Science.gov

Sample records for distinct functional domains

  1. Two distinct domains of protein 4.1 critical for assembly of functional nuclei in vitro.

    PubMed

    Krauss, Sharon Wald; Heald, Rebecca; Lee, Gloria; Nunomura, Wataru; Gimm, J Aura; Mohandas, Narla; Chasis, Joel Anne

    2002-11-15

    Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly.

  2. Molecular dissection of radixin: distinct and interdependent functions of the amino- and carboxy-terminal domains

    PubMed Central

    1995-01-01

    The ERM proteins--ezrin, radixin, and moesin--occur in particular cortical cytoskeletal structures. Several lines of evidence suggest that they interact with both cytoskeletal elements and plasma membrane components. Here we described the properties of full-length and truncated radixin polypeptides expressed in transfected cells. In stable transfectants, exogenous full-length radixin behaves much like endogenous ERM proteins, localizing to the same cortical structures. However, the presence of full-length radixin or its carboxy-terminal domain in cortical structures correlates with greatly diminished staining of endogenous moesin in those structures, suggesting that radixin and moesin compete for a limiting factor required for normal associations in the cell. The results also reveal distinct roles for the amino- and carboxy-terminal domains. At low levels relative to endogenous radixin, the carboxy-terminal polypeptide is associated with most of the correct cortical targets except cleavage furrows. In contrast, the amino-terminal polypeptide is diffusely localized throughout the cell. Low level expression of full-length radixin or either of the truncated polypeptides has no detectable effect on cell physiology. However, high level expression of the carboxy-terminal domain dramatically disrupts normal cytoskeletal structures and functions. At these high levels, the amino-terminal polypeptide does localize to cortical structures, but does not affect the cells. We conclude that the behavior of radixin in cells depends upon activities contributed by separate domains of the protein, but also requires modulating interactions between those domains. PMID:7744951

  3. Replication-coupled chromatin assembly of newly synthesized histones: distinct functions for the histone tail domains.

    PubMed

    Ejlassi-Lassallette, Aïda; Thiriet, Christophe

    2012-02-01

    The maintenance of the genome during replication requires the assembly of nucleosomes with newly synthesized histones. Achieving the deposition of newly synthesized histones in chromatin implies their transport from the cytoplasm to the nucleus at the replication sites. Several lines of evidence have revealed critical functions of the histone tail domains in these conserved cellular processes. In this review, we discuss the role of the amino termini of the nucleosome building blocks, H2A/H2B and H3/H4, in different model systems. The experimental data showed that H2A/H2B tails and H3/H4 tails display distinct functions in nuclear import and chromatin assembly. Furthermore, we describe recent studies exploiting the unique properties of the slime mold, Physarum polycephalum , that have advanced understanding of the function of the highly conserved replication-dependent diacetylation of H4.

  4. Plasmodium alveolins possess distinct but structurally and functionally related multi-repeat domains.

    PubMed

    Al-Khattaf, Fatimah S; Tremp, Annie Z; Dessens, Johannes T

    2015-02-01

    The invasive and motile life stages of malaria parasites (merozoite, ookinete and sporozoite) possess a distinctive cortical structure termed the pellicle. The pellicle is characterised by a double-layered 'inner membrane complex' (IMC) located underneath the plasma membrane, which is supported by a cytoskeletal structure termed the subpellicular network (SPN). The SPN consists of intermediate filaments, whose major constituents include a family of proteins called alveolins. Here, we re-appraise the alveolins in the genus Plasmodium with respect to their repertoire, structure and interrelatedness. Amongst 13 family members identified, we distinguish two domain types that, albeit distinct at the primary structure level, are structurally related and contain tandem repeats with a consensus 12-amino acid periodicity. Analysis in Plasmodium berghei of the most divergent alveolin, PbIMC1d, reveals a zoite-specific expression in ookinetes and a subcellular localisation in the pellicle, consistent with its predicted role as a SPN component. Knockout of PbIMC1d gives rise to a wild-type phenotype with respect to ookinete morphogenesis, tensile strength, gliding motility and infectivity, presenting the first example of apparent functional redundancy amongst alveolin family members.

  5. Identification of two distinct functional domains on vinculin involved in its association with focal contacts

    PubMed Central

    1989-01-01

    We report here on the identification of two distinct functional domains on chicken vinculin molecule, which can, independently, mediate its interaction with focal contacts in living cells. These findings were obtained by immunofluorescent labeling of COS cells transfected with a series of chicken vinculin-specific cDNA constructs derived from clones cVin1 and cVin5 (Bendori, R., D. Salomon, and B. Geiger. 1987. EMBO [Eur. Mol. Biol. Organ.] J. 6:2897-2905). These included a chimeric construct consisting of 5' sequences of cVin1 attached to the complementary 3' region of cVin5, as well as several constructs of either cVin1 or cVin5 from which 3' or 5' sequences were deleted. We show here that the products of both cVin1 and cVin5, and of the cVin1/cVin5 chimera, readily associated with focal contacts in transfected COS cells. Furthermore, 78 and 45 kD NH2-terminal fragments encoded by a deleted cVin1 and the 78-kD COOH-terminal portion of vinculin encoded by cVin5 were capable of binding specifically to focal contact areas. In contrast 3'-deletion mutants prepared from clone cVin5 and a 5'-deletion mutant of cVin1, lacking both NH2- and COOH- terminal sequences, failed to associate with focal contacts in transfected cells. The loss of binding was accompanied by an overall disarray of the microfilament system. These results, together with previous in vitro binding studies, suggest that vinculin contains at least two independent sites for binding to focal contacts; the NH2- terminal domain may contain the talin binding site while the COOH- terminal domain may mediate vinculin-vinculin interaction. Moreover, the disruptive effect of the double-deleted molecule (lacking the two focal-contact binding sites) on the organization of actin suggests that a distinct region involved in the binding of vinculin to the microfilament system is present in the NH2-terminal 45-kD region of the molecule. PMID:2500446

  6. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR.

    PubMed

    Swint-Kruse, Liskin; Larson, Christopher; Pettitt, B Montgomery; Matthews, Kathleen Shive

    2002-04-01

    LacI and PurR are highly homologous proteins. Their functional units are homodimers, with an N-terminal DNA binding domain that comprises the helix-turn-helix (HTH), N-linker, and hinge regions from both monomers. Hinge structural changes are known to occur upon DNA dissociation but are difficult to monitor experimentally. The initial steps of hinge unfolding were therefore examined using molecular dynamics simulations, utilizing a truncated, chimeric protein comprising the LacI HTH/N-linker and PurR hinge. A terminal Gly-Cys-Gly was added to allow "dimerization" through disulfide bond formation. Simulations indicate that differences in LacI and PurR hinge primary sequence affect the quaternary structure of the hinge x hinge' interface. However, these alternate hinge orientations would be sterically restricted by the core domain. These results prompted detailed comparison of recently available DNA-bound structures for LacI and truncated LacI(1-62) with the PurR structure. Examination revealed that different N-linker and hinge contacts to the core domain of the partner monomer (which binds effector molecule) affect the juxtapositions of the HTH, N-linker, and hinge regions in the DNA binding domain. In addition, the two full-length repressors exhibit significant differences in the interactions between the core and the C-linker connection to the DNA binding domain. Both linkers and the hinge have been implicated in the allosteric response of these repressors. Intriguingly, one functional difference between these two proteins is that they exhibit opposite allosteric response to effector. Simulations and observed structural distinctions are correlated with mutational analysis and sequence information from the LacI/GalR family to formulate a mechanism for fine-tuning individual repressor function.

  7. The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold

    PubMed Central

    Zhang, Hua; Zhu, Fan; Yang, Tiandi; Ding, Lei; Zhou, Meixian; Li, Jingzhi; Haslam, Stuart M; Dell, Anne; Erlandsen, Heidi; Wu, Hui

    2014-01-01

    More than 33,000 glycosyltransferases have been identified. Structural studies, however, have only revealed two distinct glycosyltransferase (GT) folds, GT-A and GT-B. Here we report a 1.34 Å resolution X-ray crystallographic structure of a previously uncharacterized “domain of unknown function” 1792 (DUF1792) and show that the domain adopts a new fold and is required for glycosylation of a family of serine-rich repeat streptococcal adhesins. Biochemical studies reveal that the domain is a glucosyltransferase, and it catalyzes the transfer of glucose to the branch point of the hexasaccharide O-linked to the serine-rich repeat of the bacterial adhesin, Fap1 of Streptococcus parasanguinis. DUF1792 homologs from both Gram-positive and Gram-negative bacteria also exhibit the activity. Thus DUF1792 represents a new family of glycosyltransferases, so we designate it as a GT-D glycosyltransferase fold. As the domain is highly conserved in bacteria and not found in eukaryotes, it can be explored as a new antibacterial target. PMID:25023666

  8. CD44 and beta3 integrin organize two functionally distinct actin-based domains in osteoclasts.

    PubMed

    Chabadel, Anne; Bañon-Rodríguez, Inmaculada; Cluet, David; Rudkin, Brian B; Wehrle-Haller, Bernhard; Genot, Elisabeth; Jurdic, Pierre; Anton, Ines M; Saltel, Frédéric

    2007-12-01

    The actin cytoskeleton of mature osteoclasts (OCs) adhering to nonmineralized substrates is organized in a belt of podosomes reminiscent of the sealing zone (SZ) found in bone resorbing OCs. In this study, we demonstrate that the belt is composed of two functionally different actin-based domains: podosome cores linked with CD44, which are involved in cell adhesion, and a diffuse cloud associated with beta3 integrin, which is involved in cell adhesion and contraction. Wiskott Aldrich Syndrome Protein (WASp) Interacting Protein (WIP)-/- OCs were devoid of podosomes, but they still exhibited actin clouds. Indeed, WIP-/- OCs show diminished expression of WASp, which is required for podosome formation. CD44 is a novel marker of OC podosome cores and the first nonintegrin receptor detected in these structures. The importance of CD44 is revealed by showing that its clustering restores podosome cores and WASp expression in WIP-/- OCs. However, although CD44 signals are sufficient to form a SZ, the presence of WIP is indispensable for the formation of a fully functional SZ.

  9. Expression analysis of Arabidopsis XH/XS-domain proteins indicates overlapping and distinct functions for members of this gene family.

    PubMed

    Butt, Haroon; Graner, Sonja; Luschnig, Christian

    2014-03-01

    RNA-directed DNA methylation (RdDM) is essential for de novo DNA methylation in higher plants, and recent reports established novel elements of this silencing pathway in the model organism Arabidopsis thaliana. Involved in de novo DNA methylation 2 (IDN2) and the closely related factor of DNA methylation (FDM) are members of a plant-specific family of dsRNA-binding proteins characterized by conserved XH/XS domains and implicated in the regulation of RdDM at chromatin targets. Genetic analyses have suggested redundant as well as non-overlapping activities for different members of the gene family. However, detailed insights into the function of XH/XS-domain proteins are still elusive. By the generation and analysis of higher-order mutant combinations affected in IDN2 and further members of the gene family, we have provided additional evidence for their redundant activity. Distinct roles for members of the XH/XS-domain gene family were indicated by differences in their expression and subcellular localization. Fluorescent protein-tagged FDM genes were expressed either in nuclei or in the cytoplasm, suggestive of activities of XH/XS-domain proteins in association with chromatin as well as outside the nuclear compartment. In addition, we observed altered location of a functional FDM1-VENUS reporter from the nucleus into the cytoplasm under conditions when availability of further FDM proteins was limited. This is suggestive of a mechanism by which redistribution of XH/XS-domain proteins could compensate for the loss of closely related proteins.

  10. Modulation of elasticity in functionally distinct domains of the tropomyosin coiled-coil

    PubMed Central

    Lakkaraju, Sirish Kaushik; Hwang, Wonmuk

    2009-01-01

    Alpha-helical coiled-coils are common protein structural motifs. Whereas vast information is available regarding their structure, folding, and stability, far less is known about their elastic properties, even though they play mechanical roles in many cases such as tropomyosin in muscle contraction or neck stalks of kinesin or myosin motor proteins. Using computer simulations, we characterized elastic properties of coiled-coils, either globally or locally. Global bending stiffness of standard leucine zipper coiled-coils was calculated using normal mode analysis. Mutations in hydrophobic residues involved in the knob-into-hole interface between the two α-helices affect elasticity significantly, whereas charged side chains forming inter-helical salt bridges do not. This suggests that coiled-coils with less regular heptad periodicity may have regional variations in flexibility. We show this by the flexibility map of tropomyosin, which was constructed by a local fluctuation analysis. Overall, flexibility varies by more than twofold and increases towards the C-terminal region of the molecule. Describing the coiled-coil as a twisted tape, it is generally more flexible in the splay bending than in the bending of the broad face. Actin binding sites in α zones show local rigidity minima. Broken core regions due to acidic residues at the hydrophobic face such as the Asp137 and the Glu218 are found to be the most labile with moduli for splay and broad face bending as 70 nm and 116 nm respectively. Such variation in flexibility could be relevant to the tropomyosin function, especially for moving across the non-uniform surface of F-actin to regulate myosin binding. PMID:19830262

  11. Distinction of magnetic non-ferroelastic domains.

    PubMed

    Litvin, D B; Janovec, V

    2006-03-01

    It is shown that there always exists a coordinate system in which components of property tensors that distinguish between the domains of a magnetic non-ferroelastic domain pair differ solely in the two domains by a change in sign. The 309 classes of twin laws of magnetic non-ferroelastic domain pairs are listed and the twin laws, which are given in a coordinate system where the tensor distinction is provided by a change in sign of tensor components, are specified. If the twin law is not given in such a coordinate system, then a new coordinate system, related by a rotation, is specified. PMID:16489246

  12. Cell fate decisions in malignant hematopoiesis: leukemia phenotype is determined by distinct functional domains of the MN1 oncogene.

    PubMed

    Lai, Courteney K; Moon, Yeonsook; Kuchenbauer, Florian; Starzcynowski, Daniel T; Argiropoulos, Bob; Yung, Eric; Beer, Philip; Schwarzer, Adrian; Sharma, Amit; Park, Gyeongsin; Leung, Malina; Lin, Grace; Vollett, Sarah; Fung, Stephen; Eaves, Connie J; Karsan, Aly; Weng, Andrew P; Humphries, R Keith; Heuser, Michael

    2014-01-01

    Extensive molecular profiling of leukemias and preleukemic diseases has revealed that distinct clinical entities, like acute myeloid (AML) and T-lymphoblastic leukemia (T-ALL), share similar pathogenetic mutations. It is not well understood how the cell of origin, accompanying mutations, extracellular signals or structural differences in a mutated gene determine the phenotypic identity of leukemias. We dissected the functional aspects of different protein regions of the MN1 oncogene and their effect on the leukemic phenotype, building on the ability of MN1 to induce leukemia without accompanying mutations. We found that the most C-terminal region of MN1 was required to block myeloid differentiation at an early stage, and deletion of an extended C-terminal region resulted in loss of myeloid identity and cell differentiation along the T-cell lineage in vivo. Megakaryocytic/erythroid lineage differentiation was blocked by the N-terminal region. In addition, the N-terminus was required for proliferation and leukemogenesis in vitro and in vivo through upregulation of HoxA9, HoxA10 and Meis2. Our results provide evidence that a single oncogene can modulate cellular identity of leukemic cells based on its active gene regions. It is therefore likely that different mutations in the same oncogene may impact cell fate decisions and phenotypic appearance of malignant diseases.

  13. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  14. Distinct cytoskeletal domains revealed in sperm cells

    PubMed Central

    1984-01-01

    Antibodies against different cytoskeletal proteins were used to study the cytoskeletal organization of human spermatozoa. A positive staining with actin antibodies was seen in both the acrosomal cap region and the principal piece region of the tail. However, no staining was obtained with nitrobenzoxadiazol-phallacidin, suggesting that most of the actin was in the nonpolymerized form. Most of the myosin immunoreactivity was confirmed to a narrow band in the neck region of spermatozoa. Tubulin was located to the entire tail, whereas vimentin was only seen in a discrete band-like structure encircling the sperm head, apparently coinciding with the equatorial segment region. Surface staining of the spermatozoa with fluorochrome-coupled Helix pomatia agglutinin revealed a similar band-like structure that co-distributed with the vimentin- specific staining. Instead, other lectin conjugates used labeled either the acrosomal cap region (peanut and soybean agglutinins), both the acrosomal cap and the postacrosomal region of the head (concanavalin A), or the whole sperm cell surface membrane (wheat germ and lens culinaris agglutinins and ricinus communis agglutinin l). In lectin blotting experiments, the Helix pomatia agglutinin-binding was assigned to a 80,000-mol-wt polypeptide which, together with vimentin, also resisted treatment with Triton X-100. Only the acrosomal cap and the principal piece of the tail were decorated with rabbit and hydridoma antibodies against an immunoanalogue of erythrocyte alpha-spectrin (p230). p230 appeared to be the major calmodulin-binding polypeptide in spermatozoa, as shown by a direct overlay assay of electrophoretic blots of spermatozoa with 125I-calmodulin. The results indicate that spermatozoa have a highly specialized cytoskeletal organization and that the distribution of actin, spectrin, and vimentin can be correlated with distinct surface specializations of the sperm cells. This suggest that cytoskeleton may regulate the maintenance

  15. Distinct function of COAR and B3 domains of maize VP1 in induction of ectopic gene expression and plant developmental phenotypes in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize VP1 enhancement of ABA sensitivity in roots is B3 independent. ABA and VP1 mediated suppression of auxin induced lateral root development is B3 independent. Arabidopsis transgenic system to delineate B3 dependent and COAR domain dependent regulatory functions of VP1. Analyses of ectopic ABA re...

  16. Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila

    PubMed Central

    2014-01-01

    Background The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. Results Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. Conclusions Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational

  17. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein-protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes.

  18. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    PubMed Central

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein–protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes. PMID:25635869

  19. Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains.

    PubMed

    Fantini, Jacques; Di Scala, Coralie; Baier, Carlos J; Barrantes, Francisco J

    2016-09-01

    The molecular mechanisms that control the multiple possible modes of protein association with membrane cholesterol are remarkably convergent. These mechanisms, which include hydrogen bonding, CH-π stacking and dispersion forces, are used by a wide variety of extracellular proteins (e.g. microbial or amyloid) and membrane receptors. Virus fusion peptides penetrate the membrane of host cells with a tilted orientation that is compatible with a transient interaction with cholesterol; this tilted orientation is also characteristic of the process of insertion of amyloid proteins that subsequently form oligomeric pores in the plasma membrane of brain cells. Membrane receptors that are associated with cholesterol generally display linear consensus binding motifs (CARC and CRAC) characterized by a triad of basic (Lys/Arg), aromatic (Tyr/phe) and aliphatic (Leu/Val) amino acid residues. In some cases, the presence of both CARC and CRAC within the same membrane-spanning domain allows the simultaneous binding of two cholesterol molecules, one in each membrane leaflet. In this review the molecular basis and the functional significance of the different modes of protein-cholesterol interactions in plasma membranes are discussed.

  20. Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study is focused on the characterization and expression of genes in the red flour beetle, Tribolium castaneum, encoding proteins that possess six-cysteine-containing chitin-binding domains (CBDs) related to the peritrophin A domain (ChtBD2). An exhaustive bioinformatics search of the genome of...

  1. Distinct domains of hTAFII100 are required for functional interaction with transcription factor TFIIF beta (RAP30) and incorporation into the TFIID complex.

    PubMed Central

    Dubrovskaya, V; Lavigne, A C; Davidson, I; Acker, J; Staub, A; Tora, L

    1996-01-01

    TFIID is the DNA binding component of the RNA polymerase II transcriptional machinery and is composed of the TATA binding protein (TBP) and TBP-associated factors (TAFIIs). Here we report the characterization of a new human TAF, hTAFII100, which is the human homologue of Drosophila TAFII80 and yeast TAFII90. hTAFII100 interacts strongly with hTAFII250, hTAFII55 and hTAFII28, less with hTAFII20 and hTAFII18, weakly with TBP and not at all with delta NTAFII135 and hTAFII30. Deletion analysis revealed that the C-terminal half of hTAFII100, which contains six WD-40 repeats, is not required for incorporation into the TFIID complex. Our results suggest that hTAFII100 can be divided into two domains, the N-terminal region responsible for interactions within the TFIID complex and the C-terminal WD repeat-containing half responsible for interactions between hTAFII100 and other factors. An anti-hTAFII100 antibody, raised against a C-terminal epitope, selectively inhibited basal TFIID-dependent in vitro transcription and the specific interaction between hTAFII100 and the 30 kDa subunit of TFIIF (RAP30). We demonstrate that the hTAFII100-TFIIF interaction supports pre-initiation complex formation in the presence of TFIID. Thus, this is the first demonstration that a TAFII functionally interacts with a basal transcription factor in vitro. Images PMID:8758937

  2. Genomes with distinct function composition.

    PubMed

    Tamames, J; Ouzounis, C; Sander, C; Valencia, A

    1996-06-24

    The functional composition of organisms can be analysed for the first time with the appearance of complete or sizeable parts of various genomes. We have reduced the problem of protein function classification to a simple scheme with three classes of protein function: energy-, information- and communication-associated proteins. Finer classification schemes can be easily mapped to the above three classes. To deal with the vast amount of information, a system for automatic function classification using database annotations has been developed. The system is able to classify correctly about 80% of the query sequences with annotations. Using this system, we can analyse samples from the genomes of the most represented species in sequence databases and compare their genomic composition. The similarities and differences for different taxonomic groups are strikingly intuitive. Viruses have the highest proportion of proteins involved in the control and expression of genetic information. Bacteria have the highest proportion of their genes dedicated to the production of proteins associated with small molecule transformations and transport. Animals have a very large proportion of proteins associated with intra- and intercellular communication and other regulatory processes. In general, the proportion of communication-related proteins increases during evolution, indicating trends that led to the emergence of the eukaryotic cell and later the transition from unicellular to multicellular organisms. PMID:8682215

  3. STAS Domain Structure and Function

    PubMed Central

    Sharma, Alok K.; Rigby, Alan C.; Alper, Seth L.

    2011-01-01

    Pendrin shares with nearly all SLC26/SulP anion transporters a carboxy-terminal cytoplasmic segment organized around a Sulfate Transporter and Anti-Sigma factor antagonist (STAS) domain. STAS domains of divergent amino acid sequence exhibit a conserved fold of 4 β strands interspersed among 5 α helices. The first STAS domain proteins studied were single-domain anti-sigma factor antagonists (anti-anti-σ). These anti-anti-σ indirectly stimulate bacterial RNA polymerase by inactivating inhibitory anti-σ kinases, liberating σ factors to direct specific transcription of target genes or operons. Some STAS domains are nucleotide-binding phosphoproteins or nucleotidases. Others are interaction/transduction modules within multidomain sensors of light, oxygen and other gasotransmitters, cyclic nucleotides, inositol phosphates, and G proteins. Additional multidomain STAS protein sequences suggest functions in sensing, metabolism, or transport of nutrients such as sugars, amino acids, lipids, anions, vitamins, or hydrocarbons. Still other multidomain STAS polypeptides include histidine and serine/threonine kinase domains and ligand-activated transcription factor domains. SulP/SLC26 STAS domains and adjacent sequences interact with other transporters, cytoskeletal scaffolds, and with enzymes metabolizing transported anion substrates, forming putative metabolons. STAS domains are central to membrane targeting of many SulP/SLC26 anion transporters, and STAS domain mutations are associated with at least three human recessive diseases. This review summarizes STAS domain structure and function. PMID:22116355

  4. Application of modern tensor calculus to engineered domain structures. 2. Tensor distinction of domain states.

    PubMed

    Kopský, Vojtech

    2006-03-01

    The theory of domain states is reviewed as a prerequisite for consideration of tensorial distinction of domain states. It is then shown that the parameters of the first domain in a ferroic phase transition from a set of isomorphic groups of the same oriented Laue class can be systematically and suitably represented in terms of typical variables. On replacing these variables by actual tensor components according to the previous paper, we can reveal the tensorial parameters associated with each particular symmetry descent. Parameters are distinguished by the ireps to which they belong and this can be used to determine which of them are the principal parameters that distinguish all domain states, in contrast to secondary parameters which are common to several domain states. In general, the parameters are expressed as the covariant components of the tensors. A general procedure is described which is designed to transform the results to Cartesian components. It consists of two parts: the first, called the labelling of covariants, and its inverse, called the conversion equations. Transformation of parameters from the first domain state to other states is now reduced to irreducible subspaces whose maximal dimension is three in contrast with higher dimensions of tensor spaces. With this method, we can explicitly calculate tensor parameters for all domain states. To find the distinction of pairs of domain states, it is suitable to use the concept of the twinning group which is briefly described. PMID:16489243

  5. The C-Terminal Region of Lymphocytic Choriomeningitis Virus Nucleoprotein Contains Distinct and Segregable Functional Domains Involved in NP-Z Interaction and Counteraction of the Type I Interferon Response▿

    PubMed Central

    Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin; de la Torre, Juan Carlos; Martínez-Sobrido, Luis

    2011-01-01

    Several arenaviruses cause hemorrhagic fever (HF) disease in humans that is associated with high morbidity and significant mortality. Arenavirus nucleoprotein (NP), the most abundant viral protein in infected cells and virions, encapsidates the viral genome RNA, and this NP-RNA complex, together with the viral L polymerase, forms the viral ribonucleoprotein (vRNP) that directs viral RNA replication and gene transcription. Formation of infectious arenavirus progeny requires packaging of vRNPs into budding particles, a process in which arenavirus matrix-like protein (Z) plays a central role. In the present study, we have characterized the NP-Z interaction for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). The LCMV NP domain that interacted with Z overlapped with a previously documented C-terminal domain that counteracts the host type I interferon (IFN) response. However, we found that single amino acid mutations that affect the anti-IFN function of LCMV NP did not disrupt the NP-Z interaction, suggesting that within the C-terminal region of NP different amino acid residues critically contribute to these two distinct and segregable NP functions. A similar NP-Z interaction was confirmed for the HF arenavirus Lassa virus (LASV). Notably, LCMV NP interacted similarly with both LCMV Z and LASV Z, while LASV NP interacted only with LASV Z. Our results also suggest the presence of a conserved protein domain within NP but with specific amino acid residues playing key roles in determining the specificity of NP-Z interaction that may influence the viability of reassortant arenaviruses. In addition, this NP-Z interaction represents a potential target for the development of antiviral drugs to combat human-pathogenic arenaviruses. PMID:21976642

  6. Functional domain walls in multiferroics

    NASA Astrophysics Data System (ADS)

    Meier, Dennis

    2015-11-01

    During the last decade a wide variety of novel and fascinating correlation phenomena has been discovered at domain walls in multiferroic bulk systems, ranging from unusual electronic conductance to inseparably entangled spin and charge degrees of freedom. The domain walls represent quasi-2D functional objects that can be induced, positioned, and erased on demand, bearing considerable technological potential for future nanoelectronics. Most of the challenges that remain to be solved before turning related device paradigms into reality, however, still fall in the field of fundamental condensed matter physics and materials science. In this topical review seminal experimental findings gained on electric and magnetic domain walls in multiferroic bulk materials are addressed. A special focus is put on the physical properties that emerge at so-called charged domain walls and the added functionality that arises from coexisting magnetic order. The research presented in this review highlights that we are just entering a whole new world of intriguing nanoscale physics that is yet to be explored in all its details. The goal is to draw attention to the persistent challenges and identify future key directions for the research on functional domain walls in multiferroics.

  7. Morphologically and Functionally Distinct Lipid Droplet Subpopulations

    PubMed Central

    Zhang, Shuyan; Wang, Yang; Cui, Liujuan; Deng, Yaqin; Xu, Shimeng; Yu, Jinhai; Cichello, Simon; Serrero, Ginette; Ying, Yunshu; Liu, Pingsheng

    2016-01-01

    Lipid droplet (LD), a multi-functional organelle, is often found to associate with other cellular membranous structures and vary in size in a given cell, which may be related to their functional diversity. Here we established a method to separate LD subpopulations from isolated CHO K2 LDs into three different size categories. The subpopulation with smallest LDs was nearly free of ER and other membranous structures while those with larger LDs contained intact ER. These distinct subpopulations of LDs differed in their protein composition and ability to recruit proteins. This method was also applicable to LDs obtained from other sources, such as Huh7 cells, mouse liver and brown adipose tissue, et al. We developed an in vitro assay requiring only isolated LDs, Coenzyme A, and ATP to drive lipid synthesis. The LD subpopulation nearly depleted of ER was able to incorporate fatty acids into triacylglycerol and phospholipids. Together, our data demonstrate that LDs in a given cell are heterogeneous in size and function, and suggest that LDs are one of cellular lipid synthetic organelles. PMID:27386790

  8. Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals

    PubMed Central

    Ju, Lining; Chen, Yunfeng; Xue, Lingzhou; Du, Xiaoping; Zhu, Cheng

    2016-01-01

    How cells sense their mechanical environment and transduce forces into biochemical signals is a crucial yet unresolved question in mechanobiology. Platelets use receptor glycoprotein Ib (GPIb), specifically its α subunit (GPIbα), to signal as they tether and translocate on von Willebrand factor (VWF) of injured arterial surfaces against blood flow. Force elicits catch bonds to slow VWF–GPIbα dissociation and unfolds the GPIbα leucine-rich repeat domain (LRRD) and juxtamembrane mechanosensitive domain (MSD). How these mechanical processes trigger biochemical signals remains unknown. Here we analyze these extracellular events and the resulting intracellular Ca2+ on a single platelet in real time, revealing that LRRD unfolding intensifies Ca2+ signal whereas MSD unfolding affects the type of Ca2+ signal. Therefore, LRRD and MSD are analog and digital force transducers, respectively. The >30 nm macroglycopeptide separating the two domains transmits force on the VWF–GPIbα bond (whose lifetime is prolonged by LRRD unfolding) to the MSD to enhance its unfolding, resulting in unfolding cooperativity at an optimal force. These elements may provide design principles for a generic mechanosensory protein machine. DOI: http://dx.doi.org/10.7554/eLife.15447.001 PMID:27434669

  9. Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1.

    PubMed Central

    Doranz, B J; Lu, Z H; Rucker, J; Zhang, T Y; Sharron, M; Cen, Y H; Wang, Z X; Guo, H H; Du, J G; Accavitti, M A; Doms, R W; Peiper, S C

    1997-01-01

    The chemokine receptor CCR5 is the major fusion coreceptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). To define the structures of CCR5 that can support envelope (Env)-mediated membrane fusion, we analyzed the activity of homologs, chimeras, and mutants of human CCR5 in a sensitive gene reporter cell-cell fusion assay. Simian, but not murine, homologs of CCR5 were fully active as HIV-1 fusion coreceptors. Chimeras between CCR5 and divergent chemokine receptors demonstrated the existence of two distinct regions of CCR5 that could be utilized for Env-mediated fusion, the amino-terminal domain and the extracellular loops. Dual-tropic Env proteins were particularly sensitive to alterations in the CCR5 amino-terminal domain, suggesting that this domain may play a pivotal role in the evolution of coreceptor usage in vivo. We identified individual residues in both functional regions, Asp-11, Lys-197, and Asp-276, that contribute to coreceptor function. Deletion of a highly conserved cytoplasmic motif rendered CCR5 incapable of signaling but did not abrogate its ability to function as a coreceptor, implying the independence of fusion and G-protein-mediated chemokine receptor signaling. Finally, we developed a novel monoclonal antibody to CCR5 to assist in future studies of CCR5 expression. PMID:9261347

  10. Structurally distinct Arabidopsis thaliana NLR immune receptors recognize tandem WY domains of an oomycete effector.

    PubMed

    Goritschnig, Sandra; Steinbrenner, Adam D; Grunwald, Derrick J; Staskawicz, Brian J

    2016-05-01

    Nucleotide-binding leucine-rich repeat (NB-LRR, or NLR) receptors mediate pathogen recognition. The Arabidopsis thaliana NLR RPP1 recognizes the tandem WY-domain effector ATR1 from the oomycete Hyaloperonospora arabidopsidis through direct association with C-terminal LRRs. We isolated and characterized homologous NLR genes RPP1-EstA and RPP1-ZdrA from two Arabidopsis ecotypes, Estland (Est-1) and Zdarec (Zdr-1), responsible for recognizing a novel spectrum of ATR1 alleles. RPP1-EstA and -ZdrA encode nearly identical NLRs that are phylogenetically distinct from known immunity-activating RPP1 homologs and possess greatly expanded LRR domains. Site-directed mutagenesis and truncation analysis of ATR1 suggests that these homologs recognize a novel surface of the 2(nd) WY domain of ATR1, partially specified by a C-terminal region of the LRR domain. Synteny comparison with RPP1 loci involved in hybrid incompatibility suggests that these functions evolved independently. Closely related RPP1 homologs have diversified their recognition spectra through LRR expansion and sequence variation, allowing them to detect multiple surfaces of the same pathogen effector. Engineering NLR receptor specificity may require a similar combination of repeat expansion and tailored amino acid variation. PMID:26725254

  11. Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning

    NASA Astrophysics Data System (ADS)

    Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.

    2007-12-01

    The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms

  12. Transcriptional activation by the acidic domain of Vmw65 requires the integrity of the domain and involves additional determinants distinct from those necessary for TFIIB binding.

    PubMed Central

    Walker, S; Greaves, R; O'Hare, P

    1993-01-01

    In this work we have examined the requirements for activity of the acidic domain of Vmw65 (VP16) by deletion and site-directed mutagenesis of the region in the context of GAL4 fusion proteins. The results indicate that the present interpretation of what actually constitutes the activation domain is not correct. We demonstrate, using a promoter with one target site which is efficiently activated by the wild-type (wt) fusion protein, that amino acids distal to residue 453 are critical for activity. Truncation of the domain or substitution of residues in the distal region almost completely abrogate activity. However, inactivating mutations within the distal region are complemented by using a promoter containing multiple target sites. Moreover, duplication of the proximal region, but not the distal region, restores the ability to activate a promoter with a single target site. These results indicate some distinct qualitative difference between the proximal and distal regions. We have also examined the binding of nuclear proteins to the wt domain and to a variant with the distal region inactivated by mutation. The lack of activity of this variant is not explained by a lack of binding of TFIIB, a protein previously reported to be the likely target of the acidic domain. Therefore some additional function is involved in transcriptional activation by the acid domain, and determinants distinct from those involved in TFIIB binding are required for this function. Analysis of the total protein profiles binding to the wt and mutant domains has demonstrated the selective binding to the wt domain of a 135-kDa polypeptide, which is therefore a candidate component involved in this additional function. This is the first report to provide evidence for the proposal of a multiplicity of interactions within the acidic domain, by uncoupling requirements for one function from those for another. Images PMID:8395001

  13. Sushi domains confer distinct trafficking profiles on GABAB receptors.

    PubMed

    Hannan, Saad; Wilkins, Megan E; Smart, Trevor G

    2012-07-24

    GABA(B) receptors mediate slow inhibitory neurotransmission in the brain and feature during excitatory synaptic plasticity, as well as various neurological conditions. These receptors are obligate heterodimers composed of GABA(B)R1 and R2 subunits. The two predominant R1 isoforms differ by the presence of two complement control protein modules or Sushi domains (SDs) in the N terminus of R1a. By using live imaging, with an α-bungarotoxin-binding site (BBS) and fluorophore-linked bungarotoxin, we studied how R2 stabilizes R1b subunits at the cell surface. Heterodimerization with R2 reduced the rate of internalization of R1b, compared with R1b homomers. However, R1aR2 heteromers exhibited increased cell surface stability compared with R1bR2 receptors in hippocampal neurons, suggesting that for receptors containing the R1a subunit, the SDs play an additional role in the surface stability of GABA(B) receptors. Both SDs were necessary to increase the stability of R1aR2 because single deletions caused the receptors to be internalized at the same rate and extent as R1bR2 receptors. Consistent with these findings, a chimera formed from the metabotropic glutamate receptor (mGluR)2 and the SDs from R1a increased the surface stability of mGluR2. These results suggest a role for SDs in stabilizing cell surface receptors that could impart different pre- and postsynaptic trafficking itineraries on GABA(B) receptors, thereby contributing to their physiological and pathological roles.

  14. Structural and functional diversity of Topologically Associating Domains.

    PubMed

    Dekker, Job; Heard, Edith

    2015-10-01

    Recent studies have shown that chromosomes in a range of organisms are compartmentalized in different types of chromatin domains. In mammals, chromosomes form compartments that are composed of smaller Topologically Associating Domains (TADs). TADs are thought to represent functional domains of gene regulation but much is still unknown about the mechanisms of their formation and how they exert their regulatory effect on embedded genes. Further, similar domains have been detected in other organisms, including flies, worms, fungi and bacteria. Although in all these cases these domains appear similar as detected by 3C-based methods, their biology appears to be quite distinct with differences in the protein complexes involved in their formation and differences in their internal organization. Here we outline our current understanding of such domains in different organisms and their roles in gene regulation. PMID:26348399

  15. Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis.

    PubMed

    Lee, M M; Schiefelbein, J

    2001-05-01

    The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.

  16. Structure and Function of KH Domains

    SciTech Connect

    Valverde, R.; Regan, E

    2008-01-01

    The hnRNP K homology (KH) domain was first identified in the protein human heterogeneous nuclear ribonucleoprotein K (hnRNP K) 14 years ago. Since then, KH domains have been identified as nucleic acid recognition motifs in proteins that perform a wide range of cellular functions. KH domains bind RNA or ssDNA, and are found in proteins associated with transcriptional and translational regulation, along with other cellular processes. Several diseases, e.g. fragile X mental retardation syndrome and paraneoplastic disease, are associated with the loss of function of a particular KH domain. Here we discuss the progress made towards understanding both general and specific features of the molecular recognition of nucleic acids by KH domains. The typical binding surface of KH domains is a cleft that is versatile but that can typically accommodate only four unpaired bases. Van der Waals forces and hydrophobic interactions and, to a lesser extent, electrostatic interactions, contribute to the nucleic acid binding affinity. 'Augmented' KH domains or multiple copies of KH domains within a protein are two strategies that are used to achieve greater affinity and specificity of nucleic acid binding. Isolated KH domains have been seen to crystallize as monomers, dimers and tetramers, but no published data support the formation of noncovalent higher-order oligomers by KH domains in solution. Much attention has been given in the literature to a conserved hydrophobic residue (typically Ile or Leu) that is present in most KH domains. The interest derives from the observation that an individual with this Ile mutated to Asn, in the KH2 domain of fragile X mental retardation protein, exhibits a particularly severe form of the syndrome. The structural effects of this mutation in the fragile X mental retardation protein KH2 domain have recently been reported. We discuss the use of analogous point mutations at this position in other KH domains to dissect both structure and function.

  17. The Capping Domain in RalF Regulates Effector Functions

    PubMed Central

    Alix, Eric; Chesnel, Laurent; Bowzard, Brad J.; Tucker, Aimee M.; Delprato, Anna; Cherfils, Jacqueline; Wood, David O.; Kahn, Richard A.; Roy, Craig R.

    2012-01-01

    The Legionella pneumophila effector protein RalF functions as a guanine nucleotide exchange factor (GEF) that activates the host small GTPase protein ADP-ribosylation factor (Arf), and recruits this host protein to the vacuoles in which this pathogen resides. GEF activity is conferred by the Sec7 domain located in the N-terminal region of RalF. Structural studies indicate that the C-terminal region of RalF makes contacts with residues in the Sec7 domain important for Arf interactions. Theoretically, the C-terminal region of RalF could prevent nucleotide exchange activity by blocking the ability of Arf to interact with the Sec7 domain. For this reason, the C-terminal region of RalF has been termed a capping domain. Here, the role of the RalF capping domain was investigated by comparing biochemical and effector activities mediated by this domain in both the Legionella RalF protein (LpRalF) and in a RalF ortholog isolated from the unrelated intracellular pathogen Rickettsia prowazekii (RpRalF). These data indicate that both RalF proteins contain a functional Sec7 domain and that the capping domain regulates RalF GEF activity. The capping domain has intrinsic determinants that mediate localization of the RalF protein inside of host cells and confer distinct effector activities. Localization mediated by the capping domain of LpRalF enables the GEF to modulate membrane transport in the secretory pathway, whereas, the capping domain of RpRalF enables this bacterial GEF to modulate actin dynamics occurring near the plasma membrane. Thus, these data reveal that divergence in the function of the C-terminal capping domain alters the in vivo functions of the RalF proteins. PMID:23166491

  18. Functional innovation from changes in protein domains and their combinations.

    PubMed

    Lees, Jonathan G; Dawson, Natalie L; Sillitoe, Ian; Orengo, Christine A

    2016-06-01

    Domains are the functional building blocks of proteins. In this work we discuss how domains can contribute to the evolution of new functions. Domains themselves can evolve through various mechanisms, altering their intrinsic function. Domains can also facilitate functional innovations by combining with other domains to make novel proteins. We discuss the mechanisms by which domain and domain combinations support functional innovations. We highlight interesting examples where changes in domain combination promote changes at the domain level. PMID:27309309

  19. Distinct functional domains in nesprin-1{alpha} and nesprin-2{beta} bind directly to emerin and both interactions are disrupted in X-linked Emery-Dreifuss muscular dystrophy

    SciTech Connect

    Wheeler, Matthew A.; Davies, John D.; Zhang Qiuping; Emerson, Lindsay J.; Hunt, James; Shanahan, Catherine M.; Ellis, Juliet A. . E-mail: juliet.ellis@kcl.ac.uk

    2007-08-01

    Emerin and specific isoforms of nesprin-1 and -2 are nuclear membrane proteins which are binding partners in multi-protein complexes spanning the nuclear envelope. We report here the characterisation of the residues both in emerin and in nesprin-1{alpha} and -2{beta} which are involved in their interaction and show that emerin requires nesprin-1 or -2 to retain it at the nuclear membrane. Using several protein-protein interaction methods, we show that residues 368 to 627 of nesprin-1{alpha} and residues 126 to 219 of nesprin-2{beta}, which show high homology to one another, both mediate binding to emerin residues 140-176. This region has previously been implicated in binding to F-actin, {beta}-catenin and lamin A/C suggesting that it is critical for emerin function. Confirmation that these protein domains interact in vivo was shown using GFP-dominant negative assays. Exogenous expression of either of these nesprin fragments in mouse myoblast C2C12 cells displaced endogenous emerin from the nuclear envelope and reduced the targeting of newly synthesised emerin. Furthermore, we are the first to report that emerin mutations which give rise to X-linked Emery-Dreifuss muscular dystrophy, disrupt binding to both nesprin-1{alpha} and -2{beta} isoforms, further indicating a role of nesprins in the pathology of Emery-Dreifuss muscular dystrophy.

  20. TIM-3 Regulates Distinct Functions in Macrophages.

    PubMed

    Ocaña-Guzman, Ranferi; Torre-Bouscoulet, Luis; Sada-Ovalle, Isabel

    2016-01-01

    The transmembrane protein TIM-3 is a type I protein expressed by sub-types of lymphoid cells, such as lymphocytes Th1, Th17, Tc1, NK, as well as in myeloid cells. Scientific evidence indicates that this molecule acts as a negative regulator of T lymphocyte activation and that its expression is modified in viral infections or autoimmune diseases. In addition to evidence from lymphoid cells, the function of TIM-3 has been investigated in myeloid cells, such as monocytes, macrophages, and dendritic cells (DC), where studies have demonstrated that it can regulate cytokine production, cell activation, and the capture of apoptotic bodies. Despite these advances, the function of TIM-3 in myeloid cells and the molecular mechanisms that this protein regulates are not yet fully understood. This review examines the most recent evidence concerning the function of TIM-3 when expressed in myeloid cells, primarily macrophages, and the potential impact of that function on the field of basic immunology.

  1. TIM-3 Regulates Distinct Functions in Macrophages

    PubMed Central

    Ocaña-Guzman, Ranferi; Torre-Bouscoulet, Luis; Sada-Ovalle, Isabel

    2016-01-01

    The transmembrane protein TIM-3 is a type I protein expressed by sub-types of lymphoid cells, such as lymphocytes Th1, Th17, Tc1, NK, as well as in myeloid cells. Scientific evidence indicates that this molecule acts as a negative regulator of T lymphocyte activation and that its expression is modified in viral infections or autoimmune diseases. In addition to evidence from lymphoid cells, the function of TIM-3 has been investigated in myeloid cells, such as monocytes, macrophages, and dendritic cells (DC), where studies have demonstrated that it can regulate cytokine production, cell activation, and the capture of apoptotic bodies. Despite these advances, the function of TIM-3 in myeloid cells and the molecular mechanisms that this protein regulates are not yet fully understood. This review examines the most recent evidence concerning the function of TIM-3 when expressed in myeloid cells, primarily macrophages, and the potential impact of that function on the field of basic immunology. PMID:27379093

  2. J domain independent functions of J proteins.

    PubMed

    Ajit Tamadaddi, Chetana; Sahi, Chandan

    2016-07-01

    Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.

  3. Temporal stability and representational distinctiveness: Key functions of orthographic working memory

    PubMed Central

    Costa, Vanessa; Fischer-Baum, Simon; Capasso, Rita; Miceli, Gabriele; Rapp, Brenda

    2012-01-01

    A primary goal of working memory research has been to understand the mechanisms that permit working memory systems to effectively maintain the identity and order of the elements held in memory for sufficient time as to allow for their selection and transfer to subsequent processing stages. Based on the performance of two individuals with acquired dysgraphia affecting orthographic WM (the graphemic buffer) we present evidence of two distinct and dissociable functions of orthographic WM. One function is responsible for maintaining the temporal stability of letters held in orthographic WM, while the other is responsible for maintaining their representational distinctiveness. The failure to maintain temporal stability and representational distinctiveness give rise, respectively, to decay and interference effects that manifest themselves in distinctive error patterns, including distinct serial position effects. The findings we report have implications beyond our understanding of orthographic WM, as the need to maintain temporal stability and representational distinctiveness in WM is common across cognitive domains. PMID:22248210

  4. The structure of a conserved piezo channel domain reveals a topologically distinct β sandwich fold.

    PubMed

    Kamajaya, Aron; Kaiser, Jens T; Lee, Jonas; Reid, Michelle; Rees, Douglas C

    2014-10-01

    Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2,000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a topologically distinct β sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in dehydrated hereditary stomatocytosis patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be-identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels.

  5. The Bel1 protein of human foamy virus contains one positive and two negative control regions which regulate a distinct activation domain of 30 amino acids.

    PubMed Central

    Lee, C W; Chang, J; Lee, K J; Sung, Y C

    1994-01-01

    The Bel1 transactivator is essential for the replication of human foamy virus (HFV). To define the functional domains of HFV Bel1, we generated random missense mutations throughout the entire coding sequence of Bel1. Functional analyses of 24 missense mutations have revealed the presence of at least two functional domains in Bel1. One domain corresponds to a basic amino acid-rich motif which acts as a bipartite nuclear targeting sequence. A second, central domain corresponds to a presumed effector region which, when mutated, leads to dominant-negative mutants and/or lacks transactivating ability. In addition, deletion analyses and domain-swapping experiments further showed that Bel1 protein contains a strong carboxy-terminal activation domain. The activating region is also capable of functioning as a transcription-activating domain in yeast cells, although it does not bear any significant sequence homology to the well-characterized acidic activation domain which is known to function only in yeast and mammalian cells. We also demonstrated that the regions of Bel1 from residues 1 to 76 and from residues 153 to 225 repressed transcriptional activation exerted by the Bel1 activation domain. In contrast, the region from residues 82 to 150 appears to overcome an inhibitory effect. These results indicate that Bel1 contains one positive and two negative regulatory domains that modulate a distinct activation domain of Bel1. These regulatory domains of Bel1 cannot affect the function of the VP16 activation domain, suggesting that these domains specifically regulate the activation domain of Bel1. Furthermore, in vivo competition experiments showed that the positive regulatory domain acts in trans. Thus, our results demonstrate that Bel1-mediated transactivation appears to undergo a complex regulatory pathway which provides a novel mode of regulation for a transcriptional activation domain. Images PMID:8139046

  6. The Nim1 kinase Gin4 has distinct domains crucial for septin assembly, phospholipid binding and mitotic exit

    PubMed Central

    Au Yong, Jie Ying; Wang, Yue

    2016-01-01

    ABSTRACT In fungi, the Nim1 protein kinases, such as Gin4, are important regulators of multiple cell cycle events, including the G2–M transition, septin assembly, polarized growth and cytokinesis. Compelling evidence has linked some key functions of Gin4 with the large C-terminal non-kinase region which, however, is poorly defined. By systematically dissecting and functionally characterizing the non-kinase region of Gin4 in the human fungal pathogen Candida albicans, we report the identification of three new domains with distinct functions: a lipid-binding domain (LBD), a septin-binding domain (SBD) and a nucleolus-associating domain (NAD). The LBD and SBD are indispensable for the function of Gin4, and they alone could sufficiently restore septin ring assembly in GIN4-null mutants. The NAD localizes to the periphery of the nucleolus and physically associates with Cdc14, the ultimate effector of the mitotic exit network. Gin4 mutants that lack the NAD are defective in spindle orientation and exit mitosis prematurely. Furthermore, we show that Gin4 is a substrate of Cdc14. These findings provide novel insights into the roles and mechanisms of Nim1 kinases in the regulation of some crucial cell cycle events. PMID:27231094

  7. Critical but Distinct Roles for the Pleckstrin Homology and Cysteine-Rich Domains as Positive Modulators of Vav2 Signaling and Transformation

    PubMed Central

    Booden, Michelle A.; Campbell, Sharon L.; Der, Channing J.

    2002-01-01

    Vav2, like all Dbl family proteins, possesses tandem Dbl homology (DH) and pleckstrin homology (PH) domains and functions as a guanine nucleotide exchange factor for Rho family GTPases. Whereas the PH domain is a critical positive regulator of DH domain function for a majority of Dbl family proteins, the PH domains of the related Vav and Vav3 proteins are dispensable for DH domain activity. Instead, Vav proteins contain a cysteine-rich domain (CRD) critical for DH domain function. We evaluated the contribution of the PH domain and the CRD to Vav2 guanine nucleotide exchange, signaling, and transforming activity. Unexpectedly, we found that mutations of the PH domain impaired Vav2 signaling, transforming activity, and membrane association. However, these mutations do not influence exchange activity on Rac and only slightly affect exchange on RhoA and Cdc42. We also found that the CRD was critical for the exchange activity in vitro and contributed to Vav2 membrane localization. Finally, we found that phosphoinositol 3-kinase activation synergistically enhanced Vav2 transforming and signaling activity by stimulating exchange activity but not membrane association. In conclusion, the PH domain and CRD are mechanistically distinct, positive modulators of Vav2 DH domain function in vivo. PMID:11909943

  8. The catalytic region and PEST domain of PTPN18 distinctly regulate the HER2 phosphorylation and ubiquitination barcodes.

    PubMed

    Wang, Hong-Mei; Xu, Yun-Fei; Ning, Shang-Lei; Yang, Du-Xiao; Li, Yi; Du, Yu-Jie; Yang, Fan; Zhang, Ya; Liang, Nan; Yao, Wei; Zhang, Ling-Li; Gu, Li-Chuan; Gao, Cheng-Jiang; Pang, Qi; Chen, Yu-Xin; Xiao, Kun-Hong; Ma, Rong; Yu, Xiao; Sun, Jin-Peng

    2014-09-01

    The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes. Enzymologic characterization and three crystal structures of PTPN18 in complex with HER2 phospho-peptides revealed the molecular basis for the recognition between PTPN18 and specific HER2 phosphorylation sites, which assumes two distinct conformations. Unique structural properties of PTPN18 contribute to the regulation of sub-cellular phosphorylation networks downstream of HER2, which are required for inhibition of HER2-mediated cell growth and migration. Whereas the catalytic domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation of HER2 on pY(1112), the PEST domain of PTPN18 promotes K48-linked HER2 ubiquitination and its rapid destruction via the proteasome pathway and an HER2 negative feedback loop. In agreement with the negative regulatory role of PTPN18 in HER2 signaling, the HER2/PTPN18 ratio was correlated with breast cancer stage. Taken together, our study presents a structural basis for selective HER2 dephosphorylation, a previously uncharacterized mechanism for HER2 degradation and a novel function for the PTPN18 PEST domain. The new regulatory role of the PEST domain in the ubiquitination pathway will broaden our understanding of the functions of other important PEST domain-containing phosphatases, such as LYP and PTPN12. PMID:25081058

  9. GAGA Factor Isoforms Have Distinct but Overlapping Functions In Vivo

    PubMed Central

    Greenberg, Anthony J.; Schedl, Paul

    2001-01-01

    The Drosophila melanogaster GAGA factor (encoded by the Trithorax-like [Trl] gene) is required for correct chromatin architecture at diverse chromosomal sites. The Trl gene encodes two alternatively spliced isoforms of the GAGA factor (GAGA-519 and GAGA-581) that are identical except for the length and sequence of the C-terminal glutamine-rich (Q) domain. In vitro and tissue culture experiments failed to find any functional difference between the two isoforms. We made a set of transgenes that constitutively express cDNAs coding for either of the isoforms with the goal of elucidating their roles in vivo. Phenotypic analysis of the transgenes in Trl mutant background led us to the conclusion that GAGA-519 and GAGA-581 perform different, albeit largely overlapping, functions. We also expressed a fusion protein with LacZ disrupting the Q domain of GAGA-519. This LacZ fusion protein compensated for the loss of wild-type GAGA factor to a surprisingly large extent. This suggests that the Q domain either is not required for the essential functions performed by the GAGA protein or is exclusively used for tetramer formation. These results are inconsistent with a major role of the Q domain in chromatin remodeling or transcriptional activation. We also found that GAGA-LacZ was able to associate with sites not normally occupied by the GAGA factor, pointing to a role of the Q domain in binding site choice in vivo. PMID:11713290

  10. Distinctive Pattern of Behavioral Functioning in Angelman Syndrome.

    ERIC Educational Resources Information Center

    Summers, Jane A.; Feldman, Maurice A.

    1999-01-01

    A study compared 27 participants with Angelman syndrome to clinical and community participants (n=948) with developmental disabilities of mixed etiology to determine whether Angelman syndrome is associated with a distinctive patterns of behavioral functioning. Those with Angelman syndrome had significantly lower scores on measures of irritability…

  11. Domain evolution and functional diversification of sulfite reductases.

    PubMed

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  12. Domain Evolution and Functional Diversification of Sulfite Reductases

    NASA Astrophysics Data System (ADS)

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  13. Two distinct forms of functional lateralization in the human brain.

    PubMed

    Gotts, Stephen J; Jo, Hang Joon; Wallace, Gregory L; Saad, Ziad S; Cox, Robert W; Martin, Alex

    2013-09-01

    The hemispheric lateralization of certain faculties in the human brain has long been held to be beneficial for functioning. However, quantitative relationships between the degree of lateralization in particular brain regions and the level of functioning have yet to be established. Here we demonstrate that two distinct forms of functional lateralization are present in the left vs. the right cerebral hemisphere, with the left hemisphere showing a preference to interact more exclusively with itself, particularly for cortical regions involved in language and fine motor coordination. In contrast, right-hemisphere cortical regions involved in visuospatial and attentional processing interact in a more integrative fashion with both hemispheres. The degree of lateralization present in these distinct systems selectively predicted behavioral measures of verbal and visuospatial ability, providing direct evidence that lateralization is associated with enhanced cognitive ability.

  14. Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase.

    PubMed

    Srinivasan, Bharath; Marks, Hanna; Mitra, Sreyoshi; Smalley, David M; Skolnick, Jeffrey

    2016-07-15

    The presence of latent activities in enzymes is posited to underlie the natural evolution of new catalytic functions. However, the prevalence and extent of such substrate and catalytic ambiguity in evolved enzymes is difficult to address experimentally given the order-of-magnitude difference in the activities for native and, sometimes, promiscuous substrate/s. Further, such latent functions are of special interest when the activities concerned do not fall into the domain of substrate promiscuity. In the present study, we show a special case of such latent enzyme activity by demonstrating the presence of two mechanistically distinct reactions catalysed by the catalytic domain of receptor protein tyrosine phosphatase isoform δ (PTPRδ). The primary catalytic activity involves the hydrolysis of a phosphomonoester bond (C─O─P) with high catalytic efficiency, whereas the secondary activity is the hydrolysis of a glycosidic bond (C─O─C) with poorer catalytic efficiency. This enzyme also displays substrate promiscuity by hydrolysing diester bonds while being highly discriminative for its monoester substrates. To confirm these activities, we also demonstrated their presence on the catalytic domain of protein tyrosine phosphatase Ω (PTPRΩ), a homologue of PTPRδ. Studies on the rate, metal-ion dependence, pH dependence and inhibition of the respective activities showed that they are markedly different. This is the first study that demonstrates a novel sugar hydrolase and diesterase activity for the phosphatase domain (PD) of PTPRδ and PTPRΩ. This work has significant implications for both understanding the evolution of enzymatic activity and the possible physiological role of this new chemistry. Our findings suggest that the genome might harbour a wealth of such alternative latent enzyme activities in the same protein domain that renders our knowledge of metabolic networks incomplete.

  15. Different Transmembrane Domains Associate with Distinct Endoplasmic Reticulum Components during Membrane Integration of a Polytopic Protein

    PubMed Central

    Meacock, Suzanna L.; Lecomte, Fabienne J.L.; Crawshaw, Samuel G.; High, Stephen

    2002-01-01

    We have been studying the insertion of the seven transmembrane domain (TM) protein opsin to gain insights into how the multiple TMs of polytopic proteins are integrated at the endoplasmic reticulum (ER). We find that the ER components associated with the first and second TMs of the nascent opsin polypeptide chain are clearly distinct. The first TM (TM1) is adjacent to the α and β subunits of the Sec61 complex, and a novel component, a protein associated with the ER translocon of 10 kDa (PAT-10). The most striking characteristic of PAT-10 is that it remains adjacent to TM1 throughout the biogenesis and membrane integration of the full-length opsin polypeptide. TM2 is also found to be adjacent to Sec61α and Sec61β during its membrane integration. However, TM2 does not form any adducts with PAT-10; rather, a transient association with the TRAM protein is observed. We show that the association of PAT-10 with opsin TM1 does not require the N-glycosylation of the nascent chain and occurs irrespective of the amino acid sequence and transmembrane topology of TM1. We conclude that the precise makeup of the ER membrane insertion site can be distinct for the different transmembrane domains of a polytopic protein. We find that the environment of a particular TM can be influenced by both the “stage” of nascent chain biosynthesis reached, and the TM's relative location within the polypeptide. PMID:12475939

  16. Domain-Independent Scientific Function Finding

    NASA Astrophysics Data System (ADS)

    Schaffer, Cullen R.

    1990-01-01

    Programs such as Bacon, Abacus, Coper, Kepler and others are designed to find functional relationships of scientific significance in quantitative data without relying on the deep domain knowledge scientists normally bring to bear in analytic work. Whether these systems actually perform as intended is an open question, however. To date, they have been supported only by anecdotal evidence --reports that a desirable answer has been found in one or more selected and often artificial cases. In this dissertation, I thus attempt to develop, not only new approaches to domain -independent scientific function finding, but, equally, a rigorous methodology under which research into such methods can be conducted. A fundamental problem with previous work is that it has investigated scientific data analysis in the abstract --without referring to actual scientific data. By contrast, the work reported here is founded on a collection of 352 real scientific data sets. This empirical base supports a number of strong conclusions. First, while researchers working with artificial data have targeted complex multivariate relations, real data provides powerful evidence that even the simplest bivariate relationships are difficult to identify reliably. Second, despite its ubiquitous presence in previous work, the notion of heuristic search of a potentially explosive space of formulas appears to help very little with the problem of reliably identifying basic bivariate relationships. Instead, third, substantial performance improvement results from viewing function finding as a decision problem, the problem of classifying data sets reliably within a fixed--and quite limited--system of functional categories. This dissertation presents what I believe to be the strongest domain-independent scientific function-finding algorithm currently in existence and, certainly, the only one which has been rigorously demonstrated. At the same time, it suggests fundamental limitations in the power of such

  17. Different Functions of Phylogenetically Distinct Bacterial Complex I Isozymes

    PubMed Central

    Spero, Melanie A.; Brickner, Joshua R.; Mollet, Jordan T.; Pisithkul, Tippapha; Amador-Noguez, Daniel

    2016-01-01

    ABSTRACT NADH:quinone oxidoreductase (complex I) is a bioenergetic enzyme that transfers electrons from NADH to quinone, conserving the energy of this reaction by contributing to the proton motive force. While the importance of NADH oxidation to mitochondrial aerobic respiration is well documented, the contribution of complex I to bacterial electron transport chains has been tested in only a few species. Here, we analyze the function of two phylogenetically distinct complex I isozymes in Rhodobacter sphaeroides, an alphaproteobacterium that contains well-characterized electron transport chains. We found that R. sphaeroides complex I activity is important for aerobic respiration and required for anaerobic dimethyl sulfoxide (DMSO) respiration (in the absence of light), photoautotrophic growth, and photoheterotrophic growth (in the absence of an external electron acceptor). Our data also provide insight into the functions of the phylogenetically distinct R. sphaeroides complex I enzymes (complex IA and complex IE) in maintaining a cellular redox state during photoheterotrophic growth. We propose that the function of each isozyme during photoheterotrophic growth is either NADH synthesis (complex IA) or NADH oxidation (complex IE). The canonical alphaproteobacterial complex I isozyme (complex IA) was also shown to be important for routing electrons to nitrogenase-mediated H2 production, while the horizontally acquired enzyme (complex IE) was dispensable in this process. Unlike the singular role of complex I in mitochondria, we predict that the phylogenetically distinct complex I enzymes found across bacterial species have evolved to enhance the functions of their respective electron transport chains. IMPORTANCE Cells use a proton motive force (PMF), NADH, and ATP to support numerous processes. In mitochondria, complex I uses NADH oxidation to generate a PMF, which can drive ATP synthesis. This study analyzed the function of complex I in bacteria, which contain more

  18. Distinct Functions of Neutrophil in Cancer and Its Regulation

    PubMed Central

    Granot, Zvi; Jablonska, Jadwiga

    2015-01-01

    Neutrophils are the most abundant of all white blood cells in the human circulation and are usually associated with inflammation and with fighting infections. In recent years the role immune cells play in cancer has been a matter of increasing interest. In this context the function of neutrophils is controversial as neutrophils were shown to possess both tumor promoting and tumor limiting properties. Here we provide an up-to-date review of the pro- and antitumor properties neutrophils possess as well as the environmental cues that regulate these distinct functions. PMID:26648665

  19. Antibody mapping of functional domains in vinculin.

    PubMed Central

    Westmeyer, A; Ruhnau, K; Wegner, A; Jockusch, B M

    1990-01-01

    We have analyzed the functional domain structure of vinculin, a protein involved in linking microfilaments to the cytoplasmic face of cell membranes in animal cells. For this purpose, we used several monoclonal antibodies raised against chicken gizzard vinculin whose epitopes could be assigned to discrete regions in the vinculin sequence by immunoblotting of proteolytic fragments combined with N-terminal amino acid sequencing. Two of these antibodies induced the disruption of stress fibers and changed the number of morphology of focal contacts after microinjection in chicken embryo fibroblasts. Based on the location of its epitope in comparison with vinculin domains previously identified by other groups, we propose that one of these antibodies (15B7) interferes with the binding of vinculin to talin, the most peripheral of the microfilament proteins. The second antibody (14C10) binds within a region comprising three internal repeats and might therefore distort the inner architecture of vinculin. A third antibody (As3) inhibited the binding of F-actin to vinculin in an in vitro assay but had no effect on the microfilament system in cells. These data emphasize the role of vinculin as a key protein in microfilament-membrane linkage and support previous work on a direct interaction between vinculin and actin. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:1694125

  20. Differential function of Themis CABIT domains during T cell development.

    PubMed

    Okada, Toshiyuki; Nitta, Takeshi; Kaji, Kentaro; Takashima, Akiko; Oda, Hiroyo; Tamehiro, Norimasa; Goto, Motohito; Okamura, Tadashi; Patrick, Michael S; Suzuki, Harumi

    2014-01-01

    Themis (also named Gasp) is a newly identified Grb2-binding protein that is essential for thymocyte positive selection. Despite the possible involvement of Themis in TCR-mediated signal transduction, its function remains unresolved and controversial. Themis contains two functionally uncharacterized regions called CABIT (cysteine-containing, all-β in Themis) domains, a nuclear localization signal (NLS), and a proline-rich sequence (PRS). To elucidate the role of these motifs in Themis's function in vivo, we established a series of mutant Themis transgenic mice on a Themis(-/-) background. Deletion of the highly conserved Core motif of CABIT1 or CABIT2 (Core1 or Core2, respectively), the NLS, or the PRS abolished Grb2-association, as well as TCR-dependent tyrosine-phosphorylation and the ability to induce positive selection in the thymus. The NLS and Core1 motifs were required for the nuclear localization of Themis, whereas Core2 and PRS were not. Furthermore, expression of ΔCore1- but not ΔCore2-Themis conferred dominant negative-type inhibition on T cell development. Collectively, our current results indicate that PRS, NLS, CABIT1, and CABIT2 are all required for positive selection, and that each of the CABIT domains exerts distinct functions during positive selection. PMID:24586531

  1. Pectin Modification in Cell Walls of Ripening Tomatoes Occurs in Distinct Domains.

    PubMed

    Steele, N. M.; McCann, M. C.; Roberts, K.

    1997-05-01

    The class of cell wall polysaccharides that undergoes the most extensive modification during tomato (Lycopersicon esculentum) fruit ripening is pectin. De-esterification of the polygalacturonic acid backbone by pectin methylesterase facilitates the depolymerization of pectins by polygalacturonase II (PGII). To investigate the spatial aspects of the de-esterification of cell wall pectins and the subsequent deposition of PGII, we have used antibodies to relatively methylesterified and nonesterified pectic epitopes and to the PGII protein on thin sections of pericarp tissue at different developmental stages. De-esterification of pectins and deposition of PGII protein occur in block-like domains within the cell wall. The boundaries of these domains are distinct and persistent, implying strict, spatial regulation of enzymic activities. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins strongly associated with cell walls of pericarp tissue at each stage of fruit development show ripening-related changes in this protein population. Western blots of these gels with anti-PGII antiserum demonstrate that PGII expression is ripening-related. The PGII co-extracts with specific pectic fractions extracted with imidazole or with Na2CO3 at 0[deg]C from the walls of red-ripe pericarp tissue, indicating that the strong association between PGII and the cell wall involves binding to particular pectic polysaccharides.

  2. Structural Characterization of Minor Ampullate Spidroin Domains and Their Distinct Roles in Fibroin Solubility and Fiber Formation

    PubMed Central

    Gao, Zhenwei; Lin, Zhi; Huang, Weidong; Lai, Chong Cheong; Fan, Jing-song; Yang, Daiwen

    2013-01-01

    Spider silk is protein fibers with extraordinary mechanical properties. Up to now, it is still poorly understood how silk proteins are kept in a soluble form before spinning into fibers and how the protein molecules are aligned orderly to form fibers. Minor ampullate spidroin is one of the seven types of silk proteins, which consists of four types of domains: N-terminal domain, C-terminal domain (CTD), repetitive domain (RP) and linker domain (LK). Here we report the tertiary structure of CTD and secondary structures of RP and LK in aqueous solution, and their roles in protein stability, solubility and fiber formation. The stability and solubility of individual domains are dramatically different and can be explained by their distinct structures. For the tri-domain miniature fibroin, RP-LK-CTDMi, the three domains have no or weak interactions with one another at low protein concentrations (<1 mg/ml). The CTD in RP-LK-CTDMi is very stable and soluble, but it cannot stabilize the entire protein against chemical and thermal denaturation while it can keep the entire tri-domain in a highly water-soluble state. In the presence of shear force, protein aggregation is greatly accelerated and the aggregation rate is determined by the stability of folded domains and solubility of the disordered domains. Only the tri-domain RP-LK-CTDMi could form silk-like fibers, indicating that all three domains play distinct roles in fiber formation: LK as a nucleation site for assembly of protein molecules, RP for assistance of the assembly and CTD for regulating alignment of the assembled molecules. PMID:23418525

  3. EpCAM proteolysis: new fragments with distinct functions?

    PubMed Central

    Schnell, Ulrike; Kuipers, Jeroen; Giepmans, Ben N. G.

    2013-01-01

    EpCAM [epithelial cell adhesion molecule; CD326 (cluster of differentiation 326)] is highly expressed on epithelium-derived tumours and can play a role in cell proliferation. Recently, RIP (regulated intramembrane proteolysis) has been implicated as the trigger for EpCAM-mediated proliferative signalling. However, RIP does not explain all EpCAM-derived protein fragments. To shed light on how proteolytic cleavage is involved in EpCAM signalling, we characterized the protein biochemically using antibodies binding to three different EpCAM domains. Using a newly generated anti-EpCAM antibody, we find that EpCAM can be cleaved at multiple positions within its ectodomain in addition to described peptides, revealing that EpCAM is processed via distinct proteolytic pathways. Here, we report on four new peptides, but also discuss the previously described cleavage products to provide a comprehensive picture of EpCAM cleavage at multiple positions. The complex regulation of EpCAM might not only result in the absence of full-length EpCAM, but the newly formed EpCAM-derived proteins may have their own signalling properties. PMID:23409978

  4. In the Multi-domain Protein Adenylate Kinase, Domain Insertion Facilitates Cooperative Folding while Accommodating Function at Domain Interfaces

    PubMed Central

    Giri Rao, V. V. Hemanth; Gosavi, Shachi

    2014-01-01

    Having multiple domains in proteins can lead to partial folding and increased aggregation. Folding cooperativity, the all or nothing folding of a protein, can reduce this aggregation propensity. In agreement with bulk experiments, a coarse-grained structure-based model of the three-domain protein, E. coli Adenylate kinase (AKE), folds cooperatively. Domain interfaces have previously been implicated in the cooperative folding of multi-domain proteins. To understand their role in AKE folding, we computationally create mutants with deleted inter-domain interfaces and simulate their folding. We find that inter-domain interfaces play a minor role in the folding cooperativity of AKE. On further analysis, we find that unlike other multi-domain proteins whose folding has been studied, the domains of AKE are not singly-linked. Two of its domains have two linkers to the third one, i.e., they are inserted into the third one. We use circular permutation to modify AKE chain-connectivity and convert inserted-domains into singly-linked domains. We find that domain insertion in AKE achieves the following: (1) It facilitates folding cooperativity even when domains have different stabilities. Insertion constrains the N- and C-termini of inserted domains and stabilizes their folded states. Therefore, domains that perform conformational transitions can be smaller with fewer stabilizing interactions. (2) Inter-domain interactions are not needed to promote folding cooperativity and can be tuned for function. In AKE, these interactions help promote conformational dynamics limited catalysis. Finally, using structural bioinformatics, we suggest that domain insertion may also facilitate the cooperative folding of other multi-domain proteins. PMID:25393408

  5. Automated retinal fovea type distinction in spectral-domain optical coherence tomography of retinal vein occlusion

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Waldstein, Sebastian M.; Gerendas, Bianca S.; Langs, Georg; Simader, Christian; Schmidt-Erfurth, Ursula

    2015-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high- resolution, three-dimensional (3D) cross-sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD), glaucoma and retinal vein occlusion (RVO). Disease diagnosis, assessment, and treatment will require a patient to undergo multiple OCT scans, possibly using multiple scanners, to accurately and precisely gauge disease activity, progression and treatment success. However, cross-vendor imaging and patient movement may result in poor scan spatial correlation potentially leading to incorrect diagnosis or treatment analysis. The retinal fovea is the location of the highest visual acuity and is present in all patients, thus it is critical to vision and highly suitable for use as a primary landmark for cross-vendor/cross-patient registration for precise comparison of disease states. However, the location of the fovea in diseased eyes is extremely challenging to locate due to varying appearance and the presence of retinal layer destroying pathology. Thus categorising and detecting the fovea type is an important prior stage to automatically computing the fovea position. Presented here is an automated cross-vendor method for fovea distinction in 3D SD-OCT scans of patients suffering from RVO, categorising scans into three distinct types. OCT scans are preprocessed by motion correction and noise filing followed by segmentation using a kernel graph-cut approach. A statistically derived mask is applied to the resulting scan creating an ROI around the probable fovea location from which the uppermost retinal surface is delineated. For a normal appearance retina, minimisation to zero thickness is computed using the top two retinal surfaces. 3D local minima detection and layer thickness analysis are used

  6. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations.

    PubMed Central

    Mizukami, Y; Huang, H; Tudor, M; Hu, Y; Ma, H

    1996-01-01

    The Arabidopsis MADS box gene AGAMOUS (AG) controls reproductive organ identity and floral meristem determinacy. The AG protein binds in vitro to DNA sequences similar to the targets of known MADS domain transcription factors. Whereas most plant MADS domain proteins begin with the MADS domain, AG and its orthologs contain a region N-terminal to the MADS domain. All plant MADS domain proteins share another region with moderate sequence similarity called the K domain. Neither the region (I region) that lies between the MADS and K domains nor the C-terminal region is conserved. We show here that the AG MADS domain and the I region are necessary and sufficient for DNA binding in vitro and that AG binds to DNA as a dimer. To investigate the in vivo function of the regions of AG not required for in vitro DNA binding, we introduced several AG constructs into wild-type plants and characterized their floral phenotypes. We show that transgenic Arabidopsis plants with a 35S-AG construct encoding an AG protein lacking the N-terminal region produced apetala 2 (ap2)-like flowers similar to those ectopically expressing AG proteins retaining the N-terminal region. This result suggests that the N-terminal region is not required to produce the ap2-like phenotype. In addition, transformants with a 35S-AG construct encoding an AG protein lacking the C-terminal region produced ag-like flowers, indicating that this truncated AG protein inhibits normal AG function. Finally, transformants with a 35S-AG construct encoding an AG protein lacking both K and C regions produced flowers with more stamens and carpels. The phenotypes of the AG transformants demonstrate that both the K domain and the C-terminal region have important and distinct in vivo functions. We discuss possible mechanisms through which AG may regulate downstream genes. PMID:8672883

  7. The Anthropocene is functionally and stratigraphically distinct from the Holocene.

    PubMed

    Waters, Colin N; Zalasiewicz, Jan; Summerhayes, Colin; Barnosky, Anthony D; Poirier, Clément; Gałuszka, Agnieszka; Cearreta, Alejandro; Edgeworth, Matt; Ellis, Erle C; Ellis, Michael; Jeandel, Catherine; Leinfelder, Reinhold; McNeill, J R; Richter, Daniel deB; Steffen, Will; Syvitski, James; Vidas, Davor; Wagreich, Michael; Williams, Mark; Zhisheng, An; Grinevald, Jacques; Odada, Eric; Oreskes, Naomi; Wolfe, Alexander P

    2016-01-01

    Human activity is leaving a pervasive and persistent signature on Earth. Vigorous debate continues about whether this warrants recognition as a new geologic time unit known as the Anthropocene. We review anthropogenic markers of functional changes in the Earth system through the stratigraphic record. The appearance of manufactured materials in sediments, including aluminum, plastics, and concrete, coincides with global spikes in fallout radionuclides and particulates from fossil fuel combustion. Carbon, nitrogen, and phosphorus cycles have been substantially modified over the past century. Rates of sea-level rise and the extent of human perturbation of the climate system exceed Late Holocene changes. Biotic changes include species invasions worldwide and accelerating rates of extinction. These combined signals render the Anthropocene stratigraphically distinct from the Holocene and earlier epochs.

  8. The Anthropocene is functionally and stratigraphically distinct from the Holocene.

    PubMed

    Waters, Colin N; Zalasiewicz, Jan; Summerhayes, Colin; Barnosky, Anthony D; Poirier, Clément; Gałuszka, Agnieszka; Cearreta, Alejandro; Edgeworth, Matt; Ellis, Erle C; Ellis, Michael; Jeandel, Catherine; Leinfelder, Reinhold; McNeill, J R; Richter, Daniel deB; Steffen, Will; Syvitski, James; Vidas, Davor; Wagreich, Michael; Williams, Mark; Zhisheng, An; Grinevald, Jacques; Odada, Eric; Oreskes, Naomi; Wolfe, Alexander P

    2016-01-01

    Human activity is leaving a pervasive and persistent signature on Earth. Vigorous debate continues about whether this warrants recognition as a new geologic time unit known as the Anthropocene. We review anthropogenic markers of functional changes in the Earth system through the stratigraphic record. The appearance of manufactured materials in sediments, including aluminum, plastics, and concrete, coincides with global spikes in fallout radionuclides and particulates from fossil fuel combustion. Carbon, nitrogen, and phosphorus cycles have been substantially modified over the past century. Rates of sea-level rise and the extent of human perturbation of the climate system exceed Late Holocene changes. Biotic changes include species invasions worldwide and accelerating rates of extinction. These combined signals render the Anthropocene stratigraphically distinct from the Holocene and earlier epochs. PMID:26744408

  9. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis.

    PubMed

    Zhang, Jifeng; Tan, Minghui; Yin, Yichen; Ren, Bingyu; Jiang, Nannan; Guo, Guoqing; Chen, Yuan

    2015-01-01

    Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca(2+) channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV) endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.

  10. Identification of two distinct transactivation domains in the pluripotency sustaining factor nanog.

    PubMed

    Pan, Guang Jin; Pei, Duan Qing

    2003-12-01

    Nanog is a newly identified homeodomain gene that functions to sustain the pluripotency of embryonic stem cells. However, the molecular mechanism through which nanog regulates stem cell pluripotency remains unknown. Mouse nanog encodes a polypeptide of 305 residues with a divergent homeodomain similar to those in the NK-2 family. The rest of nanog contains no apparent homology to any known proteins characterized so far. It is hypothesized that nanog encodes a transcription factor that regulates stem cell pluripotency by switching on or off target genes. To test this hypothesis, we constructed fusion proteins between nanog and DNA binding domains of the yeast transcription factor Gal4 and tested the transactivation potentials of these constructs. Our data demonstrate that both regions N- and C- terminal to the homeodomain have transcription activities. Despite the fact that it contains no apparent transactivation motifs, the C-terminal domain is about 7 times as active as the N-terminal one. This unique arrangement of dual transactivators may confer nanog the flexibility and specificity to regulate downstream genes critical for both pluripotency and differentiation of stem cells.

  11. Functional domains of the poliovirus receptor

    SciTech Connect

    Koike, Satoshi; Ise, Iku; Nomoto, Akio )

    1991-05-15

    A number of mutant cDNAs of the human poliovirus receptor were constructed to identify essential regions of the molecule as the receptor. All mutant cDNAs carrying the sequence coding for the entire N-terminal immunoglobulin-like domain (domain I) confer permissiveness for poliovirus to mouse L cells, but a mutant cDNA lacking the sequence for domain I does not. The transformants permissive for poliovirus were able to bind the virus and were also recognized by monoclonal antibody D171, which competes with poliovirus for the cellular receptor. These results strongly suggest that the poliovirus binding site resides in domain I of the receptor. Mutant cDNAs for the sequence encoding the intracellular peptide were also constructed and expressed in mouse L cells. Susceptibility of these cells to poliovirus revealed that the entire putative cytoplasmic domain is not essential for virus infection. Thus, the cytoplasmic domain of the molecule appears not to play a role in the penetration of poliovirus.

  12. DNA specificity determinants associate with distinct transcription factor functions.

    PubMed

    Hollenhorst, Peter C; Chandler, Katherine J; Poulsen, Rachel L; Johnson, W Evan; Speck, Nancy A; Graves, Barbara J

    2009-12-01

    To elucidate how genomic sequences build transcriptional control networks, we need to understand the connection between DNA sequence and transcription factor binding and function. Binding predictions based solely on consensus predictions are limited, because a single factor can use degenerate sequence motifs and because related transcription factors often prefer identical sequences. The ETS family transcription factor, ETS1, exemplifies these challenges. Unexpected, redundant occupancy of ETS1 and other ETS proteins is observed at promoters of housekeeping genes in T cells due to common sequence preferences and the presence of strong consensus motifs. However, ETS1 exhibits a specific function in T cell activation; thus, unique transcriptional targets are predicted. To uncover the sequence motifs that mediate specific functions of ETS1, a genome-wide approach, chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq), identified both promoter and enhancer binding events in Jurkat T cells. A comparison with DNase I sensitivity both validated the dataset and also improved accuracy. Redundant occupancy of ETS1 with the ETS protein GABPA occurred primarily in promoters of housekeeping genes, whereas ETS1 specific occupancy occurred in the enhancers of T cell-specific genes. Two routes to ETS1 specificity were identified: an intrinsic preference of ETS1 for a variant of the ETS family consensus sequence and the presence of a composite sequence that can support cooperative binding with a RUNX transcription factor. Genome-wide occupancy of RUNX factors corroborated the importance of this partnership. Furthermore, genome-wide occupancy of co-activator CBP indicated tight co-localization with ETS1 at specific enhancers, but not redundant promoters. The distinct sequences associated with redundant versus specific ETS1 occupancy were predictive of promoter or enhancer location and the ontology of nearby genes. These findings demonstrate that diversity

  13. Executive Function Among Preschool Children: Unitary Versus Distinct Abilities

    PubMed Central

    Lerner, Matthew D.; Lonigan, Christopher J.

    2015-01-01

    Working memory (WM) and inhibitory control (IC) are considered related but separable executive functions (EFs) among adults and adolescents. Although available evidence suggests that these constructs have not diverged especially among younger preschool children, questions remain regarding the age at which separable factors emerge. This study used confirmatory factor analysis to test a 2-factor model of EF among 289 preschool children whose ages ranged from 45 to 63 months (M = 55.74, SD = 7.56). As hypothesized, the model including separate but related factors provided a significantly better fit than a unitary model, indicating the presence of distinct WM and IC factors. Based on evidence that WM and IC measured during preschool relate differently to a variety of academic and behavioral outcomes, it was hypothesized that a model including separate factors for each EF would fit the observed data better than a single-factor model. Although the two-factor model provided the best fit for the full sample, the correlation between WM and IC factors was significantly higher for younger (ϕ =.95) than older (ϕ =.68) children, indicating increasing divergence as a function of age. PMID:25642020

  14. Minicollagen cysteine-rich domains encode distinct modes of polymerization to form stable nematocyst capsules

    PubMed Central

    Tursch, Anja; Mercadante, Davide; Tennigkeit, Jutta; Gräter, Frauke; Özbek, Suat

    2016-01-01

    The stinging capsules of cnidarians, nematocysts, function as harpoon-like organelles with unusual biomechanical properties. The nanosecond discharge of the nematocyst requires a dense protein network of the capsule structure withstanding an internal pressure of up to 150 bar. Main components of the capsule are short collagens, so-called minicollagens, that form extended polymers by disulfide reshuffling of their cysteine-rich domains (CRDs). Although CRDs have identical cysteine patterns, they exhibit different structures and disulfide connectivity at minicollagen N and C-termini. We show that the structurally divergent CRDs have different cross-linking potentials in vitro and in vivo. While the C-CRD can participate in several simultaneous intermolecular disulfides and functions as a cystine knot after minicollagen synthesis, the N-CRD is monovalent. Our combined experimental and computational analyses reveal the cysteines in the C-CRD fold to exhibit a higher structural propensity for disulfide bonding and a faster kinetics of polymerization. During nematocyst maturation, the highly reactive C-CRD is instrumental in efficient cross-linking of minicollagens to form pressure resistant capsules. The higher ratio of C-CRD folding types evidenced in the medusozoan lineage might have fostered the evolution of novel, predatory nematocyst types in cnidarians with a free-swimming medusa stage. PMID:27166560

  15. Architecture and function of metallopeptidase catalytic domains

    PubMed Central

    Cerdà-Costa, Núria; Gomis-Rüth, Francesc Xavier

    2014-01-01

    The cleavage of peptide bonds by metallopeptidases (MPs) is essential for life. These ubiquitous enzymes participate in all major physiological processes, and so their deregulation leads to diseases ranging from cancer and metastasis, inflammation, and microbial infection to neurological insults and cardiovascular disorders. MPs cleave their substrates without a covalent intermediate in a single-step reaction involving a solvent molecule, a general base/acid, and a mono-or dinuclear catalytic metal site. Most monometallic MPs comprise a short metal-binding motif (HEXXH), which includes two metal-binding histidines and a general base/acid glutamate, and they are grouped into the zincin tribe of MPs. The latter divides mainly into the gluzincin and metzincin clans. Metzincins consist of globular ∼130–270-residue catalytic domains, which are usually preceded by N-terminal pro-segments, typically required for folding and latency maintenance. The catalytic domains are often followed by C-terminal domains for substrate recognition and other protein–protein interactions, anchoring to membranes, oligomerization, and compartmentalization. Metzincin catalytic domains consist of a structurally conserved N-terminal subdomain spanning a five-stranded β-sheet, a backing helix, and an active-site helix. The latter contains most of the metal-binding motif, which is here characteristically extended to HEXXHXXGXX(H,D). Downstream C-terminal subdomains are generally shorter, differ more among metzincins, and mainly share a conserved loop—the Met-turn—and a C-terminal helix. The accumulated structural data from more than 300 deposited structures of the 12 currently characterized metzincin families reviewed here provide detailed knowledge of the molecular features of their catalytic domains, help in our understanding of their working mechanisms, and form the basis for the design of novel drugs. PMID:24596965

  16. Identification of the functional domains of ANT-1, a novel coactivator of the androgen receptor

    SciTech Connect

    Fan Shuli; Goto, Kiminobu; Chen Guangchun; Morinaga, Hidetaka; Nomura, Masatoshi; Okabe, Taijiro; Nawata, Hajime; Yanase, Toshihiko . E-mail: yanase@intmed3.med.kyushu-u.ac.jp

    2006-03-03

    Previously, we identified a transcriptional coactivator for the activation function-1 (AF-1) domain of the human androgen receptor (AR) and designated it androgen receptor N-terminal domain transactivating protein-1 (ANT-1). This coactivator, which contains multiple tetratricopeptide repeat (TPR) motifs from amino acid (aa) 294, is identical to a component of U5 small nuclear ribonucleoprotein particles and binds specifically to the AR or glucocorticoid receptor. Here, we identified four distinct functional domains. The AR-AF-1-binding domain, which bound to either aa 180-360 or 360-532 in AR-AF-1, clearly overlapped with TAU-1 and TAU-5. This domain and the subnuclear speckle formation domain in ANT-1 were assigned within the TPR motifs, while the transactivating and nuclear localization signal domains resided within the N-terminal sequence. The existence of these functional domains may further support the idea that ANT-1 can function as an AR-AF-1-specific coactivator while mediating a transcription-splicing coupling.

  17. Male-specific Fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains

    PubMed Central

    2013-01-01

    Background Drosophila melanogaster adult males perform an elaborate courtship ritual to entice females to mate. fruitless (fru), a gene that is one of the key regulators of male courtship behavior, encodes multiple male-specific isoforms (FruM). These isoforms vary in their carboxy-terminal zinc finger domains, which are predicted to facilitate DNA binding. Results By over-expressing individual FruM isoforms in fru-expressing neurons in either males or females and assaying the global transcriptional response by RNA-sequencing, we show that three FruM isoforms have different regulatory activities that depend on the sex of the fly. We identified several sets of genes regulated downstream of FruM isoforms, including many annotated with neuronal functions. By determining the binding sites of individual FruM isoforms using SELEX we demonstrate that the distinct zinc finger domain of each FruM isoforms confers different DNA binding specificities. A genome-wide search for these binding site sequences finds that the gene sets identified as induced by over-expression of FruM isoforms in males are enriched for genes that contain the binding sites. An analysis of the chromosomal distribution of genes downstream of FruM shows that those that are induced and repressed in males are highly enriched and depleted on the X chromosome, respectively. Conclusions This study elucidates the different regulatory and DNA binding activities of three FruM isoforms on a genome-wide scale and identifies genes regulated by these isoforms. These results add to our understanding of sex chromosome biology and further support the hypothesis that in some cell-types genes with male-biased expression are enriched on the X chromosome. PMID:24074028

  18. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  19. Intellectual Growth in Children as a Function of Domain Specific and Domain General Working Memory Subgroups

    ERIC Educational Resources Information Center

    Swanson, H. Lee

    2011-01-01

    This study examined whether children's growth on measures of fluid (Raven Colored Progressive Matrices) and crystallized (reading and math achievement) intelligence was attributable to domain-specific or domain-general functions of working memory (WM). A sample of 290 elementary school children was tested on measures of intelligence across three…

  20. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties*

    PubMed Central

    Dalli, Jesmond; Montero-Melendez, Trinidad; Norling, Lucy V; Yin, Xiaoke; Hinds, Charles; Haskard, Dorian; Mayr, Manuel; Perretti, Mauro

    2013-01-01

    Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions. PMID:23660474

  1. Dynamic Remodeling of Microbial Biofilms by Functionally Distinct Exopolysaccharides

    PubMed Central

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R. C.; Yang, Liang; Rice, Scott A.; Doyle, Patrick

    2014-01-01

    ABSTRACT Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. PMID:25096883

  2. Functional characteristics of neonatal rat β cells with distinct markers.

    PubMed

    Martens, G A; Motté, E; Kramer, G; Stangé, G; Gaarn, L W; Hellemans, K; Nielsen, J H; Aerts, J M; Ling, Z; Pipeleers, D

    2014-02-01

    Neonatal β cells are considered developmentally immature and hence less glucose responsive. To study the acquisition of mature glucose responsiveness, we compared glucose-regulated redox state, insulin synthesis, and secretion of β cells purified from neonatal or 10-week-old rats with their transcriptomes and proteomes measured by oligonucleotide and LC-MS/MS profiling. Lower glucose responsiveness of neonatal β cells was explained by two distinct properties: higher activity at low glucose and lower activity at high glucose. Basal hyperactivity was associated with higher NAD(P)H, a higher fraction of neonatal β cells actively incorporating (3)H-tyrosine, and persistently increased insulin secretion below 5 mM glucose. Neonatal β cells lacked the steep glucose-responsive NAD(P)H rise between 5 and 10 mM glucose characteristic for adult β cells and accumulated less NAD(P)H at high glucose. They had twofold lower expression of malate/aspartate-NADH shuttle and most glycolytic enzymes. Genome-wide profiling situated neonatal β cells at a developmental crossroad: they showed advanced endocrine differentiation when specifically analyzed for their mRNA/protein level of classical neuroendocrine markers. On the other hand, discrete neonatal β cell subpopulations still expressed mRNAs/proteins typical for developing/proliferating tissues. One example, delta-like 1 homolog (DLK1) was used to investigate whether neonatal β cells with basal hyperactivity corresponded to a more immature subset with high DLK1, but no association was found. In conclusion, the current study supports the importance of glycolytic NADH-shuttling in stimulus function coupling, presents basal hyperactivity as novel property of neonatal β cells, and provides potential markers to recognize intercellular developmental differences in the endocrine pancreas. PMID:24049066

  3. Distinct expression patterns of ICK/MAK/MOK protein kinases in the intestine implicate functional diversity.

    PubMed

    Chen, Tufeng; Wu, Di; Moskaluk, Christopher A; Fu, Zheng

    2013-01-01

    ICK/MRK (intestinal cell kinase/MAK-related kinase), MAK (male germ cell-associated kinase), and MOK (MAPK/MAK/MRK-overlapping kinase) are closely related serine/threonine protein kinases in the protein kinome. The biological functions and regulatory mechanisms of the ICK/MAK/MOK family are still largely elusive. Despite significant similarities in their catalytic domains, they diverge markedly in the sequence and structural organization of their C-terminal non-catalytic domains, raising the question as to whether they have distinct, overlapping, or redundant biological functions. In order to gain insights into their biological activities and lay a fundamental groundwork for functional studies, we investigated the spatio-temporal distribution patterns and the expression dynamics of ICK/MAK/MOK protein kinases in the intestine. We found that ICK/MAK/MOK proteins display divergent expression patterns along the duodenum-to-colon axis and during postnatal murine development. Furthermore, they are differentially partitioned between intestinal epithelium and mesenchyme. A significant increase in the protein level of ICK, but not MAK, was induced in human primary colon cancer specimens. ICK protein level was up-regulated whereas MOK protein level was down-regulated in mouse intestinal adenomas as compared with their adjacent normal intestinal mucosa. These data suggest distinct roles for ICK/MAK/MOK protein kinases in the regulation of intestinal neoplasia. Taken together, our findings demonstrate that the expressions of ICK/MAK/MOK proteins in the intestinal tract can be differentially and dynamically regulated, implicating a significant functional diversity within this group of protein kinases.

  4. Trapping a 96° domain rotation in two distinct conformations by engineered disulfide bridges

    PubMed Central

    Schultz-Heienbrok, Robert; Maier, Timm; Sträter, Norbert

    2004-01-01

    Engineering disulfide bridges is a common technique to lock a protein movement in a defined conformational state. We have designed two double mutants of Escherichia coli 5′-nucleotidase to trap the enzyme in both an open (S228C, P513C) and a closed (P90C, L424C) conformation by the formation of disulfide bridges. The mutant proteins have been expressed, purified, and crystallized, to structurally characterize the designed variants. The S228C, P513C is a double mutant crystallized in two different crystal forms with three independent conformers, which differ from each other by a rotation of up to 12° of the C-terminal domain with respect to the N-terminal domain. This finding, as well as an analysis of the domain motion in the crystal, indicates that the enzyme still exhibits considerable residual domain flexibility. In the double mutant that was designed to trap the enzyme in the closed conformation, the structure analysis reveals an unexpected intermediate conformation along the 96° rotation trajectory between the open and closed enzyme forms. A comparison of the five independent conformers analyzed in this study shows that the domain movement of the variant enzymes is characterized by a sliding movement of the residues of the domain interface along the interface, which is in contrast to a classical closure motion where the residues of the domain interface move perpendicular to the interface. PMID:15215524

  5. Distinct domains in Bub1 localize RZZ and BubR1 to kinetochores to regulate the checkpoint

    PubMed Central

    Zhang, Gang; Lischetti, Tiziana; Hayward, Daniel G.; Nilsson, Jakob

    2015-01-01

    The spindle assembly checkpoint (SAC) ensures proper chromosome segregation by delaying anaphase onset in response to unattached kinetochores. Checkpoint signalling requires the kinetochore localization of the Mad1–Mad2 complex that in more complex eukaryotes depends on the Rod–Zwilch–ZW10 (RZZ) complex. The kinetochore protein Zwint has been proposed to be the kinetochore receptor for RZZ, but here we show that Bub1 and not Zwint is required for RZZ recruitment. We find that the middle region of Bub1 encompassing a domain essential for SAC signalling contributes to RZZ localization. In addition, we show that a distinct region in Bub1 mediates kinetochore localization of BubR1 through direct binding, but surprisingly removal of this region increases checkpoint strength. Our work thus uncovers how Bub1 coordinates checkpoint signalling by distinct domains for RZZ and BubR1 recruitment and suggests that Bub1 localizes antagonistic checkpoint activities. PMID:26031201

  6. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    PubMed

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-01-01

    Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical

  7. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    PubMed

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-08-05

    Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical

  8. The mouse one P-domain (pS2) and two P-domain (mSP) genes exhibit distinct patterns of expression

    PubMed Central

    1993-01-01

    We have previously shown that the human pS2 gene, which codes for a secreted peptide of 60 amino acids, is expressed in a number of human carcinomas, including carcinomas of the breast, the pancreas, and the large bowel. Strong pS2 gene expression was also observed in the normal gastric mucosa and in the regenerative tissues surrounding ulcerous lesions of the gastrointestinal tract. A number of pS2 similar peptides, designated as P-domain peptides, have been described, notably the porcine (PSP), murine (mSP), and human (hSP) spasmolytic polypeptides, which correspond to duplicated pS2 proteins. We have now cloned a mouse homolog of the human pS2 cDNA to dispose of an animal model to study the pS2 protein function, which remains unknown at the present time. We show that the mouse putative pS2 protein sequence and the physiological pattern of expression of the mouse pS2 gene are well conserved. The mouse pS2 gene is highly expressed in the stomach mucosa cells, whereas no pS2 gene expression could be detected in the mouse mammary gland, even during postnatal development processes dependent on growth factors or hormones. Using in situ hybridization, we show that although coexpressed in the fundus, the antrum and the antrum-pyloric regions of the stomach, the mouse pS2 and mSP genes exhibit distinct and complementary cellular patterns of expression. PMID:8314841

  9. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution.

    PubMed

    Linkeviciute, Viktorija; Rackham, Owen J L; Gough, Julian; Oates, Matt E; Fang, Hai

    2015-12-01

    To help evaluate how protein function impacts on genome evolution, we introduce a new concept of 'architecture plasticity potential' - the capacity to form distinct domain architectures - both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution.

  10. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution

    PubMed Central

    Linkeviciute, Viktorija; Rackham, Owen J.L.; Gough, Julian; Oates, Matt E.; Fang, Hai

    2015-01-01

    To help evaluate how protein function impacts on genome evolution, we introduce a new concept of ‘architecture plasticity potential’ – the capacity to form distinct domain architectures – both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. PMID:25980317

  11. Structure and Function of CW Domain Containing Proteins.

    PubMed

    Liu, Yanli; Liu, Shasha; Zhang, Xinxin; Liang, Xiao; Zahid, Kashif Rafiq; Liu, Ke; Liu, Jinlin; Deng, Lingfu; Yang, Jihong; Qi, Chao

    2016-01-01

    The CW domain is a zinc binding domain, composed of approximately 50- 60 amino acid residues with four conserved cysteine (C) and two to four conserved tryptophan (W) residues. The members of the superfamily of CW domain containing proteins, comprised of 12 different eukaryotic nuclear protein families, are extensively expressed in vertebrates, vertebrate-infecting parasites and higher plants, where they are often involved in chromatin remodeling, methylation recognition, epigenetic regulation and early embryonic development. Since the first CW domain structure was determined 5 years ago, structures of five CW domains have been solved so far. In this review, we will discuss these recent advances in understanding the identification, definition, structure, and functions of the CW domain containing proteins. PMID:26806410

  12. Further insight into BRUTUS domain composition and functionality

    PubMed Central

    Matthiadis, Anna; Long, Terri A.

    2016-01-01

    ABSTRACT BRUTUS (BTS) is a hemerythrin (HHE) domain containing E3 ligase that facilitates the degradation of POPEYE-like (PYEL) proteins in a proteasomal-dependent manner. Deletion of BTS HHE domains enhances BTS stability in the presence of iron and also complements loss of BTS function, suggesting that the HHE domains are critical for protein stability but not for enzymatic function. The RING E3 domain plays an essential role in BTS' capacity to both interact with PYEL proteins and to act as an E3 ligase. Here we show that removal of the RING domain does not complement loss of BTS function. We conclude that enzymatic activity of BTS via the RING domain is essential for response to iron deficiency in plants. Further, we analyze possible BTS domain structure evolution and predict that the combination of domains found in BTS is specific to photosynthetic organisms, potentially indicative of a role for BTS and its orthologs in mitigating the iron-related challenges presented by photosynthesis. PMID:27359166

  13. Further insight into BRUTUS domain composition and functionality.

    PubMed

    Matthiadis, Anna; Long, Terri A

    2016-08-01

    BRUTUS (BTS) is a hemerythrin (HHE) domain containing E3 ligase that facilitates the degradation of POPEYE-like (PYEL) proteins in a proteasomal-dependent manner. Deletion of BTS HHE domains enhances BTS stability in the presence of iron and also complements loss of BTS function, suggesting that the HHE domains are critical for protein stability but not for enzymatic function. The RING E3 domain plays an essential role in BTS' capacity to both interact with PYEL proteins and to act as an E3 ligase. Here we show that removal of the RING domain does not complement loss of BTS function. We conclude that enzymatic activity of BTS via the RING domain is essential for response to iron deficiency in plants. Further, we analyze possible BTS domain structure evolution and predict that the combination of domains found in BTS is specific to photosynthetic organisms, potentially indicative of a role for BTS and its orthologs in mitigating the iron-related challenges presented by photosynthesis. PMID:27359166

  14. Direct activation and anti-repression functions of GAL4-VP16 use distinct molecular mechanisms.

    PubMed Central

    Lyons, J G; Chambon, P

    1995-01-01

    In order to determine whether the molecular mechanisms used for direct activation by GAL4-VP16 are the same as those used for anti-repression, we have employed monoclonal antibodies specific for the VP16 activation domain. In the absence of added repressors, GAL4-VP16 was able to stimulate transcription from a template containing GAL4-binding sites, and the antibodies raised against the VP16 activation domain failed to inhibit this direct activation. GAL4-VP16 also was able to prevent histone H1-mediated repression by a mechanism that was strongly dependent on the presence of specific GAL4-binding elements in the promoter. However, in contrast to the assays conducted in the absence of repressors, the antibodies were strong inhibitors of GAL4-VP16-activated transcription in the presence of histone H1. Thus the binding of the antibodies distinguished between the direct activation and anti-repression functions of GAL4-VP16, indicating that these functions operate through distinct molecular mechanisms. The anti-repression-specific mechanism that is inhibitable by the antibodies acted at an early stage of preinitiation complex formation. Deletions of individual subdomains of the VP16 activation domain demonstrated that there was not a discrete subdomain responsible for the anti-repression function of GAL4-VP16. Thus, the inhibitory effect of the antibodies appeared to be due to the location of the epitope within the activator protein rather than to some inherent biochemical property of that region of the protein that is required specifically for anti-repression. The inhibitory effect of the antibodies also ruled out the possibility that steric exclusion of repressor proteins from the promoter was the sole means of anti-repression by the transcriptional activator. Images Figure 1 Figure 2 PMID:8554536

  15. Distinct Subunit Domains Govern Synaptic Stability and Specificity of the Kainate Receptor.

    PubMed

    Straub, Christoph; Noam, Yoav; Nomura, Toshihiro; Yamasaki, Miwako; Yan, Dan; Fernandes, Herman B; Zhang, Ping; Howe, James R; Watanabe, Masahiko; Contractor, Anis; Tomita, Susumu

    2016-07-12

    Synaptic communication between neurons requires the precise localization of neurotransmitter receptors to the correct synapse type. Kainate-type glutamate receptors restrict synaptic localization that is determined by the afferent presynaptic connection. The mechanisms that govern this input-specific synaptic localization remain unclear. Here, we examine how subunit composition and specific subunit domains contribute to synaptic localization of kainate receptors. The cytoplasmic domain of the GluK2 low-affinity subunit stabilizes kainate receptors at synapses. In contrast, the extracellular domain of the GluK4/5 high-affinity subunit synergistically controls the synaptic specificity of kainate receptors through interaction with C1q-like proteins. Thus, the input-specific synaptic localization of the native kainate receptor complex involves two mechanisms that underlie specificity and stabilization of the receptor at synapses.

  16. Characterizing Functional Domains for TIM-Mediated Enveloped Virus Entry

    PubMed Central

    Moller-Tank, Sven; Albritton, Lorraine M.; Rennert, Paul D.

    2014-01-01

    ABSTRACT T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral

  17. Morphogenesis of the mouse neural plate depends on distinct roles of cofilin 1 in apical and basal epithelial domains

    PubMed Central

    Grego-Bessa, Joaquim; Hildebrand, Jeffrey; Anderson, Kathryn V.

    2015-01-01

    The genetic control of mammalian epithelial polarity and dynamics can be studied in vivo at cellular resolution during morphogenesis of the mouse neural tube. The mouse neural plate is a simple epithelium that is transformed into a columnar pseudostratified tube over the course of ∼24 h. Apical F-actin is known to be important for neural tube closure, but the precise roles of actin dynamics in the neural epithelium are not known. To determine how the organization of the neural epithelium and neural tube closure are affected when actin dynamics are blocked, we examined the cellular basis of the neural tube closure defect in mouse mutants that lack the actin-severing protein cofilin 1 (CFL1). Although apical localization of the adherens junctions, the Par complex, the Crumbs complex and SHROOM3 is normal in the mutants, CFL1 has at least two distinct functions in the apical and basal domains of the neural plate. Apically, in the absence of CFL1 myosin light chain does not become phosphorylated, indicating that CFL1 is required for the activation of apical actomyosin required for neural tube closure. On the basal side of the neural plate, loss of CFL1 has the opposite effect on myosin: excess F-actin and myosin accumulate and the ectopic myosin light chain is phosphorylated. The basal accumulation of F-actin is associated with the assembly of ectopic basal tight junctions and focal disruptions of the basement membrane, which eventually lead to a breakdown of epithelial organization. PMID:25742799

  18. Shapes of lipid monolayer domains: Solutions using elliptic functions

    NASA Astrophysics Data System (ADS)

    Iwamoto, M.; Liu, F.; Ou-Yang, Z. C.

    2008-09-01

    Solid lipid monolayer domains surrounded by a fluid phase at an air-water interface exhibit complex shapes. These intriguing shapes can be understood in terms of a competition between line tension and long-range dipole-dipole interaction. The dipolar energy has recently been relevant to a negative line tension and a positive curvature energy at the boundary, and a corresponding shape equation was derived by the variation of the approximated domain energy (Phys. Rev. Lett. 93, 206101 (2004)). Here we further incorporate surface pressure into the shape equation and show that the equation can be analytically solved: the curvature of the domain boundary is exactly obtained as an elliptic function of arc-length. We find that a circular domain can grow into bean- and peach-like domains with pressure, i.e., dipping and cuspidal transitions of circle by compression. The comparison with the experimental observation shows nice agreement.

  19. Structural similarities and functional diversity of eukaryotic discoidin-like domains.

    PubMed

    Kiedzierska, A; Smietana, K; Czepczynska, H; Otlewski, J

    2007-09-01

    The discoidin domain is a approximately 150 amino acid motif common in both eukaryotic and prokaryotic proteins. It is found in a variety of extracellular, intracellular and transmembrane multidomain proteins characterized by a considerable functional diversity, mostly involved in developmental processes. The biological role of the domain depends on its interactions with different molecules, including growth factors, phospholipids and lipids, galactose or its derivatives, and collagen. The conservation of the motif, as well as the serious physiological consequences of discoidin domain disorders underscore the importance of the fold, while the ability to accommodate such an extraordinarily broad range of ligand molecules makes it a fascinating research target. In present review we characterize the distinctive features of discoidin domains and briefly outline the biological role of this module in various eukaryotic proteins. PMID:17702679

  20. MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours | Office of Cancer Genomics

    Cancer.gov

    Wilms tumour is an embryonal tumour of childhood that closely resembles the developing kidney. Genomic changes responsible for the development of the majority of Wilms tumours remain largely unknown. Here we identify recurrent mutations within Wilms tumours that involve the highly conserved YEATS domain of MLLT1 (ENL), a gene known to be involved in transcriptional elongation during early development. The mutant MLLT1 protein shows altered binding to acetylated histone tails.

  1. Evolution of a distinct genomic domain in Drosophila: comparative analysis of the dot chromosome in Drosophila melanogaster and Drosophila virilis.

    PubMed

    Leung, Wilson; Shaffer, Christopher D; Cordonnier, Taylor; Wong, Jeannette; Itano, Michelle S; Slawson Tempel, Elizabeth E; Kellmann, Elmer; Desruisseau, David Michael; Cain, Carolyn; Carrasquillo, Robert; Chusak, Tien M; Falkowska, Katazyna; Grim, Kelli D; Guan, Rui; Honeybourne, Jacquelyn; Khan, Sana; Lo, Louis; McGaha, Rebecca; Plunkett, Jevon; Richner, Justin M; Richt, Ryan; Sabin, Leah; Shah, Anita; Sharma, Anushree; Singhal, Sonal; Song, Fine; Swope, Christopher; Wilen, Craig B; Buhler, Jeremy; Mardis, Elaine R; Elgin, Sarah C R

    2010-08-01

    The distal arm of the fourth ("dot") chromosome of Drosophila melanogaster is unusual in that it exhibits an amalgamation of heterochromatic properties (e.g., dense packaging, late replication) and euchromatic properties (e.g., gene density similar to euchromatic domains, replication during polytenization). To examine the evolution of this unusual domain, we undertook a comparative study by generating high-quality sequence data and manually curating gene models for the dot chromosome of D. virilis (Tucson strain 15010-1051.88). Our analysis shows that the dot chromosomes of D. melanogaster and D. virilis have higher repeat density, larger gene size, lower codon bias, and a higher rate of gene rearrangement compared to a reference euchromatic domain. Analysis of eight "wanderer" genes (present in a euchromatic chromosome arm in one species and on the dot chromosome in the other) shows that their characteristics are similar to other genes in the same domain, which suggests that these characteristics are features of the domain and are not required for these genes to function. Comparison of this strain of D. virilis with the strain sequenced by the Drosophila 12 Genomes Consortium (Tucson strain 15010-1051.87) indicates that most genes on the dot are under weak purifying selection. Collectively, despite the heterochromatin-like properties of this domain, genes on the dot evolve to maintain function while being responsive to changes in their local environment.

  2. Recognition of β–Calcineurin by the Domains of Calmodulin: Thermodynamic and Structural Evidence for Distinct Roles †

    PubMed Central

    O’Donnell, Susan E.; Yu, Liping; Fowler, Andrew; Shea, Madeline A.

    2010-01-01

    Calcineurin (CaN, PP2B, PPP3), a heterodimeric Ca2+-calmodulin-dependent Ser/Thr phosphatase, regulates swimming in Paramecia, stress responses in yeast, and T-cell activation and cardiac hypertrophy in humans. Calcium binding to CaNB (the regulatory subunit) triggers conformational change in CaNA (the catalytic subunit). Two isoforms of CaNA (α, β) are both abundant in brain and heart and activated by calcium-saturated calmodulin (CaM). The individual contribution of each domain of CaM to regulation of calcineurin is not known. Hydrodynamic analyses of (Ca2+)4-CaM1-148 bound to βCaNp, a peptide representing its CaM-binding domain, indicated a 1:1 stoichiometry. βCaNp binding to CaM increased the affinity of calcium for the N- and C-domains equally, thus preserving intrinsic domain differences, and the preference of calcium for sites III and IV. The equilibrium constants for individual calcium-saturated CaM domains dissociating from βCaNp were ~1 μM. A limiting Kd ≤ 1 nM was measured directly for full-length CaM, while thermodynamic linkage analysis indicated that it was approximately 1 pM. βCaNp binding to 15N-(Ca2+)4-CaM1-148 monitored by 15N/1HN HSQC NMR showed that association perturbed the N-domain of CaM more than its C-domain. NMR resonance assignments of CaM and βCaNp, and interpretation of intermolecular NOEs observed in the 13C-edited and 12C-14N-filtered 3D NOESY spectrum indicated anti-parallel binding. The sole aromatic residue (Phe) located near the βCaNp C-terminus was in close contact with several residues of the N-domain of CaM outside the hydrophobic cleft. These structural and thermodynamic properties would permit the domains of CaM to have distinct physiological roles in regulating activation of βCaN. PMID:21287611

  3. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation.

    PubMed

    Daub, M; Jöckel, J; Quack, T; Weber, C K; Schmitz, F; Rapp, U R; Wittinghofer, A; Block, C

    1998-11-01

    Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.

  4. Shared and distinct functions of the pseudokinase CORYNE (CRN) in shoot and root stem cell maintenance of Arabidopsis

    PubMed Central

    Somssich, Marc; Bleckmann, Andrea; Simon, Rüdiger

    2016-01-01

    Stem cell maintenance in plants depends on the activity of small secreted signaling peptides of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) family, which, in the shoot, act through at least three kinds of receptor complexes, CLAVATA1 (CLV1) homomers, CLAVATA2 (CLV2) / CORYNE (CRN) heteromers, and CLV1/CLV2/CRN multimers. In the root, the CLV2/CRN receptor complexes function in the proximal meristem to transmit signals from the CLE peptide CLE40. While CLV1 consists of an extracellular receptor domain and an intracellular kinase domain, CLV2, a leucine-rich repeat (LRR) receptor-like protein, and CRN, a protein kinase, have to interact to form a receptor–kinase complex. The kinase domain of CRN has been reported to be catalytically inactive, and it is not yet known how the CLV2/CRN complex can relay the perceived signal into the cells, and whether the kinase domain is necessary for signal transduction at all. In this study we show that the kinase domain of CRN is actively involved in CLV3 signal transduction in the shoot apical meristem of Arabidopsis, but it is dispensable for CRN protein function in root meristem maintenance. Hence, we provide an example of a catalytically inactive pseudokinase that is involved in two homologous pathways, but functions in distinctively different ways in each of them. PMID:27229734

  5. Disgust trait modulates frontal-posterior coupling as a function of disgust domain

    PubMed Central

    de Jong, Peter J.; Renken, Remco J.; Georgiadis, Janniko R.

    2013-01-01

    Following the two-stage model of disgust, ‘core disgust’ (e.g. elicited by rotten food) is extended to stimuli that remind us of our animal nature ‘AR disgust’ (e.g. mutilations, animalistic instincts). There is ample evidence that core and AR represent distinct domains of disgust elicitors. Moreover, people show large differences in their tendency to respond with disgust to potential disgust elicitors (propensity), as well as in their appraisal of experiencing disgust (sensitivity). Thus these traits may be important moderators of people's response patterns. Here, we aimed to find brain mechanisms associated with these distinct disgust domains and traits, as well as the interaction between them. The right ventrolateral occipitotemporal cortex, which preferentially responded to visual AR, was functionally coupled to the middle cingulate cortex (MCC), thalamus and prefrontal cortex (medial, dorsolateral), as a function of disgust domain. Coupling with the anterior part of MCC was modulated by disgust ‘propensity’, which was strongest during AR. Coupling with anterior insula and ventral premotor cortex was weaker, but relied fully on this domain–trait interaction. Disgust ‘sensitivity’ modulated left anterior insula activity irrespective of domain, and did not affect functional connectivity. Thus a frontal-posterior network that interacts with disgust ‘propensity’ dissects AR and core disgust. PMID:22258801

  6. KRAS insertion mutations are oncogenic and exhibit distinct functional properties

    PubMed Central

    White, Yasmine; Bagchi, Aditi; Van Ziffle, Jessica; Inguva, Anagha; Bollag, Gideon; Zhang, Chao; Carias, Heidi; Dickens, David; Loh, Mignon; Shannon, Kevin; Firestone, Ari J.

    2016-01-01

    Oncogenic KRAS mutations introduce discrete amino acid substitutions that reduce intrinsic Ras GTPase activity and confer resistance to GTPase-activating proteins (GAPs). Here we discover a partial duplication of the switch 2 domain of K-Ras encoding a tandem repeat of amino acids G60_A66dup in a child with an atypical myeloproliferative neoplasm. K-Ras proteins containing this tandem duplication or a similar five amino acid E62_A66dup mutation identified in lung and colon cancers transform the growth of primary myeloid progenitors and of Ba/F3 cells. Recombinant K-RasG60_A66dup and K-RasE62_A66dup proteins display reduced intrinsic GTP hydrolysis rates, accumulate in the GTP-bound conformation and are resistant to GAP-mediated GTP hydrolysis. Remarkably, K-Ras proteins with switch 2 insertions are impaired for PI3 kinase binding and Akt activation, and are hypersensitive to MEK inhibition. These studies illuminate a new class of oncogenic KRAS mutations and reveal unexpected plasticity in oncogenic Ras proteins that has diagnostic and therapeutic implications. PMID:26854029

  7. Coordinated and Distinct Functions of Velvet Proteins in Fusarium verticillioides

    PubMed Central

    Lan, Nan; Zhang, Hanxing; Hu, Chengcheng; Wang, Wenzhao; Calvo, Ana M.; Harris, Steven D.; Chen, She

    2014-01-01

    Velvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogen Fusarium verticillioides, previous studies showed that the velvet protein F. verticillioides VE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity. In this study, tandem affinity purification of FvVE1 revealed that FvVE1 can form a complex with the velvet proteins F. verticillioides VelB (FvVelB) and FvVelC. Phenotypic characterization of gene knockout mutants showed that, as in the case of FvVE1, FvVelB regulated conidial size, hyphal hydrophobicity, fumonisin production, and oxidant resistance, while FvVelC was dispensable for these biological processes. Comparative transcriptional analysis of eight genes involved in the ROS (reactive oxygen species) removal system revealed that both FvVE1 and FvVelB positively regulated the transcription of a catalase-encoding gene, F. verticillioides CAT2 (FvCAT2). Deletion of FvCAT2 resulted in reduced oxidant resistance, providing further explanation of the regulation of oxidant resistance by velvet proteins in the fungal kingdom. PMID:24792348

  8. MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours

    PubMed Central

    Perlman, Elizabeth J.; Gadd, Samantha; Arold, Stefan T.; Radhakrishnan, Anand; Gerhard, Daniela S.; Jennings, Lawrence; Huff, Vicki; Guidry Auvil, Jaime M.; Davidsen, Tanja M.; Dome, Jeffrey S.; Meerzaman, Daoud; Hsu, Chih Hao; Nguyen, Cu; Anderson, James; Ma, Yussanne; Mungall, Andrew J.; Moore, Richard A.; Marra, Marco A.; Mullighan, Charles G.; Ma, Jing; Wheeler, David A.; Hampton, Oliver A.; Gastier-Foster, Julie M.; Ross, Nicole; Smith, Malcolm A.

    2015-01-01

    Wilms tumour is an embryonal tumour of childhood that closely resembles the developing kidney. Genomic changes responsible for the development of the majority of Wilms tumours remain largely unknown. Here we identify recurrent mutations within Wilms tumours that involve the highly conserved YEATS domain of MLLT1 (ENL), a gene known to be involved in transcriptional elongation during early development. The mutant MLLT1 protein shows altered binding to acetylated histone tails. Moreover, MLLT1-mutant tumours show an increase in MYC gene expression and HOX dysregulation. Patients with MLLT1-mutant tumours present at a younger age and have a high prevalence of precursor intralobar nephrogenic rests. These data support a model whereby activating MLLT1 mutations early in renal development result in the development of Wilms tumour. PMID:26635203

  9. MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours.

    PubMed

    Perlman, Elizabeth J; Gadd, Samantha; Arold, Stefan T; Radhakrishnan, Anand; Gerhard, Daniela S; Jennings, Lawrence; Huff, Vicki; Guidry Auvil, Jaime M; Davidsen, Tanja M; Dome, Jeffrey S; Meerzaman, Daoud; Hsu, Chih Hao; Nguyen, Cu; Anderson, James; Ma, Yussanne; Mungall, Andrew J; Moore, Richard A; Marra, Marco A; Mullighan, Charles G; Ma, Jing; Wheeler, David A; Hampton, Oliver A; Gastier-Foster, Julie M; Ross, Nicole; Smith, Malcolm A

    2015-01-01

    Wilms tumour is an embryonal tumour of childhood that closely resembles the developing kidney. Genomic changes responsible for the development of the majority of Wilms tumours remain largely unknown. Here we identify recurrent mutations within Wilms tumours that involve the highly conserved YEATS domain of MLLT1 (ENL), a gene known to be involved in transcriptional elongation during early development. The mutant MLLT1 protein shows altered binding to acetylated histone tails. Moreover, MLLT1-mutant tumours show an increase in MYC gene expression and HOX dysregulation. Patients with MLLT1-mutant tumours present at a younger age and have a high prevalence of precursor intralobar nephrogenic rests. These data support a model whereby activating MLLT1 mutations early in renal development result in the development of Wilms tumour.

  10. Intein Clustering Suggests Functional Importance in Different Domains of Life

    PubMed Central

    Novikova, Olga; Jayachandran, Pradeepa; Kelley, Danielle S.; Morton, Zachary; Merwin, Samantha; Topilina, Natalya I.; Belfort, Marlene

    2016-01-01

    Inteins, also called protein introns, are self-splicing mobile elements found in all domains of life. A bioinformatic survey of genomic data highlights a biased distribution of inteins among functional categories of proteins in both bacteria and archaea, with a strong preference for a single network of functions containing replisome proteins. Many nonorthologous, functionally equivalent replicative proteins in bacteria and archaea carry inteins, suggesting a selective retention of inteins in proteins of particular functions across domains of life. Inteins cluster not only in proteins with related roles but also in specific functional units of those proteins, like ATPase domains. This peculiar bias does not fully fit the models describing inteins exclusively as parasitic elements. In such models, evolutionary dynamics of inteins is viewed primarily through their mobility with the intein homing endonuclease (HEN) as the major factor of intein acquisition and loss. Although the HEN is essential for intein invasion and spread in populations, HEN dynamics does not explain the observed biased distribution of inteins among proteins in specific functional categories. We propose that the protein splicing domain of the intein can act as an environmental sensor that adapts to a particular niche and could increase the chance of the intein becoming fixed in a population. We argue that selective retention of some inteins might be beneficial under certain environmental stresses, to act as panic buttons that reversibly inhibit specific networks, consistent with the observed intein distribution. PMID:26609079

  11. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    SciTech Connect

    Liu, Tong; Yu, Rong; Jin, Shao-Bo; Han, Liwei; Lendahl, Urban; Zhao, Jian; Nistér, Monica

    2013-11-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  12. VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System

    PubMed Central

    Cianfanelli, Francesca R.; Alcoforado Diniz, Juliana; Guo, Manman; De Cesare, Virginia; Trost, Matthias; Coulthurst, Sarah J.

    2016-01-01

    The Type VI secretion system (T6SS) is widespread among bacterial pathogens and acts as an effective weapon against competitor bacteria and eukaryotic hosts by delivering toxic effector proteins directly into target cells. The T6SS utilises a bacteriophage-like contractile machinery to expel a puncturing device based on a tube of Hcp topped with a VgrG spike, which can be extended by a final tip from a PAAR domain-containing protein. Effector proteins are believed to be delivered by specifically associating with particular Hcp, VgrG or PAAR proteins, either covalently (‘specialised’) or non-covalently (‘cargo’ effectors). Here we used the T6SS of the opportunistic pathogen Serratia marcescens, together with integratecd genetic, proteomic and biochemical approaches, to elucidate the role of specific VgrG and PAAR homologues in T6SS function and effector specificity, revealing new aspects and unexpected subtleties in effector delivery by the T6SS. We identified effectors, both cargo and specialised, absolutely dependent on a particular VgrG for delivery to target cells, and discovered that other cargo effectors can show a preference for a particular VgrG. The presence of at least one PAAR protein was found to be essential for T6SS function, consistent with designation as a ‘core’ T6SS component. We showed that specific VgrG-PAAR combinations are required to assemble a functional T6SS and that the three distinct VgrG-PAAR assemblies in S. marcescens exhibit distinct effector specificity and efficiency. Unexpectedly, we discovered that two different PAAR-containing Rhs proteins can functionally pair with the same VgrG protein. Showing that accessory EagR proteins are involved in these interactions, native VgrG-Rhs-EagR complexes were isolated and specific interactions between EagR and cognate Rhs proteins identified. This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the

  13. Tryptophan Scanning Mutagenesis Identifies the Molecular Determinants of Distinct Barttin Functions.

    PubMed

    Wojciechowski, Daniel; Fischer, Martin; Fahlke, Christoph

    2015-07-24

    CLC-K chloride channels are expressed in the kidney and in the inner ear and require the accessory subunit barttin for proper function and membrane insertion. Barttin exerts multiple functions on CLC-proteins: it modifies protein stability and intracellular trafficking as well as channel activity, ion conduction, and gating. So far, the molecular determinants of these distinct barttin functions have remained elusive. Here we performed serial perturbation mutagenesis to identify the sequence determinants of barttin function. Barttin consists of two transmembrane helices followed by a long intracellular carboxyl terminus, and earlier work demonstrated that the transmembrane core of barttin suffices for most effects on the α-subunit. We individually substituted every amino acid of the predicted transmembrane core (amino acids 9-26 and 35-55) with tryptophan, co-expressed mutant barttin with hClC-Ka or V166E rClC-K1, and characterized CLC-K/barttin channels by patch clamp techniques, biochemistry, and confocal microscopy. The majority of mutations left the chaperone function of barttin, i.e. the effects on endoplasmic reticulum exit and surface membrane insertion, unaffected. In contrast, tryptophan insertion at multiple positions resulted in impaired activity of hClC-Ka/barttin and changes in gating of V166E rClC-K1/barttin. These results demonstrate that mutations in a cluster of hydrophobic residues within transmembrane domain 1 affect barttin-CLC-K interaction and impair gating modification by the accessory subunit. Whereas tight interaction is necessary for functional modification, even impaired association of barttin and CLC-K suffices for normal intracellular trafficking. Our findings allow definition of a likely interaction surface and clarify the mechanisms underlying CLC-K channel modification by barttin. PMID:26063802

  14. Phylogeography of Y-Chromosome Haplogroup I Reveals Distinct Domains of Prehistoric Gene Flow in Europe

    PubMed Central

    Rootsi, Siiri; Magri, Chiara; Kivisild, Toomas; Benuzzi, Giorgia; Help, Hela; Bermisheva, Marina; Kutuev, Ildus; Barać, Lovorka; Peričić, Marijana; Balanovsky, Oleg; Pshenichnov, Andrey; Dion, Daniel; Grobei, Monica; Zhivotovsky, Lev A.; Battaglia, Vincenza; Achilli, Alessandro; Al-Zahery, Nadia; Parik, Jüri; King, Roy; Cinnioğlu, Cengiz; Khusnutdinova, Elsa; Rudan, Pavao; Balanovska, Elena; Scheffrahn, Wolfgang; Simonescu, Maya; Brehm, Antonio; Goncalves, Rita; Rosa, Alexandra; Moisan, Jean-Paul; Chaventre, Andre; Ferak, Vladimir; Füredi, Sandor; Oefner, Peter J.; Shen, Peidong; Beckman, Lars; Mikerezi, Ilia; Terzić, Rifet; Primorac, Dragan; Cambon-Thomsen, Anne; Krumina, Astrida; Torroni, Antonio; Underhill, Peter A.; Santachiara-Benerecetti, A. Silvana; Villems, Richard; Semino, Ornella

    2004-01-01

    To investigate which aspects of contemporary human Y-chromosome variation in Europe are characteristic of primary colonization, late-glacial expansions from refuge areas, Neolithic dispersals, or more recent events of gene flow, we have analyzed, in detail, haplogroup I (Hg I), the only major clade of the Y phylogeny that is widespread over Europe but virtually absent elsewhere. The analysis of 1,104 Hg I Y chromosomes, which were identified in the survey of 7,574 males from 60 population samples, revealed several subclades with distinct geographic distributions. Subclade I1a accounts for most of Hg I in Scandinavia, with a rapidly decreasing frequency toward both the East European Plain and the Atlantic fringe, but microsatellite diversity reveals that France could be the source region of the early spread of both I1a and the less common I1c. Also, I1b*, which extends from the eastern Adriatic to eastern Europe and declines noticeably toward the southern Balkans and abruptly toward the periphery of northern Italy, probably diffused after the Last Glacial Maximum from a homeland in eastern Europe or the Balkans. In contrast, I1b2 most likely arose in southern France/Iberia. Similarly to the other subclades, it underwent a postglacial expansion and marked the human colonization of Sardinia ∼9,000 years ago. PMID:15162323

  15. Functional diversification of hsp40: distinct j-protein functional requirements for two prions allow for chaperone-dependent prion selection.

    PubMed

    Harris, Julia M; Nguyen, Phil P; Patel, Milan J; Sporn, Zachary A; Hines, Justin K

    2014-07-01

    Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or 'strains'. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI+] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI+] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ+] prion propagation. In contrast, weak [PSI+] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ+] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI+]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI+]/[RNQ+] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI+] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have

  16. Dissociated phenotypes in presenilin transgenic mice define functionally distinct γ-secretases

    PubMed Central

    Mastrangelo, Peter; Mathews, Paul M.; Chishti, M. Azhar; Schmidt, Stephen D.; Gu, Yongjun; Yang, Jing; Mazzella, Matthew J.; Coomaraswamy, Janaky; Horne, Patrick; Strome, Bob; Pelly, Heather; Levesque, Georges; Ebeling, Chris; Jiang, Ying; Nixon, Ralph A.; Rozmahel, Richard; Fraser, Paul E.; George-Hyslop, Peter St; Carlson, George A.; Westaway, David

    2005-01-01

    γ-secretase depends on presence of presenilins (PS), Nct, Aph-1, and PEN-2 within a core complex. This endoproteolytic activity cleaves within transmembrane domains of amyloid-β precursor protein (APP) and Notch, and familial Alzheimer's disease (FAD) mutations in PS1 or PS2 genes shift APP cleavage from production of amyloid-β (Aβ) 40 peptide to greater production of Aβ42. Although studies in PS1/PS2-deficient embryonic cells define overlapping activities for these proteins, in vivo complementation of PS1-deficient animals described here reveals an unexpected spectrum of activities dictated by PS1 and PS2 alleles. Unlike PS1 transgenes, wild-type PS2 transgenes expressed in the mouse CNS support little Aβ40 or Aβ42 production, and FAD PS2 alleles support robust production of only Aβ42. Although wild-type PS2 transgenes failed to rescue Notch-associated skeletal defects in PS1 hypomorphs, a “gained” competence in this regard was apparent for FAD alleles of PS2. The range of discrete and divergent processing activities in mice reconstituted with different PS genes and alleles argues against γ-secretase being a single enzyme with intrinsically relaxed substrate and cleavage site specificities. Instead, our studies define functionally distinct γ-secretase variants. We speculate that extrinsic components, in combination with core complexes, may tailor functional variants of this enzyme to their preferred substrates. PMID:15951428

  17. Functional distinctness in the exoproteomes of marine S ynechococcus

    PubMed Central

    Armengaud, Jean; Guerin, Philippe; Scanlan, David J.

    2015-01-01

    Summary The exported protein fraction of an organism may reflect its life strategy and, ultimately, the way it is perceived by the outside world. Bioinformatic prediction of the exported pan‐proteome of P rochlorococcus and S ynechococcus lineages demonstrated that (i) this fraction of the encoded proteome had a much higher incidence of lineage‐specific proteins than the cytosolic fraction (57% and 73% homologue incidence respectively) and (ii) exported proteins are largely uncharacterized to date (54%) compared with proteins from the cytosolic fraction (35%). This suggests that the genomic and functional diversity of these organisms lies largely in the diverse pool of novel functions these organisms export to/through their membranes playing a key role in community diversification, e.g. for niche partitioning or evading predation. Experimental exoproteome analysis of marine S ynechococcus showed transport systems for inorganic nutrients, an interesting array of strain‐specific exoproteins involved in mutualistic or hostile interactions (i.e. hemolysins, pilins, adhesins), and exoenzymes with a potential mixotrophic goal (i.e. exoproteases and chitinases). We also show how these organisms can remodel their exoproteome, i.e. by increasing the repertoire of interaction proteins when grown in the presence of a heterotroph or decrease exposure to prey when grown in the dark. Finally, our data indicate that heterotrophic bacteria can feed on the exoproteome of S ynechococcus. PMID:25727668

  18. Dynamic functional integration of distinct neural empathy systems

    PubMed Central

    2014-01-01

    Recent evidence points to two separate systems for empathy: a vicarious sharing emotional system that supports our ability to share emotions and mental states and a cognitive system that involves cognitive understanding of the perspective of others. Several recent models offer new evidence regarding the brain regions involved in these systems, but no study till date has examined how regions within each system dynamically interact. The study by Raz et al. in this issue of Social, Cognitive, & Affective Neuroscience is among the first to use a novel approach of functional magnetic resonance imaging analysis of fluctuations in network cohesion while an individual is experiencing empathy. Their results substantiate the approach positing two empathy mechanisms and, more broadly, demonstrate how dynamic analysis of emotions can further our understanding of social behavior. PMID:23956080

  19. Dynamic functional integration of distinct neural empathy systems.

    PubMed

    Shamay-Tsoory, Simone G

    2014-01-01

    Recent evidence points to two separate systems for empathy: a vicarious sharing emotional system that supports our ability to share emotions and mental states and a cognitive system that involves cognitive understanding of the perspective of others. Several recent models offer new evidence regarding the brain regions involved in these systems, but no study till date has examined how regions within each system dynamically interact. The study by Raz et al. in this issue of Social, Cognitive, & Affective Neuroscience is among the first to use a novel approach of functional magnetic resonance imaging analysis of fluctuations in network cohesion while an individual is experiencing empathy. Their results substantiate the approach positing two empathy mechanisms and, more broadly, demonstrate how dynamic analysis of emotions can further our understanding of social behavior. PMID:23956080

  20. Mapping a kingdom-specific functional domain of squalene synthase.

    PubMed

    Linscott, Kristin B; Niehaus, Thomas D; Zhuang, Xun; Bell, Stephen A; Chappell, Joe

    2016-09-01

    Squalene synthase catalyzes the first committed step in sterol biosynthesis and consists of both an amino-terminal catalytic domain and a carboxy-terminal domain tethering the enzyme to the ER membrane. While the overall architecture of this enzyme is identical in eukaryotes, it was previously shown that plant and animal genes cannot complement a squalene synthase knockout mutation in yeast unless the carboxy-terminal domain is swapped for one of fungal origin. This implied a unique component of the fungal carboxy-terminal domain was responsible for the complementation phenotype. To identify this motif, we used Saccharomyces cerevisiae with a squalene synthase knockout mutation, and expressed intact and chimeric squalene synthases originating from fungi, plants, and animals. In contrast to previous observations, all enzymes tested could partially complement the knockout mutation when the genes were weakly expressed. However, when highly expressed, non-fungal squalene synthases could not complement the yeast mutation and instead led to the accumulation of a toxic intermediate(s) as defined by mutations of genes downstream in the ergosterol pathway. Restoration of the complete complementation phenotype was mapped to a 26-amino acid hinge region linking the catalytic and membrane-spanning domains specific to fungal squalene synthases. Over-expression of the C-terminal domain containing a hinge domain from fungi, not from animals or plants, led to growth inhibition of wild-type yeast. Because this hinge region is unique to and highly conserved within each kingdom of life, the data suggests that the hinge domain plays an essential functional role, such as assembly of ergosterol multi-enzyme complexes in fungi.

  1. Evidence of distinct contaminant transport patterns in rivers using tracer tests and a multiple domain retention model

    NASA Astrophysics Data System (ADS)

    Bottacin-Busolin, Andrea; Marion, Andrea; Musner, Tommaso; Tregnaghi, Matteo; Zaramella, Mattia

    2011-06-01

    Solute transport in rivers is controlled by surface hydrodynamics and by mass exchanges with distinct retention zones. Surface and hyporheic retention processes can be accounted for separately in solute transport models with multiple storage compartments. In the simplest two component model, short term storage can be associated to in-channel transient retention, e.g. produced by riparian vegetation or surface dead zones, and the long-term storage can be associated to hyporheic exchange. The STIR (Solute Transport In Rivers) multiple domain transport model is applied here to tracer test data from three very different Mediterranean streams with distinctive characteristics in terms of flow discharge, vegetation and substrate material. The model is used with an exponential residence time distribution (RTD) to represent surface storage processes and two distinct modeling closures are tested to simulate hyporheic retention: a second exponential RTD and a power-law distribution approximating a known solution for bedform-induced hyporheic exchange. Each stream shows distinct retention patterns characterized by different timescales of the storage time distribution. Both modeling closures lead to very good approximations of the observed breakthrough curves in the two rivers with permeable bed exposed to the flow, where hyporheic flows are expected to occur. In the one case where the occurrence of hyporheic flows is inhibited by bottom vegetation, only the two exponential RTD model is acceptable and the time scales of the two components are of the same magnitude. The significant finding of this work is the recognition of a strong signature of the river properties on tracer data and the evidence of the ability of multiple-component models to describe individual stream responses. This evidence may open a new perspective in river contamination studies, where rivers could possibly be classified based on their ability to trap and release pollutants.

  2. Distinct functional determinants of influenza hemagglutinin-mediated membrane fusion

    PubMed Central

    Ivanovic, Tijana; Harrison, Stephen C

    2015-01-01

    Membrane fusion is the critical step for infectious cell penetration by enveloped viruses. We have previously used single-virion measurements of fusion kinetics to study the molecular mechanism of influenza-virus envelope fusion. Published data on fusion inhibition by antibodies to the 'stem' of influenza virus hemagglutinin (HA) now allow us to incorporate into simulations the provision that some HAs are inactive. We find that more than half of the HAs are unproductive even for virions with no bound antibodies, but that the overall mechanism is extremely robust. Determining the fraction of competent HAs allows us to determine their rates of target-membrane engagement. Comparison of simulations with data from H3N2 and H1N1 viruses reveals three independent functional variables of HA-mediated membrane fusion closely linked to neutralization susceptibility. Evidence for compensatory changes in the evolved mechanism sets the stage for studies aiming to define the molecular constraints on HA evolvability. DOI: http://dx.doi.org/10.7554/eLife.11009.001 PMID:26613408

  3. Clarifying the Nature of the Distinctiveness by Domain Interaction in Conceptual Structure: Comment on Cree, McNorgan, and McRae (2006)

    ERIC Educational Resources Information Center

    Taylor, Kirsten I.; Salamoura, Angeliki; Randall, Billi; Moss, Helen; Tyler, Lorraine K.

    2008-01-01

    The conceptual structure account of semantic memory (CSA; L. K. Tyler & H. E. Moss, 2001) claims that feature correlation (the degree to which features co-occur) and feature distinctiveness (the number of concepts in which a feature occurs) interact with domains of knowledge (e.g., living vs. nonliving) such that the distinctive features of…

  4. BRI2 and BRI3 are functionally distinct phosphoproteins.

    PubMed

    Martins, Filipa; Rebelo, Sandra; Santos, Mariana; Cotrim, Cândida Zita; da Cruz e Silva, Edgar F; da Cruz e Silva, Odete A B

    2016-01-01

    Three BRI protein family members have been identified. Among these are BRI3 and BRI2, the latter is associated with Familial Danish and Familial British dementias. 'In silico' sequence analysis identified putative PP1 binding sites in BRI2 and BRI3. This is singularly important, given that protein phosphorylation is a major mechanism regulating intracellular processes. Protein phosphatase 1 (PP1) interacting proteins (PIPs) are fundamental in determining substrate specificity and subcellular localization of this phosphatase. More than 200 PIPs have thus far been reported. Both BRI2 and BRI3 are type II transmembrane glycoproteins relevant in neuronal systems. Using Myc-BRI2 and Myc-BRI3, wild type and PP1 binding mutant constructs, it was possible to show, for the first time, that in fact BRI2 and BRI3 bind PP1. The complexes BRI2:PP1 and BRI3:PP1 were validated in vitro and in vivo. The subcellular distribution of BRI2 and BRI3 is similar; both localize to the perinuclear area and Golgi apparatus in non-neuronal cells. However, in SH-SY5Y cells, BRI2 and BRI3 could also be detected in elongated cellular projections ('processes') and in rat cortical neurons both are broadly distributed throughout the cell body, neuritis and the nucleus. Consistently, co-localization of BRI2 and BRI3 with PP1 was evident. The functional significance of these complexes is apparent given that both BRI proteins are substrates of PP1, thus simultaneously this is the first report of BRI2 and BRI3 as phosphoproteins. Moreover, we show that when BRI2 is phosphorylated a significant increase in neuronal outgrowth and differentiation is evident. Interestingly, the Alzheimer's amyloid precursor protein (APP), forms a trimeric complex composed of PP1 and Fe65, with PP1 having the capacity to dephosphorylate APP at Thr668 residue. The emerging consensus appears to be that PP1 containing complexes are crucial in regulating signaling events underlying neuropathological conditions.

  5. BRI2 and BRI3 are functionally distinct phosphoproteins.

    PubMed

    Martins, Filipa; Rebelo, Sandra; Santos, Mariana; Cotrim, Cândida Zita; da Cruz e Silva, Edgar F; da Cruz e Silva, Odete A B

    2016-01-01

    Three BRI protein family members have been identified. Among these are BRI3 and BRI2, the latter is associated with Familial Danish and Familial British dementias. 'In silico' sequence analysis identified putative PP1 binding sites in BRI2 and BRI3. This is singularly important, given that protein phosphorylation is a major mechanism regulating intracellular processes. Protein phosphatase 1 (PP1) interacting proteins (PIPs) are fundamental in determining substrate specificity and subcellular localization of this phosphatase. More than 200 PIPs have thus far been reported. Both BRI2 and BRI3 are type II transmembrane glycoproteins relevant in neuronal systems. Using Myc-BRI2 and Myc-BRI3, wild type and PP1 binding mutant constructs, it was possible to show, for the first time, that in fact BRI2 and BRI3 bind PP1. The complexes BRI2:PP1 and BRI3:PP1 were validated in vitro and in vivo. The subcellular distribution of BRI2 and BRI3 is similar; both localize to the perinuclear area and Golgi apparatus in non-neuronal cells. However, in SH-SY5Y cells, BRI2 and BRI3 could also be detected in elongated cellular projections ('processes') and in rat cortical neurons both are broadly distributed throughout the cell body, neuritis and the nucleus. Consistently, co-localization of BRI2 and BRI3 with PP1 was evident. The functional significance of these complexes is apparent given that both BRI proteins are substrates of PP1, thus simultaneously this is the first report of BRI2 and BRI3 as phosphoproteins. Moreover, we show that when BRI2 is phosphorylated a significant increase in neuronal outgrowth and differentiation is evident. Interestingly, the Alzheimer's amyloid precursor protein (APP), forms a trimeric complex composed of PP1 and Fe65, with PP1 having the capacity to dephosphorylate APP at Thr668 residue. The emerging consensus appears to be that PP1 containing complexes are crucial in regulating signaling events underlying neuropathological conditions. PMID:26515131

  6. Distinct structural domains of caveolin-1 independently regulate Ca2+ release-activated Ca2+ channels and Ca2+ microdomain-dependent gene expression.

    PubMed

    Yeh, Yi-Chun; Parekh, Anant B

    2015-04-01

    In eukaryotic cells, calcium entry across the cell surface activates nuclear gene expression, a process critically important for cell growth and differentiation, learning, and memory and immune cell functions. In immune cells, calcium entry occurs through store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels, comprised of STIM1 and Orai1 proteins. Local calcium entry through CRAC channels activates expression of c-fos- and nuclear factor of activated T cells (NFAT)-dependent genes. Although c-fos and NFAT often interact to activate gene expression synergistically, they can be activated independently of one another to regulate distinct genes. This raises the question of how one transcription factor can be activated and not the other when both are stimulated by the same trigger. Here, we show that the lipid raft scaffolding protein caveolin-1 interacts with the STIM1-Orai1 complex to increase channel activity. Phosphorylation of tyrosine 14 on caveolin-1 regulates CRAC channel-evoked c-fos activation without impacting the NFAT pathway or Orai1 activity. Our results reveal that structurally distinct domains of caveolin-1 selectively regulate the ability of local calcium to activate distinct transcription factors. More generally, our findings reveal that modular regulation by a scaffolding protein provides a simple, yet effective, mechanism to tunnel a local signal down a specific pathway. PMID:25645930

  7. Functional and topological diversity of LOV domain photoreceptors.

    PubMed

    Glantz, Spencer T; Carpenter, Eric J; Melkonian, Michael; Gardner, Kevin H; Boyden, Edward S; Wong, Gane Ka-Shu; Chow, Brian Y

    2016-03-15

    Light-oxygen-voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor-effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor-effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor-effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure-function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and optogenetics.

  8. Functional and topological diversity of LOV domain photoreceptors

    PubMed Central

    Glantz, Spencer T.; Carpenter, Eric J.; Melkonian, Michael; Boyden, Edward S.; Wong, Gane Ka-Shu; Chow, Brian Y.

    2016-01-01

    Light–oxygen–voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor–effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor–effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor–effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure–function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and

  9. Functional and topological diversity of LOV domain photoreceptors.

    PubMed

    Glantz, Spencer T; Carpenter, Eric J; Melkonian, Michael; Gardner, Kevin H; Boyden, Edward S; Wong, Gane Ka-Shu; Chow, Brian Y

    2016-03-15

    Light-oxygen-voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor-effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor-effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor-effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure-function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and optogenetics

  10. Concurrent Vaccination with two distinct vaccine platforms targeting the same antigen generates phenotypically and functionally distinct T-cell populations

    PubMed Central

    Boehm, Amanda L.; Higgins, Jack; Franzusoff, Alex; Schlom, Jeffrey; Hodge, James W.

    2009-01-01

    Purpose Studies comparing two or more vaccine platforms have historically evaluated each platform based on its ability to induce an immune response and may conclude that one vaccine is more efficacious than the other(s), leading to a recommendation for development of the more effective vaccine for clinical studies. Alternatively, these studies have documented the advantages of a diversified prime and boost regimen due to amplification of the antigen-specific T-cell population. We hypothesize here that two vaccine platforms targeting the same antigen might induce shared and distinct antigen-specific T-cell populations, and examined the possibility that two distinct vaccines could be used concomitantly. Experimental design Using recombinant poxvirus and yeast vaccines, we compared the T-cell populations induced by these two platforms in terms of serum cytokine response, T-cell gene expression, T-cell receptor phenotype, antigen-specific cytokine expression, T-cell avidity, and T-cell antigen-specific tumor cell lysis. Results These studies demonstrate for the first time that vaccination with a recombinant poxvirus platform (rV/F-CEA/TRICOM) or a heat-killed yeast vaccine platform (yeast-CEA) elicits T-cell populations with both shared and unique phenotypic and functional characteristics. Furthermore, both the antigen and the vector play a role in the induction of distinct T-cell populations. Conclusions In this study, we demonstrate that concurrent administration of two vaccines targeting the same antigen induces a more diverse T-cell population that leads to enhanced antitumor efficacy. These studies provide the rationale for future clinical studies investigating concurrent administration of vaccine platforms targeting a single antigen to enhance the antigen-specific immune response. PMID:19756595

  11. Structural and Functional Dissection of the Abp1 ADFH Actin-binding Domain Reveals Versatile In Vivo Adapter Functions

    SciTech Connect

    Quintero-Monzon,O.; Rodal, A.; Strokopytov, B.; Almo, S.; Goode, B.

    2005-01-01

    Abp1 is a multidomain protein that regulates the Arp2/3 complex and links proteins involved in endocytosis to the actin cytoskeleton. All of the proposed cellular functions of Abp1 involve actin filament binding, yet the actin binding site(s) on Abp1 have not been identified, nor has the importance of actin binding for Abp1 localization and function in vivo been tested. Here, we report the crystal structure of the Saccharomyces cerevisiae Abp1 actin-binding actin depolymerizing factor homology (ADFH) domain and dissect its activities by mutagenesis. Abp1-ADFH domain and ADF/cofilin structures are similar, and they use conserved surfaces to bind actin; however, there are also key differences that help explain their differential effects on actin dynamics. Using point mutations, we demonstrate that actin binding is required for localization of Abp1 in vivo, the lethality caused by Abp1 overexpression, and the ability of Abp1 to activate Arp2/3 complex. Furthermore, we genetically uncouple ABP1 functions that overlap with SAC6, SLA1, and SLA2, showing they require distinct combinations of activities and interactions. Together, our data provide the first structural and functional view of the Abp1-actin interaction and show that Abp1 has distinct cellular roles as an adapter, linking different sets of ligands for each function.

  12. From shared to distinct self-other representations in empathy: evidence from neurotypical function and socio-cognitive disorders.

    PubMed

    Lamm, C; Bukowski, H; Silani, G

    2016-01-19

    Neuroscientific research has identified two fundamental components of empathy: shared emotional representations between self and other, and self-other distinction. The concept of shared representations suggests that during empathy, we co-represent another person's affect by engaging brain and bodily functions underpinning the first-hand experience of the emotion we are empathizing with. This possible grounding of empathy in our own emotional experiences explains the necessity for self-other distinction, which is the capacity to correctly distinguish between our own affective representations and those related to the other. In spite of the importance of these two components in empathy, several aspects still remain controversial. This paper addresses some of them and focuses on (i) the distinction between shared activations versus representations, raising the question what shared representations entail in terms of the underlying neural mechanisms, (ii) the possible mechanisms behind self-other distinction in the cognitive and the affective domains, and whether they have distinct neural underpinnings and (iii) the consequences associated with a selective impairment of one of the two components, thereby addressing their importance in mental disorders such as autism spectrum disorders, psychopathy and alexithymia.

  13. Identification of distinct biological functions for four 3′-5′ RNA polymerases

    PubMed Central

    Long, Yicheng; Abad, Maria G.; Olson, Erik D.; Carrillo, Elisabeth Y.; Jackman, Jane E.

    2016-01-01

    The superfamily of 3′-5′ polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNAHis guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNAHis maturation reaction, which is distinct from the tRNAHis maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5′-editing in vivo and in vitro, establishing template-dependent 3′-5′ polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3′-5′ polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3′-5′ polymerases in eukaryotes. PMID:27484477

  14. Identification of distinct biological functions for four 3'-5' RNA polymerases.

    PubMed

    Long, Yicheng; Abad, Maria G; Olson, Erik D; Carrillo, Elisabeth Y; Jackman, Jane E

    2016-09-30

    The superfamily of 3'-5' polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNA(His) guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNA(His) maturation reaction, which is distinct from the tRNA(His) maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5'-editing in vivo and in vitro, establishing template-dependent 3'-5' polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3'-5' polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3'-5' polymerases in eukaryotes.

  15. The IRBIT domain adds new functions to the AHCY family.

    PubMed

    Devogelaere, Benoit; Sammels, Eva; De Smedt, Humbert

    2008-07-01

    During the past few years, the IRBIT domain has emerged as an important add-on of S-adenosyl-L-homocystein hydrolase (AHCY), thereby creating the new family of AHCY-like proteins. In this review, we discuss the currently available data on this new family of proteins. We describe the IRBIT domain as a unique part of these proteins and give an overview of its regulation via (de)phosphorylation and proteolysis. The second part of this review is focused on the potential functions of the AHCY-like proteins. We propose that the IRBIT domain serves as an anchor for targeting AHCY-like proteins towards cytoplasmic targets. This leads to regulation of (i) intracellular Ca2+ via the inositol 1,4,5-trisphosphate receptor (IP3R), (ii) intracellular pH via the Na+/HCO3 - cotransporters (NBCs); whereas inactivation of the IRBIT domain induces (iii) nuclear translocation and regulation of AHCY activity. Dysfunction of AHCY-like proteins will disturb these three important functions, with various biological implications. PMID:18536033

  16. The IRBIT domain adds new functions to the AHCY family.

    PubMed

    Devogelaere, Benoit; Sammels, Eva; De Smedt, Humbert

    2008-07-01

    During the past few years, the IRBIT domain has emerged as an important add-on of S-adenosyl-L-homocystein hydrolase (AHCY), thereby creating the new family of AHCY-like proteins. In this review, we discuss the currently available data on this new family of proteins. We describe the IRBIT domain as a unique part of these proteins and give an overview of its regulation via (de)phosphorylation and proteolysis. The second part of this review is focused on the potential functions of the AHCY-like proteins. We propose that the IRBIT domain serves as an anchor for targeting AHCY-like proteins towards cytoplasmic targets. This leads to regulation of (i) intracellular Ca2+ via the inositol 1,4,5-trisphosphate receptor (IP3R), (ii) intracellular pH via the Na+/HCO3 - cotransporters (NBCs); whereas inactivation of the IRBIT domain induces (iii) nuclear translocation and regulation of AHCY activity. Dysfunction of AHCY-like proteins will disturb these three important functions, with various biological implications.

  17. Distinct pharmacology of rat and human histamine H3 receptors: role of two amino acids in the third transmembrane domain

    PubMed Central

    Ligneau, X; Morisset, S; Tardivel-Lacombe, J; Gbahou, F; Ganellin, C R; Stark, H; Schunack, W; Schwartz, J -C; Arrang, J -M

    2000-01-01

    Starting from the sequence of the human histamine H3 receptor (hH3R) cDNA, we have cloned the corresponding rat cDNA. Whereas the two deduced proteins show 93.5% overall homology and differ only by five amino acid residues at the level of the transmembrane domains (TMs), some ligands displayed distinct affinities. Thioperamide and ciproxifan were about 10 fold more potent at the rat than at the human receptor, whereas FUB 349 displayed a reverse preference. Histamine, (R)α-methylhistamine, proxyfan or clobenpropit were nearly equipotent at H3 receptors of both species. The inverse discrimination patterns of ciproxifan and FUB 349 were partially changed by mutation of one amino acid (V122A), and fully abolished by mutation of two amino acids (A119T and V122A), in TM3 of the rH3R located in the vicinity of Asp114 purported to salt-link the ammonium group of histamine. Therefore, these two residues appear to be responsible for the distinct pharmacology of the H3R in the two species. PMID:11090094

  18. Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors

    PubMed Central

    Hopf, Thomas A.; Morinaga, Satoshi; Ihara, Sayoko; Touhara, Kazushige; Marks, Debora S.; Benton, Richard

    2015-01-01

    Insect Odorant Receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection. PMID:25584517

  19. Massively Parallel Functional Analysis of BRCA1 RING Domain Variants

    PubMed Central

    Starita, Lea M.; Young, David L.; Islam, Muhtadi; Kitzman, Jacob O.; Gullingsrud, Justin; Hause, Ronald J.; Fowler, Douglas M.; Parvin, Jeffrey D.; Shendure, Jay; Fields, Stanley

    2015-01-01

    Interpreting variants of uncertain significance (VUS) is a central challenge in medical genetics. One approach is to experimentally measure the functional consequences of VUS, but to date this approach has been post hoc and low throughput. Here we use massively parallel assays to measure the effects of nearly 2000 missense substitutions in the RING domain of BRCA1 on its E3 ubiquitin ligase activity and its binding to the BARD1 RING domain. From the resulting scores, we generate a model to predict the capacities of full-length BRCA1 variants to support homology-directed DNA repair, the essential role of BRCA1 in tumor suppression, and show that it outperforms widely used biological-effect prediction algorithms. We envision that massively parallel functional assays may facilitate the prospective interpretation of variants observed in clinical sequencing. PMID:25823446

  20. Photonic-crystal time-domain simulations using Wannier functions.

    PubMed

    Blum, Christian; Wolff, Christian; Busch, Kurt

    2011-01-15

    We present a Wannier-function-based time-domain method for photonic-crystal integrated optical circuits. In contrast to other approaches, this method allows one to trade CPU time against memory consumption and therefore is particularly well suited for the treatment of large-scale systems. As an illustration, we apply the method to the design of a photonic-crystal-based sensor, which utilizes a dual Mach-Zehnder-Fano interferometer. PMID:21263535

  1. Structural Basis and Function of XRN2-Binding by XTB Domains

    PubMed Central

    Richter, Hannes; Katic, Iskra; Gut, Heinz; Großhans, Helge

    2016-01-01

    The ribonuclease XRN2 is an essential player in RNA metabolism. In Caenorhabditis elegans, XRN2 functions with PAXT-1, which shares a putative XRN2-binding domain (XTBD) with otherwise unrelated mammalian proteins. Here, we characterize structure and function of an XTBD – XRN2 complex. Although XTBD stably interconnects two XRN2 domains through numerous interacting residues, mutation of a single critical residue suffices to disrupt XTBD – XRN2 complexes in vitro, and recapitulates paxt-1 null mutant phenotypes in vivo. Demonstrating conservation of function, vertebrate XTBD-containing proteins bind XRN2 in vitro, and human CDKN2AIPNL (C2AIL) can substitute for PAXT-1 in vivo. In vertebrates, where three distinct XTBD-containing proteins exist, XRN2 may partition to distinct stable heterodimeric complexes, likely differing in subcellular localization or function. In C. elegans, complex formation with the unique PAXT-1 serves to preserve the stability of XRN2 in the absence of substrate. PMID:26779609

  2. Crystal Structure of a Functional Dimer of the PhoQ Sensor Domain

    SciTech Connect

    Cheung, J.; Bingman, C; Reyngold, M; Hendrickson, W; Waldburger, C

    2008-01-01

    The PhoP-PhoQ two-component system is a well studied bacterial signaling system that regulates virulence and stress response. Catalytic activity of the histidine kinase sensor protein PhoQ is activated by low extracellular concentrations of divalent cations such as Mg{sup 2+}, and subsequently the response regulator PhoP is activated in turn through a classic phosphotransfer pathway that is typical in such systems. The PhoQ sensor domains of enteric bacteria contain an acidic cluster of residues (EDDDDAE) that has been implicated in direct binding to divalent cations. We have determined crystal structures of the wild-type Escherichia coli PhoQ periplasmic sensor domain and of a mutant variant in which the acidic cluster was neutralized to conservative uncharged residues (QNNNNAQ). The PhoQ domain structure is similar to that of DcuS and CitA sensor domains, and this PhoQ-DcuS-CitA (PDC) sensor fold is seen to be distinct from the superficially similar PAS domain fold. Analysis of the wild-type structure reveals a dimer that allows for the formation of a salt bridge across the dimer interface between Arg-50' and Asp-179 and with nickel ions bound to aspartate residues in the acidic cluster. The physiological importance of the salt bridge to in vivo PhoQ function has been confirmed by mutagenesis. The mutant structure has an alternative, non-physiological dimeric association.

  3. Critical comparison between time- and frequency-domain relaxation functions

    NASA Astrophysics Data System (ADS)

    Snyder, Chad R.; Mopsik, Frederick I.

    1999-07-01

    Considerable work has been performed on providing a theoretical basis for the Kohlrausch-Williams-Watts (KWW) and Havriliak-Negami (HN) relaxation functions. Because of this, several papers have examined the ``interconnection'' of these two functions. In this paper, we demonstrate that, with achievable instrumental sensitivity, these two functions are distinguishable. We further address the issue of the ``universal'' limiting power laws and the ability to obtain the exponents associated with them. Finally, the stability and accuracy of our numerical Laplace transform is demonstrated by comparison between functions with known analytical time and frequency solutions. The stability of our algorithm indicates that the method of Alvarez and co-workers [F. Alvarez, A. Alegría, and J. Colmenero, Phys. Rev. B 44, 7306 (1991)] is an unnecessary approximation for converting between the time and frequency domain.

  4. Phenotypic lentivirus screens to identify functional single domain antibodies.

    PubMed

    Schmidt, Florian I; Hanke, Leo; Morin, Benjamin; Brewer, Rebeccah; Brusic, Vesna; Whelan, Sean P J; Ploegh, Hidde L

    2016-01-01

    Manipulation of proteins is key in assessing their in vivo function. Although genetic ablation is straightforward, reversible and specific perturbation of protein function remains a challenge. Single domain antibody fragments, such as camelid-derived VHHs, can serve as inhibitors or activators of intracellular protein function, but functional testing of identified VHHs is laborious. To address this challenge, we have developed a lentiviral screening approach to identify VHHs that elicit a phenotype when expressed intracellularly. We identified 19 antiviral VHHs that protect human A549 cells from lethal infection with influenza A virus (IAV) or vesicular stomatitis virus (VSV), respectively. Both negative-sense RNA viruses are vulnerable to VHHs uniquely specific for their respective nucleoproteins. Antiviral VHHs prevented nuclear import of viral ribonucleoproteins or mRNA transcription, respectively, and may provide clues for novel antiviral reagents. In principle, the screening approach described here should be applicable to identify inhibitors of any pathogen or biological pathway. PMID:27573105

  5. Crystal Structure of the Human, FIC-Domain Containing Protein HYPE and Implications for Its Functions

    PubMed Central

    Bunney, Tom D.; Cole, Ambrose R.; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W.; Katan, Matilda

    2014-01-01

    Summary Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein, HYPE, which has remained poorly characterized. Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of autoAMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition. PMID:25435325

  6. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    SciTech Connect

    Brown, Daren W.; Butchko, Robert A.; Baker, Scott E.; Proctor, Robert H.

    2012-02-01

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, F. graminearum, F. oxysporum and Nectria haematococca (anamorph F. solani) identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted a phylogenomic and functional domain analysis. The resulting genealogy suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicate that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.

  7. Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog.

    PubMed

    Sivá, Monika; Svoboda, Michal; Veverka, Václav; Trempe, Jean-François; Hofmann, Kay; Kožíšek, Milan; Hexnerová, Rozálie; Sedlák, František; Belza, Jan; Brynda, Jiří; Šácha, Pavel; Hubálek, Martin; Starková, Jana; Flaisigová, Iva; Konvalinka, Jan; Šašková, Klára Grantz

    2016-01-01

    Although Ddi1-like proteins are conserved among eukaryotes, their biological functions remain poorly characterized. Yeast Ddi1 has been implicated in cell cycle regulation, DNA-damage response, and exocytosis. By virtue of its ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains, it has been proposed to serve as a proteasomal shuttle factor. All Ddi1-like family members also contain a highly conserved retroviral protease-like (RVP) domain with unknown substrate specificity. While the structure and biological function of yeast Ddi1 have been investigated, no such analysis is available for the human homologs. To address this, we solved the 3D structures of the human Ddi2 UBL and RVP domains and identified a new helical domain that extends on either side of the RVP dimer. While Ddi1-like proteins from all vertebrates lack a UBA domain, we identify a novel ubiquitin-interacting motif (UIM) located at the C-terminus of the protein. The UIM showed a weak yet specific affinity towards ubiquitin, as did the Ddi2 UBL domain. However, the full-length Ddi2 protein is unable to bind to di-ubiquitin chains. While proteomic analysis revealed no activity, implying that the protease requires other factors for activation, our structural characterization of all domains of human Ddi2 sets the stage for further characterization. PMID:27461074

  8. Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog

    PubMed Central

    Sivá, Monika; Svoboda, Michal; Veverka, Václav; Trempe, Jean-François; Hofmann, Kay; Kožíšek, Milan; Hexnerová, Rozálie; Sedlák, František; Belza, Jan; Brynda, Jiří; Šácha, Pavel; Hubálek, Martin; Starková, Jana; Flaisigová, Iva; Konvalinka, Jan; Šašková, Klára Grantz

    2016-01-01

    Although Ddi1-like proteins are conserved among eukaryotes, their biological functions remain poorly characterized. Yeast Ddi1 has been implicated in cell cycle regulation, DNA-damage response, and exocytosis. By virtue of its ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains, it has been proposed to serve as a proteasomal shuttle factor. All Ddi1-like family members also contain a highly conserved retroviral protease-like (RVP) domain with unknown substrate specificity. While the structure and biological function of yeast Ddi1 have been investigated, no such analysis is available for the human homologs. To address this, we solved the 3D structures of the human Ddi2 UBL and RVP domains and identified a new helical domain that extends on either side of the RVP dimer. While Ddi1-like proteins from all vertebrates lack a UBA domain, we identify a novel ubiquitin-interacting motif (UIM) located at the C-terminus of the protein. The UIM showed a weak yet specific affinity towards ubiquitin, as did the Ddi2 UBL domain. However, the full-length Ddi2 protein is unable to bind to di-ubiquitin chains. While proteomic analysis revealed no activity, implying that the protease requires other factors for activation, our structural characterization of all domains of human Ddi2 sets the stage for further characterization. PMID:27461074

  9. Human GATA-3 trans-activation, DNA-binding, and nuclear localization activities are organized into distinct structural domains.

    PubMed

    Yang, Z; Gu, L; Romeo, P H; Bories, D; Motohashi, H; Yamamoto, M; Engel, J D

    1994-03-01

    GATA-3 is a zinc finger transcription factor which is expressed in a highly restricted and strongly conserved tissue distribution pattern in vertebrate organisms, specifically, in a subset of hematopoietic cells, in cells within the central and peripheral nervous systems, in the kidney, and in placental trophoblasts. Tissue-specific cellular genes regulated by GATA-3 have been identified in T lymphocytes and the placenta, while GATA-3-regulated genes in the nervous system and kidney have not yet been defined. We prepared monoclonal antibodies with which we could dissect the biochemical and functional properties of human GATA-3. The results of these experiments show some anticipated phenotypes, for example, the definition of discrete domains required for specific DNA-binding site recognition (amino acids 303 to 348) and trans activation (amino acids 30 to 74). The signaling sequence for nuclear localization of human GATA-3 is a property conferred by sequences within and surrounding the amino finger (amino acids 249 to 311) of the protein, thereby assigning a function to this domain and thus explaining the curious observation that this zinc finger is dispensable for DNA binding by the GATA family of transcription factors.

  10. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    SciTech Connect

    Dahms, Sven O.; Mayer, Magnus C.; Roeser, Dirk; Multhaup, Gerd; Than, Manuel E.

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  11. The complex regulatory function of the ligand-binding domain of the inositol 1,4,5-trisphosphate receptor.

    PubMed

    Devogelaere, Benoit; Verbert, Leen; Parys, Jan B; Missiaen, Ludwig; De Smedt, Humbert

    2008-01-01

    The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) can be divided in three functionally distinct regions: a ligand-binding domain, a modulatory domain and a channel domain. Numerous regulatory mechanisms including inter- and intra-molecular protein-protein interactions and phosphorylation events act via these domains to regulate the function of the IP(3)R. Regulation at the level of the ligand-binding domain primarily affects the affinity for IP(3). The extent of IP(3)-induced Ca(2+) release (IICR) is, however, not only determined by the affinity for IP(3) but also by the effectiveness of the coupling between ligand binding and channel opening. As a result, regulation as well as malfunction of IICR may be affected by both steps in the activation mechanism. The 3D structures of the two subdomains of the ligand-binding domain have recently been determined by X-ray diffraction analysis. This allows a more detailed molecular explanation of the regulatory events situated at the ligand-binding domain of the IP(3)R. In this review, we will focus on recent structural and functional data on the ligand-binding domain that have extended and clarified the view on the molecular mechanisms of IP(3)R regulation.

  12. Functional classification of CATH superfamilies: a domain-based approach for protein function annotation

    PubMed Central

    Das, Sayoni; Lee, David; Sillitoe, Ian; Dawson, Natalie L.; Lees, Jonathan G.; Orengo, Christine A.

    2015-01-01

    Motivation: Computational approaches that can predict protein functions are essential to bridge the widening function annotation gap especially since <1.0% of all proteins in UniProtKB have been experimentally characterized. We present a domain-based method for protein function classification and prediction of functional sites that exploits functional sub-classification of CATH superfamilies. The superfamilies are sub-classified into functional families (FunFams) using a hierarchical clustering algorithm supervised by a new classification method, FunFHMMer. Results: FunFHMMer generates more functionally coherent groupings of protein sequences than other domain-based protein classifications. This has been validated using known functional information. The conserved positions predicted by the FunFams are also found to be enriched in known functional residues. Moreover, the functional annotations provided by the FunFams are found to be more precise than other domain-based resources. FunFHMMer currently identifies 110 439 FunFams in 2735 superfamilies which can be used to functionally annotate > 16 million domain sequences. Availability and implementation: All FunFam annotation data are made available through the CATH webpages (http://www.cathdb.info). The FunFHMMer webserver (http://www.cathdb.info/search/by_funfhmmer) allows users to submit query sequences for assignment to a CATH FunFam. Contact: sayoni.das.12@ucl.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26139634

  13. Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol

    SciTech Connect

    Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.; Deisenhofer, Johann; Goldstein, Joseph L.; Brown, Michael S.; Infante, Rodney E.

    2010-09-21

    LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from the binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.

  14. Distinct Quantitative Computed Tomography Emphysema Patterns Are Associated with Physiology and Function in Smokers

    PubMed Central

    San José Estépar, Raúl; Mendoza, Carlos S.; Hersh, Craig P.; Laird, Nan; Crapo, James D.; Lynch, David A.; Silverman, Edwin K.; Washko, George R.

    2013-01-01

    Rationale: Emphysema occurs in distinct pathologic patterns, but little is known about the epidemiologic associations of these patterns. Standard quantitative measures of emphysema from computed tomography (CT) do not distinguish between distinct patterns of parenchymal destruction. Objectives: To study the epidemiologic associations of distinct emphysema patterns with measures of lung-related physiology, function, and health care use in smokers. Methods: Using a local histogram-based assessment of lung density, we quantified distinct patterns of low attenuation in 9,313 smokers in the COPDGene Study. To determine if such patterns provide novel insights into chronic obstructive pulmonary disease epidemiology, we tested for their association with measures of physiology, function, and health care use. Measurements and Main Results: Compared with percentage of low-attenuation area less than −950 Hounsfield units (%LAA-950), local histogram-based measures of distinct CT low-attenuation patterns are more predictive of measures of lung function, dyspnea, quality of life, and health care use. These patterns are strongly associated with a wide array of measures of respiratory physiology and function, and most of these associations remain highly significant (P < 0.005) after adjusting for %LAA-950. In smokers without evidence of chronic obstructive pulmonary disease, the mild centrilobular disease pattern is associated with lower FEV1 and worse functional status (P < 0.005). Conclusions: Measures of distinct CT emphysema patterns provide novel information about the relationship between emphysema and key measures of physiology, physical function, and health care use. Measures of mild emphysema in smokers with preserved lung function can be extracted from CT scans and are significantly associated with functional measures. PMID:23980521

  15. Between Domain Cognitive Dispersion and Functional Abilities in Older Adults

    PubMed Central

    Fellows, Robert P.; Schmitter-Edgecombe, Maureen

    2016-01-01

    Objective Within-person variability in cognitive performance is related to neurological integrity, but the association with functional abilities is less clear. The primary aim of this study was to examine the association between cognitive dispersion, or within-person variability, and everyday multitasking and the way in which these variables may influence performance on a naturalistic assessment of functional abilities. Method Participants were 156 community-dwelling adults, age 50 or older. Cognitive dispersion was calculated by measuring within-person variability in cognitive domains, established through principal components analysis. Path analysis was used to determine the independent contribution of cognitive dispersion to functional ability, mediated by multitasking. Results Results of the path analysis revealed that the number of subtasks interweaved (i.e., multitasked) mediated the association between cognitive dispersion and task sequencing and accuracy. Although increased multitasking was associated with worse task performance in the path model, secondary analyses revealed that for individuals with low cognitive dispersion, increased multitasking was associated with better task performance, whereas for those with higher levels of dispersion multitasking was negatively correlated with task performance. Conclusion These results suggest that cognitive dispersion between domains may be a useful indicator of multitasking and daily living skills among older adults. PMID:26300441

  16. PSCL: predicting protein subcellular localization based on optimal functional domains.

    PubMed

    Wang, Kai; Hu, Le-Le; Shi, Xiao-He; Dong, Ying-Song; Li, Hai-Peng; Wen, Tie-Qiao

    2012-01-01

    It is well known that protein subcellular localizations are closely related to their functions. Although many computational methods and tools are available from Internet, it is still necessary to develop new algorithms in this filed to gain a better understanding of the complex mechanism of plant subcellular localization. Here, we provide a new web server named PSCL for plant protein subcellular localization prediction by employing optimized functional domains. After feature optimization, 848 optimal functional domains from InterPro were obtained to represent each protein. By calculating the distances to each of the seven categories, PSCL showing the possibilities of a protein located into each of those categories in ascending order. Toward our dataset, PSCL achieved a first-order predicted accuracy of 75.7% by jackknife test. Gene Ontology enrichment analysis showing that catalytic activity, cellular process and metabolic process are strongly correlated with the localization of plant proteins. Finally, PSCL, a Linux Operate System based web interface for the predictor was designed and is accessible for public use at http://pscl.biosino.org/.

  17. Distinct circuit-dependent functions of presynaptic neurexin-3 at GABAergic and glutamatergic synapses.

    PubMed

    Aoto, Jason; Földy, Csaba; Ilcus, Silviana Maria Ciurea; Tabuchi, Katsuhiko; Südhof, Thomas C

    2015-07-01

    α- and β-neurexins are presynaptic cell-adhesion molecules whose general importance for synaptic transmission is well documented. The specific functions of neurexins, however, remain largely unknown because no conditional neurexin knockouts are available and targeting all α- and β-neurexins produced by a particular gene is challenging. Using newly generated constitutive and conditional knockout mice that target all neurexin-3α and neurexin-3β isoforms, we found that neurexin-3 was differentially required for distinct synaptic functions in different brain regions. Specifically, we found that, in cultured neurons and acute slices of the hippocampus, extracellular sequences of presynaptic neurexin-3 mediated trans-synaptic regulation of postsynaptic AMPA receptors. In cultured neurons and acute slices of the olfactory bulb, however, intracellular sequences of presynaptic neurexin-3 were selectively required for GABA release. Thus, our data indicate that neurexin-3 performs distinct essential pre- or postsynaptic functions in different brain regions by distinct mechanisms.

  18. Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat.

    PubMed

    Garcia, J A; Harrich, D; Pearson, L; Mitsuyasu, R; Gaynor, R B

    1988-10-01

    The transcriptional regulation of the human immunodeficiency virus (HIV) type I involves the interaction of both viral and cellular proteins. The viral protein tat is important in increasing the amount of viral steady-state mRNA and may also play a role in regulating the translational efficiency of viral mRNA. To identify distinct functional domains of tat, oligonucleotide-directed mutagenesis of the tat gene was performed. Point mutations of cysteine residues in three of the four Cys-X-X-Cys sequences in the tat protein resulted in a marked decrease in transcriptional activation of the HIV long terminal repeat. Point mutations which altered the basic C-domain of the protein also resulted in decreases in transcriptional activity, as did a series of mutations that repositioned either the N or C termini of the protein. Conservative mutations of other amino acids in the cysteine-rich or basic regions and in a series of proline residues in the N terminus of the molecule resulted in minimal changes in tat activation. These results suggest that several domains of tat protein are involved in transcriptional activation with the cysteine-rich domain being required for complete activity of the tat protein.

  19. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct

    PubMed Central

    Lee, Kayoung; Goh, Grace Ying Shyen; Wong, Marcus Andrew; Klassen, Tara Leah

    2016-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In

  20. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct.

    PubMed

    Lee, Kayoung; Goh, Grace Ying Shyen; Wong, Marcus Andrew; Klassen, Tara Leah; Taubert, Stefan

    2016-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In

  1. Uncertainty Analysis via Failure Domain Characterization: Polynomial Requirement Functions

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Munoz, Cesar A.; Narkawicz, Anthony J.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. A Bernstein expansion approach is used to size hyper-rectangular subsets while a sum of squares programming approach is used to size quasi-ellipsoidal subsets. These methods are applicable to requirement functions whose functional dependency on the uncertainty is a known polynomial. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the uncertainty model assumed (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  2. Capturing distinct KCNQ2 channel resting states by metal ion bridges in the voltage-sensor domain

    PubMed Central

    Gourgy-Hacohen, Orit; Kornilov, Polina; Pittel, Ilya; Peretz, Asher

    2014-01-01

    Although crystal structures of various voltage-gated K+ (Kv) and Na+ channels have provided substantial information on the activated conformation of the voltage-sensing domain (VSD), the topology of the VSD in its resting conformation remains highly debated. Numerous studies have investigated the VSD resting state in the Kv Shaker channel; however, few studies have explored this issue in other Kv channels. Here, we investigated the VSD resting state of KCNQ2, a K+ channel subunit belonging to the KCNQ (Kv7) subfamily of Kv channels. KCNQ2 can coassemble with the KCNQ3 subunit to mediate the IM current that regulates neuronal excitability. In humans, mutations in KCNQ2 are associated with benign neonatal forms of epilepsy or with severe epileptic encephalopathy. We introduced cysteine mutations into the S4 transmembrane segment of the KCNQ2 VSD and determined that external application of Cd2+ profoundly reduced the current amplitude of S4 cysteine mutants S195C, R198C, and R201C. Based on reactivity with the externally accessible endogenous cysteine C106 in S1, we infer that each of the above S4 cysteine mutants forms Cd2+ bridges to stabilize a channel closed state. Disulfide bonds and metal bridges constrain the S4 residues S195, R198, and R201 near C106 in S1 in the resting state, and experiments using concatenated tetrameric constructs indicate that this occurs within the same VSD. KCNQ2 structural models suggest that three distinct resting channel states have been captured by the formation of different S4–S1 Cd2+ bridges. Collectively, this work reveals that residue C106 in S1 can be very close to several N-terminal S4 residues for stabilizing different KCNQ2 resting conformations. PMID:25385787

  3. Distinct deformational history of two contrasting tectonic domains in the Chinese Altai: Their significance in understanding accretionary orogenic process

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Sun, Min; Schulmann, Karel; Zhao, Guochun; Wu, Qihang; Jiang, Yingde; Guy, Alexandra; Wang, Yuejun

    2015-04-01

    The Chinese Altai, a key component of the western Central Asian Orogenic Belt, is considered to be formed through multiple accretions of different terranes. However, the deformational histories of each terrane (tectonic domain), i.e. structural records before and after the accretion, are rarely studied, which has hindered our understanding of the accretionary processes. To fill the gap, a systematic macro- and microscopic structural analysis was carried out on two contrasting litho-tectonic units, i.e. the early Paleozoic low-grade Alegedayi Ophiolitic Complex (AOC) juxtaposed to the high grade Tarlang Granitic Massif (TGM). Selected rock samples were analyzed using zircon U-Pb isotopic dating to constrain the timing of polyphase deformation. Our structural and geochronological data suggest that the two litho-tectonic units were initially detached and located in different crustal levels and experienced distinct phases of deformation under contrasting P-T conditions. They were mutually accreted with each other in the early Devonian and jointly underwent a WNW-ESE-directed shortening deformational event (D1) at ∼390 Ma. The change of tectonic regime was further enhanced by a subsequent NNE-SSW-directed shortening deformation (D2) after ∼ 380 Ma. The shortening process ended before the crustal-scale sinistral strike-slip shearing deformation along the Erqis fault zone at 290 - 240 Ma. Results of this study provide solid field-based evidence for a model that the Chinese Altai initially underwent a nearly E-W-oriented subduction-accretional event in the middle Paleozoic, before it was reoriented to a nearly N-S-oriented convergence.

  4. BAF53 Forms Distinct Nuclear Complexes and Functions as a Critical c-Myc-Interacting Nuclear Cofactor for Oncogenic Transformation

    PubMed Central

    Park, Jeonghyeon; Wood, Marcelo A.; Cole, Michael D.

    2002-01-01

    The c-Myc oncoprotein functions as a transcription factor that can transform normal cells into tumor cells, as well as playing a direct role in normal cell proliferation. The c-Myc protein transactivates cellular promoters by recruiting nuclear cofactors to chromosomal sites through an N-terminal transactivation domain. We have previously reported the identification and functional characterization of four different c-Myc cofactors: TRRAP, hGCN5, TIP49, and TIP48. Here we present the identification and characterization of the actin-related protein BAF53 as a c-Myc-interacting nuclear cofactor that forms distinct nuclear complexes. In addition to the human SWI/SNF-related BAF complex, BAF53 forms a complex with TIP49 and TIP48 and a separate biochemically distinct complex containing TRRAP and a histone acetyltransferase which does not contain TIP60. Using deletion mutants of BAF53, we show that BAF53 is critical for c-Myc oncogenic activity. Our results indicate that BAF53 plays a functional role in c-Myc-interacting nuclear complexes. PMID:11839798

  5. The HIV-1 Envelope Transmembrane Domain Binds TLR2 through a Distinct Dimerization Motif and Inhibits TLR2-Mediated Responses

    PubMed Central

    Rotem, Etai; Schwarzter, Roland; Gramatica, Andrea; Futerman, Anthony H.; Shai, Yechiel

    2014-01-01

    HIV-1 uses a number of means to manipulate the immune system, to avoid recognition and to highjack signaling pathways. HIV-1 infected cells show limited Toll-Like Receptor (TLR) responsiveness via as yet unknown mechanisms. Using biochemical and biophysical approaches, we demonstrate that the trans-membrane domain (TMD) of the HIV-1 envelope (ENV) directly interacts with TLR2 TMD within the membrane milieu. This interaction attenuates TNFα, IL-6 and MCP-1 secretion in macrophages, induced by natural ligands of TLR2 both in in vitro and in vivo models. This was associated with decreased levels of ERK phosphorylation. Furthermore, mutagenesis demonstrated the importance of a conserved GxxxG motif in driving this interaction within the membrane milieu. The administration of the ENV TMD in vivo to lipotechoic acid (LTA)/Galactosamine-mediated septic mice resulted in a significant decrease in mortality and in tissue damage, due to the weakening of systemic macrophage activation. Our findings suggest that the TMD of ENV is involved in modulation of the innate immune response during HIV infection. Furthermore, due to the high functional homology of viral ENV proteins this function may be a general character of viral-induced immune modulation. PMID:25121610

  6. The HIV-1 envelope transmembrane domain binds TLR2 through a distinct dimerization motif and inhibits TLR2-mediated responses.

    PubMed

    Reuven, Eliran Moshe; Ali, Mohammad; Rotem, Etai; Schwarzer, Roland; Schwarzter, Roland; Gramatica, Andrea; Futerman, Anthony H; Shai, Yechiel

    2014-08-01

    HIV-1 uses a number of means to manipulate the immune system, to avoid recognition and to highjack signaling pathways. HIV-1 infected cells show limited Toll-Like Receptor (TLR) responsiveness via as yet unknown mechanisms. Using biochemical and biophysical approaches, we demonstrate that the trans-membrane domain (TMD) of the HIV-1 envelope (ENV) directly interacts with TLR2 TMD within the membrane milieu. This interaction attenuates TNFα, IL-6 and MCP-1 secretion in macrophages, induced by natural ligands of TLR2 both in in vitro and in vivo models. This was associated with decreased levels of ERK phosphorylation. Furthermore, mutagenesis demonstrated the importance of a conserved GxxxG motif in driving this interaction within the membrane milieu. The administration of the ENV TMD in vivo to lipotechoic acid (LTA)/Galactosamine-mediated septic mice resulted in a significant decrease in mortality and in tissue damage, due to the weakening of systemic macrophage activation. Our findings suggest that the TMD of ENV is involved in modulation of the innate immune response during HIV infection. Furthermore, due to the high functional homology of viral ENV proteins this function may be a general character of viral-induced immune modulation.

  7. Distinct Patterns of Grey Matter Abnormality in High-Functioning Autism and Asperger's Syndrome

    ERIC Educational Resources Information Center

    McAlonan, Grainne M.; Suckling, John; Wong, Naikei; Cheung, Vinci; Lienenkaemper, Nina; Cheung, Charlton; Chua, Siew E.

    2008-01-01

    Background: Autism exists across a wide spectrum and there is considerable debate as to whether children with Asperger's syndrome, who have normal language milestones, should be considered to comprise a subgroup distinct other from high-functioning children with autism (HFA), who have a history of delayed language development. Magnetic resonance…

  8. On Determinatives and the Category-Function Distinction: A Reply to Brett Reynolds

    ERIC Educational Resources Information Center

    Lenchuk, Iryna; Ahmed, Amer

    2014-01-01

    This article examines the arguments made in the article "Determiners, Feline Marsupials, and the Category-Function Distinction: A Critique of ELT Grammars" by Brett Reynolds recently published in the "TESL Canada Journal" (2013). In our response, we demonstrate that the author's arguments are problematic on both…

  9. Identification of two functional domains within the arenavirus nucleoprotein.

    PubMed

    Levingston Macleod, Jesica M; D'Antuono, Alejandra; Loureiro, Maria Eugenia; Casabona, Juan Cruz; Gomez, Guillermo A; Lopez, Nora

    2011-03-01

    Tacaribe virus (TCRV) belongs to the Arenaviridae family. Its bisegmented negative-stranded RNA genome encodes the nucleoprotein (N), the precursor of the envelope glycoproteins, the polymerase (L), and a RING finger matrix (Z) protein. The 570-amino-acid N protein binds to viral RNA, forming nucleocapsids, which are the template for transcription and replication by the viral polymerase. We have previously shown that the interaction between N and Z is required for assembly of infectious virus-like particles (VLPs) (J. C. Casabona et al., J. Virol. 83:7029-7039, 2009). Here, we examine the functional organization of TCRV N protein. A series of deletions and point mutations were introduced into the N-coding sequence, and the ability of the mutants to sustain heterotypic (N-Z) or homotypic (N-N) interactions was analyzed. We found that N protein displays two functional domains. By using coimmunoprecipitation studies, VLP incorporation assays, and double immunofluorescence staining, the carboxy-terminal region of N was found to be required for N-Z interaction and also necessary for incorporation of N protein into VLPs. Moreover, further analysis of this region showed that the integrity of a putative zinc-finger motif, as well as its amino-flanking sequence (residues 461 to 489), are critical for Z binding and N incorporation into VLPs. In addition, we provide evidence of an essential role of the amino-terminal region of N protein for N-N interaction. In this regard, using reciprocal coimmunoprecipitation analysis, we identified a 28-residue region predicted to form a coiled-coil domain (residues 92 to 119) as a newly recognized molecular determinant of N homotypic interactions. PMID:21159858

  10. Identification of Two Functional Domains within the Arenavirus Nucleoprotein▿

    PubMed Central

    Levingston Macleod, Jesica M.; D'Antuono, Alejandra; Loureiro, Maria Eugenia; Casabona, Juan Cruz; Gomez, Guillermo A.; Lopez, Nora

    2011-01-01

    Tacaribe virus (TCRV) belongs to the Arenaviridae family. Its bisegmented negative-stranded RNA genome encodes the nucleoprotein (N), the precursor of the envelope glycoproteins, the polymerase (L), and a RING finger matrix (Z) protein. The 570-amino-acid N protein binds to viral RNA, forming nucleocapsids, which are the template for transcription and replication by the viral polymerase. We have previously shown that the interaction between N and Z is required for assembly of infectious virus-like particles (VLPs) (J. C. Casabona et al., J. Virol. 83:7029-7039, 2009). Here, we examine the functional organization of TCRV N protein. A series of deletions and point mutations were introduced into the N-coding sequence, and the ability of the mutants to sustain heterotypic (N-Z) or homotypic (N-N) interactions was analyzed. We found that N protein displays two functional domains. By using coimmunoprecipitation studies, VLP incorporation assays, and double immunofluorescence staining, the carboxy-terminal region of N was found to be required for N-Z interaction and also necessary for incorporation of N protein into VLPs. Moreover, further analysis of this region showed that the integrity of a putative zinc-finger motif, as well as its amino-flanking sequence (residues 461 to 489), are critical for Z binding and N incorporation into VLPs. In addition, we provide evidence of an essential role of the amino-terminal region of N protein for N-N interaction. In this regard, using reciprocal coimmunoprecipitation analysis, we identified a 28-residue region predicted to form a coiled-coil domain (residues 92 to 119) as a newly recognized molecular determinant of N homotypic interactions. PMID:21159858

  11. Identification of two functional domains within the arenavirus nucleoprotein.

    PubMed

    Levingston Macleod, Jesica M; D'Antuono, Alejandra; Loureiro, Maria Eugenia; Casabona, Juan Cruz; Gomez, Guillermo A; Lopez, Nora

    2011-03-01

    Tacaribe virus (TCRV) belongs to the Arenaviridae family. Its bisegmented negative-stranded RNA genome encodes the nucleoprotein (N), the precursor of the envelope glycoproteins, the polymerase (L), and a RING finger matrix (Z) protein. The 570-amino-acid N protein binds to viral RNA, forming nucleocapsids, which are the template for transcription and replication by the viral polymerase. We have previously shown that the interaction between N and Z is required for assembly of infectious virus-like particles (VLPs) (J. C. Casabona et al., J. Virol. 83:7029-7039, 2009). Here, we examine the functional organization of TCRV N protein. A series of deletions and point mutations were introduced into the N-coding sequence, and the ability of the mutants to sustain heterotypic (N-Z) or homotypic (N-N) interactions was analyzed. We found that N protein displays two functional domains. By using coimmunoprecipitation studies, VLP incorporation assays, and double immunofluorescence staining, the carboxy-terminal region of N was found to be required for N-Z interaction and also necessary for incorporation of N protein into VLPs. Moreover, further analysis of this region showed that the integrity of a putative zinc-finger motif, as well as its amino-flanking sequence (residues 461 to 489), are critical for Z binding and N incorporation into VLPs. In addition, we provide evidence of an essential role of the amino-terminal region of N protein for N-N interaction. In this regard, using reciprocal coimmunoprecipitation analysis, we identified a 28-residue region predicted to form a coiled-coil domain (residues 92 to 119) as a newly recognized molecular determinant of N homotypic interactions.

  12. The Impact of Acute Phase Domain-Specific Cognitive Function on Post-stroke Functional Recovery

    PubMed Central

    Park, Jihong; Lee, Gangpyo; Lee, Shi-Uk

    2016-01-01

    Objective To assess whether the cognitive function in the acute stage evaluated by domain-specific neuropsychological assessments would be an independent predictor of functional outcome after stroke. Methods Forty patients underwent 4 domain-specific neuropsychological examinations about 3 weeks after the onset of stroke. The tests included the Boston Naming Test (BNT), the construction recall test (CRT), the construction praxis test (CPT), and the verbal fluency test (VFT). The Korean version of Modified Barthel Index (K-MBI) at 3 months and the modified Rankin Scale (mRS) at 6 months were investigated as functional outcome after stroke. Functional improvement was assessed using the change in K-MBI during the first 3 months and subjects were dichotomized into 'good status' and 'poor status' according to mRS at 6 months. The domain-specific cognitive function along with other possible predictors for functional outcome was examined using regression analysis. Results The z-score of CPT (p=0.044) and CRT (p<0.001) were independent predictors for functional improvement measured by the change in K-MBI during the first 3 months after stroke. The z-score of CPT (p=0.049) and CRT (p=0.048) were also independent predictors of functional status at post-stroke 6 months assessed by mRS. Conclusion Impairment in visuospatial construction and memory within one month after stroke can be an independent prognostic factor of functional outcome. Domain-specific neuropsychological assessments could be considered in patients with stroke in the acute phase to predict long-term functional outcome. PMID:27152270

  13. Structural And Functional Studies of ALIX Interactions With YPXnL Late Domains of HIV-1 And EIAV

    SciTech Connect

    Zhai, Q.; Fisher, R.D.; Chung, H.-Y.; Myszka, D.G.; Sundquist, W.I.; Hill, C.P.

    2009-05-28

    Retrovirus budding requires short peptide motifs (late domains) located within the viral Gag protein that function by recruiting cellular factors. The YPX{sub n}L late domains of HIV and other lentiviruses recruit the protein ALIX (also known as AIP1), which also functions in vesicle formation at the multivesicular body and in the abscission stage of cytokinesis. Here, we report the crystal structures of ALIX in complex with the YPX{sub n}L late domains from HIV-1 and EIAV. The two distinct late domains bind at the same site on the ALIX V domain but adopt different conformations that allow them to make equivalent contacts. Binding studies and functional assays verified the importance of key interface residues and revealed that binding affinities are tuned by context-dependent effects. These results reveal how YPX{sub n}L late domains recruit ALIX to facilitate virus budding and how ALIX can bind YPX{sub n}L sequences with both n = 1 and n = 3.

  14. Two distinct domains of Flo8 activator mediates its role in transcriptional activation and the physical interaction with Mss11.

    PubMed

    Kim, Hye Young; Lee, Sung Bae; Kang, Hyen Sam; Oh, Goo Taeg; Kim, TaeSoo

    2014-06-27

    Flo8 is a transcriptional activator essential for the inducible expression of a set of target genes such as STA1, FLO11, and FLO1 encoding an extracellular glucoamylase and two cell surface proteins, respectively. However, the molecular mechanism of Flo8-mediated transcriptional activation remains largely elusive. By generating serial deletion constructs, we revealed here that a novel transcriptional activation domain on its extreme C-terminal region plays a crucial role in activating transcription. On the other hand, the N-terminal LisH motif of Flo8 appears to be required for its physical interaction with another transcriptional activator, Mss11, for their cooperative transcriptional regulation of the shared targets. Additionally, GST pull-down experiments uncovered that Flo8 and Mss11 can directly form either a heterodimer or a homodimer capable of binding to DNA, and we also showed that this formed complex of two activators interacts functionally and physically with the Swi/Snf complex. Collectively, our findings provide valuable clues for understanding the molecular mechanism of Flo8-mediated transcriptional control of multiple targets. PMID:24813990

  15. Two distinct domains of Flo8 activator mediates its role in transcriptional activation and the physical interaction with Mss11.

    PubMed

    Kim, Hye Young; Lee, Sung Bae; Kang, Hyen Sam; Oh, Goo Taeg; Kim, TaeSoo

    2014-06-27

    Flo8 is a transcriptional activator essential for the inducible expression of a set of target genes such as STA1, FLO11, and FLO1 encoding an extracellular glucoamylase and two cell surface proteins, respectively. However, the molecular mechanism of Flo8-mediated transcriptional activation remains largely elusive. By generating serial deletion constructs, we revealed here that a novel transcriptional activation domain on its extreme C-terminal region plays a crucial role in activating transcription. On the other hand, the N-terminal LisH motif of Flo8 appears to be required for its physical interaction with another transcriptional activator, Mss11, for their cooperative transcriptional regulation of the shared targets. Additionally, GST pull-down experiments uncovered that Flo8 and Mss11 can directly form either a heterodimer or a homodimer capable of binding to DNA, and we also showed that this formed complex of two activators interacts functionally and physically with the Swi/Snf complex. Collectively, our findings provide valuable clues for understanding the molecular mechanism of Flo8-mediated transcriptional control of multiple targets.

  16. Measurement of retinal physiology using functional Fourier domain OCT concepts

    NASA Astrophysics Data System (ADS)

    Leitgeb, R. A.; Bachmann, A. H.; Villiger, M.; Michaely, R.; Blatter, C.; Lasser, T.; Pache, C.; Pircher, M.

    2007-02-01

    Fourier Domain OCT proved to be an outstanding tool for measuring 3D retinal structures with high sensitivity, resolution, and speed. We extended the FDOCT concept towards functional imaging by analyzing the spectroscopic tissue properties, polarization contrast and Doppler velocity imaging. Differential spectral contrast FDOCT allows optical staining of retinal tomograms and to contrast tissue of high pigmentation such as the retinal pigment epithelium (RPE). The latter shows strong correlation if compared to polarization sensitive OCT images. First implementations of Doppler FDOCT systems demonstrated the capability of measuring in-vivo retinal blood flow profiles and pulsatility. We developed a new concept of Doppler FDOCT that allows measuring also large flow velocities typically close to the optic nerve head. Studies of retinal perfusion based on Laser Doppler Flowmetry (LDF) demonstrated the high sensitivity of blood flow to external stimuli. We performed first experiments of studying retinal perfusion in response to flicker stimulation. An increase in vessel diameter by 11% and of flow velocity by 49% was measured. We believe that a multi-modal functional imaging concept is of high value for an accurate and early diagnosis and understanding of retinal pathologies and pathogenesis.

  17. The Transmembrane Domain C of AMPA Receptors is Critically Involved in Receptor Function and Modulation

    PubMed Central

    Terhag, Jan; Gottschling, Kevin; Hollmann, Michael

    2010-01-01

    Ionotropic glutamate receptors are major players in synaptic transmission and are critically involved in many cognitive events. Although receptors of different subfamilies serve different functions, they all show a conserved domain topology. For most of these domains, structure–function relationships have been established and are well understood. However, up to date the role of the transmembrane domain C in receptor function has been investigated only poorly. We have constructed a series of receptor chimeras and point mutants designed to shed light on the structural and/or functional importance of this domain. We here present evidence that the role of transmembrane domain C exceeds that of a mere scaffolding domain and that several amino acid residues located within the domain are crucial for receptor gating and desensitization. Furthermore, our data suggest that the domain may be involved in receptor interaction with transmembrane AMPA receptor regulatory proteins. PMID:21206529

  18. An exploration of function analysis and function allocation in the commercial flight domain

    NASA Technical Reports Server (NTRS)

    Mcguire, James C.; Zich, John A.; Goins, Richard T.; Erickson, Jeffery B.; Dwyer, John P.; Cody, William J.; Rouse, William B.

    1991-01-01

    The applicability is explored of functional analysis methods to support cockpit design. Specifically, alternative techniques are studied for ensuring an effective division of responsibility between the flight crew and automation. A functional decomposition is performed of the commercial flight domain to provide the information necessary to support allocation decisions and demonstrate methodology for allocating functions to flight crew or to automation. The function analysis employed 'bottom up' and 'top down' analyses and demonstrated the comparability of identified functions, using the 'lift off' segment of the 'take off' phase as a test case. The normal flight mission and selected contingencies were addressed. Two alternative methods for using the functional description in the allocation of functions between man and machine were investigated. The two methods were compared in order to ascertain their relative strengths and weaknesses. Finally, conclusions were drawn regarding the practical utility of function analysis methods.

  19. Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis.

    PubMed

    Yin, Ruohe; Arongaus, Adriana B; Binkert, Melanie; Ulm, Roman

    2015-01-01

    UV-B photon reception by the Arabidopsis thaliana homodimeric UV RESISTANCE LOCUS8 (UVR8) photoreceptor leads to its monomerization and a crucial interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Relay of the subsequent signal regulates UV-B-induced photomorphogenesis and stress acclimation. Here, we report that two separate domains of UVR8 interact with COP1: the β-propeller domain of UVR8 mediates UV-B-dependent interaction with the WD40 repeats-based predicted β-propeller domain of COP1, whereas COP1 activity is regulated by interaction through the UVR8 C-terminal C27 domain. We show not only that the C27 domain is required for UVR8 activity but also that chemically induced expression of the C27 domain is sufficient to mimic UV-B signaling. We further show, in contrast with COP1, that the WD40 repeat proteins REPRESSOR OF UV-B PHOTOMORPHOGENESIS1 (RUP1) and RUP2 interact only with the UVR8 C27 domain. This coincides with their facilitation of UVR8 reversion to the ground state by redimerization and their potential to interact with UVR8 in a UV-B-independent manner. Collectively, our results provide insight into a key mechanism of photoreceptor-mediated signaling and its negative feedback regulation.

  20. Human germline and pan-cancer variomes and their distinct functional profiles.

    PubMed

    Pan, Yang; Karagiannis, Konstantinos; Zhang, Haichen; Dingerdissen, Hayley; Shamsaddini, Amirhossein; Wan, Quan; Simonyan, Vahan; Mazumder, Raja

    2014-10-01

    Identification of non-synonymous single nucleotide variations (nsSNVs) has exponentially increased due to advances in Next-Generation Sequencing technologies. The functional impacts of these variations have been difficult to ascertain because the corresponding knowledge about sequence functional sites is quite fragmented. It is clear that mapping of variations to sequence functional features can help us better understand the pathophysiological role of variations. In this study, we investigated the effect of nsSNVs on more than 17 common types of post-translational modification (PTM) sites, active sites and binding sites. Out of 1 705 285 distinct nsSNVs on 259 216 functional sites we identified 38 549 variations that significantly affect 10 major functional sites. Furthermore, we found distinct patterns of site disruptions due to germline and somatic nsSNVs. Pan-cancer analysis across 12 different cancer types led to the identification of 51 genes with 106 nsSNV affected functional sites found in 3 or more cancer types. 13 of the 51 genes overlap with previously identified Significantly Mutated Genes (Nature. 2013 Oct 17;502(7471)). 62 mutations in these 13 genes affecting functional sites such as DNA, ATP binding and various PTM sites occur across several cancers and can be prioritized for additional validation and investigations.

  1. Organized living: formation mechanisms and functions of plasma membrane domains in yeast.

    PubMed

    Ziółkowska, Natasza E; Christiano, Romain; Walther, Tobias C

    2012-03-01

    Plasma membrane proteins and lipids organize into lateral domains of specific composition. Domain formation is achieved by a combination of lipid-lipid and lipid-protein interactions, membrane-binding protein scaffolds and protein fences. The resulting domains function in membrane protein turnover and homeostasis, as well as in cell signaling. We review the mechanisms generating plasma membrane domains and the functional consequences of this organization, focusing on recent findings from research on the yeast model system.

  2. The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein.

    PubMed Central

    Borg, J P; Ooi, J; Levy, E; Margolis, B

    1996-01-01

    The phosphotyrosine interaction (PI) domains (also known as the PTB, or phosphotyrosine binding, domains) of Shc and IRS-1 are recently described domains that bind peptides phosphorylated on tyrosine residues. The PI/PTB domains differ from Src homology 2 (SH2) domains in that their binding specificity is determined by residues that lie amino terminal and not carboxy terminal to the phosphotyrosine. Recently, it has been appreciated that other cytoplasmic proteins also contain PI domains. We now show that the PI domain of X11 and one of the PI domains of FE65, two neuronal proteins, bind to the cytoplasmic domain of the amyloid precursor protein ((beta)APP). (beta)APP is an integral transmembrane glycoprotein whose cellular function is unknown. One of the processing pathways of (beta)APP leads to the secretion of A(beta), the major constituent of the amyloid deposited in the brain parenchyma and vessel walls of Alzheimer's disease patients. We have found that the X11 PI domain binds a YENPTY motif in the intracellular domain of (beta)APP that is strikingly similar to the NPXY motifs that bind the Shc and IRS-1 PI/PTB domains. However, unlike the case for binding of the Shc PI/PTB domain, tyrosine phosphorylation of the YENPTY motif is not required for the binding of (beta)APP to X11 or FE65. The binding site of the FE65 PI domain appears to be different from that of X11, as mutations within the YENPTY motif differentially affect the binding of X11 and FE65. Using site-directed mutagenesis, we have identified a crucial residue within the PI domain involved in X11 and FE65 binding to (beta)APP. The binding of X11 or FE65 PI domains to residues of the YENPTY motif of (beta)APP identifies PI domains as general protein interaction domains and may have important implications for the processing of (beta)APP. PMID:8887653

  3. Cryptococcus neoformans glucuronoxylomannan fractions of different molecular masses are functionally distinct

    PubMed Central

    Albuquerque, Priscila C; Fonseca, Fernanda L; Dutra, Fabianno F; Bozza, Marcelo T; Frases, Susana; Casadevall, Arturo; Rodrigues, Marcio L

    2015-01-01

    Aims Glucuronoxylomannan (GXM) is the major polysaccharide component of Cryptococcus neoformans. We evaluated in this study whether GXM fractions of different molecular masses were functionally distinct. Materials & methods GXM samples isolated from C. neoformans cultures were fractionated to generate polysaccharide preparations differing in molecular mass. These fractions were used in experiments focused on the association of GXM with cell wall components of C. neoformans, as well as on the interaction of the polysaccharide with host cells. Results & conclusion GXM fractions of variable molecular masses bound to the surface of a C. neoformans acapsular mutant in a punctate pattern that is in contrast to the usual annular pattern of surface coating observed when GXM samples containing the full molecular mass range were used. The polysaccharide samples were also significantly different in their ability to stimulate cytokine production by host cells. Our findings indicate that GXM fractions are functionally distinct depending on their mass. PMID:24571070

  4. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment.

    PubMed

    van Wolfswinkel, Josien C; Wagner, Daniel E; Reddien, Peter W

    2014-09-01

    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ζ (zeta) and σ (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage, including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings indicate that planarian neoblasts comprise two major and functionally distinct cellular compartments.

  5. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment

    PubMed Central

    van Wolfswinkel, Josien C.; Wagner, Daniel E.; Reddien, Peter W.

    2014-01-01

    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ζ (zeta) and σ (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings present a new view of planarian neoblasts, in which the population is comprised of two major and functionally distinct cellular compartments. PMID:25017721

  6. Distinct functions and regulation of epithelial progesterone receptor in the mouse cervix, vagina, and uterus

    PubMed Central

    Mehta, Fabiola F.; Son, Jieun; Hewitt, Sylvia C.; Jang, Eunjung; Lydon, John P.; Korach, Kenneth S.; Chung, Sang-Hyuk

    2016-01-01

    While the function of progesterone receptor (PR) has been studied in the mouse vagina and uterus, its regulation and function in the cervix has not been described. We selectively deleted epithelial PR in the female reproductive tracts using the Cre/LoxP recombination system. We found that epithelial PR was required for induction of apoptosis and suppression of cell proliferation by progesterone (P4) in the cervical and vaginal epithelium. We also found that epithelial PR was dispensable for P4 to suppress apoptosis and proliferation in the uterine epithelium. PR is encoded by the Pgr gene, which is regulated by estrogen receptor α (ERα) in the female reproductive tracts. Using knock−in mouse models expressing ERα mutants, we determined that the DNA−binding domain (DBD) and AF2 domain of ERα were required for upregulation of Pgr in the cervix and vagina as well as the uterine stroma. The ERα AF1 domain was required for upregulation of Pgr in the vaginal stroma and epithelium and cervical epithelium, but not in the uterine and cervical stroma. ERα DBD, AF1, and AF2 were required for suppression of Pgr in the uterine epithelium, which was mediated by stromal ERα. Epithelial ERα was responsible for upregulation of epithelial Pgr in the cervix and vagina. Our results indicate that regulation and functions of epithelial PR are different in the cervix, vagina, and uterus. PMID:27007157

  7. Distinct Changes in Functional Connectivity in Posteromedial Cortex Subregions during the Progress of Alzheimer's Disease.

    PubMed

    Wu, Yan; Zhang, Yaqin; Liu, Yong; Liu, Jieqiong; Duan, Yunyun; Wei, Xuehu; Zhuo, Junjie; Li, Kuncheng; Zhang, Xinqin; Yu, Chunshui; Wang, Jiaojian; Jiang, Tianzi

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder which causes dementia, especially in the elderly. The posteromedial cortex (PMC), which consists of several subregions involved in distinct functions, is one of the critical regions associated with the progression and severity of AD. However, previous studies always ignored the heterogeneity of the PMC and focused on one stage of AD. Using resting-state functional magnetic resonance imaging, we studied the respective alterations of each subregion within the PMC along the progression of AD. Our data set consisted of 21 healthy controls, 18 patients with mild cognitive impairment (MCI), 17 patients with mild AD (mAD), and 18 patients with severe AD (sAD). We investigated the functional alterations of each subregion within the PMC in different stages of AD. We found that subregions within the PMC have differential vulnerability in AD. Disruptions in functional connectivity began in the transition area between the precuneus and the posterior cingulate cortex (PCC) and then extended to other subregions of the PMC. In addition, each of these subregions was associated with distinct alterations in the functional networks that we were able to relate to AD. Our research demonstrated functional changes within the PMC in the progression of AD and may elucidate potential biomarkers for clinical applications. PMID:27147982

  8. Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains

    PubMed Central

    Sundlov, Jesse A.; Shi, Ce; Wilson, Daniel J.; Aldrich, Courtney C.; Gulick, Andrew M.

    2012-01-01

    Summary Non-ribosomal peptide synthetases (NRPSs) are modular proteins that produce peptide antibiotics and siderophores. These enzymes act as catalytic assembly lines where substrates, covalently bound to integrated carrier domains, are delivered to adjacent catalytic domains. The carrier domains are initially loaded by adenylation domains, which use two distinct conformations to catalyze sequentially the adenylation of the substrate and the thioesterification of the pantetheine cofactor. We have used a mechanism-based inhibitor to determine the crystal structure of an engineered adenylation-carrier domain protein illustrating the intermolecular interaction between the adenylation and carrier domains. This structure enabled directed mutations to improve the interaction between non-native partner proteins. Comparison with prior NRPS adenylation domain structures provides insights into the assembly line dynamics of these modular enzymes. PMID:22365602

  9. Is an organic/functional distinction psychologically meaningful in patients with dysphonia?

    PubMed

    Millar, A; Deary, I J; Wilson, J A; MacKenzie, K

    1999-06-01

    Dysphonia (hoarseness) is a common clinical condition and, if persistent, patients are referred to otolaryngology clinics for clinical examination. During the examination, a clinical distinction is often made among three types of patients: (1) those with a clear organic basis for dysphonia (cancer, vocal cord palsy): (2) those with some degree of organic pathology; and (3) those with an apparently functional etiology. Functional patients are often characterized as having a psychogenic disorder. This study assessed the psychological validity of the functional category in 204 out-patients (aged 17 to 87 years) with persistent hoarseness of types (2) and (3). Following clinical examination, a consultant otolaryngologist categorized patients as having functional or organic etiology. Subjects were then compared on measures of personality and psychological distress. Dysphonic subjects showed marked psychological distress compared with norms, and reported significantly more previous psychosomatic symptoms than norms, but there were no differences in personality or psychological distress between organic and functional subgroups of dysphonics.

  10. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    SciTech Connect

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  11. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain

    PubMed Central

    Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J.; Polo, Simona

    2016-01-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VIshort and myosin VIlong, which differ in the C-terminal region. Their physiological and pathological role remains unknown. Here we identified an isoform-specific regulatory helix, named α2-linker that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a novel clathrin-binding domain that is unique to myosin VIlong and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, where alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VIshort for tumor cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VIshort. Thus the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VIlong) or migratory (myosin VIshort) functional roles. PMID:26950368

  12. Function of a Conserved Checkpoint Recruitment Domain in ATRIP Proteins▿

    PubMed Central

    Ball, Heather L.; Ehrhardt, Mark R.; Mordes, Daniel A.; Glick, Gloria G.; Chazin, Walter J.; Cortez, David

    2007-01-01

    The ATR (ATM and Rad3-related) kinase is essential to maintain genomic integrity. ATR is recruited to DNA lesions in part through its association with ATR-interacting protein (ATRIP), which in turn interacts with the single-stranded DNA binding protein RPA (replication protein A). In this study, a conserved checkpoint protein recruitment domain (CRD) in ATRIP orthologs was identified by biochemical mapping of the RPA binding site in combination with nuclear magnetic resonance, mutagenesis, and computational modeling. Mutations in the CRD of the Saccharomyces cerevisiae ATRIP ortholog Ddc2 disrupt the Ddc2-RPA interaction, prevent proper localization of Ddc2 to DNA breaks, sensitize yeast to DNA-damaging agents, and partially compromise checkpoint signaling. These data demonstrate that the CRD is critical for localization and optimal DNA damage responses. However, the stimulation of ATR kinase activity by binding of topoisomerase binding protein 1 (TopBP1) to ATRIP-ATR can occur independently of the interaction of ATRIP with RPA. Our results support the idea of a multistep model for ATR activation that requires separable localization and activation functions of ATRIP. PMID:17339343

  13. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms.

    PubMed

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Bhat, Vikas; Farooq, Amjad

    2011-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease.

  14. Transiently populated intermediate functions as a branching point of the FF domain folding pathway.

    PubMed

    Korzhnev, Dmitry M; Religa, Tomasz L; Kay, Lewis E

    2012-10-30

    Studies of protein folding and the intermediates that are formed along the folding pathway provide valuable insights into the process by which an unfolded ensemble forms a functional native conformation. However, because intermediates on folding pathways can serve as initiation points of aggregation (implicated in a number of diseases), their characterization assumes an even greater importance. Establishing the role of such intermediates in folding, misfolding, and aggregation remains a major challenge due to their often low populations and short lifetimes. We recently used NMR relaxation dispersion methods and computational techniques to determine an atomic resolution structure of the folding intermediate of a small protein module--the FF domain--with an equilibrium population of 2-3% and a millisecond lifetime, 25 °C. Based on this structure a variant FF domain has been designed in which the native state is selectively destabilized by removing the carboxyl-terminal helix in the native structure to produce a highly populated structural mimic of the intermediate state. Here, we show via solution NMR studies of the designed mimic that the mimic forms distinct conformers corresponding to monomeric and dimeric (K(d) = 0.2 mM) forms of the protein. The conformers exchange on the seconds timescale with a monomer association rate of 1.1 · 10(4) M(-1) s(-1) and with a region responsible for dimerization localized to the amino-terminal residues of the FF domain. This study establishes the FF domain intermediate as a central player in both folding and misfolding pathways and illustrates how incomplete folding can lead to the formation of higher-order structures.

  15. Parsing Physiological Functions of Erythropoietin One Domain at a Time.

    PubMed

    Steinman, Lawrence

    2015-10-01

    A domain of erythropoietin (EPO), separate from the domain involved in red blood cell development, has been identified. This region of EPO has anti-inflammatory and neuroprotective effects. Use of a peptide sequence from this region provides the potential for an effective therapeutic without effects on erythropoiesis. PMID:26311151

  16. Weighted mutual information analysis substantially improves domain-based functional network models

    PubMed Central

    Shim, Jung Eun; Lee, Insuk

    2016-01-01

    Motivation: Functional protein–protein interaction (PPI) networks elucidate molecular pathways underlying complex phenotypes, including those of human diseases. Extrapolation of domain–domain interactions (DDIs) from known PPIs is a major domain-based method for inferring functional PPI networks. However, the protein domain is a functional unit of the protein. Therefore, we should be able to effectively infer functional interactions between proteins based on the co-occurrence of domains. Results: Here, we present a method for inferring accurate functional PPIs based on the similarity of domain composition between proteins by weighted mutual information (MI) that assigned different weights to the domains based on their genome-wide frequencies. Weighted MI outperforms other domain-based network inference methods and is highly predictive for pathways as well as phenotypes. A genome-scale human functional network determined by our method reveals numerous communities that are significantly associated with known pathways and diseases. Domain-based functional networks may, therefore, have potential applications in mapping domain-to-pathway or domain-to-phenotype associations. Availability and Implementation: Source code for calculating weighted mutual information based on the domain profile matrix is available from www.netbiolab.org/w/WMI. Contact: Insuklee@yonsei.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27207946

  17. Clarifying the nature of the distinctiveness by domain interaction in conceptual structure: comment on Cree, McNorgan, and McRae (2006).

    PubMed

    Taylor, Kirsten I; Salamoura, Angeliki; Randall, Billi; Moss, Helen; Tyler, Lorraine K

    2008-05-01

    The conceptual structure account of semantic memory (CSA; L. K. Tyler & H. E. Moss, 2001) claims that feature correlation (the degree to which features co-occur) and feature distinctiveness (the number of concepts in which a feature occurs) interact with domains of knowledge (e.g., living vs. nonliving) such that the distinctive features of nonliving things are more highly correlated than the distinctive features of living things. Evidence for (B. Randall, H. E. Moss, J. M. Rodd, M. Greer, & L. K. Tyler, 2004) and against this claim (G. S. Cree, C. McNorgan, & K. McRae, 2006) has been reported. This comment outlines the CSA, discusses Cree et al.'s (2006) critiques of the Randall et al. (2004) experiments and the CSA, and reports new analyses of property norm and behavioral data, which replicate the results reported by Randall et al. (2004). PMID:18444769

  18. Processing of different types of social threat in shyness: Preliminary findings of distinct functional neural connectivity.

    PubMed

    Tang, Alva; Beaton, Elliott A; Tatham, Erica; Schulkin, Jay; Hall, Geoffrey B; Schmidt, Louis A

    2016-01-01

    Current theory suggests that the processing of different types of threat is supported by distinct neural networks. Here we tested whether there are distinct neural correlates associated with different types of threat processing in shyness. Using fMRI and multivariate techniques, we compared neural responses and functional connectivity during the processing of imminent (i.e., congruent angry/angry face pairs) and ambiguous (i.e., incongruent angry/neutral face pairs) social threat in young adults selected for high and low shyness. To both types of threat processing, non-shy adults recruited a right medial prefrontal cortex (mPFC) network encompassing nodes of the default mode network involved in automatic emotion regulation, whereas shy adults recruited a right dorsal anterior cingulate cortex (dACC) network encompassing nodes of the frontoparietal network that instantiate active attentional and cognitive control. Furthermore, in shy adults, the mPFC interacted with the dACC network for ambiguous threat, but with a distinct network encompassing nodes of the salience network for imminent threat. These preliminary results expand our understanding of right mPFC function associated with temperamental shyness. They also provide initial evidence for differential neural networks associated with shy and non-shy profiles in the context of different types of social threat processing.

  19. Phospholamban and sarcolipin: Are they functionally redundant or distinct regulators of the Sarco(Endo)Plasmic Reticulum Calcium ATPase?

    PubMed

    Shaikh, Sana A; Sahoo, Sanjaya K; Periasamy, Muthu

    2016-02-01

    In muscle, the Sarco(Endo)plasmic Reticulum Calcium ATPase (SERCA) activity is regulated by two distinct proteins, PLB and SLN, which are highly conserved throughout vertebrate evolution. PLB is predominantly expressed in the cardiac muscle, while SLN is abundant in skeletal muscle. SLN is also found in the cardiac atria and to a lesser extent in the ventricle. PLB regulation of SERCA is central to cardiac function, both at rest and during extreme physiological demand. Compared to PLB, the physiological relevance of SLN remained a mystery until recently and some even thought it was redundant in function. Studies on SLN suggest that it is an uncoupler of the SERCA pump activity and can increase ATP hydrolysis resulting in heat production. Using genetically engineered mouse models for SLN and PLB, we showed that SLN, not PLB, is required for muscle-based thermogenesis. However, the mechanism of how SLN binding to SERCA results in uncoupling SERCA Ca(2+) transport from its ATPase activity remains unclear. In this review, we discuss recent advances in understanding how PLB and SLN differ in their interaction with SERCA. We will also explore whether structural differences in the cytosolic domain of PLB and SLN are the basis for their unique function and physiological roles in cardiac and skeletal muscle. PMID:26743715

  20. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    SciTech Connect

    Parent, Kristin N.; Tang, Jinghua; Cardone, Giovanni; Gilcrease, Eddie B.; Janssen, Mandy E.; Olson, Norman H.; Casjens, Sherwood R.; Baker, Timothy S.

    2014-09-15

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer.

  1. A comparison of hydrologic and functional trait domains from floodplain landscapes in Michigan and Maryland

    NASA Astrophysics Data System (ADS)

    Van Appledorn, M.; Baker, M. E.

    2013-12-01

    Riparian forest ecosystems are ecologically important areas strongly influenced by hydrologic processes. Although studies from different regions suggest that variation in flood dynamics structures plant communities within and among watersheds, we still lack the ability to predict biotic responses to different flow regimes. Functional traits have the potential to yield insight into community structuring mechanisms not apparent without controlled experimentation, and may lead to region-specific improvement of conservation and restoration practices. The objectives of this study are to 1) quantify patterns of flood dynamics and functional trait distributions for riparian forests across two disparate regions (Maryland and Michigan's lower peninsula), and 2) compare trait-environment domains to evaluate the transferability of inter-regional riparian studies. Flood frequency, intensity and duration were characterized using long-term USGS gauge data for over 200 Maryland and Michigan rivers. Species lists were obtained from riparian inventories throughout Maryland and Michigan's lower peninsula and were related to functional traits representing growth, competition, regenerative processes, and adaptive strategies for disturbance resistance and resilience. We found that floods in Maryland tend to be less frequent and more energetically intense than in Michigan, where high baseflow yields lead to longer duration floods and less tractive power. In contrast with the hydrologic domains, functional trait distributions had a high degree of overlap between Maryland and Michigan. Species from both regions comprised each of the 9 functional groups represented by the combined sample, and both regions had similar measures of functional diversity (FDis MD = 0.143, FDis MI = 0.161). Trait distributions suggest that the states have comparable trait pools despite distinct species composition and environmental settings. This study demonstrates that regional shifts in environmental domains

  2. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits

    PubMed Central

    Dautan, Daniel; Souza, Albert S.; Huerta-Ocampo, Icnelia; Valencia, Miguel; Assous, Maxime; Witten, Ilana B.; Deisseroth, Karl; Tepper, James M.; Bolam, J. Paul; Gerdjikov, Todor V.; Mena-Segovia, Juan

    2016-01-01

    Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures associated with either movement or reward. While cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. Here we used optogenetic methods combined with in vivo juxtacellular recording/labeling to dissect the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhance the bursting activity of mesolimbic dopamine neurons that are excited by aversive stimulation. In contrast, PPN cholinergic axons activate and change the discharge properties of VTA neurons that are integrated in distinct functional circuits and are inhibited by aversive stimulation. While both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate neurons involved in different reward circuits. PMID:7666171

  3. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits.

    PubMed

    Dautan, Daniel; Souza, Albert S; Huerta-Ocampo, Icnelia; Valencia, Miguel; Assous, Maxime; Witten, Ilana B; Deisseroth, Karl; Tepper, James M; Bolam, J Paul; Gerdjikov, Todor V; Mena-Segovia, Juan

    2016-08-01

    Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures that are associated with either movement or reward. Whereas cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. We used optogenetics and in vivo juxtacellular recording and labeling to examine the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhanced the bursting activity of mesolimbic dopamine neurons that were excited by aversive stimulation. In contrast, PPN cholinergic axons activated and changed the discharge properties of VTA neurons that were integrated in distinct functional circuits and were inhibited by aversive stimulation. Although both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate the neurons involved in different reward circuits.

  4. Tropomyosin is essential in yeast, yet the TPM1 and TPM2 products perform distinct functions

    PubMed Central

    1995-01-01

    Sequence analysis of chromosome IX of Saccharomyces cerevisiae revealed an open reading frame of 166 residues, designated TPM2, having 64.5% sequence identity to TPM1, that encodes the major form of tropomyosin in yeast. Purification and characterization of Tpm2p revealed a protein with the characteristics of a bona fide tropomyosin; it is present in vivo at about one sixth the abundance of Tpm1p. Biochemical and sequence analysis indicates that Tpm2p spans four actin monomers along a filament, whereas Tpmlp spans five. Despite its shorter length, Tpm2p can compete with Tpm1p for binding to F-actin. Over-expression of Tpm2p in vivo alters the axial budding of haploids to a bipolar pattern, and this can be partially suppressed by co-over-expression of Tpm1p. This suggests distinct functions for the two tropomyosins, and indicates that the ratio between them is important for correct morphogenesis. Loss of Tpm2p has no detectable phenotype in otherwise wild type cells, but is lethal in combination with tpm1 delta. Over-expression of Tpm2p does not suppress the growth or cell surface targeting defects associated with tpm1 delta, so the two tropomyosins must perform an essential function, yet are not functionally interchangeable. S. cerevisiae therefore provides a simple system for the study of two tropomyosins having distinct yet overlapping functions. PMID:7844152

  5. Electrophysiological evidence for functionally distinct neuronal populations in the human substantia nigra.

    PubMed

    Ramayya, Ashwin G; Zaghloul, Kareem A; Weidemann, Christoph T; Baltuch, Gordon H; Kahana, Michael J

    2014-01-01

    The human substantia nigra (SN) is thought to consist of two functionally distinct neuronal populations-dopaminergic (DA) neurons in the pars compacta subregion and GABA-ergic neurons in the pars reticulata subregion. However, a functional dissociation between these neuronal populations has not previously been demonstrated in the awake human. Here we obtained microelectrode recordings from the SN of patients undergoing deep brain stimulation (DBS) surgery for Parkinson's disease as they performed a two-alternative reinforcement learning task. Following positive feedback presentation, we found that putative DA and GABA neurons demonstrated distinct temporal dynamics. DA neurons demonstrated phasic increases in activity (250-500 ms post-feedback) whereas putative GABA neurons demonstrated more delayed and sustained increases in activity (500-1000 ms post-feedback). These results provide the first electrophysiological evidence for a functional dissociation between DA and GABA neurons in the human SN. We discuss possible functions for these neuronal responses based on previous findings in human and animal studies. PMID:25249957

  6. Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin.

    PubMed

    Lund, Eivind G; Duband-Goulet, Isabelle; Oldenburg, Anja; Buendia, Brigitte; Collas, Philippe

    2015-01-01

    The nuclear lamina has been shown to interact with the genome through lamina-associated domains (LADs). LADs have been identified by DamID, a proximity labeling assay, and more recently by chromatin immunoprecipitation-sequencing (ChIP-seq) of A- and B-type lamins. LADs form megabase-size domains at the nuclear periphery, they are gene-poor and mostly heterochromatic. Here, we show that the mode of chromatin fragmentation for ChIP, namely bath sonication or digestion with micrococcal nuclease (MNase), leads to the discovery of common but also distinct sets of lamin-interacting domains, or LiDs. Using ChIP-seq, we show the existence of lamin A/C (LMNA) LiDs with distinct gene contents, histone composition enrichment and relationships to lamin B1-interacting domains. The extent of genome coverage of lamin A/C (LMNA) LiDs in sonicated or MNase-digested chromatin is similar (∼730 megabases); however over half of these domains are uniquely detected in sonicated or MNase-digested chromatin. Sonication-specific LMNA LiDs are gene-poor and devoid of a broad panel of histone modifications, while MNase-specific LMNA LiDs are of higher gene density and are enriched in H3K9me3, H3K27me3 and in histone variant H2A.Z. LMNB1 LiDs are gene-poor and show no or little enrichment in these marks. Comparison of published LMNB1 DamID LADs with LMNB1 and LMNA LiDs identified here by ChIP-seq further shows that LMNA can associate with 'open' chromatin domains displaying euchromatin characteristics, and which are not associated with LMNB1. The differential genomic and epigenetic properties of lamin-interacting domains reflect the existence of distinct LiD populations identifiable in different chromatin contexts, including nuclease-accessible regions presumably localized in the nuclear interior.

  7. Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs

    NASA Astrophysics Data System (ADS)

    Streit, Robert P.; Hoey, Andrew S.; Bellwood, David R.

    2015-12-01

    The removal of macroalgal biomass by fishes is a key process on coral reefs. Numerous studies have identified the fish species responsible for removing mature macroalgae, and have identified how this varies spatially, temporally, and among different algal types. None, however, have considered the behavioural and morphological traits of the browsing fishes and how this may influence the removal of macroalgal material. Using video observations of fish feeding on the brown macroalga Sargassum polycystum, we quantified the feeding behaviour and morphology of the four dominant browsing species on the Great Barrier Reef ( Kyphosus vaigiensis, Naso unicornis, Siganus canaliculatus, and Siganus doliatus). The greatest distinction between species was the algal material they targeted. K. vaigiensis and N. unicornis bit on the entire macroalgal thallus in approximately 90 % of bites. In contrast, Si. canaliculatus and Si. doliatus avoided biting the stalks, with 80-98 % of bites being on the macroalgal leaves only. This distinctive grouping into `entire thallus-biters' versus `leaf-biters' was not supported by size-standardized measures of biting morphology. Rather, species-specific adult body sizes, tooth shape, and feeding behaviour appear to underpin this functional distinction, with adults of the two larger fish species ( N. unicornis and K. vaigiensis) eating the entire macroalgal thallus, while the two smaller species ( Si. canaliculatus and Si. doliatus) bite only leaves. These findings caution against assumed homogeneity within this, and potentially other, functional groups on coral reefs. As functional redundancy within the macroalgal browsers is limited, the smaller `leaf-biting' species are unlikely to be able to compensate functionally for the loss of larger `entire thallus-biting' species.

  8. Multiple domains in endoglucanase B (CenB) from Cellulomonas fimi: functions and relatedness to domains in other polypeptides.

    PubMed Central

    Meinke, A; Gilkes, N R; Kilburn, D G; Miller, R C; Warren, R A

    1991-01-01

    Endoglucanase B (CenB) from the bacterium Cellulomonas fimi is divided into five discrete domains by linker sequences rich in proline and hydroxyamino acids (A. Meinke, C. Braun, N. R. Gilkes, D. G. Kilburn, R. C. Miller, Jr., and R. A. J. Warren, J. Bacteriol. 173:308-314, 1991). The catalytic domain of 608 amino acids is at the N terminus. The sequence of the first 477 amino acids in the catalytic domain is related to the sequences of cellulases in family E, which includes procaryotic and eucaryotic enzymes. The sequence of the last 131 amino acids of the catalytic domain is related to sequences present in a number of cellulases from different families. The catalytic domain alone can bind to cellulose, and this binding is mediated at least in part by the C-terminal 131 amino acids. Deletion of these 131 amino acids reduces but does not eliminate activity. The catalytic domain is followed by three domains which are repeats of a 98-amino-acid sequence. The repeats are approximately 50% identical to two repeats of 95 amino acids in a chitinase from Bacillus circulans which are related to fibronectin type III repeats (T. Watanabe, K. Suzuki, K. Oyanagi, K. Ohnishi, and H. Tanaka, J. Biol. Chem. 265:15659-15665, 1990). The C-terminal domain of 101 amino acids is related to sequences, present in a number of bacterial cellulases and xylanases from different families, which form cellulose-binding domains (CBDs). It functions as a CBD when fused to a heterologous polypeptide. Cells of Escherichia coli expressing the wild-type cenB gene accumulate both native CenB and a stable proteolytic fragment of 41 kDa comprising the three repeats and the C-terminal CBD. The 41-kDa polypeptide binds to cellulose but lacks enzymatic activity. Images FIG. 7 FIG. 8 PMID:1938913

  9. RING DOMAIN DIMERIZATION IS ESSENTIAL FOR RNF4 FUNCTION

    PubMed Central

    Liew, Chu Wai; Sun, Huaiyu; Hunter, Tony; Day, Catherine L.

    2011-01-01

    SYNOPSIS RNF4 family ubiquitin ligases are RING E3 ligases that regulate the homeostasis of SUMOylated proteins by promoting their ubiquitylation. Here we report that the RING domain of RNF4 forms a stable dimer, and that dimerization is required for ubiquitin transfer. Our data suggests that the stability of the E2~ubiquitin thioester bond is regulated by RING domain dimerization. PMID:20681948

  10. Subcellular patterning: axonal domains with specialized structure and function

    PubMed Central

    Normand, Elizabeth A.; Rasband, Matthew N.

    2015-01-01

    Myelinated axons are patterned into discrete and often repeating domains responsible for the efficient and rapid transmission of electrical signals. These domains include nodes of Ranvier and axon initial segments. Disruption of axonal patterning leads to nervous system dysfunction. In this review we introduce the concept of subcellular patterning as applied to axons and discuss how these patterning events depend on both intrinsic, cytoskeletal mechanisms, and extrinsic, myelinating-glia dependent mechanisms. PMID:25710532

  11. Carboxyl-terminal domain of transient receptor potential vanilloid 1 contains distinct segments differentially involved in capsaicin- and heat-induced desensitization.

    PubMed

    Joseph, John; Wang, Sen; Lee, Jongseok; Ro, Jin Y; Chung, Man-Kyo

    2013-12-13

    Multiple Ca(2+)-dependent processes are involved in capsaicin-induced desensitization of transient receptor potential vanilloid 1 (TRPV1), but desensitization of TRPV1 by heat occurs even in the absence of extracellular Ca(2+), although the mechanisms are unknown. In this study, we tested the hypothesis that capsaicin and heat desensitize TRPV1 through distinct mechanisms involving distinct structural segments of TRPV1. In HEK293 cells that heterologously express TRPV1, we found that heat-induced desensitization was not affected by the inclusion of intracellular ATP or alanine mutation of Lys(155), both of which attenuate capsaicin-induced desensitization, suggesting that heat-induced desensitization occurs through mechanisms distinct from capsaicin-induced desensitization. To determine protein domains involved in heat-induced desensitization, we generated chimeric proteins between TRPV1 and TRPV3, a heat-gated channel lacking heat-induced desensitization. We found that TRPV1 with the carboxyl-terminal domain (CTD) of TRPV3 retained heat activation but was impaired in heat-induced desensitization. Further experiments using chimeric or deletion mutants within TRPV1 CTD indicated that the distal half of CTD regulates the activation and desensitization of TRPV1 in modality-specific manners. Within the distal CTD, we identified two segments that distinctly regulated capsaicin- and heat-induced desensitization. The results suggest that the activation and desensitization of TRPV1 by capsaicin and heat can be modulated differentially and disproportionally through different regions of TRPV1 CTD. Identifying the domains involved in thermal regulation of TRPV1 may facilitate the development of novel anti-hyperalgesic approaches aimed at attenuating activation and enhancing desensitization of TRPV1 by thermal stimuli.

  12. MASTICATORY FUNCTION OF OBESE CANDIDATES TO BARIATRIC SURGERY FROM DISTINCT SOCIOECONOMIC CLASSES

    PubMed Central

    PASSERI, Celso Roberto; ANDRADE, Jacira Alves Caracik de Camargo; TOMAL, Karla Thaíza; PRACUCHO, Eduardo Marcucci; de CAMPOS, Livia Paschoalino; SALES-PERES, Silvia Helena de Carvalho

    2016-01-01

    ABSTRACT Background: Obesity and metabolic syndrome can be labeled as worldwide outbreak; thus, both have led to serious public health problem. Oral health can be worsened by both, obesity and metabolic syndrome. Tooth loss harms masticatory function, essential status to whom will be submitted to bariatric surgery. Aim: Assess masticatory function of obese candidates to bariatric surgery, who belong to distinct socioeconomic class range, in order to recognize hazard factors and the bias of socioeconomic factor in this context. Methods: Observational cross-section study, with samples comprised by two groups of patients, with distinct socioeconomic class range, one of them belonging to public health system (SUSG) and the other to private clinic (CPG), candidates to bariatric surgery. Were assessed anthropometric data, comorbidities and medicines usage, blood tests, habits and the number of dental functional units. Results: The groups SUSG and CPG were homogeneous taking into account gender (p=0,890) and age range (p=0,170). The number of dental functional units was higher in the private group (p<0.001). The impaired masticatory function was rather present among public group (p<0.001) and female gender (p<0,001). Regarded as blood tests, fasting glucose was higher in female in SUSG (p<0,001). The following hazard factors have corroborated to have patients rated as impaired masticatory function: belong to public service (OR: 8.420, p=0.003), higher age (OR: 1.186, p<0.001), female gender (OR: 0.153, p=0.029), diabetes mellitus (OR: 2.545, p=0.045) and smokers (OR: 2.951, p=0.043). Conclusion: The general health and masticatory function of female SUSG were worse, highlighting the socioeconomic condition as hazard factor. PMID:27683777

  13. Single-stranded DNA-binding proteins: multiple domains for multiple functions.

    PubMed

    Dickey, Thayne H; Altschuler, Sarah E; Wuttke, Deborah S

    2013-07-01

    The recognition of single-stranded DNA (ssDNA) is integral to myriad cellular functions. In eukaryotes, ssDNA is present stably at the ends of chromosomes and at some promoter elements. Furthermore, it is formed transiently by several cellular processes including telomere synthesis, transcription, and DNA replication, recombination, and repair. To coordinate these diverse activities, a variety of proteins have evolved to bind ssDNA in a manner specific to their function. Here, we review the recognition of ssDNA through the analysis of high-resolution structures of proteins in complex with ssDNA. This functionally diverse set of proteins arises from a limited set of structural motifs that can be modified and arranged to achieve distinct activities, including a range of ligand specificities. We also investigate the ways in which these domains interact in the context of large multidomain proteins/complexes. These comparisons reveal the structural features that define the range of functions exhibited by these proteins.

  14. Single-Stranded DNA-Binding Proteins: Multiple Domains for Multiple Functions

    PubMed Central

    Dickey, Thayne H.; Altschuler, Sarah E.; Wuttke, Deborah S.

    2013-01-01

    The recognition of single-stranded DNA (ssDNA) is integral to myriad cellular functions. In eukaryotes, ssDNA is present stably at the ends of chromosomes and at some promoter elements. Furthermore, it is formed transiently by several cellular processes including telomere synthesis, transcription, and DNA replication, recombination, and repair. To coordinate these diverse activities, a variety of proteins have evolved to bind ssDNA in a manner specific to their function. Here, we review the recognition of ssDNA through the analysis of high-resolution structures of proteins in complex with ssDNA. This functionally diverse set of proteins arises from a limited set of structural motifs that can be modified and arranged to achieve distinct activities, including a range of ligand specificities. We also investigate the ways in which these domains interact in the context of large multidomain proteins/complexes. These comparisons reveal the structural features that define the range of functions exhibited by these proteins. PMID:23823326

  15. The Synaptojanin-like Protein Inp53/Sjl3 Functions with Clathrin in a Yeast TGN-to-Endosome Pathway Distinct from the GGA Protein-dependent Pathway

    PubMed Central

    Ha, Seon-Ah; Torabinejad, Javad; DeWald, Daryll B.; Wenk, Markus R.; Lucast, Louise; De Camilli, Pietro; Newitt, Richard A.; Aebersold, Ruedi; Nothwehr, Steven F.

    2003-01-01

    Yeast TGN resident proteins that frequently cycle between the TGN and endosomes are much more slowly transported to the prevacuolar/late endosomal compartment (PVC) than other proteins. However, TGN protein transport to the PVC is accelerated in mutants lacking function of Inp53p. Inp53p contains a SacI polyphosphoinositide phosphatase domain, a 5-phosphatase domain, and a proline-rich domain. Here we show that all three domains are required to mediate “slow delivery” of TGN proteins into the PVC. Although deletion of the proline-rich domain did not affect general membrane association, it caused localization to become less specific. The proline-rich domain was shown to bind to two proteins, including clathrin heavy chain, Chc1p. Unlike chc1 mutants, inp53 mutants do not mislocalize TGN proteins to the cell surface, consistent with the idea that Chc1p and Inp53p act at a common vesicular trafficking step but that Chc1p is used at other steps also. Like mutations in the AP-1 adaptor complex, mutations in INP53 exhibit synthetic growth and transport defects when combined with mutations in the GGA proteins. Taken together with other recent studies, our results suggest that Inp53p and AP-1/clathrin act together in a TGN-to-early endosome pathway distinct from the direct TGN-to-PVC pathway mediated by GGA/clathrin. PMID:12686590

  16. Distinct Effects of Two HIV-1 Capsid Assembly Inhibitor Families That Bind the Same Site within the N-Terminal Domain of the Viral CA Protein

    PubMed Central

    Titolo, Steve; von Schwedler, Uta; Goudreau, Nathalie; Mercier, Jean-François; Wardrop, Elizabeth; Faucher, Anne-Marie; Coulombe, René; Banik, Soma S. R.; Fader, Lee; Gagnon, Alexandre; Kawai, Stephen H.; Rancourt, Jean; Tremblay, Martin; Yoakim, Christiane; Simoneau, Bruno; Archambault, Jacques; Sundquist, Wesley I.

    2012-01-01

    The emergence of resistance to existing classes of antiretroviral drugs necessitates finding new HIV-1 targets for drug discovery. The viral capsid (CA) protein represents one such potential new target. CA is sufficient to form mature HIV-1 capsids in vitro, and extensive structure-function and mutational analyses of CA have shown that the proper assembly, morphology, and stability of the mature capsid core are essential for the infectivity of HIV-1 virions. Here we describe the development of an in vitro capsid assembly assay based on the association of CA-NC subunits on immobilized oligonucleotides. This assay was used to screen a compound library, yielding several different families of compounds that inhibited capsid assembly. Optimization of two chemical series, termed the benzodiazepines (BD) and the benzimidazoles (BM), resulted in compounds with potent antiviral activity against wild-type and drug-resistant HIV-1. Nuclear magnetic resonance (NMR) spectroscopic and X-ray crystallographic analyses showed that both series of inhibitors bound to the N-terminal domain of CA. These inhibitors induce the formation of a pocket that overlaps with the binding site for the previously reported CAP inhibitors but is expanded significantly by these new, more potent CA inhibitors. Virus release and electron microscopic (EM) studies showed that the BD compounds prevented virion release, whereas the BM compounds inhibited the formation of the mature capsid. Passage of virus in the presence of the inhibitors selected for resistance mutations that mapped to highly conserved residues surrounding the inhibitor binding pocket, but also to the C-terminal domain of CA. The resistance mutations selected by the two series differed, consistent with differences in their interactions within the pocket, and most also impaired virus replicative capacity. Resistance mutations had two modes of action, either directly impacting inhibitor binding affinity or apparently increasing the overall

  17. Function of the ATR N-terminal domain revealed by an ATM/ATR chimera

    SciTech Connect

    Chen Xinping; Zhao Runxiang; Glick, Gloria G.; Cortez, David . E-mail: david.cortez@vanderbilt.edu

    2007-05-01

    The ATM and ATR kinases function at the apex of checkpoint signaling pathways. These kinases share significant sequence similarity, phosphorylate many of the same substrates, and have overlapping roles in initiating cell cycle checkpoints. However, they sense DNA damage through distinct mechanisms. ATR primarily senses single stranded DNA (ssDNA) through its interaction with ATRIP, and ATM senses double strand breaks through its interaction with Nbs1. We determined that the N-terminus of ATR contains a domain that binds ATRIP. Attaching this domain to ATM allowed the fusion protein (ATM*) to bind ATRIP and associate with RPA-coated ssDNA. ATM* also gained the ability to localize efficiently to stalled replication forks as well as double strand breaks. Despite having normal kinase activity when tested in vitro and being phosphorylated on S1981 in vivo, ATM* is defective in checkpoint signaling and does not complement cellular deficiencies in either ATM or ATR. These data indicate that the N-terminus of ATR is sufficient to bind ATRIP and to promote localization to sites of replication stress.

  18. Distinct Developmental Functions of Prostasin (CAP1/PRSS8) Zymogen and Activated Prostasin.

    PubMed

    Friis, Stine; Madsen, Daniel H; Bugge, Thomas H

    2016-02-01

    The membrane-anchored serine prostasin (CAP1/PRSS8) is essential for barrier acquisition of the interfollicular epidermis and for normal hair follicle development. Consequently, prostasin null mice die shortly after birth. Prostasin is found in two forms in the epidermis: a one-chain zymogen and a two-chain proteolytically active form, generated by matriptase-dependent activation site cleavage. Here we used gene editing to generate mice expressing only activation site cleavage-resistant (zymogen-locked) endogenous prostasin. Interestingly, these mutant mice displayed normal interfollicular epidermal development and postnatal survival, but had defects in whisker and pelage hair formation. These findings identify two distinct in vivo functions of epidermal prostasin: a function in the interfollicular epidermis, not requiring activation site cleavage, that can be mediated by the zymogen-locked version of prostasin and a proteolysis-dependent function of activated prostasin in hair follicles, dependent on zymogen conversion by matriptase.

  19. Distinct Developmental Functions of Prostasin (CAP1/PRSS8) Zymogen and Activated Prostasin.

    PubMed

    Friis, Stine; Madsen, Daniel H; Bugge, Thomas H

    2016-02-01

    The membrane-anchored serine prostasin (CAP1/PRSS8) is essential for barrier acquisition of the interfollicular epidermis and for normal hair follicle development. Consequently, prostasin null mice die shortly after birth. Prostasin is found in two forms in the epidermis: a one-chain zymogen and a two-chain proteolytically active form, generated by matriptase-dependent activation site cleavage. Here we used gene editing to generate mice expressing only activation site cleavage-resistant (zymogen-locked) endogenous prostasin. Interestingly, these mutant mice displayed normal interfollicular epidermal development and postnatal survival, but had defects in whisker and pelage hair formation. These findings identify two distinct in vivo functions of epidermal prostasin: a function in the interfollicular epidermis, not requiring activation site cleavage, that can be mediated by the zymogen-locked version of prostasin and a proteolysis-dependent function of activated prostasin in hair follicles, dependent on zymogen conversion by matriptase. PMID:26719335

  20. AINTEGUMENTA-LIKE genes have partly overlapping functions with AINTEGUMENTA but make distinct contributions to Arabidopsis thaliana flower development.

    PubMed

    Krizek, Beth A

    2015-08-01

    AINTEGUMENTA (ANT) is an important regulator of Arabidopsis flower development that has overlapping functions with the related AINTEGUMENTA-LIKE6 (AIL6) gene in floral organ initiation, identity specification, growth, and patterning. Two other AINTEGUMENTA-LIKE (AIL) genes, AIL5 and AIL7, are expressed in developing flowers in spatial domains that partly overlap with those of ANT. Here, it is shown that AIL5 and AIL7 also act in a partially redundant manner with ANT. The results demonstrate that AIL genes exhibit unequal genetic redundancy with roles for AIL5, AIL6, and AIL7 only revealed in the absence of ANT function. ant ail5 and ant ail7 double mutant flowers show alterations in floral organ positioning and growth, sepal fusion, and reductions in petal number. In ant ail5, petals are often replaced by filaments or dramatically reduced in size. ant ail7 double mutants produce increased numbers of carpels, which have defects in valve fusion and a loss of apical tissues. The distinct phenotypes of ant ail5, ant ail7 and the previously characterized ant ail6 indicate that AIL5, AIL6, and AIL7 make unique contributions to flower development. These distinct roles are also supported by genetic analyses of ant ail triple mutants. While ant ail5 ail6 triple mutants closely resemble ant ail6 double mutants, ant ail5 ail7 triple mutants exhibit more severe deviations from the wild type than either ant ail5 or ant ail7 double mutants. Furthermore, it is shown that AIL5, AIL6, and AIL7 act in a dose dependent manners in ant and other mutant backgrounds.

  1. AINTEGUMENTA-LIKE genes have partly overlapping functions with AINTEGUMENTA but make distinct contributions to Arabidopsis thaliana flower development

    PubMed Central

    Krizek, Beth A.

    2015-01-01

    AINTEGUMENTA (ANT) is an important regulator of Arabidopsis flower development that has overlapping functions with the related AINTEGUMENTA-LIKE6 (AIL6) gene in floral organ initiation, identity specification, growth, and patterning. Two other AINTEGUMENTA-LIKE (AIL) genes, AIL5 and AIL7, are expressed in developing flowers in spatial domains that partly overlap with those of ANT. Here, it is shown that AIL5 and AIL7 also act in a partially redundant manner with ANT. The results demonstrate that AIL genes exhibit unequal genetic redundancy with roles for AIL5, AIL6, and AIL7 only revealed in the absence of ANT function. ant ail5 and ant ail7 double mutant flowers show alterations in floral organ positioning and growth, sepal fusion, and reductions in petal number. In ant ail5, petals are often replaced by filaments or dramatically reduced in size. ant ail7 double mutants produce increased numbers of carpels, which have defects in valve fusion and a loss of apical tissues. The distinct phenotypes of ant ail5, ant ail7 and the previously characterized ant ail6 indicate that AIL5, AIL6, and AIL7 make unique contributions to flower development. These distinct roles are also supported by genetic analyses of ant ail triple mutants. While ant ail5 ail6 triple mutants closely resemble ant ail6 double mutants, ant ail5 ail7 triple mutants exhibit more severe deviations from the wild type than either ant ail5 or ant ail7 double mutants. Furthermore, it is shown that AIL5, AIL6, and AIL7 act in a dose dependent manners in ant and other mutant backgrounds. PMID:25956884

  2. The RNA Exosome Channeling and Direct Access Conformations Have Distinct In Vivo Functions.

    PubMed

    Han, Jaeil; van Hoof, Ambro

    2016-09-20

    The RNA exosome is a 3'-5' ribonuclease complex that is composed of nine core subunits and an essential catalytic subunit, Rrp44. Two distinct conformations of Rrp44 were revealed in previous structural studies, suggesting that Rrp44 may change its conformation to exert its function. In the channeling conformation, (Rrp44(ch)), RNA accesses the active site after traversing the central channel of the RNA exosome, whereas in the other conformation, (Rrp44(da)), RNA gains direct access to the active site. Here, we show that the Rrp44(da) exosome is important for nuclear function of the RNA exosome. Defects caused by disrupting the direct access conformation are distinct from those caused by channel-occluding mutations, indicating specific functions for each conformation. Our genetic analyses provide in vivo evidence that the RNA exosome employs a direct-access route to recruit specific substrates, indicating that the RNA exosome uses alternative conformations to act on different RNA substrates.

  3. The RNA Exosome Channeling and Direct Access Conformations Have Distinct In Vivo Functions.

    PubMed

    Han, Jaeil; van Hoof, Ambro

    2016-09-20

    The RNA exosome is a 3'-5' ribonuclease complex that is composed of nine core subunits and an essential catalytic subunit, Rrp44. Two distinct conformations of Rrp44 were revealed in previous structural studies, suggesting that Rrp44 may change its conformation to exert its function. In the channeling conformation, (Rrp44(ch)), RNA accesses the active site after traversing the central channel of the RNA exosome, whereas in the other conformation, (Rrp44(da)), RNA gains direct access to the active site. Here, we show that the Rrp44(da) exosome is important for nuclear function of the RNA exosome. Defects caused by disrupting the direct access conformation are distinct from those caused by channel-occluding mutations, indicating specific functions for each conformation. Our genetic analyses provide in vivo evidence that the RNA exosome employs a direct-access route to recruit specific substrates, indicating that the RNA exosome uses alternative conformations to act on different RNA substrates. PMID:27653695

  4. Tracking the Fate of Genetically Distinct Vesicular Stomatitis Virus Matrix Proteins Highlights the Role for Late Domains in Assembly

    PubMed Central

    Soh, Timothy K.

    2015-01-01

    ABSTRACT Vesicular stomatitis virus (VSV) assembly requires condensation of the viral ribonucleoprotein (RNP) core with the matrix protein (M) during budding from the plasma membrane. The RNP core comprises the negative-sense genomic RNA completely coated by the nucleocapsid protein (N) and associated by a phosphoprotein (P) with the large polymerase protein (L). To study the assembly of single viral particles, we tagged M and P with fluorescent proteins. We selected from a library of viruses with insertions in the M gene a replication-competent virus containing a fluorescent M and combined that with our previously described virus containing fluorescent P. Virus particles containing those fusions maintained the same bullet shape appearance as wild-type VSV but had a modest increase in particle length, reflecting the increased genome size. Imaging of the released particles revealed a variation in the amount of M and P assembled into the virions, consistent with a flexible packaging mechanism. We used the recombinants to further study the importance of the late domains in M, which serve to recruit the endosomal sorting complex required for transport (ESCRT) machinery during budding. Mutations in late domains resulted in the accumulation of virions that failed to pinch off from the plasma membrane. Imaging of single virions released from cells that were coinfected with M tagged with enhanced green fluorescent protein and M tagged with mCherry variants in which the late domains of one virus were inactivated by mutation showed a strong bias against the incorporation of the late-domain mutant into the released virions. In contrast, the intracellular expression and membrane association of the two variants were unaltered. These studies provide new tools for imaging particle assembly and enhance our resolution of existing models for assembly of VSV. IMPORTANCE Assembly of vesicular stomatitis virus (VSV) particles requires the separate trafficking of the viral replication

  5. Three functionally distinct classes of C-fiber nociceptors in primate

    PubMed Central

    Wooten, Matthew; Weng, Hao-Jui; Hartke, Timothy V; Borzan, Jasenka; Klein, Amanda H; Turnquist, Brian; Dong, Xinzhong; Meyer, Richard A; Ringkamp, Matthias

    2014-01-01

    In primate C-fiber polymodal nociceptors are broadly classified into two groups based on mechanosensitivity. Here we demonstrate that mechanically-sensitive polymodal nociceptors that respond either quickly (QC) or slowly (SC) to a heat stimulus differ in responses to a mild burn, heat sensitization, conductive properties and chemosensitivity. Superficially applied capsaicin and intradermal injection of β-alanine, a MrgprD agonist, excite vigorously all QCs. Only 40% of SCs respond to β-alanine, and their response is only half that of QCs. Mechanically-insensitive C-fibers (C-MIAs) are β-alanine insensitive but vigorously respond to capsaicin and histamine with distinct discharge patterns. Calcium imaging reveals that β-alanine and histamine activate distinct populations of capsaicin responsive neurons in primate DRG. We suggest that histamine itch and capsaicin pain are peripherally encoded in C-MIAs and that primate polymodal nociceptive afferents form three functionally distinct subpopulations with β-alanine responsive QC fibers likely corresponding to murine MrgprD- expressing, non-peptidergic nociceptive afferents. PMID:24947823

  6. Three functionally distinct classes of C-fibre nociceptors in primates.

    PubMed

    Wooten, Matthew; Weng, Hao-Jui; Hartke, Timothy V; Borzan, Jasenka; Klein, Amanda H; Turnquist, Brian; Dong, Xinzhong; Meyer, Richard A; Ringkamp, Matthias

    2014-01-01

    In primates, C-fibre polymodal nociceptors are broadly classified into two groups based on mechanosensitivity. Here we demonstrate that mechanically sensitive polymodal nociceptors that respond either quickly (QC) or slowly (SC) to a heat stimulus differ in responses to a mild burn, heat sensitization, conductive properties and chemosensitivity. Superficially applied capsaicin and intradermal injection of β-alanine, an MrgprD agonist, excite vigorously all QCs. Only 40% of SCs respond to β-alanine, and their response is only half that of QCs. Mechanically insensitive C-fibres (C-MIAs) are β-alanine insensitive but vigorously respond to capsaicin and histamine with distinct discharge patterns. Calcium imaging reveals that β-alanine and histamine activate distinct populations of capsaicin-responsive neurons in primate dorsal root ganglion. We suggest that histamine itch and capsaicin pain are peripherally encoded in C-MIAs, and that primate polymodal nociceptive afferents form three functionally distinct subpopulations with β-alanine responsive QC fibres likely corresponding to murine MrgprD-expressing, non-peptidergic nociceptive afferents.

  7. Endocytotic routes of cobra cardiotoxins depend on spatial distribution of positively charged and hydrophobic domains to target distinct types of sulfated glycoconjugates on cell surface.

    PubMed

    Lee, Shao-Chen; Lin, Chien-Chu; Wang, Chia-Hui; Wu, Po-Long; Huang, Hsuan-Wei; Chang, Chung-I; Wu, Wen-guey

    2014-07-18

    Cobra cardiotoxins (CTX) are a family of three-fingered basic polypeptides known to interact with diverse targets such as heparan sulfates, sulfatides, and integrins on cell surfaces. After CTX bind to the membrane surface, they are internalized to intracellular space and exert their cytotoxicity via an unknown mechanism. By the combined in vitro kinetic binding, three-dimensional x-ray structure determination, and cell biology studies on the naturally abundant CTX homologues from the Taiwanese cobra, we showed that slight variations on the spatial distribution of positively charged or hydrophobic domains among CTX A2, A3, and A4 could lead to significant changes in their endocytotic pathways and action mechanisms via distinct sulfated glycoconjugate-mediated processes. The intracellular locations of these structurally similar CTX after internalization are shown to vary between the mitochondria and lysosomes via either dynamin2-dependent or -independent processes with distinct membrane cholesterol sensitivity. Evidence is presented to suggest that the shifting between the sulfated glycoconjugates as distinct targets of CTX A2, A3, and A4 might play roles in the co-evolutionary arms race between venomous snake toxins to cope with different membrane repair mechanisms at the cellular levels. The sensitivity of endocytotic routes to the spatial distribution of positively charged or hydrophobic domains may provide an explanation for the diverse endocytosis pathways of other cell-penetrating basic polypeptides.

  8. Distinct pathways of cell migration and antiapoptotic response to epithelial injury: structure-function analysis of human intestinal trefoil factor.

    PubMed

    Kinoshita, K; Taupin, D R; Itoh, H; Podolsky, D K

    2000-07-01

    The trefoil peptide intestinal trefoil factor (ITF) plays a critical role in the protection of colonic mucosa and is essential to restitution after epithelial damage. These functional properties are accomplished through coordinated promotion of cell migration and inhibition of apoptosis. ITF contains a unique three-looped trefoil motif formed by intrachain disulfide bonds among six conserved cysteine residues, which is thought to contribute to its marked protease resistance. ITF also has a seventh cysteine residue, which permits homodimer formation. A series of cysteine-to-serine substitutions and a C-terminally truncated ITF were made by PCR site-directed mutagenesis. Any alteration of the trefoil motif or truncation resulted in loss of protease resistance. However, neither an intact trefoil domain nor dimerization was required to promote cell migration. This pro-restitution activity correlated with the ability of the ITF mutants to activate mitogen-activated protein (MAP) kinase independent of phosphorylation of the epidermal growth factor (EGF) receptor. In contrast, only intact ITF retained both phosphatidylinositol 3-kinase and the EGF receptor-dependent antiapoptotic effect in HCT116 and IEC-6 cells. The inability to block apoptosis correlated with a loss of trefoil peptide-induced transactivation of the EGF receptor or Akt kinase in HT-29 cells. In addition to defining structural requirements for the functional properties of ITF, these findings demonstrate that distinct intracellular signaling pathways mediate the effects of ITF on cell migration and apoptosis.

  9. Distinct Pathways of Cell Migration and Antiapoptotic Response to Epithelial Injury: Structure-Function Analysis of Human Intestinal Trefoil Factor

    PubMed Central

    Kinoshita, Koichi; Taupin, Douglas R.; Itoh, Hiroshi; Podolsky, Daniel K.

    2000-01-01

    The trefoil peptide intestinal trefoil factor (ITF) plays a critical role in the protection of colonic mucosa and is essential to restitution after epithelial damage. These functional properties are accomplished through coordinated promotion of cell migration and inhibition of apoptosis. ITF contains a unique three-looped trefoil motif formed by intrachain disulfide bonds among six conserved cysteine residues, which is thought to contribute to its marked protease resistance. ITF also has a seventh cysteine residue, which permits homodimer formation. A series of cysteine-to-serine substitutions and a C-terminally truncated ITF were made by PCR site-directed mutagenesis. Any alteration of the trefoil motif or truncation resulted in loss of protease resistance. However, neither an intact trefoil domain nor dimerization was required to promote cell migration. This pro-restitution activity correlated with the ability of the ITF mutants to activate mitogen-activated protein (MAP) kinase independent of phosphorylation of the epidermal growth factor (EGF) receptor. In contrast, only intact ITF retained both phosphatidylinositol 3-kinase and the EGF receptor-dependent antiapoptotic effect in HCT116 and IEC-6 cells. The inability to block apoptosis correlated with a loss of trefoil peptide-induced transactivation of the EGF receptor or Akt kinase in HT-29 cells. In addition to defining structural requirements for the functional properties of ITF, these findings demonstrate that distinct intracellular signaling pathways mediate the effects of ITF on cell migration and apoptosis. PMID:10848594

  10. Regularized Laplace-Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function

    NASA Astrophysics Data System (ADS)

    Jun, Hyunggu; Kwon, Jungmin; Shin, Changsoo; Zhou, Hongbo; Cogan, Mike

    2016-09-01

    Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace-Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace-Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace-Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace-Fourier-domain FWI. Because the Laplace-Fourier-domain FWI is improved, the

  11. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib

    PubMed Central

    Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  12. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib.

    PubMed

    Vasudevan, Kumar; Vera Cruz, Casiana M; Gruissem, Wilhelm; Bhullar, Navreet K

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  13. Multi-predator effects produced by functionally distinct species vary with prey density.

    PubMed

    Werling, Ben P; Lowenstein, David M; Straub, Cory S; Gratton, Claudio

    2012-01-01

    Determining when multiple predator species provide better pest suppression than single species is a key step towards developing ecologically-informed biological control strategies. Theory and experiments predict that resource partitioning among functionally different predator species can strengthen prey suppression, because as a group they can access more prey types than functionally redundant predators. However, this prediction assumes that competition limits predation by functionally similar predators. Differences in prey density can alter the strength of competition, suggesting that prey abundance may modulate the effect of combining functionally diverse species. The experiment documented here examined the potential for functional differences among predator species to promote suppression of an insect pest, the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), at different prey densities. Predation was compared at two prey densities between microcosms that contained one predator species or two functionally distinct species: the lady beetle, Coleomegilla maculata De Geer (Coleoptera: Coccinellidae) that kills early L. decemlineata instars, and the soldier bug, Podisus maculiventris Say (Hemiptera: Pentatomidae) that kills late instars. The data show that combining these predators increased predation only when prey densities were low. This suggests that multiple predator species may only provide greater biological control than single species in systems where prey is limiting. PMID:22958369

  14. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct

    PubMed Central

    Gundra, Uma Mahesh; Girgis, Natasha M.; Ruckerl, Dominik; Jenkins, Stephen; Ward, Lauren N.; Kurtz, Zachary D.; Wiens, Kirsten E.; Tang, Mei San; Basu-Roy, Upal; Mansukhani, Alka; Allen, Judith E.

    2014-01-01

    Macrophages adopt an alternatively activated phenotype (AAMs) when activated by the interleukin-4receptor(R)α. AAMs can be derived either from proliferation of tissue resident macrophages or recruited inflammatory monocytes, but it is not known whether these different sources generate AAMs that are phenotypically and functionally distinct. By transcriptional profiling analysis, we show here that, although both monocyte and tissue-derived AAMs expressed high levels of Arg1, Chi3l3, and Retnla, only monocyte-derived AAMs up-regulated Raldh2 and PD-L2. Monocyte-derived AAMs were also CX3CR1-green fluorescent protein (GFP)high and expressed CD206, whereas tissue-derived AAMs were CX3CR1-GFP and CD206 negative. Monocyte-derived AAMs had high levels of aldehyde dehydrogenase activity and promoted the differentiation of FoxP3+ cells from naïve CD4+ cells via production of retinoic acid. In contrast, tissue-derived AAMs expressed high levels of uncoupling protein 1. Hence monocyte-derived AAM have properties associated with immune regulation, and the different physiological properties associated with AAM function may depend on the distinct lineage of these cells. PMID:24695852

  15. Two functionally distinct kinetochore pools of BubR1 ensure accurate chromosome segregation

    PubMed Central

    Zhang, Gang; Mendez, Blanca Lopez; Sedgwick, Garry G.; Nilsson, Jakob

    2016-01-01

    The BubR1/Bub3 complex is an important regulator of chromosome segregation as it facilitates proper kinetochore–microtubule interactions and is also an essential component of the spindle assembly checkpoint (SAC). Whether BubR1/Bub3 localization to kinetochores in human cells stimulates SAC signalling or only contributes to kinetochore–microtubule interactions is debated. Here we show that two distinct pools of BubR1/Bub3 exist at kinetochores and we uncouple these with defined BubR1/Bub3 mutants to address their function. The major kinetochore pool of BubR1/Bub3 is dependent on direct Bub1/Bub3 binding and is required for chromosome alignment but not for the SAC. A distinct pool of BubR1/Bub3 localizes by directly binding to phosphorylated MELT repeats on the outer kinetochore protein KNL1. When we prevent the direct binding of BubR1/Bub3 to KNL1 the checkpoint is weakened because BubR1/Bub3 is not incorporated into checkpoint complexes efficiently. In conclusion, kinetochore localization supports both known functions of BubR1/Bub3. PMID:27457023

  16. Distinct and opposite roles for SH2 and SH3 domains of v-src in embryo survival and hemangiosarcoma formation.

    PubMed

    Morgan, John C; Majors, John E; Galileo, Deni S

    2005-01-01

    The cellular proto-oncogene c-src is thought to be involved in formation, progression, and metastasis of a variety of tumor cell types, although its exact role during tumor cell genesis is not well defined. v-src, the viral oncogene counterpart of c-src, causes metastatic sarcomas, hemorrhagic disease, and hemangiosarcomas in chicken embryos and, thus, can be used as a constitutively activated form of src for experimentally-induced tumorigenesis. Here, we used retroviral vectors to express wild-type v-src or SH2 or SH3 domain-deleted forms (DeltaSH2 or DeltaSH3) to determine if different pathogenic effects resulted. Vectors were injected into early chick embryo midbrain ventricles and embryos were sacrificed at various ages up to embryonic day (E) 18. Retroviral expression of all forms of v-src resulted in transformation of pial connective tissue cells into large, rounded abnormal-appearing cells. Surprisingly, all forms of v-src were lethal. The v-src retrovirus was lethal and killed most embryos by E15 with the development of hemangiosarcomas over the injection site between E10-E12. The DeltaSH3 retrovirus was the most deadly, killing most embryos by E12, however, it never resulted in hemangiosarcoma formation. The DeltaSH2 retrovirus injected embryos survived longer than v-src or DeltaSH3 embryos, and some of these embryos also developed large hemangiosarcomas over the injection site between E13 and E18. These results demonstrate that the src SH2 domain is required to be fully lethal, whereas the presence of the SH3 domain attenuated lethality. Furthermore, the formation of hemangiosarcomas absolutely required the presence of the src SH3 domain and to some extent required the SH2 domain. This implicates distinct and opposite roles for SH2 and SH3 domains of src and their cellular binding partners in tumorigenesis and hemorrhagic disease.

  17. Generation of a Functionally Distinct Rhizopus oryzae Lipase through Protein Folding Memory

    PubMed Central

    Satomura, Atsushi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2015-01-01

    Rhizopus oryzae lipase (ROL) has a propeptide at its N-terminus that functions as an intramolecular chaperone and facilitates the folding of mature ROL (mROL). In this study, we successfully generated a functionally distinct imprinted mROL (mROLimp) through protein folding memory using a mutated propeptide. The mutated propeptide left its structural memory on mROL and produced mROLimp that exhibited different substrate specificities compared with mROLWT (prepared from the wild type propeptide), although the amino acid sequences of both mROLs were the same. mROLimp showed a preference for substrates with medium chain-length acyl groups and, noticeably, recognized a peptidase-specific substrate. In addition, ROLimp was more stable than mROLWT. These results strongly suggest that proteins with identical amino acid sequences can fold into different conformations and that mutations in intramolecular chaperones can dynamically induce changes in enzymatic activity. PMID:25970342

  18. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation.

    PubMed

    Madhani, H D; Styles, C A; Fink, G R

    1997-11-28

    Filamentous invasive growth of S. cerevisiae requires multiple elements of the mitogen-activated protein kinase (MAPK) signaling cascade that are also components of the mating pheromone response pathway. Here we show that, despite sharing several constituents, the two pathways use different MAP kinases. The Fus3 MAPK regulates mating, whereas the Kss1 MAPK regulates filamentation and invasion. Remarkably, in addition to their kinase-dependent activation functions, Kss1 and Fus3 each have a distinct kinase-independent inhibitory function. Kss1 inhibits the filamentation pathway by interacting with its target transcription factor Ste12. Fus3 has a different inhibitory activity that prevents the inappropriate activation of invasion by the pheromone response pathway. In the absence of Fus3, there is erroneous crosstalk in which mating pheromone now activates filamentation-specific gene expression using the Kss1 MAPK. PMID:9393860

  19. Structure and functional relevance of the Slit2 homodimerization domain.

    PubMed

    Seiradake, Elena; von Philipsborn, Anne C; Henry, Maud; Fritz, Martin; Lortat-Jacob, Hugues; Jamin, Marc; Hemrika, Wieger; Bastmeyer, Martin; Cusack, Stephen; McCarthy, Andrew A

    2009-07-01

    Slit proteins are secreted ligands that interact with the Roundabout (Robo) receptors to provide important guidance cues in neuronal and vascular development. Slit-Robo signalling is mediated by an interaction between the second Slit domain and the first Robo domain, as well as being dependent on heparan sulphate. In an effort to understand the role of the other Slit domains in signalling, we determined the crystal structure of the fourth Slit2 domain (D4) and examined the effects of various Slit2 constructs on chick retinal ganglion cell axons. Slit2 D4 forms a homodimer using the conserved residues on its concave face, and can also bind to heparan sulphate. We observed that Slit2 D4 frequently results in growth cones with collapsed lamellipodia and that this effect can be inhibited by exogenously added heparan sulphate. Our results show that Slit2 D4-heparan sulphate binding contributes to a Slit-Robo signalling mechanism more intricate than previously thought.

  20. Understory plant communities and the functional distinction between savanna trees, forest trees, and pines

    SciTech Connect

    Veldman, Joseph W.; Mattingly, W. Brett; Brudvig, Lars A.

    2013-02-01

    Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural equation modeling (SEM) and data from 157 sites across three locations in the southeastern United States to understand the effects of broadleaf savanna trees, broadleaf forest trees, and pine trees on savanna understory plant communities. After accounting for underlying gradients in fire frequency and soil moisture, abundances (i.e., basal area and stem density) of forest trees and pines, but not savanna trees, were negatively correlated with the cover and density (i.e., local-scale species richness) of C4 graminoid species, a defining savanna understory functional group that is linked to ecosystem flammability. In analyses of the full understory community, abundances of trees from all functional groups were negatively correlated with species density and cover. For both the C4 and full communities, fire frequency promoted understory plants directly, and indirectly by limiting forest tree abundance. There was little indirect influence of fire on the understory mediated through savanna trees and pines, which are more fire tolerant than forest trees. We conclude that tree functional identity is an important factor that influences overstory tree relationships with savanna understory plant communities. In particular, distinct relationships between trees and C4 graminoids have implications for grass-tree coexistence and vegetation-fire feedbacks that maintain savanna environments and their associated understory plant diversity.

  1. Understory plant communities and the functional distinction between savanna trees, forest trees, and pines.

    PubMed

    Veldman, Joseph W; Mattingly, W Brett; Brudvig, Lars A

    2013-02-01

    Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural equation modeling (SEM) and data from 157 sites across three locations in the southeastern United States to understand the effects of broadleaf savanna trees, broadleaf forest trees, and pine trees on savanna understory plant communities. After accounting for underlying gradients in fire frequency and soil moisture, abundances (i.e., basal area and stem density) of forest trees and pines, but not savanna trees, were negatively correlated with the cover and density (i.e., local-scale species richness) of C4 graminoid species, a defining savanna understory functional group that is linked to ecosystem flammability. In analyses of the full understory community, abundances of trees from all functional groups were negatively correlated with species density and cover. For both the C4 and full communities, fire frequency promoted understory plants directly, and indirectly by limiting forest tree abundance. There was little indirect influence of fire on the understory mediated through savanna trees and pines, which are morefire tolerant than forest trees. We conclude that tree functional identity is an important factor that influences overstory tree relationships with savanna understory plant communities. In particular, distinct relationships between trees and C4 graminoids have implications for grass-tree coexistence and vegetation-fire feedbacks that maintain savanna environments and their associated understory plant diversity.

  2. The Octarepeat Domain of the Prion Protein Binds Cu(II) with Three Distinct Coordination Modes at pH 7.4

    PubMed Central

    Chattopadhyay, Madhuri; Walter, Eric D.; Newell, Dustin J.; Jackson, Pilgrim J.; Aronoff-Spencer, Eliah; Peisach, Jack; Gerfen, Gary J.; Bennett, Brian; Antholine, William E.; Millhauser, Glenn L.

    2010-01-01

    The prion protein (PrP) binds Cu2+ in its N-terminal octarepeat domain. This unusual domain is comprised of four or more tandem repeats of the fundamental sequence PHGGGWGQ. Previous work from our laboratories demonstrates that at full copper occupancy, each HGGGW segment binds a single Cu2+. However, several recent studies suggest that low copper occupancy favors different coordination modes, possibly involving imidazoles from histidines in adjacent octapeptide segments. This is investigated here using a combination of X-band EPR, S-band EPR, and ESEEM, along with a library of modified peptides designed to favor different coordination interactions. At pH 7.4, three distinct coordination modes are identified. Each mode is fully characterized to reveal a series of copper-dependent octarepeat domain structures. Multiple His coordination is clearly identified at low copper stoichiometry. In addition, EPR detected copper–copper interactions at full occupancy suggest that the octarepeat domain partially collapses, perhaps stabilizing this specific binding mode and facilitating cooperative copper uptake. This work provides the first complete characterization of all dominant copper coordination modes at pH 7.4. PMID:16144413

  3. The two human centrin homologues have similar but distinct functions at Tetrahymena basal bodies

    PubMed Central

    Vonderfecht, Tyson; Cookson, Michael W.; Giddings, Thomas H.; Clarissa, Christina; Winey, Mark

    2012-01-01

    Centrins are a ubiquitous family of small Ca2+-binding proteins found at basal bodies that are placed into two groups based on sequence similarity to the human centrins 2 and 3. Analyses of basal body composition in different species suggest that they contain a centrin isoform from each group. We used the ciliate protist Tetrahymena thermophila to gain a better understanding of the functions of the two centrin groups and to determine their potential redundancy. We have previously shown that the Tetrahymena centrin 1 (Cen1), a human centrin 2 homologue, is required for proper basal body function. In this paper, we show that the Tetrahymena centrin 2 (Cen2), a human centrin 3 homologue, has functions similar to Cen1 in basal body orientation, maintenance, and separation. The two are, however, not redundant. A further examination of human centrin 3 homologues shows that they function in a manner distinct from human centrin 2 homologues. Our data suggest that basal bodies require a centrin from both groups in order to function correctly. PMID:23087207

  4. The Tail Domain Is Essential but the Head Domain Dispensable for C. elegans Intermediate Filament IFA-2 Function

    PubMed Central

    Williams, Kyle; Williams, Kristen; Baucher, Hallie M.; Plenefisch, John

    2015-01-01

    The intermediate filament protein IFA-2 is essential for the structural integrity of the Caenorhabditis elegans epidermis. It is one of the major components of the fibrous organelle, an epidermal structure comprised of apical and basal hemidesmosomes linked by cytoplasmic intermediate filaments that serve to transmit force from the muscle to the cuticle. Mutations of IFA-2 result in epidermal fragility and separation of the apical and basal epidermal surfaces during postembryonic growth. An IFA-2 lacking the head domain fully rescues the IFA-2 null mutant, whereas an IFA-2 lacking the tail domain cannot. Conversely, an isolated IFA-2 head was able to localize to fibrous organelles whereas the tail was not. Taken together these results suggest that the head domain contains redundant signals for IF localization, whereas non-redundant essential functions map to the IFA-2, tail, although the tail is unlikely to be directly involved in fibrous organelle localization. PMID:25742641

  5. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    PubMed Central

    Parent, Kristin N.; Tang, Jinghua; Cardone, Giovanni; Gilcrease, Eddie B.; Janssen, Mandy E.; Olson, Norman H.; Casjens, Sherwood R.; Baker, Timothy S.

    2014-01-01

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 E. coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. PMID:25043589

  6. Function and evolution of ubiquitous bacterial signaling adapter phosphopeptide recognition domain FHA.

    PubMed

    Weiling, Hong; Xiaowen, Yu; Chunmei, Li; Jianping, Xie

    2013-03-01

    Forkhead-associated domain (FHA) is a phosphopeptide recognition domain embedded in some regulatory proteins. With similar fold type to important eukaryotic signaling molecules such as Smad2 and IRF3, the role of bacterial FHA domain is intensively pursued. Reported bacterial FHA domain roles include: regulation of glutamate and lipids production, regulation of cell shape, type III secretion, ethambutol resistance, sporulation, signal transduction, carbohydrate storage and transport, and pathogenic and symbiotic host-bacterium interactions. To provide basis for the studies of other bacterial FHA domain containing proteins, the status of bacterial FHA functionality and evolution were summarized.

  7. Evidence for functionally distinct subpopulations of steroidogenic cells in the domestic turkey (Meleagris gallopavo) adrenal gland.

    PubMed

    Kocsis, J F; Lamm, E T; McIlroy, P J; Scanes, C G; Carsia, R V

    1995-04-01

    A body of histological and functional evidence supports the hypothesis that there are functionally distinct subpopulations of steroidogenic cells comprising the avian adrenal gland. In the present study, we tested this hypothesis by evaluating the steroidogenic responses of density-dependent subpopulations of adrenal steroidogenic cells isolated from domestic turkeys fed either a high-normal (control) sodium diet (0.4% Na+) or a Na(+)-restricted diet (0.04% Na+) for 8 days, the latter to stimulate the activity or appearance of possible zona glomerulosa-like cells. Subpopulations were visually yet reproducibly determined by their density-dependent separation on a continuous density gradient of Percoll (45%). The subpopulations were arbitrarily ascribed as being either low-density or high-density adrenal steroidogenic cells [LDAC (p = 1.0350-1.0585 g/ml) and HDAC (p = 1.0590-1.0720 g/ml), respectively]. LDAC and HDAC comprised 95.2 and 4.8%, respectively, of the total number of adrenal steroidogenic cells isolated. The LDAC was further subdivided into three visually distinct subpopulations. The functional differences between the LDAC subpopulations is discussed but was less dramatic than the functional distinction between the HDAC subpopulation and the pooled LDAC subpopulations. Basal aldosterone production values between control LDAC and HDAC were equivalent. In addition, there were no differences in maximal aldosterone production between control LDAC and HDAC in response to [Ile5]angiotensin II (AII), the avian equivalent, [Val5]AII, K+ (as KCl), and that supported by exogenous corticosterone. However, maximal aldosterone production in response to human ACTH-(1-39) (ACTH) of the LDAC was 32% greater than that of the HDAC. Na+ restriction enhanced basal aldosterone production of the LDAC by 84% over the control LDAC. In addition, it enhanced maximal aldosterone production of the LDAC in response to AII peptides, K+, ACTH and that supported by corticosterone by 54

  8. Passive Immunization with Phospho-Tau Antibodies Reduces Tau Pathology and Functional Deficits in Two Distinct Mouse Tauopathy Models

    PubMed Central

    Sankaranarayanan, Sethu; Barten, Donna M.; Vana, Laurel; Devidze, Nino; Yang, Ling; Cadelina, Gregory; Hoque, Nina; DeCarr, Lynn; Keenan, Stefanie; Lin, Alan; Cao, Yang; Snyder, Bradley; Zhang, Bin; Nitla, Magdalena; Hirschfeld, Gregg; Barrezueta, Nestor; Polson, Craig; Wes, Paul; Rangan, Vangipuram S.; Cacace, Angela; Albright, Charles F.; Meredith, Jere; Trojanowski, John Q.; Lee, Virginia M-Y.; Brunden, Kurt R.; Ahlijanian, Michael

    2015-01-01

    In Alzheimer’s disease (AD), an extensive accumulation of extracellular amyloid plaques and intraneuronal tau tangles, along with neuronal loss, is evident in distinct brain regions. Staging of tau pathology by postmortem analysis of AD subjects suggests a sequence of initiation and subsequent spread of neurofibrillary tau tangles along defined brain anatomical pathways. Further, the severity of cognitive deficits correlates with the degree and extent of tau pathology. In this study, we demonstrate that phospho-tau (p-tau) antibodies, PHF6 and PHF13, can prevent the induction of tau pathology in primary neuron cultures. The impact of passive immunotherapy on the formation and spread of tau pathology, as well as functional deficits, was subsequently evaluated with these antibodies in two distinct transgenic mouse tauopathy models. The rTg4510 transgenic mouse is characterized by inducible over-expression of P301L mutant tau, and exhibits robust age-dependent brain tau pathology. Systemic treatment with PHF6 and PHF13 from 3 to 6 months of age led to a significant decline in brain and CSF p-tau levels. In a second model, injection of preformed tau fibrils (PFFs) comprised of recombinant tau protein encompassing the microtubule-repeat domains into the cortex and hippocampus of young P301S mutant tau over-expressing mice (PS19) led to robust tau pathology on the ipsilateral side with evidence of spread to distant sites, including the contralateral hippocampus and bilateral entorhinal cortex 4 weeks post-injection. Systemic treatment with PHF13 led to a significant decline in the spread of tau pathology in this model. The reduction in tau species after p-tau antibody treatment was associated with an improvement in novel-object recognition memory test in both models. These studies provide evidence supporting the use of tau immunotherapy as a potential treatment option for AD and other tauopathies. PMID:25933020

  9. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models.

    PubMed

    Sankaranarayanan, Sethu; Barten, Donna M; Vana, Laurel; Devidze, Nino; Yang, Ling; Cadelina, Gregory; Hoque, Nina; DeCarr, Lynn; Keenan, Stefanie; Lin, Alan; Cao, Yang; Snyder, Bradley; Zhang, Bin; Nitla, Magdalena; Hirschfeld, Gregg; Barrezueta, Nestor; Polson, Craig; Wes, Paul; Rangan, Vangipuram S; Cacace, Angela; Albright, Charles F; Meredith, Jere; Trojanowski, John Q; Lee, Virginia M-Y; Brunden, Kurt R; Ahlijanian, Michael

    2015-01-01

    In Alzheimer's disease (AD), an extensive accumulation of extracellular amyloid plaques and intraneuronal tau tangles, along with neuronal loss, is evident in distinct brain regions. Staging of tau pathology by postmortem analysis of AD subjects suggests a sequence of initiation and subsequent spread of neurofibrillary tau tangles along defined brain anatomical pathways. Further, the severity of cognitive deficits correlates with the degree and extent of tau pathology. In this study, we demonstrate that phospho-tau (p-tau) antibodies, PHF6 and PHF13, can prevent the induction of tau pathology in primary neuron cultures. The impact of passive immunotherapy on the formation and spread of tau pathology, as well as functional deficits, was subsequently evaluated with these antibodies in two distinct transgenic mouse tauopathy models. The rTg4510 transgenic mouse is characterized by inducible over-expression of P301L mutant tau, and exhibits robust age-dependent brain tau pathology. Systemic treatment with PHF6 and PHF13 from 3 to 6 months of age led to a significant decline in brain and CSF p-tau levels. In a second model, injection of preformed tau fibrils (PFFs) comprised of recombinant tau protein encompassing the microtubule-repeat domains into the cortex and hippocampus of young P301S mutant tau over-expressing mice (PS19) led to robust tau pathology on the ipsilateral side with evidence of spread to distant sites, including the contralateral hippocampus and bilateral entorhinal cortex 4 weeks post-injection. Systemic treatment with PHF13 led to a significant decline in the spread of tau pathology in this model. The reduction in tau species after p-tau antibody treatment was associated with an improvement in novel-object recognition memory test in both models. These studies provide evidence supporting the use of tau immunotherapy as a potential treatment option for AD and other tauopathies.

  10. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  11. Cyclooxygenase I and II inhibitors distinctly enhance hippocampal- and cortex-dependent cognitive functions in mice.

    PubMed

    Syed, Huma; Ikram, Muhammad Faisal; Yaqinuddin, Ahmed; Ahmed, Touqeer

    2015-11-01

    Cyclooxygenase (COX) enzymes are expressed in the brain; however, their role in hippocampus-dependent and cortex-dependent cognitive functions remains to be fully elucidated. The aim of the present study was to comparatively investigate the effects of piroxicam, a selective COX-I inhibitor, and celecoxib, a selective COX‑II inhibitor, on cognitive functions in an AlCl3‑induced neurotoxicity mouse model to understand the specific role of each COX enzyme in the hippocampus and cortex. The AlCl3 (250 mg/kg) was administered to the mice in drinking water and the drugs were administered in feed for 30 days. Assessments of memory, including a Morris water maze, social behavior and nesting behavior were performed in control and treated mice. The RNA expression of the COX enzymes were analyzed using reverse transcription‑quantitative polymerase chain reaction analysis. An ex‑vivo 2,2‑Diphenyl‑1‑picrylhydrazyl assay was performed in the hippocampus and cortex. Following 30 days of treatment with thedrugs, the mice in the celecoxib‑ and piroxicam‑treated groups exhibited enhanced learning (6.84 ± 0.76 and 9.20 ± 1.08, respectively), compared with the AlCl3‑induced neurotoxicity group (21.14 ± 0.76) on the fifth day of the Morris water maze test. Celecoxib treatment improved social affiliation in the AlCl3‑induced neurotoxicity group, the results of which were superior to piroxicam. Piroxicam led to better improvement in nesting score in the AlCl3‑induced neurotoxicity group. Both drugs decreased the expression levels of COX‑I and COX‑II in the hippocampus and cortex, and rescued oxidative stress levels. These findings suggested that each drug distinctly affected cognitive functions, highlighting the distinctive roles of COX-I and COX-II in learning and memory.

  12. Function analysis of a new type I PKS-SAT domain by SAT-EAT domain replacement.

    PubMed

    Jiao, Y L; Wang, L H; Jiao, B H; Wang, S J; Fang, Y W; Liu, S

    2010-01-01

    The function of a new starter unit acyltransferase (SAT) domain SAT-EF080951 (GenBank accession number) encoded in a new type I polyketide synthase (PKS) gene cluster EF568935 (GenBank accession number) isolated for this study was analyzed by domain replacement with an extender unit AT (EAT) domain of avermectin PKS. It was shown that the SAT-EF080951 incorporated malonyl-CoA specifically in vivo, which contradicted the specificity that we had previously determined by substrate binding test in vitro. The result of this study indicates that type I PKS-SAT can alter its specificity in vivo and functions well in extender units and proved the feasibility of the SAT-EAT domain replacement in type I PKS. We propose that SAT-EAT replacement strategy could be a novel route for increasing the diversity of new polyketides combinatorially biosynthesized. The new type I PKS-SAT-EF080951 studied herein may be further employed for related studies on enzymology or combinatorial biosynthesis of polyketides. PMID:20391758

  13. Transmembrane domain interactions control biological functions of neuropilin-1.

    PubMed

    Roth, Lise; Nasarre, Cécile; Dirrig-Grosch, Sylvie; Aunis, Dominique; Crémel, Gérard; Hubert, Pierre; Bagnard, Dominique

    2008-02-01

    Neuropilin-1 (NRP1) is a transmembrane receptor playing a pivotal role in the control of semaphorins and VEGF signaling pathways. The exact mechanism controlling semaphorin receptor complex formation is unknown. A structural analysis and modeling of NRP1 revealed a putative dimerization GxxxG motif potentially important for NRP1 dimerization and oligomerization. Our data show that this motif mediates the dimerization of the transmembrane domain of NRP1 as demonstrated by a dimerization assay (ToxLuc assay) performed in natural membrane and FRET analysis. A synthetic peptide derived from the transmembrane segment of NRP1 abolished the inhibitory effect of Sema3A. This effect depends on the capacity of the peptide to interfere with NRP1 dimerization and the formation of oligomeric complexes. Mutation of the GxxxG dimerization motif in the transmembrane domain of NRP1 confirmed its biological importance for Sema3A signaling. Overall, our results shed light on an essential step required for semaphorin signaling and provide novel evidence for the crucial role of transmembrane domain of bitopic protein containing GxxxG motif in the formation of receptor complexes that are a prerequisite for cell signaling.

  14. Distinct Roles of the Repeat-Containing Regions and Effector Domains of the Vibrio vulnificus Multifunctional-Autoprocessing Repeats-in-Toxin (MARTX) Toxin

    PubMed Central

    Kim, Byoung Sik; Gavin, Hannah E.

    2015-01-01

    ABSTRACT Vibrio vulnificus is a seafood-borne pathogen that destroys the intestinal epithelium, leading to rapid bacterial dissemination and death. The most important virulence factor is the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin comprised of effector domains in the center region flanked by long repeat-containing regions which are well conserved among MARTX toxins and predicted to translocate effector domains. Here, we examined the role of the repeat-containing regions using a modified V. vulnificus MARTX (MARTXVv) toxin generated by replacing all the internal effector domains with β-lactamase (Bla). Bla activity was detected in secretions from the bacterium and also in the cytosol of intoxicated epithelial cells. The modified MARTXVv toxin without effector domains retained its necrotic activity but lost its cell-rounding activity. Further, deletion of the carboxyl-terminal repeat-containing region blocked toxin secretion from the bacterium. Deletion of the amino-terminal repeat-containing region had no effect on secretion but completely abolished translocation and necrosis. Neither secretion nor translocation was affected by enzymatically inactivating the cysteine protease domain of the toxin. These data demonstrate that the amino-terminal and carboxyl-terminal repeat-containing regions of the MARTXVv toxin are necessary and sufficient for the delivery of effector domains and epithelial cell lysis in vitro but that effector domains are required for other cytopathic functions. Furthermore, Ca2+-dependent secretion of the modified MARTXVv toxin suggests that nonclassical RTX-like repeats found in the carboxyl-terminal repeat-containing region are functionally similar to classical RTX repeats found in other RTX proteins. PMID:25827415

  15. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-07-01

    The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions. PMID:27335455

  16. Individual protomers of a G protein-coupled receptor dimer integrate distinct functional modules

    PubMed Central

    Camp, Nathan D; Lee, Kyung-Soon; Wacker-Mhyre, Jennifer L; Kountz, Timothy S; Park, Ji-Min; Harris, Dorathy-Ann; Estrada, Marianne; Stewart, Aaron; Wolf-Yadlin, Alejandro; Hague, Chris

    2015-01-01

    Recent advances in proteomic technology reveal G-protein-coupled receptors (GPCRs) are organized as large, macromolecular protein complexes in cell membranes, adding a new layer of intricacy to GPCR signaling. We previously reported the α1D-adrenergic receptor (ADRA1D)—a key regulator of cardiovascular, urinary and CNS function—binds the syntrophin family of PDZ domain proteins (SNTA, SNTB1, and SNTB2) through a C-terminal PDZ ligand interaction, ensuring receptor plasma membrane localization and G-protein coupling. To assess the uniqueness of this novel GPCR complex, 23 human GPCRs containing Type I PDZ ligands were subjected to TAP/MS proteomic analysis. Syntrophins did not interact with any other GPCRs. Unexpectedly, a second PDZ domain protein, scribble (SCRIB), was detected in ADRA1D complexes. Biochemical, proteomic, and dynamic mass redistribution analyses indicate syntrophins and SCRIB compete for the PDZ ligand, simultaneously exist within an ADRA1D multimer, and impart divergent pharmacological properties to the complex. Our results reveal an unprecedented modular dimeric architecture for the ADRA1D in the cell membrane, providing unexpected opportunities for fine-tuning receptor function through novel protein interactions in vivo, and for intervening in signal transduction with small molecules that can stabilize or disrupt unique GPCR:PDZ protein interfaces. PMID:26617989

  17. Dissecting BAR Domain Function in the Yeast Amphiphysins Rvs161 and Rvs167 during Endocytosis

    PubMed Central

    Youn, Ji-Young; Friesen, Helena; Kishimoto, Takuma; Henne, William M.; Kurat, Christoph F.; Ye, Wei; Ceccarelli, Derek F.; Sicheri, Frank; Kohlwein, Sepp D.; McMahon, Harvey T.

    2010-01-01

    BAR domains are protein modules that bind to membranes and promote membrane curvature. One type of BAR domain, the N-BAR domain, contains an additional N-terminal amphipathic helix, which contributes to membrane-binding and bending activities. The only known N-BAR-domain proteins in the budding yeast Saccharomyces cerevisiae, Rvs161 and Rvs167, are required for endocytosis. We have explored the mechanism of N-BAR-domain function in the endocytosis process using a combined biochemical and genetic approach. We show that the purified Rvs161–Rvs167 complex binds to liposomes in a curvature-independent manner and promotes tubule formation in vitro. Consistent with the known role of BAR domain polymerization in membrane bending, we found that Rvs167 BAR domains interact with each other at cortical actin patches in vivo. To characterize N-BAR-domain function in endocytosis, we constructed yeast strains harboring changes in conserved residues in the Rvs161 and Rvs167 N-BAR domains. In vivo analysis of the rvs endocytosis mutants suggests that Rvs proteins are initially recruited to sites of endocytosis through their membrane-binding ability. We show that inappropriate regulation of complex sphingolipid and phosphoinositide levels in the membrane can impinge on Rvs function, highlighting the relationship between membrane components and N-BAR-domain proteins in vivo. PMID:20610658

  18. Genomic analysis reveals distinct mechanisms and functional classes of SOX10-regulated genes in melanocytes

    PubMed Central

    Fufa, Temesgen D.; Harris, Melissa L.; Watkins-Chow, Dawn E.; Levy, Denise; Gorkin, David U.; Gildea, Derek E.; Song, Lingyun; Safi, Alexias; Crawford, Gregory E.; Sviderskaya, Elena V.; Bennett, Dorothy C.; Mccallion, Andrew S.; Loftus, Stacie K.; Pavan, William J.

    2015-01-01

    SOX10 is required for melanocyte development and maintenance, and has been linked to melanoma initiation and progression. However, the molecular mechanisms by which SOX10 guides the appropriate gene expression programs necessary to promote the melanocyte lineage are not fully understood. Here we employ genetic and epigenomic analysis approaches to uncover novel genomic targets and previously unappreciated molecular roles of SOX10 in melanocytes. Through global analysis of SOX10-binding sites and epigenetic characteristics of chromatin states, we uncover an extensive catalog of SOX10 targets genome-wide. Our findings reveal that SOX10 predominantly engages ‘open’ chromatin regions and binds to distal regulatory elements, including novel and previously known melanocyte enhancers. Integrated chromatin occupancy and transcriptome analysis suggest a role for SOX10 in both transcriptional activation and repression to regulate functionally distinct classes of genes. We demonstrate that distinct epigenetic signatures and cis-regulatory sequence motifs predicted to bind putative co-regulatory transcription factors define SOX10-activated and SOX10-repressed target genes. Collectively, these findings uncover a central role of SOX10 as a global regulator of gene expression in the melanocyte lineage by targeting diverse regulatory pathways. PMID:26206884

  19. Divergent regulation of functionally distinct γ-tubulin complexes during differentiation.

    PubMed

    Muroyama, Andrew; Seldin, Lindsey; Lechler, Terry

    2016-06-20

    Differentiation induces the formation of noncentrosomal microtubule arrays in diverse tissues. The formation of these arrays requires loss of microtubule-organizing activity (MTOC) at the centrosome, but the mechanisms regulating this transition remain largely unexplored. Here, we use the robust loss of centrosomal MTOC activity in the epidermis to identify two pools of γ-tubulin that are biochemically and functionally distinct and differentially regulated. Nucleation-competent CDK5RAP2-γ-tubulin complexes were maintained at centrosomes upon initial epidermal differentiation. In contrast, Nedd1-γ-tubulin complexes did not promote nucleation but were required for anchoring of microtubules, a previously uncharacterized activity for this complex. Cell cycle exit specifically triggered loss of Nedd1-γ-tubulin complexes, providing a mechanistic link connecting MTOC activity and differentiation. Collectively, our studies demonstrate that distinct γ-tubulin complexes regulate different microtubule behaviors at the centrosome and show that differential regulation of these complexes drives loss of centrosomal MTOC activity. PMID:27298324

  20. Phenotypic and functional distinctions between the TH2+ and JRA+ T cell subsets in man.

    PubMed

    Reinherz, E L; Strelkauskas, A J; O'Brien, C; Schlossman, S F

    1979-07-01

    Prior work has demonstrated the existence of distinct human peripheral blood T cell subsets by utilizing heterologous as well as autoimmune antisera. In the present study, the relationship between the TH2+ and JRA+ T cell subsets was examined. T cells were purified with Sephadex G-200 anti-F(ab)2' affinity chromatography and E-rosetting technique, and subsequently fractionated into TH2+ and TH2- subsets by utilizing indirect immunofluorescence on FACS. Approximately 40 to 45% of the TH2- subset was shown to be JRA+, whereas less than 5% of the TH2+ subset was JRA+. In reciprocal studies, T cells were fractionated into JRA+ and JRA- subsets and reacted with heterologous antisera with anti-TH2+ specificity and indirect immunofluorescence. FACS analysis demonstrated that the JRA+ population contained no TH2+ T cells. In contrast, the JRA- population contained TH2+ T cells and accounted for the entire TH2+ subset found in the unfractionated T cell population. Functional studies showed that the TH2+ subset, and not the JRA+ subset, contain the effector population for cell-mediated lympholysis. It is concluded that the TH2+ and JRA+ T cell subsets define distinct and different T cell populations in man.

  1. Affinity for self antigen selects Treg cells with distinct functional properties.

    PubMed

    Wyss, Lena; Stadinski, Brian D; King, Carolyn G; Schallenberg, Sonja; McCarthy, Nicholas I; Lee, Jun Young; Kretschmer, Karsten; Terracciano, Luigi M; Anderson, Graham; Surh, Charles D; Huseby, Eric S; Palmer, Ed

    2016-09-01

    The manner in which regulatory T cells (Treg cells) control lymphocyte homeostasis is not fully understood. We identified two Treg cell populations with differing degrees of self-reactivity and distinct regulatory functions. We found that GITR(hi)PD-1(hi)CD25(hi) (Triple(hi)) Treg cells were highly self-reactive and controlled lympho-proliferation in peripheral lymph nodes. GITR(lo)PD-1(lo)CD25(lo) (Triple(lo)) Treg cells were less self-reactive and limited the development of colitis by promoting the conversion of CD4(+) Tconv cells into induced Treg cells (iTreg cells). Although Foxp3-deficient (Scurfy) mice lacked Treg cells, they contained Triple(hi)-like and Triple(lo)-like CD4(+) T cells zsuper> T cells infiltrated the skin, whereas Scurfy Triple(lo)CD4(+) T cells induced colitis and wasting disease. These findings indicate that the affinity of the T cell antigen receptor for self antigen drives the differentiation of Treg cells into distinct subsets with non-overlapping regulatory activities. PMID:27478940

  2. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families.

    PubMed Central

    Gilkes, N R; Henrissat, B; Kilburn, D G; Miller, R C; Warren, R A

    1991-01-01

    Several types of domain occur in beta-1, 4-glycanases. The best characterized of these are the catalytic domains and the cellulose-binding domains. The domains may be joined by linker sequences rich in proline or hydroxyamino acids or both. Some of the enzymes contain repeated sequences up to 150 amino acids in length. The enzymes can be grouped into families on the basis of sequence similarities between the catalytic domains. There are sequence similarities between the cellulose-binding domains, of which two types have been identified, and also between some domains of unknown function. The beta-1, 4-glycanases appear to have arisen by the shuffling of a relatively small number of progenitor sequences. PMID:1886523

  3. Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea

    PubMed Central

    Hendrickson, Erik L.; Haydock, Andrew K.; Moore, Brian C.; Whitman, William B.; Leigh, John A.

    2007-01-01

    The use of molecular hydrogen as electron donor for energy generation is a defining characteristic of the hydrogenotrophic methanogens, an ancient group that dominates the phylum Eury archaeota. We present here a global study of changes in mRNA abundance in response to hydrogen availability for a hydrogenotrophic methanogen. Cells of Methanococcus maripaludis were grown by using continuous culture to deconvolute the effects of hydrogen limitation and growth rate, and microarray analyses were conducted. Hydrogen limitation markedly increased mRNA levels for genes encoding enzymes of the methanogenic pathway that reduce or oxidize the electron-carrying deazaflavin, coenzyme F420. F420-dependent redox functions in energy-generating metabolism are characteristic of the methanogenic Archaea, and the results show that their regulation is distinct from other redox processes in the cell. Rapid growth increased mRNA levels of the gene for an unusual hydrogenase, the hydrogen-dependent methylenetetrahydromethanopterin dehydrogenase. PMID:17502615

  4. Gain-of-function SOS1 mutations cause a distinctive form of noonansyndrome

    SciTech Connect

    Tartaglia, Marco; Pennacchio, Len A.; Zhao, Chen; Yadav, KamleshK.; Fodale, Valentina; Sarkozy, Anna; Pandit, Bhaswati; Oishi, Kimihiko; Martinelli, Simone; Schackwitz, Wendy; Ustaszewska, Anna; Martin, Joes; Bristow, James; Carta, Claudio; Lepri, Francesca; Neri, Cinzia; Vasta,Isabella; Gibson, Kate; Curry, Cynthia J.; Lopez Siguero, Juan Pedro; Digilio, Maria Cristina; Zampino, Giuseppe; Dallapiccola, Bruno; Bar-Sagi, Dafna; Gelb, Brude D.

    2006-09-01

    Noonan syndrome (NS) is a developmental disordercharacterized by short stature, facial dysmorphia, congenital heartdefects and skeletal anomalies1. Increased RAS-mitogenactivated proteinkinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 50 percentof NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 orKRAS mutation (17 percent) have missense mutations in SOS1, which encodesa RAS-specific guanine nucleotide exchange factor (GEF). SOS1 mutationscluster at residues implicated in the maintenance of SOS1 in itsautoinhibited form and ectopic expression of two NS-associated mutantsinduced enhanced RAS activation. The phenotype associated with SOS1defects is distinctive, although within NS spectrum, with a highprevalence of ectodermal abnormalities but generally normal developmentand linear growth. Our findings implicate for the first timegain-of-function mutations in a RAS GEF in inherited disease and define anew mechanism by which upregulation of the RAS pathway can profoundlychange human development.

  5. Functional analysis of the interface between the tandem C2 domains of synaptotagmin-1

    PubMed Central

    Evans, Chantell S.; He, Zixuan; Bai, Hua; Lou, Xiaochu; Jeggle, Pia; Sutton, R. Bryan; Edwardson, J. Michael; Chapman, Edwin R.

    2016-01-01

    C2 domains are widespread motifs that often serve as Ca2+-binding modules; some proteins have more than one copy. An open issue is whether these domains, when duplicated within the same parent protein, interact with one another to regulate function. In the present study, we address the functional significance of interfacial residues between the tandem C2 domains of synaptotagmin (syt)-1, a Ca2+ sensor for neuronal exocytosis. Substitution of four residues, YHRD, at the domain interface, disrupted the interaction between the tandem C2 domains, altered the intrinsic affinity of syt-1 for Ca2+, and shifted the Ca2+ dependency for binding to membranes and driving membrane fusion in vitro. When expressed in syt-1 knockout neurons, the YHRD mutant yielded reductions in synaptic transmission, as compared with the wild-type protein. These results indicate that physical interactions between the tandem C2 domains of syt-1 contribute to excitation–secretion coupling. PMID:26792839

  6. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    PubMed Central

    Alves, Ricardo J Eloy; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M; Schleper, Christa; Urich, Tim

    2013-01-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, and basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils were analyzed through a polyphasic approach, integrating determination of gross nitrification rates, qualitative and quantitative marker gene analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils and outnumbered AOB in four of the remaining six soils. The AOA identified showed great phylogenetic diversity and a multifactorial association with the soil properties, reflecting an overall distribution associated with tundra type and with several physico-chemical parameters combined. Remarkably, the different gross nitrification rates between soils were associated with five distinct AOA clades, representing the great majority of known AOA diversity in soils, which suggests differences in their nitrifying potential. This was supported by selective enrichment of two of these clades in cultures with different NH3 oxidation rates. In addition, the enrichments provided the first direct evidence for NH3 oxidation by an AOA from an uncharacterized Thaumarchaeota–AOA lineage. Our results indicate that AOA are functionally heterogeneous and that the selection of distinct AOA populations by the environment can be a determinant for nitrification activity and N availability in soils. PMID:23466705

  7. Analysis of Gpr126 function defines distinct mechanisms controlling the initiation and maturation of myelin.

    PubMed

    Glenn, Thomas D; Talbot, William S

    2013-08-01

    In peripheral nerves, Schwann cells form the myelin sheath, which allows the efficient propagation of action potentials along axons. The transcription factor Krox20 regulates the initiation of myelination in Schwann cells and is also required to maintain mature myelin. The adhesion G protein-coupled receptor (GPCR) Gpr126 is essential for Schwann cells to initiate myelination, but previous studies have not addressed the role of Gpr126 signaling in myelin maturation and maintenance. Through analysis of Gpr126 in zebrafish, we define two distinct mechanisms controlling the initiation and maturation of myelin. We show that gpr126 mutant Schwann cells elaborate mature myelin sheaths and maintain krox20 expression for months, provided that the early signaling defect is bypassed by transient elevation of cAMP. At the onset of myelination, Gpr126 and protein kinase A (PKA) function as a switch that allows Schwann cells to initiate krox20 expression and myelination. After myelination is initiated, krox20 expression is maintained and myelin maturation proceeds independently of Gpr126 signaling. Transgenic analysis indicates that the Krox20 cis-regulatory myelinating Schwann cell element (MSE) becomes active at the onset of myelination and that this activity is dependent on Gpr126 signaling. Activity of the MSE declines after initiation, suggesting that other elements are responsible for maintaining krox20 expression in mature nerves. We also show that elevated cAMP does not initiate myelination in the absence of functional Neuregulin 1 (Nrg1) signaling. These results indicate that the mechanisms regulating the initiation of myelination are distinct from those mediating the maturation and maintenance of myelin.

  8. On the function of chitin synthase extracellular domains in biomineralization.

    PubMed

    Weiss, Ingrid M; Lüke, Florian; Eichner, Norbert; Guth, Christina; Clausen-Schaumann, Hauke

    2013-08-01

    Molluscs with various shell architectures evolved around 542-525 million years ago, as part of a larger phenomenon related to the diversification of metazoan phyla. Molluscs deposit minerals in a chitin matrix. The mollusc chitin is synthesized by transmembrane enzymes that contain several unique extracellular domains. Here we investigate the assembly mechanism of the chitin synthase Ar-CS1 via its extracellular domain ArCS1_E22. The corresponding transmembrane protein ArCS1_E22TM accumulates in membrane fractions of the expression host Dictyostelium discoideum. Soluble recombinant ArCS1_E22 proteins can be purified as monomers only at basic pH. According to confocal fluorescence microscopy experiments, immunolabeled ArCS1_E22 proteins adsorb preferably to aragonitic nacre platelets at pH 7.75. At pH 8.2 or pH 9.0 the fluorescence signal is less intense, indicating that protein-mineral interaction is reduced with increasing pH. Furthermore, ArCS1_E22 forms regular nanostructures on cationic substrates as revealed by atomic force microscopy (AFM) experiments on modified mica cleavage planes. These experiments suggest that the extracellular domain ArCS1_E22 is involved in regulating the multiple enzyme activities of Ar-CS1 such as chitin synthesis and myosin movements by interaction with mineral surfaces and eventually by protein assembly. The protein complexes could locally probe the status of mineralization according to pH unless ions and pCO2 are balanced with suitable buffer substances. Taking into account that the intact enzyme could act as a force sensor, the results presented here provide further evidence that shell formation is coordinated physiologically with precise adjustment of cellular activities to the structure, topography and stiffness at the mineralizing interface. PMID:23643908

  9. Linking structure and function in food webs: maximization of different ecological functions generates distinct food web structures.

    PubMed

    Yen, Jian D L; Cabral, Reniel B; Cantor, Mauricio; Hatton, Ian; Kortsch, Susanne; Patrício, Joana; Yamamichi, Masato

    2016-03-01

    Trophic interactions are central to ecosystem functioning, but the link between food web structure and ecosystem functioning remains obscure. Regularities (i.e. consistent patterns) in food web structure suggest the possibility of regularities in ecosystem functioning, which might be used to relate structure to function. We introduce a novel, genetic algorithm approach to simulate food webs with maximized throughput (a proxy for ecosystem functioning) and compare the structure of these simulated food webs to real empirical food webs using common metrics of food web structure. We repeat this analysis using robustness to secondary extinctions (a proxy for ecosystem resilience) instead of throughput to determine the relative contributions of ecosystem functioning and ecosystem resilience to food web structure. Simulated food webs that maximized robustness were similar to real food webs when connectance (i.e. levels of interaction across the food web) was high, but this result did not extend to food webs with low connectance. Simulated food webs that maximized throughput or a combination of throughput and robustness were not similar to any real food webs. Simulated maximum-throughput food webs differed markedly from maximum-robustness food webs, which suggests that maximizing different ecological functions can generate distinct food web structures. Based on our results, food web structure would appear to have a stronger relationship with ecosystem resilience than with ecosystem throughput. Our genetic algorithm approach is general and is well suited to large, realistically complex food webs. Genetic algorithms can incorporate constraints on structure and can generate outputs that can be compared directly to empirical data. Our method can be used to explore a range of maximization or minimization hypotheses, providing new perspectives on the links between structure and function in ecological systems.

  10. Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems

    PubMed Central

    Grunert, Oliver; Hernandez-Sanabria, Emma; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar H.; Perneel, Maaike; Van Labeke, Marie-Christine; Reheul, Dirk; Boon, Nico

    2016-01-01

    The choice of soilless growing medium for plant nutrition, growth and support is crucial for improving the eco-sustainability of the production in horticultural systems. As our current understanding of the functional microbial communities inhabiting this ecosystem is still limited, we examined the microbial community development of the two most important growing media (organic and mineral) used in open soilless horticultural systems. We aimed to identify factors that influence community composition over time, and to compare the distribution of individual taxa across growing media, and their potential functionality. High throughput sequencing analysis revealed a distinctive and stable microbial community in the organic growing medium. Humidity, pH, nitrate-N, ammonium-N and conductivity were uncovered as the main factors associated with the resident bacterial communities. Ammonium-N was correlated with Rhizobiaceae abundance, while potential competitive interactions among both Methylophilaceae and Actinobacteridae with Rhizobiaceae were suggested. Our results revealed that soilless growing media are unique niches for diverse bacterial communities with temporal functional stability, which may possibly impact the resistance to external forces. These differences in communities can be used to develop strategies to move towards a sustainable horticulture with increased productivity and quality. PMID:26728128

  11. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism.

    PubMed Central

    Maden, B E

    2000-01-01

    In most organisms, tetrahydrofolate (H(4)folate) is the carrier of C(1) fragments between formyl and methyl oxidation levels. The C(1) fragments are utilized in several essential biosynthetic processes. In addition, C(1) flux through H(4)folate is utilized for energy metabolism in some groups of anaerobic bacteria. In methanogens and several other Archaea, tetrahydromethanopterin (H(4)MPT) carries C(1) fragments between formyl and methyl oxidation levels. At first sight H(4)MPT appears to resemble H(4)folate at the sites where C(1) fragments are carried. However, the two carriers are functionally distinct, as discussed in the present review. In energy metabolism, H(4)MPT permits redox-flux features that are distinct from the pathway on H(4)folate. In the reductive direction, ATP is consumed in the entry of carbon from CO(2) into the H(4)folate pathway, but not in entry into the H(4)MPT pathway. In the oxidative direction, methyl groups are much more readily oxidized on H(4)MPT than on H(4)folate. Moreover, the redox reactions on H(4)MPT are coupled to more negative reductants than the pyridine nucleotides which are generally used in the H(4)folate pathway. Thermodynamics of the reactions of C(1) reduction via the two carriers differ accordingly. A major underlying cause of the thermodynamic differences is in the chemical properties of the arylamine nitrogen N(10) on the two carriers. In H(4)folate, N(10) is subject to electron withdrawal by the carbonyl group of p-aminobenzoate, but in H(4)MPT an electron-donating methylene group occurs in the corresponding position. It is also proposed that the two structural methyl groups of H(4)MPT tune the carrier's thermodynamic properties through an entropic contribution. H(4)MPT appears to be unsuited to some of the biosynthetic functions of H(4)folate, in particular the transfer of activated formyl groups, as in purine biosynthesis. Evidence bearing upon whether H(4)MPT participates in thymidylate synthesis is discussed

  12. Distinct regions of triadin are required for targeting and retention at the junctional domain of the sarcoplasmic reticulum.

    PubMed

    Rossi, Daniela; Bencini, Cristina; Maritati, Marina; Benini, Francesca; Lorenzini, Stefania; Pierantozzi, Enrico; Scarcella, Angela Maria; Paolini, Cecilia; Protasi, Feliciano; Sorrentino, Vincenzo

    2014-03-01

    Ca2+ release, which is necessary for muscle contraction, occurs at the j-SR (junctional domain of the sarcoplasmic reticulum). It requires the assembly of a large multiprotein complex containing the RyR (ryanodine receptor) and additional proteins, including triadin and calsequestrin. The signals which drive these proteins to the j-SR and how they assemble to form this multiprotein complex are poorly understood. To address aspects of these questions we studied the localization, dynamic properties and molecular interactions of triadin. We identified three regions, named TR1 (targeting region 1), TR2 and TR3, that contribute to the localization of triadin at the j-SR. FRAP experiments showed that triadin is stably associated with the j-SR and that this association is mediated by TR3. Protein pull-down experiments indicated that TR3 contains binding sites for calsequestrin-1 and that triadin clustering can be enhanced by binding to calsequestrin-1. These findings were confirmed by FRET experiments. Interestingly, the stable association of triadin to the j-SR was significantly decreased in myotubes from calsequestrin-1 knockout mice. Taken together, these results identify three regions in triadin that mediate targeting to the j-SR and reveal a role for calsequestrin-1 in promoting the stable association of triadin to the multiprotein complex associated with RyR. PMID:24325401

  13. How do disordered regions achieve comparable functions to structured domains?

    PubMed Central

    Latysheva, Natasha S; Flock, Tilman; Weatheritt, Robert J; Chavali, Sreenivas; Babu, M Madan

    2015-01-01

    The traditional structure to function paradigm conceives of a protein's function as emerging from its structure. In recent years, it has been established that unstructured, intrinsically disordered regions (IDRs) in proteins are equally crucial elements for protein function, regulation and homeostasis. In this review, we provide a brief overview of how IDRs can perform similar functions to structured proteins, focusing especially on the formation of protein complexes and assemblies and the mediation of regulated conformational changes. In addition to highlighting instances of such functional equivalence, we explain how differences in the biological and physicochemical properties of IDRs allow them to expand the functional and regulatory repertoire of proteins. We also discuss studies that provide insights into how mutations within functional regions of IDRs can lead to human diseases. PMID:25752799

  14. Using networks to identify fine structural differences between functionally distinct protein states.

    PubMed

    Swint-Kruse, Liskin

    2004-08-31

    The vast increase in available data from the "-omics" revolution has enabled the fields of structural proteomics and structure prediction to make great progress in assigning realistic three-dimensional structures to each protein molecule. The challenge now lies in determining the fine structural details that endow unique functions to sequences that assume a common fold. Similar problems are encountered in understanding how distinct conformations contribute to different phases of a single protein's dynamic function. However, efforts are hampered by the complexity of these large, three-dimensional molecules. To overcome this limitation, structural data have been recast as two-dimensional networks. This analysis greatly reduces visual complexity but retains information about individual residues. Such diagrams are very useful for comparing multiple structures, including (1) homologous proteins, (2) time points throughout a dynamics simulation, and (3) functionally different conformations of a given protein. Enhanced structural examination results in new functional hypotheses to test experimentally. Here, network representations were key to discerning a difference between unliganded and inducer-bound lactose repressor protein (LacI), which were previously presumed to be identical structures. Further, the interface of unliganded LacI was surprisingly similar to that of the K84L variant and various structures generated by molecular dynamics simulations. Apo-LacI appears to be poised to adopt the conformation of either the DNA- or inducer-bound structures, and the K84L mutation appears to freeze the structure partway through the conformational transition. Additional examination of the effector binding pocket results in specific hypotheses about how inducer, anti-inducer, and neutral sugars exert their effects on repressor function. PMID:15323549

  15. Domain-specific functional software testing: A progress report

    NASA Technical Reports Server (NTRS)

    Nonnenmann, Uwe

    1992-01-01

    Software Engineering is a knowledge intensive activity that involves defining, designing, developing, and maintaining software systems. In order to build effective systems to support Software Engineering activities, Artificial Intelligence techniques are needed. The application of Artificial Intelligence technology to Software Engineering is called Knowledge-based Software Engineering (KBSE). The goal of KBSE is to change the software life cycle such that software maintenance and evolution occur by modifying the specifications and then rederiving the implementation rather than by directly modifying the implementation. The use of domain knowledge in developing KBSE systems is crucial. Our work is mainly related to one area of KBSE that is called automatic specification acquisition. One example is the WATSON prototype on which our current work is based. WATSON is an automatic programming system for formalizing specifications for telephone switching software mainly restricted to POTS, i.e., plain old telephone service. Our current approach differentiates itself from other approaches in two antagonistic ways. On the one hand, we address a large and complex real-world problem instead of a 'toy domain' as in many research prototypes. On the other hand, to allow such scaling, we had to relax the ambitious goal of complete automatic programming, to the easier task of automatic testing.

  16. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    NASA Astrophysics Data System (ADS)

    Alves, Ricardo J. E.; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M.; Schleper, Christa; Urich, Tim

    2014-05-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, although basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and therefore it is particularly important to gain a better understanding of the microbial populations catalyzing transformations that influence N bioavailability. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils from Svalbard were analyzed through a polyphasic approach, including determination of gross nitrification rates through a 15N pool dilution method, qualitative and quantitative analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) populations based on the functional marker gene amoA (encoding the ammonia monooxygenase subunit A), and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils, and outnumbered AOB by 1 to 3 orders of magnitude in most others. AOA showed a great overall phylogenetic diversity that was differentially distributed across soil ecosystems, and exhibited an uneven population composition that reflected the dominance of a single AOA phylotype in each population. Moreover, AOA populations showed a multifactorial association with the soil properties, which reflected an overall distribution associated with tundra type and with several physico-chemical parameters combined, namely pH and soil moisture and N contents (i.e., NO3- and dissolved organic N). Remarkably, the different gross in situ and potential nitrification rates between soils were associated with distinct AOA phylogenetic clades, suggesting differences in their nitrifying potential, both under the native NH3 conditions and as a response to higher NH3 availability. This was further supported by the selective enrichment of two AOA clades that exhibited

  17. On a New Class of p-Valent Meromorphic Functions Defined in Conic Domains

    PubMed Central

    Alamri, Mohammed Ali

    2016-01-01

    We define a new class of multivalent meromorphic functions using the generalised hypergeometric function. We derived this class related to conic domain. It is also shown that this new class of functions, under certain conditions, becomes a class of starlike functions. Some results on inclusion and closure properties are also derived. PMID:27529076

  18. On a New Class of p-Valent Meromorphic Functions Defined in Conic Domains.

    PubMed

    Alamri, Mohammed Ali; Darus, Maslina

    2016-01-01

    We define a new class of multivalent meromorphic functions using the generalised hypergeometric function. We derived this class related to conic domain. It is also shown that this new class of functions, under certain conditions, becomes a class of starlike functions. Some results on inclusion and closure properties are also derived. PMID:27529076

  19. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.

    PubMed

    Guo, Emily Z; Xu, Zhaohui

    2015-03-27

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.

  20. Enterokinase, the initiator of intestinal digestion, is a mosaic protease composed of a distinctive assortment of domains.

    PubMed Central

    Kitamoto, Y; Yuan, X; Wu, Q; McCourt, D W; Sadler, J E

    1994-01-01

    Enterokinase is a protease of the intestinal brush border that specifically cleaves the acidic propeptide from trypsinogen to yield active trypsin. This cleavage initiates a cascade of proteolytic reactions leading to the activation of many pancreatic zymogens. The full-length cDNA sequence for bovine enterokinase and partial cDNA sequence for human enterokinase were determined. The deduced amino acid sequences indicate that active two-chain enterokinase is derived from a single-chain precursor. Membrane association may be mediated by a potential signal-anchor sequence near the amino terminus. The amino terminus of bovine enterokinase also meets the known sequence requirements for protein N-myristoylation. The amino-terminal heavy chain contains domains that are homologous to segments of the low density lipoprotein receptor, complement components C1r and C1s, the macrophage scavenger receptor, and a recently described motif shared by the metalloprotease meprin and the Xenopus A5 neuronal recognition protein. The carboxyl-terminal light chain is homologous to the trypsin-like serine proteases. Thus, enterokinase is a mosaic protein with a complex evolutionary history. The amino acid sequence surrounding the amino terminus of the enterokinase light chain is ITPK-IVGG (human) or VSPK-IVGG (bovine), suggesting that single-chain enterokinase is activated by an unidentified trypsin-like protease that cleaves the indicated Lys-Ile bond. Therefore, enterokinase may not be the "first" enzyme of the intestinal digestive hydrolase cascade. The specificity of enterokinase for the DDDDK-I sequence of trypsinogen may be explained by complementary basic-amino acid residues clustered in potential S2-S5 subsites. Images PMID:8052624

  1. The novel finding of four distinct prepro-IGF-I E domains in a perciform fish, Sciaenops ocellatus, during ontogeny.

    PubMed

    Faulk, Cynthia K; Pérez-Domínguez, Rafael; Webb, Kenneth A; Holt, G Joan

    2010-10-01

    In fishes, insulin-like growth factor-I (IGF-I) stimulates growth and differentiation but also plays a role in a number of other processes including osmoregulation, metabolism, immune response and reproduction. This study presents the cDNA encoding multiple prepro-IGF-I transcripts obtained from red drum, Sciaenopsocellatus, and examines differential expression in select adult tissues and during ontogeny. Four distinct transcripts were sequenced which were identical in the coding region for the signal (132 bp) and mature (204 bp) peptides but differed in the coding region of the E peptide by the exclusion of 117 (Ea-1), 81 (Ea-2) or 36 (Ea-3) bp compared to the 222 bp present in Ea-4. Analysis of the pertinent portion of the genomic sequence of this gene suggests that the transcripts are a result of alternative splicing. This is the first report of the expression of all four known prepro-IGF-I transcripts in a teleost other than a salmonid. The deduced amino acid sequences exhibited 70-95% identity with teleosts and somewhat lower identity to other vertebrates (60-75%). Three of the 4 transcripts (Ea-2, Ea-3, Ea-4) were expressed in the liver, ovary, spleen, gall bladder, brain, red muscle, pancreas and spinal cord of adults. Only the Ea-4 transcript was expressed in adult stomach tissue while no signal was detected in pituitary, retina, intestine, adipose or white muscle. In contrast, all 4 transcripts were expressed throughout ontogeny. The apparent expression of the Ea-1 transcript only during the larval stage may indicate a developmental role for this E peptide in red drum. PMID:20674575

  2. The Influence of Domain Knowledge on the Functional Capacity of Working Memory

    ERIC Educational Resources Information Center

    Ricks, Travis Rex; Wiley, Jennifer

    2009-01-01

    Theories of expertise have proposed that superior cognitive performance is in part due to increases in the functional capacity of working memory during domain-related tasks. Consistent with this approach Fincher-Kiefer et al. (1988), found that domain knowledge increased scores on baseball-related reading span tasks. The present studies extended…

  3. Impact of Distinct Poxvirus Infections on the Specificities and Functionalities of CD4+ T Cell Responses

    PubMed Central

    Siciliano, Nicholas A.; Hersperger, Adam R.; Lacuanan, Aimee M.; Xu, Ren-Huan; Sidney, John; Sette, Alessandro; Sigal, Luis J.

    2014-01-01

    ABSTRACT The factors that determine CD4+ T cell (TCD4+) specificities, functional capacity, and memory persistence in response to complex pathogens remain unclear. We explored these parameters in the C57BL/6 mouse through comparison of two highly related (>92% homology) poxviruses: ectromelia virus (ECTV), a natural mouse pathogen, and vaccinia virus (VACV), a heterologous virus that nevertheless elicits potent immune responses. In addition to elucidating several previously unidentified major histocompatibility complex class II (MHC-II)-restricted epitopes, we observed many qualitative and quantitative differences between the TCD4+ repertoires, including responses not elicited by VACV despite complete sequence conservation. In addition, we observed functional heterogeneity between ECTV- and VACV-specific TCD4+ at both a global and individual epitope level, particularly greater expression of the cytolytic marker CD107a from TCD4+ following ECTV infection. Most striking were differences during the late memory phase where, in contrast to ECTV, VACV infection failed to elicit measurable epitope-specific TCD4+ as determined by intracellular cytokine staining. These findings illustrate the strong influence of epitope-extrinsic factors on TCD4+ responses and memory. IMPORTANCE Much of our understanding concerning host-pathogen relationships in the context of poxvirus infections stems from studies of VACV in mice. However, VACV is not a natural mouse pathogen, and therefore, the relevance of results obtained using this model may be limited. Here, we explored the MHC class II-restricted TCD4+ repertoire induced by mousepox (ECTV) infection and the functional profile of the responding epitope-specific TCD4+, comparing these results to those induced by VACV infection under matched conditions. Despite a high degree of homology between the two viruses, we observed distinct specificity and functional profiles of TCD4+ responses at both acute and memory time points, with VACV

  4. Structural-Functional Analysis Reveals a Specific Domain Organization in Family GH20 Hexosaminidases

    PubMed Central

    Val-Cid, Cristina; Biarnés, Xevi; Faijes, Magda; Planas, Antoni

    2015-01-01

    Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements. PMID:26024355

  5. Velocity Selective Networks in Human Cortex Reveal Two Functionally Distinct Auditory Motion Systems

    PubMed Central

    Meng, Jhao-An; Saberi, Kourosh; Hsieh, I-Hui

    2016-01-01

    The auditory system encounters motion cues through an acoustic object’s movement or rotation of the listener’s head in a stationary sound field, generating a wide range of naturally occurring velocities from a few to several hundred degrees per second. The angular velocity of moving acoustic objects relative to a listener is typically slow and does not exceed tens of degrees per second, whereas head rotations in a stationary acoustic field may generate fast-changing spatial cues in the order of several hundred degrees per second. We hypothesized that these two types of systems (i.e., encoding slow movements of an object or fast head rotations) may engage functionally distinct substrates in processing spatially dynamic auditory cues, with the latter potentially involved in maintaining perceptual constancy in a stationary field during head rotations and therefore possibly involving corollary-discharge mechanisms in premotor cortex. Using fMRI, we examined cortical response patterns to sound sources moving at a wide range of velocities in 3D virtual auditory space. We found a significant categorical difference between fast and slow moving sounds, with stronger activations in response to higher velocities in the posterior superior temporal regions, the planum temporale, and notably the premotor ventral-rostral (PMVr) area implicated in planning neck and head motor functions. PMID:27294673

  6. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia

    PubMed Central

    Vitriol, Eric A.; McMillen, Laura M.; Kapustina, Maryna; Gomez, Shawn M.; Vavylonis, Dimitrios; Zheng, James Q.

    2015-01-01

    Summary Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer binding protein thymosin β4 (Tβ4) for optimal leading edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it doesn’t interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions. PMID:25865895

  7. Distinct roles for Ste20-like kinase SLK in muscle function and regeneration

    PubMed Central

    2013-01-01

    Background Cell growth and terminal differentiation are controlled by complex signaling systems that regulate the tissue-specific expression of genes controlling cell fate and morphogenesis. We have previously reported that the Ste20-like kinase SLK is expressed in muscle tissue and is required for cell motility. However, the specific function of SLK in muscle tissue is still poorly understood. Methods To gain further insights into the role of SLK in differentiated muscles, we expressed a kinase-inactive SLK from the human skeletal muscle actin promoter. Transgenic muscles were surveyed for potential defects. Standard histological procedures and cardiotoxin-induced regeneration assays we used to investigate the role of SLK in myogenesis and muscle repair. Results High levels of kinase-inactive SLK in muscle tissue produced an overall decrease in SLK activity in muscle tissue, resulting in altered muscle organization, reduced litter sizes, and reduced breeding capacity. The transgenic mice did not show any differences in fiber-type distribution but displayed enhanced regeneration capacity in vivo and more robust differentiation in vitro. Conclusions Our results show that SLK activity is required for optimal muscle development in the embryo and muscle physiology in the adult. However, reduced kinase activity during muscle repair enhances regeneration and differentiation. Together, these results suggest complex and distinct roles for SLK in muscle development and function. PMID:23815977

  8. Opposing aminergic modulation of distinct spinal locomotor circuits and their functional coupling during amphibian metamorphosis.

    PubMed

    Rauscent, Aude; Einum, James; Le Ray, Didier; Simmers, John; Combes, Denis

    2009-01-28

    The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosing frog Xenopus laevis. At metamorphic climax when propulsion is achieved by undulatory larval tail movements and/or by kicking of the newly developed adult hindlimbs, the underlying motor networks remain spontaneously active in vitro, producing either separate fast axial and slow appendicular rhythms or a single combined rhythm that drives coordinated tail-based and limb-based swimming in vivo. In isolated spinal cords already expressing distinct axial and limb rhythms, bath-applied 5-HT induced coupled network activity through an opposite slowing of axial rhythmicity (by increasing motoneuron burst and cycle durations) and an acceleration of limb rhythmicity (by decreasing burst and cycle durations). In contrast, in preparations spontaneously expressing coordinated fictive locomotion, exogenous NA caused a dissociation of spinal activity into separate faster axial and slower appendicular rhythms by decreasing and increasing burst and cycle durations, respectively. Moreover, in preparations from premetamorphic and postmetamorphic animals that express exclusively axial-based or limb-based locomotion, 5-HT and NA modified the developmentally independent rhythms in a similar manner to the amines' opposing effects on the coexisting circuits at metamorphic climax. Thus, by exerting differential modulatory actions on one network that are opposite to their influences on a second adjacent circuit, these two amines are able to precisely regulate the functional relationship between different rhythmogenic networks in a developing vertebrate's spinal cord.

  9. Microbial pattern recognition causes distinct functional micro-RNA signatures in primary human monocytes.

    PubMed

    Häsler, Robert; Jacobs, Gunnar; Till, Andreas; Grabe, Nils; Cordes, Christian; Nikolaus, Susanna; Lao, Kaiqin; Schreiber, Stefan; Rosenstiel, Philip

    2012-01-01

    Micro-RNAs (miRNAs) are short, non-coding RNAs that regulate gene expression post transcriptionally. Several studies have demonstrated the relevance of miRNAs for a wide range of cellular mechanisms, however, the current knowledge on how miRNAs respond to relevant external stimuli, e.g. in disease scenarios is very limited. To generate a descriptive picture of the miRNA network associated to inflammatory responses, we quantified the levels of 330 miRNAs upon stimulation with a panel of pro-inflammatory components such as microbial pattern molecules (flagellin, diacylated lipopeptide lipopolysaccharide, muramyl dipeptide), infection with Listeria monocytogenes and TNF-α as pro-inflammatory control in primary human monocytes using real time PCR. As a result, we found distinct miRNA response clusters for each stimulus used. Additionally, we identified potential target genes of three selected miRNAs miR-129-5p, miR-146a and miR-378 which were part of PAMP-specific response clusters by transfecting THP1 monocytes with the corresponding pre- or anti-miRNAs and microfluidic PCR arrays. The miRNAs induced distinct transcriptomal signatures, e.g. overexpression of miRNA129-5p, which was selectively upregulated by the NOD2-elicitor MDP, led to an upregulation of DEFB1, IRAK1, FBXW7 and IKK γ (Nemo). Our findings on highly co-regulated clusters of miRNAs support the hypothesis that miRNAs act in functional groups. This study indicates that miRNAs play an important role in fine-tuning inflammatory mechanisms. Further investigation in the field of miRNA responses will help to understand their effects on gene expression and may close the regulatory gap between mRNA and protein expression in inflammatory diseases. PMID:22363568

  10. Three structural representatives of the PF06855 protein domain family from Staphyloccocus aureus and Bacillus subtilis have SAM domain-like folds and different functions

    PubMed Central

    Swapna, G.V.T.; Rossi, Paolo; Montelione, Alexander F.; Benach, Jordi; Yu, Bomina; Abashidze, Mariam; Seetharaman, Jayaraman; Xiao, Rong; Acton, Thomas B.; Tong, Liang

    2014-01-01

    Protein domain family PF06855 (DUF1250) is a family of small domains of unknown function found only in bacteria, and mostly in the order Bacillales and Lactobacillales. Here we describe the solution NMR or X-ray crystal structures of three representatives of this domain family, MW0776 and MW1311 from Staphyloccocus aureus and yozE from Bacillus subtilis. All three proteins adopt a four-helix motif similar to sterile alpha motif (SAM) domains. Phylogenetic analysis classifies MW1311 and yozE as functionally equivalent proteins of the UPF0346 family of unknown function, but excludes MW0776, which likely has a different biological function. Our structural characterization of the three domains supports this separation of function. The structures of MW0776, MW1311, and yozE constitute the first structural representatives from this protein domain family. PMID:22843344

  11. Protein domain of unknown function 3233 is a translocation domain of autotransporter secretory mechanism in gamma proteobacteria.

    PubMed

    Prakash, Ananth; Yogeeshwari, S; Sircar, Sanchari; Agrawal, Shipra

    2011-01-01

    Vibrio cholerae, the enteropathogenic gram negative bacteria is one of the main causative agents of waterborne diseases like cholera. About 1/3(rd) of the organism's genome is uncharacterised with many protein coding genes lacking structure and functional information. These proteins form significant fraction of the genome and are crucial in understanding the organism's complete functional makeup. In this study we report the general structure and function of a family of hypothetical proteins, Domain of Unknown Function 3233 (DUF3233), which are conserved across gram negative gammaproteobacteria (especially in Vibrio sp. and similar bacteria). Profile and HMM based sequence search methods were used to screen homologues of DUF3233. The I-TASSER fold recognition method was used to build a three dimensional structural model of the domain. The structure resembles the transmembrane beta-barrel with an axial N-terminal helix and twelve antiparallel beta-strands. Using a combination of amphipathy and discrimination analysis we analysed the potential transmembrane beta-barrel forming properties of DUF3233. Sequence, structure and phylogenetic analysis of DUF3233 indicates that this gram negative bacterial hypothetical protein resembles the beta-barrel translocation unit of autotransporter Va secretory mechanism with a gene organisation that differs from the conventional Va system. PMID:22073138

  12. Distinct functions of neuromedin u and neuromedin s in orange-spotted grouper.

    PubMed

    Li, Shuisheng; Xiao, Ling; Liu, Qiongyu; Zheng, Binbin; Chen, Huapu; Liu, Xiaochun; Zhang, Yong; Lin, Haoran

    2015-10-01

    Neuromedin U (NMU) and neuromedin S (NMS) play inhibitory roles in the regulation of food intake and energy homeostasis in mammals. However, their functions are not clearly established in teleost fish. In the present study, nmu and nms homologs were identified in several fish species. Subsequently, their cDNA sequences were cloned from the orange-spotted grouper (Epinephelus coioides). Sequence analysis showed that the orange-spotted grouper Nmu proprotein contains a 21-amino acid mature Nmu peptide (Nmu-21). The Nms proprotein lost the typical mature Nms peptide, but it retains a putative 34-amino acid peptide (Nmsrp). In situ hybridization revealed that nmu- and nms-expressing cells are mainly localized in the hypothalamic regions associated with appetite regulation. Food deprivation decreased the hypothalamic nmu mRNA levels but induced an increase of nms mRNA levels. Periprandial expression analysis showed that hypothalamic expression of nmu increased significantly at 3 h post-feeding, while nms expression was elevated at the normal feeding time. I.p. injection of synthetic Nmu-21 peptide suppressed the hypothalamic neuropeptide y (npy) expression, while Nmsrp administration significantly increased the expression of npy and orexin in orange-spotted grouper. Furthermore, the mRNA levels of LH beta subunit (lhβ) and gh in the pituitary were significantly down-regulated after Nmu-21 peptide administration, while Nmsrp was able to significantly stimulate the expression of FSH beta subunit (fshβ), prolactin (prl), and somatolaction (sl). Our results indicate that nmu and nms possess distinct neuroendocrine functions and pituitary functions in the orange spotted grouper.

  13. Evolution of the vertebrate paralemmin gene family: ancient origin of gene duplicates suggests distinct functions.

    PubMed

    Hultqvist, Greta; Ocampo Daza, Daniel; Larhammar, Dan; Kilimann, Manfred W

    2012-01-01

    Paralemmin-1 is a protein implicated in plasma membrane dynamics, the development of filopodia, neurites and dendritic spines, as well as the invasiveness and metastatic potential of cancer cells. However, little is known about its mode of action, or about the biological functions of the other paralemmin isoforms: paralemmin-2, paralemmin-3 and palmdelphin. We describe here evolutionary analyses of the paralemmin gene family in a broad range of vertebrate species. Our results suggest that the four paralemmin isoform genes (PALM1, PALM2, PALM3 and PALMD) arose by quadruplication of an ancestral gene in the two early vertebrate genome duplications. Paralemmin-1 and palmdelphin were further duplicated in the teleost fish specific genome duplication. We identified a unique sequence motif common to all paralemmins, consisting of 11 highly conserved residues of which four are invariant. A single full-length paralemmin homolog with this motif was identified in the genome of the sea lamprey Petromyzon marinus and an isolated putative paralemmin motif could be detected in the genome of the lancelet Branchiostoma floridae. This allows us to conclude that the paralemmin gene family arose early and has been maintained throughout vertebrate evolution, suggesting functional diversification and specific biological roles of the paralemmin isoforms. The paralemmin genes have also maintained specific features of gene organisation and sequence. This includes the occurrence of closely linked downstream genes, initially identified as a readthrough fusion protein with mammalian paralemmin-2 (Palm2-AKAP2). We have found evidence for such an arrangement for paralemmin-1 and -2 in several vertebrate genomes, as well as for palmdelphin and paralemmin-3 in teleost fish genomes, and suggest the name paralemmin downstream genes (PDG) for this new gene family. Thus, our findings point to ancient roles for paralemmins and distinct biological functions of the gene duplicates. PMID:22855693

  14. Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I.

    PubMed Central

    Linder, M.; Mattinen, M. L.; Kontteli, M.; Lindeberg, G.; Ståhlberg, J.; Drakenberg, T.; Reinikainen, T.; Pettersson, G.; Annila, A.

    1995-01-01

    Cellobiohydrolase I (CBHI) of Trichoderma reesei has two functional domains, a catalytic core domain and a cellulose binding domain (CBD). The structure of the CBD reveals two distinct faces, one of which is flat and the other rough. Several other fungal cellulolytic enzymes have similar two-domain structures, in which the CBDs show a conserved primary structure. Here we have evaluated the contributions of conserved amino acids in CBHI CBD to its binding to cellulose. Binding isotherms were determined for a set of six synthetic analogues in which conserved amino acids were substituted. Two-dimensional NMR spectroscopy was used to assess the structural effects of the substitutions by comparing chemical shifts, coupling constants, and NOEs of the backbone protons between the wild-type CBD and the analogues. In general, the structural effects of the substitutions were minor, although in some cases decreased binding could clearly be ascribed to conformational perturbations. We found that at least two tyrosine residues and a glutamine residue on the flat face were essential for tight binding of the CBD to cellulose. A change on the rough face had only a small effect on the binding and it is unlikely that this face interacts with cellulose directly. PMID:7549870

  15. Shared as well as distinct roles of EHD proteins revealed by biochemical and functional comparisons in mammalian cells and C. elegans

    PubMed Central

    George, Manju; Ying, GuoGuang; Rainey, Mark A; Solomon, Aharon; Parikh, Pankit T; Gao, Qingshen; Band, Vimla; Band, Hamid

    2007-01-01

    Background The four highly homologous human EHD proteins (EHD1-4) form a distinct subfamily of the Eps15 homology domain-containing protein family and are thought to regulate endocytic recycling. Certain members of this family have been studied in different cellular contexts; however, a lack of concurrent analyses of all four proteins has impeded an appreciation of their redundant versus distinct functions. Results Here, we analyzed the four EHD proteins both in mammalian cells and in a cross-species complementation assay using a C. elegans mutant lacking the EHD ortholog RME-1. We show that all human EHD proteins rescue the vacuolated intestinal phenotype of C. elegans rme-1 mutant, are simultaneously expressed in a panel of mammalian cell lines and tissues tested, and variably homo- and hetero-oligomerize and colocalize with each other and Rab11, a recycling endosome marker. Small interfering RNA (siRNA) knock-down of EHD1, 2 and 4, and expression of dominant-negative EH domain deletion mutants showed that loss of EHD1 and 3 (and to a lesser extent EHD4) but not EHD2 function retarded transferrin exit from the endocytic recycling compartment. EH domain deletion mutants of EHD1 and 3 but not 2 or 4, induced a striking perinuclear clustering of co-transfected Rab11. Knock-down analyses indicated that EHD1 and 2 regulate the exit of cargo from the recycling endosome while EHD4, similar to that reported for EHD3 (Naslavsky et al. (2006) Mol. Biol. Cell 17, 163), regulates transport from the early endosome to the recycling endosome. Conclusion Altogether, our studies suggest that concurrently expressed human EHD proteins perform shared as well as discrete functions in the endocytic recycling pathway and lay a foundation for future studies to identify and characterize the molecular pathways involved. PMID:17233914

  16. Boundary regularity of Nevanlinna domains and univalent functions in model subspaces

    NASA Astrophysics Data System (ADS)

    Baranov, Anton D.; Fedorovskiy, Konstantin Yu

    2011-12-01

    In the paper we study boundary regularity of Nevanlinna domains, which have appeared in problems of uniform approximation by polyanalytic polynomials. A new method for constructing Nevanlinna domains with essentially irregular nonanalytic boundaries is suggested; this method is based on finding appropriate univalent functions in model subspaces, that is, in subspaces of the form K_\\varTheta=H^2\\ominus\\varTheta H^2, where \\varTheta is an inner function. To describe the irregularity of the boundaries of the domains obtained, recent results by Dolzhenko about boundary regularity of conformal mappings are used. Bibliography: 18 titles.

  17. Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton.

    PubMed Central

    Lila, T; Drubin, D G

    1997-01-01

    In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions. Images PMID:9190214

  18. Functional domains of the Xenopus laevis 5S gene promoter.

    PubMed Central

    Pieler, T; Oei, S L; Hamm, J; Engelke, U; Erdmann, V A

    1985-01-01

    To study the fine structure of the Xenopus laevis somatic 5S gene internal control region, we have created 15 different transversions using mutagenic oligonucleotide primers. The effects of these mutations on 5S DNA transcription in vitro as well as on stable complex formation with transcription factor TF III A and TF III C in crude nuclear extracts were analyzed. Mutations in the common class III 5' promoter element (nucleotides 50-61 in the 5S gene) interfere with transcription activity and stable complex formation whenever they contradict the tDNA box A consensus sequence. The second promoter element is defined by a major sequence block (nucleotides 80-89, box C) and two additional internal residues (70 and 71) at a distance of roughly one helical turn from both the major 3' and 5' control sequences; these two 3' elements contain the primary TF III A binding domain. The remaining nucleotides (62-69 and 71-79) when mutated do not interfere with transcription activity or factor binding and thus they constitute two spacer elements within a symmetrically structured 5S gene promoter. An increase in the relative spacing of box A and box C by insertion of 3 bp between nucleotides 66 and 67 leads to a drastic reduction in transcription activity and the ability to form a stable complex with TF III A and/or TF III C. Thus, accurate spacing is essential for the proper orientation of TF III A on 5S DNA and/or TF III C binding. Images Fig. 1. Fig. 3. Fig. 4. PMID:3004969

  19. Functional isogenic modeling of BRCA1 alleles reveals distinct carrier phenotypes.

    PubMed

    Cochran, Rory L; Cidado, Justin; Kim, Minsoo; Zabransky, Daniel J; Croessmann, Sarah; Chu, David; Wong, Hong Yuen; Beaver, Julia A; Cravero, Karen; Erlanger, Bracha; Parsons, Heather; Heaphy, Christopher M; Meeker, Alan K; Lauring, Josh; Park, Ben Ho

    2015-09-22

    Clinical genetic testing of BRCA1 and BRCA2 is commonly performed to identify specific individuals at risk for breast and ovarian cancers who may benefit from prophylactic therapeutic interventions. Unfortunately, it is evident that deleterious BRCA1 alleles demonstrate variable penetrance and that many BRCA1 variants of unknown significance (VUS) exist. In order to further refine hereditary risks that may be associated with specific BRCA1 alleles, we performed gene targeting to establish an isogenic panel of immortalized human breast epithelial cells harboring eight clinically relevant BRCA1 alleles. Interestingly, BRCA1 mutations and VUS had distinct, quantifiable phenotypes relative to isogenic parental BRCA1 wild type cells and controls. Heterozygous cells with known deleterious BRCA1 mutations (185delAG, C61G and R71G) demonstrated consistent phenotypes in radiation sensitivity and genomic instability assays, but showed variability in other assays. Heterozygous BRCA1 VUS cells also demonstrated assay variability, with some VUS demonstrating phenotypes more consistent with deleterious alleles. Taken together, our data suggest that BRCA1 deleterious mutations and VUS can differ in their range of tested phenotypes, suggesting they might impart varying degrees of risk. These results demonstrate that functional isogenic modeling of BRCA1 alleles could aid in classifying BRCA1 mutations and VUS, and determining BRCA allele cancer risk. PMID:26246475

  20. Functional isogenic modeling of BRCA1 alleles reveals distinct carrier phenotypes

    PubMed Central

    Cochran, Rory L.; Cidado, Justin; Kim, Minsoo; Zabransky, Daniel J.; Croessmann, Sarah; Chu, David; Wong, Hong Yuen; Beaver, Julia A.; Cravero, Karen; Erlanger, Bracha; Parsons, Heather; Heaphy, Christopher M.; Meeker, Alan K.; Lauring, Josh; Park, Ben Ho

    2015-01-01

    Clinical genetic testing of BRCA1 and BRCA2 is commonly performed to identify specific individuals at risk for breast and ovarian cancers who may benefit from prophylactic therapeutic interventions. Unfortunately, it is evident that deleterious BRCA1 alleles demonstrate variable penetrance and that many BRCA1 variants of unknown significance (VUS) exist. In order to further refine hereditary risks that may be associated with specific BRCA1 alleles, we performed gene targeting to establish an isogenic panel of immortalized human breast epithelial cells harboring eight clinically relevant BRCA1 alleles. Interestingly, BRCA1 mutations and VUS had distinct, quantifiable phenotypes relative to isogenic parental BRCA1 wild type cells and controls. Heterozygous cells with known deleterious BRCA1 mutations (185delAG, C61G and R71G) demonstrated consistent phenotypes in radiation sensitivity and genomic instability assays, but showed variability in other assays. Heterozygous BRCA1 VUS cells also demonstrated assay variability, with some VUS demonstrating phenotypes more consistent with deleterious alleles. Taken together, our data suggest that BRCA1 deleterious mutations and VUS can differ in their range of tested phenotypes, suggesting they might impart varying degrees of risk. These results demonstrate that functional isogenic modeling of BRCA1 alleles could aid in classifying BRCA1 mutations and VUS, and determining BRCA allele cancer risk. PMID:26246475

  1. Evidence of Two Functionally Distinct Ornithine Decarboxylation Systems in Lactic Acid Bacteria

    PubMed Central

    Romano, Andrea; Trip, Hein; Lonvaud-Funel, Aline; Lolkema, Juke S.

    2012-01-01

    Biogenic amines are low-molecular-weight organic bases whose presence in food can result in health problems. The biosynthesis of biogenic amines in fermented foods mostly proceeds through amino acid decarboxylation carried out by lactic acid bacteria (LAB), but not all systems leading to biogenic amine production by LAB have been thoroughly characterized. Here, putative ornithine decarboxylation pathways consisting of a putative ornithine decarboxylase and an amino acid transporter were identified in LAB by strain collection screening and database searches. The decarboxylases were produced in heterologous hosts and purified and characterized in vitro, whereas transporters were heterologously expressed in Lactococcus lactis and functionally characterized in vivo. Amino acid decarboxylation by whole cells of the original hosts was determined as well. We concluded that two distinct types of ornithine decarboxylation systems exist in LAB. One is composed of an ornithine decarboxylase coupled to an ornithine/putrescine transmembrane exchanger. Their combined activities results in the extracellular release of putrescine. This typical amino acid decarboxylation system is present in only a few LAB strains and may contribute to metabolic energy production and/or pH homeostasis. The second system is widespread among LAB. It is composed of a decarboxylase active on ornithine and l-2,4-diaminobutyric acid (DABA) and a transporter that mediates unidirectional transport of ornithine into the cytoplasm. Diamines that result from this second system are retained within the cytosol. PMID:22247134

  2. Choriodecidual Cells from Term Human Pregnancies Show Distinctive Functional Properties Related to the Induction of Labor

    PubMed Central

    Castillo-Castrejon, Marisol; Meraz-Cruz, Noemí; Gomez-Lopez, Nardhy; Flores-Pliego, Arturo; Beltrán-Montoya, Jorge; Viveros-Alcaráz, Martín; Vadillo-Ortega, Felipe

    2014-01-01

    Problem Human parturition is associated with an intrauterine pro-inflammatory environment in the choriodecidua. Evidence that some mediators of this signaling cascade also elicit responses leading to labor prompted us to characterize the cellular sources of these mediators in the human choriodecidua. Method of study Leukocyte-enriched preparations from human choriodecidua (ChL) and intervillous placental blood leukocytes (PL) were maintained in culture. Secretions of inflammatory cytokines, chemokines and MMP-9 were documented. Leukocyte phenotype of ChL and PL was determined by flow cytometry using specific fluorochrome-conjugated antibodies. Results and Conclusions ChL showed a distinct pro-inflammatory secretion pattern of cytokines and chemokines when compared with PL, including higher amounts of TNF-α and IL-6, and decreased secretions of IL-4 and IL-1ra. ChL also secreted more MIP-1α and MCP-1 and MMP-9 than PL. No significant differences were found in leukocytes subsets between compartments. Based on our findings, we propose that ChL isolated from fetal membranes at term are functionally different from PL and may collaborate to modulate the microenvironment linked to induction and progression of human labor. PMID:24286217

  3. Functional isogenic modeling of BRCA1 alleles reveals distinct carrier phenotypes.

    PubMed

    Cochran, Rory L; Cidado, Justin; Kim, Minsoo; Zabransky, Daniel J; Croessmann, Sarah; Chu, David; Wong, Hong Yuen; Beaver, Julia A; Cravero, Karen; Erlanger, Bracha; Parsons, Heather; Heaphy, Christopher M; Meeker, Alan K; Lauring, Josh; Park, Ben Ho

    2015-09-22

    Clinical genetic testing of BRCA1 and BRCA2 is commonly performed to identify specific individuals at risk for breast and ovarian cancers who may benefit from prophylactic therapeutic interventions. Unfortunately, it is evident that deleterious BRCA1 alleles demonstrate variable penetrance and that many BRCA1 variants of unknown significance (VUS) exist. In order to further refine hereditary risks that may be associated with specific BRCA1 alleles, we performed gene targeting to establish an isogenic panel of immortalized human breast epithelial cells harboring eight clinically relevant BRCA1 alleles. Interestingly, BRCA1 mutations and VUS had distinct, quantifiable phenotypes relative to isogenic parental BRCA1 wild type cells and controls. Heterozygous cells with known deleterious BRCA1 mutations (185delAG, C61G and R71G) demonstrated consistent phenotypes in radiation sensitivity and genomic instability assays, but showed variability in other assays. Heterozygous BRCA1 VUS cells also demonstrated assay variability, with some VUS demonstrating phenotypes more consistent with deleterious alleles. Taken together, our data suggest that BRCA1 deleterious mutations and VUS can differ in their range of tested phenotypes, suggesting they might impart varying degrees of risk. These results demonstrate that functional isogenic modeling of BRCA1 alleles could aid in classifying BRCA1 mutations and VUS, and determining BRCA allele cancer risk.

  4. Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have distinct biological functions.

    PubMed

    Hark, Amy T; Vlachonasios, Konstantinos E; Pavangadkar, Kanchan A; Rao, Sumana; Gordon, Hillary; Adamakis, Ioannis-Dimosthenis; Kaldis, Athanasios; Thomashow, Michael F; Triezenberg, Steven J

    2009-02-01

    Histone acetylation is an example of covalent modification of chromatin structure that has the potential to regulate gene expression. Gcn5 is a prototypical histone acetyltransferase that associates with the transcriptional coactivator Ada2. In Arabidopsis, two genes encode proteins that resemble yeast ADA2 and share approximately 45% amino acid sequence identity. We previously reported that plants harboring a T-DNA insertion in the ADA2b gene display a dwarf phenotype with developmental defects in several organs. Here we describe T-DNA insertion alleles in the ADA2a gene, which result in no dramatic growth or developmental phenotype. Both ADA2a and ADA2b are expressed in a variety of plant tissues; moreover, expression of ADA2a from a constitutive promoter fails to complement the ada2b-1 mutant phenotype, consistent with the hypothesis that the two proteins have distinct biochemical roles. To further probe the cellular roles of ADA2a and ADA2b, we studied the response of the transcriptional coactivator mutants to abiotic stress. Although ada2b seedlings display hypersensitivity to salt and abscisic acid and altered responses to low temperature stress, the responses of ada2a seedlings to abiotic stress generally parallel those of wildtype plants. Intriguingly, ada2a;ada2b double mutant plants display an intermediate, gcn5-like phenotype, suggesting that ADA2a and ADA2b each work independently with GCN5 to affect genome function in Arabidopsis.

  5. Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells.

    PubMed

    Lin, Ruei-Zeng; Moreno-Luna, Rafael; Zhou, Bin; Pu, William T; Melero-Martin, Juan M

    2012-09-01

    Mesenchymal stem cells (MSCs) can generate multiple end-stage mesenchymal cell types and constitute a promising population of cells for regenerative therapies. Additionally, there is increasing evidence supporting other trophic activities of MSCs, including the ability to enable formation of vasculature in vivo. Although MSCs were originally isolated from the bone marrow, the presence of these cells in the stromal vascular fraction of multiple adult tissues has been recently recognized. However, it is unknown whether the capacity to modulate vasculogenesis is ubiquitous to all MSCs regardless of their tissue of origin. Here, we demonstrated that tissue-resident MSCs isolated from four distinct tissues have equal capacity to modulate endothelial cell function, including formation of vascular networks in vivo. MSCs were isolated from four murine tissues, including bone marrow, white adipose tissue, skeletal muscle, and myocardium. In culture, all four MSC populations secreted a plethora of pro-angiogenic factors that unequivocally induced proliferation, migration, and tube formation of endothelial colony-forming cells (ECFCs). In vivo, co-implantation of MSCs with ECFCs into mice generated an extensive network of blood vessels with ECFCs specifically lining the lumens and MSCs occupying perivascular positions. Importantly, there were no differences among all four MSCs evaluated. Our studies suggest that the capacity to modulate the formation of vasculature is a ubiquitous property of all MSCs, irrespective of their original anatomical location. These results validate multiple tissues as potential sources of MSCs for future cell-based vascular therapies.

  6. Anciently duplicated Broad Complex exons have distinct temporal functions during tissue morphogenesis.

    PubMed

    Spokony, Rebecca F; Restifo, Linda L

    2007-07-01

    Broad Complex (BRC) is an essential ecdysone-pathway gene required for entry into and progression through metamorphosis in Drosophila melanogaster. Mutations of three BRC complementation groups cause numerous phenotypes, including a common suite of morphogenesis defects involving central nervous system (CNS), adult salivary glands (aSG), and male genitalia. These defects are phenocopied by the juvenile hormone mimic methoprene. Four BRC isoforms are produced by alternative splicing of a protein-binding BTB/POZ-encoding exon (BTBBRC) to one of four tandemly duplicated, DNA-binding zinc-finger-encoding exons (Z1BRC, Z2BRC, Z3BRC, Z4BRC). Highly conserved orthologs of BTBBRC and all four ZBRC were found among published cDNA sequences or genome databases from Diptera, Lepidoptera, Hymenoptera, and Coleoptera, indicating that BRC arose and underwent internal exon duplication before the split of holometabolous orders. Tramtrack subfamily members, abrupt, tramtrack, fruitless, longitudinals lacking (lola), and CG31666 were characterized throughout Holometabola and used to root phylogenetic analyses of ZBRC exons, which revealed that the ZBRC clade includes Zabrupt. All four ZBRC domains, including Z4BRC, which has no known essential function, are evolving in a manner consistent with selective constraint. We used transgenic rescue to explore how different BRC isoforms contribute to shared tissue-morphogenesis functions. As predicted from earlier studies, the common CNS and aSG phenotypes were rescued by BRC-Z1 in rbp mutants, BRC-Z2 in br mutants, and BRC-Z3 in 2Bc mutants. However, the isoforms are required at two different developmental stages, with BRC-Z2 and -Z3 required earlier than BRC-Z1. The sequential action of BRC isoforms indicates subfunctionalization of duplicated ZBRC exons even when they contribute to common developmental processes.

  7. Ecogenomic Perspectives on Domains of Unknown Function: Correlation-Based Exploration of Marine Metagenomes

    PubMed Central

    Buttigieg, Pier Luigi; Hankeln, Wolfgang; Kostadinov, Ivaylo; Kottmann, Renzo; Yilmaz, Pelin; Duhaime, Melissa Beth; Glöckner, Frank Oliver

    2013-01-01

    Background The proportion of conserved DNA sequences with no clear function is steadily growing in bioinformatics databases. Studies of sequence and structural homology have indicated that many uncharacterized protein domain sequences are variants of functionally described domains. If these variants promote an organism's ecological fitness, they are likely to be conserved in the genome of its progeny and the population at large. The genetic composition of microbial communities in their native ecosystems is accessible through metagenomics. We hypothesize the co-variation of protein domain sequences across metagenomes from similar ecosystems will provide insights into their potential roles and aid further investigation. Methodology/Principal findings We calculated the correlation of Pfam protein domain sequences across the Global Ocean Sampling metagenome collection, employing conservative detection and correlation thresholds to limit results to well-supported hits and associations. We then examined intercorrelations between domains of unknown function (DUFs) and domains involved in known metabolic pathways using network visualization and cluster-detection tools. We used a cautious “guilty-by-association” approach, referencing knowledge-level resources to identify and discuss associations that offer insight into DUF function. We observed numerous DUFs associated to photobiologically active domains and prevalent in the Cyanobacteria. Other clusters included DUFs associated with DNA maintenance and repair, inorganic nutrient metabolism, and sodium-translocating transport domains. We also observed a number of clusters reflecting known metabolic associations and cases that predicted functional reclassification of DUFs. Conclusion/Significance Critically examining domain covariation across metagenomic datasets can grant new perspectives on the roles and associations of DUFs in an ecological setting. Targeted attempts at DUF characterization in the laboratory or in

  8. Social Cognitive Impairments and Negative Symptoms in Schizophrenia: Are There Subtypes With Distinct Functional Correlates?

    PubMed Central

    Bell, Morris D.; Corbera, Silvia; Johannesen, Jason K.; Fiszdon, Joanna M.; Wexler, Bruce E.

    2013-01-01

    Social cognitive impairments and negative symptoms are core features of schizophrenia closely associated with impaired community functioning. However, little is known about whether these are independent dimensions of illness and if so, whether individuals with schizophrenia can be meaningfully classified based on these dimensions (SANS) and potentially differentially treated. Five social cognitive measures plus Scale for the Assessment of Negative Symptoms (SANS) and Positive and Negative Syndrome Scale (PANSS) scores in a sample of 77 outpatients produced 2 distinct factors—a social cognitive factor and a negative symptom factor. Factor scores were used in a cluster analysis, which yielded 3 well-defined groupings—a high negative symptom group (HN) and 2 low negative symptom groups, 1 with higher social cognition (HSC) and 1 with low social cognition (LSC). To make these findings more practicable for research and clinical settings, a rule of thumb for categorizing using only the Mayer–Salovey–Caruso Emotional Intelligence Test and PANSS negative component was created and produced 84.4% agreement with the original cluster groups. An additional 63 subjects were added to cross validate the rule of thumb. When samples were combined (N = 140), the HSC group had significantly better quality of life and Global Assessment of Functioning (GAF) scores, higher rates of marriage and more hospitalizations. The LSC group had worse criminal and substance abuse histories. With 2 common assessment instruments, people with schizophrenia can be classified into 3 subgroups that have different barriers to community integration and could potentially benefit from different treatments. PMID:21976710

  9. Quantitative Expression Profile of Distinct Functional Regions in the Adult Mouse Brain

    PubMed Central

    Nagano, Mamoru; Uno, Kenichiro D.; Tsujino, Kaori; Hanashima, Carina; Shigeyoshi, Yasufumi; Ueda, Hiroki R.

    2011-01-01

    The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B*) project, in which we profiled the genome-wide expression of ∼50 small brain regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212 regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://brainstars.org/) for exploring genome-wide expression in the adult mouse brain, and have made this database openly accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of its regulatory network systems. PMID:21858037

  10. Signal Integration and Gene Induction by a Functionally Distinct STAT3 Phosphoform

    PubMed Central

    Waitkus, Matthew S.; Chandrasekharan, Unni M.; Willard, Belinda; Tee, Thomas L.; Hsieh, Jason K.; Przybycin, Christopher G.; Rini, Brian I.

    2014-01-01

    Aberrant activation of the ubiquitous transcription factor STAT3 is a major driver of solid tumor progression and pathological angiogenesis. STAT3 activity is regulated by numerous posttranslational modifications (PTMs), including Tyr705 phosphorylation, which is widely used as an indicator of canonical STAT3 function. Here, we report a noncanonical mechanism of STAT3 activation that occurs independently of Tyr705 phosphorylation. Using quantitative liquid chromatography-tandem mass spectrometry, we have discovered and characterized a novel STAT3 phosphoform that is simultaneously phosphorylated at Thr714 and Ser727 by glycogen synthase kinase 3α and -β (GSK-3α/β). Both Thr714 and Ser727 are required for STAT3-dependent gene induction in response to simultaneous activation of epidermal growth factor receptor (EGFR) and protease-activated receptor 1 (PAR-1) in endothelial cells. In this combinatorial signaling context, preventing formation of doubly phosphorylated STAT3 by depleting GSK-3α/β is sufficient to disrupt signal integration and inhibit STAT3-dependent gene expression. Levels of doubly phosphorylated STAT3 but not of Tyr705-phosphorylated STAT3 are remarkably elevated in clear-cell renal-cell carcinoma relative to adjacent normal tissue, suggesting that the GSK-3α/β–STAT3 pathway is active in the disease. Collectively, our results describe a functionally distinct, noncanonical STAT3 phosphoform that positively regulates target gene expression in a combinatorial signaling context and identify GSK-3α/β–STAT3 signaling as a potential therapeutic target in renal-cell carcinoma. PMID:24615012

  11. Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions.

    PubMed Central

    Harder, Thomas

    2003-01-01

    Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, which catalyse downstream reactions. The concept of raft lipid-based membrane domains provides a different principle for compartmentalization and segregation of membrane constituents. Accordingly, rafts are defined by the physical properties of the lipid bilayer and function by selective partitioning of membrane lipids and proteins into membrane domains of specific phase behaviour and lipid packing. Here, I will discuss the interplay of these independent principles of protein scaffolds and raft lipid microdomains leading to the generation of biologically functional membrane domains. PMID:12803918

  12. Distinct aetiopathogenesis in subgroups of functional dyspepsia according to the Rome III criteria

    PubMed Central

    Fang, Yu-Jen; Liou, Jyh-Ming; Chen, Chieh-Chang; Lee, Ji-Yuh; Hsu, Yao-Chun; Chen, Mei-Jyh; Tseng, Ping-Huei; Chen, Chien-Chuan; Chang, Chi-Yang; Yang, Tsung-Hua; Chang, Wen-Hsiung; Wu, Jeng-Yi; Wang, Hsiu-Po; Luo, Jiing-Chyuan; Lin, Jaw-Town; Shun, Chia-Tung; Wu, Ming-Shiang

    2015-01-01

    Background and objective Whether there is distinct pathogenesis in subgroups of functional dyspepsia (FD), the postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS) remains controversial. We aimed to identify the risk factors of FD and its subgroups in the Chinese population. Methods Patients with dyspepsia and healthy subjects who underwent gastric cancer screening were enrolled in this multicentre study from 2010 to 2012. All patients were evaluated by questionnaire, oesophagoduodenoscopy, histological examination and Helicobacter pylori tests. Subgroups of FD were classified according to the Rome III criteria. Psychiatric stress was assessed by the short form Brief Symptom Rating Scale. CagA and VacA genotypes were determined by PCR. Results Of 2378 patients screened for eligibility, 771 and 491 fulfilled the diagnostic criteria of uninvestigated dyspepsia and FD, respectively. 298 (60.7%) and 353 (71.9%) individuals were diagnosed with EPS and PDS, respectively, whereas 169 (34.4%) had the overlap syndrome. As compared with 1031 healthy controls, PDS and EPS shared some common risk factors, including younger age (OR 0.95; 99.5% CI 0.93 to 0.98), non-steroidal anti-inflammatory drugs (OR 6.60; 99.5% CI 3.13 to 13.90), anxiety (OR 3.41; 99.5% CI 2.01 to 5.77) and concomitant IBS (OR 6.89; 99.5% CI 3.41 to 13.94). By contrast, H. pylori (OR 1.86; 99.5% CI 1.01 to 3.45), unmarried status (OR 4.22; 99.5% CI 2.02 to 8.81), sleep disturbance (OR 2.56; 99.5% CI 1.29 to 5.07) and depression (OR 2.34; 99.5% CI 1.04 to 5.36) were associated with PDS. Moderate to severe antral atrophy and CagA positive strains were also more prevalent in PDS. Conclusions Different risk factors exist among FD subgroups based on the Rome III criteria, indicating distinct aetiopathogenesis of the subdivisions that may necessitate different therapeutic strategies. PMID:25406127

  13. The structure-function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties.

    PubMed Central

    Darboux, I; Barthalay, Y; Piovant, M; Hipeau-Jacquotte, R

    1996-01-01

    Neurotactin (Nrt), a Drosophila transmembrane glycoprotein which is expressed in neuronal and epithelial tissues during embryonic and larval stages, exhibits heterophilic adhesive properties. The extracellular domain is composed of a catalytically inactive cholinesterase-like domain. A three-dimensional model deduced from the crystal structure of Torpedo acetylcholinesterase (AChE) has been constructed for Nrt and suggests that its extracellular domain is composed of two sub-domains organized around a gorge: an N-terminal region, whose three-dimensional structure is almost identical to that of Torpedo AChE, and a less conserved C-terminal region. By using truncated Nrt molecules and a homotypic cell aggregation assay which involves a soluble ligand activity, it has been possible to show that the adhesive function is localized in the N-terminal region of the extracellular domain comprised between His347 and His482. The C-terminal region of the protein can be removed without impairing Nrt adhesive properties, suggesting that the two sub-domains are structurally independent. Chimeric molecules in which the Nrt cholinesterase-like domain has been replaced by homologous domains from Drosophila AChE, Torpedo AChE or Drosophila glutactin (Glt), share similar adhesive properties. These properties may require the presence of Nrt cytoplasmic and transmembrane domains since authentic Drosophila AChE does not behave as an adhesive molecule when transfected in S2 cells. Images PMID:8890157

  14. Different Binding Properties and Function of CXXC Zinc Finger Domains in Dnmt1 and Tet1

    PubMed Central

    Meilinger, Daniela; Bultmann, Sebastian; Fellinger, Karin; Hasenöder, Stefan; Wang, Mengxi; Qin, Weihua; Söding, Johannes; Spada, Fabio; Leonhardt, Heinrich

    2011-01-01

    Several mammalian proteins involved in chromatin and DNA modification contain CXXC zinc finger domains. We compared the structure and function of the CXXC domains in the DNA methyltransferase Dnmt1 and the methylcytosine dioxygenase Tet1. Sequence alignment showed that both CXXC domains have a very similar framework but differ in the central tip region. Based on the known structure of a similar MLL1 domain we developed homology models and designed expression constructs for the isolated CXXC domains of Dnmt1 and Tet1 accordingly. We show that the CXXC domain of Tet1 has no DNA binding activity and is dispensable for catalytic activity in vivo. In contrast, the CXXC domain of Dnmt1 selectively binds DNA substrates containing unmethylated CpG sites. Surprisingly, a Dnmt1 mutant construct lacking the CXXC domain formed covalent complexes with cytosine bases both in vitro and in vivo and rescued DNA methylation patterns in dnmt1−/− embryonic stem cells (ESCs) just as efficiently as wild type Dnmt1. Interestingly, neither wild type nor ΔCXXC Dnmt1 re-methylated imprinted CpG sites of the H19a promoter in dnmt1−/− ESCs, arguing against a role of the CXXC domain in restraining Dnmt1 methyltransferase activity on unmethylated CpG sites. PMID:21311766

  15. Breaking the silence: functional expression of the two-pore-domain potassium channel THIK-2.

    PubMed

    Renigunta, Vijay; Zou, Xinle; Kling, Stefan; Schlichthörl, Günter; Daut, Jürgen

    2014-09-01

    THIK-2 belongs to the 'silent' channels of the two-pore-domain potassium channel family. It is highly expressed in many nuclei of the brain but has so far resisted all attempts at functional expression. THIK-2 has a highly conserved 19-amino-acid region in its N terminus (residues 6-24 in the rat orthologue) that is missing in the closely related channel THIK-1. After deletion of this region (THIK-2(Δ6-24) mutant), functional expression of the channel was observed in Xenopus oocytes and in mammalian cell lines. The resulting potassium current showed outward rectification under physiological conditions and slight inward rectification with symmetrical high-K(+) solutions and could be inhibited by application of halothane or quinidine. Another THIK-2 mutant, in which the putative retention/retrieval signal RRR at positions 14-16 was replaced by AAA, produced a similar potassium current. Both mutants showed a distinct localisation to the surface membrane when tagged with green fluorescent protein and expressed in a mammalian cell line, whereas wild-type THIK-2 was mainly localised to the endoplasmic reticulum. These findings suggest that deletion of the retention/retrieval signal RRR enabled transport of THIK-2 channels to the surface membrane. Combining the mutation THIK-2(Δ6-24) with a mutation in the pore cavity (rat THIK-2(I158G)) gave rise to a 12-fold increase in current amplitude, most likely due to an increase in open probability. In conclusion, the characteristics of THIK-2 channels can be analysed in heterologous expression systems by using trafficking and/or gating mutants. The possible mechanisms that enable THIK-2 expression at the surface membrane in vivo remain to be determined. PMID:24297522

  16. Individual Carboxypeptidase D domains have both redundant and unique functions in Drosophila development and behavior

    PubMed Central

    Sidyelyeva, Galyna; Wegener, Christian; Schoenfeld, Brian P.; Bell, Aaron J.; Baker, Nicholas E.; McBride, Sean M. J.; Fricker, Lloyd D.

    2010-01-01

    Metallocarboxypeptidase D (CPD) functions in protein and peptide processing. The Drosophila CPD svr gene undergoes alternative splicing, producing forms containing 1–3 active or inactive CP domains. To investigate the function of the various CP domains, we created transgenic flies expressing specific forms of CPD in the embryonic-lethal svrPG33 mutant. All constructs containing an active CP domain rescued the lethality with varying degrees, and full viability required inactive CP domain-3. Transgenic flies overexpressing active CP domain-1 or -2 were similar to each other and to the viable svr mutants, with pointed wing shape, enhanced ethanol sensitivity, and decreased cold sensitivity. The transgenes fully compensated for a long-term memory deficit observed in the viable svr mutants. Overexpression of CP domain-1 or -2 reduced the levels of Lys/Arg-extended adipokinetic hormone intermediates. These findings suggest that CPD domains-1 and -2 have largely redundant functions in the processing of growth factors, hormones, and neuropeptides. PMID:20386952

  17. The macro domain protein family: structure, functions, and their potential therapeutic implications.

    PubMed

    Han, Weidong; Li, Xiaolei; Fu, Xiaobing

    2011-01-01

    Macro domains are ancient, highly evolutionarily conserved domains that are widely distributed throughout all kingdoms of life. The 'macro fold' is roughly 25kDa in size and is composed of a mixed α-β fold with similarity to the P loop-containing nucleotide triphosphate hydrolases. They function as binding modules for metabolites of NAD(+), including poly(ADP-ribose) (PAR), which is synthesized by PAR polymerases (PARPs). Although there is a high degree of sequence similarity within this family, particularly for residues that might be involved in catalysis or substrates binding, it is likely that the sequence variation that does exist among macro domains is responsible for the specificity of function of individual proteins. Recent findings have indicated that macro domain proteins are functionally promiscuous and are implicated in the regulation of diverse biological functions, such as DNA repair, chromatin remodeling and transcriptional regulation. Significant advances in the field of macro domain have occurred in the past few years, including biological insights and the discovery of novel signaling pathways. To provide a framework for understanding these recent findings, this review will provide a comprehensive overview of the known and proposed biochemical, cellular and physiological roles of the macro domain family. Recent data that indicate a critical role of macro domain regulation for the proper progression of cellular differentiation programs will be discussed. In addition, the effect of dysregulated expression of macro domain proteins will be considered in the processes of tumorigenesis and bacterial pathogenesis. Finally, a series of observations will be highlighted that should be addressed in future efforts to develop macro domains as effective therapeutic targets.

  18. Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses.

    PubMed

    Koonin, E V; Gorbalenya, A E; Purdy, M A; Rozanov, M N; Reyes, G R; Bradley, D W

    1992-09-01

    Computer-assisted comparison of the nonstructural polyprotein of hepatitis E virus (HEV) with proteins of other positive-strand RNA viruses allowed the identification of the following putative functional domains: (i) RNA-dependent RNA polymerase, (ii) RNA helicase, (iii) methyltransferase, (iv) a domain of unknown function ("X" domain) flanking the papain-like protease domains in the polyproteins of animal positive-strand RNA viruses, and (v) papain-like cysteine protease domain distantly related to the putative papain-like protease of rubella virus (RubV). Comparative analysis of the polymerase and helicase sequences of positive-strand RNA viruses belonging to the so-called "alpha-like" supergroup revealed grouping between HEV, RubV, and beet necrotic yellow vein virus (BNYVV), a plant furovirus. Two additional domains have been identified: one showed significant conservation between HEV, RubV, and BNYVV, and the other showed conservation specifically between HEV and RubV. The large nonstructural proteins of HEV, RubV, and BNYVV retained similar domain organization, with the exceptions of relocation of the putative protease domain in HEV as compared to RubV and the absence of the protease and X domains in BNYVV. These observations show that HEV, RubV, and BNYVV encompass partially conserved arrays of distinctive putative functional domains, suggesting that these viruses constitute a distinct monophyletic group within the alpha-like supergroup of positive-strand RNA viruses. PMID:1518855

  19. A Family of Salmonella Virulence Factors Functions as a Distinct Class of Autoregulated E3 Ubiquitin Ligases

    SciTech Connect

    Quezada, C.; Hicks, S; Galan, J; Stebbins, C

    2009-01-01

    Processes as diverse as receptor binding and signaling, cytoskeletal dynamics, and programmed cell death are manipulated by mimics of host proteins encoded by pathogenic bacteria. We show here that the Salmonella virulence factor SspH2 belongs to a growing class of bacterial effector proteins that harness and subvert the eukaryotic ubiquitination pathway. This virulence protein possesses ubiquitination activity that depends on a conserved cysteine residue. A crystal structure of SspH2 reveals a canonical leucine-rich repeat (LRR) domain that interacts with a unique E{sub 3} ligase [which we have termed NEL for Novel E{sub 3} Ligase] C-terminal fold unrelated to previously observed HECT or RING-finger E{sub 3} ligases. Moreover, the LRR domain sequesters the catalytic cysteine residue contained in the NEL domain, and we suggest a mechanism for activation of the ligase requiring a substantial conformational change to release the catalytic domain for function. We also show that the N-terminal domain targets SspH2 to the apical plasma membrane of polarized epithelial cells and propose a model whereby binding of the LRR to proteins at the target site releases the ligase domain for site-specific function.

  20. [Detection of the functionally active domains in the molecule of the lethal factor of the anthrax exotoxin].

    PubMed

    Noskov, A N; Kravchenko, T B; Noskova, V P

    1996-01-01

    Three functional domains were revealed in the molecule of the lethal factor of B. anthracis. They are located in the linear structure of the molecula as follows: the associative domain occupies the area from Lys39 to Met242, the stabilizing domain from Leu517 to Lys614, and the effector domain still further to the COOH-terminal Lys mino acid.

  1. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+ -Transporting ATPase along the Ion Transport Cycle.

    PubMed

    Meng, Dan; Bruschweiler-Li, Lei; Zhang, Fengli; Brüschweiler, Rafael

    2015-08-18

    Ion transport of different P-type ATPases is regulated similarly through the interplay of multiple protein domains. In the presence of ATP, binding of a cation to the ion binding site in the transmembrane helices leads to the phosphorylation of the P-domain, allowing ion transfer across the membrane. The details of the mechanism, however, are not clear. Here, we report the modulation of the orientation between the N- and P-domains of Cu(+)-transporting ATPase along the ion transport cycle using high-resolution nuclear magnetic resonance spectroscopy in solution. On the basis of residual dipolar coupling measurements, it is found that the interdomain orientation (relative openness) of the N- and P-domains is distinctly modulated depending on the specific state of the N- and P-domains along the ion translocation cycle. The two domains' relative position in the apo state is semiopen, whereas it becomes closed upon binding of ATP to the N-domain. After phosphorylation of the P-domain and the release of ADP, the opening, however, becomes the widest among all the states. We reason such wide opening resulting from the departure of ADP prepares the N- and P-domains to accommodate the A-domain for interaction and, hence, promote ion transport and allow dephosphorylation of the P-domain. Such wide interdomain opening is abolished when an Asn to Asp mutation is introduced into the conserved DXXK motif located in the hinge region of the N- and P-domains of Cu(+)-ATPase, suggesting the indispensible role of the N- and P-interdomain orientation during ion transportation. Our results shed new light on the structural and mechanistic details of P-type ATPase function at large.

  2. Do Delay Aversion and Executive Function Deficits Make Distinct Contributions to the Functional Impact of ADHD Symptoms? A Study of Early Academic Skill Deficits

    ERIC Educational Resources Information Center

    Thorell, Lisa B.

    2007-01-01

    Background: The present study examined the distinct properties of executive functioning in relation to ADHD symptoms, as well as functional outcomes associated with ADHD. In line with the dual-pathway model of ADHD, executive functioning and delay aversion were expected to show independent effects on ADHD symptoms. Furthermore, relations to early…

  3. Phragmoplast of the green alga Spirogyra is functionally distinct from the higher plant phragmoplast.

    PubMed

    Sawitzky, H; Grolig, F

    1995-09-01

    Cytokinesis in the green alga Spirogyra (Zygnemataceae) is characterized by centripetal growth of a septum, which impinges on a persistent, centrifugally expanding telophase spindle, leading to a phragmoplast-like structure of potential phylogenetic significance (Fowke, L. C., and J. D. Pickett-Heaps. 1969. J. Phycol. 5:273-281). Combining fluorescent tagging of the cytoskeleton in situ and video-enhanced differential interference contrast microscopy of live cells, the process of cytokinesis was investigated with emphasis on cytoskeletal reorganization and concomitant redistribution of organelles. Based on a sequence of cytoskeletal arrangements and the effects of cytoskeletal inhibitors thereon, cytokinetic progression could be divided into three functional stages with respect to the contribution of microfilaments (MFs) and microtubules (MTs): (1) Initiation: in early prophase, a cross wall initial was formed independently of MFs and MTs at the presumptive site of wall growth. (2) Septum ingrowth: numerous organelles accumulated at the cross wall initial concomitant with reorganization of the extensive peripheral interphase MF array into a distinct circumferential MF array. This array guided the ingrowing septum until it contacted the expanding interzonal MT array. (3) Cross wall closure: MFs at the growing edge of the septum coaligned with and extended along the interzonal MTs toward the daughter nuclei. Thus, actin-based transportation of small organelles during this third stage occurred, in part, along a scaffold previously deployed in space by MTs. Displacement of the nuclei-associated interzonal MT array by centrifugation and depolymerization of the phragmoplast-like structure showed that the success of cytokinesis at the third stage depends on the interaction of both MF and MT cytoskeletons. Important features of the phragmoplast-like structure in Spirogyra were different from the higher plant phragmoplast: in particular, MFs were responsible for the

  4. BOLD coherence reveals segregated functional neural interactions when adapting to distinct torque perturbations

    PubMed Central

    Tunik, Eugene; Schmitt, Paul J.; Grafton, Scott T.

    2007-01-01

    In the natural world, we experience and adapt to multiple extrinsic perturbations. This poses a challenge to neural circuits in discriminating between different context-appropriate responses. Using event-related fMRI, we characterized the neural dynamics involved in this process by randomly delivering a position- or velocity-dependent torque perturbation to subjects’ arms during a target capture task. Each perturbation was color-cued during movement preparation to provide contextual information. Though trajectories differed between perturbations, subjects significantly reduced error under both conditions. This was paralleled by reduced BOLD signal in the right dentate nucleus, the left sensorimotor cortex, and the left intraparietal sulcus. Trials included ‘NoGo’ conditions to dissociate activity related to preparation from execution and adaptation. Subsequent analysis identified perturbation-specific neural processes underlying preparation (‘NoGo’) and adaptation (‘Go’) early and late into learning. Between-perturbation comparisons of BOLD magnitude revealed negligible differences for both preparation and adaptation trials. However, a network-level analysis of BOLD coherence revealed that by late learning, response preparation (‘NoGo’) was attributed to a relative focusing of coherence within cortical and basal ganglia networks in both perturbation conditions, demonstrating a common network interaction for establishing arbitrary visuomotor associations. Conversely, late-learning adaptation (‘Go’) was attributed to a focusing of BOLD coherence between a cortical-basal ganglia network in the viscous condition and between a cortical-cerebellar network in the positional condition. Our findings demonstrate that trial-to-trial acquisition of two distinct adaptive responses is attributed not to anatomically segregated regions, but to differential functional interactions within common sensorimotor circuits. PMID:17202232

  5. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    PubMed

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  6. Optimization of the functional domain of flat plate collectors

    NASA Astrophysics Data System (ADS)

    Ritoux, G.; Irigaray, J.-L.

    1981-12-01

    The variations of the extracted heat flux as function of the temperature of the heat transfer fluid in black and selective surface solar collectors are examined. The heat flux is calculated based on the difference of the initial to the stage of thermal equilibrium of the fluid. A nonlinear system of equations is developed and solved by a fast, iterative method to obtain the equilibrium temperatures. It is found that more flux can be extracted from the solar heat by a collector with only one glass cover than with more than one cover. The captured flux is proportional to the coefficient of transmission of the glass coverings, to the coefficient of absorption of the collector, and to the incident flux. Black painted surfaces were more absorbent than selective surfaces, and highest collection efficiencies were displayed by low temperature collectors. Charts of effective uses of the respective types of collectors for heating swimming pools, hot water, home heat, and for refrigeration and air-conditioning are provided.

  7. Identification of functionally distinct Na-HCO3 co-transporters in colon.

    PubMed

    Barmeyer, Christian; Ye, Jeff Huaqing; Soroka, Carol; Geibel, Peter; Hingsammer, Lukas M; Weitgasser, Laurence; Atway, Danny; Geibel, John P; Binder, Henry J; Rajendran, Vazhaikkurichi M

    2013-01-01

    Na-HCO3 cotransport (NBC) regulates intracellular pH (pHi) and HCO3 secretion in rat colon. NBC has been characterized as a 5,5'-diisothiocyanato-2-2'-stilbene (DIDS)-sensitive transporter in several tissues, while the colonic NBC is sensitive to both amiloride and DIDS. In addition, the colonic NBC has been identified as critical for pHi regulation as it is activated by intravesicular acid pH. Molecular studies have identified several characteristically distinct NBC isoforms [i.e. electrogenic (NBCe) and electroneutral (NBCn)] that exhibit tissue specific expression. This study was initiated to establish the molecular identity and specific function of NBC isoforms in rat colon. Northern blot and reverse transcriptase PCR (RT-PCR) analyses revealed that electrogenic NBCe1B or NBCe1C (NBCe1B/C) isoform is predominantly expressed in proximal colon, while electroneutral NBCn1C or NBCn1D (NBCn1C/D) is expressed in both proximal and distal colon. Functional analyses revealed that amiloride-insensitive, electrogenic, pH gradient-dependent NBC activity is present only in basolateral membranes of proximal colon. In contrast, amiloride-sensitive, electroneutral, [H(+)]-dependent NBC activity is present in both proximal and distal colon. Both electrogenic and electroneutral NBC activities are saturable processes with an apparent Km for Na of 7.3 and 4.3 mM, respectively; and are DIDS-sensitive with apparent Ki of 8.9 and 263.8 µM, respectively. In addition to Na-H exchanger isoform-1 (NHE1), pHi acidification is regulated by a HCO3-dependent mechanism that is HOE694-insensitive in colonic crypt glands. We conclude from these data that electroneutral, amiloride-sensitive NBC is encoded by NBCn1C/D and is present in both proximal and distal colon, while NBCe1B/C encodes electrogenic, amiloride-insensitive Na-HCO3 cotransport in proximal colon. We also conclude that NBCn1C/D regulates HCO3-dependent HOE694-insensitive Na-HCO3 cotransport and plays a critical role in p

  8. An updated view on the structure and function of PYRIN domains

    PubMed Central

    Chu, Lan Hoang; Gangopadhyay, Anu; Dorfleutner, Andrea; Stehlik, Christian

    2014-01-01

    The PYRIN domain (PYD) is a protein-protein interaction domain, which belongs to the death domain fold (DDF) superfamily. It is best known for its signaling function in innate immune responses and particularly in the assembly of inflammasomes, which are large protein complexes that allow the induced proximity-mediated activation of caspase-1 and subsequently the release of pro-inflammatory cytokines. The molecular mechanism of inflammasome assembly was only recently elucidated and specifically requires PYD oligomerization. Here we discuss the recent advances in our understanding of PYD signaling and its regulation by PYD-only proteins. PMID:25451010

  9. Initial Report of the Cancer PROMIS Supplement Sexual Function Committee: Review of Sexual Function Measures and Domains Used in Oncology

    PubMed Central

    Jeffery, Diana D.; Tzeng, Janice P.; Keefe, Francis J.; Porter, Laura S.; Hahn, Elizabeth A.; Flynn, Kathryn E.; Reeve, Bryce B.; Weinfurt, Kevin P.

    2009-01-01

    Objective This report describes initial activities of the Cancer Patient-Reported Outcomes Measurement Information System (PROMIS) Sexual Function domain group (CaPS-SF), part of the National Institutes of Health (NIH) Roadmap Initiative to develop brief questionnaires or individually-tailored assessments of quality of life domains. Our literature review of sexual function measures used in cancer populations, and descriptions of domains found in those measures, is presented. Methods Using a consensus-driven approach, an electronic bibliographic search was conducted for articles published 1991-2007, yielding 486 articles for in-depth review. Results A total of 257 articles reported the administration of a psychometrically evaluated sexual function measure to individuals diagnosed with cancer. Apart from the UCLA Prostate Cancer Index, the International Index of Erectile Function, and the Female Sexual Function Index, the 31 identified measures have not been widely tested in cancer populations. Most measures were multidimensional and included domains related to the sexual response cycle and to general sexual satisfaction. Conclusions Our review supports the need for a flexible, psychometrically robust measure of sexual function for use in oncology settings and strongly justifies the development of the PROMIS-SF instrument. After PROMIS-SF is publicly available, cancer clinicians and researchers will have another measure to assess patient-reported sexual function outcomes in addition to the few legacy measures identified through our review. PMID:19195044

  10. Functional analysis of pre-mRNA splicing factor SF2/ASF structural domains.

    PubMed Central

    Cáceres, J F; Krainer, A R

    1993-01-01

    Human pre-mRNA splicing factor SF2/ASF has an activity required for general splicing in vitro and promotes utilization of proximal alternative 5' splice sites in a concentration-dependent manner by opposing hnRNP A1. We introduced selected mutations in the N-terminal RNA recognition motif (RRM) and the C-terminal Arg/Ser (RS) domain of SF2/ASF, and assayed the resulting recombinant proteins for constitutive and alternative splicing in vitro and for binding to pre-mRNA and mRNA. Mutants inactive in constitutive splicing can affect alternative splice site selection, demonstrating that these activities involve distinct molecular interactions. Specific protein-RNA contact mediated by Phe56 and Phe58 in the RNP-1 submotif of the SF2/ASF RRM are essential for constitutive splicing, although they are not required for RRM-mediated binding to pre-mRNA. The RS domain is also required for constitutive splicing activity and both Arg and Ser residues are important. Analysis of domain deletion mutants demonstrated strong synergy between the RRM and a central degenerate RRM repeat in binding to RNA. These two domains are sufficient for alternative splicing activity in the absence of an RS domain. Images PMID:8223480

  11. A unique phenylalanine in the transmembrane domain strengthens homodimerization of the syndecan-2 transmembrane domain and functionally regulates syndecan-2.

    PubMed

    Kwon, Mi-Jung; Choi, Youngsil; Yun, Ji-Hye; Lee, Weontae; Han, Inn-Oc; Oh, Eok-Soo

    2015-02-27

    The syndecans are a type of cell surface adhesion receptor that initiates intracellular signaling events through receptor clustering mediated by their highly conserved transmembrane domains (TMDs). However, the exact function of the syndecan TMD is not yet fully understood. Here, we investigated the specific regulatory role of the syndecan-2 TMD. We found that syndecan-2 mutants in which the TMD had been replaced with that of syndecan-4 were defective in syndecan-2-mediated functions, suggesting that the TMD of syndecan-2 plays one or more specific roles. Interestingly, syndecan-2 has a stronger tendency to form sodium dodecyl sulfate (SDS)-resistant homodimers than syndecan-4. Our structural studies showed that a unique phenylalanine residue (Phe(167)) enables an additional molecular interaction between the TMDs of the syndecan-2 homodimer. The presence of Phe(167) was correlated with a higher tendency toward oligomerization, and its replacement with isoleucine significantly reduced the SDS-resistant dimer formation and cellular functions of syndecan-2 (e.g. cell migration). Conversely, replacement of isoleucine with phenylalanine at this position in the syndecan-4 TMD rescued the defects observed in a mutant syndecan-2 harboring the syndecan-4 TMD. Taken together, these data suggest that Phe(167) in the TMD of syndecan-2 endows the protein with specific functions. Our work offers new insights into the signaling mediated by the TMD of syndecan family members.

  12. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist

    SciTech Connect

    Madauss, Kevin P.; Burkhart, William A.; Consler, Thomas G.; Cowan, David J.; Gottschalk, William K.; Miller, Aaron B; Short, Steven A.; Tran, Thuy B.; Williams, Shawn P.

    2009-06-15

    Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain-CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined -helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.

  13. Frequency domain description of Kohlrausch response through a pair of Havriliak-Negami-type functions: An analysis of functional proximity

    NASA Astrophysics Data System (ADS)

    Medina, J. S.; Prosmiti, R.; Villarreal, P.; Delgado-Barrio, G.; Alemán, J. V.

    2011-12-01

    An approximation to the Fourier transform (FT) of the Kohlrausch function (stretched exponential) with shape parameter 0<β⩽1 is presented by using Havriliak-Negami-like functions. Mathematical expressions to fit their parameters α, γ, and τ, as functions of β (0<β⩽1 and 1<β<2) are given, which allows a quick identification in the frequency domain of the corresponding shape factor β. Reconstruction via fast Fourier transform of frequency approximants to time domain are shown as good substitutes in short times though biased in long ones (increasing discrepancies as β→1). The method is proposed as a template to commute time and frequency domains when analyzing complex data. Such a strategy facilitates intensive algorithmic search of parameters while adjusting the data of one or several Kohlrausch-Williams-Watts relaxations.

  14. Structure-Function Analysis of Rgs1 in Magnaporthe oryzae: Role of DEP Domains in Subcellular Targeting

    PubMed Central

    Ramanujam, Ravikrishna; Yishi, Xu; Liu, Hao; Naqvi, Naweed I.

    2012-01-01

    Background Rgs1, a prototypical Regulator of G protein Signaling, negatively modulates the cyclic AMP pathway thereby influencing various aspects of asexual development and pathogenesis in the rice-blast fungus Magnaporthe oryzae. Rgs1 possesses tandem DEP motifs (termed DEP-A and DEP-B; for Dishevelled, Egl-10, Pleckstrin) at the N-terminus, and a Gα-GTP interacting RGS catalytic core domain at the C-terminus. In this study, we focused on gaining further insights into the mechanisms of Rgs1 regulation and subcellular localization by characterizing the role(s) of the individual domains and the full-length protein during asexual development and pathogenesis in Magnaporthe. Methodology/Principal Findings Utilizing western blot analysis and specific antisera against the N- and C-terminal halves of Rgs1, we identify and report the in vivo endoproteolytic processing/cleavage of full-length Rgs1 that yields an N-terminal DEP and a RGS core domain. Independent expression of the resultant DEP-DEP half (N-Rgs1) or RGS core (C-Rgs1) fragments, failed to complement the rgs1Δ defects in colony morphology, aerial hyphal growth, surface hydrophobicity, conidiation, appressorium formation and infection. Interestingly, the full-length Rgs1-mCherry, as well as the tagged N-terminal DEP domains (individually or in conjunction) localized to distinct punctate vesicular structures in the cytosol, while the catalytic RGS core motif was predominantly vacuolar. Conclusions/Significance Based on our data from sequence alignments, immuno-blot and microscopic analysis, we propose that the post-translational proteolytic processing of Rgs1 and the vacuolar sequestration of the catalytic RGS domain represents an important means of down regulating Rgs1 function and thus forming an additional and alternative means of regulating G protein signaling in Magnaporthe. We further hypothesize the prevalence of analogous mechanisms functioning in other filamentous fungi. Furthermore, we conclusively

  15. Enhanced malignant transformation induced by expression of a distinct protein domain of ribonucleotide reductase large subunit from herpes simplex virus type 2.

    PubMed Central

    Ali, M A; McWeeney, D; Milosavljevic, A; Jurka, J; Jariwalla, R J

    1991-01-01

    The 1.3-kilobase (kb) Pst I DNA fragment C (Pst I-C) of herpes simplex virus type 2 (HSV-2) morphological transforming region III (mtrIII; map unit 0.562-0.570) encodes part of the N-terminal half of the large subunit of ribonucleotide reductase (RR1; amino acid residues 71-502) and induces the neoplastic transformation of immortalized cell lines. To assess directly the role of these RR1 protein sequences in cell transformation, the Pst I-C fragment was cloned in an expression vector (p91023) containing an adenovirus-simian virus 40 promoter-enhancer to generate recombinant plasmid p9-C. Expression of a protein domain (approximately 65 kDa) was observed in p9-C-transfected COS-7 and Rat2 cells but not in those transfected with plasmid pHC-14 (Pst I-C in a promoterless vector). In Rat2 cells, p9-C induced highly transformed foci at an elevated frequency compared with that of pHC-14. Introduction of translation termination (TAG) condons within the RR1 coding sequence and within all three reading frames inactivated RR1 protein expression from p9-C and reduced its transforming activity to the level seen with the standard pHC-14 construct. Wild-type p9-C specified a protein kinase capable of autophosphorylation. Computer-assisted analysis further revealed significant similarity between regions of mtrIII-specific RR1 and amino acid patterns conserved within the proinsulin precursor family and DNA transposition proteins. These results identify a distinct domain of the HSV-2 RR1 protein involved in the induction of enhanced malignant transformation. In addition, the data indicate that the mtrIII DNA itself can induce basal-level transformation in the absence of protein expression. Images PMID:1654564

  16. 2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function

    NASA Astrophysics Data System (ADS)

    Park, Eunjin; Ha, Wansoo; Chung, Wookeen; Shin, Changsoo; Min, Dong-Joo

    2013-12-01

    The wavefield in the Laplace domain has a very small amplitude except only near the source point. In order to deal with this characteristic, the logarithmic objective function has been used in many Laplace domain inversion studies. The Laplace-domain waveform inversion using the logarithmic objective function has fewer local minima than the time- or frequency domain inversion. Recently, the power objective function was suggested as an alternative to the logarithmic objective function in the Laplace domain. Since amplitudes of wavefields are very small generally, a power <1 amplifies the wavefields especially at large offset. Therefore, the power objective function can enhance the Laplace-domain inversion results. In previous studies about synthetic datasets, it is confirmed that the inversion using a power objective function shows a similar result when compared with the inversion using a logarithmic objective function. In this paper, we apply an inversion algorithm using a power objective function to field datasets. We perform the waveform inversion using the power objective function and compare the result obtained by the logarithmic objective function. The Gulf of Mexico dataset is used for the comparison. When we use a power objective function in the inversion algorithm, it is important to choose the appropriate exponent. By testing the various exponents, we can select the range of the exponent from 5 × 10-3 to 5 × 10-8 in the Gulf of Mexico dataset. The results obtained from the power objective function with appropriate exponent are very similar to the results of the logarithmic objective function. Even though we do not get better results than the conventional method, we can confirm the possibility of applying the power objective function for field data. In addition, the power objective function shows good results in spite of little difference in the amplitude of the wavefield. Based on these results, we can expect that the power objective function will

  17. Two functionally distinct ciliates dwelling in Acropora corals in the South China Sea near Sanya, Hainan Province, China.

    PubMed

    Qiu, Dajun; Huang, Liangmin; Huang, Hui; Yang, Jianhui; Lin, Senjie

    2010-08-01

    We detected and characterized two distinct scuticociliate ciliates inside Acropora corals in the South China Sea. One, voraciously foraging on Symbiodinium, resembled the brown band disease of ciliates. The other, which is closely related to Paranophrys magna, grazed on detritus instead of Symbiodinium. These two ciliates may serve contrasting functions (competitor versus "cleaner") in the coral-ciliate-Symbiodinium triangular relationship.

  18. Control of Assembly and Function of Glutamate Receptors by the Amino-Terminal Domain

    PubMed Central

    Hansen, Kasper B.; Furukawa, Hiro

    2010-01-01

    The extracellular amino-terminal domains (ATDs) of the ionotropic glutamate receptor subunits form a semiautonomous component of all glutamate receptors that resides distal to the membrane and controls a surprisingly diverse set of receptor functions. These functions include subunit assembly, receptor trafficking, channel gating, agonist potency, and allosteric modulation. The many divergent features of the different ionotropic glutamate receptor classes and different subunits within a class may stem from differential regulation by the amino-terminal domains. The emerging knowledge of the structure and function of the amino-terminal domains reviewed here may enable targeting of this region for the therapeutic modulation of glutamatergic signaling. Toward this end, NMDA receptor antagonists that interact with the GluN2B ATD show promise in animal models of ischemia, neuropathic pain, and Parkinson's disease. PMID:20660085

  19. Functional Specialization of Domains Tandemly Duplicated Witin 16S rRNA Methyltransferase RsmC

    SciTech Connect

    Sunita,S.; Purta, E.; Durawa, M.; Tkaczuk, K.; Swaathi, J.; Bujnicki, J.; Sivaraman, J.

    2007-01-01

    RNA methyltransferases (MTases) are important players in the biogenesis and regulation of the ribosome, the cellular machine for protein synthesis. RsmC is a MTase that catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to G1207 of 16S rRNA. Mutations of G1207 have dominant lethal phenotypes in Escherichia coli, underscoring the significance of this modified nucleotide for ribosome function. Here we report the crystal structure of E. coli RsmC refined to 2.1 Angstroms resolution, which reveals two homologous domains tandemly duplicated within a single polypeptide. We characterized the function of the individual domains and identified key residues involved in binding of rRNA and SAM, and in catalysis. We also discovered that one of the domains is important for the folding of the other. Domain duplication and subfunctionalization by complementary degeneration of redundant functions (in particular substrate binding versus catalysis) has been reported for many enzymes, including those involved in RNA metabolism. Thus, RsmC can be regarded as a model system for functional streamlining of domains accompanied by the development of dependencies concerning folding and stability.

  20. The epigenetic regulator Smchd1 contains a functional GHKL-type ATPase domain.

    PubMed

    Chen, Kelan; Dobson, Renwick C J; Lucet, Isabelle S; Young, Samuel N; Pearce, F Grant; Blewitt, Marnie E; Murphy, James M

    2016-06-15

    Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic regulator that plays critical roles in gene regulation during development. Mutations in SMCHD1 were recently implicated in the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD), although the mechanistic basis remains of outstanding interest. We have previously shown that Smchd1 associates with chromatin via its homodimeric C-terminal hinge domain, yet little is known about the function of the putative GHKL (gyrase, Hsp90, histidine kinase, MutL)-type ATPase domain at its N-terminus. To formally assess the structure and function of Smchd1's ATPase domain, we have generated recombinant proteins encompassing the predicted ATPase domain and the adjacent region. Here, we show that the Smchd1 N-terminal region exists as a monomer and adopts a conformation resembling that of monomeric full-length heat shock protein 90 (Hsp90) protein in solution, even though the two proteins share only ∼8% overall sequence identity. Despite being monomeric, the N-terminal region of Smchd1 exhibits ATPase activity, which can be antagonized by the reaction product, ADP, or the Hsp90 inhibitor, radicicol, at a nanomolar concentration. Interestingly, introduction of an analogous mutation to that identified in SMCHD1 of an FSHD patient compromised protein stability, suggesting a possible molecular basis for loss of protein function and pathogenesis. Together, these results reveal important structure-function characteristics of Smchd1 that may underpin its mechanistic action at the chromatin level. PMID:27059856

  1. Delineation of structural domains and identification of functionally important residues in DNA repair enzyme exonuclease VII

    PubMed Central

    Poleszak, Katarzyna; Kaminska, Katarzyna H.; Dunin-Horkawicz, Stanislaw; Lupas, Andrei; Skowronek, Krzysztof J.; Bujnicki, Janusz M.

    2012-01-01

    Exonuclease VII (ExoVII) is a bacterial nuclease involved in DNA repair and recombination that hydrolyses single-stranded DNA. ExoVII is composed of two subunits: large XseA and small XseB. Thus far, little was known about the molecular structure of ExoVII, the interactions between XseA and XseB, the architecture of the nuclease active site or its mechanism of action. We used bioinformatics methods to predict the structure of XseA, which revealed four domains: an N-terminal OB-fold domain, a middle putatively catalytic domain, a coiled-coil domain and a short C-terminal segment. By series of deletion and site-directed mutagenesis experiments on XseA from Escherichia coli, we determined that the OB-fold domain is responsible for DNA binding, the coiled-coil domain is involved in binding multiple copies of the XseB subunit and residues D155, R205, H238 and D241 of the middle domain are important for the catalytic activity but not for DNA binding. Altogether, we propose a model of sequence–structure–function relationships in ExoVII. PMID:22718974

  2. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms

    PubMed Central

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Lopez-Nicora, Horacio D.; Caetano-Anollés, Gustavo

    2011-01-01

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  3. Hyperandrogenism in female athletes with functional hypothalamic amenorrhea: a distinct phenotype

    PubMed Central

    Javed, Asma; Kashyap, Rahul; Lteif, Aida N

    2015-01-01

    Objective To compare the reproductive, metabolic, and skeletal profiles of young athletic women with functional hypothalamic amenorrhea (FHA) as well as clinical or biochemical hyperandrogenism (FHA-EX+HA) with body mass index matched women with FHA due to exercise (FHA-EX) or anorexia nervosa (FHA-AN) alone. Design Retrospective cohort study. Setting Tertiary care teaching hospital. Population Adolescents and young women, 15–30 years of age, diagnosed with FHA along with concurrent signs of hyperandrogenism (n=22) and body mass index matched control groups consisting of 22 women in each group of FHA-EX and FHA-AN. Main outcomes 1) Reproductive hormone profile: luteinizing hormone (LH), follicle stimulating hormone (FSH), total testosterone, pelvic ultrasound features. 2) Metabolic function and skeletal health markers: fasting glucose, cholesterol, number of stress fractures and bone mineral density as assessed by spine dual-energy X-ray absorptiometry z scores. Results FHA-EX+HA group was older at diagnosis compared to the other groups with a median (interquartile range [IQR]) age of 22 (18.75–25.25) years versus (vs) 17.5 (15.75–19) for FHA-EX; (P<0.01) and 18 (16–22.25) years for FHA-AN (P=0.01). There were no differences among the groups based on number of hours of exercise per week, type of physical activity or duration of amenorrhea. Median (IQR) LH/FSH ratio was higher in FHA-EX+HA than both other groups, 1.44 (1.03–1.77) vs 0.50 (0.20–0.94) for FHA-EX and 0.67 (0.51–0.87) for FHA-AN (P<0.01 for both). Total testosterone concentrations were not different among the groups. Median (IQR) fasting serum glucose concentration was higher in FHA-EX+HA vs FHA-EX, 88.5 mg/dL (82.8–90 mg/dL) vs 83.5 mg/dL (78.8–86.3 mg/dL) (P=0.01) but not different from FHA-AN (P=0.31). Percentage of women with stress fractures was lower in FHA-EX+HA (4.5%) as compared to both FHA-EX (27.3%) and FHA-AN (50%); P=0.04 and 0.01 respectively. The LH/FSH ratio was weakly

  4. Rbg1-Tma46 dimer structure reveals new functional domains and their role in polysome recruitment.

    PubMed

    Francis, Sandrea M; Gas, María-Eugenia; Daugeron, Marie-Claire; Bravo, Jeronimo; Séraphin, Bertrand

    2012-11-01

    Developmentally Regulated GTP-binding (DRG) proteins are highly conserved GTPases that associate with DRG Family Regulatory Proteins (DFRP). The resulting complexes have recently been shown to participate in eukaryotic translation. The structure of the Rbg1 GTPase, a yeast DRG protein, in complex with the C-terminal region of its DFRP partner, Tma46, was solved by X-ray diffraction. These data reveal that DRG proteins are multimodular factors with three additional domains, helix-turn-helix (HTH), S5D2L and TGS, packing against the GTPase platform. Surprisingly, the S5D2L domain is inserted in the middle of the GTPase sequence. In contrast, the region of Tma46 interacting with Rbg1 adopts an extended conformation typical of intrinsically unstructured proteins and contacts the GTPase and TGS domains. Functional analyses demonstrate that the various domains of Rbg1, as well as Tma46, modulate the GTPase activity of Rbg1 and contribute to the function of these proteins in vivo. Dissecting the role of the different domains revealed that the Rbg1 TGS domain is essential for the recruitment of this factor in polysomes, supporting further the implication of these conserved factors in translation.

  5. The Novel Plant Protein INAPERTURATE POLLEN1 Marks Distinct Cellular Domains and Controls Formation of Apertures in the Arabidopsis Pollen Exine[C][W

    PubMed Central

    Dobritsa, Anna A.; Coerper, Daniel

    2012-01-01

    Pollen grains protect the sperm cells inside them with the help of the unique cell wall, the exine, which exhibits enormous morphological variation across plant taxa, assembling into intricate and diverse species-specific patterns. How this complex extracellular structure is faithfully deposited at precise sites and acquires precise shape within a species is not understood. Here, we describe the isolation and characterization of the novel Arabidopsis thaliana gene INAPERTURATE POLLEN1 (INP1), which is specifically involved in formation of the pollen surface apertures, which arise by restriction of exine deposition at specific sites. Loss of INP1 leads to the loss of all three apertures in Arabidopsis pollen, and INP1 protein exhibits a unique tripartite localization in developing pollen, indicative of its direct involvement in specification of aperture positions. We also show that aperture length appears to be sensitive to INP1 dosage and INP1 misexpression can affect global exine patterning. Phenotypes of some inp1 mutants indicate that Arabidopsis apertures are initiated at three nonrandom positions around the pollen equator. The identification of INP1 opens up new avenues for studies of how formation of distinct cellular domains results in the production of different extracellular morphologies. PMID:23136373

  6. Functional domains of the transcriptional activator NUC-1 in Neurospora crassa.

    PubMed

    Kang, S

    1993-08-25

    The NUC-1 regulatory protein directly controls the transcription of these genes and how the activity enzymes in Neurospora crassa. To understand how NUC-1 regulates the transcription of these genes and how the activity of NUC-1 is modulated by other regulatory proteins, two putative functional domains of NUC-1 were analysed: the DNA-binding domain and the regulatory domain. The DNA-binding activity of NUC-1 has not been directly demonstrated; however, results of deletion analysis, sequence analysis of the nuc-1 mutant alleles, and strong sequence similarity with the Saccharomyces cerevisiae PHO4 protein strongly suggest that the basic helix-loop-helix motif of NUC-1 forms a DNA-binding domain. Deletion and mutant analyses revealed that 39 amino acid (aa) residues (aa 463 to 501), or fewer, of NUC-1 are interacting with the negative regulatory factor(s), the PREG and/or PGOV proteins.

  7. The Pilus Usher Controls Protein Interactions via Domain Masking and is Functional as an Oligomer

    PubMed Central

    Werneburg, Glenn T.; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Li, Huilin; Thanassi, David G.

    2015-01-01

    The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria. PMID:26052892

  8. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    NASA Astrophysics Data System (ADS)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  9. Dimerization and Transactivation Domains as Candidates for Functional Modulation and Diversity of Sox9

    PubMed Central

    Geraldo, Marcos Tadeu; Valente, Guilherme Targino; Nakajima, Rafael Takahiro; Martins, Cesar

    2016-01-01

    Sox9 plays an important role in a large variety of developmental pathways in vertebrates. It is composed of three domains: high-mobility group box (HMG box), dimerization (DIM) and transactivation (TAD). One of the main processes for regulation and variability of the pathways involving Sox9 is the self-gene expression regulation of Sox9. However, the subsequent roles of the Sox9 domains can also generate regulatory modulations. Studies have shown that TADs can bind to different types of proteins and its function seems to be influenced by DIM. Therefore, we hypothesized that both domains are directly associated and can be responsible for the functional variability of Sox9. We applied a method based on a broad phylogenetic context, using sequences of the HMG box domain, to ensure the homology of all the Sox9 copies used herein. The data obtained included 4,921 sequences relative to 657 metazoan species. Based on coevolutionary and selective pressure analyses of the Sox9 sequences, we observed coevolutions involving DIM and TADs. These data, along with the experimental data from literature, indicate a functional relationship between these domains. Moreover, DIM and TADs may be responsible for the functional plasticity of Sox9 because they are more tolerant for molecular changes (higher Ka/Ks ratio than the HMG box domain). This tolerance could allow a differential regulation of target genes or promote novel targets during transcriptional activation. In conclusion, we suggest that DIM and TADs functional association may regulate differentially the target genes or even promote novel targets during transcription activation mediated by Sox9 paralogs, contributing to the subfunctionalization of Sox9a and Sox9b in teleosts. PMID:27196604

  10. Dimerization and Transactivation Domains as Candidates for Functional Modulation and Diversity of Sox9.

    PubMed

    Geraldo, Marcos Tadeu; Valente, Guilherme Targino; Nakajima, Rafael Takahiro; Martins, Cesar

    2016-01-01

    Sox9 plays an important role in a large variety of developmental pathways in vertebrates. It is composed of three domains: high-mobility group box (HMG box), dimerization (DIM) and transactivation (TAD). One of the main processes for regulation and variability of the pathways involving Sox9 is the self-gene expression regulation of Sox9. However, the subsequent roles of the Sox9 domains can also generate regulatory modulations. Studies have shown that TADs can bind to different types of proteins and its function seems to be influenced by DIM. Therefore, we hypothesized that both domains are directly associated and can be responsible for the functional variability of Sox9. We applied a method based on a broad phylogenetic context, using sequences of the HMG box domain, to ensure the homology of all the Sox9 copies used herein. The data obtained included 4,921 sequences relative to 657 metazoan species. Based on coevolutionary and selective pressure analyses of the Sox9 sequences, we observed coevolutions involving DIM and TADs. These data, along with the experimental data from literature, indicate a functional relationship between these domains. Moreover, DIM and TADs may be responsible for the functional plasticity of Sox9 because they are more tolerant for molecular changes (higher Ka/Ks ratio than the HMG box domain). This tolerance could allow a differential regulation of target genes or promote novel targets during transcriptional activation. In conclusion, we suggest that DIM and TADs functional association may regulate differentially the target genes or even promote novel targets during transcription activation mediated by Sox9 paralogs, contributing to the subfunctionalization of Sox9a and Sox9b in teleosts. PMID:27196604

  11. Functional characterization of the C-terminal domain of mouse capping enzyme.

    PubMed

    Liu, Li

    2006-01-01

    Mouse capping enzyme (Mce1) consists of two functional domains: the amino-terminal triphosphatase domain and the carboxyl-terminal guanylyltransferase (GTase) domain. The bifunctional Mce1 gene encodes 597 a.a. with a molecular weight approximately 68 kDa. Mce1 cDNA is located on chromosome 4A4 approximately 4A5 and is composed of 17 exons. To functionally characterize the C-terminus of Mce1, we generated four truncated proteins with 12, 30, 37, or 60 a.a. deletions from the C-terminus of either the wild type (Mce1) or the isolated GTase domain (211-597), respectively. Plasmid shuffling experiment with Saccharomyces cerevisiae GTase subunit gene CEG1 null mutant demonstrated that deletion mutants 211-567 and 211-585 were able to support cell viability in the presence of 5-fluoroorotic acid, whereas 211-537 and 211-560 were not. Consistent with the yeast genetic study, both 211-567 and 211-585 had significant GTase activity in vitro, while 211-537 and 211-560 that were only detected in the insoluble fraction in the bacterial expression system, were completely inactive. Overall, both in vivo and in vitro studies indicate that the functional domain of Mce1 is between a.a. 211 and 567, and the heptapeptide sequence between 561 and 567 may play an important role in the enzyme activity. PMID:16342145

  12. Francisella tularensis RipA Protein Topology and Identification of Functional Domains

    PubMed Central

    Mortensen, Brittany L.; Fuller, James R.; Taft-Benz, Sharon; Collins, Edward J.

    2012-01-01

    Francisella tularensis is a Gram-negative coccobacillus and is the etiological agent of the disease tularemia. Expression of the cytoplasmic membrane protein RipA is required for Francisella replication within macrophages and other cell types; however, the function of this protein remains unknown. RipA is conserved among all sequenced Francisella species, and RipA-like proteins are present in a number of individual strains of a wide variety of species scattered throughout the prokaryotic kingdom. Cross-linking studies revealed that RipA forms homoligomers. Using a panel of RipA-green fluorescent protein and RipA-PhoA fusion constructs, we determined that RipA has a unique topology within the cytoplasmic membrane, with the N and C termini in the cytoplasm and periplasm, respectively. RipA has two significant cytoplasmic domains, one composed roughly of amino acids 1 to 50 and the second flanked by the second and third transmembrane domains and comprising amino acids 104 to 152. RipA functional domains were identified by measuring the effects of deletion mutations, amino acid substitution mutations, and spontaneously arising intragenic suppressor mutations on intracellular replication, induction of interleukin-1β (IL-1β) secretion by infected macrophages, and oligomer formation. Results from these experiments demonstrated that each of the cytoplasmic domains and specific amino acids within these domains are required for RipA function. PMID:22267515

  13. Dual amyloid domains promote differential functioning of the chaplin proteins during Streptomyces aerial morphogenesis

    PubMed Central

    Capstick, David S.; Jomaa, Ahmad; Hanke, Chistopher; Ortega, Joaquin; Elliot, Marie A.

    2011-01-01

    The chaplin proteins are functional amyloids found in the filamentous Streptomyces bacteria. These secreted proteins are required for the aerial development of Streptomyces coelicolor, and contribute to an intricate rodlet ultrastructure that decorates the surfaces of aerial hyphae and spores. S. coelicolor encodes eight chaplin proteins. Previous studies have revealed that only three of these proteins (ChpC, ChpE, and ChpH) are necessary for promoting aerial development, and of these three, ChpH is the primary developmental determinant. Here, we show that the model chaplin, ChpH, contains two amyloidogenic domains: one in the N terminus and one in the C terminus of the mature protein. These domains have different polymerization properties as determined using fluorescence spectroscopy, secondary structure analyses, and electron microscopy. We coupled these in vitro assays with in vivo genetic studies to probe the connection between ChpH amyloidogenesis and its biological function. Using mutational analyses, we demonstrated that both N- and C-terminal amyloid domains of ChpH were required for promoting aerial hypha formation, while the N-terminal domain was dispensable for assembly of the rodlet ultrastructure. These results suggest that there is a functional differentiation of the dual amyloid domains in the chaplin proteins. PMID:21628577

  14. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication

    PubMed Central

    Gu, Haidong

    2016-01-01

    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced “conquer and compromise” strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host. PMID:26870669

  15. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  16. Localization and Function of Pals1-associated Tight Junction Protein in Drosophila Is Regulated by Two Distinct Apical Complexes.

    PubMed

    Sen, Arnab; Sun, Rui; Krahn, Michael P

    2015-05-22

    The transmembrane protein Crumbs (Crb) and its intracellular adaptor protein Pals1 (Stardust, Sdt in Drosophila) play a crucial role in the establishment and maintenance of apical-basal polarity in epithelial cells in various organisms. In contrast, the multiple PDZ domain-containing protein Pals1-associated tight junction protein (PATJ), which has been described to form a complex with Crb/Sdt, is not essential for apical basal polarity or for the stability of the Crb/Sdt complex in the Drosophila epidermis. Here we show that, in the embryonic epidermis, Sdt is essential for the correct subcellular localization of PATJ in differentiated epithelial cells but not during cellularization. Consistently, the L27 domain of PATJ is crucial for the correct localization and function of the protein. Our data further indicate that the four PDZ domains of PATJ function, to a large extent, in redundancy, regulating the function of the protein. Interestingly, the PATJ-Sdt heterodimer is not only recruited to the apical cell-cell contacts by binding to Crb but depends on functional Bazooka (Baz). However, biochemical experiments show that PATJ associates with both complexes, the Baz-Sdt and the Crb-Sdt complex, in the mature epithelium of the embryonic epidermis, suggesting a role of these two complexes for the function of PATJ during the development of Drosophila.

  17. Localization and Function of Pals1-associated Tight Junction Protein in Drosophila Is Regulated by Two Distinct Apical Complexes*

    PubMed Central

    Sen, Arnab; Sun, Rui; Krahn, Michael P.

    2015-01-01

    The transmembrane protein Crumbs (Crb) and its intracellular adaptor protein Pals1 (Stardust, Sdt in Drosophila) play a crucial role in the establishment and maintenance of apical-basal polarity in epithelial cells in various organisms. In contrast, the multiple PDZ domain-containing protein Pals1-associated tight junction protein (PATJ), which has been described to form a complex with Crb/Sdt, is not essential for apical basal polarity or for the stability of the Crb/Sdt complex in the Drosophila epidermis. Here we show that, in the embryonic epidermis, Sdt is essential for the correct subcellular localization of PATJ in differentiated epithelial cells but not during cellularization. Consistently, the L27 domain of PATJ is crucial for the correct localization and function of the protein. Our data further indicate that the four PDZ domains of PATJ function, to a large extent, in redundancy, regulating the function of the protein. Interestingly, the PATJ-Sdt heterodimer is not only recruited to the apical cell-cell contacts by binding to Crb but depends on functional Bazooka (Baz). However, biochemical experiments show that PATJ associates with both complexes, the Baz-Sdt and the Crb-Sdt complex, in the mature epithelium of the embryonic epidermis, suggesting a role of these two complexes for the function of PATJ during the development of Drosophila. PMID:25847234

  18. Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains

    NASA Astrophysics Data System (ADS)

    Kim, Hanseong; An, Sojin; Ro, Seung-Hyun; Teixeira, Filipa; Jin Park, Gyeong; Kim, Cheal; Cho, Chun-Seok; Kim, Jeong-Sig; Jakob, Ursula; Hee Lee, Jun; Cho, Uhn-Soo

    2015-11-01

    Sestrins are stress-inducible metabolic regulators with two seemingly unrelated but physiologically important functions: reduction of reactive oxygen species (ROS) and inhibition of the mechanistic target of rapamycin complex 1 (mTORC1). How Sestrins fulfil this dual role has remained elusive so far. Here we report the crystal structure of human Sestrin2 (hSesn2), and show that hSesn2 is twofold pseudo-symmetric with two globular subdomains, which are structurally similar but functionally distinct from each other. While the N-terminal domain (Sesn-A) reduces alkylhydroperoxide radicals through its helix-turn-helix oxidoreductase motif, the C-terminal domain (Sesn-C) modified this motif to accommodate physical interaction with GATOR2 and subsequent inhibition of mTORC1. These findings clarify the molecular mechanism of how Sestrins can attenuate degenerative processes such as aging and diabetes by acting as a simultaneous inhibitor of ROS accumulation and mTORC1 activation.

  19. Single Expressed Glycine Receptor Domains Reconstitute Functional Ion Channels without Subunit-specific Desensitization Behavior*

    PubMed Central

    Meiselbach, Heike; Vogel, Nico; Langlhofer, Georg; Stangl, Sabine; Schleyer, Barbara; Bahnassawy, Lamia'a; Sticht, Heinrich; Breitinger, Hans-Georg; Becker, Cord-Michael; Villmann, Carmen

    2014-01-01

    Cys loop receptors are pentameric arrangements of independent subunits that assemble into functional ion channels. Each subunit shows a domain architecture. Functional ion channels can be reconstituted even from independent, nonfunctional subunit domains, as shown previously for GlyRα1 receptors. Here, we demonstrate that this reconstitution is not restricted to α1 but can be transferred to other members of the Cys loop receptor family. A nonfunctional GlyR subunit, truncated at the intracellular TM3–4 loop by a premature stop codon, can be complemented by co-expression of the missing tail portion of the receptor. Compared with α1 subunits, rescue by domain complementation was less efficient when GlyRα3 or the GABAA/C subunit ρ1 was used. If truncation disrupted an alternative splicing cassette within the intracellular TM3–4 loop of α3 subunits, which also regulates receptor desensitization, functional rescue was not possible. When α3 receptors were restored by complementation using domains with and without the spliced insert, no difference in desensitization was found. In contrast, desensitization properties could even be transferred between α1/α3 receptor chimeras harboring or lacking the α3 splice cassette proving that functional rescue depends on the integrity of the alternative splicing cassette in α3. Thus, an intact α3 splicing cassette in the TM3–4 loop environment is indispensable for functional rescue, and the quality of receptor restoration can be assessed from desensitization properties. PMID:25143388

  20. The Tetramerization Domain Potentiates Kv4 Channel Function by Suppressing Closed-State Inactivation

    PubMed Central

    Tang, Yi-Quan; Zhou, Jing-Heng; Yang, Fan; Zheng, Jie; Wang, KeWei

    2014-01-01

    A-type Kv4 potassium channels undergo a conformational change toward a nonconductive state at negative membrane potentials, a dynamic process known as pre-open closed states or closed-state inactivation (CSI). CSI causes inhibition of channel activity without the prerequisite of channel opening, thus providing a dynamic regulation of neuronal excitability, dendritic signal integration, and synaptic plasticity at resting. However, the structural determinants underlying Kv4 CSI remain largely unknown. We recently showed that the auxiliary KChIP4a subunit contains an N-terminal Kv4 inhibitory domain (KID) that directly interacts with Kv4.3 channels to enhance CSI. In this study, we utilized the KChIP4a KID to probe key structural elements underlying Kv4 CSI. Using fluorescence resonance energy transfer two-hybrid mapping and bimolecular fluorescence complementation-based screening combined with electrophysiology, we identified the intracellular tetramerization (T1) domain that functions to suppress CSI and serves as a receptor for the binding of KID. Disrupting the Kv4.3 T1-T1 interaction interface by mutating C110A within the C3H1 motif of T1 domain facilitated CSI and ablated the KID-mediated enhancement of CSI. Furthermore, replacing the Kv4.3 T1 domain with the T1 domain from Kv1.4 (without the C3H1 motif) or Kv2.1 (with the C3H1 motif) resulted in channels functioning with enhanced or suppressed CSI, respectively. Taken together, our findings reveal a novel (to our knowledge) role of the T1 domain in suppressing Kv4 CSI, and that KChIP4a KID directly interacts with the T1 domain to facilitate Kv4.3 CSI, thus leading to inhibition of channel function. PMID:25185545

  1. Distinct phenotypes of new transmembrane-domain neuregulin 1 mutant mice and the rescue effects of valproate on the observed schizophrenia-related cognitive deficits

    PubMed Central

    Pei, Ju-Chun; Liu, Chih-Min; Lai, Wen-Sung

    2014-01-01

    Accumulating evidence suggests that neuregulin 1 (NRG1) might be involved in the neurodevelopment, neural plasticity, GABAergic neurotransmission, and pathogenesis of schizophrenia. NRG1 is abundantly expressed in the hippocampus, and emerging studies have begun to reveal the link between NRG1 signaling and cognitive deficits in schizophrenic patients. Because the transmembrane domain of NRG1 is vital for both forward and reverse signaling cascades, new Nrg1-deficient mice that carry a truncation of the transmembrane domain of the Nrg1 gene were characterized and used in this study to test a NRG1 loss-of-function hypothesis for schizophrenia. Both male and female Nrg1 heterozygous mutant mice and their wild-type littermates were used in a series of 4 experiments to characterize the impact of Nrg1 on behavioral phenotypes and to determine the importance of Nrg1 in the regulation of hippocampal neuromorphology and local GABAergic interneurons. First, a comprehensive battery of behavioral tasks indicated that male Nrg1-deficient mice exhibited significant impairments in cognitive functions. Second, pharmacological challenges were conducted and revealed that Nrg1 haploinsufficiency altered GABAergic activity in males. Third, although no genotype-specific neuromorphological alterations were found in the hippocampal CA1 pyramidal neurons, significant reductions in the hippocampal expressions of GAD67 and parvalbumin were revealed in the Nrg1-deficient males. Fourth, chronic treatment with valproate rescued the observed behavioral deficits and hippocampal GAD67 reduction in Nrg1-deficient males. Collectively, these results indicate the potential therapeutic effect of valproate and the importance of Nrg1 in the regulation of cognitive functions and hippocampal GABAergic interneurons, especially in males. PMID:24782733

  2. Functional consequences of exchanging domains between LacI and PurR are mediated by the intervening linker sequence.

    PubMed

    Tungtur, Sudheer; Egan, Susan M; Swint-Kruse, Liskin

    2007-07-01

    Homologue function can be differentiated by changing residues that affect binding sites or long-range interactions. LacI and PurR are two proteins that represent the LacI/GalR family (>500 members) of bacterial transcription regulators. All members have distinct DNA-binding and regulatory domains linked by approximately 18 amino acids. Each homologue has specificity for different DNA and regulatory effector ligands; LacI and PurR also exhibit differences in allosteric communication between DNA and effector binding sites. A comparative study of LacI and PurR suggested that alterations in the interface between the regulatory domain and linker are important for differentiating their functions. Four residues (equivalent to LacI positions 48, 55, 58, and 61) appear particularly important for creating a unique interface and were predicted to be necessary for allosteric regulation. However, nearby residues in the linker interact with DNA ligand. Thus, differences observed in interactions between linker and regulatory domain may be the cause of altered function or an effect of the two proteins binding different DNA ligands. To separate these possibilities, we created a chimeric protein with the LacI DNA-binding domain/linker and the PurR regulatory domain (LLhP). If the interface requires homologue-specific interactions in order to propagate the signal from effector binding, then LLhP repression should not be allosterically regulated by effector binding. Experiments show that LLhP is capable of repression from lacO1 and, contrary to expectation, allosteric response is intact. Further, restoring the potential for PurR-like interactions via substitutions in the LLhP linker tends to diminish repression. These effects are especially pronounced for residues 58 and 61. Clearly, binding affinity of LLhP for the lacO1 DNA site is sensitive to long-range changes in the linker. This result also raises the possibility that mutations at positions 58 and 61 co-evolved with changes in

  3. Dimerization Mediated by a Divergent Forkhead-associated Domain Is Essential for the DNA Damage and Spindle Functions of Fission Yeast Mdb1.

    PubMed

    Luo, Shukun; Xin, Xiaoran; Du, Li-Lin; Ye, Keqiong; Wei, Yi

    2015-08-21

    MDC1 is a key factor of DNA damage response in mammalian cells. It possesses two phospho-binding domains. In its C terminus, a tandem BRCA1 C-terminal domain binds phosphorylated histone H2AX, and in its N terminus, a forkhead-associated (FHA) domain mediates a phosphorylation-enhanced homodimerization. The FHA domain of the Drosophila homolog of MDC1, MU2, also forms a homodimer but utilizes a different dimer interface. The functional importance of the dimerization of MDC1 family proteins is uncertain. In the fission yeast Schizosaccharomyces pombe, a protein sharing homology with MDC1 in the tandem BRCA1 C-terminal domain, Mdb1, regulates DNA damage response and mitotic spindle functions. Here, we report the crystal structure of the N-terminal 91 amino acids of Mdb1. Despite a lack of obvious sequence conservation to the FHA domain of MDC1, this region of Mdb1 adopts an FHA-like fold and is therefore termed Mdb1-FHA. Unlike canonical FHA domains, Mdb1-FHA lacks all the conserved phospho-binding residues. It forms a stable homodimer through an interface distinct from those of MDC1 and MU2. Mdb1-FHA is important for the localization of Mdb1 to DNA damage sites and the spindle midzone, contributes to the roles of Mdb1 in cellular responses to genotoxins and an antimicrotubule drug, and promotes in vitro binding of Mdb1 to a phospho-H2A peptide. The defects caused by the loss of Mdb1-FHA can be rescued by fusion with either of two heterologous dimerization domains, suggesting that the main function of Mdb1-FHA is mediating dimerization. Our data support that FHA-mediated dimerization is conserved for MDC1 family proteins.

  4. Structure analysis of FAAP24 reveals single-stranded DNA-binding activity and domain functions in DNA damage response.

    PubMed

    Wang, Yucai; Han, Xiao; Wu, Fangming; Leung, Justin W; Lowery, Megan G; Do, Huong; Chen, Junjie; Shi, Chaowei; Tian, Changlin; Li, Lei; Gong, Weimin

    2013-10-01

    The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. PMID:23999858

  5. Structure of the Bro1 Domain Protein BROX and Functional Analyses of the ALIX Bro1 Domain in HIV-1 Budding

    SciTech Connect

    Zhai Q.; Robinson H.; Landesman M. B.; Sundquist W. I.; Hill C. P.

    2011-12-01

    Bro1 domains are elongated, banana-shaped domains that were first identified in the yeast ESCRT pathway protein, Bro1p. Humans express three Bro1 domain-containing proteins: ALIX, BROX, and HD-PTP, which function in association with the ESCRT pathway to help mediate intraluminal vesicle formation at multivesicular bodies, the abscission stage of cytokinesis, and/or enveloped virus budding. Human Bro1 domains share the ability to bind the CHMP4 subset of ESCRT-III proteins, associate with the HIV-1 NC{sup Gag} protein, and stimulate the budding of viral Gag proteins. The curved Bro1 domain structure has also been proposed to mediate membrane bending. To date, crystal structures have only been available for the related Bro1 domains from the Bro1p and ALIX proteins, and structures of additional family members should therefore aid in the identification of key structural and functional elements. We report the crystal structure of the human BROX protein, which comprises a single Bro1 domain. The Bro1 domains from BROX, Bro1p and ALIX adopt similar overall structures and share two common exposed hydrophobic surfaces. Surface 1 is located on the concave face and forms the CHMP4 binding site, whereas Surface 2 is located at the narrow end of the domain. The structures differ in that only ALIX has an extended loop that projects away from the convex face to expose the hydrophobic Phe105 side chain at its tip. Functional studies demonstrated that mutations in Surface 1, Surface 2, or Phe105 all impair the ability of ALIX to stimulate HIV-1 budding. Our studies reveal similarities in the overall folds and hydrophobic protein interaction sites of different Bro1 domains, and show that a unique extended loop contributes to the ability of ALIX to function in HIV-1 budding.

  6. The Aspartate-Less Receiver (ALR) Domains: Distribution, Structure and Function

    PubMed Central

    Weiner, Joshua J.; Han, Lanlan; Peterson, Francis C.; Volkman, Brian F.; Silvaggi, Nicholas R.; Ulijasz, Andrew T.

    2015-01-01

    Two-component signaling systems are ubiquitous in bacteria, Archaea and plants and play important roles in sensing and responding to environmental stimuli. To propagate a signaling response the typical system employs a sensory histidine kinase that phosphorylates a Receiver (REC) domain on a conserved aspartate (Asp) residue. Although it is known that some REC domains are missing this Asp residue, it remains unclear as to how many of these divergent REC domains exist, what their functional roles are and how they are regulated in the absence of the conserved Asp. Here we have compiled all deposited REC domains missing their phosphorylatable Asp residue, renamed here as the Aspartate-Less Receiver (ALR) domains. Our data show that ALRs are surprisingly common and are enriched for when attached to more rare effector outputs. Analysis of our informatics and the available ALR atomic structures, combined with structural, biochemical and genetic data of the ALR archetype RitR from Streptococcus pneumoniae presented here suggest that ALRs have reorganized their active pockets to instead take on a constitutive regulatory role or accommodate input signals other than Asp phosphorylation, while largely retaining the canonical post-phosphorylation mechanisms and dimeric interface. This work defines ALRs as an atypical REC subclass and provides insights into shared mechanisms of activation between ALR and REC domains. PMID:25875291

  7. Statistics and frequency-domain moveout for multiple-taper receiver functions

    NASA Astrophysics Data System (ADS)

    Park, J.; Levin, V.

    2016-10-01

    The multiple-taper correlation (MTC) algorithm for the estimation of teleseismic receiver functions (RFs) has desirable statistical properties. This paper presents several adaptations to the MTC algorithm that exploit its frequency-domain uncertainty estimates to generate stable RFs that include moveout corrections for deeper interfaces. Narrow-band frequency averaging implicit in spectral cross-correlation restricts the MTC-based RF estimates to resolve Ps converted phases only at short delay times, appropriate to the upper 100 km of Earth's lithosphere. The Ps conversions from deeper interfaces can be reconstructed by the MTC algorithm in two ways. Event cross-correlation computes a cross-correlation of single-taper spectrum estimates for a cluster of events rather than for a set of eigenspectrum estimates of a single P coda. To extend the reach of the algorithm, pre-stack moveout corrections in the frequency domain preserves the formal uncertainties of the RF estimates, which are used to weight RF stacks. Moving-window migration retains the multiple-taper approach, but cross-correlates the P-polarized motion with time-delayed SH and SV motion to focus on a Ps phase of interest. The frequency-domain uncertainties of bin-averaged RFs do not translate directly into the time domain. A jackknife over data records in each bin stack offers uncertainty estimates in the time domain while preserving uncertainty weighting in the frequency-domain RF stack.

  8. Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved

    PubMed Central

    Massé, Karine L; Collins, Robert J; Bhamra, Surinder; Seville, Rachel A

    2007-01-01

    Anxa4 belongs to the multigenic annexin family of proteins which are characterized by their ability to interact with membranes in a calcium-dependent manner. Defined as a marker for polarized epithelial cells, Anxa4 is believed to be involved in many cellular processes but its functions in vivo are still poorly understood. Previously, we cloned Xanx4 in Xenopus laevis (now referred to as anxa4a) and demonstrated its role during organogenesis of the pronephros, providing the first evidence of a specific function for this protein during the development of a vertebrate. Here, we describe the strict conservation of protein sequence and functional domains of anxa4 during vertebrate evolution. We also identify the paralog of anxa4a, anxa4b and show its specific temporal and spatial expression pattern is different from anxa4a. We show that anxa4 orthologs in X. laevis and tropicalis display expression domains in different organ systems. Whilst the anxa4a gene is mainly expressed in the kidney, Xt anxa4 is expressed in the liver. Finally, we demonstrate Xt anxa4 and anxa4a can display conserved function during kidney organogenesis, despite the fact that Xt anxa4 transcripts are not expressed in this domain. This study highlights the divergence of expression of homologous genes during Xenopus evolution and raises the potential problems of using X. tropicalis promoters in X. laevis. PMID:19279706

  9. An Examination of the Domain of Multivariable Functions Using the Pirie-Kieren Model

    ERIC Educational Resources Information Center

    Sengul, Sare; Yildiz, Sevda Goktepe

    2016-01-01

    The aim of this study is to employ the Pirie-Kieren model so as to examine the understandings relating to the domain of multivariable functions held by primary school mathematics preservice teachers. The data obtained was categorized according to Pirie-Kieren model and demonstrated visually in tables and bar charts. The study group consisted of…

  10. School-Aged Children Born Preterm: Review of Functioning across Multiple Domains and Guidelines for Assessment

    ERIC Educational Resources Information Center

    Dempsey, Allison G.; Keller-Margulis, Milena; Mire, Sarah; Abrahamson, Catherine; Dutt, Sonia; Llorens, Ashlie; Payan, Anita

    2015-01-01

    Children born preterm are at risk for developmental deficits across multiple functional domains. As the rate of survival for preterm infants increases due to medical advancements, a greater understanding is needed for how to meet the needs of this growing population in schools. Because approximately 50-70% of children born preterm require…

  11. Collegiate Mathematics Students' Misconceptions of Domain and Zeros of Rational Functions

    ERIC Educational Resources Information Center

    Dotson, Geraldine Ting

    2009-01-01

    A new 12 item research questionnaire was developed specifically to assess collegiate mathematics students' concept image of domain and zeros of rational functions. The study was designed to validate Tall and Vinner's (1981) cognitive model. Support was found for the hypothesis that students' mathematical experience influences their growth, with…

  12. Frequency-Domain Green's Functions for Radar Waves in Heterogeneous 2.5D Media

    EPA Science Inventory

    Green’s functions for radar waves propagating in heterogeneous media may be calculated in the frequency domain using a hybrid of two numerical methods. The model is defined in the Cartesian coordinate system, and its electromagnetic properties may vary in the x and z directions, ...

  13. Age-related disorders of sleep and motor control in the rat models of functionally distinct cholinergic neuropathology.

    PubMed

    Ciric, Jelena; Lazic, Katarina; Petrovic, Jelena; Kalauzi, Aleksandar; Saponjic, Jasna

    2016-03-15

    We studied the impact of aging during sleep in the rat models of Alzheimer's (AD) and Parkinson's (PD) disease cholinergic neuropathology to determine the possible different and earlier onset of age-related sleep disorder during the neurodegenerative diseases vs. healthy aging. We used the bilateral nucleus basalis (NB) and pedunculopontine tegmental nucleus (PPT) lesioned rats as the in vivo models of functionally distinct cholinergic neuropathology, and we followed the impact of aging on sleep architecture, the electroencephalographic (EEG) microstructure and motor control across sleep/wake states. Our results have shown for the first time that the earliest signs of aging during distinct cholinergic neuropathology were expressed through a different and topographically specific EEG microstructure during rapid eye movement sleep (REM). EEG delta amplitude attenuation within the sensorimotor cortex (SMCx) during REM was the earliest sign of aging in the NB lesion. EEG sigma amplitude augmentation within the motor cortex (MCx) during REM was the earliest sign of aging in the PPT lesion. In addition, aging was differently expressed through the SMCx drive alterations, but it was commonly expressed through the MCx drive alterations during all sleep/wake states. Our study provided evidence of distinct REM sleep disorders and sleep state related cortical drives as the signs of aging onset during functionally distinct cholinergic neuropathologies (NB lesion vs. PPT lesion).

  14. The Sushi domains of GABAB receptors function as axonal targeting signals.

    PubMed

    Biermann, Barbara; Ivankova-Susankova, Klara; Bradaia, Amyaouch; Abdel Aziz, Said; Besseyrias, Valerie; Kapfhammer, Josef P; Missler, Markus; Gassmann, Martin; Bettler, Bernhard

    2010-01-27

    GABA(B) receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. Two receptor subtypes, GABA(B(1a,2)) and GABA(B(1b,2)), are formed by the assembly of GABA(B1a) and GABA(B1b) subunits with GABA(B2) subunits. The GABA(B1b) subunit is a shorter isoform of the GABA(B1a) subunit lacking two N-terminal protein interaction motifs, the sushi domains. Selectively GABA(B1a) protein traffics into the axons of glutamatergic neurons, whereas both the GABA(B1a) and GABA(B1b) proteins traffic into the dendrites. The mechanism(s) and targeting signal(s) responsible for the selective trafficking of GABA(B1a) protein into axons are unknown. Here, we provide evidence that the sushi domains are axonal targeting signals that redirect GABA(B1a) protein from its default dendritic localization to axons. Specifically, we show that mutations in the sushi domains preventing protein interactions preclude axonal localization of GABA(B1a). When fused to CD8alpha, the sushi domains polarize this uniformly distributed protein to axons. Likewise, when fused to mGluR1a the sushi domains redirect this somatodendritic protein to axons, showing that the sushi domains can override dendritic targeting information in a heterologous protein. Cell surface expression of the sushi domains is not required for axonal localization of GABA(B1a). Altogether, our findings are consistent with the sushi domains functioning as axonal targeting signals by interacting with axonally bound proteins along intracellular sorting pathways. Our data provide a mechanistic explanation for the selective trafficking of GABA(B(1a,2)) receptors into axons while at the same time identifying a well defined axonal delivery module that can be used as an experimental tool.

  15. The SAH domain extends the functional length of the myosin lever

    PubMed Central

    Baboolal, Thomas G.; Sakamoto, Takeshi; Forgacs, Eva; White, Howard D.; Jackson, Scott M.; Takagi, Yasuharu; Farrow, Rachel E.; Molloy, Justin E.; Knight, Peter J.; Sellers, James R.; Peckham, Michelle

    2009-01-01

    Stable, single alpha-helix (SAH) domains are widely distributed in the proteome, including in myosins, but their functions are unknown. To test whether SAH domains can act as levers, we replaced four of the six calmodulin-binding IQ motifs in the levers of mouse myosin 5a (Myo5) with the putative SAH domain of Dictyostelium myosin MyoM of similar length. The SAH domain was inserted between the IQ motifs and the coiled coil in a Myo5 HMM construct in which the levers were truncated from six to two IQ motifs (Myo5–2IQ). Electron microscopy of this chimera (Myo5–2IQ-SAH) showed the SAH domain was straight and 17 nm long as predicted, restoring the truncated lever to the length of wild-type (Myo5–6IQ). The powerstroke (of 21.5 nm) measured in the optical trap was slightly less than that for Myo5–6IQ but much greater than for Myo5–2IQ. Myo5–2IQ-SAH moved processively along actin at physiological ATP concentrations with similar stride and run lengths to Myo5–6IQ in in-vitro single molecule assays. In comparison, Myo5–2IQ is not processive under these conditions. Solution biochemical experiments indicated that the rear head did not mechanically gate the rate of ADP release from the lead head, unlike Myo5–6IQ. These data show that the SAH domain can form part of a functional lever in myosins, although its mechanical stiffness might be lower. More generally, we conclude that SAH domains can act as stiff structural extensions in aqueous solution and this structural role may be important in other proteins. PMID:20018767

  16. The SAH domain extends the functional length of the myosin lever.

    PubMed

    Baboolal, Thomas G; Sakamoto, Takeshi; Forgacs, Eva; White, Howard D; Jackson, Scott M; Takagi, Yasuharu; Farrow, Rachel E; Molloy, Justin E; Knight, Peter J; Sellers, James R; Peckham, Michelle

    2009-12-29

    Stable, single alpha-helix (SAH) domains are widely distributed in the proteome, including in myosins, but their functions are unknown. To test whether SAH domains can act as levers, we replaced four of the six calmodulin-binding IQ motifs in the levers of mouse myosin 5a (Myo5) with the putative SAH domain of Dictyostelium myosin MyoM of similar length. The SAH domain was inserted between the IQ motifs and the coiled coil in a Myo5 HMM construct in which the levers were truncated from six to two IQ motifs (Myo5-2IQ). Electron microscopy of this chimera (Myo5-2IQ-SAH) showed the SAH domain was straight and 17 nm long as predicted, restoring the truncated lever to the length of wild-type (Myo5-6IQ). The powerstroke (of 21.5 nm) measured in the optical trap was slightly less than that for Myo5-6IQ but much greater than for Myo5-2IQ. Myo5-2IQ-SAH moved processively along actin at physiological ATP concentrations with similar stride and run lengths to Myo5-6IQ in in-vitro single molecule assays. In comparison, Myo5-2IQ is not processive under these conditions. Solution biochemical experiments indicated that the rear head did not mechanically gate the rate of ADP release from the lead head, unlike Myo5-6IQ. These data show that the SAH domain can form part of a functional lever in myosins, although its mechanical stiffness might be lower. More generally, we conclude that SAH domains can act as stiff structural extensions in aqueous solution and this structural role may be important in other proteins. PMID:20018767

  17. Functional synergy between the Munc13 C-terminal C1 and C2 domains

    PubMed Central

    Liu, Xiaoxia; Seven, Alpay Burak; Camacho, Marcial; Esser, Victoria; Xu, Junjie; Trimbuch, Thorsten; Quade, Bradley; Su, Lijing; Ma, Cong; Rosenmund, Christian; Rizo, Josep

    2016-01-01

    Neurotransmitter release requires SNARE complexes to bring membranes together, NSF-SNAPs to recycle the SNAREs, Munc18-1 and Munc13s to orchestrate SNARE complex assembly, and Synaptotagmin-1 to trigger fast Ca2+-dependent membrane fusion. However, it is unclear whether Munc13s function upstream and/or downstream of SNARE complex assembly, and how the actions of their multiple domains are integrated. Reconstitution, liposome-clustering and electrophysiological experiments now reveal a functional synergy between the C1, C2B and C2C domains of Munc13-1, indicating that these domains help bridging the vesicle and plasma membranes to facilitate stimulation of SNARE complex assembly by the Munc13-1 MUN domain. Our reconstitution data also suggest that Munc18-1, Munc13-1, NSF, αSNAP and the SNAREs are critical to form a ‘primed’ state that does not fuse but is ready for fast fusion upon Ca2+ influx. Overall, our results support a model whereby the multiple domains of Munc13s cooperate to coordinate synaptic vesicle docking, priming and fusion. DOI: http://dx.doi.org/10.7554/eLife.13696.001 PMID:27213521

  18. Structure reveals function of the dual variable domain immunoglobulin (DVD-Ig™) molecule

    PubMed Central

    Jakob, Clarissa G.; Edalji, Rohinton; Judge, Russell A.; DiGiammarino, Enrico; Li, Yingchun; Gu, Jijie; Ghayur, Tariq

    2013-01-01

    Several bispecific antibody-based formats have been developed over the past 25 years in an effort to produce a new generation of immunotherapeutics that target two or more disease mechanisms simultaneously. One such format, the dual-variable domain immunoglobulin (DVD-Ig™), combines the target binding domains of two monoclonal antibodies via flexible naturally occurring linkers, which yields a tetravalent IgG - like molecule. We report the structure of an interleukin (IL)12-IL18 DVD-Ig™ Fab (DFab) fragment with IL18 bound to the inner variable domain (VD) that reveals the remarkable flexibility of the DVD-Ig™ molecule and how the DVD-Ig™ format can function to bind four antigens simultaneously. An understanding of how the inner variable domain retains function is of critical importance for designing DVD-Ig™ molecules, and for better understanding of the flexibility of immunoglobulin variable domains and linkers, which may aid in the design of improved bi- and multi-specific biologics in general. PMID:23549062

  19. The charged region of Hsp90 modulates the function of the N-terminal domain

    PubMed Central

    Scheibel, Thomas; Siegmund, Heiko Ingo; Jaenicke, Rainer; Ganz, Peter; Lilie, Hauke; Buchner, Johannes

    1999-01-01

    Hsp90, an abundant heat shock protein that is highly expressed even under physiological conditions, is involved in the folding of key molecules of the cellular signal transduction system such as kinases and steroid receptors. It seems to contain two chaperone sites differing in substrate specificity. Binding of ATP or the antitumor drug geldanamycin alters the substrate affinity of the N-terminal chaperone site, whereas both substances show no influence on the C-terminal one. In wild-type Hsp90 the fragments containing the chaperone sites are connected by a highly charged linker of various lengths in different organisms. As this linker region represents the most striking difference between bacterial and eukaryotic Hsp90s, it may be involved in a gain of function of eukaryotic Hsp90s. Here, we have analyzed a fragment of yeast Hsp90 consisting of the N-terminal domain and the charged region (N272) in comparison with the isolated N-terminal domain (N210). We show that the charged region causes an increase in the affinity of the N-terminal domain for nonnative protein and establishes a crosstalk between peptide and ATP binding. Thus, the binding of peptide to N272 decreases its affinity for ATP and geldanamycin, whereas the ATP-binding properties of the monomeric N-terminal domain N210 are not influenced by peptide binding. We propose that the charged region connecting the two chaperone domains plays an important role in regulating chaperone function of Hsp90. PMID:9990018

  20. Functional synergy between the Munc13 C-terminal C1 and C2 domains.

    PubMed

    Liu, Xiaoxia; Seven, Alpay Burak; Camacho, Marcial; Esser, Victoria; Xu, Junjie; Trimbuch, Thorsten; Quade, Bradley; Su, Lijing; Ma, Cong; Rosenmund, Christian; Rizo, Josep

    2016-05-23

    Neurotransmitter release requires SNARE complexes to bring membranes together, NSF-SNAPs to recycle the SNAREs, Munc18-1 and Munc13s to orchestrate SNARE complex assembly, and Synaptotagmin-1 to trigger fast Ca(2+)-dependent membrane fusion. However, it is unclear whether Munc13s function upstream and/or downstream of SNARE complex assembly, and how the actions of their multiple domains are integrated. Reconstitution, liposome-clustering and electrophysiological experiments now reveal a functional synergy between the C1, C2B and C2C domains of Munc13-1, indicating that these domains help bridging the vesicle and plasma membranes to facilitate stimulation of SNARE complex assembly by the Munc13-1 MUN domain. Our reconstitution data also suggest that Munc18-1, Munc13-1, NSF, αSNAP and the SNAREs are critical to form a 'primed' state that does not fuse but is ready for fast fusion upon Ca(2+) influx. Overall, our results support a model whereby the multiple domains of Munc13s cooperate to coordinate synaptic vesicle docking, priming and fusion.

  1. Structure-Function Analysis of the Mcl-1 Protein Identifies a Novel Senescence-regulating Domain.

    PubMed

    Demelash, Abeba; Pfannenstiel, Lukas W; Tannenbaum, Charles S; Li, Xiaoxia; Kalady, Matthew F; DeVecchio, Jennifer; Gastman, Brian R

    2015-09-01

    Unlike other antiapoptotic Bcl-2 family members, Mcl-1 also mediates resistance to cancer therapy by uniquely inhibiting chemotherapy-induced senescence (CIS). In general, Bcl-2 family members regulate apoptosis at the level of the mitochondria through a common prosurvival binding groove. Through mutagenesis, we determined that Mcl-1 can inhibit CIS even in the absence of its apoptotically important mitochondrion-localizing domains. This finding prompted us to generate a series of Mcl-1 deletion mutants from both the N and C termini of the protein, including one that contained a deletion of all of the Bcl-2 homology domains, none of which impacted anti-CIS capabilities. Through subsequent structure-function analyses of Mcl-1, we identified a previously uncharacterized loop domain responsible for the anti-CIS activity of Mcl-1. The importance of the loop domain was confirmed in multiple tumor types, two in vivo models of senescence, and by demonstrating that a peptide mimetic of the loop domain can effectively inhibit the anti-CIS function of Mcl-1. The results from our studies appear to be highly translatable because we discerned an inverse relationship between the expression of Mcl-1 and of various senescence markers in cancerous human tissues. In summary, our findings regarding the unique structural properties of Mcl-1 provide new approaches for targeted cancer therapy. PMID:26205817

  2. Chimeric hERG channels containing a tetramerization domain are functional and stable.

    PubMed

    Hausammann, Georg J; Grütter, Markus G

    2013-12-23

    Biochemical and detailed structural information of human ether-a-go-go-related gene (hERG) potassium channels are scarce but are a prerequisite to understand the unwanted interactions of hERG with drugs and the effect of mutations that lead to long QT syndrome. Despite the huge interest in hERG, to our knowledge, procedures that provide a purified, functional, and tetrameric hERG channel are not available. Here, we describe hybrid hERG molecules, termed chimeric hERG channels, in which the N-terminal Per-Arnt-Sim (PAS) domain is deleted and the C-terminal C-linker as well as the cyclic nucleotide binding domain (CNBD) portion is replaced by an artificial tetramerization domain. These chimeric hERG channels can be overexpressed in HEK cells, solubilized in detergent, and purified as tetramers. When expressed in Xenopus laevis oocytes, the chimeric channels exhibit efficient trafficking to the cell surface, whereas a hERG construct lacking the PAS and C-linker/CNBD domains is retained in the cytoplasm. The chimeric hERG channels retain essential hERG functions such as voltage-dependent gating and inhibition by astemizole and the scorpion toxin BeKm-1. The chimeric channels are thus powerful tools for helping to understand the contribution of the cytoplasmic hERG domains to the gating process and are suitable for in vitro biochemical and structural studies. PMID:24325597

  3. Distinct Amino Acids in the C-Linker Domain of the Arabidopsis K+ Channel KAT2 Determine Its Subcellular Localization and Activity at the Plasma Membrane1[W

    PubMed Central

    Nieves-Cordones, Manuel; Chavanieu, Alain; Jeanguenin, Linda; Alcon, Carine; Szponarski, Wojciech; Estaran, Sebastien; Chérel, Isabelle; Zimmermann, Sabine; Sentenac, Hervé; Gaillard, Isabelle

    2014-01-01

    Shaker K+ channels form the major K+ conductance of the plasma membrane in plants. They are composed of four subunits arranged around a central ion-conducting pore. The intracellular carboxy-terminal region of each subunit contains several regulatory elements, including a C-linker region and a cyclic nucleotide-binding domain (CNBD). The C-linker is the first domain present downstream of the sixth transmembrane segment and connects the CNBD to the transmembrane core. With the aim of identifying the role of the C-linker in the Shaker channel properties, we performed subdomain swapping between the C-linker of two Arabidopsis (Arabidopsis thaliana) Shaker subunits, K+ channel in Arabidopsis thaliana2 (KAT2) and Arabidopsis thaliana K+ rectifying channel1 (AtKC1). These two subunits contribute to K+ transport in planta by forming heteromeric channels with other Shaker subunits. However, they display contrasting behavior when expressed in tobacco mesophyll protoplasts: KAT2 forms homotetrameric channels active at the plasma membrane, whereas AtKC1 is retained in the endoplasmic reticulum when expressed alone. The resulting chimeric/mutated constructs were analyzed for subcellular localization and functionally characterized. We identified two contiguous amino acids, valine-381 and serine-382, located in the C-linker carboxy-terminal end, which prevent KAT2 surface expression when mutated into the equivalent residues from AtKC1. Moreover, we demonstrated that the nine-amino acid stretch 312TVRAASEFA320 that composes the first C-linker α-helix located just below the pore is a crucial determinant of KAT2 channel activity. A KAT2 C-linker/CNBD three-dimensional model, based on animal HCN (for Hyperpolarization-activated, cyclic nucleotide-gated K+) channels as structure templates, has been built and used to discuss the role of the C-linker in plant Shaker inward channel structure and function. PMID:24406792

  4. Distinct Z-DNA binding mode of a PKR-like protein kinase containing a Z-DNA binding domain (PKZ)

    PubMed Central

    Kim, Doyoun; Hur, Jeonghwan; Park, Kwangsoo; Bae, Sangsu; Shin, Donghyuk; Ha, Sung Chul; Hwang, Hye-Yeon; Hohng, Sungchul; Lee, Joon-Hwa; Lee, Sangho; Kim, Yang-Gyun; Kim, Kyeong Kyu

    2014-01-01

    Double-stranded ribonucleic acid-activated protein kinase (PKR) downregulates translation as a defense mechanism against viral infection. In fish species, PKZ, a PKR-like protein kinase containing left-handed deoxyribonucleic acid (Z-DNA) binding domains, performs a similar role in the antiviral response. To understand the role of PKZ in Z-DNA recognition and innate immune response, we performed structural and functional studies of the Z-DNA binding domain (Zα) of PKZ from Carassius auratus (caZαPKZ). The 1.7-Å resolution crystal structure of caZαPKZ:Z-DNA revealed that caZαPKZ shares the overall fold with other Zα, but has discrete structural features that differentiate its DNA binding mode from others. Functional analyses of caZαPKZ and its mutants revealed that caZαPKZ mediates the fastest B-to-Z transition of DNA among Zα, and the minimal interaction for Z-DNA recognition is mediated by three backbone phosphates and six residues of caZαPKZ. Structure-based mutagenesis and B-to-Z transition assays confirmed that Lys56 located in the β-wing contributes to its fast B-to-Z transition kinetics. Investigation of the DNA binding kinetics of caZαPKZ further revealed that the B-to-Z transition rate is positively correlated with the association rate constant. Taking these results together, we conclude that the positive charge in the β-wing largely affects fast B-to-Z transition activity by enhancing the DNA binding rate. PMID:24682817

  5. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    NASA Technical Reports Server (NTRS)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  6. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs

    PubMed Central

    Clark, Matt Q.; McCumsey, Stephanie J.; Lopez-Darwin, Sereno; Heckscher, Ellie S.; Doe, Chris Q.

    2016-01-01

    Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and feeding. It is likely that some neurons (e.g., motor neurons) are used in all these behaviors, but the identity (or even existence) of neurons dedicated to specific aspects of behavior is unclear. To identify neurons that regulate specific aspects of larval locomotion, we performed a genetic screen to identify neurons that, when activated, could elicit distinct motor programs. We used 165 Janelia CRM-Gal4 lines—chosen for sparse neuronal expression—to ectopically express the warmth-inducible neuronal activator TrpA1, and screened for locomotor defects. The primary screen measured forward locomotion velocity, and we identified 63 lines that had locomotion velocities significantly slower than controls following TrpA1 activation (28°). A secondary screen was performed on these lines, revealing multiple discrete behavioral phenotypes, including slow forward locomotion, excessive reverse locomotion, excessive turning, excessive feeding, immobile, rigid paralysis, and delayed paralysis. While many of the Gal4 lines had motor, sensory, or muscle expression that may account for some or all of the phenotype, some lines showed specific expression in a sparse pattern of interneurons. Our results show that distinct motor programs utilize distinct subsets of interneurons, and provide an entry point for characterizing interneurons governing different elements of the larval motor program. PMID:27172197

  7. Oxidation of the N-terminal domain of the wheat metallothionein Ec -1 leads to the formation of three distinct disulfide bridges.

    PubMed

    Tarasava, Katsiaryna; Chesnov, Serge; Freisinger, Eva

    2016-05-01

    Metallothioneins (MTs) are low molecular weight proteins, characterized by a high cysteine content and the ability to coordinate large amounts of d(10) metal ions, for example, Zn(II), Cd(II), and Cu(I), in form of metal-thiolate clusters. Depending on intracellular conditions such as redox potential or metal ion concentrations, MTs can occur in various states ranging from the fully metal-loaded holo- to the metal-free apo-form. The Cys thiolate groups in the apo-form can be either reduced or be involved in disulfide bridges. Although oxidation-mediated Zn(II) release might be a possible mechanism for the regulation of Zn(II) availability by MTs, no concise information regarding the associated pathways and the structure of oxidized apo-MT forms is available. Using the well-studied Zn2 γ-Ec -1 domain of the wheat Zn6 Ec -1 MT we attempt here to answer several question regarding the structure and biophysical properties of oxidized MT forms, such as: (1) does disulfide bond formation increase the stability against proteolysis, (2) is the overall peptide backbone fold similar for the holo- and the oxidized apo-MT form, and (3) are disulfide bridges specifically or randomly formed? Our investigations show that oxidation leads to three distinct disulfide bridges independently of the applied oxidation conditions and of the initial species used for oxidation, that is, the apo- or the holo-form. In addition, the oxidized apo-form is as stable against proteolysis as Zn2 γ-Ec -1, rendering the currently assumed degradation of oxidized MTs unlikely and suggesting a role of the oxidation process for the extension of protein lifetime in absence of sufficient amounts of metal ions. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 295-308, 2016.

  8. In situ dissection of RNA functional subunits by domain-specific chromatin isolation by RNA purification (dChIRP).

    PubMed

    Quinn, Jeffrey J; Chang, Howard Y

    2015-01-01

    Here we describe domain-specific chromatin isolation by RNA purification (dChIRP), a technique for dissecting the functional domains of a target RNA in situ. For an RNA of interest, dChIRP can identify domain-level intramolecular and intermolecular RNA-RNA, RNA-protein, and RNA-DNA interactions and maps the RNA's genomic binding sites with higher precision than domain-agnostic methods. We illustrate how this technique has been applied to the roX1 lncRNA to resolve its domain-level architecture, discover its protein- and chromatin-interacting domains, and map its occupancy on the X chromosome.

  9. Convolutions of Rayleigh functions and their application to semi-linear equations in circular domains

    NASA Astrophysics Data System (ADS)

    Varlamov, Vladimir

    2007-03-01

    Rayleigh functions [sigma]l([nu]) are defined as series in inverse powers of the Bessel function zeros [lambda][nu],n[not equal to]0, where ; [nu] is the index of the Bessel function J[nu](x) and n=1,2,... is the number of the zeros. Convolutions of Rayleigh functions with respect to the Bessel index, are needed for constructing global-in-time solutions of semi-linear evolution equations in circular domains [V. Varlamov, On the spatially two-dimensional Boussinesq equation in a circular domain, Nonlinear Anal. 46 (2001) 699-725; V. Varlamov, Convolution of Rayleigh functions with respect to the Bessel index, J. Math. Anal. Appl. 306 (2005) 413-424]. The study of this new family of special functions was initiated in [V. Varlamov, Convolution of Rayleigh functions with respect to the Bessel index, J. Math. Anal. Appl. 306 (2005) 413-424], where the properties of R1(m) were investigated. In the present work a general representation of Rl(m) in terms of [sigma]l([nu]) is deduced. On the basis of this a representation for the function R2(m) is obtained in terms of the [psi]-function. An asymptotic expansion is computed for R2(m) as m-->[infinity]. Such asymptotics are needed for establishing function spaces for solutions of semi-linear equations in bounded domains with periodicity conditions in one coordinate. As an example of application of Rl(m) a forced Boussinesq equationutt-2b[Delta]ut=-[alpha][Delta]2u+[Delta]u+[beta][Delta](u2)+f with [alpha],b=const>0 and [beta]=const[set membership, variant]R is considered in a unit disc with homogeneous boundary and initial data. Construction of its global-in-time solutions involves the use of the functions R1(m) and R2(m) which are responsible for the nonlinear smoothing effect.

  10. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation.

    PubMed

    Hammes, A; Guo, J K; Lutsch, G; Leheste, J R; Landrock, D; Ziegler, U; Gubler, M C; Schedl, A

    2001-08-10

    Alternative splicing of Wt1 results in the insertion or omission of the three amino acids KTS between zinc fingers 3 and 4. In vitro experiments suggest distinct molecular functions for + and -KTS isoforms. We have generated mouse strains in which specific isoforms have been removed. Heterozygous mice with a reduction of +KTS levels develop glomerulosclerosis and represent a model for Frasier syndrome. Homozygous mutants of both strains die after birth due to kidney defects. Strikingly, mice lacking +KTS isoforms show a complete XY sex reversal due to a dramatic reduction of Sry expression levels. Our data demonstrate distinct functions for the two splice variants and place the +KTS variants as important regulators for Sry in the sex determination pathway. PMID:11509181

  11. Implement of the Owner Distinction Function for Healing-Type Pet Robots

    NASA Astrophysics Data System (ADS)

    Nambo, Hidetaka; Kimura, Haruhiko; Hirose, Sadaki

    In recent years, a robotics technology is extremely progressive, and robots are widely applied in many fields. One of the most typical robots is a pet robot. The pet robot is based on an animal pet, such as a dog or a cat. Also, it is known that an animal pet has a healing effect. Therefore, the study to apply pet robots to Animal Assisted Therapy instead of an animal pet has begun to be investigated. We, also, have investigated a method of an owner distinction for pet robot, to emphasize a healing effect of pet robots. In this paper, taking account of implementation into pet robots, a real-time owner distinction method is proposed. In the concrete, the method provides a real-time matching algorithm and an oblivion mechanism. The real-time matching means that a matching and a data acquisition are processed simultaneously. The oblivion mechanism is deleting features of owners in the database of the pet robots. Additionally, the mechanism enables to reduce matching costs or size of database and it enables to follow a change of owners. Furthermore, effectivity and a practicality of the method are evaluated by experiments.

  12. Distinct Changes in Functional Connectivity in Posteromedial Cortex Subregions during the Progress of Alzheimer’s Disease

    PubMed Central

    Wu, Yan; Zhang, Yaqin; Liu, Yong; Liu, Jieqiong; Duan, Yunyun; Wei, Xuehu; Zhuo, Junjie; Li, Kuncheng; Zhang, Xinqin; Yu, Chunshui; Wang, Jiaojian; Jiang, Tianzi

    2016-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder which causes dementia, especially in the elderly. The posteromedial cortex (PMC), which consists of several subregions involved in distinct functions, is one of the critical regions associated with the progression and severity of AD. However, previous studies always ignored the heterogeneity of the PMC and focused on one stage of AD. Using resting-state functional magnetic resonance imaging, we studied the respective alterations of each subregion within the PMC along the progression of AD. Our data set consisted of 21 healthy controls, 18 patients with mild cognitive impairment (MCI), 17 patients with mild AD (mAD), and 18 patients with severe AD (sAD). We investigated the functional alterations of each subregion within the PMC in different stages of AD. We found that subregions within the PMC have differential vulnerability in AD. Disruptions in functional connectivity began in the transition area between the precuneus and the posterior cingulate cortex (PCC) and then extended to other subregions of the PMC. In addition, each of these subregions was associated with distinct alterations in the functional networks that we were able to relate to AD. Our research demonstrated functional changes within the PMC in the progression of AD and may elucidate potential biomarkers for clinical applications. PMID:27147982

  13. Nonclinical and clinical Enterococcus faecium strains, but not Enterococcus faecalis strains, have distinct structural and functional genomic features.

    PubMed

    Kim, Eun Bae; Marco, Maria L

    2014-01-01

    Certain strains of Enterococcus faecium and Enterococcus faecalis contribute beneficially to animal health and food production, while others are associated with nosocomial infections. To determine whether there are structural and functional genomic features that are distinct between nonclinical (NC) and clinical (CL) strains of those species, we analyzed the genomes of 31 E. faecium and 38 E. faecalis strains. Hierarchical clustering of 7,017 orthologs found in the E. faecium pangenome revealed that NC strains clustered into two clades and are distinct from CL strains. NC E. faecium genomes are significantly smaller than CL genomes, and this difference was partly explained by significantly fewer mobile genetic elements (ME), virulence factors (VF), and antibiotic resistance (AR) genes. E. faecium ortholog comparisons identified 68 and 153 genes that are enriched for NC and CL strains, respectively. Proximity analysis showed that CL-enriched loci, and not NC-enriched loci, are more frequently colocalized on the genome with ME. In CL genomes, AR genes are also colocalized with ME, and VF are more frequently associated with CL-enriched loci. Genes in 23 functional groups are also differentially enriched between NC and CL E. faecium genomes. In contrast, differences were not observed between NC and CL E. faecalis genomes despite their having larger genomes than E. faecium. Our findings show that unlike E. faecalis, NC and CL E. faecium strains are equipped with distinct structural and functional genomic features indicative of adaptation to different environments.

  14. Distinct patterns of functional and effective connectivity between perirhinal cortex and other cortical regions in recognition memory and perceptual discrimination.

    PubMed

    O'Neil, Edward B; Protzner, Andrea B; McCormick, Cornelia; McLean, D Adam; Poppenk, Jordan; Cate, Anthony D; Köhler, Stefan

    2012-01-01

    Traditionally, the medial temporal lobe (MTL) is thought to be dedicated to declarative memory. Recent evidence challenges this view, suggesting that perirhinal cortex (PrC), which interfaces the MTL with the ventral visual pathway, supports highly integrated object representations in recognition memory and perceptual discrimination. Even with comparable representational demands, perceptual and memory tasks differ in numerous task demands and the subjective experience they evoke. Here, we tested whether such differences are reflected in distinct patterns of connectivity between PrC and other cortical regions, including differential involvement of prefrontal control processes. We examined functional magnetic resonance imaging data for closely matched perceptual and recognition memory tasks for faces that engaged right PrC equivalently. Multivariate seed analyses revealed distinct patterns of interactions: Right ventrolateral prefrontal and posterior cingulate cortices exhibited stronger functional connectivity with PrC in recognition memory; fusiform regions were part of the pattern that displayed stronger functional connectivity with PrC in perceptual discrimination. Structural equation modeling revealed distinct patterns of effective connectivity that allowed us to constrain interpretation of these findings. Overall, they demonstrate that, even when MTL structures show similar involvement in recognition memory and perceptual discrimination, differential neural mechanisms are reflected in the interplay between the MTL and other cortical regions.

  15. Distinct Aging Effects on Functional Networks in Good and Poor Cognitive Performers

    PubMed Central

    Lee, Annie; Tan, Mingzhen; Qiu, Anqi

    2016-01-01

    Brain network hubs are susceptible to normal aging processes and disruptions of their functional connectivity are detrimental to decline in cognitive functions in older adults. However, it remains unclear how the functional connectivity of network hubs cope with cognitive heterogeneity in an aging population. This study utilized cognitive and resting-state functional magnetic resonance imaging data, cluster analysis, and graph network analysis to examine age-related alterations in the network hubs’ functional connectivity of good and poor cognitive performers. Our results revealed that poor cognitive performers showed age-dependent disruptions in the functional connectivity of the right insula and posterior cingulate cortex (PCC), while good cognitive performers showed age-related disruptions in the functional connectivity of the left insula and PCC. Additionally, the left PCC had age-related declines in the functional connectivity with the left medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). Most interestingly, good cognitive performers showed age-related declines in the functional connectivity of the left insula and PCC with their right homotopic structures. These results may provide insights of neuronal correlates for understanding individual differences in aging. In particular, our study suggests prominent protection roles of the left insula and PCC and bilateral ACC in good performers.

  16. Distinct Aging Effects on Functional Networks in Good and Poor Cognitive Performers

    PubMed Central

    Lee, Annie; Tan, Mingzhen; Qiu, Anqi

    2016-01-01

    Brain network hubs are susceptible to normal aging processes and disruptions of their functional connectivity are detrimental to decline in cognitive functions in older adults. However, it remains unclear how the functional connectivity of network hubs cope with cognitive heterogeneity in an aging population. This study utilized cognitive and resting-state functional magnetic resonance imaging data, cluster analysis, and graph network analysis to examine age-related alterations in the network hubs’ functional connectivity of good and poor cognitive performers. Our results revealed that poor cognitive performers showed age-dependent disruptions in the functional connectivity of the right insula and posterior cingulate cortex (PCC), while good cognitive performers showed age-related disruptions in the functional connectivity of the left insula and PCC. Additionally, the left PCC had age-related declines in the functional connectivity with the left medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). Most interestingly, good cognitive performers showed age-related declines in the functional connectivity of the left insula and PCC with their right homotopic structures. These results may provide insights of neuronal correlates for understanding individual differences in aging. In particular, our study suggests prominent protection roles of the left insula and PCC and bilateral ACC in good performers. PMID:27667972

  17. Distinct Aging Effects on Functional Networks in Good and Poor Cognitive Performers.

    PubMed

    Lee, Annie; Tan, Mingzhen; Qiu, Anqi

    2016-01-01

    Brain network hubs are susceptible to normal aging processes and disruptions of their functional connectivity are detrimental to decline in cognitive functions in older adults. However, it remains unclear how the functional connectivity of network hubs cope with cognitive heterogeneity in an aging population. This study utilized cognitive and resting-state functional magnetic resonance imaging data, cluster analysis, and graph network analysis to examine age-related alterations in the network hubs' functional connectivity of good and poor cognitive performers. Our results revealed that poor cognitive performers showed age-dependent disruptions in the functional connectivity of the right insula and posterior cingulate cortex (PCC), while good cognitive performers showed age-related disruptions in the functional connectivity of the left insula and PCC. Additionally, the left PCC had age-related declines in the functional connectivity with the left medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). Most interestingly, good cognitive performers showed age-related declines in the functional connectivity of the left insula and PCC with their right homotopic structures. These results may provide insights of neuronal correlates for understanding individual differences in aging. In particular, our study suggests prominent protection roles of the left insula and PCC and bilateral ACC in good performers. PMID:27667972

  18. Mediating effects of the ICF domain of function and the gross motor function measure on the ICF domains of activity, and participation in children with cerebral palsy.

    PubMed

    Lee, Byoung-Hee; Kim, Yu-Mi; Jeong, Goo-Churl

    2015-10-01

    [Purpose] This study aimed to evaluate the mediating effect of gross motor function, measured using the Gross Motor Function Measure (GMFM) and of general function, measured using the International Classification of Functioning, Disability and Health-Child and Youth Check List (ICF-CY), on the ICF domains of activity and participation in children with cerebral palsy (CP). [Subjects] Ninety-five children with CP, from Seoul, Korea, participated in the study. [Methods] The GMFM was administered in its entirety to patients without orthoses or mobility aids. The ICF-CY was used to evaluate the degree of disability and health of subjects. [Results] GMFM score and ICF-CY function were negatively correlated to ICF-CY activity and participation. ICF-CY partially mediated the effects of the GMFM on activity and participation. [Conclusion] When establishing a treatment plan for a child with CP, limitations in activity and participation, as described by the ICF-CY, should be considered in addition to the child's physical abilities and development. In addition, the treatment plan should focus on increasing the child's activity and participation level, as well as his/her physical level.

  19. Dissecting FMR1, the protein responsible for fragile X syndrome, in its structural and functional domains.

    PubMed Central

    Adinolfi, S; Bagni, C; Musco, G; Gibson, T; Mazzarella, L; Pastore, A

    1999-01-01

    FMR1 is an RNA-binding protein that is either absent or mutated in patients affected by the fragile X syndrome, the most common inherited cause of mental retardation in humans. Sequence analysis of the FMR1 protein has suggested that RNA binding is related to the presence of two K-homologous (KH) modules and an RGG box. However, no attempt has been so far made to map the RNA-binding sites along the protein sequence and to identify possible differential RNA-sequence specificity. In the present article, we describe work done to dissect FMR1 into regions with structurally and functionally distinct properties. A semirational approach was followed to identify four regions: an N-terminal stretch of 200 amino acids, the two KH regions, and a C-terminal stretch. Each region was produced as a recombinant protein, purified, and probed for its state of folding by spectroscopical techniques. Circular dichroism and NMR spectra of the N-terminus show formation of secondary structure with a strong tendency to aggregate. Of the two homologous KH motifs, only the first one is folded whereas the second remains unfolded even when it is extended both N- and C-terminally. The C-terminus is, as expected from its amino acid composition, nonglobular. Binding assays were then performed using the 4-nt homopolymers. Our results show that only the first KH domain but not the second binds to RNA, and provide the first direct evidence for RNA binding of both the N-terminal and the C-terminal regions. RNA binding for the N-terminus could not be predicted from sequence analysis because no known RNA-binding motif is identifiable in this region. Different sequence specificity was observed for the fragments: both the N-terminus of the protein and KH1 bind preferentially to poly-(rG). The C-terminal region, which contains the RGG box, is nonspecific, as it recognizes the bases with comparable affinity. We therefore conclude that FMR1 is a protein with multiple sites of interaction with RNA: sequence

  20. Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors.

    PubMed

    Binet, Virginie; Duthey, Béatrice; Lecaillon, Jennifer; Vol, Claire; Quoyer, Julie; Labesse, Gilles; Pin, Jean-Philippe; Prézeau, Laurent

    2007-04-20

    G protein-coupled receptors (GPCRs) are key players in cell communication. Several classes of such receptors have been identified. Although all GPCRs possess a heptahelical domain directly activating G proteins, important structural and sequence differences within receptors from different classes suggested distinct activation mechanisms. Here we show that highly conserved charged residues likely involved in an interaction network between transmembrane domains (TM) 3 and 6 at the cytoplasmic side of class C GPCRs are critical for activation of the gamma-aminobutyric acid type B receptor. Indeed, the loss of function resulting from the mutation of the conserved lysine residue into aspartate or glutamate in the TM3 of gamma-aminobutyric acid type B(2) can be partly rescued by mutating the conserved acidic residue of TM6 into either lysine or arginine. In addition, mutation of the conserved lysine into an acidic residue leads to a nonfunctional receptor that displays a high agonist affinity. This is reminiscent of a similar ionic network that constitutes a lock stabilizing the inactive state of many class A rhodopsin-like GPCRs. These data reveal that despite their original structure, class C GPCRs share with class A receptors at least some common structural feature controlling G protein activation.

  1. A Protein Domain Co-Occurrence Network Approach for Predicting Protein Function and Inferring Species Phylogeny

    PubMed Central

    Wang, Zheng; Zhang, Xue-Cheng; Le, Mi Ha; Xu, Dong; Stacey, Gary; Cheng, Jianlin

    2011-01-01

    Protein Domain Co-occurrence Network (DCN) is a biological network that has not been fully-studied. We analyzed the properties of the DCNs of H. sapiens, S. cerevisiae, C. elegans, D. melanogaster, and 15 plant genomes. These DCNs have the hallmark features of scale-free networks. We investigated the possibility of using DCNs to predict protein and domain functions. Based on our experiment conducted on 66 randomly selected proteins, the best of top 3 predictions made by our DCN-based aggregated neighbor-counting method achieved a semantic similarity score of 0.81 to the actual Gene Ontology terms of the proteins. Moreover, the top 3 predictions using neighbor-counting, χ2, and a SVM-based method achieved an accuracy of 66%, 59%, and 61%, respectively, when used to predict specific Gene Ontology terms of human target domains. These predictions on average had a semantic similarity score of 0.82, 0.80, and 0.79 to the actual Gene Ontology terms, respectively. We also used DCNs to predict whether a domain is an enzyme domain, and our SVM-based and neighbor-inference method correctly classified 79% and 77% of the target domains, respectively. When using DCNs to classify a target domain into one of the six enzyme classes, we found that, as long as there is one EC number available in the neighboring domains, our SVM-based and neighboring-counting method correctly classified 92.4% and 91.9% of the target domains, respectively. Furthermore, we benchmarked the performance of using DCNs to infer species phylogenies on six different combinations of 398 single-chromosome prokaryotic genomes. The phylogenetic tree of 54 prokaryotic taxa generated by our DCNs-alignment-based method achieved a 93.45% similarity score compared to the Bergey's taxonomy. In summary, our studies show that genome-wide DCNs contain rich information that can be effectively used to decipher protein function and reveal the evolutionary relationship among species. PMID:21455299

  2. Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system.

    PubMed

    Burroughs, A Maxwell; Iyer, Lakshminarayan M; Aravind, L

    2011-07-01

    Recent studies point to a diverse assemblage of prokaryotic cognates of the eukaryotic ubiquitin (Ub) system. These systems span an entire spectrum, ranging from those catalyzing cofactor and amino acid biosynthesis, with only adenylating E1-like enzymes and ubiquitin-like proteins (Ubls), to those that are closer to eukaryotic systems by virtue of possessing E2 enzymes. Until recently E3 enzymes were unknown in such prokaryotic systems. Using contextual information from comparative genomics, we uncover a diverse group of RING finger E3s in prokaryotes that are likely to function with E1s, E2s, JAB domain peptidases and Ubls. These E1s, E2s and RING fingers suggest that features hitherto believed to be unique to eukaryotic versions of these proteins emerged progressively in such prokaryotic systems. These include the specific configuration of residues associated with oxyanion-hole formation in E2s and the C-terminal UFD in the E1 enzyme, which presents the E2 to its active site. Our study suggests for the first time that YukD-like Ubls might be conjugated by some of these systems in a manner similar to eukaryotic Ubls. We also show that prokaryotic RING fingers possess considerable functional diversity and that not all of them are involved in Ub-related functions. In eukaryotes, other than RING fingers, a number of distinct binuclear (chelating two Zn atoms) and mononuclear (chelating one zinc atom) treble clef domains are involved in Ub-related functions. Through detailed structural analysis we delineated the higher order relationships and interaction modes of binuclear treble clef domains. This indicated that the FYVE domain acquired the binuclear state independently of the other binuclear forms and that different treble clef domains have convergently acquired Ub-related functions independently of the RING finger. Among these, we uncover evidence for notable prokaryotic radiations of the ZF-UBP, B-box, AN1 and LIM clades of treble clef domains and present

  3. Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system.

    PubMed

    Burroughs, A Maxwell; Iyer, Lakshminarayan M; Aravind, L

    2011-07-01

    Recent studies point to a diverse assemblage of prokaryotic cognates of the eukaryotic ubiquitin (Ub) system. These systems span an entire spectrum, ranging from those catalyzing cofactor and amino acid biosynthesis, with only adenylating E1-like enzymes and ubiquitin-like proteins (Ubls), to those that are closer to eukaryotic systems by virtue of possessing E2 enzymes. Until recently E3 enzymes were unknown in such prokaryotic systems. Using contextual information from comparative genomics, we uncover a diverse group of RING finger E3s in prokaryotes that are likely to function with E1s, E2s, JAB domain peptidases and Ubls. These E1s, E2s and RING fingers suggest that features hitherto believed to be unique to eukaryotic versions of these proteins emerged progressively in such prokaryotic systems. These include the specific configuration of residues associated with oxyanion-hole formation in E2s and the C-terminal UFD in the E1 enzyme, which presents the E2 to its active site. Our study suggests for the first time that YukD-like Ubls might be conjugated by some of these systems in a manner similar to eukaryotic Ubls. We also show that prokaryotic RING fingers possess considerable functional diversity and that not all of them are involved in Ub-related functions. In eukaryotes, other than RING fingers, a number of distinct binuclear (chelating two Zn atoms) and mononuclear (chelating one zinc atom) treble clef domains are involved in Ub-related functions. Through detailed structural analysis we delineated the higher order relationships and interaction modes of binuclear treble clef domains. This indicated that the FYVE domain acquired the binuclear state independently of the other binuclear forms and that different treble clef domains have convergently acquired Ub-related functions independently of the RING finger. Among these, we uncover evidence for notable prokaryotic radiations of the ZF-UBP, B-box, AN1 and LIM clades of treble clef domains and present

  4. Stability of a pinned magnetic domain wall as a function of its internal configuration

    NASA Astrophysics Data System (ADS)

    Montaigne, F.; Duluard, A.; Briones, J.; Lacour, D.; Hehn, M.; Childress, J. R.

    2015-01-01

    It is shown that there are many stable configurations for a domain wall pinned by a notch along a magnetic stripe. The stability of several of these configurations is investigated numerically as a function of the thickness of the magnetic film. The depinning mechanism depends on the structure of the domain wall and on the thickness of the magnetic film. In the case of a spin-valve structure, it appears that the stray fields emerging from the hard layer at the notch location influence the stability of the micromagnetic configuration. Different depinning mechanisms are thus observed for the same film thickness depending on the magnetization orientation of the propagating domain. This conclusion qualitatively explains experimental magnetoresistance measurements.

  5. The functional integrity of the serpin domain of C1-inhibitor depends on the unique N-terminal domain, as revealed by a pathological mutant.

    PubMed

    Bos, Ineke G A; Lubbers, Yvonne T P; Roem, Dorina; Abrahams, Jan Pieter; Hack, C Erik; Eldering, Eric

    2003-08-01

    C1-inhibitor (C1-Inh) is a serine protease inhibitor (serpin) with a unique, non-conserved N-terminal domain of unknown function. Genetic deficiency of C1-Inh causes hereditary angioedema. A novel type of mutation (Delta 3) in exon 3 of the C1-Inh gene, resulting in deletion of Asp62-Thr116 in this unique domain, was encountered in a hereditary angioedema pedigree. Because the domain is supposedly not essential for inhibitory activity, the unexpected loss-of-function of this deletion mutant was further investigated. The Delta 3 mutant and three additional mutants starting at Pro76, Gly98, and Ser115, lacking increasing parts of the N-terminal domain, were produced recombinantly. C1-Inh76 and C1-Inh98 retained normal conformation and interaction kinetics with target proteases. In contrast, C1-Inh115 and Delta 3, which both lack the connection between the serpin and the non-serpin domain via two disulfide bridges, were completely non-functional because of a complex-like and multimeric conformation, as demonstrated by several criteria. The Delta 3 mutant also circulated in multimeric form in plasma from affected family members. The C1-Inh mutant reported here is unique in that deletion of an entire amino acid stretch from a domain not shared by other serpins leads to a loss-of-function. The deletion in the unique N-terminal domain results in a "multimerization phenotype" of C1-Inh, because of diminished stability of the central beta-sheet. This phenotype, as well as the location of the disulfide bridges between the serpin and the non-serpin domain of C1-Inh, suggests that the function of the N-terminal region may be similar to one of the effects of heparin in antithrombin III, maintenance of the metastable serpin conformation.

  6. Hypervariable domains of nsP3 proteins of New World and Old World alphaviruses mediate formation of distinct, virus-specific protein complexes.

    PubMed

    Foy, Niall J; Akhrymuk, Maryna; Akhrymuk, Ivan; Atasheva, Svetlana; Bopda-Waffo, Alain; Frolov, Ilya; Frolova, Elena I

    2013-02-01

    Alphaviruses are a group of single-stranded RNA viruses with genomes of positive polarity. They are divided into two geographically isolated groups: the Old World and the New World alphaviruses. Despite their similar genome organizations and virion structures, they differ in many aspects of pathogenesis and interaction with the host cell. Here we present new data highlighting previously unknown differences between these two groups. We found that nsP3 proteins of Sindbis virus (SINV) and Venezuelan equine encephalitis virus (VEEV) form cytoplasmic complexes with different morphologies and protein compositions. Unlike the amorphous aggregates formed by SINV nsP3 and other Old World alphavirus-specific nsP3s, VEEV nsP3 forms unique, large spherical structures with striking symmetry. Moreover, VEEV nsP3 does not interact with proteins previously identified as major components of SINV nsP3 complexes, such as G3BP1 and G3BP2. Importantly, the morphology of the complexes and the specificity of the interaction with cellular proteins are largely determined by the hypervariable domain (HVD) of nsP3. Replacement of the VEEV nsP3 HVD with the corresponding domain of SINV nsP3 rendered this protein capable of interaction with G3BPs. Conversely, replacement of the SINV nsP3 HVD with that of VEEV abolished SINV nsP3's interaction with G3BPs. The replacement of natural HVDs with those from heterologous viruses did not abrogate virus replication, despite these fragments demonstrating very low levels of sequence identity. Our data suggest that in spite of the differences in morphology and composition of the SINV- and VEEV-specific nsP3 complexes, it is likely that they have similar functions in virus replication and modification of the cellular environment.

  7. Hypervariable Domains of nsP3 Proteins of New World and Old World Alphaviruses Mediate Formation of Distinct, Virus-Specific Protein Complexes

    PubMed Central

    Foy, Niall J.; Akhrymuk, Maryna; Akhrymuk, Ivan; Atasheva, Svetlana; Bopda-Waffo, Alain; Frolov, Ilya

    2013-01-01

    Alphaviruses are a group of single-stranded RNA viruses with genomes of positive polarity. They are divided into two geographically isolated groups: the Old World and the New World alphaviruses. Despite their similar genome organizations and virion structures, they differ in many aspects of pathogenesis and interaction with the host cell. Here we present new data highlighting previously unknown differences between these two groups. We found that nsP3 proteins of Sindbis virus (SINV) and Venezuelan equine encephalitis virus (VEEV) form cytoplasmic complexes with different morphologies and protein compositions. Unlike the amorphous aggregates formed by SINV nsP3 and other Old World alphavirus-specific nsP3s, VEEV nsP3 forms unique, large spherical structures with striking symmetry. Moreover, VEEV nsP3 does not interact with proteins previously identified as major components of SINV nsP3 complexes, such as G3BP1 and G3BP2. Importantly, the morphology of the complexes and the specificity of the interaction with cellular proteins are largely determined by the hypervariable domain (HVD) of nsP3. Replacement of the VEEV nsP3 HVD with the corresponding domain of SINV nsP3 rendered this protein capable of interaction with G3BPs. Conversely, replacement of the SINV nsP3 HVD with that of VEEV abolished SINV nsP3's interaction with G3BPs. The replacement of natural HVDs with those from heterologous viruses did not abrogate virus replication, despite these fragments demonstrating very low levels of sequence identity. Our data suggest that in spite of the differences in morphology and composition of the SINV- and VEEV-specific nsP3 complexes, it is likely that they have similar functions in virus replication and modification of the cellular environment. PMID:23221551

  8. EFO1 and EFO2, encoding putative WD-domain proteins, have overlapping and distinct roles in the regulation of vegetative development and flowering of Arabidopsis.

    PubMed

    Wang, Wuyi; Yang, Dennis; Feldmann, Kenneth A

    2011-01-01

    From screening a population of Arabidopsis overexpression lines, two Arabidopsis genes were identified, EFO1 (early flowering by overexpression 1) and EFO2, that confer early flowering when overexpressed. The two genes encode putative WD-domain proteins which share high sequence similarity and constitute a small subfamily. Interestingly, the efo2-1 loss-of-function mutant also flowered earlier in short days and slightly earlier in long days than the wild type, while no flowering-time or morphological differences were observed in efo1-1 relative to the wild type. In addition, the efo2-1 mutation perturbed hypocotyl elongation, leaf expansion and formation, and stem elongation. EFO1 and EFO2 are both regulated by the circadian clock. Expression and genetic analyses revealed that EFO2 suppresses flowering largely through the action of CONSTANS (CO) and flowering locus T (FT), suggesting that EFO2 is a negative regulator of photoperiodic flowering. The growth defects in efo2-1 were augmented in efo1 efo2, but the induction of FT in the double mutant was comparable to that in efo2-1. Thus, while EFO2 acts as a floral repressor, EFO1 may not be directly involved in flowering, but the two genes do have overlapping roles in regulating other developmental processes. EFO1 and EFO2 may function collectively to serve as one of the converging points where the signals of growth and flowering intersect. PMID:21242318

  9. Structures of PHR domains from Mus musculus Phr1 (Mycbp2) explain the loss-of-function mutation (Gly1092-->Glu) of the C. elegans ortholog RPM-1.

    PubMed

    Sampathkumar, Parthasarathy; Ozyurt, Sinem A; Miller, Stacy A; Bain, Kevin T; Rutter, Marc E; Gheyi, Tarun; Abrams, Benjamin; Wang, Yingchun; Atwell, Shane; Luz, John G; Thompson, Devon A; Wasserman, Stephen R; Emtage, J Spencer; Park, Eun Chan; Rongo, Christopher; Jin, Yishi; Klemke, Richard L; Sauder, J Michael; Burley, Stephen K

    2010-04-01

    PHR [PAM (protein associated with Myc)-HIW (Highwire)-RPM-1 (regulator of presynaptic morphology 1)] proteins are conserved, large multi-domain E3 ubiquitin ligases with modular architecture. PHR proteins presynaptically control synaptic growth and axon guidance and postsynaptically regulate endocytosis of glutamate receptors. Dysfunction of neuronal ubiquitin-mediated proteasomal degradation is implicated in various neurodegenerative diseases. PHR proteins are characterized by the presence of two PHR domains near the N-terminus, which are essential for proper localization and function. Structures of both the first and second PHR domains of Mus musculus (mouse) Phr1 (MYC binding protein 2, Mycbp2) have been determined, revealing a novel beta sandwich fold composed of 11 antiparallel beta-strands. Conserved loops decorate the apical side of the first PHR domain (MmPHR1), yielding a distinct conserved surface feature. The surface of the second PHR domain (MmPHR2), in contrast, lacks significant conservation. Importantly, the structure of MmPHR1 provides insights into a loss-of-function mutation, Gly1092-->Glu, observed in the Caenorhabditis elegans ortholog RPM-1. PMID:20156452

  10. Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations.

    PubMed

    Pardo-Saganta, Ana; Law, Brandon M; Tata, Purushothama Rao; Villoria, Jorge; Saez, Borja; Mou, Hongmei; Zhao, Rui; Rajagopal, Jayaraj

    2015-02-01

    Following injury, stem cells restore normal tissue architecture by producing the proper number and proportions of differentiated cells. Current models of airway epithelial regeneration propose that distinct cytokeratin 8-expressing progenitor cells, arising from p63(+) basal stem cells, subsequently differentiate into secretory and ciliated cell lineages. We now show that immediately following injury, discrete subpopulations of p63(+) airway basal stem/progenitor cells themselves express Notch pathway components associated with either secretory or ciliated cell fate commitment. One basal cell population displays intracellular Notch2 activation and directly generates secretory cells; the other expresses c-myb and directly yields ciliated cells. Furthermore, disrupting Notch ligand activity within the basal cell population at large disrupts the normal pattern of lineage segregation. These non-cell-autonomous effects demonstrate that effective airway epithelial regeneration requires intercellular communication within the broader basal stem/progenitor cell population. These findings have broad implications for understanding epithelial regeneration and stem cell heterogeneity.

  11. Functional convergence of structurally distinct thioesterases from cyanobacteria and plants involved in phylloquinone biosynthesis.

    PubMed

    Furt, Fabienne; Allen, William J; Widhalm, Joshua R; Madzelan, Peter; Rizzo, Robert C; Basset, Gilles; Wilson, Mark A

    2013-10-01

    The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes.

  12. Structure and function of the interacting domains of Spire and Fmn-family formins

    SciTech Connect

    Vizcarra, Christina L.; Kreutz, Barry; Rodal, Avital A.; Toms, Angela V.; Lu, Jun; Zheng, Wei; Quinlan, Margot E.; Eck, Michael J.

    2012-07-11

    Evidence for cooperation between actin nucleators is growing. The WH2-containing nucleator Spire and the formin Cappuccino interact directly, and both are essential for assembly of an actin mesh during Drosophila oogenesis. Their interaction requires the kinase noncatalytic C-lobe domain (KIND) domain of Spire and the C-terminal tail of the formin. Here we describe the crystal structure of the KIND domain of human Spir1 alone and in complex with the tail of Fmn2, a mammalian ortholog of Cappuccino. The KIND domain is structurally similar to the C-lobe of protein kinases. The Fmn2 tail is coordinated in an acidic cleft at the base of the domain that appears to have evolved via deletion of a helix from the canonical kinase fold. Our functional analysis of Cappuccino reveals an unexpected requirement for its tail in actin assembly. In addition, we find that the KIND/tail interaction blocks nucleation by Cappuccino and promotes its displacement from filament barbed ends providing insight into possible modes of cooperation between Spire and Cappuccino.

  13. Exploring functional roles of TRPV1 intracellular domains with unstructured peptide-insertion screening

    PubMed Central

    Ma, Linlin; Yang, Fan; Vu, Simon; Zheng, Jie

    2016-01-01

    TRPV1 is a polymodal nociceptor for diverse physical and chemical stimuli that interact with different parts of the channel protein. Recent cryo-EM studies revealed detailed channel structures, opening the door for mapping structural elements mediating activation by each stimulus. Towards this goal, here we have combined unstructured peptide-insertion screening (UPS) with electrophysiological and fluorescence recordings to explore structural and functional roles of the intracellular regions of TRPV1 in mediating various activation stimuli. We found that most of the tightly packed protein regions did not tolerate structural perturbation by UPS when tested, indicating that structural integrity of the intracellular region is critical. In agreement with previous reports, Ca2+-dependent desensitization is strongly dependent on both intracellular N- and C-terminal domains; insertions of an unstructured peptide between these domains and the transmembrane core domain nearly eliminated Ca2+-dependent desensitization. In contrast, channel activations by capsaicin, low pH, divalent cations, and even heat are mostly intact in mutant channels containing the same insertions. These observations suggest that the transmembrane core domain of TRPV1, but not the intracellular domains, is responsible for sensing these stimuli. PMID:27666400

  14. Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag

    PubMed Central

    Rye-McCurdy, Tiffiny; Olson, Erik D.; Liu, Shuohui; Binkley, Christiana; Reyes, Joshua-Paolo; Thompson, Brian R.; Flanagan, John M.; Parent, Leslie J.; Musier-Forsyth, Karin

    2016-01-01

    Retroviruses specifically package full-length, dimeric genomic RNA (gRNA) even in the presence of a vast excess of cellular RNA. The “psi” (Ψ) element within the 5′-untranslated region (5′UTR) of gRNA is critical for packaging through interaction with the nucleocapsid (NC) domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1) Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA) domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV) Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity. PMID:27657107

  15. Functional role of the additional domains in inulosucrase (IslA) from Leuconostoc citreum CW28

    PubMed Central

    del Moral, Sandra; Olvera, Clarita; Rodriguez, Maria Elena; Munguia, Agustin Lopez

    2008-01-01

    Background Inulosucrase (IslA) from Leuconostoc citreum CW28 belongs to a new subfamily of multidomain fructosyltransferases (FTFs), containing additional domains from glucosyltransferases. It is not known what the function of the additional domains in this subfamily is. Results Through construction of truncated versions we demonstrate that the acquired regions are involved in anchoring IslA to the cell wall; they also confer stability to the enzyme, generating a larger structure that affects its kinetic properties and reaction specificity, particularly the hydrolysis and transglycosylase ratio. The accessibility of larger molecules such as EDTA to the catalytic domain (where a Ca2+ binding site is located) is also affected as demonstrated by the requirement of 100 times higher EDTA concentrations to inactivate IslA with respect to the smallest truncated form. Conclusion The C-terminal domain may have been acquired to anchor inulosucrase to the cell surface. Furthermore, the acquired domains in IslA interact with the catalytic core resulting in a new conformation that renders the enzyme more stable and switch the specificity from a hydrolytic to a transglycosylase mechanism. Based on these results, chimeric constructions may become a strategy to stabilize and modulate biocatalysts based on FTF activity. PMID:18237396

  16. The Dc-Module of Doublecortin: Dynamics, Domain Boundaries, and Functional Implications

    SciTech Connect

    Cierpicki,T.; Kim, M.; Cooper, D.; Derewenda, U.; Bushweller, J.; Derwenda, Z.

    2007-01-01

    The doublecortin-like (DC) domains, which usually occur in tandem, constitute novel microtubule-binding modules. They were first identified in doublecortin (DCX), a protein expressed in migrating neurons, and in the doublecortin-like kinase (DCLK). They are also found in other proteins, including the RP1 gene product which-when mutated-causes a form of inherited blindness. We previously reported an X-ray structure of the N-terminal DC domain of DCLK (N-DCLK), and a solution structure of an analogous module of human doublecortin (N-DCX). These studies showed that the DC domain has a tertiary fold closely reminiscent of ubiquitin and similar to several GTPase-binding domains. We now report an X-ray structure of a mutant of N-DCX, in which the C-terminal fragment (residues 139-147) unexpectedly shows an altered, 'open' conformation. However, heteronuclear NMR data show that this C-terminal fragment is only transiently open in solution, and assumes a predominantly 'closed' conformation. While the 'open' conformation may be artificially stabilized by crystal packing interactions, the observed switching between the 'open' and 'closed' conformations, which shortens the linker between the two DC-domains by {approx}20 A, is likely to be of functional importance in the control of tubulin polymerization and microtubule bundling by doublecortin.

  17. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice.

    PubMed

    Mao, Hailiang; Sun, Shengyuan; Yao, Jialing; Wang, Chongrong; Yu, Sibin; Xu, Caiguo; Li, Xianghua; Zhang, Qifa

    2010-11-01

    Grain yield in many cereal crops is largely determined by grain size. Here we report the genetic and molecular characterization of GS3, a major quantitative trait locus for grain size. It functions as a negative regulator of grain size and organ size. The wild-type isoform is composed of four putative domains: a plant-specific organ size regulation (OSR) domain in the N terminus, a transmembrane domain, a tumor necrosis factor receptor/nerve growth factor receptor (TNFR/NGFR) family cysteine-rich domain, and a von Willebrand factor type C (VWFC) in the C terminus. These domains function differentially in grain size regulation. The OSR domain is both necessary and sufficient for functioning as a negative regulator. The wild-type allele corresponds to medium grain. Loss of function of OSR results in long grain. The C-terminal TNFR/NGFR and VWFC domains show an inhibitory effect on the OSR function; loss-of-function mutations of these domains produced very short grain. This study linked the functional domains of the GS3 protein to natural variation of grain size in rice. PMID:20974950

  18. Targeted gene knockdown in zebrafish reveals distinct intraembryonic functions for insulin-like growth factor II signaling.

    PubMed

    White, Yvonne A R; Kyle, Joshua T; Wood, Antony W

    2009-09-01

    IGF-II is the predominant IGF ligand regulating prenatal growth in all vertebrates, including humans, but its central role in placental development has confounded efforts to fully elucidate its functions within the embryo. Here we use a nonplacental model vertebrate (zebrafish) to interrogate the intraembryonic functions of IGF-II signaling. The zebrafish genome contains two coorthologs of mammalian IGF2 (igf2a, igf2b), which exhibit distinct patterns of expression during embryogenesis. Expression of igf2a mRNA is restricted to the notochord, primarily during segmentation/neurulation. By contrast, igf2b mRNA is expressed in midline tissues adjacent to the notochord, with additional sites of expression in the ventral forebrain, and the pronephros. To identify their intraembryonic functions, we suppressed the expression of each gene with morpholino oligonucleotides. Knockdown of igf2a led to defects in dorsal midline development, characterized by delayed segmentation, notochord undulations, and ventral curvature. Similarly, suppression of igf2b led to defects in dorsal midline development but also induced ectopic fusion of the nephron primordia, and defects in ventral forebrain development. Subsequent onset of severe body edema in igf2b, but not igf2a morphants, further suggested a distinct role for igf2b in development of the embryonic kidney. Simultaneous knockdown of both genes increased the severity of dorsal midline defects, confirming a conserved role for both genes in dorsal midline development. Collectively, these data provide evidence that the zebrafish orthologs of IGF2 function in dorsal midline development during segmentation/neurulation, whereas one paralog, igf2b, has evolved additional, distinct functions during subsequent organogenesis.

  19. Functional analysis of TPM domain containing Rv2345 of Mycobacterium tuberculosis identifies its phosphatase activity.

    PubMed

    Sinha, Avni; Eniyan, Kandasamy; Sinha, Swati; Lynn, Andrew Michael; Bajpai, Urmi

    2015-07-01

    Mycobacterium tuberculosis (Mtb) is the causal agent of tuberculosis, the second largest infectious disease. With the rise of multi-drug resistant strains of M. tuberculosis, serious challenge lies ahead of us in treating the disease. The availability of complete genome sequence of Mtb has improved the scope for identifying new proteins that would not only further our understanding of biology of the organism but could also serve to discover new drug targets. In this study, Rv2345, a hypothetical membrane protein of M. tuberculosis H37Rv, which is reported to be a putative ortholog of ZipA cell division protein has been assigned function through functional annotation using bioinformatics tools followed by experimental validation. Sequence analysis showed Rv2345 to have a TPM domain at its N-terminal region and predicted it to have phosphatase activity. The TPM domain containing region of Rv2345 was cloned and expressed using pET28a vector in Escherichia coli and purified by Nickel affinity chromatography. The purified TPM domain was tested in vitro and our results confirmed it to have phosphatase activity. The enzyme activity was first checked and optimized with pNPP as substrate, followed by using ATP, which was also found to be used as substrate by the purified protein. Hence sequence analysis followed by in vitro studies characterizes TPM domain of Rv2345 to contain phosphatase activity.

  20. Cytoplasmic domains of the reduced folate carrier are essential for trafficking, but not function.

    PubMed Central

    Sadlish, Heather; Williams, Frederick M R; Flintoff, Wayne F

    2002-01-01

    The reduced folate carrier (RFC) protein has a secondary structure consistent with the predicted 12 transmembrane (TM) domains, intracellular N- and C-termini and a large cytoplasmic loop between TM6 and TM7. In the present study, the role of the cytoplasmic domains in substrate transport and protein biogenesis were examined using an array of hamster RFC deletion mutants fused to enhanced green fluorescent protein and expressed in Chinese hamster ovary cells. The N- and C-terminal tails were removed both individually and together, or the large cytoplasmic loop was modified such that the domain size and role of conserved sequences could be examined. The loss of the N- or C-terminal tails did not appear to significantly disrupt protein function, although both termini appeared to have a role in the efficiency with which molecules exited the endoplasmic reticulum to localize at the plasma membrane. There appeared to be both size and sequence requirements for the intracellular loop, which are able to drastically affect protein stability and function unless met. Furthermore, there might be an indirect role for the loop in substrate translocation, since even moderate changes significantly reduced the V(max) for methotrexate transport. Although these cytoplasmic domains do not appear to be absolutely essential for substrate transport, each one is important for biogenesis and localization. PMID:12049642

  1. Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase.

    PubMed Central

    Leberer, E; Wu, C; Leeuw, T; Fourest-Lieuvin, A; Segall, J E; Thomas, D Y

    1997-01-01

    Ste20p from Saccharomyces cerevisiae belongs to the Ste20p/p65PAK family of protein kinases which are highly conserved from yeast to man and regulate conserved mitogen-activated protein kinase pathways. Ste20p fulfills multiple roles in pheromone signaling, morphological switching and vegetative growth and binds Cdc42p, a Rho-like small GTP binding protein required for polarized morphogenesis. We have analyzed the functional consequences of mutations that prevent binding of Cdc42p to Ste20p. The complete amino-terminal, non-catalytic half of Ste20p, including the conserved Cdc42p binding domain, was dispensable for heterotrimeric G-protein-mediated pheromone signaling. However, the Cdc42p binding domain was necessary for filamentous growth in response to nitrogen starvation and for an essential function that Ste20p shares with its isoform Cla4p during vegetative growth. Moreover, the Cdc42p binding domain was required for cell-cell adhesion during conjugation. Subcellular localization of wild-type and mutant Ste20p fused to green fluorescent protein showed that the Cdc42p binding domain is needed to direct localization of Ste20p to regions of polarized growth. These results suggest that Ste20p is regulated in different developmental pathways by different mechanisms which involve heterotrimeric and small GTP binding proteins. PMID:9009270

  2. The rod domain is not essential for the function of plectin in maintaining tissue integrity

    PubMed Central

    Ketema, Mirjam; Secades, Pablo; Kreft, Maaike; Nahidiazar, Leila; Janssen, Hans; Jalink, Kees; de Pereda, Jose M.; Sonnenberg, Arnoud

    2015-01-01

    Epidermolysis bullosa simplex associated with late-onset muscular dystrophy (EBS-MD) is an autosomal recessive disorder resulting from mutations in the plectin gene. The majority of these mutations occur within the large exon 31 encoding the central rod domain and leave the production of a low-level rodless plectin splice variant unaffected. To investigate the function of the rod domain, we generated rodless plectin mice through conditional deletion of exon 31. Rodless plectin mice develop normally without signs of skin blistering or muscular dystrophy. Plectin localization and hemidesmosome organization are unaffected in rodless plectin mice. However, superresolution microscopy revealed a closer juxtaposition of the C-terminus of plectin to the integrin β4 subunit in rodless plectin keratinocytes. Wound healing occurred slightly faster in rodless plectin mice than in wild-type mice, and keratinocytes migration was increased in the absence of the rod domain. The faster migration of rodless plectin keratinocytes is not due to altered biochemical properties because, like full-length plectin, rodless plectin is a dimeric protein. Our data demonstrate that rodless plectin can functionally compensate for the loss of full-length plectin in mice. Thus the low expression level of plectin rather than the absence of the rod domain dictates the development of EBS-MD. PMID:25971800

  3. Distinct disruptions of resting-state functional brain networks in familial and sporadic schizophrenia

    PubMed Central

    Zhu, Jiajia; Zhuo, Chuanjun; Liu, Feng; Qin, Wen; Xu, Lixue; Yu, Chunshui

    2016-01-01

    Clinical and brain structural differences have been reported between patients with familial and sporadic schizophrenia; however, little is known about the brain functional differences between the two subtypes of schizophrenia. Twenty-six patients with familial schizophrenia (PFS), 26 patients with sporadic schizophrenia (PSS) and 26 healthy controls (HC) underwent a resting-state functional magnetic resonance imaging. The whole-brain functional network was constructed and analyzed using graph theoretical approaches. Topological properties (including global, nodal and edge measures) were compared among the three groups. We found that PFS, PSS and HC exhibited common small-world architecture of the functional brain networks. However, at a global level, only PFS showed significantly lower normalized clustering coefficient, small-worldness, and local efficiency, indicating a randomization shift of their brain networks. At a regional level, PFS and PSS disrupted different neural circuits, consisting of abnormal nodes (increased or decreased nodal centrality) and edges (decreased functional connectivity strength), which were widely distributed throughout the entire brain. Furthermore, some of these altered network measures were significantly correlated with severity of psychotic symptoms. These results suggest that familial and sporadic schizophrenia had segregated disruptions in the topological organization of the intrinsic functional brain network, which may be due to different etiological contributions. PMID:27032817

  4. Distinct disruptions of resting-state functional brain networks in familial and sporadic schizophrenia.

    PubMed

    Zhu, Jiajia; Zhuo, Chuanjun; Liu, Feng; Qin, Wen; Xu, Lixue; Yu, Chunshui

    2016-01-01

    Clinical and brain structural differences have been reported between patients with familial and sporadic schizophrenia; however, little is known about the brain functional differences between the two subtypes of schizophrenia. Twenty-six patients with familial schizophrenia (PFS), 26 patients with sporadic schizophrenia (PSS) and 26 healthy controls (HC) underwent a resting-state functional magnetic resonance imaging. The whole-brain functional network was constructed and analyzed using graph theoretical approaches. Topological properties (including global, nodal and edge measures) were compared among the three groups. We found that PFS, PSS and HC exhibited common small-world architecture of the functional brain networks. However, at a global level, only PFS showed significantly lower normalized clustering coefficient, small-worldness, and local efficiency, indicating a randomization shift of their brain networks. At a regional level, PFS and PSS disrupted different neural circuits, consisting of abnormal nodes (increased or decreased nodal centrality) and edges (decreased functional connectivity strength), which were widely distributed throughout the entire brain. Furthermore, some of these altered network measures were significantly correlated with severity of psychotic symptoms. These results suggest that familial and sporadic schizophrenia had segregated disruptions in the topological organization of the intrinsic functional brain network, which may be due to different etiological contributions. PMID:27032817

  5. Genome-wide analysis of enzyme structure-function combination across three domains of life.

    PubMed

    Zhang, Ziding; Tang, Yu-Rong

    2007-01-01

    To investigate diverse enzyme structure-function combination (SFC) types in different species, 34 different genome sequences were annotated using the protein catalytic domain database SCOPEC (http://www.enzome.com/enzome/), in which both the structure and function for each entry are known. Annotated enzymes with catalytic domains from the same SCOP superfamily are considered to have an identical structure. Annotated enzymes sharing the identical three-digit EC number are considered to have the same enzymatic function. Results reveal that the different SFC types for enzymes identified in archaea, bacteria and eukaryota are 137, 300 and 313, respectively. About 80% of the SFCs identified in archaea can be consistently found in bacteria and eukaryota species, whereas 28% and 35% combination types in bacteria and eukaryota respectively are unique to their corresponding groups. The number of functions per structure and the number of structures per function for the annotated sequences were measured in different species. Furthermore, a new concept was proposed to represent enzymatic structures as a functional similarity network. Thus, the current study will be helpful to enhance the global view on the evolution of enzymatic structure and function.

  6. Using the structure-function linkage database to characterize functional domains in enzymes.

    PubMed

    Brown, Shoshana; Babbitt, Patricia

    2014-12-12

    The Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu/) is a Web-accessible database designed to link enzyme sequence, structure, and functional information. This unit describes the protocols by which a user may query the database to predict the function of uncharacterized enzymes and to correct misannotated functional assignments. The information in this unit is especially useful in helping a user discriminate functional capabilities of a sequence that is only distantly related to characterized sequences in publicly available databases.

  7. Normal functioning and the treatment/enhancement distinction: an opportunity based assessment.

    PubMed

    Huggins, Jonathan; Simmerling, Mary

    2014-08-01

    As genome mapping technology uncovers the roots of pathologic and physiologic human functioning, important questions are brought to the fore concerning our conceptualization of ideas such as disease, treatment, and enhancement. In 1985, Norman Daniels proposed a normal-functioning model that expands John Rawls' theory of justice to obligate the provision of health care based on the constraints disease places on individual opportunity, but also limits the commitment of the medical establishment by focusing on states that represent deviations from normal human function. While some argue that the boundaries of medical institutions' commitment to provide services within a normal-functioning model are arbitrary, the degree to which these concerns truly threaten the framework is often exaggerated in special cases put forward in the literature. Furthermore, the normal-functioning model provides a comprehensive basis for agreement in discussions of medicine's commitment to the demands of social justice where resources are limited and avoids the dangerous overextension of the healthcare system and medicalization to which more expansive models are exposed.

  8. Immunophenotypic differences between osteoclasts and macrophage polykaryons: immunohistological distinction and implications for osteoclast ontogeny and function.

    PubMed Central

    Athanasou, N A; Quinn, J

    1990-01-01

    The antigenic phenotype of human fetal osteoclasts was compared with that of human tissue macrophages and macrophage polykaryons in foreign body lesions using a large number of monoclonal antibodies directed against myeloid (granulocyte/mononuclear phagocyte) antigens. Osteoclasts expressed a restricted range of macrophage-associated antigens including CD13, CD15A, CD44, CD45, CD54, (ICAM-1), CD71 (transferrin receptor), and CD68. These antigens were also present on macrophages and macrophage polykaryons both of which also strongly expressed CD11a,b,c, CD18, (LFA family), CD14, CD31, CD36, CD37, CD39 and CD43 antigens. There was also weak and occasional expression of CD16 (FcRIII), CD25 (interleukin 2 receptor), CD32 (FcRII), CD35 (C3b receptor) and HLA-DR by macrophage polykaryons. The presence of some macrophage associated antigens on osteoclasts is consistent with their originating from cells of the mononuclear phagocyte system. The numerous differences in antigenic phenotype between osteoclasts and macrophage polykaryons, however, suggest that their pathways of development and differentiation are not identical. The differences discerned in antigenic phenotype should also permit distinction between these polykaryons (and possibly their mononuclear precursors) in normal and diseased tissues. Images PMID:2266187

  9. Cellular Defense and Sensory Cell Survival Require Distinct Functions of ebi in Drosophila

    PubMed Central

    Lim, Young-Mi; Yagi, Yoshimasa; Tsuda, Leo

    2015-01-01

    The innate immune response and stress-induced apoptosis are well-established signaling pathways related to cellular defense. NF-κB and AP-1 are redox-sensitive transcription factors that play important roles in those pathways. Here we show that Ebi, a Drosophila homolog of the mammalian co-repressor molecule transducin β-like 1 (TBL1), variously regulates the expression of specific genes that are targets of redox-sensitive transcription factors. In response to different stimuli, Ebi activated gene expression to support the acute immune response in fat bodies, whereas Ebi repressed genes that are involved in apoptosis in photoreceptor cells. Thus, Ebi seems to act as a regulatory switch for genes that are activated or repressed in response to different external stimuli. Our results offer clear in vivo evidence that the Ebi-containing co-repressor complex acts in a distinct manner to regulate transcription that is required for modulating the output of various processes during Drosophila development. PMID:26524764

  10. Human-mouse mixed lymphocyte cultures. II. Partial separation of functionally distinct populations on discontinuous albumin gradients.

    PubMed Central

    Boylston, A W; Anderson, R L

    1979-01-01

    Human-mouse mixed lymphocyte cultures (MLC) develop stable, strain-specific responses directed towards antigens determined by the mouse major histocompatibility complex (MHC). By restimulation in vitro a two- to four-fold increase in total cell numbers can be achieved. Sensitized cells can be fractionated on discontinuous BSA gradients to produce fractions with predominantly proliferative or cytotoxic activity towards the intiating antigens. Mixing experiments show that fractionation of biological activity is the result of fractination of specifically sensitized effector cells rather than fractionation of inhibitory or collaborative elements. Since biological activities or can be separated on the basis of physical properties into distinct cell populations these experiments support the idea that these functions are the properties of distinct subclasses of human T lymphocyte. Xenogeneic MLC coupled to physical separation measures is a useful approach to the study of antigen-specific human T lymphocytes. PMID:155651

  11. Human-mouse mixed lymphocyte cultures. II. Partial separation of functionally distinct populations on discontinuous albumin gradients.

    PubMed

    Boylston, A W; Anderson, R L

    1979-02-01

    Human-mouse mixed lymphocyte cultures (MLC) develop stable, strain-specific responses directed towards antigens determined by the mouse major histocompatibility complex (MHC). By restimulation in vitro a two- to four-fold increase in total cell numbers can be achieved. Sensitized cells can be fractionated on discontinuous BSA gradients to produce fractions with predominantly proliferative or cytotoxic activity towards the intiating antigens. Mixing experiments show that fractionation of biological activity is the result of fractination of specifically sensitized effector cells rather than fractionation of inhibitory or collaborative elements. Since biological activities or can be separated on the basis of physical properties into distinct cell populations these experiments support the idea that these functions are the properties of distinct subclasses of human T lymphocyte. Xenogeneic MLC coupled to physical separation measures is a useful approach to the study of antigen-specific human T lymphocytes.

  12. Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons

    PubMed Central

    Kubota, Yoshiyuki; Kondo, Satoru; Nomura, Masaki; Hatada, Sayuri; Yamaguchi, Noboru; Mohamed, Alsayed A; Karube, Fuyuki; Lübke, Joachim; Kawaguchi, Yasuo

    2015-01-01

    Inhibitory interneurons target precise membrane regions on pyramidal cells, but differences in their functional effects on somata, dendrites and spines remain unclear. We analyzed inhibitory synaptic events induced by cortical, fast-spiking (FS) basket cells which innervate dendritic shafts and spines as well as pyramidal cell somata. Serial electron micrograph (EMg) reconstructions showed that somatic synapses were larger than dendritic contacts. Simulations with precise anatomical and physiological data reveal functional differences between different innervation styles. FS cell soma-targeting synapses initiate a strong, global inhibition, those on shafts inhibit more restricted dendritic zones, while synapses on spines may mediate a strictly local veto. Thus, FS cell synapses of different sizes and sites provide functionally diverse forms of pyramidal cell inhibition. DOI: http://dx.doi.org/10.7554/eLife.07919.001 PMID:26142457

  13. Dissection of Cauliflower Mosaic Virus Transactivator/Viroplasmin Reveals Distinct Essential Functions in Basic Virus Replication

    PubMed Central

    Kobayashi, Kappei; Hohn, Thomas

    2003-01-01

    Cauliflower mosaic virus (CaMV) transactivator/viroplasmin (Tav) is an essential multifunctional viral protein. Dissection of Tav by deletion mutagenesis revealed that the central region is essential for CaMV replication in single cells but that the N- and C-terminal parts are not. Strains with mutations in the central region were defective in the translational transactivator function and could be complemented by coexpressing Gag (capsid protein precursor) and Pol (polyprotein with protease, reverse transcriptase, and RNase H activity) from separate monocistronic plasmids. In contrast, total omission of Tav was only partially complemented by Gag and Pol overexpression from separate plasmids. These results indicate that CaMV basic replication requires both Tav-activated polycistronic translation and some posttranslational function(s) of Tav that is not affected by the deletions in the central region of Tav. PMID:12857928

  14. Differential function of the two nucleotide binding domains on cystic fibrosis transmembrane conductance regulator.

    PubMed

    Nagel, G

    1999-12-01

    The genetic disease cystic fibrosis is caused by defects in the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR). CFTR belongs to the family of ABC transporters. In contrast to most other members of this family which transport substrates actively across a membrane, the main function of CFTR is to regulate passive flux of substrates across the plasma membrane. Chloride channel activity of CFTR is dependent on protein phosphorylation and presence of nucleoside triphosphates. From electrophysiological studies of CFTR detailed models of its regulation by phosphorylation and nucleotide interaction have evolved. These investigations provide ample evidence that ATP hydrolysis is crucial for CFTR gating. It becomes apparent that the two nucleotide binding domains on CFTR not only diverge strongly in sequence, but also in function. Based on previous models and taking into account new data from pre-steady-state experiments, a refined model for the action of nucleotides at two nucleotide binding domains was recently proposed.

  15. Boundary values of functions in a Sobolev space with Muckenhoupt weight on some non-Lipschitz domains

    SciTech Connect

    Tyulenev, A I

    2014-08-01

    This paper gives an explicit description of the traces of functions in a weighted Sobolev space (with local Muckenhoupt weight) on the domain lying between two graphs of Lipschitz functions and on the complement of the closure of this domain. Bibliography: 11 titles.

  16. Functional Recovery of Older Hip-Fracture Patients after Interdisciplinary Intervention Follows Three Distinct Trajectories

    ERIC Educational Resources Information Center

    Tseng, Ming-Yueh; Shyu, Yea-Ing L.; Liang, Jersey

    2012-01-01

    Purpose To assess the effects of an interdisciplinary intervention on the trajectories of functional recovery among older patients with hip fracture during 2 years after hospitalization. Design and Methods In a randomized controlled trial with 24-month follow-up, 162 patients [greater than or equal to]60 years were enrolled after hip-fracture…

  17. Shared and Distinctive Origins and Correlates of Adult Attachment Representations: The Developmental Organization of Romantic Functioning

    ERIC Educational Resources Information Center

    Haydon, Katherine C.; Collins, W. A.; Salvatore, Jessica E.; Simpson, Jeffry A.; Roisman, Glenn I.

    2012-01-01

    To test proposals regarding the hierarchical organization of adult attachment, this study examined developmental origins of generalized and romantic attachment representations and their concurrent associations with romantic functioning. Participants (N = 112) in a 35-year prospective study completed the Adult Attachment Interview (AAI) and Current…

  18. Distinct Patterns of Brain Function in Children with Isolated Spelling Impairment: New Insights

    ERIC Educational Resources Information Center

    Gebauer, Daniela; Enzinger, Christian; Kronbichler, Martin; Schurz, Matthias; Reishofer, Gernot; Koschutnig, Karl; Kargl, Reinhard; Purgstaller, Christian; Fazekas, Franz; Fink, Andreas

    2012-01-01

    Studies investigating reading and spelling difficulties heavily focused on the neural correlates of reading impairments, whereas spelling impairments have been largely neglected so far. Hence, the aim of the present study was to investigate brain structure and function of children with isolated spelling difficulties. Therefore, 31 children, aged…

  19. Neuroanatomical Distinctions within the Semantic System during Sentence Comprehension: Evidence from functional Magnetic Resonance Imaging

    PubMed Central

    Kuperberg, Gina R.; Sitnikova, Tatiana; Lakshmanan, Balaji M.

    2011-01-01

    To make sense of a sentence, we must compute morphosyntactic and semantic-thematic relationships between its verbs and arguments and evaluate the resulting propositional meaning against any preceding context and our real-world knowledge. Recent electrophysiological studies suggest that, in comparison with non-violated verbs (e.g. “…at breakfast the boys would eat…”), animacy semantic-thematically violated verbs (e.g. “..at breakfast the eggs would eat…”) and morphosyntactically violated verbs (e.g. “…at breakfast the boys would eats…”) evoke a similar neural response. This response is distinct from that evoked by verbs that only violate real-world knowledge (e.g. “…at breakfast the boys would plant…”). Here we used fMRI to examine the neuroanatomical regions engaged in response to these three violations. Real-world violations, relative to other sentence types, led to increased activity within the left anterior inferior frontal cortex, reflecting participants’ increased and prolonged efforts to retrieve semantic knowledge about the likelihood of events occurring in the real world. In contrast, animacy semantic-thematic violations of the actions depicted by the central verbs engaged a frontal/inferior parietal/basal ganglia network known to mediate the execution and comprehension of goal-directed action. We suggest that the recruitment of this network reflected a semantic-thematic combinatorial process that involved an attempt to determine whether the actions described by the verbs could be executed by their NP Agents. Intriguingly, this network was also activated to morphosyntactic violations between the verbs and their subject NP arguments. Our findings support the pattern of electrophysiological findings in suggesting (a) that a clear division within the semantic system plays out during sentence comprehension, and (b) that semantic-thematic and syntactic violations of verbs within simple active sentences are treated similarly by the

  20. Differential Contributions of Nonmuscle Myosin II Isoforms and Functional Domains to Stress Fiber Mechanics.

    PubMed

    Chang, Ching-Wei; Kumar, Sanjay

    2015-09-04

    While is widely acknowledged that nonmuscle myosin II (NMMII) enables stress fibers (SFs) to generate traction forces against the extracellular matrix, little is known about how specific NMMII isoforms and functional domains contribute to SF mechanics. Here we combine biophotonic and genetic approaches to address these open questions. First, we suppress the NMMII isoforms MIIA and MIIB and apply femtosecond laser nanosurgery to ablate and investigate the viscoelastic retraction of individual SFs. SF retraction dynamics associated with MIIA and MIIB suppression qualitatively phenocopy our earlier measurements in the setting of Rho kinase (ROCK) and myosin light chain kinase (MLCK) inhibition, respectively. Furthermore, fluorescence imaging and photobleaching recovery reveal that MIIA and MIIB are enriched in and more stably localize to ROCK- and MLCK-controlled central and peripheral SFs, respectively. Additional domain-mapping studies surprisingly reveal that deletion of the head domain speeds SF retraction, which we ascribe to reduced drag from actomyosin crosslinking and frictional losses. We propose a model in which ROCK/MIIA and MLCK/MIIB functionally regulate common pools of SFs, with MIIA crosslinking and motor functions jointly contributing to SF retraction dynamics and cellular traction forces.

  1. The Src family kinases: distinct functions of c-Src, Yes, and Fyn in the liver.

    PubMed

    Reinehr, Roland; Sommerfeld, Annika; Häussinger, Dieter

    2013-04-01

    The Src family kinases Yes, Fyn, and c-Src play a pivotal role in regulating diverse liver functions such as bile flow, proteolysis, apoptosis, and proliferation and are regulated by anisoosmotic cell volume changes, death receptor ligands, and bile acids. For example, cell swelling leads to an integrin-sensed and focal adhesion kinase-mediated activation of c-Src-triggering choleresis, proteolysis inhibition, regulatory volume decrease via p38MAPK and proliferation via the activation of the epidermal growth factor receptor and extracellular regulated kinases 1 and 2. In contrast, hepatocyte shrinkage generates an almost instantaneous oxidative stress response that triggers the activation of c-Jun N-terminal kinase and the Src family kinases Fyn and Yes. Whereas Fyn activation mediates cholestasis, Yes triggers CD95 activation and apoptosis. This review will discuss the role of Src family kinases in the regulation of liver function with emphasis on their role in osmo-signaling and bile acid signaling.

  2. Distinct functional states of astrocytes during sleep and wakefulness: Is norepinephrine the master regulator?

    PubMed Central

    O’Donnell, John; Ding, Fengfei; Nedergaard, Maiken

    2015-01-01

    Astrocytes are the chief supportive cells in the central nervous system, but work over the past 20 years have documented that astrocytes also contribute to complex neural processes, such as working memory. Recent discoveries of norepinephrine-mediated astrocytic Ca2+ responses have raised the possibility that astrocytic activity in the adult brain is driven by global responses to changes in behavioral state. Moreover, analysis of the interstitial space volume suggests that astrocytes may undergo changes in cell volume in response to activation of norepinephrine receptors. This review will focus on what is known about astrocytic functions within the nervous system, and how these functions interrelate with rapid changes in behavioral state mediated by norepinephrine signaling. PMID:26618103

  3. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience.

    PubMed

    Wijngaarden, M A; Veer, I M; Rombouts, S A R B; van Buchem, M A; Willems van Dijk, K; Pijl, H; van der Grond, J

    2015-01-01

    We hypothesized that brain circuits involved in reward and salience respond differently to fasting in obese versus lean individuals. We compared functional connectivity networks related to food reward and saliency after an overnight fast (baseline) and after a prolonged fast of 48 h in lean versus obese subjects. We included 13 obese (2 males, 11 females, BMI 35.4 ± 1.2 kg/m(2), age 31 ± 3 years) and 11 lean subjects (2 males, 9 females, BMI 23.2 ± 0.5 kg/m(2), age 28 ± 3 years). Resting-state functional magnetic resonance imaging scans were made after an overnight fast (baseline) and after a prolonged 48 h fast. Functional connectivity of the amygdala, hypothalamus and posterior cingulate cortex (default-mode) networks was assessed using seed-based correlations. At baseline, we found a stronger connectivity between hypothalamus and left insula in the obese subjects. This effect diminished upon the prolonged fast. After prolonged fasting, connectivity of the hypothalamus with the dorsal anterior cingulate cortex (dACC) increased in lean subjects and decreased in obese subjects. Amygdala connectivity with the ventromedial prefrontal cortex was stronger in lean subjects at baseline, which did not change upon the prolonged fast. No differences in posterior cingulate cortex connectivity were observed. In conclusion, obesity is marked by alterations in functional connectivity networks involved in food reward and salience. Prolonged fasting differentially affected hypothalamic connections with the dACC and the insula between obese and lean subjects. Our data support the idea that food reward and nutrient deprivation are differently perceived and/or processed in obesity.

  4. Distinct resting-state brain activity in patients with functional constipation.

    PubMed

    Zhu, Qiang; Cai, Weiwei; Zheng, Jianyong; Li, Guanya; Meng, Qianqian; Liu, Qiaoyun; Zhao, Jizheng; von Deneen, Karen M; Wang, Yuanyuan; Cui, Guangbin; Duan, Shijun; Han, Yu; Wang, Huaning; Tian, Jie; Zhang, Yi; Nie, Yongzhan

    2016-10-01

    Functional constipation (FC) is a common functional gastrointestinal disorder (FGID) with a higher prevalence in clinical practice. The primary brain regions involved in emotional arousal regulation, somatic, sensory and motor control processing have been identified with neuroimaging in FGID. It remains unclear how these factors interact to influence the baseline brain activity of patients with FC. In the current study, we combined resting-state fMRI (RS-fMRI) with Granger causality analysis (GCA) to investigate the causal interactions of the brain areas in 14 patients with FC and in 26 healthy controls (HC). Our data showed significant differences in baseline brain activities in a number of major brain regions implicated in emotional process modulation (i.e. dorsal anterior cingulate cortex-dACC, anterior insula-aINS, orbitofrontal cortex-OFC, hippocampus-HIPP), somatic and sensory processing, and motor control (i.e., supplementary motor area-SMA, precentral gyrus-PreCen) (P<0.05, FDR correction). The GCA results revealed stronger effective connectivity from the OFC and dACC, which are regions involved with emotional regulation, propel limbic regions at the aINS and HIPP to induce abnormal emotional processing regulating visceral responses; and weaker effective connectivity from the SMA and PreCen, which are regions involved with somatic, sensory and motor control, propel the aINS and HIPP, suggesting abnormalities of sensory and behavioral responses. Such information of basal level functional abnormalities expands our current understanding of neural mechanisms underlying functional constipation.

  5. Identical Binding Energies and Work Functions for Distinct Adsorption Structures: Olympicenes on the Cu(111) Surface.

    PubMed

    Liu, Wei; Schuler, Bruno; Xu, Yong; Moll, Nikolaj; Meyer, Gerhard; Gross, Leo; Tkatchenko, Alexandre

    2016-03-17

    Reliability is one of the major concerns and challenges in designing organic/inorganic interfaces for (opto)electronic applications. Even small structural differences for molecules on substrates can result in a significant variation in the interface functionality, due to the strong correlation between geometry, stability, and electronic structure. Here, we employed state-of-the-art first-principles calculations with van der Waals interactions, in combination with atomic force microscopy experiments, to explore the interaction mechanism for three structurally related olympicene molecules adsorbed on the Cu(111) surface. The substitution of a single atom in the olympicene molecule switches the nature of adsorption from predominantly physisorptive character [olympicene on Cu(111)], to an intermediate state [olympicene-derived ketone on Cu(111)], then to chemisorptive character [olympicene radical on Cu(111)]. Despite the remarkable difference in adsorption structures (by up to 0.9 Å in adsorption height) and different nature of bonding, the olympicene, its ketone, and its radical derivatives have essentially identical binding energies and work functions upon interaction with the metal substrate. Our findings suggest that the stability and work functions of molecular adsorbates could be rendered insensitive to their adsorption structures, which could be a useful property for (opto)electronic applications. PMID:26928143

  6. Distinct Functions for the Drosophila piRNA Pathway in Genome Maintenance and Telomere Protection

    PubMed Central

    Khurana, Jaspreet S.; Xu, Jia; Weng, Zhiping; Theurkauf, William E.

    2010-01-01

    Transposons and other selfish DNA elements can be found in all phyla, and mobilization of these elements can compromise genome integrity. The piRNA (PIWI-interacting RNA) pathway silences transposons in the germline, but it is unclear if this pathway has additional functions during development. Here we show that mutations in the Drosophila piRNA pathway genes, armi, aub, ago3, and rhi, lead to extensive fragmentation of the zygotic genome during the cleavage stage of embryonic divisions. Additionally, aub and armi show defects in telomere resolution during meiosis and the cleavage divisions; and mutations in lig-IV, which disrupt non-homologous end joining, suppress these fusions. By contrast, lig-IV mutations enhance chromosome fragmentation. Chromatin immunoprecipitation studies show that aub and armi mutations disrupt telomere binding of HOAP, which is a component of the telomere protection complex, and reduce expression of a subpopulation of 19- to 22-nt telomere-specific piRNAs. Mutations in rhi and ago3, by contrast, do not block HOAP binding or production of these piRNAs. These findings uncover genetically separable functions for the Drosophila piRNA pathway. The aub, armi, rhi, and ago3 genes silence transposons and maintain chromosome integrity during cleavage-stage embryonic divisions. However, the aub and armi genes have an additional function in assembly of the telomere protection complex. PMID:21179579

  7. Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium

    PubMed Central

    Niaudet, Colin; Vanlandewijck, Michael; Ekvärn, Elisabet; Salvado, M. Dolores; Mehlem, Annika; Al Sayegh, Sahar; He, Liqun; Lebouvier, Thibaud; Castro-Freire, Marco; Katayama, Kan; Hultenby, Kjell; Moessinger, Christine; Tannenberg, Philip; Cunha, Sara; Pietras, Kristian; Laviña, Bàrbara; Hong, JongWook; Berg, Tove; Betsholtz, Christer

    2015-01-01

    Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysema-like pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature. PMID:26394398

  8. Functional Proteomics Screen Enables Enrichment of Distinct Cell Types from Human Pancreatic Islets

    PubMed Central

    Sharivkin, Revital; Walker, Michael D.; Soen, Yoav

    2015-01-01

    The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+), glucagon-producing alpha cells (CD9- /CD56+) and trypsin-producing acinar cells (CD9- /CD56-). This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples. PMID:25706282

  9. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2

    PubMed Central

    Liu, Mengjie; Duan, Liangwei; Wang, Meifang; Zeng, Hongmei; Liu, Xinqi; Qiu, Dewen

    2016-01-01

    The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity. PMID:27507984

  10. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2.

    PubMed

    Liu, Mengjie; Duan, Liangwei; Wang, Meifang; Zeng, Hongmei; Liu, Xinqi; Qiu, Dewen

    2016-01-01

    The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity. PMID:27507984

  11. Structurally similar Drosophila alpha-tubulins are functionally distinct in vivo.

    PubMed Central

    Hutchens, J A; Hoyle, H D; Turner, F R; Raff, E C

    1997-01-01

    We used transgenic analysis in Drosophila to compare the ability of two structurally similar alpha-tubulin isoforms to support microtubule assembly in vivo. Our data revealed that even closely related alpha-tubulin isoforms have different functional capacities. Thus, in multicellular organisms, even small changes in tubulin structure may have important consequences for regulation of the microtubule cytoskeleton. In spermatogenesis, all microtubule functions in the postmitotic male germ cells are carried out by a single tubulin heterodimer composed of the major Drosophila alpha-84B tubulin isoform and the testis-specific beta 2-tubulin isoform. We tested the ability of the developmentally regulated alpha 85E-tubulin isoform to replace alpha 84B in spermatogenesis. Even though it is 98% similar in sequence, alpha 85E is not functionally equivalent to alpha 84B. alpha 85E can support some functional microtubules in the male germ cells, but alpha 85E causes dominant male sterility if it makes up more than one-half of the total alpha-tubulin pool in the spermatids. alpha 85E does not disrupt meiotic spindle or cytoplasmic microtubules but causes defects in morphogenesis of the two classes of singlet microtubules in the sperm tail axoneme, the central pair and the accessory microtubules. Axonemal defects caused by alpha 85E are precisely reciprocal to dominant defects in doublet microtubules we observed in a previous study of ectopic germ-line expression of the developmentally regulated beta 3-tubulin isoform. These data demonstrate that the doublet and singlet axoneme microtubules have different requirements for alpha- and beta-tubulin structure. In their normal sites of expression, alpha 85E and beta 3 are coexpressed during differentiation of several somatic cell types, suggesting that alpha 85E and beta 3 might form a specialized heterodimer. Our tests of different alpha-beta pairs in spermatogenesis did not support this model. We conclude that if alpha 85E and beta

  12. Structural and functional conservation of key domains in InsP[subscript 3] and ryanodine receptors

    SciTech Connect

    Seo, Min-Duk; Velamakanni, Saroj; Ishiyama, Noboru; Stathopulos, Peter B.; Rossi, Ana M.; Khan, Samir A.; Dale, Philippa; Li, Congmin; Ames, James B.; Ikura, Mitsuhiko; Taylor, Colin W.

    2012-07-11

    Inositol-1,4,5-trisphosphate receptors (InsP{sub 3}Rs) and ryanodine receptors (RyRs) are tetrameric intracellular Ca{sup 2+} channels. In each of these receptor families, the pore, which is formed by carboxy-terminal transmembrane domains, is regulated by signals that are detected by large cytosolic structures. InsP{sub 3}R gating is initiated by InsP{sub 3} binding to the InsP{sub 3}-binding core (IBC, residues 224-604 of InsP{sub 3}R1) and it requires the suppressor domain (SD, residues 1-223 of InsP{sub 3}R1). Here we present structures of the amino-terminal region (NT, residues 1-604) of rat InsP{sub 3}R1 with (3.6 {angstrom}) and without (3.0 {angstrom}) InsP{sub 3} bound. The arrangement of the three NT domains, SD, IBC-{beta} and IBC-{alpha}, identifies two discrete interfaces ({alpha} and {beta}) between the IBC and SD. Similar interfaces occur between equivalent domains (A, B and C) in RyR1 (ref. 9). The orientations of the three domains when docked into a tetrameric structure of InsP{sub 3}R and of the ABC domains docked into RyR are remarkably similar. The importance of the {alpha}-interface for activation of InsP{sub 3}R and RyR is confirmed by mutagenesis and, for RyR, by disease-causing mutations. Binding of InsP{sub 3} causes partial closure of the clam-like IBC, disrupting the {beta}-interface and pulling the SD towards the IBC. This reorients an exposed SD loop ('hotspot' (HS) loop) that is essential for InsP{sub 3}R activation. The loop is conserved in RyR and includes mutations that are associated with malignant hyperthermia and central core disease. The HS loop interacts with an adjacent NT, suggesting that activation re-arranges inter-subunit interactions. The A domain of RyR functionally replaced the SD in full-length InsP{sub 3}R, and an InsP{sub 3}R in which its C-terminal transmembrane region was replaced by that from RyR1 was gated by InsP{sub 3} and blocked by ryanodine. Activation mechanisms are conserved between InsP{sub 3}R and Ry

  13. Potential DNA binding and nuclease functions of ComEC domains characterized in silico

    PubMed Central

    Baker, James A.; Simkovic, Felix; Taylor, Helen M.C.

    2016-01-01

    ABSTRACT Bacterial competence, which can be natural or induced, allows the uptake of exogenous double stranded DNA (dsDNA) into a competent bacterium. This process is known as transformation. A multiprotein assembly binds and processes the dsDNA to import one strand and degrade another yet the underlying molecular mechanisms are relatively poorly understood. Here distant relationships of domains in Competence protein EC (ComEC) of Bacillus subtilis (Uniprot: P39695) were characterized. DNA‐protein interactions were investigated in silico by analyzing models for structural conservation, surface electrostatics and structure‐based DNA binding propensity; and by data‐driven macromolecular docking of DNA to models. Our findings suggest that the DUF4131 domain contains a cryptic DNA‐binding OB fold domain and that the β‐lactamase‐like domain is the hitherto cryptic competence nuclease. Proteins 2016; 84:1431–1442. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27318187

  14. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis.

    PubMed

    Liu, Zhenyi; Brunskill, Eric; Varnum-Finney, Barbara; Zhang, Chi; Zhang, Andrew; Jay, Patrick Y; Bernstein, Irv; Morimoto, Mitsuru; Kopan, Raphael

    2015-07-15

    Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals. PMID:26062937

  15. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis

    PubMed Central

    Liu, Zhenyi; Brunskill, Eric; Varnum-Finney, Barbara; Zhang, Chi; Zhang, Andrew; Jay, Patrick Y.; Bernstein, Irv; Morimoto, Mitsuru; Kopan, Raphael

    2015-01-01

    Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals. PMID:26062937

  16. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    DOE PAGES

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Thanassi, David G.

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstratemore » that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.« less

  17. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    SciTech Connect

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Thanassi, David G.

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.

  18. Distinct Roles of Apolipoproteins A1 and E in the Modulation of High-Density Lipoprotein Composition and Function.

    PubMed

    Filou, Serafoula; Lhomme, Marie; Karavia, Eleni A; Kalogeropoulou, Christina; Theodoropoulos, Vassilis; Zvintzou, Evangelia; Sakellaropoulos, George C; Petropoulou, Peristera-Ioanna; Constantinou, Caterina; Kontush, Anatol; Kypreos, Kyriakos E

    2016-07-12

    In addition to high-density lipoprotein cholesterol (HDL-C) levels, HDL quality also appears to be very important for atheroprotection. Analysis of various clinical paradigms suggests that the lipid and apolipoprotein composition of HDL defines its size, shape, and functions and may determine its beneficial effects on human health. Previously, we reported that like apolipoprotein A-I (Apoa1), apolipoprotein E (Apoe) is also capable of promoting the de novo biogenesis of HDL with the participation of ATP binding cassette A lipid transporter member 1 (Abca1) and plasma enzyme lecithin:cholesterol acyltransferase (Lcat), in a manner independent of a functional Apoa1. Here, we performed a comparative analysis of the functions of these HDL subpopulations. Specifically, Apoe and Apoa1 double-deficient (Apoe(-/-) × Apoa1(-/-)) mice were infected with APOA1- or APOE3-expressing adenoviruses, and APOA1-containing HDL (APOA1-HDL) and APOE3-containing HDL (APOE3-HDL), respectively, were isolated and analyzed by biochemical and physicochemical methods. Western blot and lipidomic analyses indicated significant differences in the apol