao; Maung, Saw W; Shao, Bing; Myat, Monn Monn

    2010-11-30

    The pair-rule gene, hairy, encodes a basic helix-loop-helix transcription factor and is required for patterning of the early Drosophila embryo and for morphogenesis of the embryonic salivary gland. Although hairy was shown to be expressed in the tracheal primordia and in surrounding mesoderm, whether hairy plays a role in tracheal development is not known. Here, we report that hairy is required for refining the terminal cell fate in the embryonic trachea and that hairy's tracheal function is distinct from its earlier role in embryonic patterning. In hairy mutant embryos where the repressive activity of hairy is lost due to lack of its co-repressor binding site, extra terminal cells are specified in the dorsal branches. We show that hairy functions in the muscle to refine the terminal cell fate to a single cell at the tip of the dorsal branch by limiting the expression domain of branchless (bnl), encoding the FGF ligand, in surrounding muscle cells. Abnormal activation of the Bnl signaling pathway in hairy mutant tracheal cells is exemplified by increased number of dorsal branch cells expressing Bnl receptor, Breathless (Btl) and Pointed, a downstream target of the Bnl/Btl signaling pathway. We also show that hairy genetically interacts with bnl in TC fate restriction and that overexpression of bnl in a subset of the muscle surrounding tracheal cells phenocopied the hairy mutant phenotype. Our studies demonstrate a novel role for Hairy in restriction of the terminal cell fate by limiting the domain of bnl expression in surrounding muscle cells such that only a single dorsal branch cell becomes specified as a terminal cell. These studies provide the first evidence for Hairy in regulation of the FGF signaling pathway during branching morphogenesis.

  16. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane

    PubMed Central

    Truschel, Steven T.; Simoes, Sabrina; Setty, Subba Rao Gangi; Harper, Dawn C.; Tenza, Danièle; Thomas, Penelope C.; Herman, Kathryn E.; Sackett, Sara D.; Cowan, David C.; Theos, Alexander C.; Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome (HPS) that lack BLOC-1, melanosomal proteins such as Tyrp1 accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverses early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle. PMID:19624486

  17. Differential subcellular membrane recruitment of Src may specify its downstream signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diesbach, Philippe de; Medts, Thierry; Carpentier, Sarah

    2008-04-15

    Most Src family members are diacylated and constitutively associate with membrane 'lipid rafts' that coordinate signalling. Whether the monoacylated Src, frequently hyperactive in carcinomas, also localizes at 'rafts' remains controversial. Using polarized MDCK cells expressing the thermosensitive v-Src/tsLA31 variant, we here addressed how Src tyrosine-kinase activation may impact on its (i) membrane recruitment, in particular to 'lipid rafts'; (ii) subcellular localization; and (iii) signalling. The kinetics of Src-kinase thermoactivation correlated with its recruitment from the cytosol to sedimentable membranes where Src largely resisted solubilisation by non-ionic detergents at 4 deg. C and floated into sucrose density gradients like caveolin-1 andmore » flotillin-2, i.e. 'lipid rafts'. By immunofluorescence, activated Src showed a dual localization, at apical endosomes/macropinosomes and at the apical plasma membrane. The plasma membrane Src pool did not colocalize with caveolin-1 and flotillin-2, but extensively overlapped GM1 labelling by cholera toxin. Severe ({approx} 70%) cholesterol extraction with methyl-{beta}-cyclodextrin (M{beta}CD) did not abolish 'rafts' floatation, but strongly decreased Src association with floating 'rafts' and abolished its localization at the apical plasma membrane. Src activation independently activated first the MAP-kinase - ERK1/2 pathway, then the PI3-kinase - Akt pathway. MAP-kinase - ERK1/2 activation was insensitive to M{beta}CD, which suppressed Akt phosphorylation and apical endocytosis induced by Src, both depending on the PI3-kinase pathway. We therefore suggest that activated Src is recruited at two membrane compartments, allowing differential signalling, first via ERK1/2 at 'non-raft' domains on endosomes, then via PI3-kinase-Akt on a distinct set of 'rafts' at the apical plasma membrane. Whether this model is applicable to c-Src remains to be examined.« less

  18. Hyperglycemic Conditions Prime Cells for RIP1-dependent Necroptosis.

    PubMed

    LaRocca, Timothy J; Sosunov, Sergey A; Shakerley, Nicole L; Ten, Vadim S; Ratner, Adam J

    2016-06-24

    Necroptosis is a RIP1-dependent programmed cell death (PCD) pathway that is distinct from apoptosis. Downstream effector pathways of necroptosis include formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS), both of which depend on glycolysis. This suggests that increased cellular glucose may prime necroptosis. Here we show that exposure to hyperglycemic levels of glucose enhances necroptosis in primary red blood cells (RBCs), Jurkat T cells, and U937 monocytes. Pharmacologic or siRNA inhibition of RIP1 prevented the enhanced death, confirming it as RIP1-dependent necroptosis. Hyperglycemic enhancement of necroptosis depends upon glycolysis with AGEs and ROS playing a role. Total levels of RIP1, RIP3, and mixed lineage kinase domain-like (MLKL) proteins were increased following treatment with high levels of glucose in Jurkat and U937 cells and was not due to transcriptional regulation. The observed increase in RIP1, RIP3, and MLKL protein levels suggests a potential positive feedback mechanism in nucleated cell types. Enhanced PCD due to hyperglycemia was specific to necroptosis as extrinsic apoptosis was inhibited by exposure to high levels of glucose. Hyperglycemia resulted in increased infarct size in a mouse model of brain hypoxia-ischemia injury. The increased infarct size was prevented by treatment with nec-1s, strongly suggesting that increased necroptosis accounts for exacerbation of this injury in conditions of hyperglycemia. This work reveals that hyperglycemia represents a condition in which cells are extraordinarily susceptible to necroptosis, that local glucose levels alter the balance of PCD pathways, and that clinically relevant outcomes may depend on glucose-mediated effects on PCD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Synthesis, characterization and apoptotic activity of quinazolinone Schiff base derivatives toward MCF-7 cells via intrinsic and extrinsic apoptosis pathways

    PubMed Central

    Zahedifard, Maryam; Lafta Faraj, Fadhil; Paydar, Mohammadjavad; Yeng Looi, Chung; Hajrezaei, Maryam; Hasanpourghadi, Mohadeseh; Kamalidehghan, Behnam; Abdul Majid, Nazia; Mohd Ali, Hapipah; Ameen Abdulla, Mahmood

    2015-01-01

    The current study investigated the cytotoxic effect of 3-(5-chloro-2-hydroxybenzylideneamino)-2-(5-chloro-2-hydroxyphenyl)-2,3-dihydroquinazolin-41(H)-one (A) and 3-(5-nitro-2-hydroxybenzylideneamino)-2-(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (B) on MCF-7, MDA-MB-231, MCF-10A and WRL-68 cells. The mechanism involved in apoptosis was assessed to evaluate the possible pathways induced by compound A and B. MTT assay results using A and B showed significant inhibition of MCF-7 cell viability, with IC50 values of 3. 27 ± 0.171 and 4.36 ± 0.219 μg/mL, respectively, after a 72 hour treatment period. Compound A and B did not demonstrate significant cytotoxic effects towards MDA-MB-231, WRL-68 and MCF-10A cells. Acute toxicity tests also revealed an absence of toxic effects on mice. Fluorescent microscopic studies confirmed distinct morphological changes (membrane blebbing and chromosome condensation) corresponding to typical apoptotic features in treated MCF-7 cells. Using Cellomics High Content Screening (HCS), we found that compound A and B could trigger the release of cytochrome c from mitochondria to the cytosol. The release of cytochrome c activated the expression of caspases-9 and then stimulated downstream executioner caspase-3/7. In addition, caspase-8 showed remarkable activity, followed by inhibition of NF-κB activation in A-and B-treated MCF-7 cells. The results indicated that A and B could induce apoptosis via a mechanism that involves either extrinsic or intrinsic pathways. PMID:26108872

  20. Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer

    PubMed Central

    Toden, Shusuke; Okugawa, Yoshinaga; Buhrmann, Constanze; Nattamai, Durgha; Anguiano, Esperanza; Baldwin, Nicole; Shakibaei, Mehdi; Boland, C. Richard; Goel, Ajay

    2015-01-01

    Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality worldwide, but it is truly a preventable disease. Both curcumin and boswellic acids are well-established dietary botanicals with potent anti-tumorigenic properties which have been shown to modulate multiple oncogenic pathways. Recent data suggest that the chemopreventive effects of these botanicals may in part be mediated through regulation of key cancer-related microRNAs (miRNAs) and their downstream gene targets. Here, we investigated the anti-tumorigenic effects of curcumin and 3 acetyl-11-keto-β-boswellic acid (AKBA) on modulation of specific cancer-related miRNAs in CRC cells and validated their protective effects in vivo using a xenograft mouse model. Both curcumin and AKBA inhibited cellular proliferation, induced apoptosis and cell cycle arrest in CRC cell lines, and these effects were significantly enhanced with combined treatment. Gene-expression arrays revealed that curcumin and AKBA regulated distinct cancer signaling pathways including key cell-cycle regulatory genes. Combined bioinformatics and in-silico analysis identified apoptosis, proliferation and cell-cycle regulatory signaling pathways as key modulators of curcumin and AKBA-induced anti-cancer effects. We discovered that curcumin and AKBA induced upregulation of tumor-suppressive miR-34a and downregulation of miR-27a in CRC cells. Furthermore, we demonstrated in a mouse xenograft model that both curcumin and AKBA treatments suppressed tumor growth, which corresponded with alterations in the expression of miR-34a and miR-27a, consistent with our in vitro findings. Herein we provide novel mechanistic evidence for the chemopreventive effects of curcumin and AKBA through regulation of specific miRNAs in colorectal cancer. PMID:25712055

  1. Interaction between Sam68 and Src family tyrosine kinases, Fyn and Lck, in T cell receptor signaling.

    PubMed

    Fusaki, N; Iwamatsu, A; Iwashima, M; Fujisawa, J i

    1997-03-07

    The Src family protein-tyrosine kinase, Fyn, is associated with the T cell receptor (TCR) and plays an important role in TCR-mediated signaling. We found that a human T cell leukemia virus type 1-infected T cell line, Hayai, overexpressed Fyn. To identify the molecules downstream of Fyn, we analyzed the tyrosine phosphorylation of cellular proteins in the cells. In Hayai, a 68-kDa protein was constitutively tyrosine-phosphorylated. The 68-kDa protein was coimmunoprecipitated with various signaling proteins such as phospholipase C gamma1, the phosphatidylinositol 3-kinase p85 subunit, Grb2, SHP-1, Cbl, and Jak3, implying that the protein might function as an adapter. Purification and microsequencing of this protein revealed that it was the RNA-binding protein, Sam68 (Src associated in mitosis, 68 kDa). Sam68 was associated with the Src homology 2 and 3 domains of Fyn and also those of another Src family kinase, Lck. CD3 cross-linking induced tyrosine phosphorylation of Sam68 in uninfected T cells. These data suggest that Sam68 participates in the signal transduction pathway downstream of TCR-coupled Src family kinases Fyn and Lck in lymphocytes, that is not only in the mitotic pathway downstream of c-Src in fibroblasts.

  2. Digging a hole under Hedgehog: downstream inhibition as an emerging anticancer strategy.

    PubMed

    Di Magno, Laura; Coni, Sonia; Di Marcotullio, Lucia; Canettieri, Gianluca

    2015-08-01

    Hedgehog signaling is a key regulator of development and stem cell fate and its aberrant activation is a leading cause of a number of tumors. Activating germline or somatic mutations of genes encoding Hh pathway components are found in Basal Cell Carcinoma (BCC) and Medulloblastoma (MB). Ligand-dependent Hedgehog hyperactivation, due to autocrine or paracrine mechanisms, is also observed in a large number of malignancies of the breast, colon, skin, bladder, pancreas and other tissues. The key tumorigenic role of Hedgehog has prompted effort aimed at identifying inhibitors of this signaling. To date, only the antagonists of the membrane transducer Smo have been approved for therapy or are under clinical trials in patients with BCC and MB linked to Ptch or Smo mutations. Despite the good initial response, patients treated with Smo antagonists have eventually developed resistance due to the occurrence of compensating mechanisms. Furthermore, Smo antagonists are not effective in tumors where the Hedgehog hyperactivation is due to mutations of pathway components downstream of Smo, or in case of non-canonical, Smo-independent activation of the Gli transcription factors. For all these reasons, the research of Hh inhibitors acting downstream of Smo is becoming an area of intensive investigation. In this review we illustrate the progresses made in the identification of effective Hedgehog inhibitors and their application in cancer, with a special emphasis on the newly identified downstream inhibitors. We describe in detail the Gli inhibitors and illustrate their mode of action and applications in experimental and/or clinical settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Novel therapeutic applications of nitric oxide donors in cancer: roles in chemo- and immunosensitization to apoptosis and inhibition of metastases.

    PubMed

    Bonavida, Benjamin; Baritaki, Stavroula; Huerta-Yepez, Sara; Vega, Mario I; Chatterjee, Devasis; Yeung, Kam

    2008-09-01

    The treatment of primary tumors results in an initial response to approved conventional therapeutics. However, recurrences and malignancies develop as a result of tumors' acquisition of anti-apoptotic mechanisms of resistance. Hence, there is an urgent need of novel therapeutics that can reverse resistance. One approach of interest is the inhibition of cell survival and anti-apoptotic pathways by sensitizing agents that can render resistant tumor cells sensitive to respond to various cytotoxic therapies. We have found that nitric oxide donors, similar to DETANONOate, inhibit cell survival anti-apoptotic pathways, such as the constitutively activated NF-kappaB and sensitize drug-resistant tumor cells to apoptosis by both chemotherapy and immunotherapy. Sensitization by DETANONOate was shown to inhibit the transcription repressor Yin Yang1 (YY1) shown to regulate resistance to both Fas ligand and TRAIL. In addition, DETANONOate-induced inhibition of NF-kappaB results downstream in the inhibition of several anti-apoptotic gene products, thus facilitating the activation of the apoptotic pathways with both chemotherapy and immunotherapy. In addition, DETANONOate induces the expression of the metastatic tumor suppressor gene product, Raf-1 Kinase Inhibitor Protein (RKIP), which inhibits the survival pathways induced by NF-kappaB and Raf-1/MEK which also contributes to the sensitizing activity. This indicates a novel finding that RKIP may also play an important role in the prevention of metastasis. Inhibition of NF-kappaB activation by DETANONOate results downstream in the inhibition of the RKIP transcription repressor Snail, resulting in upregulation of RKIP. Inhibition of Snail results in downstream inhibition of the metastatic cascade initiated by the epithelial-mesenchymal transition (EMT). Thus, nitric oxide donors have the dual functions of both sensitizing tumor cells to chemotherapy and immunotherapy and are also involved in the regulation and inhibition of metastasis.

  4. Novel irreversible EGFR tyrosine kinase inhibitor 324674 sensitizes human colon carcinoma HT29 and SW480 cells to apoptosis by blocking the EGFR pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhiwei; Cui, Binbin; Jin, Yinghu

    2011-08-12

    Highlights: {yields} This article described the effects of the EGFR tyrosine kinase inhibitor on the cell proliferation and the apoptosis induction of the colon carcinoma cell lines. {yields} Demonstrated that 326474 is a more potent EGFR inhibitor on colon cancer cells than other three TKIs. {yields} It can be important when considering chemotherapy for colonic cancer patients. -- Abstract: Background: Epidermal growth factor receptor (EGFR) is widely expressed in multiple solid tumors including colorectal cancer by promoting cancer cell growth and proliferation. Therefore, the inhibition of EGFR activity may establish a clinical strategy of cancer therapy. Methods: In this study,more » using human colon adenocarcinoma HT29 and SW480 cells as research models, we compared the efficacy of four EGFR inhibitors in of EGFR-mediated pathways, including the novel irreversible inhibitor 324674, conventional reversible inhibitor AG1478, dual EGFR/HER2 inhibitor GW583340 and the pan-EGFR/ErbB2/ErbB4 inhibitor. Cell proliferation was assessed by MTT analysis, and apoptosis was evaluated by the Annexin-V binding assay. EGFR and its downstream signaling effectors were examined by western blotting analysis. Results: Among the four inhibitors, the irreversible EGFR inhibitor 324674 was more potent at inhibiting HT29 and SW480 cell proliferation and was able to efficiently induce apoptosis at lower concentrations. Western blotting analysis revealed that AG1478, GW583340 and pan-EGFR/ErbB2/ErbB4 inhibitors failed to suppress EGFR activation as well as the downstream mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR (AKT) pathways. In contrast, 324674 inhibited EGFR activation and the downstream AKT signaling pathway in a dose-dependent manner. Conclusion: Our studies indicated that the novel irreversible EGFR inhibitor 324674 may have a therapeutic application in colon cancer therapy.« less

  5. [Progress on mechanism of cell apoptosis induced by rubella virus].

    PubMed

    Li, Zhen-mei; Chu, Fu-lu; Liu, Ying; Wang, Zhi-yu

    2013-09-01

    Rubella virus (RV), a member of the family Togaviridae, can induce apoptosis of host cells in vitro. Protein kinases of the Ras-Raf-MEK-ERK pathway and PI3K-Akt pathway play essential roles in virus multiplication, cell survival and apoptosis. Proteins p53 and TAp63 that bind to specific DNA sequences stimulate Bax in a manner to produce functional pores that facilitate release of mitochondrial cytochrome c and downstream caspase activation. In this review, the molecular mechanisms of RV-induced cell apoptosis, including RV-infected cell lines, pathological changes in cell components and apoptosis signaling pathways are summarized.

  6. Biobehavioral Influences on Cancer Progression

    PubMed Central

    Costanzo, Erin S.; Sood, Anil K.; Lutgendorf, Susan K.

    2010-01-01

    Synopsis This review focuses on the contributions of stress-related behavioral factors to cancer growth and metastasis and the biobehavioral mechanisms underlying these relationships. We describe behavioral factors that are important in modulation of the stress response and the pivotal role of neuroendocrine regulation in the downstream alteration of physiological pathways relevant to cancer control, including the cellular immune response, inflammation, and tumor angiogenesis, invasion, and cell-signaling pathways. Consequences for cancer progression and metastasis, as well as quality of life, are delineated. Finally, behavioral and pharmacological interventions for cancer patients with the potential to alter these biobehavioral pathways are discussed. PMID:21094927

  7. Identification of Potential Chemical Carcinogens in Compendia of Gene Expression Profiles

    EPA Science Inventory

    Chemicals induce cancer through partially characterized adverse outcome pathways (AOPs) that include molecular initiating events (MIEs) and downstream key events (KEs). Microarray profiling of chemical-induced effects is being increasingly used in medium- and high-throughput form...

  8. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder.

    PubMed

    Walden, Helen; Deans, Andrew J

    2014-01-01

    Mutations in any of at least sixteen FANC genes (FANCA-Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.

  9. Skin Transcriptomes of common bottlenose dolphins (Tursiops truncatus) from the northern Gulf of Mexico and southeastern U.S. Atlantic coasts.

    PubMed

    Neely, Marion G; Morey, Jeanine S; Anderson, Paul; Balmer, Brian C; Ylitalo, Gina M; Zolman, Eric S; Speakman, Todd R; Sinclair, Carrie; Bachman, Melannie J; Huncik, Kevin; Kucklick, John; Rosel, Patricia E; Mullin, Keith D; Rowles, Teri K; Schwacke, Lori H; Van Dolah, Frances M

    2018-04-01

    Common bottlenose dolphins serve as sentinels for the health of their coastal environments as they are susceptible to health impacts from anthropogenic inputs through both direct exposure and food web magnification. Remote biopsy samples have been widely used to reveal contaminant burdens in free-ranging bottlenose dolphins, but do not address the health consequences of this exposure. To gain insight into whether remote biopsies can also identify health impacts associated with contaminant burdens, we employed RNA sequencing (RNA-seq) to interrogate the transcriptomes of remote skin biopsies from 116 bottlenose dolphins from the northern Gulf of Mexico and southeastern U.S. Atlantic coasts. Gene expression was analyzed using principal component analysis, differential expression testing, and gene co-expression networks, and the results correlated to season, location, and contaminant burden. Season had a significant impact, with over 60% of genes differentially expressed between spring/summer and winter months. Geographic location exhibited lesser effects on the transcriptome, with 23.5% of genes differentially expressed between the northern Gulf of Mexico and the southeastern U.S. Atlantic locations. Despite a large overlap between the seasonal and geographical gene sets, the pathways altered in the observed gene expression profiles were somewhat distinct. Co-regulated gene modules and differential expression analysis both identified epidermal development and cellular architecture pathways to be expressed at lower levels in animals from the northern Gulf of Mexico. Although contaminant burdens measured were not significantly different between regions, some correlation with contaminant loads in individuals was observed among co-expressed gene modules, but these did not include classical detoxification pathways. Instead, this study identified other, possibly downstream pathways, including those involved in cellular architecture, immune response, and oxidative stress, that may prove to be contaminant responsive markers in bottlenose dolphin skin. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity

    PubMed Central

    McGaha, Tracy L.; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C.; Mellor, Andrew L.

    2014-01-01

    Summary Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field. PMID:22889220

  11. Connective Tissue Growth Factor Domain 4 Amplifies Fibrotic Kidney Disease through Activation of LDL Receptor-Related Protein 6.

    PubMed

    Johnson, Bryce G; Ren, Shuyu; Karaca, Gamze; Gomez, Ivan G; Fligny, Cécile; Smith, Benjamin; Ergun, Ayla; Locke, George; Gao, Benbo; Hayes, Sebastian; MacDonnell, Scott; Duffield, Jeremy S

    2017-06-01

    Connective tissue growth factor (CTGF), a matrix-associated protein with four distinct cytokine binding domains, has roles in vasculogenesis, wound healing responses, and fibrogenesis and is upregulated in fibroblasts and myofibroblasts in disease. Here, we investigated the role of CTGF in fibrogenic cells. In mice, tissue-specific inducible overexpression of CTGF by kidney pericytes and fibroblasts had no bearing on nephrogenesis or kidney homeostasis but exacerbated inflammation and fibrosis after ureteral obstruction. These effects required the WNT receptor LDL receptor-related protein 6 (LRP6). Additionally, pericytes isolated from these mice became hypermigratory and hyperproliferative on overexpression of CTGF. CTGF is cleaved in vivo into distinct domains. Treatment with recombinant domain 1, 1+2 (N terminus), or 4 (C terminus) independently activated myofibroblast differentiation and wound healing responses in cultured pericytes, but domain 4 showed the broadest profibrotic activity. Domain 4 exhibited low-affinity binding to LRP6 in in vitro binding assays, and inhibition of LRP6 or critical signaling cascades downstream of LRP6, including JNK and WNT/ β -catenin, inhibited the biologic activity of domain 4. Administration of blocking antibodies specifically against CTGF domain 4 or recombinant Dickkopf-related protein-1, an endogenous inhibitor of LRP6, effectively inhibited inflammation and fibrosis associated with ureteral obstruction in vivo Therefore, domain 4 of CTGF and the WNT signaling pathway are important new targets in fibrosis. Copyright © 2017 by the American Society of Nephrology.

  12. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer

    PubMed Central

    Rodilla, Verónica; Villanueva, Alberto; Obrador-Hevia, Antonia; Robert-Moreno, Àlex; Fernández-Majada, Vanessa; Grilli, Andrea; López-Bigas, Nuria; Bellora, Nicolás; Albà, M. Mar; Torres, Ferran; Duñach, Mireia; Sanjuan, Xavier; Gonzalez, Sara; Gridley, Thomas; Capella, Gabriel; Bigas, Anna; Espinosa, Lluís

    2009-01-01

    Notch has been linked to β-catenin-dependent tumorigenesis; however, the mechanisms leading to Notch activation and the contribution of the Notch pathway to colorectal cancer is not yet understood. By microarray analysis, we have identified a group of genes downstream of Wnt/β-catenin (down-regulated when blocking Wnt/β-catenin) that are directly regulated by Notch (repressed by γ-secretase inhibitors and up-regulated by active Notch1 in the absence of β-catenin signaling). We demonstrate that Notch is downstream of Wnt in colorectal cancer cells through β-catenin-mediated transcriptional activation of the Notch-ligand Jagged1. Consistently, expression of activated Notch1 partially reverts the effects of blocking Wnt/β-catenin pathway in tumors implanted s.c. in nude mice. Crossing APCMin/+ with Jagged1+/Δ mice is sufficient to significantly reduce the size of the polyps arising in the APC mutant background indicating that Notch is an essential modulator of tumorigenesis induced by nuclear β-catenin. We show that this mechanism is operating in human tumors from Familial Adenomatous Polyposis patients. We conclude that Notch activation, accomplished by β-catenin-mediated up-regulation of Jagged1, is required for tumorigenesis in the intestine. The Notch-specific genetic signature is sufficient to block differentiation and promote vasculogenesis in tumors whereas proliferation depends on both pathways. PMID:19325125

  13. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer.

    PubMed

    Rodilla, Verónica; Villanueva, Alberto; Obrador-Hevia, Antonia; Robert-Moreno, Alex; Fernández-Majada, Vanessa; Grilli, Andrea; López-Bigas, Nuria; Bellora, Nicolás; Albà, M Mar; Torres, Ferran; Duñach, Mireia; Sanjuan, Xavier; Gonzalez, Sara; Gridley, Thomas; Capella, Gabriel; Bigas, Anna; Espinosa, Lluís

    2009-04-14

    Notch has been linked to beta-catenin-dependent tumorigenesis; however, the mechanisms leading to Notch activation and the contribution of the Notch pathway to colorectal cancer is not yet understood. By microarray analysis, we have identified a group of genes downstream of Wnt/beta-catenin (down-regulated when blocking Wnt/beta-catenin) that are directly regulated by Notch (repressed by gamma-secretase inhibitors and up-regulated by active Notch1 in the absence of beta-catenin signaling). We demonstrate that Notch is downstream of Wnt in colorectal cancer cells through beta-catenin-mediated transcriptional activation of the Notch-ligand Jagged1. Consistently, expression of activated Notch1 partially reverts the effects of blocking Wnt/beta-catenin pathway in tumors implanted s.c. in nude mice. Crossing APC(Min/+) with Jagged1(+/Delta) mice is sufficient to significantly reduce the size of the polyps arising in the APC mutant background indicating that Notch is an essential modulator of tumorigenesis induced by nuclear beta-catenin. We show that this mechanism is operating in human tumors from Familial Adenomatous Polyposis patients. We conclude that Notch activation, accomplished by beta-catenin-mediated up-regulation of Jagged1, is required for tumorigenesis in the intestine. The Notch-specific genetic signature is sufficient to block differentiation and promote vasculogenesis in tumors whereas proliferation depends on both pathways.

  14. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua.

    PubMed

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-05-25

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H.

  15. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua

    PubMed Central

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-01-01

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H. PMID:27220407

  16. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment

    PubMed Central

    Johnson, Randy; Halder, Georg

    2014-01-01

    The Hippo signaling pathway is an emerging growth control and tumor suppressor pathway that regulates cell proliferation and stem cell functions. Defects in Hippo signaling and hyperactivation of its downstream effectors YAP and TAZ contribute to the development of cancer, suggesting that pharmacological inhibition of YAP and TAZ activity may be an effective anticancer strategy. Conversely, YAP and TAZ can also play beneficial roles in stimulating tissue repair and regeneration following injury, therefore activation of YAP and TAZ may be useful in these contexts. Recently, a complex network of intracellular and extracellular signaling pathways that modulate YAP and TAZ activities have been identified. Here we review the regulation of the Hippo signaling pathway, its functions in normal homeostasis and disease, and recent progress in the identification of small molecule pathway modulators. PMID:24336504

  17. Computational Insight Into the Structural Organization of Full-Length Toll-Like Receptor 4 Dimer in a Model Phospholipid Bilayer

    PubMed Central

    Patra, Mahesh Chandra; Kwon, Hyuk-Kwon; Batool, Maria; Choi, Sangdun

    2018-01-01

    Toll-like receptors (TLRs) are a unique category of pattern recognition receptors that recognize distinct pathogenic components, often utilizing the same set of downstream adaptors. Specific molecular features of extracellular, transmembrane (TM), and cytoplasmic domains of TLRs are crucial for coordinating the complex, innate immune signaling pathway. Here, we constructed a full-length structural model of TLR4—a widely studied member of the interleukin-1 receptor/TLR superfamily—using homology modeling, protein–protein docking, and molecular dynamics simulations to understand the differential domain organization of TLR4 in a membrane-aqueous environment. Results showed that each functional domain of the membrane-bound TLR4 displayed several structural transitions that are biophysically essential for plasma membrane integration. Specifically, the extracellular and cytoplasmic domains were partially immersed in the upper and lower leaflets of the membrane bilayer. Meanwhile, TM domains tilted considerably to overcome the hydrophobic mismatch with the bilayer core. Our analysis indicates an alternate dimerization or a potential oligomerization interface of TLR4-TM. Moreover, the helical properties of an isolated TM dimer partly agree with that of the full-length receptor. Furthermore, membrane-absorbed or solvent-exposed surfaces of the toll/interleukin-1 receptor domain are consistent with previous X-ray crystallography and biochemical studies. Collectively, we provided a complete structural model of membrane-bound TLR4 that strengthens our current understanding of the complex mechanism of receptor activation and adaptor recruitment in the innate immune signaling pathway. PMID:29593733

  18. Expression profiling upon Nex1/MATH-2-mediated neuritogenesis in PC12 cells and its implication in regeneration

    PubMed Central

    Uittenbogaard, Martine; Chiaramello, Anne

    2006-01-01

    The expression of Nex1 peaks during brain development when neurite outgrowth and synaptogenesis are highly active. We previously showed that Nex1 is a critical effector of the nerve growth factor (NGF) pathway and its overexpression results in spontaneous neuritogenesis. Furthermore, the PC12-Nex1 cells exhibit accelerated neurite extension upon NGF exposure, and have the capacity to regenerate neurites in the absence of NGF. In this study, we identify the repertoire of genes targeted by Nex1 to unravel the molecular mecha nisms by which Nex1 promotes differentiation and regeneration. Our transcriptional analysis reveals that Nex1 modulates a wide spectrum of genes with diverse functions, many of them being key downstream regulators of the NGF pathway, and critical to neuritogenesis, such as microtubules, microtubule-associated proteins (MAPs) and intermediate filaments. We also provide the first evidence that a basic helix-loop-helix (bHLH) protein stimulates the expression of the cyclin-dependent kinase (CDK) inhibitors belonging to the INK4 family, which plays a role in promoting cell-cycle arrest. Finally, we show a dramatic synergistic effect between Nex1 and cAMP, resulting in an impressive regeneration of an elaborate and dense neurite network. Thus, Nex1 has endowed the PC12-Nex1 cells with a distinct combination of gene products that takes part in the complex regulation of neuritogenesis and regeneration. PMID:15584910

  19. Intrinsic attenuation of post-irradiation calcium and ER stress imparts significant radioprotection to lepidopteran insect cells.

    PubMed

    Guleria, Ayushi; Thukral, Neha; Chandna, Sudhir

    2018-04-15

    Sf9 lepidopteran insect cells are 100-200 times more radioresistant than mammalian cells. This distinctive feature thus makes them suitable for studies exploring radioprotective molecular mechanisms. It has been established from previous studies of our group that downstream mitochondrial apoptotic signaling pathways in Sf9 cells are quite similar to mammalian cells, implicating the upstream signaling pathways in their extensive radioresistance. In the present study, intracellular and mitochondrial calcium levels remained unaltered in Sf9 cells in response to radiation, in sharp contrast to human (HEK293T) cells. The isolated mitochondria from Sf9 cells exhibited nearly 1.5 times greater calcium retention capacity than mammalian cells, highlighting their inherent stress resilience. Importantly, UPR/ER stress marker proteins (p-eIF2α, GRP4 and SERCA) remained unaltered by radiation and suggested highly attenuated ER and calcium stress. Lack of SERCA induction further corroborates the lack of radiation-induced calcium mobilization in these cells. The expression of CaMKII, an important effector molecule of calcium signaling, did not alter in response to radiation. Inhibiting CaMKII by KN-93 or suppressing CaM by siRNA failed to alter Sf9 cells response to radiation and suggests CaM-CaMKII independent radiation signaling. Therefore, this study suggests that attenuated calcium signaling/ER stress is an important determinant of lepidopteran cell radioresistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Investigation of cAMP microdomains as a path to novel cancer diagnostics.

    PubMed

    Desman, Garrett; Waintraub, Caren; Zippin, Jonathan H

    2014-12-01

    Understanding of cAMP signaling has greatly improved over the past decade. The advent of live cell imaging techniques and more specific pharmacologic modulators has led to an improved understanding of the intricacies by which cAMP is able to modulate such a wide variety of cellular pathways. It is now appreciated that cAMP is able to activate multiple effector proteins at distinct areas in the cell leading to the activation of very different downstream targets. The investigation of signaling proteins in cancer is a common route to the development of diagnostic tools, prognostic tools, and/or therapeutic targets, and in this review we highlight how investigation of cAMP signaling microdomains driven by the soluble adenylyl cyclase in different cancers has led to the development of a novel cancer biomarker. Antibodies directed against the soluble adenylyl cyclase (sAC) are highly specific markers for melanoma especially for lentigo maligna melanoma and are being described as "second generation" cancer diagnostics, which are diagnostics that determine the 'state' of a cell and not just identify the cell type. Due to the wide presence of cAMP signaling pathways in cancer, we predict that further investigation of both sAC and other cAMP microdomains will lead to additional cancer biomarkers. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish.

    PubMed

    Winata, Cecilia L; Kondrychyn, Igor; Kumar, Vibhor; Srinivasan, Kandhadayar G; Orlov, Yuriy; Ravishankar, Ashwini; Prabhakar, Shyam; Stanton, Lawrence W; Korzh, Vladimir; Mathavan, Sinnakaruppan

    2013-10-01

    Zic3 regulates early embryonic patterning in vertebrates. Loss of Zic3 function is known to disrupt gastrulation, left-right patterning, and neurogenesis. However, molecular events downstream of this transcription factor are poorly characterized. Here we use the zebrafish as a model to study the developmental role of Zic3 in vivo, by applying a combination of two powerful genomics approaches--ChIP-seq and microarray. Besides confirming direct regulation of previously implicated Zic3 targets of the Nodal and canonical Wnt pathways, analysis of gastrula stage embryos uncovered a number of novel candidate target genes, among which were members of the non-canonical Wnt pathway and the neural pre-pattern genes. A similar analysis in zic3-expressing cells obtained by FACS at segmentation stage revealed a dramatic shift in Zic3 binding site locations and identified an entirely distinct set of target genes associated with later developmental functions such as neural development. We demonstrate cis-regulation of several of these target genes by Zic3 using in vivo enhancer assay. Analysis of Zic3 binding sites revealed a distribution biased towards distal intergenic regions, indicative of a long distance regulatory mechanism; some of these binding sites are highly conserved during evolution and act as functional enhancers. This demonstrated that Zic3 regulation of developmental genes is achieved predominantly through long distance regulatory mechanism and revealed that developmental transitions could be accompanied by dramatic changes in regulatory landscape.

  2. DOG-1 Is the Caenorhabditis elegans BRIP1/FANCJ Homologue and Functions in Interstrand Cross-Link Repair▿

    PubMed Central

    Youds, Jillian L.; Barber, Louise J.; Ward, Jordan D.; Collis, Spencer J.; O'Neil, Nigel J.; Boulton, Simon J.; Rose, Ann M.

    2008-01-01

    Fanconi anemia (FA) is a cancer susceptibility syndrome characterized by defective DNA interstrand cross-link (ICL) repair. Here, we show that DOG-1 is the Caenorhabditis elegans homologue of FANCJ, a helicase mutated in FA-J patients. DOG-1 performs a conserved role in ICL repair, as dog-1 mutants are hypersensitive to ICL-inducing agents, but not to UVC irradiation or X rays. Genetic analysis indicated that dog-1 is epistatic with fcd-2 (C. elegans FANCD2) but is nonepistatic with brc-1 (C. elegans BRCA1), thus establishing the existence of two distinct pathways of ICL repair in worms. Furthermore, DOG-1 is dispensable for FCD-2 and RAD-51 focus formation, suggesting that DOG-1 operates downstream of FCD-2 and RAD-51 in ICL repair. DOG-1 was previously implicated in poly(G)/poly(C) (G/C) tract maintenance during DNA replication. G/C tracts remain stable in the absence of ATL-1, CLK-2 (FA pathway activators), FCD-2, BRC-2, and MLH-1 (associated FA components), implying that DOG-1 is the sole FA component required for G/C tract maintenance in a wild-type background. However, FCD-2 is required to promote deletion-free repair at G/C tracts in dog-1 mutants, consistent with a role for FA factors at the replication fork. The functional conservation between DOG-1 and FANCJ suggests a possible role for FANCJ in G/C tract maintenance in human cells. PMID:18086896

  3. Ecological requirements for pallid sturgeon reproduction and recruitment in the Missouri River—Annual report 2013

    USGS Publications Warehouse

    Delonay, Aaron J.; Jacobson, Robert B.; Chojnacki, Kimberly A.; Braaten, Patrick J.; Buhl, Kevin J.; Eder, Brandon L; Elliott, Caroline M.; Erwin, Susannah O.; Fuller, David B.; Haddix, Tyler M.; Ladd, Hallie L.A.; Mestl, Gerald E.; Papoulias, Diana M.; Rhoten, Jason C.; Wesolek, Christopher J.; Wildhaber, Mark L.

    2016-01-20

    The research tasks in the 2013 scope of work emphasized understanding reproductive migrations and spawning of adult pallid sturgeon, and hatch and drift of free embryos and larvae. These tasks were addressed in four study sections located in three hydrologically and geomorphologically distinct parts of the Missouri River Basin: the Upper Missouri River downstream from Fort Peck Dam, including downstream reaches of the Milk River, the Lower Yellowstone River, and the Lower Missouri River downstream from Gavins Point Dam. The research is designed to inform management decisions related to channel re-engineering, flow modification, and pallid sturgeon population augmentation on the Missouri River, and throughout the range of the species. Research and progress made through this project are reported to the U.S. Army Corps of Engineers annually. This annual report details the research effort and progress made by the Comprehensive Sturgeon Research Project during 2013.

  4. Curcumin and Emodin Down-Regulate TGF-β Signaling Pathway in Human Cervical Cancer Cells

    PubMed Central

    Thacker, Pooja Chandrakant; Karunagaran, Devarajan

    2015-01-01

    Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling) and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug) upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer. PMID:25786122

  5. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells.

    PubMed

    Thacker, Pooja Chandrakant; Karunagaran, Devarajan

    2015-01-01

    Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling) and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug) upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.

  6. Guggulsterone Targets Smokeless Tobacco Induced PI3K/Akt Pathway in Head and Neck Cancer Cells

    PubMed Central

    Macha, Muzafar A.; Matta, Ajay; Chauhan, Shyam Singh; Siu, K. W. Michael; Ralhan, Ranju

    2011-01-01

    Background Epidemiological association of head and neck cancer with smokeless tobacco (ST) emphasizes the need to unravel the molecular mechanisms implicated in cancer development, and identify pharmacologically safe agents for early intervention and prevention of disease recurrence. Guggulsterone (GS), a biosafe nutraceutical, inhibits the PI3K/Akt pathway that plays a critical role in HNSCC development. However, the potential of GS to suppress ST and nicotine (major component of ST) induced HNSCC remains unexplored. We hypothesized GS can abrogate the effects of ST and nicotine on apoptosis in HNSCC cells, in part by activation of PI3K/Akt pathway and its downstream targets, Bax and Bad. Methods and Results Our results showed ST and nicotine treatment resulted in activation of PI3K, PDK1, Akt, and its downstream proteins - Raf, GSK3β and pS6 while GS induced a time dependent decrease in activation of PI3K/Akt pathway. ST and nicotine treatment also resulted in induction of Bad and Bax phosphorylation, increased the association of Bad with 14-3-3ζresulting in its sequestration in the cytoplasm of head and neck cancer cells, thus blocking its pro-apoptotic function. Notably, GS pre-treatment inhibited ST/nicotine induced activation of PI3K/Akt pathway, and inhibited the Akt mediated phosphorylation of Bax and Bad. Conclusions In conclusion, GS treatment not only inhibited proliferation, but also induced apoptosis by abrogating the effects of ST / nicotine on PI3K/Akt pathway in head and neck cancer cells. These findings provide a rationale for designing future studies to evaluate the chemopreventive potential of GS in ST / nicotine associated head and neck cancer. PMID:21383988

  7. Guggulsterone targets smokeless tobacco induced PI3K/Akt pathway in head and neck cancer cells.

    PubMed

    Macha, Muzafar A; Matta, Ajay; Chauhan, Shyam Singh; Siu, K W Michael; Ralhan, Ranju

    2011-02-24

    Epidemiological association of head and neck cancer with smokeless tobacco (ST) emphasizes the need to unravel the molecular mechanisms implicated in cancer development, and identify pharmacologically safe agents for early intervention and prevention of disease recurrence. Guggulsterone (GS), a biosafe nutraceutical, inhibits the PI3K/Akt pathway that plays a critical role in HNSCC development. However, the potential of GS to suppress ST and nicotine (major component of ST) induced HNSCC remains unexplored. We hypothesized GS can abrogate the effects of ST and nicotine on apoptosis in HNSCC cells, in part by activation of PI3K/Akt pathway and its downstream targets, Bax and Bad. Our results showed ST and nicotine treatment resulted in activation of PI3K, PDK1, Akt, and its downstream proteins--Raf, GSK3β and pS6 while GS induced a time dependent decrease in activation of PI3K/Akt pathway. ST and nicotine treatment also resulted in induction of Bad and Bax phosphorylation, increased the association of Bad with 14-3-3ζresulting in its sequestration in the cytoplasm of head and neck cancer cells, thus blocking its pro-apoptotic function. Notably, GS pre-treatment inhibited ST/nicotine induced activation of PI3K/Akt pathway, and inhibited the Akt mediated phosphorylation of Bax and Bad. In conclusion, GS treatment not only inhibited proliferation, but also induced apoptosis by abrogating the effects of ST/nicotine on PI3K/Akt pathway in head and neck cancer cells. These findings provide a rationale for designing future studies to evaluate the chemopreventive potential of GS in ST/nicotine associated head and neck cancer.

  8. A switch in the mode of Wnt signaling orchestrates the formation of germline stem cell differentiation niche in Drosophila

    PubMed Central

    Upadhyay, Maitreyi; Kuna, Michael; Tudor, Sara; Martino Cortez, Yesenia

    2018-01-01

    Germline stem cell (GSC) self-renewal and differentiation into gametes is regulated by both intrinsic factors in the germ line as well as extrinsic factors from the surrounding somatic niche. dWnt4, in the escort cells of the adult somatic niche promotes GSC differentiation using the canonical β-catenin-dependent transcriptional pathway to regulate escort cell survival, adhesion to the germ line and downregulation of self-renewal signaling. Here, we show that in addition to the β-catenin-dependent canonical pathway, dWnt4 also uses downstream components of the Wnt non-canonical pathway to promote escort cell function earlier in development. We find that the downstream non-canonical components, RhoA, Rac1 and cdc42, are expressed at high levels and are active in escort cell precursors of the female larval gonad compared to the adult somatic niche. Consistent with this expression pattern, we find that the non-canonical pathway components function in the larval stages but not in adults to regulate GSC differentiation. In the larval gonad, dWnt4, RhoA, Rac1 and cdc42 are required to promote intermingling of escort cell precursors, a function that then promotes proper escort cell function in the adults. We find that dWnt4 acts by modulating the activity of RhoA, Rac1 and cdc42, but not their protein levels. Together, our results indicate that at different points of development, dWnt4 switches from using the non-canonical pathway components to using a β-catenin-dependent canonical pathway in the escort cells to facilitate the proper differentiation of GSCs. PMID:29370168

  9. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    PubMed

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  10. Molecular analysis of HER2 signaling in human breast cancer by functional protein pathway activation mapping

    PubMed Central

    Wulfkuhle, Julia D.; Berg, Daniela; Wolff, Claudia; Langer, Rupert; Tran, Kai; Illi, Julie; Espina, Virginia; Pierobon, Mariaelena; Deng, Jianghong; DeMichele, Angela; Walch, Axel; Bronger, Holger; Becker, Ingrid; Waldhör, Christine; Höfler, Heinz; Esserman, Laura; Liotta, Lance A.; Becker, Karl-Friedrich; Petricoin, Emanuel F.

    2017-01-01

    Purpose Targeting of the HER2 protein in human breast cancer represents a major advance in oncology, but relies on measurements of total HER2 protein and not HER2 signaling network activation. We utilized reverse phase protein microarrays (RPMAs) to measure total and phosphorylated HER2 in the context of HER family signaling to understand correlations between phosphorylated and total levels of HER2 and downstream signaling activity. Experimental Design Three independent study sets, comprising a total of 415 individual patient samples from flash frozen core biopsy samples and FFPE surgical and core samples, were analyzed via RPMA. The phosphorylation and total levels of the HER receptor family proteins and downstream signaling molecules were measured in laser capture microdissected (LCM) enriched tumor epithelium from 127 frozen pre-treatment core biopsy samples and whole tissue lysates from 288 FFPE samples and these results were compared to FISH and IHC. Results RPMA measurements of total HER2 were highly concordant (> 90% all sets) with FISH and/or IHC data, as was phosphorylation of HER2 in the FISH/IHC+ population. Phosphorylation analysis of HER family signaling identified HER2 activation in some FISH/IHC- tumors and, identical to that seen with FISH/IHC+ tumors, the HER2 activation was concordant with EGFR and HER3 phosphorylation and downstream signaling endpoint activation. Conclusions Molecular profiling of HER2 signaling of a large cohort of human breast cancer specimens using a quantitative and sensitive functional pathway activation mapping technique reveals IHC-/FISH-/pHER2+ tumors with HER2 pathway activation independent of total HER2 levels and functional signaling through HER3 and EGFR. PMID:23045247

  11. Function-specific intracellular signaling pathways downstream of heparin-binding EGF-like growth factor utilized by human trophoblasts.

    PubMed

    Jessmon, Philip; Kilburn, Brian A; Romero, Roberto; Leach, Richard E; Armant, D Randall

    2010-05-01

    Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1-2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation.

  12. Function-Specific Intracellular Signaling Pathways Downstream of Heparin-Binding EGF-Like Growth Factor Utilized by Human Trophoblasts1

    PubMed Central

    Jessmon, Philip; Kilburn, Brian A.; Romero, Roberto; Leach, Richard E.; Armant, D. Randall

    2010-01-01

    Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1–2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation. PMID:20130271

  13. Neuroprotective effects of electro acupuncture on hypoxic-ischemic encephalopathy in newborn rats Ass.

    PubMed

    Xu, Tao; Li, Wenjie; Liang, Yiqun; Yang, Zhonghua; Liu, Jingdong; Wang, Yejun; Su, Nailun

    2014-11-01

    Hypoxic-ischemic encephalopathy (HIE) is a common and potentially devastating condition in the neonate, associated with high mortality and morbidity. Effective treatment options are limited and therefore alternative therapies such as acupuncture are increasingly used. Previous studies have shown that electro acupuncture promoted proliferation of neural progenitor cell and increased expression of neurotrophic factor in HIE. However, effects of electro acupuncture on downstream signaling pathways have been rarely researched. So, in the present study, we aimed to evaluate the neuroprotective effects of electro acupuncture on HIE and to further investigate the role of GDNF family receptor member RET and its key downstream PI3-K/Akt pathway in the process. A rat HIE model was constructed by the left common carotid artery (LCCA) ligation method in combination with hypoxic treatment. Considering that Baihui (GV20), Dazhui (GV14), Quchi (LI11) and Yongquan (KI1) are commonly used in clinics for stroke treatment and are easy to locate, we chose the above four acupoints as the combination for electro acupuncture treatment which was performed once a day for different time periods. Hematoxylin-eosin (HE) staining and transmission electron microscopy results showed that electro acupuncture could ameliorate neurologic damage and alleviate the degenerative changes of ultra structure of cortical neurons in rats subjected to HIE. And the longer acupuncture treatment lasted, the better its therapeutic effect would be. This was accompanied by gradually increased expression of GDNF family receptor RET at the mRNA level and its downstream signaling Akt at the protein level in the ischemic cortex. These findings suggest that electro acupuncture shows neuroprotective effects in HIE, which at least in part is attributed to activation of PI3-K/Akt signaling pathway.

  14. RhoA/ROCK pathway is the major molecular determinant of basal tone in intact human internal anal sphincter.

    PubMed

    Rattan, Satish; Singh, Jagmohan

    2012-04-01

    The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10(-8) to 10(-4) M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC(20) in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC(20), before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment.

  15. RhoA/ROCK pathway is the major molecular determinant of basal tone in intact human internal anal sphincter

    PubMed Central

    Singh, Jagmohan

    2012-01-01

    The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10−8 to 10−4 M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC20 in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC20, before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment. PMID:22241857

  16. Growth of chronic myeloid leukemia cells is inhibited by infection with Ad-SH2-HA adenovirus that disrupts Grb2-Bcr-Abl complexes.

    PubMed

    Peng, Zhi; Luo, Hong-Wei; Yuan, Ying; Shi, Jing; Huang, Shi-Feng; Li, Chun-Li; Cao, Wei-Xi; Huang, Zong-Gan; Feng, Wen-Li

    2011-05-01

    The persistence of Bcr-Abl-positive cells in patients on imatinib therapy indicates that inhibition of the Bcr-Abl kinase activity alone might not be sufficient to eradicate the leukemia cells. Many downstream effectors of Bcr-Abl have been described, including activation of both the Grb2-SoS-Ras-MAPK and Grb2-Gab2-PI3K-Akt pathways. The Bcr-Abl-Grb2 interaction, which is mediated by the direct interaction of the Grb2 SH2 domain with the phospho-Bcr-Abl Y177, is required for activation of these signaling pathways. Therefore, disrupting their interaction represents a potential therapeutic strategy for inhibiting the oncogenic downstream signals of Bcr-Abl. Adenovirus Ad-SH2-HA expressing the Grb2 SH2 domain was constructed and applied in this study. As expected, Ad-SH2-HA efficiently infected CML cells and functioned by binding to the phospho-Bcr-Abl Y177 site, competitively disrupting the Grb2 SH2-phospho-Bcr-Abl Y177 complex. They induced potent anti-proliferation and apoptosis-inducing effects in CML cell lines. Moreover, the Ras, MAPK and Akt activities were significantly reduced in the Ad-SH2-HA treated cells. These were not observed with the point-mutated control adenovirus Ad-Sm-HA with abolished phospho-Bcr-Abl Y177 binding sites. These data indicate that, in addition to the direct targeting of Bcr-Abl, selective inhibition of its downstream signaling pathways may be a therapeutic option for CML, and the Ad-SH2-HA-mediated killing strategy could be explored as a promising anti-leukemia agent in CML.

  17. Activity-Dependent Inhibitory Gating in Molecular Signaling Cascades Induces a Novel Form of Intermediate-Term Synaptic Facilitation in "Aplysia Californica"

    ERIC Educational Resources Information Center

    Fischbach, Soren; Kopec, Ashley M.; Carew, Thomas J.

    2014-01-01

    Mechanistically distinct forms of long-lasting plasticity and memory can be induced by a variety of different training patterns. Although several studies have identified distinct molecular pathways that are engaged during these different training patterns, relatively little work has explored potential interactions between pathways when they are…

  18. 'What' Is Happening in the Dorsal Visual Pathway.

    PubMed

    Freud, Erez; Plaut, David C; Behrmann, Marlene

    2016-10-01

    The cortical visual system is almost universally thought to be segregated into two anatomically and functionally distinct pathways: a ventral occipitotemporal pathway that subserves object perception, and a dorsal occipitoparietal pathway that subserves object localization and visually guided action. Accumulating evidence from both human and non-human primate studies, however, challenges this binary distinction and suggests that regions in the dorsal pathway contain object representations that are independent of those in ventral cortex and that play a functional role in object perception. We review here the evidence implicating dorsal object representations, and we propose an account of the anatomical organization, functional contributions, and origins of these representations in the service of perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nicotine Deteriorates the Osteogenic Differentiation of Periodontal Ligament Stem Cells through α7 Nicotinic Acetylcholine Receptor Regulating wnt Pathway

    PubMed Central

    Dong, Zhiwei; Liu, Fen; Zhang, Yu; Yu, Yang; Shang, Fengqing; Wu, Lizheng; Wang, Xiaojing; Jin, Yan

    2013-01-01

    Aims Cigarette smoking is one of the high risk factors of adult chronic periodontitis and nicotine is the well established toxic substance in cigarette. However, the mechanism of nicotine induced periodontitis is still unknown. Here we studied whether nicotine impaired the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) through activating α7 nicotinic acetylcholine receptor (α7 nAChR). Methods hPDLSCs with multi differentiation potential and surface makers for mesenchymal stem cells were harvested by limiting dilution technique. The level of mineralized nodule formation was assessed by alizarin red S staining. Expression level of ostegenic related genes and proteins were detected by real-time PCR and western blot analysis. The expression of α7 nAChR and its downstream signaling pathway were examined by western blot. The role of the receptor and related signaling pathway in nicotine impairing the osteogenic potential of hPDLSCs were also studied in different levels. Results Nicotine deteriorated the ostegenic differentiation of hPDLSCs in a dose dependent manner. Activation of α7 nAChR by nicotine treatment activated wnt/β-catenin signaling pathway, leading to osteogenic deficiency of hPDLSCs. Blockage of α7 nAChR and wnt pathway inhibitor treatment rescued nicotine induced osteogenic differentiation deficiency. Conclusions These data suggested that nicotine activated α7 nAChR expressed on PDLSCs and further activated wnt signaling downstream, thus deteriorating the osteogenic potential of PDLSCs. The impairment of osteogenic differentiation of PDLSCs by nicotine might lead to cigarette smoking related periodontitis. PMID:24376645

  20. Functional analysis of the gene controlling hydroxylation of festuclavine in the ergot alkaloid pathway of Neosartorya fumigata

    PubMed Central

    Bilovol, Yulia; Panaccione, Daniel G.

    2016-01-01

    Bioactive ergot alkaloids produced by several species of fungi are important molecules in agriculture and medicine. Much of the ergot alkaloid pathway has been elucidated, but a few steps, including the gene controlling hydroxylation of festuclavine to fumigaclavine B, remain unsolved. Festuclavine is a key intermediate in the fumigaclavine branch of the ergot alkaloid pathway of the opportunistic pathogen Neosartorya fumigata and also in the dihydrolysergic acid-based ergot alkaloid pathway of certain Claviceps species. Based on several lines of evidence, the N. fumigata gene easM is a logical candidate to encode the festuclavine-hydroxylating enzyme. To test this hypothesis we disrupted easM function by replacing part of its coding sequences with a hygromycin resistance gene and transforming N. fumigata with this construct. High pressure liquid chromatography analysis demonstrated that easM deletion mutants were blocked in the ergot alkaloid pathway at festuclavine, and downstream products were eliminated. An additional alkaloid, proposed to be a prenylated form of festuclavine on the basis of mass spectral data, also accumulated to higher concentrations in the easM knockout. Complementation with the wild-type allele of easM gene restored the ability of the fungus to produce downstream compounds. These results indicate that easM encodes an enzyme required for fumigaclavine B synthesis likely by hydroxylating festuclavine. The festuclavine-accumulating strain of N. fumigata may facilitate future investigations of the biosynthesis of dihydrolysergic acid derivatives, which are derived from festuclavine and are the basis for several important drugs. PMID:26972831

  1. Functional analysis of the gene controlling hydroxylation of festuclavine in the ergot alkaloid pathway of Neosartorya fumigata.

    PubMed

    Bilovol, Yulia; Panaccione, Daniel G

    2016-11-01

    Bioactive ergot alkaloids produced by several species of fungi are important molecules in agriculture and medicine. Much of the ergot alkaloid pathway has been elucidated, but a few steps, including the gene controlling hydroxylation of festuclavine to fumigaclavine B, remain unsolved. Festuclavine is a key intermediate in the fumigaclavine branch of the ergot alkaloid pathway of the opportunistic pathogen Neosartorya fumigata and also in the dihydrolysergic acid-based ergot alkaloid pathway of certain Claviceps species. Based on several lines of evidence, the N. fumigata gene easM is a logical candidate to encode the festuclavine-hydroxylating enzyme. To test this hypothesis we disrupted easM function by replacing part of its coding sequences with a hygromycin resistance gene and transforming N. fumigata with this construct. High-pressure liquid chromatography analysis demonstrated that easM deletion mutants were blocked in the ergot alkaloid pathway at festuclavine, and downstream products were eliminated. An additional alkaloid, proposed to be a prenylated form of festuclavine on the basis of mass spectral data, also accumulated to higher concentrations in the easM knockout. Complementation with the wild-type allele of easM gene restored the ability of the fungus to produce downstream compounds. These results indicate that easM encodes an enzyme required for fumigaclavine B synthesis likely by hydroxylating festuclavine. The festuclavine-accumulating strain of N. fumigata may facilitate future investigations of the biosynthesis of dihydrolysergic acid derivatives, which are derived from festuclavine and are the basis for several important drugs.

  2. Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events

    PubMed Central

    Ashouri, Arghavan; Sayin, Volkan I.; Van den Eynden, Jimmy; Singh, Simranjit X.; Papagiannakopoulos, Thales; Larsson, Erik

    2016-01-01

    Thousands of long non-coding RNAs (lncRNAs) lie interspersed with coding genes across the genome, and a small subset has been implicated as downstream effectors in oncogenic pathways. Here we make use of transcriptome and exome sequencing data from thousands of tumours across 19 cancer types, to identify lncRNAs that are induced or repressed in relation to somatic mutations in key oncogenic driver genes. Our screen confirms known coding and non-coding effectors and also associates many new lncRNAs to relevant pathways. The associations are often highly reproducible across cancer types, and while many lncRNAs are co-expressed with their protein-coding hosts or neighbours, some are intergenic and independent. We highlight lncRNAs with possible functions downstream of the tumour suppressor TP53 and the master antioxidant transcription factor NFE2L2. Our study provides a comprehensive overview of lncRNA transcriptional alterations in relation to key driver mutational events in human cancers. PMID:28959951

  3. Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling

    PubMed Central

    Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek

    2016-01-01

    Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals. PMID:27021213

  4. Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling.

    PubMed

    Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek

    2016-03-29

    Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals.

  5. AR on the move; boarding the microtubule expressway to the nucleus

    PubMed Central

    Thadani-Mulero, Maria; Nanus, David M.; Giannakakou, Paraskevi

    2012-01-01

    Recent studies have shown that the microtubule-stabilizing drug, paclitaxel, which is commonly used for the treatment of prostate cancer inhibits signaling from the androgen receptor (AR) by inhibiting its nuclear accumulation downstream of microtubule stabilization. This mechanism is independent of paclitaxel-induced mitotic arrest and could provide an alternative mechanism of drug action that can explain its clinical activity. In this review, we highlight the importance of signaling and trafficking pathways that depend on intact and dynamic microtubules and as such they represent downstream targets of microtubule inhibitors. We showcase prostate cancer, which is driven by the activity of the androgen receptor (AR), as recent reports have revealed a connection between the microtubule-dependent trafficking of AR and the clinical efficacy of taxanes. Identification and further elucidation of microtubule-dependent tumor-specific pathways will help us better understand the molecular basis of clinical taxane resistance as well as identify individual patients more likely to respond to treatment. PMID:22987486

  6. Edaravone alleviates Alzheimer's disease-type pathologies and cognitive deficits.

    PubMed

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-04-21

    Alzheimer's disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis.

  7. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense.

    PubMed

    Zhang, Mengmeng; Su, Jianbin; Zhang, Yan; Xu, Juan; Zhang, Shuqun

    2018-05-09

    Mitogen-activated protein kinase (MAPK) cascades are key signaling modules downstream of receptors/sensors that perceive endogenous and exogenous stimuli such as hormones, peptide ligands, and pathogen-derived patterns/effectors. In this review, we summarize recent advances in the establishment of MAPK cascades as unified signaling modules downstream of receptor-like kinases (RLKs) and receptor-like proteins (RLPs) in plant growth and defense, the identification of components connecting the RLK/RLP receptor complexes to the MAPK cascades, and the interactions between MAPK and hormone signaling pathways. We also propose a set of criteria for defining the physiological substrates of plant MAPKs. With only a limited number of MAPK components, multiple functional pathways often share the same MAPK cascade. As a result, understanding the signaling specificity, which requires detailed information about the spatiotemporal expression of the components involved, their complex formation, and the consequence of substrate phosphorylation, is central to our study of MAPK functions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Nutrient Sensing at the Plasma Membrane of Fungal Cells.

    PubMed

    Van Dijck, Patrick; Brown, Neil Andrew; Goldman, Gustavo H; Rutherford, Julian; Xue, Chaoyang; Van Zeebroeck, Griet

    2017-03-01

    To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.

  9. Oncogenic NOTCH1 control of MYC and PI3K: challenges and opportunities for anti-NOTCH1 therapy in T-ALL

    PubMed Central

    Palomero, Teresa; Ferrando, Adolfo

    2008-01-01

    The identification of activating mutations in NOTCH1 in the majority of T-cell acute lymphoblastic leukemias and lymphomas (T-ALL) has brought much interest in inhibiting NOTCH1 signaling as therapeutic target in this disease. Small molecule inhibitors of the γ-secretase complex, which mediates a critical proteolytic cleavage required for NOTCH1 activation, hold the promise of becoming an effective molecular therapy against relapsed and refractory T-ALL. Recent progress in the elucidation of the transcriptional regulatory networks downstream of oncogenic NOTCH1 has uncovered a central role of NOTCH1 signaling in promoting leukemic cell growth and revealed an intricate circuitry that connects NOTCH1 signaling with MYC and the PI3K-AKT signaling pathway. The identification of the downstream effector pathways controlled by NOTCH1 should pave the way for the rational design of anti-NOTCH1 therapies for the treatment of T-ALL. PMID:18765521

  10. Guanosine triphosphatase activation occurs downstream of calcineurin in cardiac hypertrophy*.

    PubMed

    Richardson, Kenneth E; Tannous, Paul; Berenji, Kambeez; Nolan, Bridgid; Bayless, Kayla J; Davis, George E; Rothermel, Beverly A; Hill, Joseph A

    2005-12-01

    There is great interest in deciphering mechanisms of maladaptive remodeling in cardiac hypertrophy in the hope of affording clinical benefit. Potential targets of therapeutic intervention include the cytoplasmic phosphatase calcineurin and small guanosine triphosphate-binding proteins, such as Rac1 and RhoA, all of which have been implicated in maladaptive hypertrophy. However, little is known about the interaction-if any-between these important signaling molecules in hypertrophic heart disease. In this study, we examined the molecular interplay among these molecules, finding that Rho family guanosine triphosphatase signaling occurs either downstream of calcineurin or as a required, parallel pathway. It has been shown that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibition blocks hypertrophy, and we report here that "statin" therapy effectively suppresses small G protein activation and blunts hypertrophic growth in vitro and in vivo. Importantly, despite significant suppression of hypertrophy, clinical and hemodynamic markers remained compensated, suggesting that the hypertrophic growth induced by this pathway is not required to maintain circulatory performance.

  11. Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream.

    PubMed

    Güçlü, Umut; van Gerven, Marcel A J

    2015-07-08

    Converging evidence suggests that the primate ventral visual pathway encodes increasingly complex stimulus features in downstream areas. We quantitatively show that there indeed exists an explicit gradient for feature complexity in the ventral pathway of the human brain. This was achieved by mapping thousands of stimulus features of increasing complexity across the cortical sheet using a deep neural network. Our approach also revealed a fine-grained functional specialization of downstream areas of the ventral stream. Furthermore, it allowed decoding of representations from human brain activity at an unsurpassed degree of accuracy, confirming the quality of the developed approach. Stimulus features that successfully explained neural responses indicate that population receptive fields were explicitly tuned for object categorization. This provides strong support for the hypothesis that object categorization is a guiding principle in the functional organization of the primate ventral stream. Copyright © 2015 the authors 0270-6474/15/3510005-10$15.00/0.

  12. Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons

    PubMed Central

    Mosca, Timothy J; Luginbuhl, David J; Wang, Irving E; Luo, Liqun

    2017-01-01

    Precise coordination of synaptic connections ensures proper information flow within circuits. The activity of presynaptic organizing molecules signaling to downstream pathways is essential for such coordination, though such entities remain incompletely known. We show that LRP4, a conserved transmembrane protein known for its postsynaptic roles, functions presynaptically as an organizing molecule. In the Drosophila brain, LRP4 localizes to the nerve terminals at or near active zones. Loss of presynaptic LRP4 reduces excitatory (not inhibitory) synapse number, impairs active zone architecture, and abolishes olfactory attraction - the latter of which can be suppressed by reducing presynaptic GABAB receptors. LRP4 overexpression increases synapse number in excitatory and inhibitory neurons, suggesting an instructive role and a common downstream synapse addition pathway. Mechanistically, LRP4 functions via the conserved kinase SRPK79D to ensure normal synapse number and behavior. This highlights a presynaptic function for LRP4, enabling deeper understanding of how synapse organization is coordinated. DOI: http://dx.doi.org/10.7554/eLife.27347.001 PMID:28606304

  13. Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

    PubMed Central

    Tang, Yujie; Gholamin, Sharareh; Schubert, Simone; Willardson, Minde I.; Lee, Alex; Bandopadhayay, Pratiti; Bergthold, Guillame; Masoud, Sabran; Nguyen, Brian; Vue, Nujsaubnusi; Balansay, Brianna; Yu, Furong; Oh, Sekyung; Woo, Pamelyn; Chen, Spenser; Ponnuswami, Anitha; Monje, Michelle; Atwood, Scott X.; Whitson, Ramon J.; Mitra, Siddhartha; Cheshier, Samuel H.; Qi, Jun; Beroukhim, Rameen; Tang, Jean Y.; Wechsler-Reya, Rob; Oro, Anthony E.; Link, Brian A.; Bradner, James E.; Cho, Yoon-Jae

    2014-01-01

    Hedgehog signaling drives oncogenesis in several cancers and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened. However, resistance to Smoothened inhibitors occurs via genetic changes of Smoothened or other downstream Hedgehog components. Here, we overcome these resistance mechanisms by modulating GLI transcription via inhibition of BET bromodomain proteins. We show the BET bromodomain protein, BRD4, regulates GLI transcription downstream of SMO and SUFU and chromatin immunoprecipitation studies reveal BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites upon treatment with JQ1, a small molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid/rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists. PMID:24973920

  14. Change Is Good: Variations in Common Biological Mechanisms in the Epsilonproteobacterial Genera Campylobacter and Helicobacter

    DTIC Science & Technology

    2011-03-01

    Schmiel, and V. L. Miller. 1999. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a...likely function within the same signaling pathway, with FlgSR acting downstream of the apparatus to stimulate 54-depen- dent expression of flagellar...resulting in the formation of Sifs and migration of the SCV to a location near the Golgi apparatus to serve as an intracellular replicative niche. (B) C

  15. Molecular Genetic Studies of Bone Mechanical Strain and of Pedigrees with Very High Bone Density

    DTIC Science & Technology

    2006-11-01

    PTP1B . Recruitment of STAT3 to the phosphorylated tyr(pY)-1138 residue leads to its rapid phosphorylation, dimerization, and translocation to the... PTP1B is a critical downstream negative regulator of the Lepr pathway. Deletion of PTP1B gene enhanced leptin sensitivity in mice (11). PTP1B ...interactions between the Lepr and the integrin signaling pathways. Specifically, the recruitment of SHP2 and/or PTP1B to integrin is essential for the

  16. Nitrogen cycling in Sandusky Bay, Lake Erie: oscillations between strong and weak export and implications for harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Salk, Kateri R.; Bullerjahn, George S.; McKay, Robert Michael L.; Chaffin, Justin D.; Ostrom, Nathaniel E.

    2018-05-01

    Recent global water quality crises point to an urgent need for greater understanding of cyanobacterial harmful algal blooms (cHABs) and their drivers. Nearshore areas of Lake Erie such as Sandusky Bay may become seasonally limited by nitrogen (N) and are characterized by distinct cHAB compositions (i.e., Planktothrix over Microcystis). This study investigated phytoplankton N uptake pathways, determined drivers of N depletion, and characterized the N budget in Sandusky Bay. Nitrate (NO3-) and ammonium (NH4+) uptake, N fixation, and N removal processes were quantified by stable isotopic approaches. Dissimilatory N reduction was a relatively modest N sink, with denitrification, anammox, and N2O production accounting for 84, 14, and 2 % of sediment N removal, respectively. Phytoplankton assimilation was the dominant N uptake mechanism, and NO3- uptake rates were higher than NH4+ uptake rates. Riverine N loading was sometimes insufficient to meet assimilatory and dissimilatory demands, but N fixation alleviated this deficit. N fixation made up 23.7-85.4 % of total phytoplankton N acquisition and indirectly supports Planktothrix blooms. However, N fixation rates were surprisingly uncorrelated with NO3- or NH4+ concentrations. Owing to temporal separation in sources and sinks of N to Lake Erie, Sandusky Bay oscillates between a conduit and a filter of downstream N loading to Lake Erie, delivering extensively recycled forms of N during periods of low export. Drowned river mouths such as Sandusky Bay are mediators of downstream N loading, but climate-change-induced increases in precipitation and N loading will likely intensify N export from these systems.

  17. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

    PubMed Central

    Pathan, Akbar Ali Khan; Panthi, Bhavana; Khan, Zahid; Koppula, Purushotham Reddy; Alanazi, Mohammed Saud; Sachchidanand; Parine, Narasimha Reddy; Chourasia, Mukesh

    2016-01-01

    Objective Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results Interestingly, the designed compounds exhibit a binding preference for the “off” state over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. Conclusion Thus, through the current study, we propose targeting only “off” state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein. PMID:27217775

  18. Regulation of ERRα Gene Expression by Estrogen Receptor Agonists and Antagonists in SKBR3 Breast Cancer Cells: Differential Molecular Mechanisms Mediated by G Protein-Coupled Receptor GPR30/GPER-1

    PubMed Central

    Li, Yin; Birnbaumer, Lutz; Teng, Christina T.

    2010-01-01

    In selected tissues and cell lines, 17β-estradiol (E2) regulates the expression of estrogen-related receptor α (ERRα), a member of the orphan nuclear receptor family. This effect is thought to be mediated by the estrogen receptor α (ERα). However in the ERα- and ERβ-negative SKBR3 breast cancer cell line, physiological levels of E2 also stimulate ERRα expression. Here, we explored the molecular mechanism that mediates estrogen action in ER-negative breast cancer cells. We observed that E2, the ERα agonist, as well as the ERα antagonists ICI 182,780 and tamoxifen (TAM), a selective ER modulator, stimulate the transcriptional activity of the ERRα gene and increase the production of ERRα protein in SKBR3 cells. Moreover, the ERRα downstream target genes expression and cellular proliferation are also increased. We show further that the G protein-coupled receptor GPR30/GPER-1 (GPER-1) mediates these effects. The GPER-1 specific ligand G-1 mimics the actions of E2, ICI 182,780, and TAM on ERRα expression, and changing the levels of GPER-1 mRNA by overexpression or small interfering RNA knockdown affected the expression of ERRα accordingly. Utilizing inhibitors, we delineate a different downstream pathway for ER agonist and ER antagonist-triggered signaling through GPER-1. We also find differential histone acetylation and transcription factor recruitment at distinct nucleosomes of the ERRα promoter, depending on whether the cells are activated with E2 or with ER antagonists. These findings provide insight into the molecular mechanisms of GPER-1/ERRα-mediated signaling and may be relevant to what happens in breast cancer cells escaping inhibitory control by TAM. PMID:20211987

  19. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction

    PubMed Central

    Gack, Michaela U.; Kirchhofer, Axel; Shin, Young C.; Inn, Kyung-Soo; Liang, Chengyu; Cui, Sheng; Myong, Sua; Ha, Taekjip; Hopfner, Karl-Peter; Jung, Jae U.

    2008-01-01

    The caspase recruitment domain (CARD) of intracellular adaptors and sensors plays a critical role in the assembly of signaling complexes involved in innate host defense against pathogens and in the regulation of inflammatory responses. The cytosolic receptor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA in a 5′-triphosphate-dependent manner and initiates an antiviral signaling cascade. Upon viral infection, the N-terminal CARDs of RIG-I undergo the K63-linked ubiquitination induced by tripartite motif protein 25 (TRIM25), critical for the interaction of RIG-I with its downstream signaling partner MAVS/VISA/IPS-1/Cardif. Here, we demonstrate the distinct roles of RIG-I first and second CARD in TRIM25-mediated RIG-I ubiquitination: TRIM25 binds the RIG-I first CARD and subsequently ubiquitinates its second CARD. The T55I mutation in RIG-I first CARD abolishes TRIM25 interaction, whereas the K172R mutation in the second CARD eliminates polyubiquitin attachment. The necessity of the intact tandem CARD for RIG-I function is further evidenced by a RIG-I splice variant (SV) whose expression is robustly up-regulated upon viral infection. The RIG-I SV carries a short deletion (amino acids 36–80) within the first CARD and thereby loses TRIM25 binding, CARD ubiquitination, and downstream signaling ability. Furthermore, because of its robust inhibition of virus-induced RIG-I multimerization and RIG-I-MAVS signaling complex formation, this SV effectively suppresses the RIG-I-mediated IFN-β production. This study not only elucidates the vital role of the intact tandem CARD for TRIM25-mediated RIG-I activation but also identifies the RIG-I SV as an off-switch regulator of its own signaling pathway. PMID:18948594

  20. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction.

    PubMed

    Gack, Michaela U; Kirchhofer, Axel; Shin, Young C; Inn, Kyung-Soo; Liang, Chengyu; Cui, Sheng; Myong, Sua; Ha, Taekjip; Hopfner, Karl-Peter; Jung, Jae U

    2008-10-28

    The caspase recruitment domain (CARD) of intracellular adaptors and sensors plays a critical role in the assembly of signaling complexes involved in innate host defense against pathogens and in the regulation of inflammatory responses. The cytosolic receptor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA in a 5'-triphosphate-dependent manner and initiates an antiviral signaling cascade. Upon viral infection, the N-terminal CARDs of RIG-I undergo the K(63)-linked ubiquitination induced by tripartite motif protein 25 (TRIM25), critical for the interaction of RIG-I with its downstream signaling partner MAVS/VISA/IPS-1/Cardif. Here, we demonstrate the distinct roles of RIG-I first and second CARD in TRIM25-mediated RIG-I ubiquitination: TRIM25 binds the RIG-I first CARD and subsequently ubiquitinates its second CARD. The T(55)I mutation in RIG-I first CARD abolishes TRIM25 interaction, whereas the K(172)R mutation in the second CARD eliminates polyubiquitin attachment. The necessity of the intact tandem CARD for RIG-I function is further evidenced by a RIG-I splice variant (SV) whose expression is robustly up-regulated upon viral infection. The RIG-I SV carries a short deletion (amino acids 36-80) within the first CARD and thereby loses TRIM25 binding, CARD ubiquitination, and downstream signaling ability. Furthermore, because of its robust inhibition of virus-induced RIG-I multimerization and RIG-I-MAVS signaling complex formation, this SV effectively suppresses the RIG-I-mediated IFN-beta production. This study not only elucidates the vital role of the intact tandem CARD for TRIM25-mediated RIG-I activation but also identifies the RIG-I SV as an off-switch regulator of its own signaling pathway.

  1. Regulation of ecmF gene expression and genetic hierarchy among STATa, CudA, and MybC on several prestalk A-specific gene expressions in Dictyostelium.

    PubMed

    Saga, Yukika; Inamura, Tomoka; Shimada, Nao; Kawata, Takefumi

    2016-05-01

    STATa, a Dictyostelium homologue of metazoan signal transducer and activator of transcription, is important for the organizer function in the tip region of the migrating Dictyostelium slug. We previously showed that ecmF gene expression depends on STATa in prestalk A (pstA) cells, where STATa is activated. Deletion and site-directed mutagenesis analysis of the ecmF/lacZ fusion gene in wild-type and STATa null strains identified an imperfect inverted repeat sequence, ACAAATANTATTTGT, as a STATa-responsive element. An upstream sequence element was required for efficient expression in the rear region of pstA zone; an element downstream of the inverted repeat was necessary for sufficient prestalk expression during culmination. Band shift analyses using purified STATa protein detected no sequence-specific binding to those ecmF elements. The only verified upregulated target gene of STATa is cudA gene; CudA directly activates expL7 gene expression in prestalk cells. However, ecmF gene expression was almost unaffected in a cudA null mutant. Several previously reported putative STATa target genes were also expressed in cudA null mutant but were downregulated in STATa null mutant. Moreover, mybC, which encodes another transcription factor, belonged to this category, and ecmF expression was downregulated in a mybC null mutant. These findings demonstrate the existence of a genetic hierarchy for pstA-specific genes, which can be classified into two distinct STATa downstream pathways, CudA dependent and independent. The ecmF expression is indirectly upregulated by STATa in a CudA-independent activation manner but dependent on MybC, whose expression is positively regulated by STATa. © 2016 Japanese Society of Developmental Biologists.

  2. A critical role for HER3 in HER2-amplified and non-amplified breast cancers: function of a kinase-dead RTK

    PubMed Central

    Dey, Nandini; Williams, Casey; Leyland-Jones, Brain; De, Pradip

    2015-01-01

    ERBB3/HER3 is the most intriguing RTK by virtue of its ability to transduce multiple cytosolic signals for the proliferation and growth of tumor cells in spite of being a “kinase dead” receptor that binds to its true ligand, heregulin. Although other members of the HER3 family like EGFR and HER2 have long been recognized to be associated with breast tumorigenesis and studied because of their predictive and prognostic value, the significance of HER3 as an irrefutable component of HER family signalosome is a relatively new development. The recent understanding of signals originating from the oncogenic partnership of HER3 with HER2 in the context of HER2 amplification/overexpression showed the critical clinical value for the treatment of HER2+BC. The downstream signaling cascade (included but not limited to the PI3K signaling) associated with signals originating from HER2:HER3 dimers play a vital role in the tumorigenesis, drug-resistance and tumor progression of HER2+BC. The upregulation of HER3 activity provides an alternate “escape route” via which tumor cells bypass either the inhibition of the HER family RTKs or the inhibition of the downstream PI3K-AKT-mTOR signaling pathway. By understanding the signaling that provides this “escape route” for these tumor cells treated with a targeted therapy (HER2 inhibitors or inhibitors of downstream PI3K-AKT-mTOR signaling pathway), we are just beginning to appreciate the prognostic value of HER3 in breast cancer. In this review, we will discuss the relevance of HER3 signaling in the context of, (1) downstream oncogenic signals and (2) therapeutic options in HER2 amplified BC. PMID:26064441

  3. A Distinct Pathway for Polar Exocytosis in Plant Cell Wall Formation1[OPEN

    PubMed Central

    Wang, Hao; Zhuang, Xiaohong; Wang, Xiangfeng; Law, Angus Ho Yin; Zhao, Teng; Du, Shengwang; Loy, Michael M.T.; Jiang, Liwen

    2016-01-01

    Post-Golgi protein sorting and trafficking to the plasma membrane (PM) is generally believed to occur via the trans-Golgi network (TGN). In this study using Nicotiana tabacum pectin methylesterase (NtPPME1) as a marker, we have identified a TGN-independent polar exocytosis pathway that mediates cell wall formation during cell expansion and cytokinesis. Confocal immunofluorescence and immunogold electron microscopy studies demonstrated that Golgi-derived secretory vesicles (GDSVs) labeled by NtPPME1-GFP are distinct from those organelles belonging to the conventional post-Golgi exocytosis pathway. In addition, pharmaceutical treatments, superresolution imaging, and dynamic studies suggest that NtPPME1 follows a polar exocytic process from Golgi-GDSV-PM/cell plate (CP), which is distinct from the conventional Golgi-TGN-PM/CP secretion pathway. Further studies show that ROP1 regulates this specific polar exocytic pathway. Taken together, we have demonstrated an alternative TGN-independent Golgi-to-PM polar exocytic route, which mediates secretion of NtPPME1 for cell wall formation during cell expansion and cytokinesis and is ROP1-dependent. PMID:27531442

  4. The role of the RB tumour suppressor pathway in oxidative stress responses in the haematopoietic system

    PubMed Central

    Macleod, Kay F.

    2010-01-01

    Exposure to pro-oxidants and defects in the repair of oxidative base damage are associated with disease and ageing and also contribute to the development of anaemia, bone marrow failure and haematopoietic malignancies. This Review assesses emerging data indicative of a specific role for the RB tumour suppressor pathway in the response of the haematopoietic system to oxidative stress. This is mediated through signalling pathways that involve DNA damage sensors, forkhead box O (Foxo) transcription factors and p38 mitogen-activated protein kinases and has downstream consequences for cell cycle progression, antioxidant capacity, mitochondrial mass and cellular metabolism. PMID:18800074

  5. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    PubMed

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Defining the Protein–Protein Interaction Network of the Human Hippo Pathway*

    PubMed Central

    Wang, Wenqi; Li, Xu; Huang, Jun; Feng, Lin; Dolinta, Keithlee G.; Chen, Junjie

    2014-01-01

    The Hippo pathway, which is conserved from Drosophila to mammals, has been recognized as a tumor suppressor signaling pathway governing cell proliferation and apoptosis, two key events involved in organ size control and tumorigenesis. Although several upstream regulators, the conserved kinase cascade and key downstream effectors including nuclear transcriptional factors have been defined, the global organization of this signaling pathway is not been fully understood. Thus, we conducted a proteomic analysis of human Hippo pathway, which revealed the involvement of an extensive protein–protein interaction network in this pathway. The mass spectrometry data were deposited to ProteomeXchange with identifier PXD000415. Our data suggest that 550 interactions within 343 unique protein components constitute the central protein–protein interaction landscape of human Hippo pathway. Our study provides a glimpse into the global organization of Hippo pathway, reveals previously unknown interactions within this pathway, and uncovers new potential components involved in the regulation of this pathway. Understanding these interactions will help us further dissect the Hippo signaling-pathway and extend our knowledge of organ size control. PMID:24126142

  7. Crossroads of Wnt and Hippo in epithelial tissues.

    PubMed

    Bernascone, Ilenia; Martin-Belmonte, Fernando

    2013-08-01

    Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Impact of expression of EMP enzymes on glucose metabolism in Zymomonas mobilis.

    PubMed

    Chen, Rachel Ruizhen; Agrawal, Manoj; Mao, Zichao

    2013-06-01

    Zymomonas mobilis is the only known microorganism that utilizes the Entner-Doudoroff (ED) pathway anaerobically. In this work, we investigated whether the overexpression of a phosphofructokinase (PFK), the only missing Embden-Meyerhof-Parnas (EMP) pathway enzyme, could establish the pathway in this organism. Introduction of a pyrophosphate-dependent PFK, along with co-expression of homologous fructose-1,6-bisphosphate aldolase and triosephosphate isomerase, did not result in an EMP flux to any appreciable level. However, the metabolism of glucose was impacted significantly. Eight percent of glucose was metabolized to form a new metabolite, dihydroxyacetone. Reducing flux through the ED pathway by as much as 40 % through antisense of a key enzyme, ED aldolase, did not result in a fully functional EMP pathway, suggesting that the ED pathway, especially the lower arm, downstream from glyceraldehyde-3-phosphate, is very rigid, possibly due to redox balance.

  9. Estradiol targets T cell signaling pathways in human systemic lupus.

    PubMed

    Walters, Emily; Rider, Virginia; Abdou, Nabih I; Greenwell, Cindy; Svojanovsky, Stan; Smith, Peter; Kimler, Bruce F

    2009-12-01

    The major risk factor for developing systemic lupus erythematosus (SLE) is being female. The present study utilized gene profiles of activated T cells from females with SLE and healthy controls to identify signaling pathways uniquely regulated by estradiol that could contribute to SLE pathogenesis. Selected downstream pathway genes (+/- estradiol) were measured by real time polymerase chain amplification. Estradiol uniquely upregulated six pathways in SLE T cells that control T cell function including interferon-alpha signaling. Measurement of interferon-alpha pathway target gene expression revealed significant differences (p= 0.043) in DRIP150 (+/- estradiol) in SLE T cell samples while IFIT1 expression was bimodal and correlated moderately (r= 0.55) with disease activity. The results indicate that estradiol alters signaling pathways in activated SLE T cells that control T cell function. Differential expression of transcriptional coactivators could influence estrogen-dependent gene regulation in T cell signaling and contribute to SLE onset and disease pathogenesis.

  10. Emerging role of Hippo signalling pathway in bladder cancer.

    PubMed

    Xia, Jianling; Zeng, Ming; Zhu, Hua; Chen, Xiangjian; Weng, Zhiliang; Li, Shi

    2018-01-01

    Bladder cancer (BC) is one of the most common cancers worldwide with a high progression rate and poor prognosis. The Hippo signalling pathway is a conserved pathway that plays a crucial role in cellular proliferation, differentiation and apoptosis. Furthermore, dysregulation and/or malfunction of the Hippo pathway is common in various human tumours, including BC. In this review, an overview of the Hippo pathway in BC and other cancers is presented. We focus on recent data regarding the Hippo pathway, its network and the regulation of the downstream co-effectors YAP1/TAZ. The core components of the Hippo pathway, which induce BC stemness acquisition, metastasis and chemoresistance, will be emphasized. Additional research on the Hippo pathway will advance our understanding of the mechanism of BC as well as the development and progression of other cancers and may be exploited therapeutically. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Downstream of human NDR kinases: impacting on c-myc and p21 protein stability to control cell cycle progression.

    PubMed

    Cornils, Hauke; Kohler, Reto S; Hergovich, Alexander; Hemmings, Brian A

    2011-06-15

    The mammalian genome encodes four members of the NDR/LATS kinase family: NDR1 (STK38), NDR2 (STK38L), LATS1 and LATS2, which are highly conserved from yeast to man. Members of the NDR/LATS kinase family have been implicated in a variety of biological processes ranging from cell division and morphology to apoptosis and tumor suppression. In mammals, LATS1/2 function as central parts of the HIPPO tumor suppressor pathway by restricting the activity of the YAP/TAZ proto-oncogenes. Recent evidence suggested that NDR1/2 are also part of an extended HIPPO tumor suppressor pathway. Apart from functions in apoptosis signaling and tumor suppression, NDR1/2 have been implicated in controlling centrosome duplication and mitotic chromosome alignment downstream of the HIPPO kinase homologs MST1 and MST2. Significantly, we also reported recently that NDR1/2 are controlling G 1/S transition downstream of a third MST family member MST3. Intriguingly, this newly described MST3-NDR1/2 axis promotes G 1 progression by stabilizing c-myc and preventing p21 accumulation, indicating a potential pro-tumorigenic role for NDR kinases. Here, we discuss these novel cell cycle functions of NDR kinases in a broader context and elaborate on possible explanations for the opposing functions of NDR kinases in normal and tumor biology.

  12. Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy

    PubMed Central

    Kuzmanov, Uros; Guo, Hongbo; Buchsbaum, Diana; Cosme, Jake; Abbasi, Cynthia; Isserlin, Ruth; Sharma, Parveen; Gramolini, Anthony O.; Emili, Andrew

    2016-01-01

    Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function. PMID:27742792

  13. [Effect of Inhibiting and Activating Wnt Signalling Pathway on NSC67657-inducing Monocytic Differentiation of HL-60 Cells].

    PubMed

    Wang, Wei-Jia; Zhang, Xiu-Ming; Zhang, Yan; Wang, Jin-Shu

    2016-04-01

    To investigate the effect of inhibiting and activating Wnt signalling pathway on monocyte differentiation of HL-60 cells induced with a new steroidal drug NSC67657 and its possible mechamism. The HL-60 cells were treated with 5, 10 and 20 µmol/L XAV-939 (inhibitor of Wnt signalling pathway) for 3 days, and with 10, 20 and 30 mmol/L LiCl (activator of Wnt signalling pathway) for 1 day; the expression levels of down-stream genes and proteins of Wnt signolling pathway were detected by RT-PCR and Western blot, respectively; the expression of cell surface differentiation antigen CD14 and early apoptosis of HL-60 cells was detected by flow cytometry, moreover the most suitable concentration of Wnt inhibitor and activator for HL-60 cells was determined. Then the HL-60 cells with inhibited and activated Wnt pathway were treated with NSC67657 of 10 µmol/L for 3 days; the expression levels of CD14 and down-stream target proteins of Wnt signalling pathway in blank control (culture mediam) group, simple NSC67657-treated group, NSC67657 combined with inhibitor group and NSC67657 combined activator group were compared and analyzed. 20 µmol/L XAV-939 and 20 mmol/L LiCl could effectively inhibit and activate Wnt signalling pathway of HL-60 cells respectively, could significantly down- and up-regulate the expression of cyclinD1, TCF1 and c-Jun genes (P < 0.05) and proteins (P < 0.05); moreover, the number of CD10(+) HL-60 cells in these conditions was below 1%, no early apoptosis of HL-60 cells was found. In the simple NSC67657-treated groups, the expression of cyclinD1, TCF1 and c-Jun proteins was down-regulated (P < 0.05), and the percentage of CD14(+) HL-60 cells accounted for 62.13 ± 9.44; after the HL-60 cells were treated with XAV-939, the NSC67657 could more significantly down-regulate the expression of cyclinD1, TCF1 and c-Jun proteins and the percentage of CD14(+) HL-60 cell accounted for 84.17 ± 5.39%, as compared with simple NSC67657-treated group; as compared with blank controls group, the expression of cyclinD1, TCF1 and c-Jun proteins was more obviously down-regulated and the percentage of CD14(+) HL-60 cells decreased to 33.99 ± 8.37% in NSC67657 combined LiC1 streated group, but which were higher than those in simple NSC67657-treated group (P < 0.05). 20 µmol/L XAV-939 and 20 mmol/L LiCl as effective inhabitor and activator of Wnt signalling pathway respectively can significantly down- and up-regulate the expression of Wnt down-stream pathway target genes and proteins. The influence of XAV-939 and LiC1 on differentiation of HL-60 cells induced by NSC67657 suggests that Wnt signalling pathway plays a key role in monocyte differentiction of HL-60 cells induced by NSC67657.

  14. Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway.

    PubMed

    Chen, R H; Su, Y H; Chuang, R L; Chang, T Y

    1998-10-15

    Insulin and insulin receptor substrate 1 (IRS-1) are capable of protecting liver cells from apoptosis induced by transforming growth factor-beta1 (TGF-beta). The Ras/mitogen-activated protein kinase (MAP kinase) and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways are both activated upon insulin stimulation and can protect against apoptosis under certain circumstances. We investigated which of these pathways is responsible for the protective effect of insulin on TGF-beta-induced apoptosis. An activated Ras, although elicited a strong mitogenic effect, could not protect Hep3B cells from TGF-beta-induced apoptosis. Furthermore, PD98059, a selective inhibitor of MEK, did not suppress the antiapoptotic effect of insulin. In contrast, the PI 3-kinase inhibitor, LY294002, efficiently blocked the effect of insulin. Protection against TGF-beta-induced apoptosis conferred by PI 3-kinase was further verified by stable transfection of an activated PI 3-kinase. Downstream targets of PI 3-kinase involved in this protection was further investigated. An activated Akt mimicked the antiapoptotic effect of insulin, whereas a dominant-negative Akt inhibited such effect. However, rapamycin, the p70S6 kinase inhibitor, had no effect on the protectivity of insulin against TGF-beta-induced apoptosis, suggesting that the antiapoptotic target of PI 3-kinase/Akt pathway is independent or lies upstream of the p70S6 kinase. The mechanism by which PI 3-kinase/Akt pathway interferes with the apoptotic signaling of TGF-beta was explored. Activation of PI 3-kinase did not lead to a suppression of Smad hetero-oligomerization or nuclear translocation but blocked TGF-beta-induced caspase-3-like activity. In summary, the PI 3-kinase/Akt pathway, but not the Ras/MAP kinase pathway, protects against TGF-beta-induced apoptosis by inhibiting a step downstream of Smad but upstream of caspase-3.

  15. Potential impact of clinical use of noninvasive FFRCT on radiation dose exposure and downstream clinical event rate.

    PubMed

    Bilbey, Nicolas; Blanke, Philipp; Naoum, Christopher; Arepalli, Chesnel Dey; Norgaard, Bjarne Linde; Leipsic, Jonathon

    2016-01-01

    This study aims to determine the potential impact of introducing noninvasive fractional flow reserve based on coronary computed tomography angiography (CTA) into clinical practice, with respect to radiation dose exposure and downstream event rate. We modeled a population of 1000 stable, symptomatic patients with suspected coronary artery disease, using the disease prevalence from the CONFIRM registry to estimate the pretest likelihood. Four potential clinical pathways were modeled based on the first noninvasive diagnostic test performed: (1) dobutamine echo; (2) single-photon emission computerized tomography (SPECT); (3) coronary CTA; and (4) CTA+FFRCT and leading to possible invasive coronary angiography. The posttest likelihood of testing positive/negative by each test was based on the presenting disease burden and diagnostic accuracy of each test. The dobutamine echo pathway resulted in the lowest radiation dose of 5.4 mSv, with 4.0 mSv from angiography and 1.4 mSv from percutaneous coronary intervention (PCI). The highest dose was with SPECT, with 26.5 mSv. The coronary computed tomography angiography (cCTA) pathway demonstrated a dose of 14.2 mSv, 3.7 mSv from cCTA, 7.7 mSv from angiography, and 2.8 mSv from PCI. The CTA+FFRCT pathway exhibited a radiation dose of 9.7 mSv, 3.7 mSv for cCTA, 4.2 mSv for angiography, and 1.8 mSv for PCI. Radiation dose exposure for CTA+FFRCT was lower than for SPECT (P<.001). The CTA+FFRCT pathway resulted in the lowest projected death/myocardial infarction rate at 1 year (2.44%) while the dobutamine stress pathway had the highest 1-year event rate (2.84%). Our analysis suggests that integrating FFRCT into the CTA clinical pathway may result in reduced cumulative radiation exposure, while promoting favorable clinical outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. NF-κB Signaling Pathway and its Potential as a Target for Therapy in Lymphoid Neoplasms

    PubMed Central

    Yu, Li; Li, Ling; Medeiros, L. Jeffrey; Young, Ken H.

    2016-01-01

    The NF-κB pathway, a critical regulator of apoptosis, plays a key role in many normal cellular functions. Genetic alterations and other mechanisms leading to constitutive activation of the NF-κB pathway contribute to cancer development, progression and therapy resistance by activation of downstream anti-apoptotic pathways, unfavorable microenvironment interactions, and gene dysregulation. Not surprisingly, given its importance to normal and cancer cell function, the NF-κB pathway has emerged as a target for therapy. In the review, we present the physiologic role of the NF-κB pathway and recent advances in better understanding of the pathologic roles of the NF-κB pathway in major types of lymphoid neoplasms. We also provide an update of clinical trials that use NF-κB pathway inhibitors. These trials are exploring the clinical efficiency of combining NF-κB pathway inhibitors with various agents that target diverse mechanisms of action with the goal being to optimize novel therapeutic opportunities for targeting oncogenic pathways to eradicate cancer cells. PMID:27773462

  17. Molecular Pathways: Translational and Therapeutic Implications of the Notch Signaling Pathway in Cancer

    PubMed Central

    Previs, Rebecca A.; Coleman, Robert L.; Harris, Adrian L.; Sood, Anil K.

    2014-01-01

    Over 100 years have passed since the first observation of the notched wing phenotype in Drosophila melanogaster, and significant progress has been made to characterize the role of the Notch receptor, its ligands, downstream targets, and crosstalk with other signaling pathways. The canonical Notch pathway with four Notch receptors (Notch1-4) and five ligands (DLL1, 3–4, Jagged 1–2) is an evolutionarily conserved cell signaling pathway that plays critical roles in cell-fate determination, differentiation, development, tissue patterning, cell proliferation, and death. In cancer, these roles have a critical impact on tumor behavior and response to therapy. Since the role of Notch remains tissue and context dependent, alterations within this pathway may lead to tumor suppressive or oncogenic phenotypes. Although no FDA approved therapies currently exist for the Notch pathway, multiple therapeutics (e.g., demcizumab, tarextumab, GSI MK0752, R04929097, and PF63084014) have been developed to target different aspects of this pathway for both hematologic and solid malignancies. Understanding the context-specific effects of the Notch pathway will be important for individualized therapies targeting this pathway. PMID:25388163

  18. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution.

    PubMed

    Coyle, Scott M; Lim, Wendell A

    2016-01-14

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease.

  19. Targeting the RAS oncogene

    PubMed Central

    Takashima, Asami

    2013-01-01

    Introduction The Ras proteins (K-Ras, N-Ras, H-Ras) are GTPases that function as molecular switches for a variety of critical cellular activities and their function is tightly and temporally regulated in normal cells. Oncogenic mutations in the RAS genes, which create constitutively-active Ras proteins, can result in uncontrolled proliferation or survival in tumor cells. Areas covered The paper discusses three therapeutic approaches targeting the Ras pathway in cancer: 1) Ras itself, 2) Ras downstream pathways, and 3) synthetic lethality. The most adopted approach is targeting Ras downstream signaling, and specifically the PI3K-AKT-mTOR and Raf-MEK pathways, as they are frequently major oncogenic drivers in cancers with high Ras signaling. Although direct targeting of Ras has not been successful clinically, newer approaches being investigated in preclinical studies, such as RNA interference-based and synthetic lethal approaches, promise great potential for clinical application. Expert opinion The challenges of current and emerging therapeutics include the lack of “tumor specificity” and their limitation to those cancers which are “dependent” upon aberrant Ras signaling for survival. While the newer approaches have the potential to overcome these limitations, they also highlight the importance of robust preclinical studies and bidirectional translational research for successful clinical development of Ras-related targeted therapies. PMID:23360111

  20. [miR-182 promotes cell proliferation of cervical cancer cells by targeting adenomatous polyposis coli (APC) gene].

    PubMed

    Li, Pei; Hu, Jing; Zhang, Ying; Li, Jianping; Dang, Yunzhi; Zhang, Rui; Wei, Lichun; Shi, Mei

    2018-02-01

    Objective To investigate the role and mechanism of microRNA-182 (miR-182) in the proliferation of cervical cancer cells. Methods With liposome-mediated transient transfection method, the level of miR-182 in HeLa and SiHa cells was increased or decreased. CCK-8 assay and colony formation assay were used to observe the effect of miR-182 on the proliferation of cervical cancer cells. Using bioinformatics predictions, real-time quantitative PCR, and dual luciferase reporter assay, we clarified the role of miR-182 in posttranscriptional regulation of adenomatous polyposis coli (APC) gene and its effect on the downstream molecules (c-Myc and cyclin D1) of Wnt singling pathway. Results Up-regulation of miR-182 significantly promoted the proliferation of cervical cancer cells, while down-regulation of miR-182 significantly inhibited the proliferation of cervical cancer cells. Over-expression of miR-182 inhibited the expression of APC gene in cervical cancer cells and the regulation of miR-182 affected the expression of canonical Wnt signaling pathway downstream molecules in cervical cancer cells. Conclusion The miR-182 stimulates canonical Wnt signaling pathway by targeting APC gene and enhances the proliferation of cervical cancer cells.

  1. Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells

    PubMed Central

    2012-01-01

    Background Hepatic metabolic derangements are key components in the development of fatty liver disease. AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and carnitine palmitoyl transferase 1 (CPT-1) pathway. In this study, cyanidin-3-O-β-glucoside (Cy-3-g), a typical anthocyanin pigment was used to examine its effects on AMPK activation and fatty acid metabolism in human HepG2 hepatocytes. Results Anthocyanin Cy-3-g increased cellular AMPK activity in a calmodulin kinase kinase dependent manner. Furthermore, Cy-3-g substantially induced AMPK downstream target ACC phosphorylation and inactivation, and then decreased malonyl CoA contents, leading to stimulation of CPT-1 expression and significant increase of fatty acid oxidation in HepG2 cells. These effects of Cy-3-g are largely abolished by pharmacological and genetic inhibition of AMPK. Conclusion This study demonstrates that Cy-3-g regulates hepatic lipid homeostasis via an AMPK-dependent signaling pathway. Targeting AMPK activation by anthocyanin may represent a promising approach for the prevention and treatment of obesity-related nonalcoholic fatty liver disease. PMID:22243683

  2. Traffic jam functions in a branched pathway from Notch activation to niche cell fate.

    PubMed

    Wingert, Lindsey; DiNardo, Stephen

    2015-07-01

    The niche directs key behaviors of its resident stem cells, and is thus crucial for tissue maintenance, repair and longevity. However, little is known about the genetic pathways that guide niche specification and development. The male germline stem cell niche in Drosophila houses two stem cell populations and is specified within the embryonic gonad, thus making it an excellent model for studying niche development. The hub cells that form the niche are specified early by Notch activation. Over the next few hours, these individual cells then cluster together and take up a defined position before expressing markers of hub cell differentiation. This timing suggests that there are other factors for niche development yet to be defined. Here, we have identified a role for the large Maf transcription factor Traffic jam (Tj) in hub cell specification downstream of Notch. Tj downregulation is the first detectable effect of Notch activation in hub cells. Furthermore, Tj depletion is sufficient to generate ectopic hub cells that can recruit stem cells. Surprisingly, ectopic niche cells in tj mutants remain dispersed in the absence of Notch activation. This led us to uncover a branched pathway downstream of Notch in which Bowl functions to direct hub cell assembly in parallel to Tj downregulation. © 2015. Published by The Company of Biologists Ltd.

  3. Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway[S

    PubMed Central

    Alecu, Irina; Othman, Alaa; Penno, Anke; Saied, Essa M.; Arenz, Christoph; von Eckardstein, Arnold; Hornemann, Thorsten

    2017-01-01

    The 1-deoxysphingolipids (1-deoxySLs) are atypical sphingolipids (SLs) that are formed when serine palmitoyltransferase condenses palmitoyl-CoA with alanine instead of serine during SL synthesis. The 1-deoxySLs are toxic to neurons and pancreatic β-cells. Pathologically elevated 1-deoxySLs cause the inherited neuropathy, hereditary sensory autonomic neuropathy type 1 (HSAN1), and are also found in T2D. Diabetic sensory polyneuropathy (DSN) and HSAN1 are clinically very similar, suggesting that 1-deoxySLs may be implicated in both pathologies. The 1-deoxySLs are considered to be dead-end metabolites, as they lack the C1-hydroxyl group, which is essential for the canonical degradation of SLs. Here, we report a previously unknown metabolic pathway, which is capable of degrading 1-deoxySLs. Using a variety of metabolic labeling approaches and high-resolution high-accuracy MS, we identified eight 1-deoxySL downstream metabolites, which appear to be formed by cytochrome P450 (CYP)4F enzymes. Comprehensive inhibition and induction of CYP4F enzymes blocked and stimulated, respectively, the formation of the downstream metabolites. Consequently, CYP4F enzymes might be novel therapeutic targets for the treatment of HSAN1 and DSN, as well as for the prevention of T2D. PMID:27872144

  4. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Li; Mao, Rurong; Shen, Ke

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led tomore » the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.« less

  5. Role of redox signaling in the autonomous proliferative response of endothelial cells to hypoxia.

    PubMed

    Schäfer, M; Schäfer, C; Ewald, N; Piper, H M; Noll, Th

    2003-05-16

    Endothelial cells exhibit an autonomous proliferative response to hypoxia, independent of paracrine effectors. In cultured endothelial cells of porcine aorta, we analyzed the signaling of this response, with a focus on the roles of redox signaling and the MEK/ERK pathway. Transient hypoxia (1 hour) stimulated proliferation by 61+/-4% (n=16; P<0.05 versus control), quantified after 24 hours normoxic postincubation. Hypoxia induced an activation of ERK2 and of NAD(P)H oxidase and a burst of reactive oxygen species (ROS), determined by DCF fluorescence. To inhibit the MEK/ERK pathway, we used PD 98059 (PD, 20 micromol/L); to downregulate NAD(P)H oxidase, we applied p22phox antisense oligonucleotides; and to inhibit mitochondrial ROS generation, we used the ubiquinone derivate mitoQ (MQ, 10 micromol/L). All three inhibitions suppressed the proliferative response: PD inhibited NAD(P)H oxidase activation; p22phox antisense transfection did not inhibit ERK2 activation, but suppressed ROS production; and MQ inhibited ERK2 activation and ROS production. The autonomous proliferative response depends on the MEK/ERK pathway and redox signaling steps upstream and downstream of ERK. Located upstream is ROS generation by mitochondria, downstream is NAD(P)H oxidase.

  6. Adenosine monophosphate-activated protein kinase attenuates cardiomyocyte hypertrophy through regulation of FOXO3a/MAFbx signaling pathway.

    PubMed

    Chen, Baolin; Wu, Qiang; Xiong, Zhaojun; Ma, Yuedong; Yu, Sha; Chen, Dandan; Huang, Shengwen; Dong, Yugang

    2016-09-01

    Control of cardiac muscle mass is thought to be determined by a dynamic balance of protein synthesis and degradation. Recent studies have demonstrated that atrophy-related forkhead box O 3a (FOXO3a)/muscle atrophy F-box (MAFbx) signaling pathway plays a central role in the modulation of proteolysis and exert inhibitory effect on cardiomyocyte hypertrophy. In this study, we tested the hypothesis that adenosine monophosphate-activated protein kinase (AMPK) activation attenuates cardiomyocyte hypertrophy by regulating FOXO3a/MAFbx signaling pathway and its downstream protein degradation. The results showed that activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) attenuated cardiomyocyte hypertrophy induced by angiotensin II (Ang II). The antihypertrophic effects of AICAR were blunted by AMPK inhibitor Compound C. In addition, AMPK dramatically increased the activity of transcription factor FOXO3a, up-regulated the expression of its downstream ubiquitin ligase MAFbx, and enhanced cardiomyocyte proteolysis. Meanwhile, the effects of AMPK on protein degradation and cardiomyocyte hypertrophy were blocked after MAFbx was silenced by transfection of cardiomyocytes with MAFbx-siRNA. These results indicate that AMPK plays an important role in the inhibition of cardiomyocyte hypertrophy by activating protein degradation via FOXO3a/MAFbx signaling pathway. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Control of Wnt Receptor Turnover by R-spondin-ZNRF3/RNF43 Signaling Module and Its Dysregulation in Cancer.

    PubMed

    Hao, Huai-Xiang; Jiang, Xiaomo; Cong, Feng

    2016-06-08

    Aberrant activation of the Wnt/β-catenin pathway is frequently found in various cancers, often through mutations of downstream components. Inhibiting β-catenin signaling in tumors with downstream pathway mutations remains challenging, due to a lack of favorable targets. On the other hand, targeting upstream components of the Wnt pathway is rather straightforward. However, it is difficult to identify tumors addicted to autocrine or paracrine Wnt signaling. Discovery of the R-spondin-ZNRF3/RNF43 signaling module and its genetic alterations in cancers represents a breakthrough in this area. Membrane E3 ligase ZNRF3 and RNF43 are critical negative feedback regulators of the Wnt pathway, which function through promoting ubiquitination and degradation of Wnt receptors. R-spondin proteins (RSPO1-4) serve as natural antagonists of ZNRF3/RNF43. To maintain strong and sustained Wnt/β-catenin signaling, cancers need to overcome ZNRF3/RNF43-mediated feedback inhibition. Indeed, mutations of RNF43/ZNRF3 and recurrent translocations of RSPO2/RSPO3 have recently been identified in various cancers. Significantly, genetic alterations in RNF43/ZNRF3/RSPO2/RSPO3 have shown promise as predictive biomarkers in pre-clinical models for the efficacy of upstream Wnt inhibitors. In this review, we will discuss the biology of the R-spondin-ZNRF3/RNF43 signaling module, cancer-associated alterations of this signaling module, and their value as biomarkers to identify Wnt-addicted tumors.

  8. Control of Wnt Receptor Turnover by R-spondin-ZNRF3/RNF43 Signaling Module and Its Dysregulation in Cancer

    PubMed Central

    Hao, Huai-Xiang; Jiang, Xiaomo; Cong, Feng

    2016-01-01

    Aberrant activation of the Wnt/β-catenin pathway is frequently found in various cancers, often through mutations of downstream components. Inhibiting β-catenin signaling in tumors with downstream pathway mutations remains challenging, due to a lack of favorable targets. On the other hand, targeting upstream components of the Wnt pathway is rather straightforward. However, it is difficult to identify tumors addicted to autocrine or paracrine Wnt signaling. Discovery of the R-spondin-ZNRF3/RNF43 signaling module and its genetic alterations in cancers represents a breakthrough in this area. Membrane E3 ligase ZNRF3 and RNF43 are critical negative feedback regulators of the Wnt pathway, which function through promoting ubiquitination and degradation of Wnt receptors. R-spondin proteins (RSPO1-4) serve as natural antagonists of ZNRF3/RNF43. To maintain strong and sustained Wnt/β-catenin signaling, cancers need to overcome ZNRF3/RNF43-mediated feedback inhibition. Indeed, mutations of RNF43/ZNRF3 and recurrent translocations of RSPO2/RSPO3 have recently been identified in various cancers. Significantly, genetic alterations in RNF43/ZNRF3/RSPO2/RSPO3 have shown promise as predictive biomarkers in pre-clinical models for the efficacy of upstream Wnt inhibitors. In this review, we will discuss the biology of the R-spondin-ZNRF3/RNF43 signaling module, cancer-associated alterations of this signaling module, and their value as biomarkers to identify Wnt-addicted tumors. PMID:27338477

  9. Scaling of Optogenetically Evoked Signaling in a Higher-Order Corticocortical Pathway in the Anesthetized Mouse.

    PubMed

    Li, Xiaojian; Yamawaki, Naoki; Barrett, John M; Körding, Konrad P; Shepherd, Gordon M G

    2018-01-01

    Quantitative analysis of corticocortical signaling is needed to understand and model information processing in cerebral networks. However, higher-order pathways, hodologically remote from sensory input, are not amenable to spatiotemporally precise activation by sensory stimuli. Here, we combined parametric channelrhodopsin-2 (ChR2) photostimulation with multi-unit electrophysiology to study corticocortical driving in a parietofrontal pathway from retrosplenial cortex (RSC) to posterior secondary motor cortex (M2) in mice in vivo . Ketamine anesthesia was used both to eliminate complex activity associated with the awake state and to enable stable recordings of responses over a wide range of stimulus parameters. Photostimulation of ChR2-expressing neurons in RSC, the upstream area, produced local activity that decayed quickly. This activity in turn drove downstream activity in M2 that arrived rapidly (5-10 ms latencies), and scaled in amplitude across a wide range of stimulus parameters as an approximately constant fraction (~0.1) of the upstream activity. A model-based analysis could explain the corticocortically driven activity with exponentially decaying kernels (~20 ms time constant) and small delay. Reverse (antidromic) driving was similarly robust. The results show that corticocortical signaling in this pathway drives downstream activity rapidly and scalably, in a mostly linear manner. These properties, identified in anesthetized mice and represented in a simple model, suggest a robust basis for supporting complex non-linear dynamic activity in corticocortical circuits in the awake state.

  10. Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling.

    PubMed

    Ni, Yan G; Berenji, Kambeez; Wang, Na; Oh, Misook; Sachan, Nita; Dey, Asim; Cheng, Jun; Lu, Guangrong; Morris, David J; Castrillon, Diego H; Gerard, Robert D; Rothermel, Beverly A; Hill, Joseph A

    2006-09-12

    Cellular hypertrophy requires coordinated regulation of progrowth and antigrowth mechanisms. In cultured neonatal cardiomyocytes, Foxo transcription factors trigger an atrophy-related gene program that counters hypertrophic growth. However, downstream molecular events are not yet well defined. Here, we report that expression of either Foxo1 or Foxo3 in cardiomyocytes attenuates calcineurin phosphatase activity and inhibits agonist-induced hypertrophic growth. Consistent with these results, Foxo proteins decrease calcineurin phosphatase activity and repress both basal and hypertrophic agonist-induced expression of MCIP1.4, a direct downstream target of the calcineurin/NFAT pathway. Furthermore, hearts from Foxo3-null mice exhibit increased MCIP1.4 abundance and a hypertrophic phenotype with normal systolic function at baseline. Together, these results suggest that Foxo proteins repress cardiac growth at least in part through inhibition of the calcineurin/NFAT pathway. Given that hypertrophic growth of the heart occurs in multiple contexts, our findings also suggest that certain hypertrophic signals are capable of overriding the antigrowth program induced by Foxo. Consistent with this, multiple hypertrophic agonists triggered inactivation of Foxo proteins in cardiomyocytes through a mechanism requiring the PI3K/Akt pathway. In addition, both Foxo1 and Foxo3 are phosphorylated and consequently inactivated in hearts undergoing hypertrophic growth induced by hemodynamic stress. This study suggests that inhibition of the calcineurin/NFAT signaling cascade by Foxo and release of this repressive action by the PI3K/Akt pathway are important mechanisms whereby Foxo factors govern cell growth in the heart.

  11. Yorkie and Scalloped: partners in growth activation.

    PubMed

    Bandura, Jennifer L; Edgar, Bruce A

    2008-03-01

    The Hippo (Hpo) signaling pathway limits organ growth in organisms from Drosophila to mammals by suppressing the activity of the transcriptional coactivator Yorkie (Yki)/YAP. The TEAD/TEF factor Scalloped (Sd) has been identified as the first known transcription factor to partner with Yki as a downstream target of Hpo signaling.

  12. Distinct downstream targets manifest p53-dependent pathologies in mice.

    PubMed

    Pant, V; Xiong, S; Chau, G; Tsai, K; Shetty, G; Lozano, G

    2016-11-03

    Mdm2, the principal negative regulator of p53, is critical for survival, a fact clearly demonstrated by the p53-dependent death of germline or conditional mice following deletion of Mdm2. On the other hand, Mdm2 hypomorphic (Mdm2 Puro/Δ7-12 ) or heterozygous (Mdm2 +/- ) mice that express either 30 or 50% of normal Mdm2 levels, respectively, are viable but present distinct phenotypes because of increased p53 activity. Mdm2 levels are also transcriptionally regulated by p53. We evaluated the significance of this reciprocal relationship in a new hypomorphic mouse model inheriting an aberrant Mdm2 allele with insertion of the neomycin cassette and deletion of 184-bp sequence in intron 3. These mice also carry mutations in the Mdm2 P2-promoter and thus express suboptimal levels of Mdm2 entirely encoded from the P1-promoter. Resulting mice exhibit abnormalities in skin pigmentation and reproductive tissue architecture, and are subfertile. Notably, all these phenotypes are rescued on a p53-null background. Furthermore, these phenotypes depend on distinct p53 downstream activities as genetic ablation of the pro-apoptotic gene Puma reverts the reproductive abnormalities but not skin hyperpigmentation, whereas deletion of cell cycle arrest gene p21 does not rescue either phenotype. Moreover, p53-mediated upregulation of Kitl influences skin pigmentation. Altogether, these data emphasize tissue-specific p53 activities that regulate cell fate.

  13. The essential and downstream common proteins of amyotrophic lateral sclerosis: A protein-protein interaction network analysis.

    PubMed

    Mao, Yimin; Kuo, Su-Wei; Chen, Le; Heckman, C J; Jiang, M C

    2017-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a devastative neurodegenerative disease characterized by selective loss of motoneurons. While several breakthroughs have been made in identifying ALS genetic defects, the detailed molecular mechanisms are still unclear. These genetic defects involve in numerous biological processes, which converge to a common destiny: motoneuron degeneration. In addition, the common comorbid Frontotemporal Dementia (FTD) further complicates the investigation of ALS etiology. In this study, we aimed to explore the protein-protein interaction network built on known ALS-causative genes to identify essential proteins and common downstream proteins between classical ALS and ALS+FTD (classical ALS + ALS/FTD) groups. The results suggest that classical ALS and ALS+FTD share similar essential protein set (VCP, FUS, TDP-43 and hnRNPA1) but have distinctive functional enrichment profiles. Thus, disruptions to these essential proteins might cause motoneuron susceptible to cellular stresses and eventually vulnerable to proteinopathies. Moreover, we identified a common downstream protein, ubiquitin-C, extensively interconnected with ALS-causative proteins (22 out of 24) which was not linked to ALS previously. Our in silico approach provides the computational background for identifying ALS therapeutic targets, and points out the potential downstream common ground of ALS-causative mutations.

  14. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways

    PubMed Central

    Hasegawa, Emi; Yanagisawa, Masashi; Sakurai, Takeshi; Mieda, Michihiro

    2014-01-01

    The loss of orexin neurons in humans is associated with the sleep disorder narcolepsy, which is characterized by excessive daytime sleepiness and cataplexy. Mice lacking orexin peptides, orexin neurons, or orexin receptors recapitulate human narcolepsy phenotypes, further highlighting a critical role for orexin signaling in the maintenance of wakefulness. Despite the known role of orexin neurons in narcolepsy, the precise neural mechanisms downstream of these neurons remain unknown. We found that targeted restoration of orexin receptor expression in the dorsal raphe (DR) and in the locus coeruleus (LC) of mice lacking orexin receptors inhibited cataplexy-like episodes and pathological fragmentation of wakefulness (i.e., sleepiness), respectively. The suppression of cataplexy-like episodes correlated with the number of serotonergic neurons restored with orexin receptor expression in the DR, while the consolidation of fragmented wakefulness correlated with the number of noradrenergic neurons restored in the LC. Furthermore, pharmacogenetic activation of these neurons using designer receptor exclusively activated by designer drug (DREADD) technology ameliorated narcolepsy in mice lacking orexin neurons. These results suggest that DR serotonergic and LC noradrenergic neurons play differential roles in orexin neuron–dependent regulation of sleep/wakefulness and highlight a pharmacogenetic approach for the amelioration of narcolepsy. PMID:24382351

  15. Chlamydia trachomatis Cellular Exit Alters Interactions with Host Dendritic Cells

    PubMed Central

    Sherrid, Ashley M.

    2017-01-01

    ABSTRACT The strategies utilized by pathogens to exit host cells are an area of pathogenesis which has received surprisingly little attention, considering the necessity of this step for infections to propagate. Even less is known about how exit through these pathways affects downstream host-pathogen interactions and the generation of an immune response. Chlamydia trachomatis exits host epithelial cells through two equally active mechanisms: lysis and extrusion. Studies have characterized the outcome of interactions between host innate immune cells, such as dendritic cells and macrophages, and free, extracellular Chlamydia bacteria, such as those resulting from lysis. Exit via extrusion generates a distinct, host-membrane-bound compartment of Chlamydia separate from the original infected cell. In this study, we assessed the effect of containment within extrusions upon the interaction between Chlamydia and host dendritic cells. Extrusion dramatically affected the outcome of Chlamydia-dendritic cell interactions for both the bacterium and the host cell. Dendritic cells rapidly underwent apoptosis in response to engulfment of an extrusion, while uptake of an equivalent dose of free Chlamydia had no such effect. Containment within an extrusion also prolonged bacterial survival within dendritic cells and altered the initial innate immune signaling by the dendritic cell. PMID:28223346

  16. Dynamic switching enables efficient bacterial colonization in flow.

    PubMed

    Kannan, Anerudh; Yang, Zhenbin; Kim, Minyoung Kevin; Stone, Howard A; Siryaporn, Albert

    2018-05-22

    Bacteria colonize environments that contain networks of moving fluids, including digestive pathways, blood vasculature in animals, and the xylem and phloem networks in plants. In these flow networks, bacteria form distinct biofilm structures that have an important role in pathogenesis. The physical mechanisms that determine the spatial organization of bacteria in flow are not understood. Here, we show that the bacterium P. aeruginosa colonizes flow networks using a cyclical process that consists of surface attachment, upstream movement, detachment, movement with the bulk flow, and surface reattachment. This process, which we have termed dynamic switching, distributes bacterial subpopulations upstream and downstream in flow through two phases: movement on surfaces and cellular movement via the bulk. The model equations that describe dynamic switching are identical to those that describe dynamic instability, a process that enables microtubules in eukaryotic cells to search space efficiently to capture chromosomes. Our results show that dynamic switching enables bacteria to explore flow networks efficiently, which maximizes dispersal and colonization and establishes the organizational structure of biofilms. A number of eukaryotic and mammalian cells also exhibit movement in two phases in flow, which suggests that dynamic switching is a modality that enables efficient dispersal for a broad range of cell types.

  17. Free radical-mediated systemic immunity in plants.

    PubMed

    Wendehenne, David; Gao, Qing-Ming; Kachroo, Aardra; Kachroo, Pradeep

    2014-08-01

    Systemic acquired resistance (SAR) is a form of defense that protects plants against a broad-spectrum of secondary infections by related or unrelated pathogens. SAR related research has witnessed considerable progress in recent years and a number of chemical signals and proteins contributing to SAR have been identified. All of these diverse constituents share their requirement for the phytohormone salicylic acid, an essential downstream component of the SAR pathway. However, recent work demonstrating the essential parallel functioning of nitric oxide (NO)-derived and reactive oxygen species (ROS)-derived signaling together with SA provides important new insights in the overlapping pathways leading to SAR. This review discusses the potential significance of branched pathways and the relative contributions of NO/ROS-derived and SA-derived pathways in SAR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. [Design of new anti-tumor agents interrupting deregulated signaling pathways induced by tyrosine kinase proteins. Inhibition of protein-protein interaction involving Grb2].

    PubMed

    Vidal, Michel; Liu, Wang Qing; Gril, Brunile; Assayag, Franck; Poupon, Marie-France; Garbay, Christiane

    2004-01-01

    Cellular signaling pathways induced by growth-factor receptors are frequently deregulated in cancer. Anti-tumor agents that inhibit their enzymatic tyrosine kinase activity have been designed and are now used in human chemotherapy. We propose here an alternative way to interrupt over-expressed signaling by inhibiting protein-protein interactions that involve either the over-expressed proteins or proteins located downstream. The adaptor protein Grb2 over-expressed in connection with HER2/ErbB2/neu in Ras signaling pathway was chosen as a target. Peptides with very high affinity for Grb2 were rationally designed from structural data. Their capacity to interrupt the signaling pathway, their anti-proliferative activity as well as their potential anti-tumor properties are described.

  19. Epigenetics Reactivation of Nrf2 in Prostate TRAMP C1 Cells by Curcumin Analogue FN1.

    PubMed

    Li, Wenji; Pung, Doug; Su, Zheng-Yuan; Guo, Yue; Zhang, Chengyue; Yang, Anne Yuqing; Zheng, Xi; Du, Zhi-Yun; Zhang, Kun; Kong, Ah-Ng

    2016-04-18

    It has previously been shown that curcumin can effectively inhibit prostate cancer proliferation and progression in TRAMP mice, potentially acting through the hypomethylation of the Nrf2 gene promoter and hence activation of the Nrf2 pathway to enhance cell antioxidative defense. FN1 is a synthetic curcumin analogue that shows stronger anticancer activity than curcumin in other reports. We aimed to explore the epigenetic modification of FN1 that restores Nrf2 expression in TRAMP-C1 cells. Stably transfected HepG2-C8 cells were used to investigate the effect of FN1 on the Nrf2- antioxidant response element (ARE) pathway. Real-time quantitative PCR and Western blotting were applied to study the influence of FN1 on endogenous Nrf2 and its downstream genes. Bisulfite genomic sequencing (BGS) and methylated DNA immunoprecipitation (MeDIP) were then performed to examine the methylation profile of the Nrf2 promoter. An anchorage-independent colony-formation analysis was conducted to examine the tumor inhibition activity of FN1. Epigenetic modification enzymes, including DNMTs and HDACs, were investigated by Western blotting. The luciferase reporter assay indicated that FN1 was more potent than curcumin in activating the Nrf2-ARE pathway. FN1 increased the expression of Nrf2 and its downstream detoxifying enzymes. FN1 significantly inhibited the colony formation of TRAMP-C1 cells. BGS and MeDIP assays revealed that FN1 treatment (250 nM for 3 days) reduced the percentage of CpG methylation of the Nrf2 promoter. FN1 also downregulated epigenetic modification enzymes. In conclusion, our results suggest that FN1 is a novel anticancer agent for prostate cancer. In the TRAMP-C1 cell line, FN1 can increase the level of Nrf2 and downstream genes via activating the Nrf2-ARE pathway and inhibit the colony formation potentially through the decreased expression of keap1 coupled with CpG demethylation of the Nrf2 promoter. This CpG demethylation effect may come from decreased epigenetic modification enzymes, such as DNMT1, DNMT3a, DNMT3b, and HDAC4.

  20. Construction of large signaling pathways using an adaptive perturbation approach with phosphoproteomic data.

    PubMed

    Melas, Ioannis N; Mitsos, Alexander; Messinis, Dimitris E; Weiss, Thomas S; Rodriguez, Julio-Saez; Alexopoulos, Leonidas G

    2012-04-01

    Construction of large and cell-specific signaling pathways is essential to understand information processing under normal and pathological conditions. On this front, gene-based approaches offer the advantage of large pathway exploration whereas phosphoproteomic approaches offer a more reliable view of pathway activities but are applicable to small pathway sizes. In this paper, we demonstrate an experimentally adaptive approach to construct large signaling pathways from phosphoproteomic data within a 3-day time frame. Our approach--taking advantage of the fast turnaround time of the xMAP technology--is carried out in four steps: (i) screen optimal pathway inducers, (ii) select the responsive ones, (iii) combine them in a combinatorial fashion to construct a phosphoproteomic dataset, and (iv) optimize a reduced generic pathway via an Integer Linear Programming formulation. As a case study, we uncover novel players and their corresponding pathways in primary human hepatocytes by interrogating the signal transduction downstream of 81 receptors of interest and constructing a detailed model for the responsive part of the network comprising 177 species (of which 14 are measured) and 365 interactions.

  1. Tenebrio molitor Gram-negative-binding protein 3 (TmGNBP3) is essential for inducing downstream antifungal Tenecin 1 gene expression against infection with Beauveria bassiana JEF-007.

    PubMed

    Yang, Yi-Ting; Lee, Mi Rong; Lee, Se Jin; Kim, Sihyeon; Nai, Yu-Shin; Kim, Jae Su

    2017-05-23

    The Toll signaling pathway is responsible for defense against both Gram-positive bacteria and fungi. Gram-negative binding protein 3 (GNBP3) has a strong affinity for the fungal cell wall component, β-1,3-glucan, which can activate the prophenoloxidase (proPO) cascade and induce the Toll signaling pathway. Myeloid differentiation factor 88 (MyD88) is an intracellular adaptor protein involved in the Toll signaling pathway. In this study, we monitored the response of 5 key genes (TmGNBP3, TmMyD88, and Tenecin 1, 2, and 3) in the Toll pathway of the mealworm Tenebrio molitor immune system against the fungus Beauveria bassiana JEF-007 using RT-PCR. TmGNBP3, Tenecin 1, and Tenecin 2 were significantly upregulated after fungal infection. To better understand the roles of the Toll signaling pathway in the mealworm immune system, TmGNBP3 and TmMyD88 were knocked down by RNAi silencing. Target gene expression levels decreased at 2 d postknockdown and were dramatically reduced at 6 d post-dsRNA injection. Therefore, mealworms were compromised by B. bassiana JEF-007 at 6 d post-dsRNA injection. Silencing of TmMyD88 and TmGNBP3 resulted in reduced resistance of the host to fungal infection. Particularly, reducing TmGNBP3 levels obviously downregulated Tenecin 1 and Tenecin 2 expression levels, whereas silencing TmMyD88 expression resulted in decreased Tenecin 2 expression. These results indicate that TmGNBP3 is essential to induce downstream antifungal peptide Tenecin 1 expression against B. bassiana JEF-007. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  2. Myristoylated alanine-rich C kinase substrate-mediated neurotensin release via protein kinase C-delta downstream of the Rho/ROK pathway.

    PubMed

    Li, Jing; O'Connor, Kathleen L; Greeley, George H; Blackshear, Perry J; Townsend, Courtney M; Evers, B Mark

    2005-03-04

    Myristoylated alanine-rich protein kinase C substrate (MARCKS) is a cellular substrate for protein kinase C (PKC). Recently, we have shown that PKC isoforms-alpha and -delta, as well as the Rho/Rho kinase (ROK) pathway, play a role in phorbol 12-myristate 13-acetate (PMA)-mediated secretion of the gut peptide neurotensin (NT) in the BON human endocrine cell line. Here, we demonstrate that activation of MARCKS protein is important for PMA- and bombesin (BBS)-mediated NT secretion in BON cells. Small interfering RNA (siRNA) to MARCKS significantly inhibited, whereas overexpression of wild-type MARCKS significantly increased PMA-mediated NT secretion. Endogenous MARCKS and green fluorescent protein-tagged wild-type MARCKS were translocated from membrane to cytosol upon PMA treatment, further confirming MARCKS activation. MARCKS phosphorylation was inhibited by PKC-delta siRNA, ROKalpha siRNA, and C3 toxin (a Rho protein inhibitor), suggesting that the PKC-delta and the Rho/ROK pathways are necessary for MARCKS activation. The phosphorylation of PKC-delta was inhibited by C3 toxin, demonstrating that the role of MARCKS in NT secretion was regulated by PKC-delta downstream of the Rho/ROK pathway. BON cell clones stably transfected with the receptor for gastrin releasing peptide, a physiologic stimulant of NT, and treated with BBS, the amphibian equivalent of gastrin releasing peptide, demonstrated a similar MARCKS phosphorylation as noted with PMA. BBS-mediated NT secretion was attenuated by MARCKS siRNA. Collectively, these findings provide evidence for novel signaling pathways, including the sequential regulation of MARCKS activity by Rho/ROK and PKC-delta proteins, in stimulated gut peptide secretion.

  3. C. elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells.

    PubMed

    Gorrepati, Lakshmi; Thompson, Kenneth W; Eisenmann, David M

    2013-05-01

    The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development.

  4. C. elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells

    PubMed Central

    Gorrepati, Lakshmi; Thompson, Kenneth W.; Eisenmann, David M.

    2013-01-01

    The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development. PMID:23633508

  5. Proteolytic Cascade for the Activation of the Insect Toll Pathway Induced by the Fungal Cell Wall Component

    PubMed Central

    Roh, Kyung-Baeg; Kim, Chan-Hee; Lee, Hanna; Kwon, Hyun-Mi; Park, Ji-Won; Ryu, Ji-Hwan; Kurokawa, Kenji; Ha, Nam-Chul; Lee, Won-Jae; Lemaitre, Bruno; Söderhäll, Kenneth; Lee, Bok-Luel

    2009-01-01

    The insect Toll signaling pathway is activated upon recognition of Gram-positive bacteria and fungi, resulting in the expression of antimicrobial peptides via NF-κB-like transcription factor. This activation is mediated by a serine protease cascade leading to the processing of Spätzle, which generates the functional ligand of the Toll receptor. Recently, we identified three serine proteases mediating Toll pathway activation induced by lysine-type peptidoglycan of Gram-positive bacteria. However, the identities of the downstream serine protease components of Gram-negative-binding protein 3 (GNBP3), a receptor for a major cell wall component β-1,3-glucan of fungi, and their order of activation have not been characterized yet. Here, we identified three serine proteases that are required for Toll activation by β-1,3-glucan in the larvae of a large beetle, Tenebrio molitor. The first one is a modular serine protease functioning immediately downstream of GNBP3 that proteolytically activates the second one, a Spätzle-processing enzyme-activating enzyme that in turn activates the third serine protease, a Spätzle-processing enzyme. The active form of Spätzle-processing enzyme then cleaves Spätzle into the processed Spätzle as Toll ligand. In addition, we show that injection of β-1,3-glucan into Tenebrio larvae induces production of two antimicrobial peptides, Tenecin 1 and Tenecin 2, which are also inducible by injection of the active form of Spätzle-processing enzyme-activating enzyme or processed Spätzle. These results demonstrate a three-step proteolytic cascade essential for the Toll pathway activation by fungal β-1,3-glucan in Tenebrio larvae, which is shared with lysine-type peptidoglycan-induced Toll pathway activation. PMID:19473968

  6. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples.

    PubMed

    Tan, Boonfei; Fowler, S Jane; Abu Laban, Nidal; Dong, Xiaoli; Sensen, Christoph W; Foght, Julia; Gieg, Lisa M

    2015-09-01

    Methanogenic hydrocarbon metabolism is a key process in subsurface oil reservoirs and hydrocarbon-contaminated environments and thus warrants greater understanding to improve current technologies for fossil fuel extraction and bioremediation. In this study, three hydrocarbon-degrading methanogenic cultures established from two geographically distinct environments and incubated with different hydrocarbon substrates (added as single hydrocarbons or as mixtures) were subjected to metagenomic and 16S rRNA gene pyrosequencing to test whether these differences affect the genetic potential and composition of the communities. Enrichment of different putative hydrocarbon-degrading bacteria in each culture appeared to be substrate dependent, though all cultures contained both acetate- and H2-utilizing methanogens. Despite differing hydrocarbon substrates and inoculum sources, all three cultures harbored genes for hydrocarbon activation by fumarate addition (bssA, assA, nmsA) and carboxylation (abcA, ancA), along with those for associated downstream pathways (bbs, bcr, bam), though the cultures incubated with hydrocarbon mixtures contained a broader diversity of fumarate addition genes. A comparative metagenomic analysis of the three cultures showed that they were functionally redundant despite their enrichment backgrounds, sharing multiple features associated with syntrophic hydrocarbon conversion to methane. In addition, a comparative analysis of the culture metagenomes with those of 41 environmental samples (containing varying proportions of methanogens) showed that the three cultures were functionally most similar to each other but distinct from other environments, including hydrocarbon-impacted environments (for example, oil sands tailings ponds and oil-affected marine sediments). This study provides a basis for understanding key functions and environmental selection in methanogenic hydrocarbon-associated communities.

  7. Hippo signaling: growth control and beyond

    PubMed Central

    Halder, Georg; Johnson, Randy L.

    2011-01-01

    The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration. PMID:21138973

  8. Integrating non-coding RNAs in JAK-STAT regulatory networks

    PubMed Central

    Witte, Steven; Muljo, Stefan A

    2014-01-01

    Being a well-characterized pathway, JAK-STAT signaling serves as a valuable paradigm for studying the architecture of gene regulatory networks. The discovery of untranslated or non-coding RNAs, namely microRNAs and long non-coding RNAs, provides an opportunity to elucidate their roles in such networks. In principle, these regulatory RNAs can act as downstream effectors of the JAK-STAT pathway and/or affect signaling by regulating the expression of JAK-STAT components. Examples of interactions between signaling pathways and non-coding RNAs have already emerged in basic cell biology and human diseases such as cancer, and can potentially guide the identification of novel biomarkers or drug targets for medicine. PMID:24778925

  9. Transcription co-activator SAYP mediates the action of STAT activator.

    PubMed

    Panov, Vladislav V; Kuzmina, Julia L; Doronin, Semen A; Kopantseva, Marina R; Nabirochkina, Elena N; Georgieva, Sofia G; Vorobyeva, Nadezhda E; Shidlovskii, Yulii V

    2012-03-01

    Jak/STAT is an important signaling pathway mediating multiple events in development. We describe participation of metazoan co-activator SAYP/PHF10 in this pathway downstream of STAT. The latter, via its activation domain, interacts with the conserved core of SAYP. STAT is associated with the SAYP-containing co-activator complex BTFly and recruits BTFly onto genes. SAYP is necessary for stimulating STAT-driven transcription of numerous genes. Mutation of SAYP leads to maldevelopments similar to those observed in STAT mutants. Thus, SAYP is a novel co-activator mediating the action of STAT.

  10. On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Davis, Dominic A. R.; Smith, Frank T.

    1993-01-01

    The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.

  11. Cognitive Dysfunctions in Intellectual Disabilities: The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways.

    PubMed

    Borrie, Sarah C; Brems, Hilde; Legius, Eric; Bagni, Claudia

    2017-08-31

    The Ras-MAPK and PI3K-AKT-mTOR signaling cascades were originally identified as cancer regulatory pathways but have now been demonstrated to be critical for synaptic plasticity and behavior. Neurodevelopmental disorders arising from mutations in these pathways exhibit related neurological phenotypes, including cognitive dysfunction, autism, and intellectual disability. The downstream targets of these pathways include regulation of transcription and protein synthesis. Other disorders that affect protein translation include fragile X syndrome (an important cause of syndromal autism), and other translational regulators are now also linked to autism. Here, we review how mechanisms of synaptic plasticity have been revealed by studies of mouse models for Ras-MAPK, PI3K-AKT-mTOR, and translation regulatory pathway disorders. We discuss the face validity of these mouse models and review current progress in clinical trials directed at ameliorating cognitive and behavioral symptoms.

  12. Ral signaling pathway in health and cancer.

    PubMed

    Moghadam, Adel Rezaei; Patrad, Elham; Tafsiri, Elham; Peng, Warner; Fangman, Benjamin; Pluard, Timothy J; Accurso, Anthony; Salacz, Michael; Shah, Kushal; Ricke, Brandon; Bi, Danse; Kimura, Kyle; Graves, Leland; Najad, Marzieh Khajoie; Dolatkhah, Roya; Sanaat, Zohreh; Yazdi, Mina; Tavakolinia, Naeimeh; Mazani, Mohammad; Amani, Mojtaba; Ghavami, Saeid; Gartell, Robyn; Reilly, Colleen; Naima, Zaid; Esfandyari, Tuba; Farassati, Faris

    2017-12-01

    The Ral (Ras-Like) signaling pathway plays an important role in the biology of cells. A plethora of effects is regulated by this signaling pathway and its prooncogenic effectors. Our team has demonstrated the overactivation of the RalA signaling pathway in a number of human malignancies including cancers of the liver, ovary, lung, brain, and malignant peripheral nerve sheath tumors. Additionally, we have shown that the activation of RalA in cancer stem cells is higher in comparison with differentiated cancer cells. In this article, we review the role of Ral signaling in health and disease with a focus on the role of this multifunctional protein in the generation of therapies for cancer. An improved understanding of this pathway can lead to development of a novel class of anticancer therapies that functions on the basis of intervention with RalA or its downstream effectors. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. The influence of distinct types of aquatic vegetation on the flow field

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Barcroft, Stephen; Yagci, Oral

    2014-05-01

    The Sustainable management of fluvial systems dealing with flood prevention, erosion protection and restoration of rivers and estuaries requires implementation of soft/green-engineering methods. In-stream aquatic vegetation can be regarded as one of these as it plays an important role for both river ecology (function) and geomorphology (form). The goal of this research is to offer insight gained from pilot experimental studies on the effects of a number of different elements modeling instream, aquatic vegetation on the local flow field. It is hypothesized that elements of the same effective "blockage" area but of distinct characteristics (structure, porosity and flexibility), will affect both the mean and fluctuating levels of the turbulent flow to a different degree. The above hypothesis is investigated through a set of rigorous set of experimental runs which are appropriately designed to assess the variability between the interaction of aquatic elements and flow, both quantitatively and qualitatively. In this investigation three elements are employed to model aquatic vegetation, namely a rigid cylinder, a porous but rigid structure and a flexible live plant (Cupressus Macrocarpa). Firstly, the flow field downstream each of the mentioned elements was measured under steady uniform flow conditions employing acoustic Doppler velocimetry. Three-dimensional flow velocities downstream the vegetation element are acquired along a measurement grid extending about five-fold the element's diameter. These measurements are analyzed to develop mean velocity and turbulent intensity profiles for all velocity components. A detailed comparison between the obtained results is demonstrative of the validity of the above hypothesis as each of the employed elements affects in a different manner and degree the flow field. Then a flow visualization technique, during which fluorescent dye is injected upstream of the element and images are captured for further analysis and comparison, was employed to visualize the flow structures shed downstream the aquatic elements. This method allows to further observe qualitatively and visually identify the different characteristics of the eddies advected downstream, conclusively confirming the results of the aforementioned experimental campaign.

  14. Drug-Path: a database for drug-induced pathways

    PubMed Central

    Zeng, Hui; Cui, Qinghua

    2015-01-01

    Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. Database URL: http://www.cuilab.cn/drugpath PMID:26130661

  15. Drug-Path: a database for drug-induced pathways.

    PubMed

    Zeng, Hui; Qiu, Chengxiang; Cui, Qinghua

    2015-01-01

    Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. © The Author(s) 2015. Published by Oxford University Press.

  16. Ecological linkages between headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood down headwater channels

    USGS Publications Warehouse

    Wipfli, M.S.; Richardson, J.S.; Naiman, R.J.

    2007-01-01

    Headwater streams make up a large proportion of the total length and watershed area of fluvial networks, and are partially characterized by the large volume of organic matter (large wood, detritus, and dissolved organic matter) and invertebrate inputs from the riparian forest, relative to stream size. Much of those inputs are exported to downstream reaches through time where they potentially subsidize river communities. The relative rates, timing, and conversion processes that carry inputs from small streams to downstream reaches are reasonably well quantified. For example, larger particles are converted to smaller particles, which are more easily exported. Also, dissolved organic matter and surface biofilms are converted to larger particles which can be more easily intercepted by consumers. However, the quality of these materials as it affects biological activity downstream is not well known, nor is the extent to which timing permits biological use of those particles. These ecological unknowns need to be resolved. Further, land uses may disrupt and diminish material transport to downstream reaches by removing sources (e.g., forest harvest), by affecting transport and decomposition processes (e.g., flow regulation, irrigation, changes in biotic communities), and by altering mechanisms of storage within headwaters (e.g., channelization). We present conceptual models of energy and nutrient fluxes that outline small stream processes and pathways important to downstream communities, and we identify informational gaps that, if filled, could significantly advance the understanding of linkages between headwater streams and larger rivers. The models, based on empirical evidence and best professional judgment, suggest that navigable waters are significantly influenced by headwater streams through hydrological and ecological connectivities, and land use can dramatically influence these natural connectivities, impacting downstream riverine ecosystems. ?? 2007 American Water Resources Association.

  17. One gene - many endocrine and metabolic syndromes: PTEN-opathies and precision medicine.

    PubMed

    Yehia, Lamis; Eng, Charis

    2018-05-23

    An average of 10% of all cancers (range 1-40%) are caused by heritable mutations and over the years, have become powerful models for precision medicine practice. Furthermore, such cancer predisposition genes for seemingly rare syndromes have turned out to help explain mechanisms of sporadic carcinogenesis and often inform normal development. The tumor suppressor PTEN encodes a ubiquitously expressed phosphatase that counteracts the PI3K/AKT/mTOR cascade - one of the most critical growth-promoting signaling pathways. Clinically, individuals with germline PTEN mutations have diverse phenotypes and fall under the umbrella term PTEN hamartoma tumor syndrome (PHTS). PHTS encompasses four clinically distinct allelic overgrowth syndromes, namely Cowden, Bannayan-Riley-Ruvalcaba, Proteus, and Proteus-like syndromes. Relatedly, mutations in other genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN also predispose patients to partially overlapping clinical manifestations, with similar effects as PTEN malfunction. We refer to these syndromes as "PTEN-opathies." As a tumor suppressor and key regulator of normal development, PTEN dysfunction can cause a spectrum of phenotypes including benign overgrowths, malignancies, metabolic, and neurodevelopmental disorders. Relevant to clinical practice, the identification of PTEN mutations in patients not only establishes a PHTS molecular diagnosis, but also informs on more accurate cancer risk assessment and medical management of those patients and affected family members. Importantly, timely diagnosis is key, as early recognition allows for preventative measures such as high-risk screening and surveillance even prior to cancer onset. This review highlights the translational impact that the discovery of PTEN has had on the diagnosis, management, and treatment of PHTS.

  18. Beta(3)-adrenergic signaling acutely down regulates adipose triglyceride lipase in brown adipocytes.

    PubMed

    Deiuliis, Jeffrey A; Liu, Li-Fen; Belury, Martha A; Rim, Jong S; Shin, Sangsu; Lee, Kichoon

    2010-06-01

    Mice exposed to cold rely upon brown adipose tissue (BAT)-mediated nonshivering thermogenesis to generate body heat using dietary glucose and lipids from the liver and white adipose tissue. In this report, we investigate how cold exposure affects the PI3 K/Akt signaling cascade and the expression of genes involved in lipid metabolism and trafficking in BAT. Cold exposure at an early time point led to the activation of the PI3 K/Akt, insulin-like signaling cascade followed by a transient decrease in adipose triglyceride lipase (ATGL) gene and protein expression in BAT. To further investigate how cold exposure-induced signaling altered ATGL expression, cultured primary brown adipocytes were treated with the beta(3)-adrenergic receptor (beta(3)AR) agonist CL 316,243 (CL) resulting in activation of PI3 K/Akt, ERK 1/2, and p38 signaling pathways and significantly decreased ATGL protein levels. ATGL protein levels decreased significantly 30 min post CL treatment suggesting protein degradation. Inhibition of PKA signaling by H89 rescued ATGL levels. The effects of PKA signaling on ATGL were shown to be independent of relevant pathways downstream of PKA such as PI3 K/Akt, ERK 1/2, and p38. However, CL treatment in 3T3-L1 adipocytes did not decrease ATGL protein and mRNA expression, suggesting a distinct response in WAT to beta3-adrenergic agonism. Transitory effects, possibly attributed to acute Akt activation during the early recruitment phase, were noted as well as stable changes in gene expression which may be attributed to beta3-adrenergic signaling in BAT.

  19. Jagged–Delta asymmetry in Notch signaling can give rise to a Sender/Receiver hybrid phenotype

    PubMed Central

    Boareto, Marcelo; Jolly, Mohit Kumar; Lu, Mingyang; Onuchic, José N.; Clementi, Cecilia; Ben-Jacob, Eshel

    2015-01-01

    Notch signaling pathway mediates cell-fate determination during embryonic development, wound healing, and tumorigenesis. This pathway is activated when the ligand Delta or the ligand Jagged of one cell interacts with the Notch receptor of its neighboring cell, releasing the Notch Intracellular Domain (NICD) that activates many downstream target genes. NICD affects ligand production asymmetrically––it represses Delta, but activates Jagged. Although the dynamical role of Notch–Jagged signaling remains elusive, it is widely recognized that Notch–Delta signaling behaves as an intercellular toggle switch, giving rise to two distinct fates that neighboring cells adopt––Sender (high ligand, low receptor) and Receiver (low ligand, high receptor). Here, we devise a specific theoretical framework that incorporates both Delta and Jagged in Notch signaling circuit to explore the functional role of Jagged in cell-fate determination. We find that the asymmetric effect of NICD renders the circuit to behave as a three-way switch, giving rise to an additional state––a hybrid Sender/Receiver (medium ligand, medium receptor). This phenotype allows neighboring cells to both send and receive signals, thereby attaining similar fates. We also show that due to the asymmetric effect of the glycosyltransferase Fringe, different outcomes are generated depending on which ligand is dominant: Delta-mediated signaling drives neighboring cells to have an opposite fate; Jagged-mediated signaling drives the cell to maintain a similar fate to that of its neighbor. We elucidate the role of Jagged in cell-fate determination and discuss its possible implications in understanding tumor–stroma cross-talk, which frequently entails Notch–Jagged communication. PMID:25605936

  20. Enhanced Antitumorigenic Effects in Glioblastoma on Double Targeting of Pleiotrophin and Its Receptor ALK1

    PubMed Central

    Grzelinski, Marius; Steinberg, Florian; Martens, Tobias; Czubayko, Frank; Lamszus, Katrin; Aigner, Achim

    2009-01-01

    In adults, glioblastomas are the most lethal and most frequent malignant brain tumors, and the poor prognosis despite aggressive treatment indicates the need to establish novel targets for molecular intervention. The secreted growth factor pleiotrophin (PTN, HB-GAM, HBNF, OSF-1) shows mitogenic, chemotactic, and transforming activity. Whereas PTN expression is tightly regulated during embryogenesis and is very limited in normal adult tissues, a marked PTN up-regulation is seen in tumors including glioblastomas. Likewise, the PTN receptor anaplastic lymphoma kinase (ALK) has been shown previously to be upregulated and functionally relevant in glioblastoma. In this study, we explore the antitumorigenic effects of the simultaneous ribozyme-mediated knockdown of both receptor and ligand. Various glioblastoma cell lines are analyzed for PTN and ALK expression. Beyond the individual efficacies of several specific ribozymes against PTN or ALK, respectively, antiproliferative and proapoptotic effects of a single gene targeting approach are strongly enhanced on double knockdown of both genes in vitro. More importantly, this results in the abolishment of tumor growth in an in vivo subcutaneous tumor xenograft model. Finally, the analysis of various downstream signaling pathways by antibody arrays reveals a distinct pattern of changes in the activation of signal transduction molecules on PTN/ALK double knockdown. Beyond the already known ones, it identifies additional pathways relevant for PTN/ALK signaling. We conclude that double targeting of PTN and ALK leads to enhanced antitumorigenic effects over single knockdown approaches, which offers novel therapeutic options owing to increased efficacy also after prolonged knockdown. PMID:19177199

  1. Contributions of Rod and Cone Pathways to Retinal Direction Selectivity Through Development

    PubMed Central

    Rosa, Juliana M.; Morrie, Ryan D.; Baertsch, Hans C.

    2016-01-01

    Direction selectivity is a robust computation across a broad stimulus space that is mediated by activity of both rod and cone photoreceptors through the ON and OFF pathways. However, rods, S-cones, and M-cones activate the ON and OFF circuits via distinct pathways and the relative contribution of each to direction selectivity is unknown. Using a variety of stimulation paradigms, pharmacological agents, and knockout mice that lack rod transduction, we found that inputs from the ON pathway were critical for strong direction-selective (DS) tuning in the OFF pathway. For UV light stimulation, the ON pathway inputs to the OFF pathway originated with rod signaling, whereas for visible stimulation, the ON pathway inputs to the OFF pathway originated with both rod and M-cone signaling. Whole-cell voltage-clamp recordings revealed that blocking the ON pathway reduced directional tuning in the OFF pathway via a reduction in null-side inhibition, which is provided by OFF starburst amacrine cells (SACs). Consistent with this, our recordings from OFF SACs confirmed that signals originating in the ON pathway contribute to their excitation. Finally, we observed that, for UV stimulation, ON contributions to OFF DS tuning matured earlier than direct signaling via the OFF pathway. These data indicate that the retina uses multiple strategies for computing DS responses across different colors and stages of development. SIGNIFICANCE STATEMENT The retina uses parallel pathways to encode different features of the visual scene. In some cases, these distinct pathways converge on circuits that mediate a distinct computation. For example, rod and cone pathways enable direction-selective (DS) ganglion cells to encode motion over a wide range of light intensities. Here, we show that although direction selectivity is robust across light intensities, motion discrimination for OFF signals is dependent upon ON signaling. At eye opening, ON directional tuning is mature, whereas OFF DS tuning is significantly reduced due to a delayed maturation of S-cone to OFF cone bipolar signaling. These results provide evidence that the retina uses multiple strategies for computing DS responses across different stimulus conditions. PMID:27629718

  2. Four MicroRNAs Promote Prostate Cell Proliferation with Regulation of PTEN and Its Downstream Signals In Vitro

    PubMed Central

    Xue, Jing-lun; Chen, Jin-zhong

    2013-01-01

    Background Phosphatase and tensin homologue (PTEN), as a tumor suppressor, plays vital roles in tumorigenesis and progression of prostate cancer. However, the mechanisms of PTEN regulation still need further investigation. We here report that a combination of four microRNAs (miR-19b, miR-23b, miR-26a and miR-92a) promotes prostate cell proliferation by regulating PTEN and its downstream signals in vitro. Methodology/Principal Findings We found that the four microRNAs (miRNAs) could effectively suppress PTEN expression by directly interacting with its 3’ UTR in prostate epithelial and cancer cells. Under-expression of the four miRNAs by antisense neutralization up-regulates PTEN expression, while overexpression of the four miRNAs accelerates epithelial and prostate cancer cell proliferation. Furthermore, the expression of the four miRNAs could, singly or jointly, alter the expression of the key components in the phosphoinositide 3-kinase (PI3K)/Akt pathway, including PIK3CA, PIK3CD, PIK3R1 and Akt, along with their downstream signal, cyclin D1. Conclusions These results suggested that the four miRNAs could promote prostate cancer cell proliferation by co-regulating the expression of PTEN, PI3K/Akt pathway and cyclin D1 in vitro. These findings increase understanding of the molecular mechanisms of prostate carcinogenesis and progression, even provide valuable insights into the diagnosis, prognosis, and rational design of novel therapeutics for prostate cancer. PMID:24098737

  3. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators.

    PubMed

    Herpin, Amaury; Schartl, Manfred

    2015-10-01

    Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves. © 2015 The Authors.

  4. WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis.

    PubMed

    Nalesso, Giovanna; Thomas, Bethan Lynne; Sherwood, Joanna Claire; Yu, Jing; Addimanda, Olga; Eldridge, Suzanne Elizabeth; Thorup, Anne-Sophie; Dale, Leslie; Schett, Georg; Zwerina, Jochen; Eltawil, Noha; Pitzalis, Costantino; Dell'Accio, Francesco

    2017-01-01

    Both excessive and insufficient activation of WNT signalling results in cartilage breakdown and osteoarthritis. WNT16 is upregulated in the articular cartilage following injury and in osteoarthritis. Here, we investigate the function of WNT16 in osteoarthritis and the downstream molecular mechanisms. Osteoarthritis was induced by destabilisation of the medial meniscus in wild-type and WNT16-deficient mice. Molecular mechanisms and downstream effects were studied in vitro and in vivo in primary cartilage progenitor cells and primary chondrocytes. The pathway downstream of WNT16 was studied in primary chondrocytes and using the axis duplication assay in Xenopus. WNT16-deficient mice developed more severe osteoarthritis with reduced expression of lubricin and increased chondrocyte apoptosis. WNT16 supported the phenotype of cartilage superficial-zone progenitor cells and lubricin expression. Increased osteoarthritis in WNT16-deficient mice was associated with excessive activation of canonical WNT signalling. In vitro, high doses of WNT16 weakly activated canonical WNT signalling, but, in co-stimulation experiments, WNT16 reduced the capacity of WNT3a to activate the canonical WNT pathway. In vivo, WNT16 rescued the WNT8-induced primary axis duplication in Xenopus embryos. In osteoarthritis, WNT16 maintains a balanced canonical WNT signalling and prevents detrimental excessive activation, thereby supporting the homeostasis of progenitor cells. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway.

    PubMed

    Singh, A S; Shah, A; Brockmann, A

    2018-02-01

    In honey bees, continuous foraging at an artificial feeder induced a sustained upregulation of the immediate early genes early growth response protein 1 (Egr-1) and hormone receptor 38 (Hr38). This gene expression response was accompanied by an upregulation of several Egr-1 candidate downstream genes: ecdysone receptor (EcR), dopamine/ecdysteroid receptor (DopEcR), dopamine decarboxylase and dopamine receptor 2. Hr38, EcR and DopEcR are components of the ecdysteroid signalling pathway, which is highly probably involved in learning and memory processes in honey bees and other insects. Time-trained foragers still showed an upregulation of Egr-1 when the feeder was presented at an earlier time of the day, suggesting that the genomic response is more dependent on the food reward than training time. However, presentation of the feeder at the training time without food was still capable of inducing a transient increase in Egr-1 expression. Thus, learnt feeder cues, or even training time, probably affect Egr-1 expression. In contrast, whole brain Egr-1 expression changes did not differ between dancing and nondancing foragers. On the basis of our results we propose that food reward induced continuous foraging ultimately elicits a genomic response involving Egr-1 and Hr38 and their downstream genes. Furthermore this genomic response is highly probably involved in foraging-related learning and memory responses. © 2017 The Royal Entomological Society.

  6. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Yingfeng; Liu, Li; Zhao, Dongliang

    Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less

  7. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2

    DOE PAGES

    Tu, Yingfeng; Liu, Li; Zhao, Dongliang; ...

    2015-09-08

    Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less

  8. The C. elegans embryonic fate specification factor EGL-18 (GATA) is reutilized downstream of Wnt signaling to maintain a population of larval progenitor cells.

    PubMed

    Gorrepati, Lakshmi; Eisenmann, David M

    2015-01-01

    In metazoans, stem cells in developing and adult tissues can divide asymmetrically to give rise to a daughter that differentiates and a daughter that retains the progenitor fate. Although the short-lived nematode C. elegans does not possess adult somatic stem cells, the lateral hypodermal seam cells behave in a similar manner: they divide once per larval stage to generate an anterior daughter that adopts a non-dividing differentiated fate and a posterior daughter that retains the seam fate and the ability to divide further. Wnt signaling pathway is known to regulate the asymmetry of these divisions and maintain the progenitor cell fate in one daughter, but how activation of the Wnt pathway accomplished this was unknown. We describe here our recent work that identified the GATA transcription factor EGL-18 as a downstream target of Wnt signaling necessary for maintenance of a progenitor population of larval seam cells. EGL-18 was previously shown to act in the initial specification of the seam cells in the embryo. Thus the acquisition of a Wnt-responsive cis-regulatory module allows an embryonic fate specification factor to be reutilized later in life downstream of a different regulator (Wnt signaling) to maintain a progenitor cell population. These results support the use of seam cell development in C. elegans as a simple model system for studying stem and progenitor cell biology.

  9. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59.

    PubMed

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C M; Pieterse, Corné M J

    2013-02-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCF(COI1), which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCF(COI1)-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59.

  10. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors

    PubMed Central

    Karlsson, Hannah; Svensson, Emma; Gigg, Camilla; Jarvius, Malin; Olsson-Strömberg, Ulla; Savoldo, Barbara; Dotti, Gianpietro; Loskog, Angelica

    2015-01-01

    CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G) CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G) CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs. PMID:26700307

  11. Convergent Evolution of Calcineurin Pathway Roles in Thermotolerance and Virulence in Candida glabrata

    PubMed Central

    Chen, Ying-Lien; Konieczka, Jay H.; Springer, Deborah J.; Bowen, Samantha E.; Zhang, Jing; Silao, Fitz Gerald S.; Bungay, Alice Alma C.; Bigol, Ursela G.; Nicolas, Marilou G.; Abraham, Soman N.; Thompson, Dawn A.; Regev, Aviv; Heitman, Joseph

    2012-01-01

    Candida glabrata is an emerging human fungal pathogen that is frequently drug tolerant, resulting in difficulties in treatment and a higher mortality in immunocompromised patients. The calcium-activated protein phosphatase calcineurin plays critical roles in controlling drug tolerance, hyphal growth, and virulence in diverse fungal pathogens via distinct mechanisms involving survival in serum or growth at host temperature (37° and higher). Here, we comprehensively studied the calcineurin signaling cascade in C. glabrata and found novel and uncharacterized functions of calcineurin and its downstream target Crz1 in governing thermotolerance, intracellular architecture, and pathogenesis in murine ocular, urinary tract, and systemic infections. This represents a second independent origin of a role for calcineurin in thermotolerant growth of a major human fungal pathogen, distinct from that which arose independently in Cryptococcus neoformans. Calcineurin also promotes survival of C. glabrata in serum via mechanisms distinct from C. albicans and thereby enables establishment of tissue colonization in a murine systemic infection model. To understand calcineurin signaling in detail, we performed global transcript profiling analysis and identified calcineurin- and Crz1-dependent genes in C. glabrata involved in cell wall biosynthesis, heat shock responses, and calcineurin function. Regulators of calcineurin (RCN) are a novel family of calcineurin modifiers, and two members of this family were identified in C. glabrata: Rcn1 and Rcn2. Our studies demonstrate that Rcn2 expression is controlled by calcineurin and Crz1 to function as a feedback inhibitor of calcineurin in a circuit required for calcium tolerance in C. glabrata. In contrast, the calcineurin regulator Rcn1 activates calcineurin signaling. Interestingly, neither Rcn1 nor Rcn2 is required for virulence in a murine systemic infection model. Taken together, our findings show that calcineurin signaling plays critical roles in thermotolerance and virulence, and that Rcn1 and Rcn2 have opposing functions in controlling calcineurin signaling in C. glabrata. PMID:22690377

  12. The Akt signaling pathway

    PubMed Central

    Madhunapantula, SubbaRao V; Mosca, Paul J

    2011-01-01

    Studies using cultured melanoma cells and patient tumor biopsies have demonstrated deregulated PI3 kinase-Akt3 pathway activity in ∼70% of melanomas. Furthermore, targeting Akt3 and downstream PRAS40 has been shown to inhibit melanoma tumor development in mice. Although these preclinical studies and several other reports using small interfering RNAs and pharmacological agents targeting key members of this pathway have been shown to retard melanoma development, analysis of early Phase I and Phase II clinical trials using pharmacological agents to target this pathway demonstrate the need for (1) selection of patients whose tumors have PI3 kinase-Akt pathway deregulation, (2) further optimization of therapeutic agents for increased potency and reduced toxicity, (3) the identification of additional targets in the same pathway or in other signaling cascades that synergistically inhibit the growth and progression of melanoma, and (4) better methods for targeted delivery of pharmaceutical agents inhibiting this pathway. In this review we discuss key potential targets in PI3K-Akt3 signaling, the status of pharmacological agents targeting these proteins, drugs under clinical development, and strategies to improve the efficacy of therapeutic agents targeting this pathway. PMID:22157148

  13. Mechanistic Target of Rapamycin Is a Novel Molecular Mechanism Linking Folate Availability and Cell Function.

    PubMed

    Silva, Elena; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2017-07-01

    Folate deficiency has been linked to a wide range of disorders, including cancer, neural tube defects, and fetal growth restriction. Folate regulates cellular function mediated by its involvement in the synthesis of nucleotides, which are needed for DNA synthesis, and its function as a methyl donor, which is critical for DNA methylation. Here we review current data showing that folate sensing by mechanistic target of rapamycin (mTOR) constitutes a novel and distinct pathway by which folate modulates cell functions such as nutrient transport, protein synthesis, and mitochondrial respiration. The mTOR signaling pathway responds to growth factors and changes in nutrient availability to control cell growth, proliferation, and metabolism. mTOR exists in 2 complexes, mTOR complex (mTORC) 1 and mTORC2, which have distinct upstream regulators and downstream targets. Folate deficiency in pregnant mice caused a marked inhibition of mTORC1 and mTORC2 signaling in multiple maternal and fetal tissues, downregulation of placental amino acid transporters, and fetal growth restriction. In addition, folate deficiency in primary human trophoblast (PHT) cells resulted in inhibition of mTORC1 and mTORC2 signaling and decreased the activity of key amino acid transporters. Folate sensing by mTOR in PHT cells is independent of the accumulation of homocysteine and requires the proton-coupled folate transporter (PCFT; solute carrier 46A1). Furthermore, mTORC1 and mTORC2 regulate trophoblast folate uptake by modulating the cell surface expression of folate receptor α and the reduced folate carrier. These findings, which provide a novel link between folate availability and cell function, growth, and proliferation, may have broad biological significance given the critical role of folate in normal cell function and the multiple diseases that have been associated with decreased or excessive folate availability. Low maternal folate concentrations are linked to restricted fetal growth, and we propose that the underlying mechanisms involve trophoblast mTOR folate sensing resulting in inhibition of mTORC1 and mTORC2 and downregulation of placental amino acid transporters. © 2017 American Society for Nutrition.

  14. Mitotic accumulation of dimethylated lysine 79 of histone H3 is important for maintaining genome integrity during mitosis in human cells.

    PubMed

    Guppy, Brent J; McManus, Kirk J

    2015-02-01

    The loss of genome stability is an early event that drives the development and progression of virtually all tumor types. Recent studies have revealed that certain histone post-translational modifications exhibit dynamic and global increases in abundance that coincide with mitosis and exhibit essential roles in maintaining genomic stability. Histone H2B ubiquitination at lysine 120 (H2Bub1) is regulated by RNF20, an E3 ubiquitin ligase that is altered in many tumor types. Through an evolutionarily conserved trans-histone pathway, H2Bub1 is an essential prerequisite for subsequent downstream dimethylation events at lysines 4 (H3K4me2) and 79 (H3K79me2) of histone H3. Although the role that RNF20 plays in tumorigenesis has garnered much attention, the downstream components of the trans-histone pathway, H3K4me2 and H3K79me2, and their potential contributions to genome stability remain largely overlooked. In this study, we employ single-cell imaging and biochemical approaches to investigate the spatial and temporal patterning of RNF20, H2Bub1, H3K4me2, and H3K79me2 throughout the cell cycle, with a particular focus on mitosis. We show that H2Bub1, H3K4me2, and H3K79me2 exhibit distinct temporal progression patterns throughout the cell cycle. Most notably, we demonstrate that H3K79me2 is a highly dynamic histone post-translational modification that reaches maximal abundance during mitosis in an H2Bub1-independent manner. Using RNAi and chemical genetic approaches, we identify DOT1L as a histone methyltransferase required for the mitotic-associated increases in H3K79me2. We also demonstrate that the loss of mitotic H3K79me2 levels correlates with increases in chromosome numbers and increases in mitotic defects. Collectively, these data suggest that H3K79me2 dynamics during mitosis are normally required to maintain genome stability and further implicate the loss of H3K79me2 during mitosis as a pathogenic event that contributes to the development and progression of tumors. Copyright © 2015 by the Genetics Society of America.

  15. Development and characterization of mouse monoclonal antibodies reactive with chicken IL-8

    USDA-ARS?s Scientific Manuscript database

    Interleukin-8 (IL-8) is a key mediator in neutrophil-mediated acute proinflammatory response and activates multiple signaling pathways downstream of two receptors (CXCR1 and CXCR2). However, there have not been any monoclonal antibodies which specifically detect chicken IL8 (chIL8) and define its b...

  16. Induction of interferon-gamma and downstream pathways during establishment of fetal persistent infection with bovine viral diarrhea virus

    USDA-ARS?s Scientific Manuscript database

    Development of transplacental infection depends on the ability of the virus to cross the placenta and replicate within the fetus while counteracting maternal and fetal immune responses.Unfortunately, little is known about this complex process. Non-cytopathic (ncp) strains of bovine viral diarrhea vi...

  17. Preclinical evaluation of biomarkers associated with antitumor activity of MELK inhibitor.

    PubMed

    Chung, Suyoun; Kijima, Kyoko; Kudo, Aiko; Fujisawa, Yoshiko; Harada, Yosuke; Taira, Akiko; Takamatsu, Naofumi; Miyamoto, Takashi; Matsuo, Yo; Nakamura, Yusuke

    2016-04-05

    MELK is upregulated in various types of human cancer and is known to be associated with cancer progression, maintenance of stemness, and poor prognosis. OTS167, a MELK kinase inhibitor, shows potent growth-suppressive effect on human tumors in a xenograft model, but the detailed mode of action has not been fully elucidated. In this study, we demonstrate the molecular mechanism of action of MELK inhibitor OTS167 in a preclinical model. OTS167-treated cells caused morphological transformation, induced the differentiation markers, and reduced stem-cell marker expression. Furthermore, we identified DEPDC1, known as an oncogene, as an additional downstream molecule of the MELK signaling pathway. MELK enhanced DEPDC1 phosphorylation and its stability. The expression of MELK and downstream molecules was decreased in OTS167-treated xenograft tumor tissues, which revealed central necrosis and significant growth suppression. Our data should further shed light on the mechanism of action how OTS167 suppresses tumor growth through the inhibition of the MELK signaling pathway and suggest the possibility of biomarkers for the assessment of clinical efficacy.

  18. Preclinical evaluation of biomarkers associated with antitumor activity of MELK inhibitor

    PubMed Central

    Chung, Suyoun; Kijima, Kyoko; Kudo, Aiko; Fujisawa, Yoshiko; Harada, Yosuke; Taira, Akiko; Takamatsu, Naofumi; Miyamoto, Takashi; Matsuo, Yo; Nakamura, Yusuke

    2016-01-01

    MELK is upregulated in various types of human cancer and is known to be associated with cancer progression, maintenance of stemness, and poor prognosis. OTS167, a MELK kinase inhibitor, shows potent growth-suppressive effect on human tumors in a xenograft model, but the detailed mode of action has not been fully elucidated. In this study, we demonstrate the molecular mechanism of action of MELK inhibitor OTS167 in a preclinical model. OTS167-treated cells caused morphological transformation, induced the differentiation markers, and reduced stem-cell marker expression. Furthermore, we identified DEPDC1, known as an oncogene, as an additional downstream molecule of the MELK signaling pathway. MELK enhanced DEPDC1 phosphorylation and its stability. The expression of MELK and downstream molecules was decreased in OTS167-treated xenograft tumor tissues, which revealed central necrosis and significant growth suppression. Our data should further shed light on the mechanism of action how OTS167 suppresses tumor growth through the inhibition of the MELK signaling pathway and suggest the possibility of biomarkers for the assessment of clinical efficacy. PMID:26918358

  19. Effects of metals on a montane aquatic system evaluated using an integrated assessment approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltman, D.; Lipton, J.; Cacela, D.

    Surface water, benthic invertebrates, aufwuchs, and sediments were sampled in a Rocky Mountain stream impacted by a cobalt-copper mine. A randomized study design was employed to ensure valid inferences beyond the areas sampled. As, Co, and Cu concentrations in all media downstream of the mine were 1--3 orders of magnitude greater than concentrations upstream, and concentrations in invertebrates were greater than those that adversely affect trout via dietary intake. Correlational analysis shows that bioaccumulation mechanisms and pathways between the different media differ from element to element; the differences are related to geochemical characteristics of the elements. The benthic invertebrate communitymore » is severely impacted for at least 50 km downstream of the mine: Ephemeropteran density, number of taxa, and total biomass are as low as 0.1% of values upstream. Other indices of the effects of metals on invertebrate communities that have been used elsewhere were ineffective in detecting these severe impacts. The integrated assessment approach used in this study provides information on contaminant sources, exposure pathways and mechanisms, and impacts to the stream ecosystem at several organizational levels.« less

  20. Pax8 and Pax2a function synergistically in otic specification, downstream of the Foxi1 and Dlx3b transcription factors.

    PubMed

    Hans, Stefan; Liu, Dong; Westerfield, Monte

    2004-10-01

    The vertebrate inner ear arises from an ectodermal thickening, the otic placode, that forms adjacent to the presumptive hindbrain. Previous studies have suggested that competent ectodermal cells respond to Fgf signals from adjacent tissues and express two highly related paired box transcription factors Pax2a and Pax8 in the developing placode. We show that compromising the functions of both Pax2a and Pax8 together blocks zebrafish ear development, leaving only a few residual otic cells. This suggests that Pax2a and Pax8 are the main effectors downstream of Fgf signals. Our results further provide evidence that pax8 expression and pax2a expression are regulated by two independent factors, Foxi1 and Dlx3b, respectively. Combined loss of both factors eliminates all indications of otic specification. We suggest that the Foxi1-Pax8 pathway provides an early 'jumpstart' of otic specification that is maintained by the Dlx3b-Pax2a pathway.

  1. Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits

    PubMed Central

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-01-01

    Alzheimer’s disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis. PMID:25847999

  2. Temperature, Genes, and Sex: a Comparative View of Sex Determination in Trachemys scripta and Mus musculus

    PubMed Central

    Yao, Humphrey H-C; Capel, Blanche

    2014-01-01

    Sex determination, the step at which differentiation of males and females is initiated in the embryo, is of central importance to the propagation of species. There is a remarkable diversity of mechanisms by which sex determination is accomplished. In general these mechanisms fall into two categories: Genetic Sex Determination (GSD), which depends on genetic differences between the sexes, and Environmental Sex Determination (ESD), which depends on extrinsic cues. In this review we will consider these two means of determining sex with particular emphasis on two species: a species that depends on GSD, Mus musculus, and a species that depends on ESD, Trachemys scripta. Because the structural organization of the adult testis and ovary is very similar across vertebrates, most biologists had expected that the pathways downstream of the sex-determining switch would be conserved. However, emerging data indicate that not only are the initial sex determining mechanisms different, but the downstream pathways and morphogenetic events leading to the development of a testis or ovary also are different. PMID:16046442

  3. GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome branching through gibberellic acid signaling in Arabidopsis.

    PubMed

    An, Lijun; Zhou, Zhongjing; Su, Sha; Yan, An; Gan, Yinbo

    2012-02-01

    Cell differentiation generally corresponds to the cell cycle, typically forming a non-dividing cell with a unique differentiated morphology, and Arabidopsis trichome is an excellent model system to study all aspects of cell differentiation. Although gibberellic acid is reported to be involved in trichome branching in Arabidopsis, the mechanism for such signaling is unclear. Here, we demonstrated that GLABROUS INFLORESCENCE STEMS (GIS) is required for the control of trichome branching through gibberellic acid signaling. The phenotypes of a loss-of-function gis mutant and an overexpressor showed that GIS acted as a repressor to control trichome branching. Our results also show that GIS is not required for cell endoreduplication, and our molecular and genetic study results have shown that GIS functions downstream of the key regulator of trichome branching, STICHEL (STI), to control trichome branching through the endoreduplication-independent pathway. Furthermore, our results also suggest that GIS controls trichome branching in Arabidopsis through two different pathways and acts either upstream or downstream of the negative regulator of gibbellic acid signaling SPINDLY (SPY).

  4. Nutrient/TOR-dependent regulation of RNA polymerase III controls tissue and organismal growth in Drosophila

    PubMed Central

    Marshall, Lynne; Rideout, Elizabeth J; Grewal, Savraj S

    2012-01-01

    The nutrient/target-of-rapamycin (TOR) pathway has emerged as a key regulator of tissue and organismal growth in metazoans. The signalling components of the nutrient/TOR pathway are well defined; however, the downstream effectors are less understood. Here, we show that the control of RNA polymerase (Pol) III-dependent transcription is an essential target of TOR in Drosophila. We find that TOR activity controls Pol III in growing larvae via inhibition of the repressor Maf1 and, in part, via the transcription factor Drosophila Myc (dMyc). Moreover, we show that loss of the Pol III factor, Brf, leads to reduced tissue and organismal growth and prevents TOR-induced cellular growth. TOR activity in the larval fat body, a tissue equivalent to vertebrate fat or liver, couples nutrition to insulin release from the brain. Accordingly, we find that fat-specific loss of Brf phenocopies nutrient limitation and TOR inhibition, leading to decreased systemic insulin signalling and reduced organismal growth. Thus, stimulation of Pol III is a key downstream effector of TOR in the control of cellular and systemic growth. PMID:22367393

  5. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices.

    PubMed

    Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen

    2013-12-15

    To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. Copyright © 2013 Wiley Periodicals, Inc.

  6. Rho/Rho kinase and phosphoinositide 3-kinase are parallel pathways in the development of spontaneous arterial tone in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Wehrwein, Erica A; Northcott, Carrie A; Loberg, Robert D; Watts, Stephanie W

    2004-06-01

    Hypertension is characterized by abnormal vascular contractility and function. Arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats develop spontaneous tone that is not observed in arteries from normotensive rats. Inhibition of phosphoinositide 3-kinase (PI3-kinase) by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) reduces spontaneous tone development. The Rho/Rho-kinase pathway has been suggested to play a role in hypertension and may be dependent on PI3-kinase activity. We hypothesized that Rhokinase is involved in spontaneous tone development and that Rho/Rho-kinase is a downstream effector of PI3-kinase. Using endothelium-denuded aortic strips in isolated tissue bath, we demonstrated that (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) (Y27632) (1 microM), a Rho-kinase inhibitor, significantly reduced spontaneous tone in the DOCA aorta but that it did not affect sham aorta basal tone (DOCA 63.5 +/- 15.9 versus sham 1.2 +/- 0.4 total change in percentage of phenylephrine contraction). We examined the interaction between the PI3-kinase and Rho pathways by observing the effects of LY294002 on a Rhokinase effector, myosin phosphatase (MYPT), and Y27632 on a PI3-kinase effector, Akt, using Western blot analysis. Inhibition of PI3-kinase reduced spontaneous tone, but it had no effect on the phosphorylation status of MYPT, indicating that PI3-kinase is not a downstream effector of Rho/Rho-kinase. These data indicate that there is little interaction between the Rho/Rhokinase and PI3-kinase pathways in the DOCA-salt aorta, and the two pathways seem to operate in parallel in supporting spontaneous arterial tone. These data reflect spontaneous tone only and do not rule out the possibility of interaction between these pathways in agonist-stimulated tone.

  7. Thiocoraline alters neuroendocrine phenotype and activates the Notch pathway in MTC-TT cell line

    PubMed Central

    Tesfazghi, Sara; Eide, Jacob; Dammalapati, Ajitha; Korlesky, Colin; Wyche, Thomas P; Bugni, Tim S; Chen, Herbert; Jaskula-Sztul, Renata

    2013-01-01

    Medullary thyroid cancer (MTC) is an aggressive neuroendocrine tumor (NET). Previous research has shown that activation of Notch signaling has a tumor suppressor role in NETs. The potential therapeutic effect of thiocoraline on the activation of the Notch pathway in an MTC cell line (TT) was investigated. Thiocoraline was isolated from a marine bacterium Verrucosispora sp. MTT assay (3-[4, 5-dimethylthiazole-2-yl]-2, 5-diphenyltetrazolium bromide) was used to determine the IC50 value and to measure cell proliferation. Western blot revealed the expression of Notch isoforms, NET, and cell cycle markers. Cell cycle progression was validated by flow cytometry. The mRNA expression of Notch isoforms and downstream targets were measured using real-time PCR. The IC50 value for thiocoraline treatment in TT cells was determined to be 7.6 nmol/L. Thiocoraline treatment decreased cell proliferation in a dose- and time-dependent manner. The mechanism of growth inhibition was found to be cell cycle arrest in G1 phase. Thiocoraline activated the Notch pathway as demonstrated by the dose-dependent increase in mRNA and protein expression of Notch isoforms. Furthermore, treatment with thiocoraline resulted in changes in the expression of downstream targets of the Notch pathway (HES1, HES2, HES6, HEY1, and HEY2) and reduced expression of NET markers, CgA, and ASCL1. Thiocoraline is a potent Notch pathway activator and an inhibitor of MTC-TT cell proliferation at low nanomolar concentrations. These results provide exciting evidence for the use of thiocoraline as a potential treatment for intractable MTC. Thiocoraline is a potent Notch pathway activator and an inhibitor of medullary thyroid cancer cell line (MTC-TT) cell proliferation at low nanomolar concentrations. These results provide evidence for the use of thiocoraline as a potential treatment for intractable MTC. PMID:24403239

  8. Cyanidin attenuates Aβ25-35-induced neuroinflammation by suppressing NF-κB activity downstream of TLR4/NOX4 in human neuroblastoma cells.

    PubMed

    Thummayot, Sarinthorn; Tocharus, Chainarong; Jumnongprakhon, Pichaya; Suksamrarn, Apichart; Tocharus, Jiraporn

    2018-04-19

    Cyanidin is polyphenolic pigment found in plants. We have previously demonstrated that cyanidin protects nerve cells against Aβ 25-35 -induced toxicity by decreasing oxidative stress and attenuating apoptosis mediated by both the mitochondrial apoptotic pathway and the ER stress pathway. To further elucidate the molecular mechanisms underlying the neuroprotective effects of cyanidin, we investigated the effects of cyanidin on neuroinflammation mediated by the TLR4/NOX4 pathway in Aβ 25-35 -treated human neuroblastoma cell line (SK-N-SH). SK-N-SH cells were exposed to Aβ 25-35 (10 μmol/L) for 24 h. Pretreatment with cyanidin (20 μmol/L) or NAC (20 μmol/L) strongly inhibited the NF-κB signaling pathway in the cells evidenced by suppressing the degradation of IκBα, translocation of the p65 subunit of NF-κB from the cytoplasm to the nucleus, and thereby reducing the expression of iNOS protein and the production of NO. Furthermore, pretreatment with cyanidin greatly promoted the translocation of the Nrf2 protein from the cytoplasm to the nucleus; upregulating cytoprotective enzymes, including HO-1, NQO-1 and GCLC; and increased the activity of SOD enzymes. Pretreatment with cyanidin also decreased the expression of TLR4, directly improved intracellular ROS levels and regulated the activity of inflammation-related downstream pathways including NO production and SOD activity through TLR4/NOX4 signaling. These results demonstrate that TLR4 is a primary receptor in SK-N-SH cells, by which Aβ 25-35 triggers neuroinflammation, and cyanidin attenuates Aβ-induced inflammation and ROS production mediated by the TLR4/NOX4 pathway, suggesting that inhibition of TLR4 by cyanidin could be beneficial in preventing neuronal cell death in the process of Alzheimer's disease.

  9. Frequency of alcohol consumption in humans; the role of metabotropic glutamate receptors and downstream signaling pathways.

    PubMed

    Meyers, J L; Salling, M C; Almli, L M; Ratanatharathorn, A; Uddin, M; Galea, S; Wildman, D E; Aiello, A E; Bradley, B; Ressler, K; Koenen, K C

    2015-06-23

    Rodent models implicate metabotropic glutamate receptors (mGluRs) and downstream signaling pathways in addictive behaviors through metaplasticity. One way mGluRs can influence synaptic plasticity is by regulating the local translation of AMPA receptor trafficking proteins via eukaryotic elongation factor 2 (eEF2). However, genetic variation in this pathway has not been examined with human alcohol use phenotypes. Among a sample of adults living in Detroit, Michigan (Detroit Neighborhood Health Study; n = 788; 83% African American), 206 genetic variants across the mGluR-eEF2-AMPAR pathway (including GRM1, GRM5, HOMER1, HOMER2, EEF2K, MTOR, EIF4E, EEF2, CAMK2A, ARC, GRIA1 and GRIA4) were found to predict number of drinking days per month (corrected P-value < 0.01) when considered as a set (set-based linear regression conducted in PLINK). In addition, a CpG site located in the 3'-untranslated region on the north shore of EEF2 (cg12255298) was hypermethylated in those who drank more frequently (P < 0.05). Importantly, the association between several genetic variants within the mGluR-eEF2-AMPAR pathway and alcohol use behavior (i.e., consumption and alcohol-related problems) replicated in the Grady Trauma Project (GTP), an independent sample of adults living in Atlanta, Georgia (n = 1034; 95% African American), including individual variants in GRM1, GRM5, EEF2, MTOR, GRIA1, GRIA4 and HOMER2 (P < 0.05). Gene-based analyses conducted in the GTP indicated that GRM1 (empirical P < 0.05) and EEF2 (empirical P < 0.01) withstood multiple test corrections and predicted increased alcohol consumption and related problems. In conclusion, insights from rodent studies enabled the identification of novel human alcohol candidate genes within the mGluR-eEF2-AMPAR pathway.

  10. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model tomore » study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap-overexpression phenotype in P19 cells. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap-overexpression phenotype in cortical progenitors.« less

  11. Genomic and Transcriptomic Analyses of Indole-3-Acetic Acid Biosynthesis in Diatoms

    NASA Astrophysics Data System (ADS)

    Lim, R.; Armbrust, V.

    2016-02-01

    Indole-3-acetic acid (IAA) is a major plant growth hormone and a common mediator of plant-bacterial interactions. Recently, IAA has also been found to play a role in interactions between diatoms and bacteria, with IAA production by an associated Sulfitobacter leading to increased growth rates in the marine diatom Pseudo-nitzschia multiseries. It is unclear, however, if diatoms themselves are able to synthesize IAA and whether this capability is widespread throughout Bacillariophyta. Four major tryptophan-dependent IAA biosynthesis pathways have been identified in plants and bacteria, each denoted by the first intermediate downstream of tryptophan: the indole-3-pyruvate (IPyA), tryptamine (TAM), indole-3-acetaldoxime (IAOx) and indole-3-acetamide (IAM) pathways. To investigate the possibility of IAA biosynthesis in diatoms, we first analyzed publicly available genomes of raphid pennates P. multiseries, Phaeodactylum tricornutum, Fragilariopsis cylindrus and centric Thalassiosira pseudonana for potential homologs to plant and bacterial IAA biosynthesis genes. The P. multiseries, F. cylindrus and P. tricornutum genomes encode downstream enzymes for bacterial TAM and IAM and plant IPyA pathways. The more evolutionarily ancient T. pseudonana encodes one TAM enzyme in its genome. To investigate the potential distribution of these pathways more broadly, we surveyed the transcriptomes of 11 diatom species that include representatives from all four Bacillariophyta classes. Datasets used were sequenced as part of the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) and obtained from cultures maintained axenically. Transcripts associated with the TAM pathway were most frequently detected, with potential homologs to required enzymes identified in 10 of the 11 species examined. Transcripts homologous to rate-limiting IPyA enzymes were detected in six species. Only two centric and araphid pennate species expressed transcripts associated with enzymes in the IAM and IAOx pathways. This pattern suggests multiple events of gene loss as the phylum expanded and diversified. Mass spectrometry analyses will be conducted to confirm the production of IAA in axenic cultures of P. pungens, P. multistriata, Skeletonema marinoi and F. cylindrus.

  12. BRAFV600E Negatively Regulates the AKT Pathway in Melanoma Cell Lines

    PubMed Central

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F.; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways. PMID:22880048

  13. Could Notch signaling pathway be a potential therapeutic option in renal diseases?

    PubMed

    Marquez-Exposito, Laura; Cantero-Navarro, Elena; Lavoz, Carolina; Fierro-Fernández, Marta; Poveda, Jonay; Rayego-Mateos, Sandra; Rodrigues-Diez, Raúl R; Morgado-Pascual, José Luis; Orejudo, Macarena; Mezzano, Sergio; Ruiz-Ortega, Marta

    2018-02-10

    Notch pathway regulates key processes in the kidney, involved in embryonic development and tissue damage. In many human chronic renal diseases a local activation of Notch pathway has been described, suggesting that several components of Notch pathway could be considered as biomarkers of renal damage. Experimental studies by genetic modulation of Notch components or pharmacological approaches by γ-secretase inhibitors have demonstrated the role of this pathway in renal regeneration renal, podocyte apoptosis, proliferation and fibroblasts activation, and induction of epithelial to mesenchymal transition of tubular epithelial cells. Recent studies suggest an interaction between Notch and NF-κB pathway involved in the regulation of renal inflammatory process. On the other hand, there are some miRNAs that could regulate Notch components and down-stream responses. All these data suggest that Notch blockade could be a novel therapeutic option for renal diseases. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas.

    PubMed

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2018-06-01

    In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.

  15. Molecular Mechanisms Underlying Cardiac Adaptation to Exercise

    PubMed Central

    Vega, Rick B.; Konhilas, John P.; Kelly, Daniel P.; Leinwand, Leslie A.

    2017-01-01

    Exercise elicits coordinated multi-organ responses including skeletal muscle, vasculature, heart and lung. In the short term, the output of the heart increases to meet the demand of strenuous exercise. Long term exercise instigates remodeling of the heart including growth and adaptive molecular and cellular re-programming. Signaling pathways such as the insulin-like growth factor 1/PI3K/Akt pathway mediate many of these responses. Exercise-induced, or physiologic, cardiac growth contrasts with growth elicited by pathological stimuli such as hypertension. Comparing the molecular and cellular underpinnings of physiologic and pathologic cardiac growth has unveiled phenotype-specific signaling pathways and transcriptional regulatory programs. Studies suggest that exercise pathways likely antagonize pathological pathways, and exercise training is often recommended for patients with chronic stable heart failure or following myocardial infarction. Herein, we summarize the current understanding of the structural and functional cardiac responses to exercise as well as signaling pathways and downstream effector molecules responsible for these adaptations. PMID:28467921

  16. Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells.

    PubMed

    Zhang, Yu-Qin; Xiao, Chuan-Xing; Lin, Bi-Yun; Shi, Ying; Liu, Yun-Peng; Liu, Jing-Jing; Guleng, Bayasi; Ren, Jian-Lin

    2013-01-01

    The role of Pokemon (POK erythroid myeloid ontogenic actor), a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC) and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma) as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy.

  17. Silencing of Pokemon Enhances Caspase-Dependent Apoptosis via Fas- and Mitochondria-Mediated Pathways in Hepatocellular Carcinoma Cells

    PubMed Central

    Lin, Bi-Yun; Shi, Ying; Liu, Yun-Peng; Liu, Jing-Jing; Guleng, Bayasi; Ren, Jian-Lin

    2013-01-01

    The role of Pokemon (POK erythroid myeloid ontogenic actor), a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC) and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma) as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy. PMID:23874836

  18. Foxo Transcription Factors Blunt Cardiac Hypertrophy by Inhibiting Calcineurin Signaling

    PubMed Central

    Ni, Yan G.; Berenji, Kambeez; Wang, Na; Oh, Misook; Sachan, Nita; Dey, Asim; Cheng, Jun; Lu, Guangrong; Morris, David J.; Castrillon, Diego H.; Gerard, Robert D.; Rothermel, Beverly A.; Hill, Joseph A.

    2014-01-01

    Background Cellular hypertrophy requires coordinated regulation of progrowth and antigrowth mechanisms. In cultured neonatal cardiomyocytes, Foxo transcription factors trigger an atrophy-related gene program that counters hypertrophic growth. However, downstream molecular events are not yet well defined. Methods and Results Here, we report that expression of either Foxo1 or Foxo3 in cardiomyocytes attenuates calcineurin phosphatase activity and inhibits agonist-induced hypertrophic growth. Consistent with these results, Foxo proteins decrease calcineurin phosphatase activity and repress both basal and hypertrophic agonist-induced expression of MCIP1.4, a direct downstream target of the calcineurin/NFAT pathway. Furthermore, hearts from Foxo3-null mice exhibit increased MCIP1.4 abundance and a hypertrophic phenotype with normal systolic function at baseline. Together, these results suggest that Foxo proteins repress cardiac growth at least in part through inhibition of the calcineurin/NFAT pathway. Given that hypertrophic growth of the heart occurs in multiple contexts, our findings also suggest that certain hypertrophic signals are capable of overriding the antigrowth program induced by Foxo. Consistent with this, multiple hypertrophic agonists triggered inactivation of Foxo proteins in cardiomyocytes through a mechanism requiring the PI3K/Akt pathway. In addition, both Foxo1 and Foxo3 are phosphorylated and consequently inactivated in hearts undergoing hypertrophic growth induced by hemodynamic stress. Conclusions This study suggests that inhibition of the calcineurin/NFAT signaling cascade by Foxo and release of this repressive action by the PI3K/Akt pathway are important mechanisms whereby Foxo factors govern cell growth in the heart. PMID:16952979

  19. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution

    PubMed Central

    Coyle, Scott M; Lim, Wendell A

    2016-01-01

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras’s ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. DOI: http://dx.doi.org/10.7554/eLife.12435.001 PMID:26765565

  20. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases.

    PubMed

    Ruiz, Patricia; Perlina, Ally; Mumtaz, Moiz; Fowler, Bruce A

    2016-07-01

    A number of epidemiological studies have identified statistical associations between persistent organic pollutants (POPs) and metabolic diseases, but testable hypotheses regarding underlying molecular mechanisms to explain these linkages have not been published. We assessed the underlying mechanisms of POPs that have been associated with metabolic diseases; three well-known POPs [2,3,7,8-tetrachlorodibenzodioxin (TCDD), 2,2´,4,4´,5,5´-hexachlorobiphenyl (PCB 153), and 4,4´-dichlorodiphenyldichloroethylene (p,p´-DDE)] were studied. We used advanced database search tools to delineate testable hypotheses and to guide laboratory-based research studies into underlying mechanisms by which this POP mixture could produce or exacerbate metabolic diseases. For our searches, we used proprietary systems biology software (MetaCore™/MetaDrug™) to conduct advanced search queries for the underlying interactions database, followed by directional network construction to identify common mechanisms for these POPs within two or fewer interaction steps downstream of their primary targets. These common downstream pathways belong to various cytokine and chemokine families with experimentally well-documented causal associations with type 2 diabetes. Our systems biology approach allowed identification of converging pathways leading to activation of common downstream targets. To our knowledge, this is the first study to propose an integrated global set of step-by-step molecular mechanisms for a combination of three common POPs using a systems biology approach, which may link POP exposure to diseases. Experimental evaluation of the proposed pathways may lead to development of predictive biomarkers of the effects of POPs, which could translate into disease prevention and effective clinical treatment strategies. Ruiz P, Perlina A, Mumtaz M, Fowler BA. 2016. A systems biology approach reveals converging molecular mechanisms that link different POPs to common metabolic diseases. Environ Health Perspect 124:1034-1041; http://dx.doi.org/10.1289/ehp.1510308.

  1. Relationship between the omega-3 index and specialized pro-resolving lipid mediators in patients with peripheral arterial disease taking fish oil supplements.

    PubMed

    Schaller, Melinda S; Zahner, Greg J; Gasper, Warren J; Harris, William S; Conte, Michael S; Hills, Nancy K; Grenon, S Marlene

    Oral supplementation with n-3 polyunsaturated fatty acids (PUFA) increases the omega-3 index, a biomarker of red blood cell eicosapentaenoic acid and docosahexaenoic acid, and plasma levels of biosynthesis pathway markers and potent lipid mediators involved in the resolution of inflammation among patients with peripheral arterial disease (PAD). We aimed to quantify the association between an upstream change in the omega-3 index and downstream changes in lipid mediator production. We conducted a secondary analysis of the OMEGA-PAD I Trial, a randomized, placebo controlled trial investigating high-dose n-3 PUFA oral supplementation in PAD patients. Eighty subjects were randomized to either 4.4 g of fish oil or placebo for 1 month. Regression analyses using generalized estimating equation techniques were used to investigate the relationship between changes in the omega-3 index and changes in lipid mediators, pre- and post-intervention. In the fish oil group, there was a significant increase in the omega-3 index (5 ± 1% to 9 ± 2%, P < .001) as well as in the plasma levels of several downstream lipid mediator pathway markers of resolution, which are involved with the regulation of leukocyte effector function and host defense. A doubling of the omega-3 index correlated with increases of 2.3-fold in 18-hydroxy-eicosapentaenoic acid (HEPE; P < .0001), 1.7-fold in 15-HEPE (P = .03), 1.9-fold in 5-HEPE (P = .04), and 3.6-fold in 4-hydroxy-docosahexaenoic acid (P < .001). Among subjects with symptomatic PAD who took oral fish oil supplements for 1 month, observed changes in the omega-3 index were strongly associated with increases in downstream mediators in the biochemical pathways of resolution. Copyright © 2017 National Lipid Association. All rights reserved.

  2. Kibra and Merlin Activate the Hippo Pathway Spatially Distinct from and Independent of Expanded.

    PubMed

    Su, Ting; Ludwig, Michael Z; Xu, Jiajie; Fehon, Richard G

    2017-03-13

    The Hippo pathway is emerging as a key evolutionarily conserved signaling mechanism that controls organ size. Three membrane-associated proteins, Kibra, Merlin, and Expanded, regulate pathway activity, but the precise molecular mechanism by which they function is still poorly understood. Here we provide evidence that Merlin and Kibra activate Hippo signaling in parallel to Expanded at a spatially distinct cellular domain, the medial apical cortex. Merlin and Kibra together recruit the adapter protein Salvador, which in turn recruits the core kinase Hippo. In addition, we show that Crumbs has a dual effect on Hippo signaling. Crumbs promotes the ability of Expanded to activate the pathway but also sequesters Kibra to downregulate Hippo signaling. Together, our findings elucidate the mechanism of Hippo pathway activation by Merlin and Kibra, identify a subcellular domain for Hippo pathway regulation, and demonstrate differential activity of upstream regulators in different subcellular domains. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation.

    PubMed

    Yang, Rui; Wu, Yanan; Wang, Mei; Sun, Zhongfeng; Zou, Jiahua; Zhang, Yundong; Cui, Hongjuan

    2015-04-10

    Histone deacetylase 9 (HDAC9), a member of class II HDACs, regulates a wide variety of normal and abnormal physiological functions. We found that HDAC9 is over-expressed in prognostically poor glioblastoma patients. Knockdown HDAC9 decreased proliferation in vitro and tumor formation in vivo. HDAC9 accelerated cell cycle in part by potentiating the EGFR signaling pathway. Also, HDAC9 interacted with TAZ, a key downstream effector of Hippo pathway. Knockdown of HDAC9 decreased the expression of TAZ. We found that overexpressed TAZ in HDAC9-knockdown cells abrogated the effects induced by HDAC9 silencing both in vitro and in vivo. We demonstrated that HDAC9 promotes tumor formation of glioblastoma via TAZ-mediated EGFR pathway activation, and provide the evidence for promising target for the treatment of glioblastoma.

  4. The mevalonate pathway regulates primitive streak formation via protein farnesylation

    PubMed Central

    Okamoto-Uchida, Yoshimi; Yu, Ruoxing; Miyamura, Norio; Arima, Norie; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Yoshida, Suguru; Hosoya, Takamitsu; Nawa, Makiko; Kasama, Takeshi; Asaoka, Yoichi; Alois, Reiner Wimmer; Elling, Ulrich; Penninger, Josef M.; Nishina, Sachiko; Azuma, Noriyuki; Nishina, Hiroshi

    2016-01-01

    The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalonate metabolic pathway, suppressed primitive streak formation in vitro and in vivo. Using metabolomics and pharmacologic approaches we identified the downstream signalling pathway of mevalonate and revealed that primitive streak formation requires protein farnesylation but not cholesterol synthesis. A tagging-via-substrate approach revealed that nuclear lamin B1 and small G proteins were farnesylated in embryoid bodies and important for primitive streak gene expression. In conclusion, protein farnesylation driven by the mevalonate pathway is a metabolic cue essential for primitive streak formation. PMID:27883036

  5. Expression of the cytoplasmic mevalonate pathway in chloroplasts to reduce substrate limitations for cytoplasmically-produced terpenoid secondary products

    USDA-ARS?s Scientific Manuscript database

    All products of isoprenoid metabolism originate with the C5 non-allylic substrate, isopentenyl pyrophosphate (IPP). IPP is produced in plants by two distinct pathways, the mevalonate pathway (MEV) in the cytosol and the 2 C methyl-D-erythritol 4 phosphate (MEP) pathway in plastids. A multi-gene a...

  6. Quantitative Phospho-proteomic Analysis of TNFα/NFκB Signaling Reveals a Role for RIPK1 Phosphorylation in Suppressing Necrotic Cell Death.

    PubMed

    Mohideen, Firaz; Paulo, Joao A; Ordureau, Alban; Gygi, Steve P; Harper, J Wade

    2017-07-01

    TNFα is a potent inducer of inflammation due to its ability to promote gene expression, in part via the NFκB pathway. Moreover, in some contexts, TNFα promotes Caspase-dependent apoptosis or RIPK1/RIPK3/MLKL-dependent necrosis. Engagement of the TNF Receptor Signaling Complex (TNF-RSC), which contains multiple kinase activities, promotes phosphorylation of several downstream components, including TAK1, IKKα/IKKβ, IκBα, and NFκB. However, immediate downstream phosphorylation events occurring in response to TNFα signaling are poorly understood at a proteome-wide level. Here we use Tandem Mass Tagging-based proteomics to quantitatively characterize acute TNFα-mediated alterations in the proteome and phosphoproteome with or without inhibition of the cIAP-dependent survival arm of the pathway with a SMAC mimetic. We identify and quantify over 8,000 phosphorylated peptides, among which are numerous known sites in the TNF-RSC, NFκB, and MAP kinase signaling systems, as well as numerous previously unrecognized phosphorylation events. Functional analysis of S320 phosphorylation in RIPK1 demonstrates a role for this event in suppressing its kinase activity, association with CASPASE-8 and FADD proteins, and subsequent necrotic cell death during inflammatory TNFα stimulation. This study provides a resource for further elucidation of TNFα-dependent signaling pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The Possible Mechanism of Advanced Glycation End Products (AGEs) for Alzheimer’s Disease

    PubMed Central

    Ko, Shun-Yao; Ko, Hshin-An; Chu, Kuo-Hsiung; Shieh, Tzong-Ming; Chi, Tzong-Cherng; Chen, Hong-I; Chang, Weng-Cheng; Chang, Shu-Shing

    2015-01-01

    Amyloid precursor protein (APP) has been modified by β and γ-secretase that cause amyloid deposits (plaques) in neuronal cells. Glyceraldhyde-derived AGEs has been identified as a major source of neurotoxicity in Alzheimer’s disease (AD). In a previous study, we demonstrated that glyceraldehyde-derived AGEs increase APP and Aβ via ROS. Furthermore, the combination of AGEs and Aβ has been shown to enhance neurotoxicity. In mice, APP expression is increased by tail vein injection of AGEs. This evidence suggests a correlation between AGEs and the development of AD. However, the role played by AGEs in the pathogenesis of AD remains unclear. In this report, we demonstrate that AGEs up-regulate APP processing protein (BACE and PS1) and Sirt1 expression via ROS, but do not affect the expression of downstream antioxidant genes HO-1 and NQO-1. Moreover, we found that AGEs increase GRP78 expression and enhance the cell death-related pathway p53, bcl-2/bax ratio, caspase 3. These results indicate that AGEs impair the neuroprotective effects of Sirt1 and lead to neuronal cell death via ER stress. Our findings suggest that AGEs increase ROS production, which stimulates downstream pathways related to APP processing, Aβ production, Sirt1, and GRP78, resulting in the up-regulation of cell death related pathway. This in-turn enhances neuronal cell death, which leads to the development of AD. PMID:26587989

  8. The Possible Mechanism of Advanced Glycation End Products (AGEs) for Alzheimer's Disease.

    PubMed

    Ko, Shun-Yao; Ko, Hshin-An; Chu, Kuo-Hsiung; Shieh, Tzong-Ming; Chi, Tzong-Cherng; Chen, Hong-I; Chang, Weng-Cheng; Chang, Shu-Shing

    2015-01-01

    Amyloid precursor protein (APP) has been modified by β and γ-secretase that cause amyloid deposits (plaques) in neuronal cells. Glyceraldhyde-derived AGEs has been identified as a major source of neurotoxicity in Alzheimer's disease (AD). In a previous study, we demonstrated that glyceraldehyde-derived AGEs increase APP and Aβ via ROS. Furthermore, the combination of AGEs and Aβ has been shown to enhance neurotoxicity. In mice, APP expression is increased by tail vein injection of AGEs. This evidence suggests a correlation between AGEs and the development of AD. However, the role played by AGEs in the pathogenesis of AD remains unclear. In this report, we demonstrate that AGEs up-regulate APP processing protein (BACE and PS1) and Sirt1 expression via ROS, but do not affect the expression of downstream antioxidant genes HO-1 and NQO-1. Moreover, we found that AGEs increase GRP78 expression and enhance the cell death-related pathway p53, bcl-2/bax ratio, caspase 3. These results indicate that AGEs impair the neuroprotective effects of Sirt1 and lead to neuronal cell death via ER stress. Our findings suggest that AGEs increase ROS production, which stimulates downstream pathways related to APP processing, Aβ production, Sirt1, and GRP78, resulting in the up-regulation of cell death related pathway. This in-turn enhances neuronal cell death, which leads to the development of AD.

  9. Neural cell adhesion molecule potentiates invasion and metastasis of melanoma cells through CAMP-dependent protein kinase and phosphatidylinositol 3-kinase pathways.

    PubMed

    Shi, Yu; Liu, Rui; Zhang, Si; Xia, Yin-Yan; Yang, Hai-Jie; Guo, Ke; Zeng, Qi; Feng, Zhi-Wei

    2011-04-01

    Neural cell adhesion molecule (NCAM) has been implicated in tumor metastasis yet its function in melanoma progression remains unclear. Here, we demonstrate that stably silencing NCAM expression in mouse melanoma B16F0 cells perturbs their cellular invasion and metastatic dissemination in vivo. The pro-invasive function of NCAM is exerted via dual mechanisms involving both cAMP-dependent protein kinase (PKA) and phosphatidylinositol 3-kinase (PI3K) pathways. Pharmacologic inhibition of PKA and PI3K leads to impaired cellular invasion. In contrast, forced expression of constitutively activated Akt, the major downstream target of PI3K, restores the defective cellular invasiveness of NCAM knock-down (KD) B16F0 cells. Furthermore, attenuation of either PKA or Akt activity in NCAM KD cells is shown to affect their common downstream target, transcription factor cAMP response element binding protein (CREB), which in turn down-regulates mRNA expression of matrix metalloproteinase-2 (MMP-2), thus contributes to impaired cellular invasion and metastasis of melanoma cells. Together, these findings indicate that NCAM potentiates cellular invasion and metastasis of melanoma cells through stimulation of PKA and PI3K signaling pathways thus suggesting the potential implication of anti-NCAM strategy in melanoma treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Environmental Impact on Vascular Development Predicted by High-Throughput Screening

    PubMed Central

    Judson, Richard S.; Reif, David M.; Sipes, Nisha S.; Singh, Amar V.; Chandler, Kelly J.; DeWoskin, Rob; Dix, David J.; Kavlock, Robert J.; Knudsen, Thomas B.

    2011-01-01

    Background: Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High-throughput screening (HTS) in the U.S. Environmental Protection Agency (EPA) ToxCast™ project provides vast data on an expanding chemical library currently consisting of > 1,000 unique compounds across > 500 in vitro assays in phase I (complete) and Phase II (under way). This public data set can be used to evaluate concentration-dependent effects on many diverse biological targets and build predictive models of prototypical toxicity pathways that can aid decision making for assessments of human developmental health and disease. Objective: We mined the ToxCast phase I data set to identify signatures for potential chemical disruption of blood vessel formation and remodeling. Methods: ToxCast phase I screened 309 chemicals using 467 HTS assays across nine assay technology platforms. The assays measured direct interactions between chemicals and molecular targets (receptors, enzymes), as well as downstream effects on reporter gene activity or cellular consequences. We ranked the chemicals according to individual vascular bioactivity score and visualized the ranking using ToxPi (Toxicological Priority Index) profiles. Results: Targets in inflammatory chemokine signaling, the vascular endothelial growth factor pathway, and the plasminogen-activating system were strongly perturbed by some chemicals, and we found positive correlations with developmental effects from the U.S. EPA ToxRefDB (Toxicological Reference Database) in vivo database containing prenatal rat and rabbit guideline studies. We observed distinctly different correlative patterns for chemicals with effects in rabbits versus rats, despite derivation of in vitro signatures based on human cells and cell-free biochemical targets, implying conservation but potentially differential contributions of developmental pathways among species. Follow-up analysis with antiangiogenic thalidomide analogs and additional in vitro vascular targets showed in vitro activity consistent with the most active environmental chemicals tested here. Conclusions: We predicted that blood vessel development is a target for environmental chemicals acting as putative vascular disruptor compounds (pVDCs) and identified potential species differences in sensitive vascular developmental pathways. PMID:21788198

  11. Free radical derivatives formed from cyclooxygenase-catalyzed dihomo-γ-linolenic acid peroxidation can attenuate colon cancer cell growth and enhance 5-fluorouracil's cytotoxicity.

    PubMed

    Xu, Yi; Qi, Jin; Yang, Xiaoyu; Wu, Erxi; Qian, Steven Y

    2014-01-01

    Dihomo-γ-linolenic acid (DGLA) and its downstream fatty acid arachidonic acid (AA) are both nutritionally important ω-6 polyunsaturated fatty acids (ω-6s). Evidence shows that, via COX-mediated peroxidation, DGLA and its metabolites (1-series prostaglandins) are associated with anti-tumor activity, while AA and its metabolites (2-series prostaglandins) could be tightly implicated in various cancer diseases. However, it still remains a mystery why DGLA and AA possess contrasting bioactivities. Our previous studies showed that DGLA could go through an exclusive C-8 oxygenation pathway during COX-catalyzed lipid peroxidation in addition to a C-15 oxygenation pathway shared by both DGLA and AA, and that the exclusive C-8 oxygenation could lead to the production of distinct DGLA׳s free radical derivatives that may be correlated with DGLA׳s anti-proliferation activity. In the present work, we further investigate the anti-cancer effect of DGLA׳s free radical derivatives and their associated molecular mechanisms. Our study shows that the exclusive DGLA׳s free radical derivatives from C-8 oxygenation lead to cell growth inhibition, cell cycle arrest and apoptosis in the human colon cancer cell line HCA-7 colony 29, probably by up-regulating the cancer suppressor p53 and the cell cycle inhibitor p27. In addition, these exclusive radical derivatives were also able to enhance the efficacy of 5-Fluorouracil (5-FU), a widely used chemo-drug for colon cancer. For the first time, we show how DGLA׳s radical pathway and metabolites are associated with DGLA׳s anti-cancer activities and able to sensitize colon cancer cells to chemo-drugs such as 5-FU. Our findings could be used to guide future development of a combined chemotherapy and dietary care strategy for colon cancer treatment.

  12. Functional redundancy in the control of seedling growth by the karrikin signaling pathway.

    PubMed

    Stanga, John P; Morffy, Nicholas; Nelson, David C

    2016-06-01

    SMAX1 and SMXL2 control seedling growth, demonstrating functional redundancy within a gene family that mediates karrikin and strigolactone responses. Strigolactones (SLs) are plant hormones with butenolide moieties that control diverse aspects of plant growth, including shoot branching. Karrikins (KARs) are butenolide molecules found in smoke that enhance seed germination and seedling photomorphogenesis. In Arabidopsis thaliana, SLs and KARs signal through the α/β hydrolases D14 and KAI2, respectively. The F-box protein MAX2 is essential for both signaling pathways. SUPPRESSOR OF MAX2 1 (SMAX1) plays a prominent role in KAR-regulated growth downstream of MAX2, and SMAX1-LIKE genes SMXL6, SMXL7, and SMXL8 mediate SL responses. We previously found that smax1 loss-of-function mutants display constitutive KAR response phenotypes, including reduced seed dormancy and hypersensitive growth responses to light in seedlings. However, smax1 seedlings remain slightly responsive to KARs, suggesting that there is functional redundancy in karrikin signaling. SMXL2 is a strong candidate for this redundancy because it is the closest paralog of SMAX1, and because its expression is regulated by KAR signaling. Here, we present evidence that SMXL2 controls hypocotyl growth and expression of the KAR/SL transcriptional markers KUF1, IAA1, and DLK2 redundantly with SMAX1. Hypocotyl growth in the smax1 smxl2 double mutant is insensitive to KAR and SL, and etiolated smax1 smxl2 seedlings have reduced hypocotyl elongation. However, smxl2 has little or no effect on seed germination, leaf shape, or petiole orientation, which appear to be predominantly controlled by SMAX1. Neither SMAX1 nor SMXL2 affect axillary branching or inflorescence height, traits that are under SL control. These data support the model that karrikin and strigolactone responses are mediated by distinct subclades of the SMXL family, and further the case for parallel butenolide signaling pathways that evolved through ancient KAI2 and SMXL duplications.

  13. Effects of novel muscarinic M3 receptor ligand C1213 in pulmonary arterial hypertension models.

    PubMed

    Ahmed, Mohamed; VanPatten, Sonya; Lakshminrusimha, Satyan; Patel, Hardik; Coleman, Thomas R; Al-Abed, Yousef

    2016-12-01

    Pulmonary hypertension (PH) is a complex disease comprising a pathologic remodeling and thickening of the pulmonary vessels causing an after load on the right heart ventricle that can result in ventricular failure. Triggered by oxidative stress, episodes of hypoxia, and other undetermined causes, PH is associated with poor outcomes and a high rate of morbidity. In the neonate, this disease has a similar etiology but is further complicated by the transition to breathing after birth, which requires a reduction in vascular resistance. Persistent pulmonary hypertension of the newborn (PPHN) is one form of PH that is frequently unresponsive to current therapies including inhaled nitric oxide (due to lack of proper absorption and diffusion), and other therapeutics targeting signaling mediators in vascular endothelium and smooth muscle. The need for novel agents, which target distinct pathways in pulmonary hypertension, remains. Herein, we investigated the therapeutic effects of novel muscarinic receptor ligand C1213 in models of PH We demonstrated that via M3 muscarinic receptors, C1213 induced activating- eNOS phosphorylation (serine-1177), which is known to lead to nitric oxide (NO) production in endothelial cells. Using signaling pathway inhibitors, we discovered that AKT and calcium signaling contributed to eNOS phosphorylation induced by C1213. As expected for an eNOS-stimulating agent, in ex vivo and in vivo models, C1213 triggered pulmonary vasodilation and induced both pulmonary artery and systemic blood pressure reductions demonstrating its potential value in PH and PPHN In brief, this proof-of-concept study provides evidence that an M3 muscarinic receptor functionally selective ligand stimulates downstream pathways leading to antihypertensive effects using in vitro, ex vivo, and in vivo models of PH. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. IκB kinaseα/β control biliary homeostasis and hepatocarcinogenesis in mice by phosphorylating the cell-death mediator receptor-interacting protein kinase 1.

    PubMed

    Koppe, Christiane; Verheugd, Patricia; Gautheron, Jérémie; Reisinger, Florian; Kreggenwinkel, Karina; Roderburg, Christoph; Quagliata, Luca; Terracciano, Luigi; Gassler, Nikolaus; Tolba, René H; Boege, Yannick; Weber, Achim; Karin, Michael; Luedde, Mark; Neumann, Ulf P; Weiskirchen, Ralf; Tacke, Frank; Vucur, Mihael; Trautwein, Christian; Lüscher, Bernhard; Preisinger, Christian; Heikenwalder, Mathias; Luedde, Tom

    2016-10-01

    The IκB-Kinase (IKK) complex-consisting of the catalytic subunits, IKKα and IKKβ, as well as the regulatory subunit, NEMO-mediates activation of the nuclear factor κB (NF-κB) pathway, but previous studies suggested the existence of NF-κB-independent functions of IKK subunits with potential impact on liver physiology and disease. Programmed cell death is a crucial factor in the progression of liver diseases, and receptor-interacting kinases (RIPKs) exerts strategic control over multiple pathways involved in regulating novel programmed cell-death pathways and inflammation. We hypothesized that RIPKs might be unrecognized targets of the catalytic IKK-complex subunits, thereby regulating hepatocarcinogenesis and cholestasis. In this present study, mice with specific genetic inhibition of catalytic IKK activity in liver parenchymal cells (LPCs; IKKα/β(LPC-KO) ) were intercrossed with RIPK1(LPC-KO) or RIPK3(-/-) mice to examine whether RIPK1 or RIPK3 might be downstream targets of IKKs. Moreover, we performed in vivo phospho-proteome analyses and in vitro kinase assays, mass spectrometry, and mutagenesis experiments. These analyses revealed that IKKα and IKKβ-in addition to their known function in NF-κB activation-directly phosphorylate RIPK1 at distinct regions of the protein, thereby regulating cell viability. Loss of this IKKα/β-dependent RIPK1 phosphorylation in LPCs inhibits compensatory proliferation of hepatocytes and intrahepatic biliary cells, thus impeding HCC development, but promoting biliary cell paucity and lethal cholestasis. IKK-complex subunits transmit a previously unrecognized signal through RIPK1, which is fundamental for the long-term consequences of chronic hepatic inflammation and might have potential implications for future pharmacological strategies against cholestatic liver disease and cancer. (Hepatology 2016;64:1217-1231). © 2016 by the American Association for the Study of Liver Diseases.

  15. The root transcriptome for North American ginseng assembled and profiled across seasonal development

    PubMed Central

    2013-01-01

    Background Ginseng including North American ginseng (Panax quinquefolius L.) is one of the most widely used medicinal plants. Its success is thought to be due to a diverse collection of ginsenosides that serve as its major bioactive compounds. However, few genomic resources exist and the details concerning its various biosynthetic pathways remain poorly understood. As the root is the primary tissue harvested commercially for ginsenosides, next generation sequencing was applied to the characterization and assembly of the root transcriptome throughout seasonal development. Transcripts showing homology to ginsenoside biosynthesis enzymes were profiled in greater detail. Results RNA extracts from root samples from seven development stages of North American ginseng were subjected to 454 sequencing, filtered for quality and used in the de novo assembly of a collective root reference transcriptome consisting of 41,623 transcripts. Annotation efforts using a number of public databases resulted in detailed annotation information for 34,801 (84%) transcripts. In addition, 3,955 genes were assigned to metabolic pathways using the Kyoto Encyclopedia of Genes and Genomes. Among our results, we found all of the known enzymes involved in the ginsenoside backbone biosynthesis and used co-expression analysis to identify a number of candidate sequences involved in the latter stages ginsenoside biosynthesis pathway. Transcript profiles suggest ginsenoside biosynthesis occurs at distinct stages of development. Conclusions The assembly generated provides a comprehensive annotated reference for future transcriptomic study of North American ginseng. A collection of putative ginsenoside biosynthesis genes were identified and candidate genes predicted from the lesser understood downstream stages of biosynthesis. Transcript expression profiles across seasonal development suggest a primary dammarane-type ginsenoside biosynthesis occurs just prior to plant senescence, with secondary ginsenoside production occurring throughout development. Data from the study provide a valuable resource for conducting future ginsenoside biosynthesis research in this important medicinal plant. PMID:23957709

  16. Sphingomonas wittichii Strain RW1 Genome-Wide Gene Expression Shifts in Response to Dioxins and Clay

    PubMed Central

    Tsoi, Tamara V.; Iwai, Shoko; Liu, Cun; Fish, Jordan A.; Gu, Cheng; Johnson, Timothy A.; Zylstra, Gerben; Teppen, Brian J.; Li, Hui; Hashsham, Syed A.; Boyd, Stephen A.; Cole, James R.; Tiedje, James M.

    2016-01-01

    Sphingomonas wittichii strain RW1 (RW1) is one of the few strains that can grow on dibenzo-p-dioxin (DD). We conducted a transcriptomic study of RW1 using RNA-Seq to outline transcriptional responses to DD, dibenzofuran (DF), and the smectite clay mineral saponite with succinate as carbon source. The ability to grow on DD is rare compared to growth on the chemically similar DF even though the same initial dioxygenase may be involved in oxidation of both substrates. Therefore, we hypothesized the reason for this lies beyond catabolic pathways and may concern genes involved in processes for cell-substrate interactions such as substrate recognition, transport, and detoxification. Compared to succinate (SUC) as control carbon source, DF caused over 240 protein-coding genes to be differentially expressed, whereas more than 300 were differentially expressed with DD. Stress response genes were up-regulated in response to both DD and DF. This effect was stronger with DD than DF, suggesting a higher toxicity of DD compared to DF. Both DD and DF caused changes in expression of genes involved in active cross-membrane transport such as TonB-dependent receptor proteins, but the patterns of change differed between the two substrates. Multiple transcription factor genes also displayed expression patterns distinct to DD and DF growth. DD and DF induced the catechol ortho- and the salicylate/gentisate pathways, respectively. Both DD and DF induced the shared down-stream aliphatic intermediate compound pathway. Clay caused category-wide down-regulation of genes for cell motility and chemotaxis, particularly those involved in the synthesis, assembly and functioning of flagella. This is an environmentally important finding because clay is a major component of soil microbes’ microenvironment influencing local chemistry and may serve as a geosorbent for toxic pollutants. Similar to clay, DD and DF also affected expression of genes involved in motility and chemotaxis. PMID:27309357

  17. The ventromedial hypothalamus mediates predator fear memory

    PubMed Central

    Silva, Bianca A.; Mattucci, Camilla; Kryzwkowski, Piotr; Cuozzo, Rachel; Carbonari, Laura; Gross, Cornelius T.

    2016-01-01

    The amygdala has been shown to be essential for the processing of acute and learned fear across animal species. However, the downstream neural circuits that mediate these fear responses differ depending on the nature of the threat, with separate pathways identified for predator, conspecific, and physically harmful threats. In particular, the dorsomedial part of the ventromedial hypothalamus (VHMdm) is critical for the expression of defensive responses to predator. Here, we tested the hypothesis that this circuit also participates in predator fear memory by transient pharmacogenetic inhibition of VMHdm and its downstream effector, the dorsal periaqueductal grey, during predator fear learning in the mouse. Our data demonstrate that neural activity in VMHdm is required for both the acquisition and recall of predator fear memory, while that of its downstream effector, the dorsal periaqueductal grey, is required only for the acute expression of fear. These findings are consistent with a role for the medial hypothalamus in encoding an internal emotional state of fear. PMID:26991018

  18. Toll-like receptors and intestinal defence: molecular basis and therapeutic implications.

    PubMed

    Cario, Elke

    2003-07-07

    Toll-like receptors (TLRs) play a principle role in distinct pathogen recognition and in the initiation of innate immune responses of the intestinal mucosa. Activated innate immunity interconnects downstream with adaptive immunity in complex feedback regulatory loops. Intestinal disease might result from inappropriate activation of the mucosal immune system driven by TLRs in response to normal luminal flora.

  19. Upstream/downstream: Issues in environmental ethics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, D.

    1991-01-01

    Upstream/Downstream reminds us that there are four issues that are more or less distinctive to environmental ethics. First, and most distinctively, environmental issues involve the standing of nonhuman living things and systems. Thus, environmental politics is only partly a clash among the interest of the parties involved; it often involves actions on behalf of the existence rights of nonhuman life forms. Second, environmental ethics concern the intergenerational distribution of benefits more explicitly than do most other ethical issues, which brings out serious weaknesses in legal frameworks that rely on claims for damages. Third, the complexity and indirectness of many environmentalmore » impacts introduces a high degree of uncertainty and thus technical as well as ethical issues of prudent behavior. Specifically, where science may not fully reveal environmental risks, should development proceed; should analysis proceed if it is known to have a Pollyanna bias Fourth, insofar as environmental damage is typically done to common property, and thus its regulation is generally a matter for governmental regulation, the obligations of private actors to make sacrifices beyond what government requires is at issue - an issue that one would expect to be taken up at length in the other volumes.« less

  20. Spatial organization of the gastrointestinal microbiota in urban Canada geese

    USGS Publications Warehouse

    Drovetski, Sergei V.; O'Mahoney, Michael; Ransome, Emma J.; Matterson, Kenan O.; Lim, Haw Chuan; Chesser, Terry; Graves, Gary R.

    2018-01-01

    Recent reviews identified the reliance on fecal or cloacal samples as a significant limitation hindering our understanding of the avian gastrointestinal (gut) microbiota and its function. We investigated the microbiota of the esophagus, duodenum, cecum, and colon of a wild urban population of Canada goose (Branta canadensis). From a population sample of 30 individuals, we sequenced the V4 region of the 16S SSU rRNA on an Illumina MiSeq and obtained 8,628,751 sequences with a median of 76,529 per sample. These sequences were assigned to 420 bacterial OTUs and a single archaeon. Firmicutes, Proteobacteria, and Bacteroidetes accounted for 90% of all sequences. Microbiotas from the four gut regions differed significantly in their richness, composition, and variability among individuals. Microbial communities of the esophagus were the most distinctive whereas those of the colon were the least distinctive, reflecting the physical downstream mixing of regional microbiotas. The downstream mixing of regional microbiotas was also responsible for the majority of observed co-occurrence patterns among microbial families. Our results indicate that fecal and cloacal samples inadequately represent the complex patterns of richness, composition, and variability of the gut microbiota and obscure patterns of co-occurrence of microbial lineages.

  1. Proprioceptor pathway development is dependent on Math1

    NASA Technical Reports Server (NTRS)

    Bermingham, N. A.; Hassan, B. A.; Wang, V. Y.; Fernandez, M.; Banfi, S.; Bellen, H. J.; Fritzsch, B.; Zoghbi, H. Y.

    2001-01-01

    The proprioceptive system provides continuous positional information on the limbs and body to the thalamus, cortex, pontine nucleus, and cerebellum. We showed previously that the basic helix-loop-helix transcription factor Math1 is essential for the development of certain components of the proprioceptive pathway, including inner-ear hair cells, cerebellar granule neurons, and the pontine nuclei. Here, we demonstrate that Math1 null embryos lack the D1 interneurons and that these interneurons give rise to a subset of proprioceptor interneurons and the spinocerebellar and cuneocerebellar tracts. We also identify three downstream genes of Math1 (Lh2A, Lh2B, and Barhl1) and establish that Math1 governs the development of multiple components of the proprioceptive pathway.

  2. Linear effects models of signaling pathways from combinatorial perturbation data

    PubMed Central

    Szczurek, Ewa; Beerenwinkel, Niko

    2016-01-01

    Motivation: Perturbations constitute the central means to study signaling pathways. Interrupting components of the pathway and analyzing observed effects of those interruptions can give insight into unknown connections within the signaling pathway itself, as well as the link from the pathway to the effects. Different pathway components may have different individual contributions to the measured perturbation effects, such as gene expression changes. Those effects will be observed in combination when the pathway components are perturbed. Extant approaches focus either on the reconstruction of pathway structure or on resolving how the pathway components control the downstream effects. Results: Here, we propose a linear effects model, which can be applied to solve both these problems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of learning the pathway structure as well as estimation of the individual contributions of pathway components to the perturbation effects. The practical utility of our approach is illustrated by an application to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces cerevisiae. Availability and Implementation: lem is available as a R package at http://www.mimuw.edu.pl/∼szczurek/lem. Contact: szczurek@mimuw.edu.pl; niko.beerenwinkel@bsse.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307630

  3. Linear effects models of signaling pathways from combinatorial perturbation data.

    PubMed

    Szczurek, Ewa; Beerenwinkel, Niko

    2016-06-15

    Perturbations constitute the central means to study signaling pathways. Interrupting components of the pathway and analyzing observed effects of those interruptions can give insight into unknown connections within the signaling pathway itself, as well as the link from the pathway to the effects. Different pathway components may have different individual contributions to the measured perturbation effects, such as gene expression changes. Those effects will be observed in combination when the pathway components are perturbed. Extant approaches focus either on the reconstruction of pathway structure or on resolving how the pathway components control the downstream effects. Here, we propose a linear effects model, which can be applied to solve both these problems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of learning the pathway structure as well as estimation of the individual contributions of pathway components to the perturbation effects. The practical utility of our approach is illustrated by an application to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces cerevisiaeAvailability and Implementation: lem is available as a R package at http://www.mimuw.edu.pl/∼szczurek/lem szczurek@mimuw.edu.pl; niko.beerenwinkel@bsse.ethz.ch Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  4. Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response

    PubMed Central

    McCubrey, James A.; Steelman, Linda S.; Chappell, William H.; Abrams, Stephen L.; Montalto, Giuseppe; Cervello, Melchiorre; Nicoletti, Ferdinando; Fagone, Paolo; Malaponte, Grazia; Mazzarino, Maria C.; Candido, Saverio; Libra, Massimo; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Cocco, Lucio; Evangelisti, Camilla; Chiarini, Francesca; Martelli, Alberto M.

    2012-01-01

    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors. PMID:23006971

  5. The history and regulatory mechanism of the Hippo pathway

    PubMed Central

    Kim, Wantae; Jho, Eek-hoon

    2018-01-01

    How the organ size is adjusted to the proper size during development and how organs know that they reach the original size during regeneration remain long-standing questions. Based on studies using multiple model organisms and approaches for over 20 years, a consensus has been established that the Hippo pathway plays crucial roles in controlling organ size and maintaining tissue homeostasis. Given the significance of these processes, the dysregulation of the Hippo pathway has also implicated various diseases, such as tissue degeneration and cancer. By regulating the downstream transcriptional coactivators YAP and TAZ, the Hippo pathway coordinates cell proliferation and apoptosis in response to a variety of signals including cell contact inhibition, polarity, mechanical sensation and soluble factors. Since the core components and their functions of the Hippo pathway are evolutionarily conserved, this pathway serves as a global regulator of organ size control. Therefore, further investigation of the regulatory mechanisms will provide physiological insights to better understand tissue homeostasis. In this review, the historical developments and current understandings of the regulatory mechanism of Hippo signaling pathway are discussed. PMID:29397869

  6. Genetic diversity among the Eurytemora affinis species complex in the Scheldt estuary and its tributaries using ISSR-PCR marker assay

    NASA Astrophysics Data System (ADS)

    Gasmi, S.; Ferval, M.; Pelissier, C.; D'Amico, F.; Maris, T.; Tackx, M.; Legal, L.

    2014-05-01

    As an estuary being restored, the Scheldt (Belgium/The Netherlands) offers an interesting setting to study the response of organisms and ecosystems to changing conditions. This study specifically deals with this with regard to the spatio-temporal distribution and possible genetic differentiation among the species complex Eurytemora affinis (copepoda, calanoida). Until the 1990s, E. affinis typically occurred downstream the Scheldt estuary (Belgium/The Netherlands). In parallel to water quality improvement, E.affinis has recently also occurred upstream the estuary and in some of the tributaries. This paper aims to assess the origin of the copepod sibling species complex E. affinis occurring upstream the Scheldt estuary through genetic characterization. Using the Inter Simple Sequence Repeat (ISSR) technique, we explored genetic pools of the E. affinis complex in three Scheldt localities (downstream, middle-estuary and upstream) and two of its tributaries. Four ISSR primers produced 75 polymorphic loci. Bayesian and hierarchical analysis revealed different but close genetic entities in both down and upstream localities. The middle-estuary individuals were genetically a composite mix of downstream and upstream populations (84% from downstream and 16% from upstream). A distinctive separation of the tributaries and the main Scheldt stream populations suggests that two fully independent genetic pools are present. It is of note that the tributaries showed a lack of genetic subdivision, that upstream and downstream E. affinis populations are closely related, and that the downstream population is most likely at the origin of the upstream one, which implies the necessity to guarantee sufficient oxygen concentration levels throughout the estuarine continuum to guarantee the presence of this species upstream. The results of the ISSR technique are discussed in comparison with genetic studies on E. affinis using COI barcoding.

  7. Comparison of Perturbed Pathways in Two Different Cell Models for Parkinson's Disease with Structural Equation Model.

    PubMed

    Pepe, Daniele; Do, Jin Hwan

    2015-12-16

    Increasing evidence indicates that different morphological types of cell death coexist in the brain of patients with Parkinson's disease (PD), but the molecular explanation for this is still under investigation. In this study, we identified perturbed pathways in two different cell models for PD through the following procedures: (1) enrichment pathway analysis with differentially expressed genes and the Reactome pathway database, and (2) construction of the shortest path model for the enriched pathway and detection of significant shortest path model with fitting time-course microarray data of each PD cell model to structural equation model. Two PD cell models constructed by the same neurotoxin showed different perturbed pathways. That is, one showed perturbation of three Reactome pathways, including cellular senescence, chromatin modifying enzymes, and chromatin organization, while six modules within metabolism pathway represented perturbation in the other. This suggests that the activation of common upstream cell death pathways in PD may result in various down-stream processes, which might be associated with different morphological types of cell death. In addition, our results might provide molecular clues for coexistence of different morphological types of cell death in PD patients.

  8. Dietary Intake of Pterostilbene, a Constituent of Blueberries, Inhibits the B-catenin/p65 Downstream Signaling Pathway and Colon Carcinogenesis in Rats

    USDA-ARS?s Scientific Manuscript database

    Stilbenes are phytochemicals present in grapes, berries, peanuts and red wine. A widely studied stilbene, resveratrol (trans-3,5,4’-trihydroxystilbene), has been shown to exert antioxidant, anti-inflammatory, chemopreventive, and anti-aging effects in a number of biological systems. We reported earl...

  9. Identification of a 3-hydroxy-3-methylglutaryl-CoA reductase gene highly expressed in the root tissue of Taraxacum kok-saghyz

    USDA-ARS?s Scientific Manuscript database

    Kazak dandelion (Taraxacum kok-saghyz, Tk) is a rubber-producing plant currently being investigated as a source of natural rubber for industrial applications. Like many other isoprenoids, rubber is a downstream product of the mevalonate pathway. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) en...

  10. Neomorphic Mutations in PIK3R1 Confer Sensitivity to MAPK Inhibitors due to Activation of ERK and JNK Pathways | Office of Cancer Genomics

    Cancer.gov

    In a recent publication in Cancer Cell, CTD2 investigators discovered that a known cancer-associated gain-of-function alteration in phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) results in novel protein activity that confers sensitivity to mitogen-activated protein kinase (MAPK) inhibitors. The PIK3R1 gene encodes the p85α regulatory subunit of PIK3. Under normal conditions, p85α suppresses PIK3 mediated activation of downstream pathways that promote cell growth and survival.

  11. Transcription co-activator SAYP mediates the action of STAT activator

    PubMed Central

    Panov, Vladislav V.; Kuzmina, Julia L.; Doronin, Semen A.; Kopantseva, Marina R.; Nabirochkina, Elena N.; Georgieva, Sofia G.; Vorobyeva, Nadezhda E.; Shidlovskii, Yulii V.

    2012-01-01

    Jak/STAT is an important signaling pathway mediating multiple events in development. We describe participation of metazoan co-activator SAYP/PHF10 in this pathway downstream of STAT. The latter, via its activation domain, interacts with the conserved core of SAYP. STAT is associated with the SAYP-containing co-activator complex BTFly and recruits BTFly onto genes. SAYP is necessary for stimulating STAT-driven transcription of numerous genes. Mutation of SAYP leads to maldevelopments similar to those observed in STAT mutants. Thus, SAYP is a novel co-activator mediating the action of STAT. PMID:22123744

  12. A Distinct and Parallel Pathway for the Nuclear Import of an mRNA-binding Protein

    PubMed Central

    Pemberton, Lucy F.; Rosenblum, Jonathan S.; Blobel, Günter

    1997-01-01

    Three independent pathways of nuclear import have so far been identified in yeast, each mediated by cognate nuclear transport factors, or karyopherins. Here we have characterized a new pathway to the nucleus, mediated by Mtr10p, a protein first identified in a screen for strains defective in polyadenylated RNA export. Mtr10p is shown to be responsible for the nuclear import of the shuttling mRNA-binding protein Npl3p. A complex of Mtr10p and Npl3p was detected in cytosol, and deletion of Mtr10p was shown to lead to the mislocalization of nuclear Npl3p to the cytoplasm, correlating with a block in import. Mtr10p bound peptide repeat-containing nucleoporins and Ran, suggesting that this import pathway involves a docking step at the nuclear pore complex and is Ran dependent. This pathway of Npl3p import is distinct and does not appear to overlap with another known import pathway for an mRNA-binding protein. Thus, at least two parallel pathways function in the import of mRNA-binding proteins, suggesting the need for the coordination of these pathways. PMID:9412460

  13. Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway

    PubMed Central

    Pattabhi, Sowmya; Wilkins, Courtney R.; Dong, Ran; Knoll, Megan L.; Posakony, Jeffrey; Kaiser, Shari; Mire, Chad E.; Wang, Myra L.; Ireton, Renee C.; Geisbert, Thomas W.; Bedard, Kristin M.; Iadonato, Shawn P.

    2015-01-01

    ABSTRACT The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can selectively activate IRF3 for the purpose of identifying drug-like molecules that can be developed for the treatment of viral infections. Here, we report the discovery of a hydroxyquinoline family of small molecules that can activate IRF3 to promote cellular antiviral responses. These molecules can prophylactically or therapeutically control infection in cell culture by pathogenic RNA viruses, including West Nile virus, dengue virus, hepatitis C virus, influenza A virus, respiratory syncytial virus, Nipah virus, Lassa virus, and Ebola virus. Our study thus identifies a class of small molecules with a novel mechanism to enhance host immune responses for antiviral activity against a variety of RNA viruses that pose a significant health care burden and/or that are known to cause infections with high case fatality rates. PMID:26676770

  14. Experimentally-Derived Fibroblast Gene Signatures Identify Molecular Pathways Associated with Distinct Subsets of Systemic Sclerosis Patients in Three Independent Cohorts

    PubMed Central

    Johnson, Michael E.; Mahoney, J. Matthew; Taroni, Jaclyn; Sargent, Jennifer L.; Marmarelis, Eleni; Wu, Ming-Ru; Varga, John; Hinchcliff, Monique E.; Whitfield, Michael L.

    2015-01-01

    Genome-wide expression profiling in systemic sclerosis (SSc) has identified four ‘intrinsic’ subsets of disease (fibroproliferative, inflammatory, limited, and normal-like), each of which shows deregulation of distinct signaling pathways; however, the full set of pathways contributing to this differential gene expression has not been fully elucidated. Here we examine experimentally derived gene expression signatures in dermal fibroblasts for thirteen different signaling pathways implicated in SSc pathogenesis. These data show distinct and overlapping sets of genes induced by each pathway, allowing for a better understanding of the molecular relationship between profibrotic and immune signaling networks. Pathway-specific gene signatures were analyzed across a compendium of microarray datasets consisting of skin biopsies from three independent cohorts representing 80 SSc patients, 4 morphea, and 26 controls. IFNα signaling showed a strong association with early disease, while TGFβ signaling spanned the fibroproliferative and inflammatory subsets, was associated with worse MRSS, and was higher in lesional than non-lesional skin. The fibroproliferative subset was most strongly associated with PDGF signaling, while the inflammatory subset demonstrated strong activation of innate immune pathways including TLR signaling upstream of NF-κB. The limited and normal-like subsets did not show associations with fibrotic and inflammatory mediators such as TGFβ and TNFα. The normal-like subset showed high expression of genes associated with lipid signaling, which was absent in the inflammatory and limited subsets. Together, these data suggest a model by which IFNα is involved in early disease pathology, and disease severity is associated with active TGFβ signaling. PMID:25607805

  15. Definition of Two Angiogenic Pathways by Distinct α_v Integrins

    NASA Astrophysics Data System (ADS)

    Friedlander, Martin; Brooks, Peter C.; Shaffer, Robert W.; Kincaid, Christine M.; Varner, Judith A.; Cheresh, David A.

    1995-12-01

    Angiogenesis depends on cytokines and vascular cell adhesion events. Two cytokine-dependent pathways of angiogenesis were shown to exist and were defined by their dependency on distinct vascular cell integrins. In vivo angiogenesis in corneal or chorioallantoic membrane models induced by basic fibroblast growth factor or by tumor necrosis factor-α depended on α_vβ_3, whereas angiogenesis initiated by vascular endothelial growth factor, transforming growth factor-α, or phorbol ester depended on α_vβ_5. Antibody to each integrin selectively blocked one of these pathways, and a cyclic peptide antagonist of both integrins blocked angiogenesis stimulated by each cytokine tested. These pathways are further distinguished by their sensitivity to calphostin C, an inhibitor of protein kinase C that blocked angiogenesis potentiated by α_vβ_5 but not by α_vβ_3.

  16. Pathway enrichment analysis approach based on topological structure and updated annotation of pathway.

    PubMed

    Yang, Qian; Wang, Shuyuan; Dai, Enyu; Zhou, Shunheng; Liu, Dianming; Liu, Haizhou; Meng, Qianqian; Jiang, Bin; Jiang, Wei

    2017-08-16

    Pathway enrichment analysis has been widely used to identify cancer risk pathways, and contributes to elucidating the mechanism of tumorigenesis. However, most of the existing approaches use the outdated pathway information and neglect the complex gene interactions in pathway. Here, we first reviewed the existing widely used pathway enrichment analysis approaches briefly, and then, we proposed a novel topology-based pathway enrichment analysis (TPEA) method, which integrated topological properties and global upstream/downstream positions of genes in pathways. We compared TPEA with four widely used pathway enrichment analysis tools, including database for annotation, visualization and integrated discovery (DAVID), gene set enrichment analysis (GSEA), centrality-based pathway enrichment (CePa) and signaling pathway impact analysis (SPIA), through analyzing six gene expression profiles of three tumor types (colorectal cancer, thyroid cancer and endometrial cancer). As a result, we identified several well-known cancer risk pathways that could not be obtained by the existing tools, and the results of TPEA were more stable than that of the other tools in analyzing different data sets of the same cancer. Ultimately, we developed an R package to implement TPEA, which could online update KEGG pathway information and is available at the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/TPEA/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Coordination of receptor signaling in multiple hematopoietic cell lineages by the adaptor protein SLP-76.

    PubMed

    Jordan, Martha S; Koretzky, Gary A

    2010-04-01

    The adaptor protein SLP-76 is expressed in multiple hematopoietic lineages including T cells, platelets, and neutrophils. SLP-76 mediated signaling is dependent on its multiple protein interaction domains, as it creates a scaffold on which key signaling complexes are built. SLP-76 is critical for supporting signaling downstream of both immunoreceptors and integrins. The signaling molecules used both upstream and downstream of SLP-76 are similar among these receptors and across cell types; however, important differences exist. Appreciating how SLP-76 coordinates signal transduction across different cell and receptor types provides insights into the complex interplay of pathways critical for activation of cells of the immune system that are essential for host defense.

  18. Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses.

    PubMed

    Raja, Priya; Jackel, Jamie N; Li, Sizhun; Heard, Isaac M; Bisaro, David M

    2014-03-01

    Arabidopsis encodes five double-stranded RNA binding (DRB) proteins. DRB1 and DRB2 are involved in microRNA (miRNA) biogenesis, while DRB4 functions in cytoplasmic posttranscriptional small interfering RNA (siRNA) pathways. DRB3 and DRB5 are not involved in double-stranded RNA (dsRNA) processing but assist in silencing transcripts targeted by DRB2-associated miRNAs. The goal of this study was to determine which, if any, of the DRB proteins might also participate in a nuclear siRNA pathway that leads to geminivirus genome methylation. Here, we demonstrate that DRB3 functions with Dicer-like 3 (DCL3) and Argonaute 4 (AGO4) in methylation-mediated antiviral defense. Plants employ repressive viral genome methylation as an epigenetic defense against geminiviruses, using an RNA-directed DNA methylation (RdDM) pathway similar to that used to suppress endogenous invasive DNAs such as transposons. Chromatin methylation inhibits virus replication and transcription, and methylation-deficient host plants are hypersusceptible to geminivirus infection. Using a panel of drb mutants, we found that drb3 plants uniquely exhibit a similar hypersensitivity and that viral genome methylation is substantially reduced in drb3 compared to wild-type plants. In addition, like dcl3 and ago4 mutants, drb3 plants fail to recover from infection and cannot accomplish the viral genome hypermethylation that is invariably observed in asymptomatic, recovered tissues. Small RNA analysis, bimolecular fluorescence complementation, and coimmunoprecipitation experiments show that DRB3 acts downstream of siRNA biogenesis and suggest that it associates with DCL3 and AGO4 in distinct subnuclear compartments. These studies reveal that in addition to its previously established role in the miRNA pathway, DRB3 also functions in antiviral RdDM. Plants use RNA-directed DNA methylation (RdDM) as an epigenetic defense against geminiviruses. RNA silencing pathways in Arabidopsis include five double-stranded RNA binding proteins (DRBs) related to Drosophila R2D2 and mammalian TRBP and PACT. While DRB proteins have defined roles in miRNA and cytoplasmic siRNA pathways, a role in nuclear RdDM was elusive. Here, we used the geminivirus system to show that DRB3 is involved in methylation-mediated antiviral defense. Beginning with a panel of Arabidopsis drb mutants, we demonstrated that drb3 plants uniquely show enhanced susceptibility to geminiviruses. Further, like dcl3 and ago4 mutants, drb3 plants fail to hypermethylate the viral genome, a requirement for host recovery. We also show that DRB3 physically interacts with the RdDM pathway components DCL3 and AGO4 in the nucleus. This work highlights the utility of geminiviruses as models for de novo RdDM and places DRB3 protein in this fundamental epigenetic pathway.

  19. Pancreatic Cancer Sensitive to Selective p38 Pathway Inhibition | Center for Cancer Research

    Cancer.gov

    Pancreatic ductal adenocarcinoma (PDAC), the most-common cancer of the pancreas, is an aggressive disease that is estimated by the American Cancer Society to be the fourth leading cause of cancer death in men and women in 2015. Like most solid tumors, PDAC is surrounded by an inflammatory microenvironment containing numerous infiltrating immune cells. These cells are unable to eliminate the tumor and instead create a hospitable environment by providing tumor growth-promoting cytokines, the production of which lies downstream of the kinase p38. Unlike most immune cells, which use the classical pathway to activate p38, T cells employ an alternative p38 pathway that involves phosphorylation of tyrosine 323 (pY323) by the T cell receptor. Jonathan Ashwell, M.D., of CCR’s Laboratory of Immune Cell Biology and his colleagues decided to assess the role of the alternative p38 pathway in pancreatic cancer.

  20. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View

    PubMed Central

    Keegan, Achsah D.; Zamorano, Jose; Keselman, Aleksander; Heller, Nicola M.

    2018-01-01

    In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses. PMID:29868002

Top