Science.gov

Sample records for distinct hif-alpha isoforms

  1. Distinct Metal Isoforms Underlie Promiscuous Activity Profiles of Metalloenzymes.

    PubMed

    Baier, Florian; Chen, John; Solomonson, Matthew; Strynadka, Natalie C J; Tokuriki, Nobuhiko

    2015-07-17

    Within a superfamily, functionally diverged metalloenzymes often favor different metals as cofactors for catalysis. One hypothesis is that incorporation of alternative metals expands the catalytic repertoire of metalloenzymes and provides evolutionary springboards toward new catalytic functions. However, there is little experimental evidence that incorporation of alternative metals changes the activity profile of metalloenzymes. Here, we systematically investigate how metals alter the activity profiles of five functionally diverged enzymes of the metallo-β-lactamase (MBL) superfamily. Each enzyme was reconstituted in vitro with six different metals, Cd(2+), Co(2+), Fe(2+), Mn(2+), Ni(2+), and Zn(2+), and assayed against eight catalytically distinct hydrolytic reactions (representing native functions of MBL enzymes). We reveal that each enzyme metal isoform has a significantly different activity level for native and promiscuous reactions. Moreover, metal preferences for native versus promiscuous activities are not correlated and, in some cases, are mutually exclusive; only particular metal isoforms disclose cryptic promiscuous activities but often at the expense of the native activity. For example, the L1 B3 β-lactamase displays a 1000-fold catalytic preference for Zn(2+) over Ni(2+) for its native activity but exhibits promiscuous thioester, phosphodiester, phosphotriester, and lactonase activity only with Ni(2+). Furthermore, we find that the five MBL enzymes exist as an ensemble of various metal isoforms in vivo, and this heterogeneity results in an expanded activity profile compared to a single metal isoform. Our study suggests that promiscuous activities of metalloenzymes can stem from an ensemble of metal isoforms in the cell, which could facilitate the functional divergence of metalloenzymes.

  2. Cotranslational and Posttranslational N-Glycosylation of Polypeptides by Distinct Mammalian OST Isoforms

    PubMed Central

    Ruiz-Canada, Catalina; Kelleher, Daniel J.; Gilmore, Reid

    2010-01-01

    Summary Asparagine-linked glycosylation of polypeptides in the lumen of the endoplasmic reticulum is catalyzed by the hetero-oligomeric oligosaccharyltransferase (OST). OST isoforms with different catalytic subunits (STT3A versus STT3B) and distinct enzymatic properties are coexpressed in mammalian cells. Using siRNA to achieve isoform-specific knockdowns, we show that the OST isoforms cooperate and act sequentially to mediate protein N-glycosylation. The STT3A OST isoform is primarily responsible for cotranslational glycosylation of the nascent polypeptide as it enters the lumen of the endoplasmic reticulum. The STT3B isoform is required for efficient cotranslational glycosylation of an acceptor site adjacent to the N-terminal signal sequence of a secreted protein. Unlike STT3A, STT3B efficiently mediates posttranslational glycosylation of a carboxyl-terminal glycosylation site in an unfolded protein. These distinct and complementary roles for the OST isoforms allow sequential scanning of polypeptides for acceptor sites to insure the maximal efficiency of N-glycosylation. PMID:19167329

  3. Distinct human NUMB isoforms regulate differentiation vs. proliferation in the neuronal lineage.

    PubMed

    Verdi, J M; Bashirullah, A; Goldhawk, D E; Kubu, C J; Jamali, M; Meakin, S O; Lipshitz, H D

    1999-08-31

    Neuronal cell fate decisions are directed in Drosophila by NUMB, a signaling adapter protein with two protein-protein interaction domains: a phosphotyrosine-binding domain and a proline-rich region (PRR) that functions as an SH3-binding domain. Here we show that there are at least four human NUMB isoforms and that these serve two distinct developmental functions in the neuronal lineage: differentiation (but not proliferation) is promoted by human NUMB protein isoforms with a type I (short) PRR. In contrast, proliferation (but not differentiation) is directed by isoforms that have a type II (long) PRR. The two types of PRR may promote distinct intracellular signaling pathways downstream of the NOTCH receptor during mammalian neurogenesis.

  4. Distinct human NUMB isoforms regulate differentiation vs. proliferation in the neuronal lineage

    PubMed Central

    Verdi, Joseph M.; Bashirullah, Arash; Goldhawk, Donna E.; Kubu, Chris J.; Jamali, Mina; Meakin, Susan O.; Lipshitz, Howard D.

    1999-01-01

    Neuronal cell fate decisions are directed in Drosophila by NUMB, a signaling adapter protein with two protein–protein interaction domains: a phosphotyrosine-binding domain and a proline-rich region (PRR) that functions as an SH3-binding domain. Here we show that there are at least four human NUMB isoforms and that these serve two distinct developmental functions in the neuronal lineage: differentiation (but not proliferation) is promoted by human NUMB protein isoforms with a type I (short) PRR. In contrast, proliferation (but not differentiation) is directed by isoforms that have a type II (long) PRR. The two types of PRR may promote distinct intracellular signaling pathways downstream of the NOTCH receptor during mammalian neurogenesis. PMID:10468633

  5. Distinct Temporal Regulation of RET Isoform Internalization: Roles of Clathrin and AP2.

    PubMed

    Crupi, Mathieu J F; Yoganathan, Piriya; Bone, Leslie N; Lian, Eric; Fetz, Andrew; Antonescu, Costin N; Mulligan, Lois M

    2015-11-01

    The RET receptor tyrosine kinase (RTK) contributes to kidney and nervous system development, and is implicated in a number of human cancers. RET is expressed as two protein isoforms, RET9 and RET51, with distinct interactions and signaling properties that contribute to these processes. RET isoforms are internalized from the cell surface into endosomal compartments in response to glial cell line-derived neurotropic factor (GDNF) ligand stimulation but the specific mechanisms of RET trafficking remain to be elucidated. Here, we used total internal reflection fluorescence (TIRF) microscopy to demonstrate that RET internalization occurs primarily through clathrin coated pits (CCPs). Activated RET receptors colocalize with clathrin, but not caveolin. The RET51 isoform is rapidly and robustly recruited to CCPs upon GDNF stimulation, while RET9 recruitment occurs more slowly and is less pronounced. We showed that the clathrin-associated adaptor protein complex 2 (AP2) interacts directly with each RET isoform through its AP2 μ subunit, and is important for RET internalization. Our data establish that interactions with the AP2 complex promote RET receptor internalization via clathrin-mediated endocytosis but that RET9 and RET51 have distinct internalization kinetics that may contribute to differences in their biological functions.

  6. Differential expression of two distinct functional isoforms of melanopsin (Opn4) in the mammalian retina.

    PubMed

    Pires, Susana S; Hughes, Steven; Turton, Michael; Melyan, Zare; Peirson, Stuart N; Zheng, Lei; Kosmaoglou, Maria; Bellingham, James; Cheetham, Michael E; Lucas, Robert J; Foster, Russell G; Hankins, Mark W; Halford, Stephanie

    2009-09-30

    Melanopsin is the photopigment that confers photosensitivity to a subset of retinal ganglion cells (pRGCs) that regulate many non-image-forming tasks such as the detection of light for circadian entrainment. Recent studies have begun to subdivide the pRGCs on the basis of morphology and function, but the origin of these differences is not yet fully understood. Here we report the identification of two isoforms of melanopsin from the mouse Opn4 locus, a previously described long isoform (Opn4L) and a novel short isoform (Opn4S) that more closely resembles the sequence and structure of rat and human melanopsins. Both isoforms, Opn4L and Opn4S, are expressed in the ganglion cell layer of the retina, traffic to the plasma membrane and form a functional photopigment in vitro. Quantitative PCR revealed that Opn4S is 40 times more abundant than Opn4L. The two variants encode predicted proteins of 521 and 466 aa and only differ in the length of their C-terminal tails. Antibodies raised to isoform-specific epitopes identified two discrete populations of melanopsin-expressing RGCs, those that coexpress Opn4L and Opn4S and those that express Opn4L only. Recent evidence suggests that pRGCs show a range of anatomical subtypes, which may reflect the functional diversity reported for mouse Opn4-mediated light responses. The distinct isoforms of Opn4 described in this study provide a potential molecular basis for generating this diversity, and it seems likely that their differential expression plays a role in generating the variety of pRGC light responses found in the mammalian retina.

  7. Distinct localizations and repression activities of MM-1 isoforms toward c-Myc.

    PubMed

    Hagio, Yuko; Kimura, Yumiko; Taira, Takahiro; Fujioka, Yuko; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2006-01-01

    MM-1 was identified as a c-Myc-binding protein and has been reported to repress the E-box-dependent transcription activity of c-Myc by recruiting HDAC1 complex via TIF1 beta/KAP1. In this study, originally isolated MM-1 was found to be a fusion protein comprised of the N-terminal 13 amino acids from the sequence of chromosome 14 and of the rest of the amino acids from that of chromosome 12 and was found to be expressed ubiquitously in all human tissues. Four splicing isoforms of MM-1, MM-1alpha, MM-1beta, MM-1gamma, and MM-1delta, which are derived from the sequence of chromosome 12, were then identified. Of these isoforms, MM-1alpha, MM-1gamma, and MM-1delta were found to be expressed in tissue-specific manners and MM-1beta was found to be expressed ubiquitously. Although all of the isoforms potentially possessed c-Myc- and TIF1beta-binding activities, MM-1beta and MM-1delta were found to be mainly localized in the cytoplasm and MM-1alpha and MM-1gamma were found to be localized in the nucleus together with both c-Myc and TIF1beta. Furthermore, when repression activities of MM-1 isoforms toward c-Myc transcription activity were examined by reporter gene assays in HeLa cells, MM-1alpha, MM-1gamma, and MM-1gamma, but not MM-1beta, were found to repress transcription activity of c-Myc, and the degrees of repression by MM-1gamma and MM-1delta were smaller than those by MM-1 and MM-1alpha. These results suggest that each MM-1 isoform distinctly regulates c-Myc transcription activity in respective tissues.

  8. Arabidopsis profilin isoforms, PRF1 and PRF2 show distinctive binding activities and subcellular distributions.

    PubMed

    Wang, Feng; Jing, Yanping; Wang, Zhen; Mao, Tonglin; Samaj, Jozef; Yuan, Ming; Ren, Haiyun

    2009-02-01

    Profilin is an actin-binding protein that shows complex effects on the dynamics of the actin cytoskeleton. There are five profilin isoforms in Arabidopsis thaliana L. However, it is still an open question whether these isoforms are functionally different. In the present study, two profilin isoforms from Arabidopsis, PRF1 and PRF2 were fused with green fluorescent protein (GFP) tag and expressed in Escherichia coli and A. thaliana in order to compare their biochemical properties in vitro and their cellular distributions in vivo. Biochemical analysis revealed that fusion proteins of GFP-PRF1 and GFP-PRF2 can bind to poly-L-proline and G-actin showing remarkable differences. GFP-PRF1 has much higher affinities for both poly-L-proline and G-actin compared with GFP-PRF2. Observations of living cells in stable transgenic A. thaliana lines revealed that 35S::GFP-PRF1 formed a filamentous network, while 35S::GFP-PRF2 formed polygonal meshes. Results from the treatment with latrunculin A and a subsequent recovery experiment indicated that filamentous alignment of GFP-PRF1 was likely associated with actin filaments. However, GFP-PRF2 localized to polygonal meshes resembling the endoplasmic reticulum. Our results provide evidence that Arabidopsis profilin isoforms PRF1 and PRF2 have different biochemical affinities for poly-L-proline and G-actin, and show distinctive localizations in living cells. These data suggest that PRF1 and PRF2 are functionally different isoforms.

  9. The Splice Isoforms of the Drosophila Ecdysis Triggering Hormone Receptor Have Developmentally Distinct Roles

    PubMed Central

    Diao, Feici; Mena, Wilson; Shi, Jonathan; Park, Dongkook; Diao, Fengqiu; Taghert, Paul; Ewer, John; White, Benjamin H.

    2016-01-01

    To grow, insects must periodically shed their exoskeletons. This process, called ecdysis, is initiated by the endocrine release of Ecdysis Trigger Hormone (ETH) and has been extensively studied as a model for understanding the hormonal control of behavior. Understanding how ETH regulates ecdysis behavior, however, has been impeded by limited knowledge of the hormone’s neuronal targets. An alternatively spliced gene encoding a G-protein-coupled receptor (ETHR) that is activated by ETH has been identified, and several lines of evidence support a role in ecdysis for its A-isoform. The function of a second ETHR isoform (ETHRB) remains unknown. Here we use the recently introduced “Trojan exon” technique to simultaneously mutate the ETHR gene and gain genetic access to the neurons that express its two isoforms. We show that ETHRA and ETHRB are expressed in largely distinct subsets of neurons and that ETHRA- but not ETHRB-expressing neurons are required for ecdysis at all developmental stages. However, both genetic and neuronal manipulations indicate an essential role for ETHRB at pupal and adult, but not larval, ecdysis. We also identify several functionally important subsets of ETHR-expressing neurons including one that coexpresses the peptide Leucokinin and regulates fluid balance to facilitate ecdysis at the pupal stage. The general strategy presented here of using a receptor gene as an entry point for genetic and neuronal manipulations should be useful in establishing patterns of functional connectivity in other hormonally regulated networks. PMID:26534952

  10. Distinct and Shared Transcriptomes Are Regulated by Microphthalmia-Associated Transcription Factor Isoforms in Mast Cells1

    PubMed Central

    Shahlaee, Amir H.; Brandal, Stephanie; Lee, Youl-Nam; Jie, Chunfa; Takemoto, Clifford M.

    2008-01-01

    The Microphthalmia-associated transcription factor (Mitf) is an essential basic helix-loop-helix leucine zipper transcription factor for mast cell development. Mice deficient in Mitf harbor a severe mast cell deficiency, and Mitf-mutant mast cells cultured ex vivo display a number of functional defects. Therefore, an understanding of the genetic program regulated by Mitf may provide important insights into mast cell differentiation. Multiple, distinct isoforms of Mitf have been identified in a variety of cell types; we found that Mitf-a, Mitf-e, and Mitf-mc were the major isoforms expressed in mast cells. To determine the physiologic function of Mitf in mast cells, we restored expression of these isoforms in primary mast cells from Mitf−/−mice. We found that these isoforms restored granular morphology and integrin-mediated migration. By microarray analysis, proteases, signaling molecules, cell surface receptor, and transporters comprised the largest groups of genes up-regulated by all isoforms. Furthermore, we found that isoforms also regulated distinct genes sets, suggesting separable biological activities. This work defines the transcriptome regulated by Mitf in mast cells and supports its role as master regulator of mast cell differentiation. Expression of multiple isoforms of this transcription factor may provide for redundancy of biological activities while also allowing diversity of function. PMID:17182576

  11. Distinct desmocollin isoforms occur in the same desmosomes and show reciprocally graded distributions in bovine nasal epidermis.

    PubMed Central

    North, A J; Chidgey, M A; Clarke, J P; Bardsley, W G; Garrod, D R

    1996-01-01

    The adhesive core of the desmosome is composed of cadherin-like glycoproteins of two families, desmocollins and desmogleins. Three isoforms of each are expressed in a tissue-specific and developmentally regulated pattern. In bovine nasal epidermis, the three desmocollin (Dsc) isoforms are expressed in overlapping domains; Dsc3 expression is strongest in the basal layer, while Dsc2 and Dsc1 are strongly expressed in the suprabasal layers. Herein we have investigated whether different isoforms are assembled into the same or distinct desmosomes by performing double immunogold labeling using isoform-specific antibodies directed against Dsc1 and Dsc3. The results show that individual desmosomes harbor both isoforms in regions where their expression territories overlap. Quantification showed that the ratio of the proteins in each desmosome altered gradually from basal to immediately suprabasal and upper suprabasal layers, labeling for Dsc1 increasing and Dsc3 decreasing. Thus desmosomes are constantly modified as cells move up the epidermis, with continuing turnover of the desmosomal glycoproteins. Statistical analysis of the quantitative data showed a possible relationship between the distributions of the two isoforms. This gradual change in desmosomal composition may constitute a vertical adhesive gradient within the epidermis, having important consequences for cell positioning and differentiation. Images Fig. 2 Fig. 3 Fig. 4 PMID:8755539

  12. Distinct or shared actions of peptide family isoforms: II. Multiple pyrokinins exert similar effects in the lobster stomatogastric nervous system.

    PubMed

    Dickinson, Patsy S; Kurland, Sienna C; Qu, Xuan; Parker, Brett O; Sreekrishnan, Anirudh; Kwiatkowski, Molly A; Williams, Alex H; Ysasi, Alexandra B; Christie, Andrew E

    2015-09-01

    Many neuropeptides are members of peptide families, with multiple structurally similar isoforms frequently found even within a single species. This raises the question of whether the individual peptides serve common or distinct functions. In the accompanying paper, we found high isoform specificity in the responses of the lobster (Homarus americanus) cardiac neuromuscular system to members of the pyrokinin peptide family: only one of five crustacean isoforms showed any bioactivity in the cardiac system. Because previous studies in other species had found little isoform specificity in pyrokinin actions, we examined the effects of the same five crustacean pyrokinins on the lobster stomatogastric nervous system (STNS). In contrast to our findings in the cardiac system, the effects of the five pyrokinin isoforms on the STNS were indistinguishable: they all activated or enhanced the gastric mill motor pattern, but did not alter the pyloric pattern. These results, in combination with those from the cardiac ganglion, suggest that members of a peptide family in the same species can be both isoform specific and highly promiscuous in their modulatory capacity. The mechanisms that underlie these differences in specificity have not yet been elucidated; one possible explanation, which has yet to be tested, is the presence and differential distribution of multiple receptors for members of this peptide family.

  13. Distinct or shared actions of peptide family isoforms: II. Multiple pyrokinins exert similar effects in the lobster stomatogastric nervous system

    PubMed Central

    Dickinson, Patsy S.; Kurland, Sienna C.; Qu, Xuan; Parker, Brett O.; Sreekrishnan, Anirudh; Kwiatkowski, Molly A.; Williams, Alex H.; Ysasi, Alexandra B.; Christie, Andrew E.

    2015-01-01

    ABSTRACT Many neuropeptides are members of peptide families, with multiple structurally similar isoforms frequently found even within a single species. This raises the question of whether the individual peptides serve common or distinct functions. In the accompanying paper, we found high isoform specificity in the responses of the lobster (Homarus americanus) cardiac neuromuscular system to members of the pyrokinin peptide family: only one of five crustacean isoforms showed any bioactivity in the cardiac system. Because previous studies in other species had found little isoform specificity in pyrokinin actions, we examined the effects of the same five crustacean pyrokinins on the lobster stomatogastric nervous system (STNS). In contrast to our findings in the cardiac system, the effects of the five pyrokinin isoforms on the STNS were indistinguishable: they all activated or enhanced the gastric mill motor pattern, but did not alter the pyloric pattern. These results, in combination with those from the cardiac ganglion, suggest that members of a peptide family in the same species can be both isoform specific and highly promiscuous in their modulatory capacity. The mechanisms that underlie these differences in specificity have not yet been elucidated; one possible explanation, which has yet to be tested, is the presence and differential distribution of multiple receptors for members of this peptide family. PMID:26206359

  14. Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents.

    PubMed

    Cho, Chang-Hoon; St-Gelais, Fannie; Zhang, Wei; Tomita, Susumu; Howe, James R

    2007-09-20

    Transmembrane AMPA receptor regulatory proteins (TARPs) are auxiliary AMPA receptor subunits that regulate both the trafficking and gating properties of AMPA receptors, and different TARP isoforms display distinct expression patterns in brain. Here, we compared the effects of four TARP isoforms on the kinetics of AMPA receptor currents. Each isoform slowed the deactivation of GluR1 currents, but the slowing was greatest with gamma-4 and gamma-8. Isoform-specific differences in desensitization were also observed that correlated with effects on deactivation. TARP isoforms also differentially modulated responses to trains of glutamate applications designed to mimic high-frequency presynaptic firing. Importantly, whereas both stargazin and gamma-4 rescued excitatory synaptic transmission in cerebellar granule cells from stargazer mice, the decay of miniature EPSCs was 2-fold slower in neurons expressing gamma-4. The results show that heterogeneity in the composition of AMPA receptor/TARP complexes contributes to synapse-specific differences in EPSC decays and frequency-dependent modulation of neurotransmission.

  15. Two isoforms of the T-cell intracellular antigen 1 (TIA-1) splicing factor display distinct splicing regulation activities. Control of TIA-1 isoform ratio by TIA-1-related protein.

    PubMed

    Izquierdo, José M; Valcárcel, Juan

    2007-07-06

    TIA-1 (T-cell Intracellular Antigen 1) and TIAR (TIA-1-related protein) are RNA-binding proteins involved in the regulation of alternative pre-mRNA splicing and other aspects of RNA metabolism. Various isoforms of these proteins exist in mammals. For example, TIA-1 presents two major isoforms (TIA-1a and TIA-1b) generated by alternative splicing of exon 5 that differ by eleven amino acids exclusive of the TIA-1a isoform. Here we show that the relative expression of TIA-1 and TIAR isoforms varies in different human tissues and cell lines, suggesting distinct functional properties and regulated isoform expression. We report that whereas TIA-1 isoforms show similar subcellular distribution and RNA binding, TIA-1b displays enhanced splicing stimulatory activity compared with TIA-1a, both in vitro and in vivo. Interestingly, TIAR depletion from HeLa and mouse embryonic fibroblasts results in an increased ratio of TIA-1b/a expression, suggesting that TIAR regulates the relative expression of TIA-1 isoforms. Taken together, the results reveal distinct functional properties of TIA-1 isoforms and the existence of a regulatory network that controls isoform expression.

  16. Subunit NDUFV3 is present in two distinct isoforms in mammalian complex I.

    PubMed

    Bridges, Hannah R; Mohammed, Khairunnisa; Harbour, Michael E; Hirst, Judy

    2017-03-01

    Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the electron transport chain in mammalian mitochondria. Extensive proteomic and structural analyses of complex I from Bos taurus heart mitochondria have shown it comprises 45 subunits encoded on both the nuclear and mitochondrial genomes; 44 of them are different and one is present in two copies. The bovine heart enzyme has provided a model for studying the composition of complex I in other mammalian species, including humans, but the possibility of additional subunits or isoforms in other species or tissues has not been explored. Here, we describe characterization of the complexes I purified from five rat tissues and from a rat hepatoma cell line. We identify a~50kDa isoform of subunit NDUFV3, for which the canonical isoform is only ~10kDa in size. We combine LC-MS and MALDI-TOF mass spectrometry data from two different purification methods (chromatography and immuno-purification) with information from blue native PAGE analyses to show the long isoform is present in the mature complex, but at substoichiometric levels. It is also present in complex I in cultured human cells. We describe evidence that the long isoform is more abundant in both the mitochondria and purified complexes from brain (relative to in heart, liver, kidney and skeletal muscle) and more abundant still in complex I in cultured cells. We propose that the long 50kDa isoform competes with its canonical 10kDa counterpart for a common binding site on the flavoprotein domain of complex I.

  17. Generation of functionally distinct isoforms of PTBP3 by alternative splicing and translation initiation

    PubMed Central

    Tan, Lit-Yeen; Whitfield, Peter; Llorian, Miriam; Monzon-Casanova, Elisa; Diaz-Munoz, Manuel D.; Turner, Martin; Smith, Christopher W.J.

    2015-01-01

    Polypyrimidine tract binding protein (PTBP1) is a widely expressed RNA binding protein that acts as a regulator of alternative splicing and of cytoplasmic mRNA functions. Vertebrates contain two closely-related paralogs with >75% amino acid sequence identity. Early replacement of PTBP1 by PTBP2 during neuronal differentiation causes a concerted set of splicing changes. By comparison, very little is known about the molecular functions or physiological roles of PTBP3, although its expression and conservation throughout the vertebrates suggest a role in haematopoietic cells. To begin to understand its functions we have characterized the mRNA and protein isoform repertoire of PTBP3. Combinatorial alternative splicing events at the 5′ end of the gene allow for the generation of eight mRNA and three major protein isoforms. Individual mRNAs generate up to three protein isoforms via alternative translation initiation by re-initiation and leaky scanning using downstream AUG codons. The N-terminally truncated PTBP3 isoforms lack nuclear localization signals and/or most of the RRM1 domain and vary in their RNA binding properties and nuclear/cytoplasmic distribution, suggesting that PTBP3 may have major post-transcriptional cytoplasmic roles. Our findings set the stage for understanding the non-redundant physiological roles of PTBP3. PMID:25940628

  18. Microfluidic source-sink model reveals effects of biophysically distinct CXCL12 isoforms in breast cancer chemotaxis.

    PubMed

    Cavnar, S P; Ray, P; Moudgil, P; Chang, S L; Luker, K E; Linderman, J J; Takayama, S; Luker, G D

    2014-05-01

    Chemokines critically regulate chemotaxis in normal and pathologic states, but there is limited understanding of how multicellular interactions generate gradients needed for cell migration. Previous studies of chemotaxis of CXCR4+ cells toward chemokine CXCL12 suggest the requirement of cells expressing scavenger receptor CXCR7 in a source-sink system. We leveraged an established microfluidic device to discover that chemotaxis of CXCR4 cells toward distinct isoforms of CXCL12 required CXCR7 scavenging only under conditions with higher than optimal levels of CXCL12. Chemotaxis toward CXCL12-β and -γ isoforms, which have greater binding to extracellular molecules and have been largely overlooked, was less dependent on CXCR7 than the more commonly studied CXCL12-α. Chemotaxis of CXCR4+ cells toward even low levels of CXCL12-γ and CXCL12-β still occurred during treatment with a FDA-approved inhibitor of CXCR4. We also detected CXCL12-γ only in breast cancers from patients with advanced disease. Physiological gradient formation within the device facilitated interrogation of key differences in chemotaxis among CXCL12 isoforms and suggests CXCL12-γ as a biomarker for metastatic cancer.

  19. Distinct cytochrome P450 aromatase isoforms in the common carp (Cyprinus carpio): sexual dimorphism and onset of ontogenic expression.

    PubMed

    Barney, Megan L; Patil, Jawahar G; Gunasekera, Rasanthi M; Carter, Chris G

    2008-05-01

    Cytochrome P450 aromatase (CYP19) is a key enzyme in the steroidogenic pathway that catalyses the conversion of testosterone to estrogen, and therefore is thought to influence gonadal sex differentiation. In an effort to understand the role of this enzyme in ovarian differentiation, we isolated cDNA encoding the two distinct isoforms, ovarian and brain (termed cyp19a and cyp19b, respectively) of adult common carp, Cyprinus carpio. The cloned cDNA for cyp19a had an open reading frame (ORF) of 518 amino acid residues, in contrast to cyp19b with an ORF of 511 amino acids. Sequence and phylogenetic analysis showed that these CYP19 isoforms were orthologous with previously described cyp19a and cyp19b from other teleosts. Quantitative real-time PCR indicated that both isoforms are expressed in adult ovary and brain, with predominant expression of cyp19a in the ovary and cyp19b in the brain. The major aromatase expressing tissue was found to be the brain, with greatest cyp19b expression in the anterior quarter (telencephalon) in both sexes. The gonad showed sexually dimorphic expression of both genes and dimorphic expression of cyp19a was observed in the cerebellum and the liver. Ontogenic expression showed that only the ovarian aromatase transcript is inherited maternally, with lower expression observed through early larval development under warmer rearing conditions. The differential and overlapping expression suggests these two aromatase genes have different roles in reproductive physiology.

  20. Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    PubMed Central

    Bultmann-Mellin, Insa; Conradi, Anne; Maul, Alexandra C.; Dinger, Katharina; Wempe, Frank; Wohl, Alexander P.; Imhof, Thomas; Wunderlich, F. Thomas; Bunck, Alexander C.; Nakamura, Tomoyuki; Koli, Katri; Bloch, Wilhelm; Ghanem, Alexander; Heinz, Andrea; von Melchner, Harald; Sengle, Gerhard; Sterner-Kock, Anja

    2015-01-01

    Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S−/−), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S−/− and Ltbp4-null (Ltbp4−/−) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C. PMID:25713297

  1. Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon

    USGS Publications Warehouse

    McCormick, Stephen D.; Regish, A.M.; Christensen, A.K.

    2009-01-01

    Gill Na(+)/K(+)-ATPase (NKA) in teleost fishes is involved in ion regulation in both freshwater and seawater. We have developed and validated rabbit polyclonal antibodies specific to the NKA alpha1a and alpha1b protein isoforms of Atlantic salmon (Salmo salar Linnaeus), and used western blots and immunohistochemistry to characterize their size, abundance and localization. The relative molecular mass of NKA alpha1a is slightly less than that for NKA beta1b. The abundance of gill NKA alpha1a was high in freshwater and became nearly undetectable after seawater acclimation. NKA alpha1b was present in small amounts in freshwater and increased 13-fold after seawater acclimation. Both NKA isoforms were detected only in chloride cells. NKA alpha1a was located in both filamental and lamellar chloride cells in freshwater, whereas in seawater it was present only as a faint background in filamental chloride cells. In freshwater, NKA alpha1b was found in a small number of filamental chloride cells, and after seawater acclimation it was found in all chloride cells on the filament and lamellae. Double simultaneous immunofluorescence indicated that NKA alpha1a and alpha1b are located in different chloride cells in freshwater. In many chloride cells in seawater, NKA alpha1b was present in greater amounts in the subapical region than elsewhere in the cell. The combined patterns in abundance and immunolocalization of these two isoforms can explain the salinity-related changes in total NKA and chloride cell abundance. The results indicate that there is a freshwater and a seawater isoform of NKA alpha-subunit in the gills of Atlantic salmon and that they are present in distinct chloride cells.

  2. Distinct Transcript Isoforms of the Atypical Chemokine Receptor 1 (ACKR1) / Duffy Antigen Receptor for Chemokines (DARC) Gene Are Expressed in Lymphoblasts and Altered Isoform Levels Are Associated with Genetic Ancestry and the Duffy-Null Allele

    PubMed Central

    Davis, Melissa B.; Walens, Andrea; Hire, Rupali; Mumin, Kauthar; Brown, Andrea M.; Ford, DeJuana; Howerth, Elizabeth W.; Monteil, Michele

    2015-01-01

    The Atypical ChemoKine Receptor 1 (ACKR1) gene, better known as Duffy Antigen Receptor for Chemokines (DARC or Duffy), is responsible for the Duffy Blood Group and plays a major role in regulating the circulating homeostatic levels of pro-inflammatory chemokines. Previous studies have shown that one common variant, the Duffy Null (Fy-) allele that is specific to African Ancestry groups, completely removes expression of the gene on erythrocytes; however, these individuals retain endothelial expression. Additional alleles are associated with a myriad of clinical outcomes related to immune responses and inflammation. In addition to allele variants, there are two distinct transcript isoforms of DARC which are expressed from separate promoters, and very little is known about the distinct transcriptional regulation or the distinct functionality of these protein isoforms. Our objective was to determine if the African specific Fy- allele alters the expression pattern of DARC isoforms and therefore could potentially result in a unique signature of the gene products, commonly referred to as antigens. Our work is the first to establish that there is expression of DARC on lymphoblasts. Our data indicates that people of African ancestry have distinct relative levels of DARC isoforms expressed in these cells. We conclude that the expression of both isoforms in combination with alternate alleles yields multiple Duffy antigens in ancestry groups, depending upon the haplotypes across the gene. Importantly, we hypothesize that DARC isoform expression patterns will translate into ancestry-specific inflammatory responses that are correlated with the axis of pro-inflammatory chemokine levels and distinct isoform-specific interactions with these chemokines. Ultimately, this work will increase knowledge of biological mechanisms underlying disparate clinical outcomes of inflammatory-related diseases among ethnic and geographic ancestry groups. PMID:26473357

  3. Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct n-termini

    SciTech Connect

    Parra, Marilyn K.; Gee, Sherry L.; Koury, Mark J.; Mohandas, Narla; Conboy, John G.

    2003-03-25

    Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA regulates expression of longer or shorter isoforms of 4.1R protein, respectively. The current study reports unexpected complexity in the 5' region of the 4.1R gene that directly affects alternative splicing of exon 2'. Three mutually exclusive alternative 5' exons, designated 1A, 1B, and 1C, were identified far upstream of exon 2 in both mouse and human genomes; all three are associated with strong transcriptional promoters in the flanking genomic sequence. Importantly, exons 1A and 1B splice differentially with respect to exon 2', generating transcripts with different 5' ends and distinct N-terminal protein coding capacity. Exon 1A-type transcripts splice so as to exclude exon 2' and therefore utilize the downstream AUG2 for translation of 80kD 4.1R protein, whereas exon 1B transcripts include exon 2' and initiate at AUG1 to synthesize 135kD isoforms. RNA blot analyses revealed that 1A transcripts increase in abundance in late erythroblasts, consistent with the previously demonstrated upregulation of 80kD 4.1R during terminal erythroid differentiation. Together these results suggest that synthesis of structurally distinct 4.1R protein isoforms in various cell types is regulated by a novel mechanism requiring coordination between upstream transcription initiation events and downstream alternative splicing events.

  4. Distinct Functions of Different scl Isoforms in Zebrafish Definitive Hematopoietic Stem Cell Initiation and Maintenance

    NASA Astrophysics Data System (ADS)

    Lan, Yahui

    2011-07-01

    The establishment of entire blood system relies on the multi-potent hematopoietic stem cells (HSCs), thus identifying the molecular mechanism in HSC generation is of importance for not only complementing the fundamental knowledge in stem cell biology, but also providing insights to the regenerative therapies. Recent researches have documented the formation of nascent HSCs through a direct transition from ventral aortic endothelium, named as endothelial hematopoietic transition (EHT) process. However, the precise genetic program engaged in this process remains largely elusive. The transcription factor scl plays pivotal and conserved roles in embryonic and adult hematopoiesis from teleosts to mammals. Our lab have previously identified a new truncated scl isoform, scl-beta, which is indispensible for the specification of HSCs in the ventral wall of dorsal aorta (VDA), the zebrafish equivalent of mammalian fetal hematopoietic organ. Here we observe that, by combining time-lapse confocal imaging of transgenic zebrafish and genetic epistasis analysis, scl-beta is expressed in a subset of ventral aortic endothelial cells and critical for their forthcoming transformation to hemogenic endothelium; in contrast, runx1 is required downstream to govern the successful egress of the hemogenic endothelial cells to become naive HSCs. In addition, the traditional known full-length scl-alpha isoform is firstly evidenced to be required for the maintenance or survival of newly formed HSCs in VDA. Collectively our data has established the genetic hierarchy controlling discrete steps in the consecutive process of HSC formation from endothelial cells and further development in VDA.

  5. Reduced Sialylation Impacts Ventricular Repolarization by Modulating Specific K+ Channel Isoforms Distinctly*

    PubMed Central

    Ednie, Andrew R.; Bennett, Eric S.

    2015-01-01

    Voltage-gated K+ channels (Kv) are responsible for repolarizing excitable cells and can be heavily glycosylated. Cardiac Kv activity is indispensable where even minimal reductions in function can extend action potential duration, prolong QT intervals, and ultimately contribute to life-threatening arrhythmias. Diseases such as congenital disorders of glycosylation often cause significant cardiac phenotypes that can include arrhythmias. Here we investigated the impact of reduced sialylation on ventricular repolarization through gene deletion of the sialyltransferase ST3Gal4. ST3Gal4-deficient mice (ST3Gal4−/−) had prolonged QT intervals with a concomitant increase in ventricular action potential duration. Ventricular apex myocytes isolated from ST3Gal4−/− mice demonstrated depolarizing shifts in activation gating of the transient outward (Ito) and delayed rectifier (IKslow) components of K+ current with no change in maximum current densities. Consistently, similar protein expression levels of the three Kv isoforms responsible for Ito and IKslow were measured for ST3Gal4−/− versus controls. However, novel non-enzymatic sialic acid labeling indicated a reduction in sialylation of ST3Gal4−/− ventricular Kv4.2 and Kv1.5, which contribute to Ito and IKslow, respectively. Thus, we describe here a novel form of regulating cardiac function through the activities of a specific glycogene product. Namely, reduced ST3Gal4 activity leads to a loss of isoform-specific Kv sialylation and function, thereby limiting Kv activity during the action potential and decreasing repolarization rate, which likely contributes to prolonged ventricular repolarization. These studies elucidate a novel role for individual glycogene products in contributing to a complex network of cardiac regulation under normal and pathologic conditions. PMID:25525262

  6. Distinct roles of AKT isoforms in regulating β1-integrin activity, migration, and invasion in prostate cancer

    PubMed Central

    Virtakoivu, Reetta; Pellinen, Teijo; Rantala, Juha K.; Perälä, Merja; Ivaska, Johanna

    2012-01-01

    AKT1 and AKT2 kinases have been shown to play opposite roles in breast cancer migration and invasion. In this study, an RNA interference screen for integrin activity inhibitors identified AKT1 as an inhibitor of β1-integrin activity in prostate cancer. Validation experiments investigating all three AKT isoforms demonstrated that, unlike in breast cancer, both AKT1 and AKT2 function as negative regulators of cell migration and invasion in PC3 prostate cancer cells. Down-regulation of AKT1 and AKT2, but not AKT3, induced activation of cell surface β1-integrins and enhanced adhesion, migration, and invasion. Silencing of AKT1 and AKT2 also resulted in increased focal adhesion size. Importantly, the mechanisms involved in integrin activity regulation were distinct for the two AKT isoforms. Silencing of AKT1 relieved feedback suppression of the expression and activity of several receptor tyrosine kinases, including EGFR and MET, with established cross-talk with β1-integrins. Silencing of AKT2, on the other hand, induced up-regulation of the microRNA-200 (miR-200) family, and overexpression of miR-200 was sufficient to induce integrin activity and cell migration in PC3 cells. Taken together, these data define an inhibitory role for both AKT1 and AKT2 in prostate cancer migration and invasion and highlight the cell type–specific actions of AKT kinases in the regulation of cell motility. PMID:22809628

  7. Distinct and redundant roles of the non-muscle myosin II isoforms and functional domains.

    PubMed

    Wang, Aibing; Ma, Xuefei; Conti, Mary Anne; Adelstein, Robert S

    2011-10-01

    We propose that the in vivo functions of NM II (non-muscle myosin II) can be divided between those that depend on the N-terminal globular motor domain and those less dependent on motor activity but more dependent on the C-terminal domain. The former, being more dependent on the kinetic properties of NM II to translocate actin filaments, are less amenable to substitution by different NM II isoforms, whereas the in vivo functions of the latter, which involve the structural properties of NM II to cross-link actin filaments, are more amenable to substitution. In light of this hypothesis, we examine the ability of NM II-A, as well as a motor-compromised form of NM II-B, to replace NM II-B and rescue neuroepithelial cell-cell adhesion defects and hydrocephalus in the brain of NM II-B-depleted mice. We also examine the ability of NM II-B as well as chimaeric forms of NM II (II-A head and II-B tail and vice versa) to substitute for NM II-A in cell-cell adhesions in II-A-ablated mice. However, we also show that certain functions, such as neuronal cell migration in the developing brain and vascularization of the mouse embryo and placenta, specifically require NM II-B and II-A respectively.

  8. Distinct Properties of the Two Isoforms of CDP-Diacylglycerol Synthase

    PubMed Central

    2015-01-01

    CDP-diacylglycerol synthases (CDS) are critical enzymes that catalyze the formation of CDP-diacylglycerol (CDP-DAG) from phosphatidic acid (PA). Here we show in vitro that the two isoforms of human CDS, CDS1 and CDS2, show different acyl chain specificities for its lipid substrate. CDS2 is selective for the acyl chains at the sn-1 and sn-2 positions, the most preferred species being 1-stearoyl-2-arachidonoyl-sn-phosphatidic acid. CDS1, conversely, shows no particular substrate specificity, displaying similar activities for almost all substrates tested. Additionally, we show that inhibition of CDS2 by phosphatidylinositol is also acyl chain-dependent, with the strongest inhibition seen with the 1-stearoyl-2-arachidonoyl species. CDS1 shows no acyl chain-dependent inhibition. Both CDS1 and CDS2 are inhibited by their anionic phospholipid end products, with phosphatidylinositol-(4,5)-bisphosphate showing the strongest inhibition. Our results indicate that CDS1 and CDS2 could create different CDP-DAG pools that may serve to enrich different phospholipid species with specific acyl chains. PMID:25375833

  9. Four Isoforms of Arabidopsis 4-Coumarate:CoA Ligase Have Overlapping yet Distinct Roles in Phenylpropanoid Metabolism1[OPEN

    PubMed Central

    Kim, Jeong Im

    2015-01-01

    The biosynthesis of lignin, flavonoids, and hydroxycinnamoyl esters share the first three enzymatic steps of the phenylpropanoid pathway. The last shared step is catalyzed by 4-coumarate:CoA ligase (4CL), which generates p-coumaroyl CoA and caffeoyl CoA from their respective acids. Four isoforms of 4CL have been identified in Arabidopsis (Arabidopsis thaliana). Phylogenetic analysis reveals that 4CL1, 4CL2, and 4CL4 are more closely related to each other than to 4CL3, suggesting that the two groups may serve different biological functions. Promoter-GUS analysis shows that 4CL1 and 4CL2 are expressed in lignifying cells. In contrast, 4CL3 is expressed in a broad range of cell types, and 4CL3 has acquired a distinct role in flavonoid metabolism. Sinapoylmalate, the major hydroxycinnamoyl ester found in Arabidopsis, is greatly reduced in the 4cl1 4cl3 mutant, showing that 4CL1 and 4CL3 function redundantly in its biosynthesis. 4CL1 accounts for the majority of the total 4CL activity, and loss of 4CL1 leads to reduction in lignin content but no growth defect. The 4cl1 4cl2 and 4cl1 4cl2 4cl3 mutants are both dwarf but do not have further reduced lignin than the 4cl1 mutant, indicating that either 4CL1 or 4CL2 is required for normal plant growth. Although 4CL4 has a limited expression profile, it does make a modest contribution to lignin biosynthesis. Together, these data show that the four isoforms of 4CL in Arabidopsis have overlapping yet distinct roles in phenylpropanoid metabolism. PMID:26491147

  10. Glucocorticoid receptor isoforms direct distinct mitochondrial programs to regulate ATP production

    PubMed Central

    Morgan, David J.; Poolman, Toryn M.; Williamson, Andrew J. K.; Wang, Zichen; Clark, Neil R.; Ma’ayan, Avi; Whetton, Anthony D.; Brass, Andrew; Matthews, Laura C.; Ray, David W.

    2016-01-01

    The glucocorticoid receptor (GR), a nuclear receptor and major drug target, has a highly conserved minor splice variant, GRγ, which differs by a single arginine within the DNA binding domain. GRγ, which comprises 10% of all GR transcripts, is constitutively expressed and tightly conserved through mammalian evolution, suggesting an important non-redundant role. However, to date no specific role for GRγ has been reported. We discovered significant differences in subcellular localisation, and nuclear-cytoplasmic shuttling in response to ligand. In addition the GRγ transcriptome and protein interactome was distinct, and with a gene ontology signal for mitochondrial regulation which was confirmed using Seahorse technology. We propose that evolutionary conservation of the single additional arginine in GRγ is driven by a distinct, non-redundant functional profile, including regulation of mitochondrial function. PMID:27226058

  11. Distinct global binding patterns of the Wilms tumor gene 1 (WT1) −KTS and +KTS isoforms in leukemic cells

    PubMed Central

    Ullmark, Tove; Järvstråt, Linnea; Sandén, Carl; Montano, Giorgia; Jernmark-Nilsson, Helena; Lilljebjörn, Henrik; Lennartsson, Andreas; Fioretos, Thoas; Drott, Kristina; Vidovic, Karina; Nilsson, Björn; Gullberg, Urban

    2017-01-01

    The zinc finger transcription factor Wilms tumor gene 1 (WT1) acts as an oncogene in acute myeloid leukemia. A naturally occurring alternative splice event between zinc fingers three and four, removing or retaining three amino acids (±KTS), is believed to change the DNA binding affinity of WT1, although there are conflicting data regarding the binding affinity and motifs of the different isoforms. Increased expression of the WT1 −KTS isoform at the expense of the WT1 +KTS isoform is associated with poor prognosis in acute myeloid leukemia. We determined the genome-wide binding pattern of WT1 −KTS and WT1 +KTS in leukemic K562 cells by chromatin immunoprecipitation and deep sequencing. We discovered that the WT1 −KTS isoform predominantly binds close to transcription start sites and to enhancers, in a similar fashion to other transcription factors, whereas WT1 +KTS binding is enriched within gene bodies. We observed a significant overlap between WT1 −KTS and WT1 +KTS target genes, despite the binding sites being distinct. Motif discovery revealed distinct binding motifs for the isoforms, some of which have been previously reported as WT1 binding sites. Additional analyses showed that both WT1 −KTS and WT1 +KTS target genes are more likely to be transcribed than non-targets, and are involved in cell proliferation, cell death, and development. Our study provides evidence that WT1 −KTS and WT1 +KTS share target genes yet still bind distinct locations, indicating isoform-specific regulation in transcription of genes related to cell proliferation and differentiation, consistent with the involvement of WT1 in acute myeloid leukemia. PMID:27612989

  12. Glutamine synthetase isoforms in nitrogen-fixing soybean nodules: distinct oligomeric structures and thiol-based regulation.

    PubMed

    Masalkar, Pintu D; Roberts, Daniel M

    2015-01-16

    Legume root nodule glutamine synthetase (GS) catalyzes the assimilation of ammonia produced by nitrogen fixation. Two GS isoform subtypes (GS1β and GS1γ) are present in soybean nodules. GS1γ isoforms differ from GS1β isoforms in terms of their susceptibility to reversible inhibition by intersubunit disulfide bond formation between C159 and C92 at the shared active site at subunit interfaces. Although nodule GS enzymes share 86% amino acid sequence identity, analytical ultracentrifugation experiments showed that GS1γ is a dodecamer, whereas the GS1β is a decamer. It is proposed that this difference contributes to the differential thiol sensitivity of each isoform, and that GS1γ1 may be a target of thiol-based regulation.

  13. Expression of eight distinct MHC isoforms in bovine striated muscles: evidence for MHC-2B presence only in extraocular muscles.

    PubMed

    Toniolo, L; Maccatrozzo, L; Patruno, M; Caliaro, F; Mascarello, F; Reggiani, C

    2005-11-01

    This study aimed to analyse the expression of myosin heavy chain (MHC) isoforms in bovine muscles, with particular attention to the MHC-2B gene. Diaphragm, longissimus dorsi, masseter, several laryngeal muscles and two extraocular muscles (rectus lateralis and retractor bulbi) were sampled in adult male Bos taurus (age 18-24 months, mass 400-500 kg) and analysed by RT-PCR, gel electrophoresis and immunohistochemistry. Transcripts and proteins corresponding to eight MHC isoforms were identified: MHC-alpha and MHC-beta/slow (or MHC-1), two developmental isoforms (MHC-embryonic and MHC-neonatal), three adult fast isoforms (MHC-2A, MHC-2X and MHC-2B) and the extraocular isoform MHC-Eo. All eight MHC isoforms were found to be co-expressed in extrinsic eye muscles, retractor bulbi and rectus lateralis, four (beta/slow, 2A, 2X, neonatal) in laryngeal muscles, three (beta/slow, 2A and 2X) in trunk and limb muscles and two (beta/slow and alpha) in masseter. The expression of MHC-2B and MHC-Eo was restricted to extraocular muscles. Developmental MHC isoforms (neonatal and embryonic) were only found in specialized muscles in the larynx and in the eye. MHC-alpha was only found in extraocular and masseter muscle. Single fibres dissected from masseter, diaphragm and longissimus were classified into five groups (expressing, respectively, beta/slow, alpha, slow and 2A, 2A and 2X) on the basis of MHC isoform electrophoretical separation, and their contractile properties [maximum shortening velocity (v(0)) and isometric tension (P(0))] were determined. v(0) increased progressively from slow to fast 2A and fast 2X, whereas hybrid 1-2A fibres and fibres containing MHC-alpha were intermediate between slow and fast 2A.

  14. Co-immunoprecipitation with Tau Isoform-specific Antibodies Reveals Distinct Protein Interactions and Highlights a Putative Role for 2N Tau in Disease*

    PubMed Central

    Liu, Chang; Song, Xiaomin; Nisbet, Rebecca

    2016-01-01

    Alternative splicing generates multiple isoforms of the microtubule-associated protein Tau, but little is known about their specific function. In the adult mouse brain, three Tau isoforms are expressed that contain either 0, 1, or 2 N-terminal inserts (0N, 1N, and 2N). We generated Tau isoform-specific antibodies and performed co-immunoprecipitations followed by tandem mass tag multiplexed quantitative mass spectrometry. We identified novel Tau-interacting proteins of which one-half comprised membrane-bound proteins, localized to the plasma membrane, mitochondria, and other organelles. Tau was also found to interact with proteins involved in presynaptic signal transduction. MetaCore analysis revealed one major Tau interaction cluster that contained 33 Tau pulldown proteins. To explore the pathways in which these proteins are involved, we conducted an ingenuity pathway analysis that revealed two significant overlapping pathways, “cell-to-cell signaling and interaction” and “neurological disease.” The functional enrichment tool DAVID showed that in particular the 2N Tau-interacting proteins were specifically associated with neurological disease. Finally, for a subset of Tau interactions (apolipoprotein A1 (apoA1), apoE, mitochondrial creatine kinase U-type, β-synuclein, synaptogyrin-3, synaptophysin, syntaxin 1B, synaptotagmin, and synapsin 1), we performed reverse co-immunoprecipitations, confirming the preferential interaction of specific isoforms. For example, apoA1 displayed a 5-fold preference for the interaction with 2N, whereas β-synuclein showed preference for 0N. Remarkably, a reverse immunoprecipitation with apoA1 detected only the 2N isoform. This highlights distinct protein interactions of the different Tau isoforms, suggesting that they execute different functions in brain tissue. PMID:26861879

  15. Analysis of Distinct Roles of CaMKK Isoforms Using STO-609-Resistant Mutants in Living Cells.

    PubMed

    Fujiwara, Yuya; Hiraoka, Yuri; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2015-06-30

    To assess the isoform specificity of the Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK)-mediated signaling pathway using a CaMKK inhibitor (STO-609) in living cells, we have established A549 cell lines expressing STO-609-resistant mutants of CaMKK isoforms. Following serial mutagenesis studies, we have succeeded in obtaining an STO-609-resistant CaMKKα mutant (Ala292Thr/Leu233Phe) and a CaMKKβ mutant (Ala328Thr/Val269Phe), which showed sensitivity to STO-609 that was 2-3 orders of magnitude lower without an appreciable effect on kinase activity or CaM requirement. These results are consistent with the results obtained for CaMKK activities in the extracts of A549 cells stably expressing the mutants of CaMKK isoforms. Ionomycin-induced 5'-AMP-activated protein kinase (AMPK) phosphorylation at Thr172 in A549 cells expressing either the wild-type or the STO-609-resistant mutant of CaMKKα was completely suppressed by STO-609 treatment but resistant to the inhibitor in the presence of the CaMKKβ mutant (Ala328Thr/Val269Phe). This result strongly suggested that CaMKKβ is responsible for ionomycin-induced AMPK activation, which supported previous reports. In contrast, ionomycin-induced CaMKIV phosphorylation at Thr196 was resistant to STO-609 treatment in A549 cells expressing STO-609-resistant mutants of both CaMKK isoforms, indicating that both CaMKK isoforms are capable of phosphorylating and activating CaMKIV in living cells. Considering these results together, STO-609-resistant CaMKK mutants developed in this study may be useful for distinguishing CaMKK isoform-mediated signaling pathways in combination with the use of an inhibitor compound.

  16. Novel exons in the tbx5 gene locus generate protein isoforms with distinct expression domains and function.

    PubMed

    Yamak, Abir; Georges, Romain O; Sheikh-Hassani, Massomeh; Morin, Martin; Komati, Hiba; Nemer, Mona

    2015-03-13

    TBX5 is the gene mutated in Holt-Oram syndrome, an autosomal dominant disorder with complex heart and limb deformities. Its protein product is a member of the T-box family of transcription factors and an evolutionarily conserved dosage-sensitive regulator of heart and limb development. Understanding TBX5 regulation is therefore of paramount importance. Here we uncover the existence of novel exons and provide evidence that TBX5 activity may be extensively regulated through alternative splicing to produce protein isoforms with differing N- and C-terminal domains. These isoforms are also present in human heart, indicative of an evolutionarily conserved regulatory mechanism. The newly identified isoforms have different transcriptional properties and can antagonize TBX5a target gene activation. Droplet Digital PCR as well as immunohistochemistry with isoform-specific antibodies reveal differential as well as overlapping expression domains. In particular, we find that the predominant isoform in skeletal myoblasts is Tbx5c, and we show that it is dramatically up-regulated in differentiating myotubes and is essential for myotube formation. Mechanistically, TBX5c antagonizes TBX5a activation of pro-proliferative signals such as IGF-1, FGF-10, and BMP4. The results provide new insight into Tbx5 regulation and function that will further our understanding of its role in health and disease. The finding of new exons in the Tbx5 locus may also be relevant to mutational screening especially in the 30% of Holt-Oram syndrome patients with no mutations in the known TBX5a exons.

  17. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins

    PubMed Central

    Riggio, Marina; Perrone, María C.; Polo, María L.; Rodriguez, María J.; May, María; Abba, Martín; Lanari, Claudia; Novaro, Virginia

    2017-01-01

    The purpose of this study was to elucidate the mechanisms associated with the specific effects of AKT1 and AKT2 isoforms in breast cancer progression. We modulated the abundance of specific AKT isoforms in IBH-6 and T47D human breast cancer cell lines and showed that AKT1 promoted cell proliferation, through S6 and cyclin D1 upregulation, but it inhibited cell migration and invasion through β1-integrin and focal adhesion kinase (FAK) downregulation. In contrast, AKT2 promoted cell migration and invasion through F-actin and vimentin induction. Thus, while overexpression of AKT1 promoted local tumor growth, downregulation of AKT1 or overexpression of AKT2 promoted peritumoral invasion and lung metastasis. Furthermore, we evaluated The Cancer Genome Atlas (TCGA) dataset for invasive breast carcinomas and found that increased AKT2 but not AKT1 mRNA levels correlated with a worse clinical outcome. We conclude that AKT isoforms play specific roles in different steps of breast cancer progression, with AKT1 involved in the local tumor growth and AKT2 involved in the distant tumor dissemination, having AKT2 a poorer prognostic value and consequently being a worthwhile target for therapy. PMID:28287129

  18. RhoGAP18B Isoforms Act on Distinct Rho-Family GTPases and Regulate Behavioral Responses to Alcohol via Cofilin

    PubMed Central

    Kalahasti, Geetha; Rodan, Aylin R.; Rothenfluh, Adrian

    2015-01-01

    Responses to the effects of ethanol are highly conserved across organisms, with reduced responses to the sedating effects of ethanol being predictive of increased risk for human alcohol dependence. Previously, we described that regulators of actin dynamics, such as the Rho-family GTPases Rac1, Rho1, and Cdc42, alter Drosophila’s sensitivity to ethanol-induced sedation. The GTPase activating protein RhoGAP18B also affects sensitivity to ethanol. To better understand how different RhoGAP18B isoforms affect ethanol sedation, we examined them for their effects on cell shape, GTP-loading of Rho-family GTPase, activation of the actin-severing cofilin, and actin filamentation. Our results suggest that the RhoGAP18B-PA isoform acts on Cdc42, while PC and PD act via Rac1 and Rho1 to activate cofilin. In vivo, a loss-of-function mutation in the cofilin-encoding gene twinstar leads to reduced ethanol-sensitivity and acts in concert with RhoGAP18B. Different RhoGAP18B isoforms, therefore, act on distinct subsets of Rho-family GTPases to modulate cofilin activity, actin dynamics, and ethanol-induced behaviors. PMID:26366560

  19. Distinct interaction modes of an AKAP bound to two regulatory subunit isoforms of protein kinase A revealed by amide hydrogen/deuterium exchange.

    PubMed

    Burns-Hamuro, Lora L; Hamuro, Yoshitomo; Kim, Jack S; Sigala, Paul; Fayos, Rosa; Stranz, David D; Jennings, Patricia A; Taylor, Susan S; Woods, Virgil L

    2005-12-01

    The structure of an AKAP docked to the dimerization/docking (D/D) domain of the type II (RIIalpha) isoform of protein kinase A (PKA) has been well characterized, but there currently is no detailed structural information of an AKAP docked to the type I (RIalpha) isoform. Dual-specific AKAP2 (D-AKAP2) binds in the nanomolar range to both isoforms and provided us with an opportunity to characterize the isoform-selective nature of AKAP binding using a common docked ligand. Hydrogen/deuterium (H/D) exchange combined with mass spectrometry (DXMS) was used to probe backbone structural changes of an alpha-helical A-kinase binding (AKB) motif from D-AKAP2 docked to both RIalpha and RIIalpha D/D domains. The region of protection upon complex formation and the magnitude of protection from H/D exchange were determined for both interacting partners in each complex. The backbone of the AKB ligand was more protected when bound to RIalpha compared to RIIalpha, suggesting an increased helical stabilization of the docked AKB ligand. This combined with a broader region of backbone protection induced by the AKAP on the docking surface of RIalpha indicated that there were more binding constraints for the AKB ligand when bound to RIalpha. This was in contrast to RIIalpha, which has a preformed, localized binding surface. These distinct modes of AKAP binding may contribute to the more discriminating nature of the RIalpha AKAP-docking surface. DXMS provides valuable structural information for understanding binding specificity in the absence of a high-resolution structure, and can readily be applied to other protein-ligand and protein-protein interactions.

  20. Laminin and type IV collagen isoform substitutions occur in temporally and spatially distinct patterns in developing kidney glomerular basement membranes.

    PubMed

    Abrahamson, Dale R; St John, Patricia L; Stroganova, Larysa; Zelenchuk, Adrian; Steenhard, Brooke M

    2013-10-01

    Kidney glomerular basement membranes (GBMs) undergo laminin and type IV collagen isoform substitutions during glomerular development, which are believed to be required for maturation of the filtration barrier. Specifically, GBMs of earliest glomeruli contain laminin α1β1γ1 and collagen α1α2α1(IV), whereas mature glomeruli contain laminin α5β2γ1 and collagen α3α4α5(IV). Here, we used confocal microscopy to simultaneously evaluate expression of different laminin and collagen IV isoforms in newborn mouse GBMs. Our results show loss of laminin α1 from GBMs in early capillary loop stages and continuous linear deposition of laminin bearing the α5 chain thereafter. In contrast, collagen α1α2α1(IV) persisted in linear patterns into late capillary loop stages, when collagen α3α4α5(IV) first appeared in discontinuous, non-linear patterns. This patchy pattern for collagen α3α4α5(IV) continued into maturing glomeruli where there were lengths of linear, laminin α5-positive GBM entirely lacking either isoform of collagen IV. Relative abundance of laminin and collagen IV mRNAs in newborn and 5-week-old mouse kidneys also differed, with those encoding laminin α1, α5, β1, β2, and γ1, and collagen α1(IV) and α2(IV) chains all significantly declining at 5 weeks, but α3(IV) and α4(IV) were significantly upregulated. We conclude that different biosynthetic mechanisms control laminin and type IV collagen expression in developing glomeruli.

  1. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    PubMed

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B; Ahmed, Mohamed R; Gurevich, Eugenia V

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  2. Distinct Cellular and Subcellular Distributions of G Protein-Coupled Receptor Kinase and Arrestin Isoforms in the Striatum

    PubMed Central

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B.; Ahmed, Mohamed R.; Gurevich, Eugenia V.

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling. PMID:23139825

  3. Distinct pools of cAMP centre on different isoforms of adenylyl cyclase in pituitary-derived GH3B6 cells.

    PubMed

    Wachten, Sebastian; Masada, Nanako; Ayling, Laura-Jo; Ciruela, Antonio; Nikolaev, Viacheslav O; Lohse, Martin J; Cooper, Dermot M F

    2010-01-01

    Microdomains have been proposed to explain specificity in the myriad of possible cellular targets of cAMP. Local differences in cAMP levels can be generated by phosphodiesterases, which control the diffusion of cAMP. Here, we address the possibility that adenylyl cyclases, the source of cAMP, can be primary architects of such microdomains. Distinctly regulated adenylyl cyclases often contribute to total cAMP levels in endogenous cellular settings, making it virtually impossible to determine the contribution of a specific isoform. To investigate cAMP dynamics with high precision at the single-isoform level, we developed a targeted version of Epac2-camps, a cAMP sensor, in which the sensor was tagged to a catalytically inactive version of the Ca(2+)-stimulable adenylyl cyclase 8 (AC8). This sensor, and less stringently targeted versions of Epac2-camps, revealed opposite regulation of cAMP synthesis in response to Ca(2+) in GH(3)B(6) pituitary cells. Ca(2+) release triggered by thyrotropin-releasing hormone stimulated the minor endogenous AC8 species. cAMP levels were decreased by inhibition of AC5 and AC6, and simultaneous activation of phosphodiesterases, in different compartments of the same cell. These findings demonstrate the existence of distinct adenylyl-cyclase-centered cAMP microdomains in live cells and open the door to their molecular micro-dissection.

  4. Differential remodeling of actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion.

    PubMed

    Mouneimne, Ghassan; Hansen, Scott D; Selfors, Laura M; Petrak, Lara; Hickey, Michele M; Gallegos, Lisa L; Simpson, Kaylene J; Lim, James; Gertler, Frank B; Hartwig, John H; Mullins, R Dyche; Brugge, Joan S

    2012-11-13

    Dynamic actin cytoskeletal reorganization is integral to cell motility. Profilins are well-characterized regulators of actin polymerization; however, functional differences among coexpressed profilin isoforms are not well defined. Here, we demonstrate that profilin-1 and profilin-2 differentially regulate membrane protrusion, motility, and invasion; these processes are promoted by profilin-1 and suppressed by profilin-2. Compared to profilin-1, profilin-2 preferentially drives actin polymerization by the Ena/VASP protein, EVL. Profilin-2 and EVL suppress protrusive activity and cell motility by an actomyosin contractility-dependent mechanism. Importantly, EVL or profilin-2 downregulation enhances invasion in vitro and in vivo. In human breast cancer, lower EVL expression correlates with high invasiveness and poor patient outcome. We propose that profilin-2/EVL-mediated actin polymerization enhances actin bundling and suppresses breast cancer cell invasion.

  5. Human bronchial smooth muscle cells express adenylyl cyclase isoforms 2, 4, and 6 in distinct membrane microdomains.

    PubMed

    Bogard, Amy S; Xu, Congfeng; Ostrom, Rennolds S

    2011-04-01

    Adenylyl cyclases (AC) are important regulators of airway smooth muscle function, because β-adrenergic receptor (AR) agonists stimulate AC activity and increase airway diameter. We assessed expression of AC isoforms in human bronchial smooth muscle cells (hBSMC). Reverse transcriptase-polymerase chain reaction and immunoblot analyses detected expression of AC2, AC4, and AC6. Forskolin-stimulated AC activity in membranes from hBSMC displayed Ca(2+)-inhibited and G(βγ)-stimulated AC activity, consistent with expression of AC6, AC2, and AC4. Isoproterenol-stimulated AC activity was inhibited by Ca(2+) but unaltered by G(βγ), whereas butaprost-stimulated AC activity was stimulated by G(βγ) but unaffected by Ca(2+) addition. Using sucrose density centrifugation to isolate lipid raft fractions, we found that only AC6 localized in lipid raft fractions, whereas AC2 and AC4 localized in nonraft fractions. Immunoisolation of caveolae using caveolin-1 antibodies yielded Ca(2+)-inhibited AC activity (consistent with AC6 expression), whereas the nonprecipitated material displayed G(βγ)-stimulated AC activity (consistent with expression of AC2 and/or AC4). Overexpression of AC6 enhanced cAMP production in response to isoproterenol and beraprost but did not increase responses to prostaglandin E(2) or butaprost. β(2)AR, but not prostanoid EP(2) or EP(4) receptors, colocalized with AC5/6 in lipid raft fractions. Thus, particular G protein-coupled receptors couple to discreet AC isoforms based, in part, on their colocalization in membrane microdomains. These different cAMP signaling compartments in airway smooth muscle cells are responsive to different hormones and neurotransmitters and can be regulated by different coincident signals such as Ca(2+) and G(βγ).

  6. Cysteine proteinase-1 and cut protein isoform control dendritic innervation of two distinct sensory fields by a single neuron.

    PubMed

    Lyons, Gray R; Andersen, Ryan O; Abdi, Khadar; Song, Won-Seok; Kuo, Chay T

    2014-03-13

    Dendrites often exhibit structural changes in response to local inputs. Although mechanisms that pattern and maintain dendritic arbors are becoming clearer, processes regulating regrowth, during context-dependent plasticity or after injury, remain poorly understood. We found that a class of Drosophila sensory neurons, through complete pruning and regeneration, can elaborate two distinct dendritic trees, innervating independent sensory fields. An expression screen identified Cysteine proteinase-1 (Cp1) as a critical regulator of this process. Unlike known ecdysone effectors, Cp1-mutant ddaC neurons pruned larval dendrites normally but failed to regrow adult dendrites. Cp1 expression was upregulated/concentrated in the nucleus during metamorphosis, controlling production of a truncated Cut homeodomain transcription factor. This truncated Cut, but not the full-length protein, allowed Cp1-mutant ddaC neurons to regenerate higher-order adult dendrites. These results identify a molecular pathway needed for dendrite regrowth after pruning, which allows the same neuron to innervate distinct sensory fields.

  7. Different N-terminal isoforms of Oct-1 control expression of distinct sets of genes and their high levels in Namalwa Burkitt's lymphoma cells affect a wide range of cellular processes

    PubMed Central

    Pankratova, Elizaveta V.; Stepchenko, Alexander G.; Portseva, Tatiana; Mogila, Vladic A.; Georgieva, Sofia G.

    2016-01-01

    Oct-1 transcription factor has various functions in gene regulation. Its expression level is increased in several types of cancer and is associated with poor survival prognosis. Here we identified distinct Oct-1 protein isoforms in human cells and compared gene expression patterns and functions for Oct-1A, Oct-1L, and Oct-1X isoforms that differ by their N-terminal sequences. The longest isoform, Oct-1A, is abundantly expressed and is the main Oct-1 isoform in most of human tissues. The Oct-1L and the weakly expressed Oct-1X regulate the majority of Oct-1A targets as well as additional sets of genes. Oct-1X controls genes involved in DNA replication, DNA repair, RNA processing, and cellular response to stress. The high level of Oct-1 isoforms upregulates genes related to cell cycle progression and activates proliferation both in Namalwa Burkitt's lymphoma cells and primary human fibroblasts. It downregulates expression of genes related to antigen processing and presentation, cytokine-cytokine receptor interaction, oxidative metabolism, and cell adhesion, thus facilitating pro-oncogenic processes. PMID:27407111

  8. Developmental increase in ecto-5'-nucleotidase activity overlaps with appearance of two immunologically distinct enzyme isoforms in rat hippocampal synaptic plasma membranes.

    PubMed

    Grkovic, Ivana; Bjelobaba, Ivana; Nedeljkovic, Nadezda; Mitrovic, Natasa; Drakulic, Dunja; Stanojlovic, Milos; Horvat, Anica

    2014-09-01

    Ecto-5'-nucleotidase (e-5NT), a glycosylphosphatidylinositol-linked membrane protein, catalyzes a conversion of AMP to adenosine, which influences nearly every aspect of brain physiology, including embryonic and postnatal brain development. The present study aimed to investigate a pattern of expression, activity and kinetic properties of e-5NT in the hippocampal formation and synaptic plasma membrane (SPM) preparations in rats at postnatal days (PDs) 7, 15, 20, 30 and 90. By combining gene expression analysis and enzyme histochemistry, we observed that e-5NT mRNA reached the adult level at PD20, while the enzyme activity continued to increase beyond this age. Further analysis revealed that hippocampal layers rich in synapses expressed the highest levels of e-5NT activity, while in layers populated with neuronal cell bodies, the enzyme activity was weak or absent. Therefore, activity and expression of e-5NT were analyzed in SPM preparations isolated from rats at different ages. The presence of two protein bands of about 65 and 68 kDa was determined by immunoblot analysis. The 65-kDa band was present at all ages, and its abundance increased from PD7 to PD20. The 68-kDa band appeared at PD15 and increased until PD30, coinciding with the increase of e-5NT activity, substrate affinity and enzymatic efficiency. Since distinct e-5NT isoforms may derive from different patterns of the enzyme protein N-glycosylation, we speculate that long-term regulation of e-5NT activity in adulthood may be effectuated at posttranslational level and without overall change in the gene and protein expression.

  9. Two Isoforms of Geobacter sulfurreducens PilA Have Distinct Roles in Pilus Biogenesis, Cytochrome Localization, Extracellular Electron Transfer, and Biofilm Formation

    PubMed Central

    Richter, Lubna V.; Sandler, Steven J.

    2012-01-01

    Type IV pili of Geobacter sulfurreducens are composed of PilA monomers and are essential for long-range extracellular electron transfer to insoluble Fe(III) oxides and graphite anodes. A previous analysis of pilA expression indicated that transcription was initiated at two positions, with two predicted ribosome-binding sites and translation start codons, potentially producing two PilA preprotein isoforms. The present study supports the existence of two functional translation start codons for pilA and identifies two isoforms (short and long) of the PilA preprotein. The short PilA isoform is found predominantly in an intracellular fraction. It seems to stabilize the long isoform and to influence the secretion of several outer-surface c-type cytochromes. The long PilA isoform is required for secretion of PilA to the outer cell surface, a process that requires coexpression of pilA with nine downstream genes. The long isoform was determined to be essential for biofilm formation on certain surfaces, for optimum current production in microbial fuel cells, and for growth on insoluble Fe(III) oxides. PMID:22408162

  10. DNA signals at isoform promoters

    PubMed Central

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua

    2016-01-01

    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  11. Eukaryotic Initiation Factor eIFiso4G1 and eIFiso4G2 Are Isoforms Exhibiting Distinct Functional Differences in Supporting Translation in Arabidopsis*

    PubMed Central

    Gallie, Daniel R.

    2016-01-01

    The eukaryotic translation initiation factor (eIF) 4G is required during protein synthesis to promote the assembly of several factors involved in the recruitment of a 40S ribosomal subunit to an mRNA. Although many eukaryotes express two eIF4G isoforms that are highly similar, the eIF4G isoforms in plants, referred to as eIF4G and eIFiso4G, are highly divergent in size, sequence, and domain organization but both can interact with eIF4A, eIF4B, eIF4E isoforms, and the poly(A)-binding protein. Nevertheless, eIF4G and eIFiso4G from wheat exhibit preferences in the mRNAs they translate optimally. For example, mRNA containing the 5′-leader (called Ω) of tobacco mosaic virus preferentially uses eIF4G in wheat germ lysate. In this study, the eIF4G isoform specificity of Ω was used to examine functional differences of the eIF4G isoforms in Arabidopsis. As in wheat, Ω-mediated translation was reduced in an eif4g null mutant. Loss of the eIFiso4G1 isoform, which is similar in sequence to wheat eIFiso4G, did not substantially affect Ω-mediated translation. However, loss of the eIFiso4G2 isoform substantially reduced Ω-mediated translation. eIFiso4G2 is substantially divergent from eIFiso4G1 and is present only in the Brassicaceae, suggesting a recent evolution. eIFiso4G2 isoforms exhibit sequence-specific differences in regions representing partner protein and RNA binding sites. Loss of any eIF4G isoform also resulted in a substantial reduction in reporter transcript level. These results suggest that eIFiso4G2 appeared late in plant evolution and exhibits more functional similarity with eIF4G than with eIFiso4G1 during Ω-mediated translation. PMID:26578519

  12. Eukaryotic Initiation Factor eIFiso4G1 and eIFiso4G2 Are Isoforms Exhibiting Distinct Functional Differences in Supporting Translation in Arabidopsis.

    PubMed

    Gallie, Daniel R

    2016-01-15

    The eukaryotic translation initiation factor (eIF) 4G is required during protein synthesis to promote the assembly of several factors involved in the recruitment of a 40S ribosomal subunit to an mRNA. Although many eukaryotes express two eIF4G isoforms that are highly similar, the eIF4G isoforms in plants, referred to as eIF4G and eIFiso4G, are highly divergent in size, sequence, and domain organization but both can interact with eIF4A, eIF4B, eIF4E isoforms, and the poly(A)-binding protein. Nevertheless, eIF4G and eIFiso4G from wheat exhibit preferences in the mRNAs they translate optimally. For example, mRNA containing the 5'-leader (called Ω) of tobacco mosaic virus preferentially uses eIF4G in wheat germ lysate. In this study, the eIF4G isoform specificity of Ω was used to examine functional differences of the eIF4G isoforms in Arabidopsis. As in wheat, Ω-mediated translation was reduced in an eif4g null mutant. Loss of the eIFiso4G1 isoform, which is similar in sequence to wheat eIFiso4G, did not substantially affect Ω-mediated translation. However, loss of the eIFiso4G2 isoform substantially reduced Ω-mediated translation. eIFiso4G2 is substantially divergent from eIFiso4G1 and is present only in the Brassicaceae, suggesting a recent evolution. eIFiso4G2 isoforms exhibit sequence-specific differences in regions representing partner protein and RNA binding sites. Loss of any eIF4G isoform also resulted in a substantial reduction in reporter transcript level. These results suggest that eIFiso4G2 appeared late in plant evolution and exhibits more functional similarity with eIF4G than with eIFiso4G1 during Ω-mediated translation.

  13. ADAM12 transmembrane and secreted isoforms promote breast tumor growth: a distinct role for ADAM12-S protein in tumor metastasis.

    PubMed

    Roy, Roopali; Rodig, Scott; Bielenberg, Diane; Zurakowski, David; Moses, Marsha A

    2011-06-10

    Increased levels of ADAM12 have been reported in a variety of human cancers. We have previously reported that urinary ADAM12 is predictive of disease status in breast cancer patients and that ADAM12 protein levels in urine increase with progression of disease. On the basis of these findings, the goal of this study was to elucidate the contribution of ADAM12 in breast tumor growth and progression. Overexpression of both the ADAM12-L (transmembrane) and ADAM12-S (secreted) isoforms in human breast tumor cells resulted in a significantly higher rate of tumor take and increased tumor size. Cells expressing the enzymatically inactive form of the secreted isoform, ADAM12-S, had tumor take rates and tumor volumes similar to those of wild-type cells, suggesting that the tumor-promoting activity of ADAM12-S was a function of its proteolytic activity. Of the two isoforms, only the secreted isoform, ADAM12-S, enhanced the ability of tumor cells to migrate and invade in vitro and resulted in a higher incidence of local and distant metastasis in vivo. This stimulatory effect of ADAM12-S on migration and invasion was dependent on its catalytic activity. Expression of both ADAM12 isoforms was found to be significantly elevated in human malignant breast tissue. Taken together, our results suggest that ADAM12 overexpression results in increased tumor take, tumor size, and metastasis in vivo. These findings suggest that ADAM12 may represent a potential therapeutic target in breast cancer.

  14. Distinct transcriptional regulation of long-chain acyl-CoA synthetase isoforms and cytosolic thioesterase 1 in the rodent heart by fatty acids and insulin.

    PubMed

    Durgan, David J; Smith, Justin K; Hotze, Margaret A; Egbejimi, Oluwaseun; Cuthbert, Karalyn D; Zaha, Vlad G; Dyck, Jason R B; Abel, E Dale; Young, Martin E

    2006-06-01

    The molecular mechanism(s) responsible for channeling long-chain fatty acids (LCFAs) into oxidative versus nonoxidative pathways is (are) poorly understood in the heart. Intracellular LCFAs are converted to long-chain fatty acyl-CoAs (LCFA-CoAs) by a family of long-chain acyl-CoA synthetases (ACSLs). Cytosolic thioesterase 1 (CTE1) hydrolyzes cytosolic LCFA-CoAs to LCFAs, generating a potential futile cycle at the expense of ATP utilization. We hypothesized that ACSL isoforms and CTE1 are differentially regulated in the heart during physiological and pathophysiological conditions. Using quantitative RT-PCR, we report that the five known acsl isoforms (acsl1, acsl3, acsl4, acsl5, and acsl6) and cte1 are expressed in whole rat and mouse hearts, as well as adult rat cardiomyocytes (ARCs). Streptozotocin-induced insulin-dependent diabetes (4 wk) and fasting (isoforms. In contrast, high-fat feeding (4 wk) induced cte1 without affecting expression of the acsl isoforms in the heart. Investigation into the mechanism(s) responsible for these transcriptional changes uncovered roles for peroxisome proliferator-activated receptor-alpha (PPARalpha) and insulin as regulators of specific acsl isoforms and cte1 in the heart. Culturing ARCs with oleate (0.1-0.4 mM) or the PPARalpha agonists WY-14643 (1 muM) and fenofibrate (10 muM) consistently induced acsl1 and cte1. Conversely, PPARalpha null mouse hearts exhibited decreased acsl1 and cte1 expression. Culturing ARCs with insulin (10 nM) induced acsl6, whereas specific loss of insulin signaling within the heart (cardiac-specific insulin receptor knockout mice) caused decreased acsl6 expression. Our data expose differential regulation of acsl isoforms and cte1 in the heart, where acsl1 and cte1 are PPARalpha-regulated genes, whereas acsl6 is an insulin-regulated gene.

  15. Identification of two p53 isoforms from Litopenaeus vannamei and their interaction with NF-κB to induce distinct immune response

    PubMed Central

    Li, Haoyang; Wang, Sheng; Chen, Yonggui; Lǚ, Kai; Yin, Bin; Li, Sedong; He, Jianguo; Li, Chaozheng

    2017-01-01

    p53 is a transcription factor with capability of regulating diverse NF-κB dependent biological progresses such as inflammation and host defense, but the actual mechanism remains unrevealed. Herein, we firstly identified two novel alternatively spliced isoforms of p53 from Litopenaeus vannamei (LvΔNp53 and the full-length of p53, LvFLp53). We then established that the two p53 isoforms exerted opposite effects on regulating NF-κB induced antimicrobial peptides (AMPs) and white spot syndrome virus (WSSV) immediate-early (IE) genes expression, suggesting there could be a crosstalk between p53 and NF-κB pathways. Of note, both of the two p53 isoforms could interact directly with LvDorsal, a shrimp homolog of NF-κB. In addition, the activation of NF-κB mediated by LvDorsal was provoked by LvΔNp53 but suppressed by LvFLp53, and the increased NF-κB activity conferred by LvΔNp53 can be attenuated by LvFLp53. Furthermore, silencing of LvFLp53 in shrimp caused higher mortalities and virus loads under WSSV infection, whereas LvΔNp53-knockdown shrimps exhibited an opposed RNAi phenotype. Taken together, these findings present here provided some novel insight into different roles of shrimp p53 isoforms in immune response, and some information for us to understand the regulatory crosstalk between p53 pathway and NF-κB pathway in invertebrates. PMID:28361937

  16. Endopeptidase Cleavage Generates a Functionally Distinct Isoform of C1q/Tumor Necrosis Factor-related Protein-12 (CTRP12) with an Altered Oligomeric State and Signaling Specificity*

    PubMed Central

    Wei, Zhikui; Lei, Xia; Seldin, Marcus M.; Wong, G. William

    2012-01-01

    Adipose tissue-derived adipokines are an important class of secreted metabolic regulators that mediate tissue cross-talk to control systemic energy balance. We recently described C1q/TNF-related protein-12 (CTRP12), a novel insulin-sensitizing adipokine that regulates glucose metabolism in liver and adipose tissue. However, the biochemical properties of CTRP12 and its naturally occurring cleaved isoform have not been characterized. Here, we show that CTRP12 is a secreted hormone subjected to multiple functionally relevant posttranslational modifications at highly conserved residues. For example, Asn39 is glycosylated, whereas Cys85 mediates the assembly of higher order oligomeric structure. Endopeptidase cleavage at Lys91 generates a cleaved globular gCTRP12 isoform, the expression of which is increased by insulin. PCSK3/furin was identified as the major proprotein convertase expressed by adipocytes that mediates the endogenous cleavage of CTRP12. Cleavage at Lys91 is context-dependent: mutation of the charged Arg93 to Ala on the P2′ position enhanced cleavage, and triple mutations (K90A/K91A/R93A) abolished cleavage. Importantly, the two isoforms of CTRP12 differ in oligomeric structures and are functionally distinct. The full-length protein forms trimers and larger complexes, and the cleaved isoform consisted of predominantly dimers. Whereas full-length fCTRP12 strongly activated Akt signaling in H4IIE hepatocytes and 3T3-L1 adipocytes, gCTRP12 preferentially activated MAP kinase (ERK1/2 and p38 MAPK) signaling. Further, only fCTRP12 improved insulin-stimulated glucose uptake in adipocytes. These results reveal a novel mechanism controlling signaling specificity and function of a hormone via cleavage-dependent alteration in oligomeric state. PMID:22942287

  17. The high mobility group protein HMG I(Y) can stimulate or inhibit DNA binding of distinct transcription factor ATF-2 isoforms.

    PubMed

    Du, W; Maniatis, T

    1994-11-22

    The high mobility group protein HMG I(Y) stimulates the binding of a specific isoform of the activating transcription factor 2 (ATF-2(195)) to the interferon beta (IFN-beta) gene promoter. HMG I(Y) specifically interacts with the basic-leucine zipper region of ATF-2(195), and HMG I(Y) binds to two sites immediately flanking the ATF-2 binding site of the IFN-beta promoter. Here, we show that HMG I(Y) can stimulate the binding of ATF-2(195), at least in part, by promoting ATF-2 dimerization. In addition, we report the characterization of a naturally occurring isoform of ATF-2 (ATF-2(192)) that binds specifically to the IFN-beta promoter but is unable to interact with HMG I(Y). Remarkably, HMG I(Y) inhibits the binding of ATF-2(192) to the IFN-beta promoter. Thus, the ability of HMG I(Y) to specifically interact with ATF-2 correlates with its ability to stimulate ATF-2 binding to the IFN-beta promoter. Comparisons of the amino acid sequences of the basic-leucine zipper domains of ATF-2(195) and ATF-2(192) suggest that HMG I(Y) interacts with a short stretch of basic amino acids near the amino terminus of the basic-leucine zipper domain of ATF-2(195).

  18. Akt isoforms in vascular disease

    PubMed Central

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-01-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease. PMID:25929188

  19. Distinct PKC isoforms mediate the activation of cPLA2 and adenylyl cyclase by phorbol ester in RAW264.7 macrophages

    PubMed Central

    Lin, Wan-W; Chen, Bin C

    1998-01-01

    The modulatory effects of protein kinase C (PKC) on the activation of cytosolic phospholipase A2 (cPLA2) and adenylyl cyclase (AC) have recently been described. Since the signalling cascades associated with these events play critical roles in various functions of macrophages, we set out to investigate the crosstalk between PKC and the cPLA2 and AC pathways in mouse RAW 264.7 macrophages and to determine the involvement of individual PKC isoforms. The cPLA2 and AC pathways were studied by measuring the potentiation by the phorbol ester PMA of ionomycin-induced arachidonic acid (AA) release and prostagladin E1 (PGE1)-stimulated cyclic AMP production, respectively.PMA at 1 μM caused a significant increase in AA release both in the presence (371%) and absence (67%) of ionomycin induction, while exposure of RAW 264.7 cells to PMA increased PGE1 stimulation of cyclic AMP levels by 208%.Treatment of cells with staurosporine and Ro 31-8220 inhibited the PMA-induced potentiation of both AA release and cyclic AMP accumulation, while Go 6976 (an inhibitor of classical PKC isoforms) and LY 379196 (a specific inhibitor of PKCβ) inhibited the AA response but failed to affect the enhancement of the cyclic AMP response by PMA.Long term pretreatment of cells with PMA abolished the subsequent effect of PMA in potentiating AA release, but only inhibited the cyclic AMP response by 42%.Neither PD 98059, an inhibitor of MEK, nor genistein, an inhibitor of tyrosine kinases, had any effect on the ability of PMA to potentiate AA or cyclic AMP production.The potentiation of AA release, but not of cyclic AMP formation, by PMA was sensitive to inhibition by wortmannin. This effect was unrelated to the inhibition of PKC activation as deduced from the translocation of PKC activity to the cell membrane.Western blot analysis revealed the presence of eight PKC isoforms (α, βI, βII, δ, ε, μ λ and ξ) in RAW 264.7 cells and PMA was shown to induce the translocation of the α, βI, βII,

  20. Distinct roles of short and long thymic stromal lymphopoietin isoforms in house dust mite-induced asthmatic airway epithelial barrier disruption

    PubMed Central

    Dong, Hangming; Hu, Yahui; Liu, Laiyu; Zou, Mengchen; Huang, Chaowen; Luo, Lishan; Yu, Changhui; Wan, Xuan; Zhao, Haijin; Chen, JiaLong; Xie, Zhefan; Le, Yanqing; Zou, Fei; Cai, Shaoxi

    2016-01-01

    Loss of airway epithelial integrity contributes significantly to asthma pathogenesis. Thymic stromal lymphopoietin (TSLP) may have dual immunoregulatory roles. In inflammatory disorders of the bowel, the long isoform of TSLP (lfTSLP) promotes inflammation while the short isoform (sfTSLP) inhibits inflammation. We hypothesize that lfTSLP contributes to house dust mite (HDM)-induced airway epithelial barrier dysfunction and that synthetic sfTSLP can prevent these effects. In vitro, airway epithelial barrier function was assessed by monitoring transepithelial electrical resistance, fluorescent-dextran permeability, and distribution of E-cadherin and β-catenin. In vivo, BALB/c mice were exposed to HDM by nasal inhalation for 5 consecutive days per week to establish an asthma model. sfTSLP and 1α,25-Dihydroxyvitamin D3 (1,25D3) were administered 1 h before HDM exposure. After 8 weeks, animal lung function tests and pathological staining were performed to evaluate asthma progression. We found that HDM and lfTSLP impaired barrier function. Treatment with sfTSLP and 1,25D3 prevented HDM-induced airway epithelial barrier disruption. Moreover, sfTSLP and 1,25D3 treatment ameliorated HDM-induced asthma in mice. Our data emphasize the importance of the different expression patterns and biological properties of sfTSLP and lfTSLP. Moreover, our results indicate that sfTSLP and 1,25D3 may serve as novel therapeutic agents for individualized treatment of asthma. PMID:27996052

  1. Mena invasive (Mena(INV)) and Mena11a isoforms play distinct roles in breast cancer cell cohesion and association with TMEM.

    PubMed

    Roussos, Evanthia T; Goswami, Sumanta; Balsamo, Michele; Wang, Yarong; Stobezki, Robert; Adler, Esther; Robinson, Brian D; Jones, Joan G; Gertler, Frank B; Condeelis, John S; Oktay, Maja H

    2011-08-01

    Mena, an actin regulatory protein, functions at the convergence of motility pathways that drive breast cancer cell invasion and migration in vivo. The tumor microenvironment spontaneously induces both increased expression of the Mena invasive (Mena(INV)) and decreased expression of Mena11a isoforms in invasive and migratory tumor cells. Tumor cells with this Mena expression pattern participate with macrophages in migration and intravasation in mouse mammary tumors in vivo. Consistent with these findings, anatomical sites containing tumor cells with high levels of Mena expression associated with perivascular macrophages were identified in human invasive ductal breast carcinomas and called TMEM. The number of TMEM sites positively correlated with the development of distant metastasis in humans. Here we demonstrate that mouse mammary tumors generated from EGFP-Mena(INV) expressing tumor cells are significantly less cohesive and have discontinuous cell-cell contacts compared to Mena11a xenografts. Using the mouse PyMT model we show that metastatic mammary tumors express 8.7 fold more total Mena and 7.5 fold more Mena(INV) mRNA than early non-metastatic ones. Furthermore, Mena(INV) expression in fine needle aspiration biopsy (FNA) samples of human invasive ductal carcinomas correlate with TMEM score while Mena11a does not. These results suggest that Mena(INV) is the isoform associated with breast cancer cell discohesion, invasion and intravasation in mice and in humans. They also imply that Mena(INV) expression and TMEM score measure related aspects of a common tumor cell dissemination mechanism and provide new insight into metastatic risk.

  2. Expression of distinct classes of titin isoforms in striated and smooth muscles by alternative splicing, and their conserved interaction with filamins.

    PubMed

    Labeit, Siegfried; Lahmers, Sunshine; Burkart, Christoph; Fong, Chi; McNabb, Mark; Witt, Stephanie; Witt, Christian; Labeit, Dietmar; Granzier, Henk

    2006-09-29

    While the role of titin as a sarcomeric protein is well established, its potential functional role(s) in smooth muscles and non-muscle tissues are controversial. We used a titin exon array to search for which part(s) of the human titin transcriptional unit encompassing 363 exons is(are) expressed in non-striated muscle tissues. Expression profiling of adult smooth muscle tissues (aorta, bladder, carotid, stomach) identified alternatively spliced titin isoforms, encompassing 80 to about 100 exons. These exons code for parts of the titin Z-disk, I-band and A-band regions, allowing the truncated smooth muscle titin isoform to link Z-disks/dense bodies together with thick filaments. Consistent with the array data, Western blot studies detected the expression of approximately 1 MDa smooth muscle titin in adult smooth muscles, reacting with selected Z-disc, I-band, and A-band titin antibodies. Immunofluorescence with these antibodies located smooth muscle titin in the cytoplasm of cultured human aortic smooth muscle cells and in the tunica media of intact adult bovine aorta. Real time PCR studies suggested that smooth muscle titins are expressed from a promoter located 35 kb or more upstream of the transcription initiation site used for striated muscle titin, driving expression of a bi-cistronic mRNA, coding 5' for the anonymous gene FL39502, followed 3' by titin, respectively. Our work showed that smooth muscle and striated muscle titins share in their conserved amino-terminal regions binding sites for alpha-actinin and filamins: Yeast two-hybrid screens using Z2-Zis1 titin baits identified prey clones coding for alpha-actinin-1 and filamin-A from smooth muscle, and alpha-actinin-2/3, filamin-C, and nebulin from skeletal muscle cDNA libraries, respectively. This suggests that the titin Z2-Zis1 domain can link filamins and alpha-actinin together in the periphery of the Z-line/dense bodies in a fashion that is conserved in smooth and striated muscles.

  3. Distinct or shared actions of peptide family isoforms: I. Peptide-specific actions of pyrokinins in the lobster cardiac neuromuscular system.

    PubMed

    Dickinson, Patsy S; Sreekrishnan, Anirudh; Kwiatkowski, Molly A; Christie, Andrew E

    2015-09-01

    Although the crustacean heart is modulated by a large number of peptides and amines, few of these molecules have been localized to the cardiac ganglion itself; most appear to reach the cardiac ganglion only by hormonal routes. Immunohistochemistry in the American lobster Homarus americanus indicates that pyrokinins are present not only in neuroendocrine organs (pericardial organ and sinus gland), but also in the cardiac ganglion itself, where pyrokinin-positive terminals were found in the pacemaker cell region, as well as surrounding the motor neurons. Surprisingly, the single pyrokinin peptide identified from H. americanus, FSPRLamide, which consists solely of the conserved FXPRLamide residues that characterize pyrokinins, did not alter the activity of the cardiac neuromuscular system. However, a pyrokinin from the shrimp Litopenaeus vannamei [ADFAFNPRLamide, also known as Penaeus vannamei pyrokinin 2 (PevPK2)] increased both the frequency and amplitude of heart contractions when perfused through the isolated whole heart. None of the other crustacean pyrokinins tested (another from L. vannamei and two from the crab Cancer borealis) had any effect on the lobster heart. Similarly, altering the PevPK2 sequence either by truncation or by the substitution of single amino acids resulted in much lower or no activity in all cases; only the conservative substitution of serine for alanine at position 1 resulted in any activity on the heart. Thus, in contrast to other systems (cockroach and crab) in which all tested pyrokinins elicit similar bioactivities, activation of the pyrokinin receptor in the lobster heart appears to be highly isoform specific.

  4. Full-Length Human Placental sFlt-1-e15a Isoform Induces Distinct Maternal Phenotypes of Preeclampsia in Mice

    PubMed Central

    Szalai, Gabor; Romero, Roberto; Chaiworapongsa, Tinnakorn; Xu, Yi; Wang, Bing; Ahn, Hyunyoung; Xu, Zhonghui; Chiang, Po Jen; Sundell, Birgitta; Wang, Rona; Jiang, Yang; Plazyo, Olesya; Olive, Mary; Tarca, Adi L.; Dong, Zhong; Qureshi, Faisal; Papp, Zoltan; Hassan, Sonia S.; Hernandez-Andrade, Edgar; Than, Nandor Gabor

    2015-01-01

    Objective Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring. Methods Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia. Results Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10-2; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10-2). Placental and fetal weights did not differ between the

  5. Distinct or shared actions of peptide family isoforms: I. Peptide-specific actions of pyrokinins in the lobster cardiac neuromuscular system

    PubMed Central

    Dickinson, Patsy S.; Sreekrishnan, Anirudh; Kwiatkowski, Molly A.; Christie, Andrew E.

    2015-01-01

    ABSTRACT Although the crustacean heart is modulated by a large number of peptides and amines, few of these molecules have been localized to the cardiac ganglion itself; most appear to reach the cardiac ganglion only by hormonal routes. Immunohistochemistry in the American lobster Homarus americanus indicates that pyrokinins are present not only in neuroendocrine organs (pericardial organ and sinus gland), but also in the cardiac ganglion itself, where pyrokinin-positive terminals were found in the pacemaker cell region, as well as surrounding the motor neurons. Surprisingly, the single pyrokinin peptide identified from H. americanus, FSPRLamide, which consists solely of the conserved FXPRLamide residues that characterize pyrokinins, did not alter the activity of the cardiac neuromuscular system. However, a pyrokinin from the shrimp Litopenaeus vannamei [ADFAFNPRLamide, also known as Penaeus vannamei pyrokinin 2 (PevPK2)] increased both the frequency and amplitude of heart contractions when perfused through the isolated whole heart. None of the other crustacean pyrokinins tested (another from L. vannamei and two from the crab Cancer borealis) had any effect on the lobster heart. Similarly, altering the PevPK2 sequence either by truncation or by the substitution of single amino acids resulted in much lower or no activity in all cases; only the conservative substitution of serine for alanine at position 1 resulted in any activity on the heart. Thus, in contrast to other systems (cockroach and crab) in which all tested pyrokinins elicit similar bioactivities, activation of the pyrokinin receptor in the lobster heart appears to be highly isoform specific. PMID:26206360

  6. Oxygen Sensing in Drosophila: Multiple Isoforms of the Prolyl Hydroxylase Fatiga Have Different Capacity to Regulate HIFα/Sima

    PubMed Central

    Dekanty, Andrés; Wappner, Pablo

    2010-01-01

    Background The Hypoxia Inducible Factor (HIF) mediates cellular adaptations to low oxygen. Prolyl-4-hydroxylases are oxygen sensors that hydroxylate the HIF alpha-subunit, promoting its proteasomal degradation in normoxia. Three HIF-prolyl hydroxylases, encoded by independent genes, PHD1, PHD2, and PHD3, occur in mammals. PHD2, the longest PHD isoform includes a MYND domain, whose biochemical function is unclear. PHD2 and PHD3 genes are induced in hypoxia to shut down HIF dependent transcription upon reoxygenation, while expression of PHD1 is oxygen-independent. The physiologic significance of the diversity of the PHD oxygen sensors is intriguing. Methodology and Principal Findings We have analyzed the Drosophila PHD locus, fatiga, which encodes 3 isoforms, FgaA, FgaB and FgaC that are originated through a combination of alternative initiation of transcription and alternative splicing. FgaA includes a MYND domain and is homologous to PHD2, while FgaB and FgaC are shorter isoforms most similar to PHD3. Through a combination of genetic experiments in vivo and molecular analyses in cell culture, we show that fgaB but not fgaA is induced in hypoxia, in a Sima-dependent manner, through a HIF-Responsive Element localized in the first intron of fgaA. The regulatory capacity of FgaB is stronger than that of FgaA, as complete reversion of fga loss-of-function phenotypes is observed upon transgenic expression of the former, and only partial rescue occurs after expression of the latter. Conclusions and Significance Diversity of PHD isoforms is a conserved feature in evolution. As in mammals, there are hypoxia-inducible and non-inducible Drosophila PHDs, and a fly isoform including a MYND domain co-exists with isoforms lacking this domain. Our results suggest that the isoform devoid of a MYND domain has stronger regulatory capacity than that including this domain. PMID:20811646

  7. The sodium channel Nav1.5a is the predominant isoform expressed in adult mouse dorsal root ganglia and exhibits distinct inactivation properties from the full-length Nav1.5 channel.

    PubMed

    Kerr, Niall C H; Gao, Zhan; Holmes, Fiona E; Hobson, Sally-Ann; Hancox, Jules C; Wynick, David; James, Andrew F

    2007-06-01

    Nav1.5 is the principal voltage-gated sodium channel expressed in heart, and is also expressed at lower abundance in embryonic dorsal root ganglia (DRG) with little or no expression reported postnatally. We report here the expression of Nav1.5 mRNA isoforms in adult mouse and rat DRG. The major isoform of mouse DRG is Nav1.5a, which encodes a protein with an IDII/III cytoplasmic loop reduced by 53 amino acids. Western blot analysis of adult mouse DRG membrane proteins confirmed the expression of Nav1.5 protein. The Na+ current produced by the Nav1.5a isoform has a voltage-dependent inactivation significantly shifted to more negative potentials (by approximately 5 mV) compared to the full-length Nav1.5 when expressed in the DRG neuroblastoma cell line ND7/23. These results imply that the alternatively spliced exon 18 of Nav1.5 plays a role in channel inactivation and that Nav1.5a is likely to make a significant contribution to adult DRG neuronal function.

  8. Characterization of endogenous human promyelocytic leukemia isoforms.

    PubMed

    Condemine, Wilfried; Takahashi, Yuki; Zhu, Jun; Puvion-Dutilleul, Francine; Guegan, Sarah; Janin, Anne; de Thé, Hugues

    2006-06-15

    Promyelocytic leukemia (PML) has been implicated in a variety of functions, including control of TP53 function and modulation of cellular senescence. Sumolated PML is the organizer of mature PML bodies, recruiting a variety of proteins onto these nuclear domains. The PML gene is predicted to encode a variety of protein isoforms. Overexpression of only one of them, PML-IV, promotes senescence in human diploid fibroblasts, whereas PML-III was proposed to specifically interact with the centrosome. We show that all PML isoform proteins are expressed in cell lines or primary cells. Unexpectedly, we found that PML-III, PML-IV, and PML-V are quantitatively minor isoforms compared with PML-I/II and could not confirm the centrosomal targeting of PML-III. Stable expression of each isoform, in a pml-null background, yields distinct subcellular localization patterns, suggesting that, like in other RBCC/TRIM proteins, the COOH-terminal domains of PML are involved in interactions with specific cellular components. Only the isoform-specific sequences of PML-I and PML-V are highly conserved between man and mouse. That PML-I contains all conserved exons and is more abundantly expressed than PML-IV suggests that it is a critical contributor to PML function(s).

  9. Isoforms of Melanopsin Mediate Different Behavioral Responses to Light

    PubMed Central

    Jagannath, Aarti; Hughes, Steven; Abdelgany, Amr; Pothecary, Carina A.; Di Pretoro, Simona; Pires, Susana S.; Vachtsevanos, Athanasios; Pilorz, Violetta; Brown, Laurence A.; Hossbach, Markus; MacLaren, Robert E.; Halford, Stephanie; Gatti, Silvia; Hankins, Mark W.; Wood, Matthew J.A.; Foster, Russell G.; Peirson, Stuart N.

    2015-01-01

    Summary Melanopsin (OPN4) is a retinal photopigment that mediates a wide range of non-image-forming (NIF) responses to light [1, 2] including circadian entrainment [3], sleep induction [4], the pupillary light response (PLR) [5], and negative masking of locomotor behavior (the acute suppression of activity in response to light) [6]. How these diverse NIF responses can all be mediated by a single photopigment has remained a mystery. We reasoned that the alternative splicing of melanopsin could provide the basis for functionally distinct photopigments arising from a single gene. The murine melanopsin gene is indeed alternatively spliced, producing two distinct isoforms, a short (OPN4S) and a long (OPN4L) isoform, which differ only in their C terminus tails [7]. Significantly, both isoforms form fully functional photopigments [7]. Here, we show that different isoforms of OPN4 mediate different behavioral responses to light. By using RNAi-mediated silencing of each isoform in vivo, we demonstrated that the short isoform (OPN4S) mediates light-induced pupillary constriction, the long isoform (OPN4L) regulates negative masking, and both isoforms contribute to phase-shifting circadian rhythms of locomotor behavior and light-mediated sleep induction. These findings demonstrate that splice variants of a single receptor gene can regulate strikingly different behaviors. PMID:26320947

  10. Isoforms of Melanopsin Mediate Different Behavioral Responses to Light.

    PubMed

    Jagannath, Aarti; Hughes, Steven; Abdelgany, Amr; Pothecary, Carina A; Di Pretoro, Simona; Pires, Susana S; Vachtsevanos, Athanasios; Pilorz, Violetta; Brown, Laurence A; Hossbach, Markus; MacLaren, Robert E; Halford, Stephanie; Gatti, Silvia; Hankins, Mark W; Wood, Matthew J A; Foster, Russell G; Peirson, Stuart N

    2015-09-21

    Melanopsin (OPN4) is a retinal photopigment that mediates a wide range of non-image-forming (NIF) responses to light including circadian entrainment, sleep induction, the pupillary light response (PLR), and negative masking of locomotor behavior (the acute suppression of activity in response to light). How these diverse NIF responses can all be mediated by a single photopigment has remained a mystery. We reasoned that the alternative splicing of melanopsin could provide the basis for functionally distinct photopigments arising from a single gene. The murine melanopsin gene is indeed alternatively spliced, producing two distinct isoforms, a short (OPN4S) and a long (OPN4L) isoform, which differ only in their C terminus tails. Significantly, both isoforms form fully functional photopigments. Here, we show that different isoforms of OPN4 mediate different behavioral responses to light. By using RNAi-mediated silencing of each isoform in vivo, we demonstrated that the short isoform (OPN4S) mediates light-induced pupillary constriction, the long isoform (OPN4L) regulates negative masking, and both isoforms contribute to phase-shifting circadian rhythms of locomotor behavior and light-mediated sleep induction. These findings demonstrate that splice variants of a single receptor gene can regulate strikingly different behaviors.

  11. VEGFA splicing: divergent isoforms regulate spermatogonial stem cell maintenance

    PubMed Central

    Sargent, Kevin M.; Clopton, Debra T.; Lu, Ningxia; Pohlmeier, William E.

    2015-01-01

    Despite being well-known for regulating angiogenesis in both normal and tumorigenic environments, vascular endothelial growth factor A (VEGFA) has been recently implicated in male fertility, namely in the maintenance of spermatogonial stem cells (SSC). The VEGFA gene can be spliced into multiple distinct isoforms that are either angiogenic or antiangiogenic in nature. Although studies have demonstrated the alternative splicing of VEGFA, including the divergent roles of the two isoform family types, many investigations do not differentiate between them. Data concerning VEGFA in the mammalian testis are limited, but the various angiogenic isoforms appear to promote seminiferous cord formation and to form a gradient across which cells may migrate. Treatment with either antiangiogenic isoforms of VEGFA or with inhibitors to angiogenic signaling impair these processes. Serendipitously, expression of KDR, the primary receptor for both types of VEGFA isoforms, was observed on male germ cells. These findings led to further investigation of the way that VEGFA elicits avascular functions within testes. Following treatment of donor perinatal male mice with either antiangiogenic VEGFA165b or angiogenic VEGFA164 isoforms, seminiferous tubules were less colonized following transplantation with cells from VEGFA165b-treated donors. Thus, VEGFA165b and possibly other antiangiogenic isoforms of VEGFA reduce SSC number either by promoting premature differentiation, inducing cell death, or by preventing SSC formation. Thus, angiogenic isoforms of VEGFA are hypothesized to promote SSC self-renewal, and the divergent isoforms are thought to balance one another to maintain SSC homeostasis in vivo. PMID:26553653

  12. Novel Homozygous Mutation of the Internal Translation Initiation Start Site of VHL is Exclusively Associated with Erythrocytosis: Indications for Distinct Functional Roles of von Hippel-Lindau Tumor Suppressor Isoforms.

    PubMed

    Bartels, Marije; van der Zalm, Marieke M; van Oirschot, Brigitte A; Lee, Frank S; Giles, Rachel H; Kruip, Marieke J H A; Gitz-Francois, Jerney J J M; Van Solinge, Wouter W; Bierings, Marc; van Wijk, Richard

    2015-11-01

    Congenital secondary erythrocytosis is a rare disorder characterized by increased red blood cell production. An important cause involves defects in the oxygen sensing pathway, in particular the PHD2-VHL-HIF axis. Mutations in VHL are also associated with the von Hippel-Lindau tumor predisposition syndrome. The differences in phenotypic expression of VHL mutations are poorly understood. We report on three patients with erythrocytosis, from two unrelated families. All patients show exceptionally high erythropoietin (EPO) levels, and are homozygous for a novel missense mutation in VHL: c.162G>C p.(Met54Ile). The c.162G>C mutation is the most upstream homozygous VHL mutation described so far in patients with erythrocytosis. It abolishes the internal translational start codon, which directs expression of VHLp19, resulting in the production of only VHLp30. The exceptionally high EPO levels and the absence of VHL-associated tumors in the patients suggest that VHLp19 has a role for regulating EPO levels that VHLp30 does not have, whereas VHLp30 is really the tumor suppressor isoform.

  13. Targeted Proteomics Enables Simultaneous Quantification of Folate Receptor Isoforms and Potential Isoform-based Diagnosis in Breast Cancer

    PubMed Central

    Yang, Ting; Xu, Feifei; Fang, Danjun; Chen, Yun

    2015-01-01

    The distinct roles of protein isoforms in cancer are becoming increasingly evident. FRα and FRβ, two major isoforms of the folate receptor family, generally have different cellular distribution and tissue specificity. However, the presence of FRβ in breast tumors, where FRα is normally expressed, complicates this situation. Prior to applying any FR isoform-based diagnosis and therapeutics, it is essential to monitor the expression profile of FR isoforms in a more accurate manner. An LC-MS/MS-based targeted proteomics assay was developed and validated in this study because of the lack of suitable methodology for the simultaneous and specific measurement of highly homologous isoforms occurring at low concentrations. FRα and FRβ monitoring was achieved by measuring their surrogate isoform-specific peptides. Five human breast cell lines, isolated macrophages and 60 matched pairs of breast tissue samples were subjected to the analysis. The results indicated that FRβ was overexpressed in tumor-associated macrophages (TAMs) but not epithelial cells, in addition to an enhanced level of FRα in breast cancer cells and tissue samples. Moreover, the levels of the FR isoforms were evaluated according to the histology, histopathological features and molecular subtypes of breast cancer. Several positive associations with PR/ER and HER2 status and metastasis were revealed. PMID:26573433

  14. Nonmuscle myosin II isoforms coassemble in living cells.

    PubMed

    Beach, Jordan R; Shao, Lin; Remmert, Kirsten; Li, Dong; Betzig, Eric; Hammer, John A

    2014-05-19

    Nonmuscle myosin II (NM II) powers myriad developmental and cellular processes, including embryogenesis, cell migration, and cytokinesis [1]. To exert its functions, monomers of NM II assemble into bipolar filaments that produce a contractile force on the actin cytoskeleton. Mammalian cells express up to three isoforms of NM II (NM IIA, IIB, and IIC), each of which possesses distinct biophysical properties and supports unique as well as redundant cellular functions [2-8]. Despite previous efforts [9-13], it remains unclear whether NM II isoforms assemble in living cells to produce mixed (heterotypic) bipolar filaments or whether filaments consist entirely of a single isoform (homotypic). We addressed this question using fluorescently tagged versions of NM IIA, IIB, and IIC, isoform-specific immunostaining of the endogenous proteins, and two-color total internal reflection fluorescence structured-illumination microscopy, or TIRF-SIM, to visualize individual myosin II bipolar filaments inside cells. We show that NM II isoforms coassemble into heterotypic filaments in a variety of settings, including various types of stress fibers, individual filaments throughout the cell, and the contractile ring. We also show that the differential distribution of NM IIA and NM IIB typically seen in confocal micrographs of well-polarized cells is reflected in the composition of individual bipolar filaments. Interestingly, this differential distribution is less pronounced in freshly spread cells, arguing for the existence of a sorting mechanism acting over time. Together, our work argues that individual NM II isoforms are potentially performing both isoform-specific and isoform-redundant functions while coassembled with other NM II isoforms.

  15. Structural Basis of Dscam Isoform Specificity

    SciTech Connect

    Meijers,R.; Puettmann-Holgado, R.; Skiniotis, G.; Liu, J.; Walz, T.; Wang, J.; Schmucker, D.

    2007-01-01

    The Dscam gene gives rise to thousands of diverse cell surface receptors1 thought to provide homophilic and heterophilic recognition specificity for neuronal wiring and immune responses. Mutually exclusive splicing allows for the generation of sequence variability in three immunoglobulin ecto-domains, D2, D3 and D7. We report X-ray structures of the amino-terminal four immunoglobulin domains (D1-D4) of two distinct Dscam isoforms. The structures reveal a horseshoe configuration, with variable residues of D2 and D3 constituting two independent surface epitopes on either side of the receptor. Both isoforms engage in homo-dimerization coupling variable domain D2 with D2, and D3 with D3. These interactions involve symmetric, antiparallel pairing of identical peptide segments from epitope I that are unique to each isoform. Structure-guided mutagenesis and swapping of peptide segments confirm that epitope I, but not epitope II, confers homophilic binding specificity of full-length Dscam receptors. Phylogenetic analysis shows strong selection of matching peptide sequences only for epitope I. We propose that peptide complementarity of variable residues in epitope I of Dscam is essential for homophilic binding specificity.

  16. Unravelling the different functions of protein kinase C isoforms in platelets.

    PubMed

    Heemskerk, Johan W M; Harper, Matthew T; Cosemans, Judith M E M; Poole, Alastair W

    2011-06-23

    Platelets tightly regulate haemostasis and arterial thrombosis. Protein kinase C (PKC) is involved in most platelet responses implicated in thrombus formation. Recent pharmacological and mouse gene knockout approaches show that the conventional PKC isoforms and the novel PKC isoforms contribute in distinct ways to these platelet responses. We hypothesize that, in platelets and other cells, the characteristic functions of PKC isoforms are established through unique activation mechanisms and unique interacting protein partners, which result in isoform-specific patterns of substrate phosphorylation. For identifying the substrate proteins in a living cell, new methodology is available and discussed.

  17. Differential activities of glucocorticoid-induced leucine zipper protein isoforms.

    PubMed

    Soundararajan, Rama; Wang, Jian; Melters, Daniël; Pearce, David

    2007-12-14

    Glucocorticoid-induced leucine zipper protein (GILZ) is expressed in both epithelial and immune tissues and modulates a variety of cellular functions, including proliferation and epithelial sodium channel (ENaC) activity. A number of reports have described various GILZ activities, focusing on a single isoform with molecular mass of approximately 17 kDa, now termed GILZ1. In GILZ immunoblots using a newly developed antiserum, we detected multiple species in extracts from cultured kidney cells. Mass spectrometric analysis revealed that one of these represented a previously uncharacterized distinct isoform of GILZ, GILZ2. Rapid amplification of cDNA ends was used to clone cDNAs corresponding to four isoforms, which, in addition to GILZ1 and GILZ2, included new isoforms GILZ3 and GILZ4. Heterologous expression of these four GILZ isoforms in cultured cells revealed striking functional differences. Notably, GILZ1 was the only isoform that significantly stimulated ENaC-mediated Na+ current in a kidney collecting duct cell line, although GILZ2 and GILZ3 also stimulated ENaC surface expression in HEK 293 cells. GILZ1 and GILZ3, and to a lesser extent GILZ2, inhibited ERK phosphorylation. Interestingly, GILZ4, which had no effect on either ENaC or ERK, potently suppressed cellular proliferation, as did GILZ1, but not GILZ2 or GILZ3. Finally, rat and mouse tissues all expressed multiple GILZ species but varied in the relative abundance of each. These data suggest that multiple GILZ isoforms are expressed in most cells and tissues and that these play distinct roles in regulating key cellular functions, including proliferation and ion transport. Furthermore, GILZ inhibition of ERK appears to play an essential role in stimulation of cell surface ENaC but not in inhibition of proliferation.

  18. N Termini of apPDE4 Isoforms Are Responsible for Targeting the Isoforms to Different Cellular Membranes

    ERIC Educational Resources Information Center

    Jang, Deok-Jin; Park, Soo-Won; Lee, Jin-A; Lee, Changhoon; Chae, Yeon-Su; Park, Hyungju; Kim, Min-Jeong; Choi, Sun-Lim; Lee, Nuribalhae; Kim, Hyoung; Kaang, Bong-Kiun

    2010-01-01

    Phosphodiesterases (PDEs) are known to play a key role in the compartmentalization of cAMP signaling; however, the molecular mechanisms underlying intracellular localization of different PDE isoforms are not understood. In this study, we have found that each of the supershort, short, and long forms of apPDE4 showed distinct localization in the…

  19. Isoform-specific regulation of adenylyl cyclase: a potential target in future pharmacotherapy.

    PubMed

    Iwatsubo, Kousaku; Tsunematsu, Takashi; Ishikawa, Yoshihiro

    2003-06-01

    Adenylyl cyclase (AC) is a target enzyme of multiple G-protein-coupled receptors (GPCRs). In the past decade, the cloning, structure and biochemical properties of nine AC isoforms were reported, and each isoform of AC shows distinct patterns of tissue distribution and biochemical/pharmacological properties. In addition to the conventional regulators of this enzyme, such as calmodulin (CaM) or PKC, novel regulators, for example, caveolin, have been identified. Most importantly, these regulators work on AC in an isoform dependent manner. Recent studies have demonstrated that certain classic AC inhibitors, i.e., P-site inhibitors, show an isoform-dependent inhibition of AC. The side chain modifications of forskolin, a diterpene extract from Coleus forskolii, markedly enhance its isoform selectivity. When taken together, these findings suggest that it is feasible to develop new pharmacotherapeutic agents that target AC isoforms to regulate various neurohormonal signals in a highly tissue-/organ-specific manner.

  20. ICAM-1: isoforms and phenotypes.

    PubMed

    Ramos, Theresa N; Bullard, Daniel C; Barnum, Scott R

    2014-05-15

    ICAM-1 plays an important role in leukocyte trafficking, immunological synapse formation, and numerous cellular immune responses. Although considered a single glycoprotein, there are multiple membrane-bound and soluble ICAM-1 isoforms that arise from alternative splicing and proteolytic cleavage during inflammatory responses. The function and expression of these isoforms on various cell types are poorly understood. In the generation of ICAM-1-deficient mice, two isoform-deficient ICAM-1 mutants were inadvertently produced as a result of alternative splicing. These mice, along with true ICAM-1-deficient mice and newly generated ICAM-1-transgenic mice, have provided the opportunity to begin examining the role of ICAM-1 isoforms (singly or in combination) in various disease settings. In this review, we highlight the sharply contrasting disease phenotypes using ICAM-1 isoform mutant mice. These studies demonstrate that ICAM-1 immunobiology is highly complex but that individual isoforms, aside from the full-length molecule, make significant contributions to disease development and pathogenesis.

  1. ICAM-1: Isoforms and Phenotypes

    PubMed Central

    Ramos, Theresa N.; Bullard, Daniel C.; Barnum, Scott R.

    2014-01-01

    Intercellular adhesion molecule-1 (ICAM-1) plays an important role in leukocyte trafficking, immunological synapse formation and, numerous cellular immune responses. Although considered a single glycoprotein, there are multiple membrane bound and soluble ICAM-1 isoforms which arise from alternative splicing and proteolytic cleavage during inflammatory responses. The function and expression of these isoforms on various cell types is poorly understood. In the generation of ICAM-1-deficient mice, two isoform-deficient ICAM-1 mutants were inadvertently produced due to alternative splicing. These mice along with true ICAM-1-deficient mice and newly generated ICAM-1 transgenic mice have provided the opportunity to begin examining the role of ICAM-1 isoforms (singly or in combination) in various disease settings. In this review we highlight the sharply contrasting disease phenotypes using ICAM-1 isoform mutant mice. These studies demonstrate that ICAM-1 immunobiology is highly complex but that individual isoforms, aside from the full-length molecule, make significant contributions to disease development and pathogenesis. PMID:24795464

  2. Akt isoform specific effects in ovarian cancer progression

    PubMed Central

    Linnerth-Petrik, Nicolle M.; Santry, Lisa A.; Moorehead, Roger; Jücker, Manfred

    2016-01-01

    Ovarian cancer remains a significant therapeutic problem and novel, effective therapies are needed. Akt is a serine-threonine kinase that is overexpressed in numerous cancers, including ovarian. Mammalian cells express three Akt isoforms which are encoded by distinct genes. Although there are several Akt inhibitors in clinical trials, most indiscriminately target all isoforms. Current in vitro data and animal knockout experiments suggest that the Akt isoforms may have divergent roles. In this paper, we determined the isoform-specific functions of Akt in ovarian cancer cell proliferation in vitro and in ovarian cancer progression in vivo. For in vitro experiments, murine and human ovarian cancer cells were treated with Akt inhibitors and cell viability was assessed. We used two different in vivo approaches to identify the roles of Akt isoforms in ovarian cancer progression and their influence on the primary tumor and tumor microenvironment. In one experiment, wild-type C57Bl6 mice were orthotopically injected with ID8 cells with stable knockdown of Akt isoforms. In a separate experiment, mice null for Akt 1-3 were orthotopically injected with WT ID8 cells (Figure 1). Our data show that inhibition of Akt1 significantly reduced ovarian cancer cell proliferation and inhibited tumor progression in vivo. Conversely, disruption of Akt2 increased tumor growth. Inhibition of Akt3 had an intermediate phenotype, but also increased growth of ovarian cancer cells. These data suggest that there is minimal redundancy between the Akt isoforms in ovarian cancer progression. These findings have important implications in the design of Akt inhibitors for the effective treatment of ovarian cancer. PMID:27533079

  3. Autocrine VEGF Isoforms Differentially Regulate Endothelial Cell Behavior

    PubMed Central

    Yamamoto, Hideki; Rundqvist, Helene; Branco, Cristina; Johnson, Randall S.

    2016-01-01

    Vascular endothelial growth factor A (VEGF) is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration, and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2). We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO) synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell homeostasis in

  4. Identification and characterization of novel NuMA isoforms

    SciTech Connect

    Wu, Jin; Xu, Zhe; He, Dacheng; Lu, Guanting

    2014-11-21

    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.

  5. Chemical origins of isoform selectivity in histone deacetylase inhibitors.

    PubMed

    Butler, Kyle V; Kozikowski, Alan P

    2008-01-01

    Histones undergo extensive posttranslational modifications that affect gene expression. Acetylation is a key histone modification that is primarily regulated by two enzymes, one of which is histone deacetylase (HDAC). The activity of HDAC causes transcriptional silencing of DNA. Eleven distinct zinc-dependent histone deacetylase isoforms have been identified in humans. Each isoform has a unique structure and function, and regulates a unique set of genes. HDAC is responsible for the regulation of many genes involved in cancer cell proliferation, and it has been implicated in the pathogenesis of many neurological conditions. HDAC inhibitors are known to be very effective anti-cancer agents, and research has shown them to be potential treatments for many other conditions. Histone deacetylase inhibitors modify the expression of many genes, and it is possible that inhibition of one isoform could cause epigenetic changes that are beneficial to treatment of a disease, while inhibition of another isoform could cause contradictory changes. Selective HDAC inhibitors will be better able to avoid these types of situations than non-specific inhibitors, and may also be less toxic than pan-HDAC inhibitors. Many potent pan-HDAC inhibitors have already been developed, leaving the development of selective inhibitors at the forefront of HDAC drug development. Certain structural moieties may be added to HDAC inhibitors to give isoform selectivity, and these will be discussed in this review. This review will focus on the applications of selective HDAC inhibitors, inhibitors reported to show selectivity, and the relationship between inhibitor structure and selectivity.

  6. Evidence for multiple protein kinase C isoforms in the leukocytes of a marine teleost, Sciaenops ocellatus.

    PubMed

    Mericko, P A; Burnett, K G

    1998-05-01

    The protein kinase C (PKC) family of isozymes mediates a diverse range of cellular functions, including activation of vertebrate lymphocytes through membrane-bound antigen receptors. The complex role of PKC in mammalian cells may be orchestrated in part by the presence of multiple isoforms, each of which displays a distinctive tissue distribution, substrate specificity and pattern of regulation. In the present study, PKC isoforms were identified in peripheral blood leukocytes of the marine teleost fish Sciaenops ocellatus by immunoprecipitation and Western blot using antibodies to mammalian isoforms. Functional activity was monitored by evaluating translocation of the teleost isoforms from membrane to cytosol in response to phorbol ester treatment. Teleost conventional isoforms PKC alpha and PKC beta (82 kDa) completely translocated out of the cytosol in response to phorbol ester. Phorbol ester did not induce translocation of teleost atypical isoform PKC zeta (67 kDa), as has been shown for its mammalian homologue. Although their identity as distinct isoforms is less clear, proposed teleost novel PKC delta (84, 86 kDa) and PKC eta (83, 85 kDa) also translocated out of the cytosol. The presence of multiple isoforms representing each of the three major classes of PKC in red drum leukocytes implies that the complexity of signal transduction pathways in vertebrates is highly conserved.

  7. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC.

    PubMed

    Schwab, Ryan S; Ihnatovych, Ivanna; Yunus, Sharifah Z S A; Domaradzki, Tera; Hofmann, Wilma A

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms.

  8. Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis.

    PubMed

    Luttgeharm, Kyle D; Cahoon, Edgar B; Markham, Jonathan E

    2016-03-01

    Ceramide makes up the acyl-backbone of sphingolipids and plays a central role in determining the function of these essential membrane lipids. In Arabidopsis, the varied chemical composition of ceramide is determined by the specificity of three different isoforms of ceramide synthase, denoted LAG one homologue 1, -2 and -3 (LOH1, LOH2 and LOH3), for a range of long-chain base (LCB) and acyl-CoA substrates. The contribution of each of these isoforms to the synthesis of ceramide was investigated by in vitro ceramide synthase assays. The plant LCB phytosphingosine was efficiently used by the LOH1 and LOH3 isoforms, with LOH1 having the lowest Km for the LCB substrate of the three isoforms. In contrast, sphinganine was used efficiently only by the LOH2 isoform. Acyl-CoA specificity was also distinguished between the three isoforms with LOH2 almost completely specific for palmitoyl-CoA whereas the LOH1 isoform showed greatest activity with lignoceroyl- and hexacosanoyl-CoAs. Interestingly, unsaturated acyl-CoAs were not used efficiently by any isoform whereas unsaturated LCB substrates were preferred by LOH2 and 3. Fumonisin B1 (FB1) is a general inhibitor of ceramide synthases but LOH1 was found to have a much lower Ki than the other isoforms pointing towards the origin of FB1 sensitivity in plants. Overall, the data suggest distinct roles and modes of regulation for each of the ceramide synthases in Arabidopsis sphingolipid metabolism.

  9. Differential subcellular distribution of four phospholipase C isoforms and secretion of GPI-PLC activity.

    PubMed

    Staudt, Emanuel; Ramasamy, Pathmanaban; Plattner, Helmut; Simon, Martin

    2016-12-01

    Phospholipase C (PLC) is an important enzyme of signal transduction pathways by generation of second messengers from membrane lipids. PLCs are also indicated to cleave glycosylphosphatidylinositol (GPI)-anchors of surface proteins thus releasing these into the environment. However, it remains unknown whether this enzymatic activity on the surface is due to distinct PLC isoforms in higher eukaryotes. Ciliates have, in contrast to other unicellular eukaryotes, multiple PLC isoforms as mammals do. Thus, Paramecium represents a perfect model to study subcellular distribution and potential surface activity of PLC isoforms. We have identified distinct subcellular localizations of four PLC isoforms indicating functional specialization. The association with different calcium release channels (CRCs) argues for distinct subcellular functions. They may serve as PI-PLCs in microdomains for local second messenger responses rather than free floating IP3. In addition, all isoforms can be found on the cell surface and they are found together with GPI-cleaved surface proteins in salt/ethanol washes of cells. We can moreover show them in medium supernatants of living cells where they have access to GPI-anchored surface proteins. Among the isoforms we cannot assign GPI-PLC activity to specific PLC isoforms; rather each PLC is potentially responsible for the release of GPI-anchored proteins from the surface.

  10. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC

    SciTech Connect

    Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.; Domaradzki, Tera; Hofmann, Wilma A.

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been identified in the myosin IC isoform B sequence. ► Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ► First mechanistic explanation of functional differences between the isoforms.

  11. Histamine H3-receptor isoforms.

    PubMed

    Bakker, R A

    2004-10-01

    Increasing evidence supports a role for HA as a neurotransmitter and neuromodulator in various brain functions, including emotion, cognition, and feeding. The recent cloning of the histamine H3 receptor allowed for the subsequent cloning of a variety of H3 receptor isoforms from different species as well as the H4 receptor. As a result a wide variety of H3-receptor isoforms are now known that display differential brain expression patterns and signalling properties. These recent discoveries are discussed in view of the growing interest of the H3 receptor as a target for the development of potential therapeutics.

  12. A neuron-specific cytoplasmic dynein isoform preferentially transports TrkB signaling endosomes

    PubMed Central

    Ha, Junghoon; Lo, Kevin W.-H.; Myers, Kenneth R.; Carr, Tiffany M.; Humsi, Michael K.; Rasoul, Bareza A.; Segal, Rosalind A.; Pfister, K. Kevin

    2008-01-01

    Cytoplasmic dynein is the multisubunit motor protein for retrograde movement of diverse cargoes to microtubule minus ends. Here, we investigate the function of dynein variants, defined by different intermediate chain (IC) isoforms, by expressing fluorescent ICs in neuronal cells. Green fluorescent protein (GFP)–IC incorporates into functional dynein complexes that copurify with membranous organelles. In living PC12 cell neurites, GFP–dynein puncta travel in both the anterograde and retrograde directions. In cultured hippocampal neurons, neurotrophin receptor tyrosine kinase B (TrkB) signaling endosomes are transported by cytoplasmic dynein containing the neuron-specific IC-1B isoform and not by dynein containing the ubiquitous IC-2C isoform. Similarly, organelles containing TrkB isolated from brain by immunoaffinity purification also contain dynein with IC-1 but not IC-2 isoforms. These data demonstrate that the IC isoforms define dynein populations that are selectively recruited to transport distinct cargoes. PMID:18559670

  13. Functional specificity of PMCA isoforms?

    PubMed

    Domi, Teuta; Di Leva, Francesca; Fedrizzi, Laura; Rimessi, Alessandro; Brini, Marisa

    2007-03-01

    In mammals, four different genes encode four PMCA isoforms. PMCA1 and PMCA4 are expressed ubiquitously. PMCA2 and PMCA3 are expressed prevalently in the central nervous systems. More than 30 variants are generated by mechanisms of alternative splicing. The physiological meaning of the existence of such elevated number of isoforms is not clear, but it would be plausible to relate it to the cell-specific demands of Ca2+ homeostasis. To characterize functional specificity of PMCA variants we have investigated two aspects: the effects of the overexpression of the different PMCA variants on cellular Ca2+ handling and the existence of possible isoform-specific interactions with partner proteins using a yeast two-hybrid technique. The four basic PMCA isoforms were coexpressed in CHO cells together with the Ca2+-sensitive recombinant photoprotein aequorin. The effects of their overexpression on Ca2+ homeostasis were monitored in the living cells. They had revealed that the ubiquitous isoforms 1 and 4 are less effective in reducing the Ca2+ peaks generated by cell stimulation as compared to the neuron-specific isoforms 2 and 3. To establish whether these differences were related to different and new physiological regulators of the pump, the 90 N-terminal residues of PMCA2 and PMCA4 have been used as baits for the search of molecular partners. Screening of a human brain cDNA library with the PMCA4 bait specified the epsilon-isoform of protein 14-3-3, whereas no 14-3-3 epsilon clone was obtained with the PMCA2 bait. Overexpression of PMCA4/14-3-3 epsilon (but not of PMCA2/14-3-3 epsilon) in HeLa cells together with targeted aequorins showed that the ability of the cells to export Ca2+ was impaired. Thus, the interaction with 14-3-3 epsilon inhibited PMCA4 but not PMCA2. The role of PMCA2 has been further characterized by Ca2+ measurements in cells overexpressing different splicing variants. The results indicated that the combination of alternative splicing at two different

  14. Expression of Phosphoinositide-Specific Phospholipase C Isoforms in Native Endothelial Cells

    PubMed Central

    Béziau, Delphine M.; Toussaint, Fanny; Blanchette, Alexandre; Dayeh, Nour R.; Charbel, Chimène; Tardif, Jean-Claude; Dupuis, Jocelyn; Ledoux, Jonathan

    2015-01-01

    Phospholipase C (PLC) comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η) based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs) remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA), pulmonary (PA) and middle cerebral arteries (MCA). mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA), δ4 (only expressed in MCA), η1 (expressed in all but MA) and ζ (not detected in any vascular beds tested). The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1) in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found in the

  15. Mammalian mRNA Splice-Isoform Selection Is Tightly Controlled

    PubMed Central

    Chisa, Jennifer L.; Burke, David T.

    2007-01-01

    Post-transcriptional RNA processing is an important regulatory control mechanism for determining the phenotype of eukaryotic cells. The processing of a transcribed RNA species into alternative splice isoforms yields products that can perform different functions. Each type of cell in a multi-cellular organism is presumed to actively control the relative quantities of alternative splice isoforms. In this study, the alternatively spliced isoforms of five mRNA transcription units were examined by quantitative reverse transcription–PCR amplification. We show that interindividual variation in splice-isoform selection is very highly constrained when measured in a large population of genetically diverse mice (i.e., full siblings; N = 150). Remarkably, splice-isoform ratios are among the most invariant phenotypes measured in this population and are confirmed in a second, genetically distinct population. In addition, the patterns of splice-isoform selection show tissue-specific and age-related changes. We propose that splice-isoform selection is exceptionally robust to genetic and environmental variability and may provide a control point for cellular homeostasis. As a consequence, splice-isoform ratios may be useful as a practical quantitative measure of the physiological status of cells and tissues. PMID:17179090

  16. P120-catenin isoforms 1A and 3A differently affect invasion and proliferation of lung cancer cells

    SciTech Connect

    Liu Yang; Dong Qianze; Zhao Yue; Dong Xinjun; Miao Yuan; Dai Shundong; Yang Zhiqiang; Zhang Di; Wang Yan; Li Qingchang; Zhao Chen; Wang Enhua

    2009-03-10

    Different isoforms of p120-catenin (p120ctn), a member of the Armadillo gene family, are variably expressed in different tissues as a result of alternative splicing and the use of multiple translation initiation codons. When expressed in cancer cells, these isoforms may confer different properties with respect to cell adhesion and invasion. We have previously reported that the p120ctn isoforms 1 and 3 were the most highly expressed isoforms in normal lung tissues, and their expression level was reduced in lung tumor cells. To precisely define their biological roles, we transfected p120ctn isoforms 1A and 3A into the lung cancer cell lines A549 and NCI-H460. Enhanced expression of p120ctn isoform 1A not only upregulated E-cadherin and {beta}-catenin, but also downregulated the Rac1 activity, and as a result, inhibited the ability of cells to invade. In contrast, overexpression of p120ctn isoform 3A led to the inactivation of Cdc42 and the activation of RhoA, and had a smaller influence on invasion. However, we found that isoform 3A had a greater ability than isoform 1A in both inhibiting the cell cycle and reducing tumor cell proliferation. The present study revealed that p120ctn isoforms 1A and 3A differently regulated the adhesive, proliferative, and invasive properties of lung cancer cells through distinct mechanisms.

  17. Inference of Isoforms from Short Sequence Reads

    NASA Astrophysics Data System (ADS)

    Feng, Jianxing; Li, Wei; Jiang, Tao

    Due to alternative splicing events in eukaryotic species, the identification of mRNA isoforms (or splicing variants) is a difficult problem. Traditional experimental methods for this purpose are time consuming and cost ineffective. The emerging RNA-Seq technology provides a possible effective method to address this problem. Although the advantages of RNA-Seq over traditional methods in transcriptome analysis have been confirmed by many studies, the inference of isoforms from millions of short sequence reads (e.g., Illumina/Solexa reads) has remained computationally challenging. In this work, we propose a method to calculate the expression levels of isoforms and infer isoforms from short RNA-Seq reads using exon-intron boundary, transcription start site (TSS) and poly-A site (PAS) information. We first formulate the relationship among exons, isoforms, and single-end reads as a convex quadratic program, and then use an efficient algorithm (called IsoInfer) to search for isoforms. IsoInfer can calculate the expression levels of isoforms accurately if all the isoforms are known and infer novel isoforms from scratch. Our experimental tests on known mouse isoforms with both simulated expression levels and reads demonstrate that IsoInfer is able to calculate the expression levels of isoforms with an accuracy comparable to the state-of-the-art statistical method and a 60 times faster speed. Moreover, our tests on both simulated and real reads show that it achieves a good precision and sensitivity in inferring isoforms when given accurate exon-intron boundary, TSS and PAS information, especially for isoforms whose expression levels are significantly high.

  18. Mast cells express novel functional IL-15 receptor alpha isoforms.

    PubMed

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Krause, Hans; Paus, Ralf; Bulfone-Paus, Silvia

    2003-05-15

    Mast cells previously have been reported to be regulated by IL-15 and to express a distinct IL-15R, termed IL-15RX. To further examine IL-15 binding and signaling in mast cells, we have studied the nature of the IL-15R and some of its biological activities in these cells. In this study, we report the existence of three novel isoforms of the IL-15R alpha chain in murine bone marrow-derived mast cells as a result of an alternative exon-splicing mechanism within the IL-15R alpha gene. These correspond to new mRNA transcripts lacking exon 4; exons 3 and 4; or exons 3, 4, and 5 (IL-15R alpha Delta 4, IL-15R alpha Delta 3,4, IL-15R alpha Delta 3,4,5). After transient transfection in COS-7 cells, all IL-15R alpha isoforms associate with the Golgi apparatus, the endoplasmic reticulum, the perinuclear space, and the cell membrane. Analysis of glycosylation pattern demonstrates the usage of a single N-glycosylation site, while no O-glycosylation is observed. Importantly, IL-15 binds with high affinity to, and promotes the survival of, murine BA/F3 cells stably transfected with the IL-15R alpha isoforms. Furthermore, we report that signaling mediated by IL-15 binding to the newly identified IL-15R alpha isoforms involves the phosphorylation of STAT3, STAT5, STAT6, Janus kinase 2, and Syk kinase. Taken together, our data indicate that murine mast cells express novel, fully functional IL-15R alpha isoforms, which can explain the selective regulatory effects of IL-15 on these cells.

  19. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Pinto, Cibele; Papa, Dan; Hübner, Melanie; Mou, Tung-Chung; Lushington, Gerald H; Seifert, Roland

    2008-04-01

    Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.

  20. Dynamic expression and localization of c-MET isoforms in the developing rat pancreas.

    PubMed

    Wu, Yulong; Cheng, Mei; Shi, Zhen; Feng, Zhenqing; Guan, Xiaohong

    2014-01-01

    Pancreata from Sprague Dawley rats of different developmental stages were studied to determine the expression and cellular localization of different c-MET isoforms in the developing rat pancreas. Pancreatic mRNA and protein expression levels of c-MET at different developmental stages from embryo to adult were detected by reverse transcription-polymerase chain reaction and by western blotting. To identify the cellular localization of c-MET protein in the developing rat pancreas, double immunofluorescent staining was performed using antibodies for cell type-specific markers and for c-MET. The expression of two isoforms of c-MET (190 kDa and 170 kDa) coincided with the development of the pancreas. The 190 kDa isoform of c-MET is expressed during embryonic stages, and its expression is replaced by the expression of the 170 kDa isoform as the pancreas develops. Only the 170 kDa isoform is expressed in the adult rat pancreas. Throughout all stages of pancreatic development, c-MET is expressed by vimentin-positive cells. In contrast, c-MET staining was stronger in rat pancreata from newborn to adult stages and overlapped with insulin-positive beta-cells. The dynamic expression and localization of different c-MET isoforms in the rat pancreas during different developmental stages indicates that distinct c-MET isoform might be involved in different aspects of pancreatic development.

  1. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    PubMed Central

    Fearnley, Gareth W.; Smith, Gina A.; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A.; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T.; Zachary, Ian C.; Tomlinson, Darren C.; Harrison, Michael A.; Wheatcroft, Stephen B.; Ponnambalam, Sreenivasan

    2016-01-01

    ABSTRACT Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. PMID:27044325

  2. A Comprehensive Analysis of CXCL12 Isoforms in Breast Cancer(1,2.)

    PubMed

    Zhao, Shuang; Chang, S Laura; Linderman, Jennifer J; Feng, Felix Y; Luker, Gary D

    2014-05-13

    CXCL12-CXCR4-CXCR7 signaling promotes tumor growth and metastasis in breast cancer. Alternative splicing of CXCL12 produces isoforms with distinct structural and biochemical properties, but little is known about isoform-specific differences in breast cancer subtypes and patient outcomes. We investigated global expression profiles of the six CXCL12 isoforms, CXCR4, and CXCR7 in The Cancer Genome Atlas breast cancer cohort using next-generation RNA sequencing in 948 breast cancer and benign samples and seven breast cancer cell lines. We compared expression levels with several clinical parameters, as well as metastasis, recurrence, and overall survival (OS). CXCL12-α, -β, and -γ are highly co-expressed, with low expression correlating with more aggressive subtypes, higher stage disease, and worse clinical outcomes. CXCL12-δ did not correlate with other isoforms but was prognostic for OS and showed the same trend for metastasis and recurrence-free survival. Effects of CXCL12-δ remained independently prognostic when taking into account expression of CXCL12,CXCR4, and CXCR7. These results were also reflected when comparing CXCL12-α, -β, and -γ in breast cancer cell lines. We summarized expression of all CXCL12 isoforms in an important chemokine signaling pathway in breast cancer in a large clinical cohort and common breast cancer cell lines, establishing differences among isoforms in multiple clinical, pathologic, and molecular subgroups. We identified for the first time the clinical importance of a previously unstudied isoform, CXCL12-δ.

  3. Laminin isoforms: biological roles and effects on the intracellular distribution of nuclear proteins in intestinal epithelial cells

    SciTech Connect

    Turck, Natacha; Gross, Isabelle; Gendry, Patrick; Stutzmann, Jeanne; Freund, Jean-Noel; Kedinger, Michele; Simon-Assmann, Patricia; Launay, Jean-Francois . E-mail: Jean-Francois.Launay@inserm.u-strasbg.fr

    2005-02-15

    Laminins are structurally and functionally major components of the extracellular matrix. Four isoforms of laminins (laminin-1, -2, -5 and -10) are expressed in a specific pattern along the crypt-villus axis of the intestine. Previous works indicated that expression of these isoforms is developmentally regulated and that laminins could modulate the behaviour of intestinal cells, but the exact role of each isoform remained unclear. Here, we report the first systematic analysis of the cellular functions of the four isoforms using the human colon adenocarcinoma Caco2/TC7 cell line as a model. We compared the respective abilities of each isoform to modulate adhesion, proliferation and differentiation of intestinal epithelial cells. We found that the isoforms were functionally distinct, with laminin-10 being the most adhesive substratum, laminin-2, laminin-5 and laminin-10 enhancing cellular proliferation and at the opposite, laminin-1 stimulating intestinal cell differentiation. To begin to characterise the molecular events induced by the different isoforms, we examined by immunofluorescence the intracellular distribution of several nuclear proteins, recently highlighted by a nuclear proteomic approach. We observed clear nucleocytoplasmic redistribution of these proteins, which depended on the laminin isoform. These results provide evidence for a distinct functional role of laminins in intestinal cell functions characterised by specific localisation of nuclear proteins.

  4. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    NASA Technical Reports Server (NTRS)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  5. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics

    PubMed Central

    Chakedis, Jeffery; French, Randall; Babicky, Michele; Jaquish, Dawn; Mose, Evangeline; Cheng, Peter; Holman, Patrick; Howard, Haleigh; Miyamoto, Jaclyn; Porras, Paula; Walterscheid, Zakk; Schultz-Fademrecht, Carsten; Esdar, Christina; Schadt, Oliver; Eickhoff, Jan; Lowy, Andrew M.

    2016-01-01

    The RON tyrosine kinase receptor is under investigation as a novel target in pancreatic cancer. While RON mutations are uncommon, RON isoforms are produced in cancer cells via a variety of mechanisms. In this study we sought to: 1) characterize RON isoform expression in pancreatic cancer, 2) investigate mechanisms that regulate isoform expression, and 3) determine how various isoforms effect gene expression, oncogenic phenotypes and responses to RON directed therapies. We quantified RON transcripts in human pancreatic cancer and found expression levels 2500 fold that of normal pancreas with RON isoform expression comprising nearly 50% of total transcript. RNA seq studies revealed that the short form (sfRON) and P5P6 isoforms which have ligand independent activity, induce markedly different patterns of gene expression than wild type RON. We found that transcription of RON isoforms is regulated by promoter hypermethylation as the DNA demethylating agent 5-aza-2′-deoxycytidine decreased all RON transcripts in a subset of pancreatic cancer cell lines. The viability of sfRON-expressing HPDE cells was reduced by a RON specific small molecule inhibitor, while a therapeutic monoclonal antibody had no demonstrable effects. In summary, RON isoforms may comprise half of total RON transcript in human pancreatic cancer and their expression is regulated at least in part by promoter hypermethylation. RON isoforms activate distinct patterns of gene expression, have transforming activity and differential responses to RON directed therapies. These findings further our understanding of RON biology in pancreatic cancer and have implications for therapeutic strategies to target RON activity. PMID:27323855

  6. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics.

    PubMed

    Chakedis, Jeffery; French, Randall; Babicky, Michele; Jaquish, Dawn; Mose, Evangeline; Cheng, Peter; Holman, Patrick; Howard, Haleigh; Miyamoto, Jaclyn; Porras, Paula; Walterscheid, Zakk; Schultz-Fademrecht, Carsten; Esdar, Christina; Schadt, Oliver; Eickhoff, Jan; Lowy, Andrew M

    2016-07-19

    The RON tyrosine kinase receptor is under investigation as a novel target in pancreatic cancer. While RON mutations are uncommon, RON isoforms are produced in cancer cells via a variety of mechanisms. In this study we sought to: 1) characterize RON isoform expression in pancreatic cancer, 2) investigate mechanisms that regulate isoform expression, and 3) determine how various isoforms effect gene expression, oncogenic phenotypes and responses to RON directed therapies. We quantified RON transcripts in human pancreatic cancer and found expression levels 2500 fold that of normal pancreas with RON isoform expression comprising nearly 50% of total transcript. RNA seq studies revealed that the short form (sfRON) and P5P6 isoforms which have ligand independent activity, induce markedly different patterns of gene expression than wild type RON. We found that transcription of RON isoforms is regulated by promoter hypermethylation as the DNA demethylating agent 5-aza-2'-deoxycytidine decreased all RON transcripts in a subset of pancreatic cancer cell lines. The viability of sfRON-expressing HPDE cells was reduced by a RON specific small molecule inhibitor, while a therapeutic monoclonal antibody had no demonstrable effects. In summary, RON isoforms may comprise half of total RON transcript in human pancreatic cancer and their expression is regulated at least in part by promoter hypermethylation. RON isoforms activate distinct patterns of gene expression, have transforming activity and differential responses to RON directed therapies. These findings further our understanding of RON biology in pancreatic cancer and have implications for therapeutic strategies to target RON activity.

  7. Non-muscle Myosin II Isoforms Co-assemble in Living Cells

    PubMed Central

    Beach, Jordan R.; Shao, Lin; Remmert, Kirsten; Li, Dong; Betzig, Eric; Hammer, John A.

    2014-01-01

    SUMMARY Non-muscle myosin II (NM II) powers myriad developmental and cellular processes, including embryogenesis, cell migration, and cytokinesis [1]. To exert its functions, monomers of NM II assemble into bipolar filaments that produce a contractile force on the actin cytoskeleton. Mammalian cells express up to three isoforms of NM II (NM IIA, IIB and IIC), each of which possesses distinct biophysical properties and supports unique, as well as redundant, cellular functions [2-8]. Despite previous efforts [9-13], it remains unclear if NM II isoforms assemble in living cells to produce mixed (heterotypic) bipolar filaments, or if filaments consist entirely of a single isoform (homotypic). We addressed this question using fluorescently-tagged versions of NM IIA, IIB and IIC, isoform-specific immunostaining of the endogenous proteins, and two-color total internal reflection fluorescence structured-illumination microscopy, or TIRF-SIM, to visualize individual myosin II bipolar filaments inside cells. We show that NM II isoforms co-assemble into heterotypic filaments in a variety of settings, including various types of stress fibers, individual filaments throughout the cell, and the contractile ring. We also show that the differential distribution of NM IIA and NM IIB typically seen in confocal micrographs of well-polarized cells is reflected in the composition of individual bipolar filaments. Interestingly, this differential distribution is less pronounced in freshly-spread cells, arguing for the existence of sorting mechanism acting over time. Together, our work argues that individual NM II isoforms are potentially performing both isoform-specific and isoform-redundant functions while co-assembled with other NM II isoforms. PMID:24814144

  8. SMRT has tissue-specific isoform profiles that include a form containing one CoRNR box

    SciTech Connect

    Short, Stephen; Malartre, Marianne; Sharpe, Colin . E-mail: colin.sharpe@port.ac.uk

    2005-09-02

    SMRT acts as a corepressor for a range of transcription factors. The amino-terminal part of the protein includes domains that mainly mediate transcriptional repression whilst the carboxy-terminal part includes domains that interact with nuclear receptors using up to three motifs called CoRNR boxes. The region of the SMRT primary transcript encoding the interaction domains is subject to alternative splicing that varies the inclusion of the third CoRNR box. The profile in mice includes an abundant, novel SMRT isoform that possesses just one CoRNR box. Mouse tissues therefore express SMRT isoforms containing one, two or three CoRNR boxes. In frogs, the SMRT isoform profile is tissue-specific. The mouse also shows distinct profiles generated by differential expression levels of the SMRT transcript isoforms. The formation of multiple SMRT isoforms and their tissue-specific regulation indicates a mechanism, whereby cells can define the repertoire of transcription factors regulated by SMRT.

  9. Differential Regulation of Aromatase Isoforms and Tissue Responses to Environmental Chemicals in Fish

    EPA Science Inventory

    As in mammals, aromatase plays a basic role in fish reproduction. Unlike most mammals, with only one form of aromatase, fish have two distinct forms. One isoform, P450aromA, predominates in ovaries. Ovarian aromatase activity controls circulating levels of estrogens and is critic...

  10. Divergent roles for thyroid hormone receptor β isoforms in the endocrine axis and auditory system

    PubMed Central

    Abel, E. Dale; Boers, Mary-Ellen; Pazos-Moura, Carmen; Moura, Egberto; Kaulbach, Helen; Zakaria, Marjorie; Lowell, Bradford; Radovick, Sally; Liberman, M. Charles; Wondisford, Fredric

    1999-01-01

    Thyroid hormone receptors (TRs) modulate various physiological functions in many organ systems. The TRα and TRβ isoforms are products of 2 distinct genes, and the β1 and β2 isoforms are splice variants of the same gene. Whereas TRα1 and TRβ1 are widely expressed, expression of the TRβ2 isoform is mainly limited to the pituitary, triiodothyronine-responsive TRH neurons, the developing inner ear, and the retina. Mice with targeted disruption of the entire TRβ locus (TRβ-null) exhibit elevated thyroid hormone levels as a result of abnormal central regulation of thyrotropin, and also develop profound hearing loss. To clarify the contribution of the TRβ2 isoform to the function of the endocrine and auditory systems in vivo, we have generated mice with targeted disruption of the TRβ2 isoform. TRβ2-null mice have preserved expression of the TRα and TRβ1 isoforms. They develop a similar degree of central resistance to thyroid hormone as TRβ-null mice, indicating the important role of TRβ2 in the regulation of the hypothalamic-pituitary-thyroid axis. Growth hormone gene expression is marginally reduced. In contrast, TRβ2-null mice exhibit no evidence of hearing impairment, indicating that TRβ1 and TRβ2 subserve divergent roles in the regulation of auditory function. PMID:10430610

  11. Mass spectrometry and structural characterization of 2S albumin isoforms from Brazil nuts (Bertholletia excelsa).

    PubMed

    Moreno, F Javier; Jenkins, John A; Mellon, Fred A; Rigby, Neil M; Robertson, James A; Wellner, Nikolaus; Clare Mills, E N

    2004-05-06

    Proteomic approaches have been used to characterise the main 2S albumin isoforms from Brazil nuts (Bertholletia excelsa). Whilst most isoforms ( approximately 10 discrete protein species) exhibited molecular masses of around 12 kDa with a high amino acid sequence homology, important charge heterogeneity was found, with pIs varying between 4.6 and 6.6, with one >or=7.0. Proteomic analysis showed that these corresponded to a total of six National Center for Biotechnology Information (NCBI) accessions and that three isoforms had been purified to homogeneity corresponding to gi/384327, 112754 and 99609. The latter sequence corresponds to an isoform, previously only identified at the nucleotide sequence level, had a slightly higher molecular weight (13.4 kDa), and with noticeable differences in the primary structure. Proteins corresponding to six different NCBI accessions were identified, the heterogeneity of which had been increased by posttranslational processing. Evidence was found of cyclization of the N-terminal glutamine residue in two isoforms, together with ragged C-termini, indicative of carboxypeptidase activity within the vacuole following posttranslational processing. No evidence of glycosylation was found. Circular dichroism (CD) and Fourier transform-infrared (FT-IR) spectroscopy indicated all the studied isoforms were predominantly alpha-helical in nature, but that the Mr 13400 species was structurally distinct, with a higher proportion of alpha-helical structure.

  12. Dystrophin Dp71 Isoforms Are Differentially Expressed in the Mouse Brain and Retina: Report of New Alternative Splicing and a Novel Nomenclature for Dp71 Isoforms.

    PubMed

    Aragón, Jorge; González-Reyes, Mayram; Romo-Yáñez, José; Vacca, Ophélie; Aguilar-González, Guadalupe; Rendón, Alvaro; Vaillend, Cyrille; Montañez, Cecilia

    2017-01-27

    Multiple dystrophin Dp71 isoforms have been identified in rats, mice, and humans and in several cell line models. These Dp71 isoforms are produced by the alternative splicing of exons 71 to 74 and 78 and intron 77. Three main groups of Dp71 proteins are defined based on their C-terminal specificities: Dp71d, Dp71f, and Dp71e. Dp71 is highly expressed in the brain and retina; however, the specific isoforms present in these tissues have not been determined to date. In this work, we explored the expression of Dp71 isoforms in the mouse brain and retina using RT-PCR assays followed by the cloning of PCR products into the pGEM-T Easy vector, which was used to transform DH5α cells. Dp71-positive colonies were later analyzed by PCR multiplex and DNA sequencing to determine the alternative splicing. We thus demonstrated the expression of Dp71 transcripts corresponding to Dp71, Dp71a, Dp71c, Dp71b, Dp71ab, Dp71 Δ110, and novel Dp71 isoforms spliced in exon 74; 71 and 74; 71, 73 and 74; and 74 and 78, which we named Dp71d Δ74 , Dp71d Δ71,74 , Dp71d Δ71,73-74 , and Dp71f Δ74 , respectively. Additionally, we demonstrated that the Dp71d group of isoforms is highly expressed in the brain, while the Dp71f group predominates in the retina, at both the cDNA and protein levels. These findings suggest that distinct Dp71 isoforms may play different roles in the brain and retina.

  13. Differential Regulation of Human Thymosin Beta 15 Isoforms by Transforming Growth Factor Beta 1

    PubMed Central

    Banyard, Jacqueline; Barrows, Courtney; Zetter, Bruce R.

    2009-01-01

    We recently identified an additional isoform of human thymosin beta 15 (also known as NB-thymosin beta, gene name TMSB15A) transcribed from an independent gene, and designated TMSB15B. The purpose of this study was to investigate whether these isoforms were differentially expressed and functional. Our data show that the TMSB15A and TMSB15B isoforms have distinct expression patterns in different tumor cell lines and tissues. TMSB15A was expressed at higher levels in HCT116, DU145, LNCaP and LNCaP-LN3 cancer cells. In MCF-7, SKOV-3, HT1080 and PC-3MLN4 cells, TMSB15A and TMSB15B showed approximately equivalent levels of expression, while TMSB15B was the predominant isoform expressed in PC-3, MDA-MB-231, NCI-H322 and Caco-2 cancer cells. In normal human prostate and prostate cancer tissues, TMSB15A was the predominant isoform expressed. In contrast, normal colon and colon cancer tissue expressed predominantly TMSB15B. The two gene isoforms are also subject to different transcriptional regulation. Treatment of MCF-7 breast cancer cells with transforming growth factor beta 1 repressed TMSB15A expression but had no effect on TMSB15B. siRNA specific to the TMSB15B isoform suppressed cell migration of prostate cancer cells to epidermal growth factor, suggesting a functional role for this second isoform. In summary, our data reveal different expression patterns and regulation of a new thymosin beta 15 gene paralog. This may have important consequences in both tumor and neuronal cell motility. PMID:19296525

  14. Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression.

    PubMed

    Stricker, Thomas P; Brown, Christopher D; Bandlamudi, Chaitanya; McNerney, Megan; Kittler, Ralf; Montoya, Vanessa; Peterson, April; Grossman, Robert; White, Kevin P

    2017-03-01

    Breast cancer, the second leading cause of cancer death of women worldwide, is a heterogenous disease with multiple different subtypes. These subtypes carry important implications for prognosis and therapy. Interestingly, it is known that these different subtypes not only have different biological behaviors, but also have distinct gene expression profiles. However, it has not been rigorously explored whether particular transcriptional isoforms are also differentially expressed among breast cancer subtypes, or whether transcript isoforms from the same sets of genes can be used to differentiate subtypes. To address these questions, we analyzed the patterns of transcript isoform expression using a small set of RNA-sequencing data for eleven Estrogen Receptor positive (ER+) subtype and fourteen triple negative (TN) subtype tumors. We identified specific sets of isoforms that distinguish these tumor subtypes with higher fidelity than standard mRNA expression profiles. We found that alternate promoter usage, alternative splicing, and alternate 3'UTR usage are differentially regulated in breast cancer subtypes. Profiling of isoform expression in a second, independent cohort of 68 tumors confirmed that expression of splice isoforms differentiates breast cancer subtypes. Furthermore, analysis of RNAseq data from 594 cases from the TCGA cohort confirmed the ability of isoform usage to distinguish breast cancer subtypes. Also using our expression data, we identified several RNA processing factors that were differentially expressed between tumor subtypes and/or regulated by estrogen receptor, including YBX1, YBX2, MAGOH, MAGOHB, and PCBP2. RNAi knock-down of these RNA processing factors in MCF7 cells altered isoform expression. These results indicate that global dysregulation of splicing in breast cancer occurs in a subtype-specific and reproducible manner and is driven by specific differentially expressed RNA processing factors.

  15. Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression

    PubMed Central

    Stricker, Thomas P.; Bandlamudi, Chaitanya; Kittler, Ralf; Montoya, Vanessa; Peterson, April; Grossman, Robert

    2017-01-01

    Breast cancer, the second leading cause of cancer death of women worldwide, is a heterogenous disease with multiple different subtypes. These subtypes carry important implications for prognosis and therapy. Interestingly, it is known that these different subtypes not only have different biological behaviors, but also have distinct gene expression profiles. However, it has not been rigorously explored whether particular transcriptional isoforms are also differentially expressed among breast cancer subtypes, or whether transcript isoforms from the same sets of genes can be used to differentiate subtypes. To address these questions, we analyzed the patterns of transcript isoform expression using a small set of RNA-sequencing data for eleven Estrogen Receptor positive (ER+) subtype and fourteen triple negative (TN) subtype tumors. We identified specific sets of isoforms that distinguish these tumor subtypes with higher fidelity than standard mRNA expression profiles. We found that alternate promoter usage, alternative splicing, and alternate 3’UTR usage are differentially regulated in breast cancer subtypes. Profiling of isoform expression in a second, independent cohort of 68 tumors confirmed that expression of splice isoforms differentiates breast cancer subtypes. Furthermore, analysis of RNAseq data from 594 cases from the TCGA cohort confirmed the ability of isoform usage to distinguish breast cancer subtypes. Also using our expression data, we identified several RNA processing factors that were differentially expressed between tumor subtypes and/or regulated by estrogen receptor, including YBX1, YBX2, MAGOH, MAGOHB, and PCBP2. RNAi knock-down of these RNA processing factors in MCF7 cells altered isoform expression. These results indicate that global dysregulation of splicing in breast cancer occurs in a subtype-specific and reproducible manner and is driven by specific differentially expressed RNA processing factors. PMID:28263985

  16. Multiple isoforms of myofibrillar proteins in crustacean muscle: evidence for two slow fiber types

    SciTech Connect

    Mykles, D.L.

    1986-01-01

    Four distinct patterns of myofibrillar proteins, extracted from fast and slow muscles of the lobster, Homarus americanus, are distinguished by different assemblages of regulatory and contractile protein variants. Multiple isoforms of troponin-T, -I, and -C, paramyosin, and myosin light chains occur in six muscles of the claws and abdomen. Analysis of glycerinated fibers from the claws of lobster and land crab, Gecarcinus lateralis, show that more than one isoform is expressed in a single fiber, forming unique assemblages by which subgroups can be discriminated within the broader categories of fast and slow fibers. 9 refs., 3 figs.

  17. PKC Isoform Expression in Modeled Microgravity

    NASA Technical Reports Server (NTRS)

    Risin, Diana; Sundaresan, Alamelu; Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Our previous studies showed that modeled (MMG) and true (USA Space Shuttle Missions STS-54 and STS-56) microgravity (MG) inhibit human lymphocyte locomotion, Modeled MG also suppressed polyclonal and antigen-specific lymphocyte activation. Activation of PKC by phorbol myristate acetate (PMA) restored the microgravity-inhibited lymphocyte locomotion as well as activation by phytohaemagglutinin (PHA), whereas calcium ionophore (ionomycin) was unable to restore these functions. Based on these results we hypothesized that MG-induced changes in lymphocyte functions are caused by a fundamental defect in signal transduction mechanism. This defect may be localized either at the PKC level or upstream of PKC, most likely, at the cell membrane level. In this study we examined the expression of PKC isoforms alpha, epsilon and delta in PBMC cultured in rotating wall vessel bioreactor, developed at NASA JSC, which models microgravity by sustaining cells in continuous free fall. The assessment of the isoforms was performed by FACS analysis following cell permeabilization. A decrease in the expression of isoforms epsilon and delta, but not isoform a, was observed in PBMC cultured in microgravity conditions. These data suggest that MMG might selectively affect the expression of Ca2+ independent isoforms of PKC Molecular analysis confirm selective suppression of Ca2+ independent isoforms of PKC.

  18. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    ERIC Educational Resources Information Center

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  19. Impact of divalent metal ions on regulation of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Erdorf, Miriam; Mou, Tung-Chung; Seifert, Roland

    2011-12-01

    Mammalian membranous adenylyl cyclases (mACs) play an important role in transmembrane signalling events in almost every cell and represent an interesting drug target. Forskolin (FS) is an invaluable research tool, activating AC isoforms 1-8. However, there is a paucity of AC isoform-selective FS analogs. Therefore, we examined the effects of FS and six FS derivatives on recombinant ACs 1, 2 and 5, representing members of different mAC families. Correlations of the pharmacological properties of the different AC isoforms revealed pronounced differences between ACs 1, 2 and 5. Additionally, potencies and efficacies of FS derivatives changed for any given AC isoform, depending on the metal ion, Mg(2+) or Mn(2+). The most striking effects of Mg(2+) and Mn(2+) on the diterpene profile were observed for AC2 where the large inhibitory effect of BODIPY-FS in the presence of Mg(2+) was considerably reduced in the presence of Mn(2+). Sequence alignment and docking experiments confirmed an exceptional position of AC2 compared to ACs 1 and 5 with respect to the structural environment of the catalytic core and cation-dependent diterpene effects. In conclusion, mAC isoforms 1, 2 and 5 exhibit a distinct pharmacological diterpene profile, depending on the divalent cation present. mAC crystal structures and modelling/docking studies provided an explanation for the pharmacological differences between the AC isoforms. Our study constitutes an important step towards the development of isoform-specific diterpenes exhibiting stimulatory or inhibitory effects.

  20. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    PubMed

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-02

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  1. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    PubMed Central

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  2. A truncated, activin-induced Smad3 isoform acts as a transcriptional repressor of FSHβ expression in mouse pituitary.

    PubMed

    Kim, So-Youn; Zhu, Jie; Woodruff, Teresa K

    2011-08-06

    The receptor-regulated protein Smad3 is key player in the signaling cascade stimulated by the binding of activin to its cell surface receptor. Upon phosphorylation, Smad3 forms a heterocomplex with Smad2 and Smad4, translocates to the nucleus and acts as a transcriptional co-activator. We have identified a unique isoform of Smad3 that is expressed in mature pituitary gonadotropes. 5' RACE revealed that this truncated Smad3 isoform is transcribed from an ATG site within exon 4 and consists of 7 exons encoding half of the linker region and the MH2 region. In pituitary cells, the truncated Smad3 isoform was phosphorylated upon activin treatment, in a manner that was temporally distinct from the phosphorylation of full-length Smad3. Activin-induced phosphorylation of Smad3 and the truncated Smad3 isoform was blocked by both follistatin and siRNA-mediated knockdown of Smad3. The truncated Smad3 isoform antagonized Smad3-mediated, activin-responsive promoter activity. We propose that the pituitary gonadotrope contains an ultra-short, activin-responsive feedback loop utilizing two different isoforms of Smad3, one which acts as an agonist (Smad3) and another that acts as an intracrine antagonist (truncated Smad3 isoform) to regulate FSHβ production.

  3. Cyclooxygenase Isoform Exchange Blocks Brain-Mediated Inflammatory Symptoms

    PubMed Central

    Mirrasekhian, Elahe; Zajdel, Joanna; Kumar Singh, Anand; Engblom, David

    2016-01-01

    Cyclooxygenase-2 (COX-2) is the main source of inducible prostaglandin E2 production and mediates inflammatory symptoms including fever, loss of appetite and hyperalgesia. COX-1 is dispensable for fever, anorexia and hyperalgesia but is important for several other functions both under basal conditions and during inflammation. The differential functionality of the COX isoforms could be due to differences in the regulatory regions of the genes, leading to different expression patterns, or to differences in the coding sequence, resulting in distinct functional properties of the proteins. To study the molecular underpinnings of the functional differences between the two isoforms in the context of inflammatory symptoms, we used mice in which the coding sequence of COX-2 was replaced by the corresponding sequence of COX-1. In these mice, COX-1 mRNA was induced by inflammation but COX-1 protein expression did not fully mimic inflammation-induced COX-2 expression. Just like mice globally lacking COX-2, these mice showed a complete lack of fever and inflammation-induced anorexia as well as an impaired response to inflammatory pain. However, as previously reported, they displayed close to normal survival rates, which contrasts to the high fetal mortality in COX-2 knockout mice. This shows that the COX activity generated from the hybrid gene was strong enough to allow survival but not strong enough to mediate the inflammatory symptoms studied, making the line an interesting alternative to COX-2 knockouts for the study of inflammation. Our results also show that the functional differences between COX-1 and COX-2 in the context of inflammatory symptoms are not only dependent on the features of the promoter regions. Instead they indicate that there are fundamental differences between the isoforms at translational or posttranslational levels. PMID:27861574

  4. Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity.

    PubMed

    Xie, Xiaoling; Baird, Daniel; Bowen, Kimberly; Capka, Vladimir; Chen, Jinyun; Chenail, Gregg; Cho, YoungShin; Dooley, Julia; Farsidjani, Ali; Fortin, Pascal; Kohls, Darcy; Kulathila, Raviraj; Lin, Fallon; McKay, Daniel; Rodrigues, Lindsey; Sage, David; Touré, B Barry; van der Plas, Simon; Wright, Kirk; Xu, Ming; Yin, Hong; Levell, Julian; Pagliarini, Raymond A

    2017-03-07

    Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1(R132H) mutation destabilizes an IDH1 "regulatory segment," which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.

  5. Most highly expressed protein-coding genes have a single dominant isoform.

    PubMed

    Ezkurdia, Iakes; Rodriguez, Jose Manuel; Carrillo-de Santa Pau, Enrique; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L

    2015-04-03

    Although eukaryotic cells express a wide range of alternatively spliced transcripts, it is not clear whether genes tend to express a range of transcripts simultaneously across cells, or produce dominant isoforms in a manner that is either tissue-specific or regardless of tissue. To date, large-scale investigations into the pattern of transcript expression across distinct tissues have produced contradictory results. Here, we attempt to determine whether genes express a dominant splice variant at the protein level. We interrogate peptides from eight large-scale human proteomics experiments and databases and find that there is a single dominant protein isoform, irrespective of tissue or cell type, for the vast majority of the protein-coding genes in these experiments, in partial agreement with the conclusions from the most recent large-scale RNAseq study. Remarkably, the dominant isoforms from the experimental proteomics analyses coincided overwhelmingly with the reference isoforms selected by two completely orthogonal sources, the consensus coding sequence variants, which are agreed upon by separate manual genome curation teams, and the principal isoforms from the APPRIS database, predicted automatically from the conservation of protein sequence, structure, and function.

  6. Absolute Quantification of Endogenous Ras Isoform Abundance

    PubMed Central

    Mageean, Craig J.; Griffiths, John R.; Smith, Duncan L.; Clague, Michael J.; Prior, Ian A.

    2015-01-01

    Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data. PMID:26560143

  7. EP3 Receptor Isoforms are Differentially Expressed in Subpopulations of Primate Granulosa Cells and Couple to Unique G-Proteins

    PubMed Central

    Kim, Soon Ok; Dozier, Brandy L.; Kerry, Julie A.; Duffy, Diane M.

    2013-01-01

    Prostaglandin E2 produced within the ovarian follicle is necessary for ovulation. Prostaglandin E2 is recognized by four distinct G-protein coupled receptors. Among them, PTGER3 (also known as EP3) is unique in that mRNA splicing generates multiple isoforms. Each isoform has a distinct amino acid composition in the C-terminal region, which is involved in G-protein coupling. To determine if monkey EP3 isoforms couple to different G-proteins, each EP3 isoform was expressed in Chinese hamster ovary (CHO) cells, and intracellular signals were examined after stimulation with the EP3 agonist sulprostone. Stimulation of EP3 isoform 5 (EP3-5) reduced cyclic adenosine monophosphate (cAMP) in a pertussis toxin-sensitive manner, indicating involvement of Gαi. Stimulation of EP3-9 increased cAMP, which was reduced by the general G-protein inhibitor GDP-β-S, and also increased intracellular calcium, which was reduced by pertussis toxin and GDP-β-S. So, EP3-9 likely couples to both Gαs and a pertussis toxin-sensitive G-protein to regulate intracellular signals. Stimulation of EP3-14 increased cAMP, which was further increased by pertussis toxin, so EP3-14 likely regulates cAMP via multiple G-proteins. Granulosa cell expression of all EP3 isoforms increased in response to an ovulatory dose of hCG. Two EP3 isoforms were differentially expressed in functional subpopulations of granulosa cells. EP3-5 was low in granulosa cells at the follicle apex while EP3-9 was high in cumulus granulosa cells. Differential expression of EP3 isoforms may yield different intracellular responses to prostaglandin E2 in granulosa cell subpopulations, contributing to the different roles played by granulosa cell subpopulations in the process of ovulation. PMID:24062570

  8. Axonal and dendritic synaptotagmin isoforms revealed by a pHluorin-syt functional screen.

    PubMed

    Dean, Camin; Dunning, F Mark; Liu, Huisheng; Bomba-Warczak, Ewa; Martens, Henrik; Bharat, Vinita; Ahmed, Saheeb; Chapman, Edwin R

    2012-05-01

    The synaptotagmins (syts) are a family of molecules that regulate membrane fusion. There are 17 mammalian syt isoforms, most of which are expressed in the brain. However, little is known regarding the subcellular location and function of the majority of these syts in neurons, largely due to a lack of isoform-specific antibodies. Here we generated pHluorin-syt constructs harboring a luminal domain pH sensor, which reports localization, pH of organelles to which syts are targeted, and the kinetics and sites of exocytosis and endocytosis. Of interest, only syt-1 and 2 are targeted to synaptic vesicles, whereas other isoforms selectively recycle in dendrites (syt-3 and 11), axons (syt-5, 7, 10, and 17), or both axons and dendrites (syt-4, 6, 9, and 12), where they undergo exocytosis and endocytosis with distinctive kinetics. Hence most syt isoforms localize to distinct secretory organelles in both axons and dendrites and may regulate neuropeptide/neurotrophin release to modulate neuronal function.

  9. Myosin isoforms in female human detrusor.

    PubMed

    FitzGerald, M P; Manaves, V; Martin, A F; Shott, S; Brubaker, L

    2001-01-01

    The aim of this study was to document the relative proportions of two isoforms of myosin heavy chain in detrusor smooth muscle of women with detrusor overactivity and in asymptomatic controls. Women aged 35-65 with documented detrusor overactivity and without a history of neurologic disease, prior incontinence surgery, elevated post-void residual urine volume, or indwelling urinary catheter were eligible for the study. Full-thickness biopsies of extraperitoneal bladder dome were obtained at the time of laparotomy in six patients with documented detrusor overactivity and in a control group of eight continent patients. Biopsies were frozen in liquid nitrogen, crushed with a frozen mortar and pestle at -80 degrees C, and homogenized in buffer, and the extracts were electrophoresed on 6% polyacrylamide sodium dodecyl sulfate gels and stained with Coomassie blue. The gels were de-stained and then the protein bands were scanned with a densitometer. The mean patient age was 48 years (range, 36-59). Seven patients were Caucasian and seven patients were African American. Detrusor smooth muscle contains a mean of 34% (range, 27-43%) SM1 and 66% (range, 57-73%) SM2 isoforms. There was no difference in isoform composition when patients were compared according to urogynecologic diagnosis or according to race. In detrusor biopsies from women, approximately 34% of myosin is of the SM1 isoform and approximately 66% is of the SM2 isoform. This ratio is relatively constant in the two races studied and unchanged in women with detrusor overactivity. Animal models utilizing outlet obstruction of the bladder to provoke detrusor instability and detrusor hypertrophy are known to alter myosin isoform distribution and may not be appropriate models of detrusor instability in human females.

  10. Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms.

    PubMed

    Essner, J J; Branford, W W; Zhang, J; Yost, H J

    2000-03-01

    The pitx2 gene is a member of the bicoid-homeodomain class of transcription factors that has been implicated in the control of left-right asymmetry during organogenesis. Here we demonstrate that in zebrafish there are two pitx2 isoforms, pitx2a and pitx2c, which show distinct expression patterns and have non-overlapping functions during mesendoderm and asymmetric organ development. pitx2c is expressed symmetrically in presumptive mesendoderm during late blastula stages and in the prechordal plate during late gastrulation. pitx2a expression is first detected at bud stage in the anterior prechordal plate. The regulation of early mesendoderm pitx2c expression is dependent on one-eyed pinhead (EGF-CFC-related gene) and spadetail (tbx-transcription factor) and can be induced by ectopic goosecoid expression. Maintenance of pitx2c midline expression is dependent on cyclops (nodal) and schmalspur, but not no tail (brachyury). Ectopic expression of pitx2 isoforms results in distinct morphological and molecular phenotypes, indicating that pitx2a and pitx2c have divergent regulatory functions. Both isoforms downregulate goosecoid on the dorsal side, but in contrast to earlier reports that nodal and lefty are upstream of pitx2, ectopic pitx2c in other regions induces cyclops, lefty2 and goosecoid expression. Asymmetric isoform expression occurs in non-overlapping domains, with pitx2c in left dorsal diencephalon and developing gut and pitx2a in left heart primordium. Targeted asymmetric expression in Xenopus shows that both isoforms can alter left-right development, but pitx2a has a slightly stronger effect on heart laterality. Our results indicate that distinct genetic pathways regulate pitx2a and pitx2c isoform expression, and each isoform regulates different downstream pathways during mesendoderm and asymmetric organ development.

  11. Structure and characterization of AAT-1 isoforms.

    PubMed

    Matsuda, Eiko; Ishizaki, Ray; Taira, Takahiro; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2005-05-01

    A novel protein, AAT-1, was identified as a AMY-1-binding protein and three splicing variants of AAT-1, AAT-1alpha, -beta and -gamma were identified. The function of AAT-1 is thought to be related to spermatogenesis. In this study, we further identified other splicing isoforms of AAT-1, AAT-1L, AAT-1M and AAT-1S, consisting of 767, 603 and 252 amino acids, respectively. These isoforms were found to use a promoter different from that used by AAT-1alpha, -beta and -gamma in the aat-1 gene, which contains 20 exons. Only 60 amino acids in the C-terminal portion of AAT-1 derived from exons 15-17 are common among AAT-1L, AAT-1M, AAT-1S and AAT-1alpha. While AAT-1alpha is specifically expressed in the testis, AAT-1L, AAT-1M, AAT-1S were found to be differentially expressed in human tissues. All of the isoforms of AAT-1 were found to bind to and colocalized with AMY-1 in human cells. While AAT-1L and AAT-1M were found to be localized diffusely in the cytoplasm, AAT-1S, like AAT-1alpha, was found to be localized in the mitochondria-like structure, suggesting different roles of AAT-1 isoforms in cells.

  12. Absolute quantitation of protein posttranslational modification isoform.

    PubMed

    Yang, Zhu; Li, Ning

    2015-01-01

    Mass spectrometry has been widely applied in characterization and quantification of proteins from complex biological samples. Because the numbers of absolute amounts of proteins are needed in construction of mathematical models for molecular systems of various biological phenotypes and phenomena, a number of quantitative proteomic methods have been adopted to measure absolute quantities of proteins using mass spectrometry. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with internal peptide standards, i.e., the stable isotope-coded peptide dilution series, which was originated from the field of analytical chemistry, becomes a widely applied method in absolute quantitative proteomics research. This approach provides more and more absolute protein quantitation results of high confidence. As quantitative study of posttranslational modification (PTM) that modulates the biological activity of proteins is crucial for biological science and each isoform may contribute a unique biological function, degradation, and/or subcellular location, the absolute quantitation of protein PTM isoforms has become more relevant to its biological significance. In order to obtain the absolute cellular amount of a PTM isoform of a protein accurately, impacts of protein fractionation, protein enrichment, and proteolytic digestion yield should be taken into consideration and those effects before differentially stable isotope-coded PTM peptide standards are spiked into sample peptides have to be corrected. Assisted with stable isotope-labeled peptide standards, the absolute quantitation of isoforms of posttranslationally modified protein (AQUIP) method takes all these factors into account and determines the absolute amount of a protein PTM isoform from the absolute amount of the protein of interest and the PTM occupancy at the site of the protein. The absolute amount of the protein of interest is inferred by quantifying both the absolute amounts of a few PTM

  13. Tunable protein synthesis by transcript isoforms in human cells.

    PubMed

    Floor, Stephen N; Doudna, Jennifer A

    2016-01-06

    Eukaryotic genes generate multiple RNA transcript isoforms though alternative transcription, splicing, and polyadenylation. However, the relationship between human transcript diversity and protein production is complex as each isoform can be translated differently. We fractionated a polysome profile and reconstructed transcript isoforms from each fraction, which we term Transcript Isoforms in Polysomes sequencing (TrIP-seq). Analysis of these data revealed regulatory features that control ribosome occupancy and translational output of each transcript isoform. We extracted a panel of 5' and 3' untranslated regions that control protein production from an unrelated gene in cells over a 100-fold range. Select 5' untranslated regions exert robust translational control between cell lines, while 3' untranslated regions can confer cell type-specific expression. These results expose the large dynamic range of transcript-isoform-specific translational control, identify isoform-specific sequences that control protein output in human cells, and demonstrate that transcript isoform diversity must be considered when relating RNA and protein levels.

  14. Differential expression and subcellular distribution of dystrophin Dp71 isoforms during differentiation process.

    PubMed

    Marquez, F G; Cisneros, B; Garcia, F; Ceja, V; Velázquez, F; Depardón, F; Cervantes, L; Rendón, A; Mornet, D; Rosas-vargas, H; Mustre, M; Montañez, C

    2003-01-01

    Dp71 is the major product of the Duchenne muscular dystrophy gene in the brain. In order to study the function of Dp71 in the nervous system we examined the expression of Dp71 isoforms in PC12 rat pheochromocytoma cell line, a well-established system to study neuronal differentiation. We show by reverse transcriptase-polymerase chain reaction and Western blot assays that PC12 cells express two Dp71 isoforms. One isoform lacks exon 71 and the other isoform lacks exons 71 and 78 (Dp71d and Dp71f isoforms respectively). Nerve growth factor-induced neuronal differentiation of PC12 cells results in differential regulation of the expression and subcellular localization of Dp71 isoforms: a) the amount of Dp71f protein increases nine-fold in total extracts while Dp71d increases up to seven-fold in nuclear extracts; b) Dp71f relocates from the cytoplasm to neuritic processes, being prominent at varicosities and the growth cone; c) Dp71d relocates almost entirely to the nucleus and is detected to a lower extent in the cytoplasm and neuritic processes. Dp71f co-localizes with beta-dystroglycan and synaptophysin while Dp71d co-localizes with beta-dystroglycan in the nucleus. Dp71d accumulates at cell-cell contacts where Dp71f is absent. These results suggest that Dp71d and Dp71f associate with different subcellular complexes and therefore may have distinct functions in PC12 cells.

  15. Smad phospho-isoforms direct context-dependent TGF-β signaling.

    PubMed

    Matsuzaki, Koichi

    2013-08-01

    Better understanding of TGF-β signaling has deepened our appreciation of normal epithelial cell homeostasis and its dysfunction in such human disorders as cancer and fibrosis. Smad proteins, which convey signals from TGF-β receptors to the nucleus, possess intermediate linker regions connecting Mad homology domains. Membrane-bound, cytoplasmic, and nuclear protein kinases differentially phosphorylate Smad2 and Smad3 to create C-tail (C), the linker (L), or dually (L/C) phosphorylated (p, phospho-) isoforms. According to domain-specific phosphorylation, distinct transcriptional responses, and selective metabolism, Smad phospho-isoform pathways can be grouped into 4 types: cytostatic pSmad3C signaling, mitogenic pSmad3L (Ser-213) signaling, invasive/fibrogenic pSmad2L (Ser-245/250/255)/C or pSmad3L (Ser-204)/C signaling, and mitogenic/migratory pSmad2/3L (Thr-220/179)/C signaling. We outline how responses to TGF-β change through the multiple Smad phospho-isoforms as normal epithelial cells mature from stem cells through progenitors to differentiated cells, and further reflect upon how constitutive Ras-activating mutants favor the Smad phospho-isoform pathway promoting tumor progression. Finally, clinical analyses of reversible Smad phospho-isoform signaling during human carcinogenesis could assess effectiveness of interventions aimed at reducing human cancer risk. Spatiotemporally separate, functionally different Smad phospho-isoforms have been identified in specific cells and tissues, answering long-standing questions about context-dependent TGF-β signaling.

  16. Different Characteristics and Nucleotide Binding Properties of Inosine Monophosphate Dehydrogenase (IMPDH) Isoforms

    PubMed Central

    Thomas, Elaine C.; Gunter, Jennifer H.; Webster, Julie A.; Schieber, Nicole L.; Oorschot, Viola; Parton, Robert G.; Whitehead, Jonathan P.

    2012-01-01

    We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP) would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i) the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii) communication occurs between the Bateman and catalytic domains and (iii) the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease. PMID:23236438

  17. Isoform-specific monoubiquitination, endocytosis, and degradation of alternatively spliced ErbB4 isoforms.

    PubMed

    Sundvall, Maria; Korhonen, Anna; Paatero, Ilkka; Gaudio, Eugenio; Melino, Gerry; Croce, Carlo M; Aqeilan, Rami I; Elenius, Klaus

    2008-03-18

    Endocytosis and subsequent lysosomal degradation serve as a well characterized mechanism to fine-tune and down-regulate EGFR signaling. However, other members of the EGFR/ErbB receptor family have been reported to be endocytosis-impaired. Here we demonstrate that endocytosis of ErbB4 is regulated in an isoform-specific manner: CYT-1 isoforms were efficiently endocytosed whereas CYT-2 isoforms were endocytosis-impaired. CYT-1 isoforms in endocytic vesicles colocalized with Rab5 and Rab7 indicating trafficking via early endosomes to late endosomal/lysosomal structures. A PPXY motif within the CYT-1-specific sequence that lacks from CYT-2 was necessary both for ubiquitination and endocytosis of CYT-1 isoforms and provided a binding site for a WW domain-containing ubiquitin ligase Itch. Itch catalyzed ubiquitination of ErbB4 CYT-1, promoted its localization into intracellular vesicles, and stimulated degradation of ErbB4 CYT-1. Dominant negative Itch suppressed ErbB4 CYT-1 endocytosis and degradation. These data indicate that ErbB4 isoforms differ in endocytosis and degradation by a mechanism mediated by CYT-1-specific PPXY motif interacting with a WW domain-containing E3 ubiquitin ligase.

  18. Plectin isoform 1-dependent nuclear docking of desmin networks affects myonuclear architecture and expression of mechanotransducers

    PubMed Central

    Staszewska, Ilona; Fischer, Irmgard; Wiche, Gerhard

    2015-01-01

    Plectin is a highly versatile cytoskeletal protein that acts as a mechanical linker between intermediate filament (IF) networks and various cellular structures. The protein is crucial for myofiber integrity. Its deficiency leads to severe pathological changes in skeletal muscle fibers of patients suffering from epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). Skeletal muscle fibers express four major isoforms of plectin which are distinguished solely by alternative, relatively short, first exon-encoded N-terminal sequences. Each one of these isoforms is localized to a different subcellular compartment and plays a specific role in maintaining integrity and proper function(s) of myofibers. The unique role of individual isoforms is supported by distinct phenotypes of isoform-specific knockout mice and recently discovered mutations in first coding exons of plectin that lead to distinct, tissue-specific, pathological abnormalities in humans. In this study, we demonstrate that the lack of plectin isoform 1 (P1) in myofibers of mice leads to alterations of nuclear morphology, similar to those observed in various forms of MD. We show that P1-mediated targeting of desmin IFs to myonuclei is essential for maintenance of their typically spheroidal architecture as well as their proper positioning and movement along the myofiber. Furthermore, we show that P1 deficiency affects chromatin modifications and the expression of genes involved in various cellular functions, including signaling pathways mediating mechanotransduction. Mechanistically, P1 is shown to specifically interact with the myonuclear membrane-associated (BAR domain-containing) protein endophilin B. Our results open a new perspective on cytoskeleton-nuclear crosstalk via specific cytolinker proteins. PMID:26487297

  19. Expression and membrane localization of MCT isoforms along the length of the human intestine.

    PubMed

    Gill, Ravinder K; Saksena, Seema; Alrefai, Waddah A; Sarwar, Zaheer; Goldstein, Jay L; Carroll, Robert E; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K

    2005-10-01

    Recent studies from our laboratory and others have demonstrated the involvement of monocarboxylate transporter (MCT)1 in the luminal uptake of short-chain fatty acids (SCFAs) in the human intestine. Functional studies from our laboratory previously demonstrated kinetically distinct SCFA transporters on the apical and basolateral membranes of human colonocytes. Although apical SCFA uptake is mediated by the MCT1 isoform, the molecular identity of the basolateral membrane SCFA transporter(s) and whether this transporter is encoded by another MCT isoform is not known. The present studies were designed to assess the expression and membrane localization of different MCT isoforms in human small intestine and colon. Immunoblotting was performed with the purified apical and basolateral membranes from human intestinal mucosa obtained from organ donor intestine. Immunohistochemistry studies were done on paraffin-embedded sections of human colonic biopsy samples. Immunoblotting studies detected a protein band of approximately 39 kDa for MCT1, predominantly in the apical membranes. The relative abundance of MCT1 mRNA and protein increased along the length of the human intestine. MCT4 (54 kDa) and MCT5 (54 kDa) isoforms showed basolateral localization and were highly expressed in the distal colon. Immunohistochemical studies confirmed that human MCT1 antibody labeling was confined to the apical membranes, whereas MCT5 antibody staining was restricted to the basolateral membranes of the colonocytes. We speculate that distinct MCT isoforms may be involved in SCFA transport across the apical or basolateral membranes in polarized colonic epithelial cells.

  20. Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design

    SciTech Connect

    Gilbreth, Ryan N.; Truong, Khue; Madu, Ikenna; Koide, Akiko; Wojcik, John B.; Li, Nan-Sheng; Piccirilli, Joseph A.; Chen, Yuan; Koide, Shohei

    2011-07-25

    Discriminating closely related molecules remains a major challenge in the engineering of binding proteins and inhibitors. Here we report the development of highly selective inhibitors of small ubiquitin-related modifier (SUMO) family proteins. SUMOylation is involved in the regulation of diverse cellular processes. Functional differences between two major SUMO isoforms in humans, SUMO1 and SUMO2/3, are thought to arise from distinct interactions mediated by each isoform with other proteins containing SUMO-interacting motifs (SIMs). However, the roles of such isoform-specific interactions are largely uncharacterized due in part to the difficulty in generating high-affinity, isoform-specific inhibitors of SUMO/SIM interactions. We first determined the crystal structure of a 'monobody,' a designed binding protein based on the fibronectin type III scaffold, bound to the yeast homolog of SUMO. This structure illustrated a mechanism by which monobodies bind to the highly conserved SIM-binding site while discriminating individual SUMO isoforms. Based on this structure, we designed a SUMO-targeted library from which we obtained monobodies that bound to the SIM-binding site of human SUMO1 with K{sub d} values of approximately 100 nM but bound to SUMO2 400 times more weakly. The monobodies inhibited SUMO1/SIM interactions and, unexpectedly, also inhibited SUMO1 conjugation. These high-affinity and isoform-specific inhibitors will enhance mechanistic and cellular investigations of SUMO biology.

  1. Isoform-specific expression and ratio changes accompany oxidant-induced peripherin aggregation in a neuroblastoma cell line.

    PubMed

    McLean, Jesse R; Robertson, Janice

    2011-11-08

    The type III intermediate filament peripherin is found associated with pathological inclusions present within motor neurons of patients with amyotrophic lateral sclerosis (ALS). Peripherin intra-isoform associations contribute to filament network formation at defined stoichiometric ratios. Distinct biochemical signatures characterize peripherin isoform expression in traumatic neuronal injury and motor neuron disease, while disruptions to peripherin alternative splicing or translation are associated with inclusion formation. In our efforts to identify pathological relationships between peripherin isoform expression and inclusion formation, we provide evidence of peripherin isoform-specific expression and ratio changes with concomitant, dose-dependent inclusion formation in response to oxidative stress. Upon increasing exposure to physiologically relevant levels of hydrogen peroxide in Neuro-2a cells, we observed a significant increase and decrease in peripherin isoforms Per-58 and Per-45, respectively, with peripherin-specific perikaryal aggregation of filaments 10-15 μm in diameter. Interestingly, peripherin-immunoreactive inclusions showed no overt carbonylation, suggesting that aggregation may serve a physiologically relevant role during oxidative stress. These findings provide novel insight into the biological significance of peripherin isoforms and inclusion formation, with relevance to the pathology of ALS.

  2. Divergent tropism of HHV-6AGS and HHV-6BPL1 in T cells expressing different CD46 isoform patterns.

    PubMed

    Hansen, Aida S; Bundgaard, Bettina B; Biltoft, Mette; Rossen, Litten S; Höllsberg, Per

    2017-02-01

    CD46 is a receptor for HHV-6A, but its role as a receptor for HHV-6B is controversial. The significance of CD46 isoforms for HHV-6A and HHV-6B tropism is unknown. HHV-6AGS was able to initiate transcription of the viral genes U7 and U23 in the CD46(+)CD134(-) T-cell lines Peer, Jurkat, Molt3, and SupT1, whereas HHV-6BPL1 was only able to do so in Molt3 and SupT1, which expressed a CD46 isoform pattern different from Peer and Jurkat. The HHV-6BPL1-susceptible T-cell lines were characterized by low expression of the CD46 isoform BC2 and domination of isoforms containing the cytoplasmic tail, CYT-1. A HHV-6BPL1 susceptible cell line, Be13, changed over time its CD46 isoform pattern to resemble Peer and Jurkat and concomitantly lost its susceptibility to HHV-6BPL1 but not HHV-6AGS infection. We propose that isoforms of CD46 impact on HHV-6B infection and thereby in part explain the distinct tropism of HHV-6AGS and HHV-6BPL1.

  3. ERCC1 function in nuclear excision and interstrand crosslink repair pathways is mediated exclusively by the ERCC1-202 isoform

    PubMed Central

    Friboulet, Luc; Postel-Vinay, Sophie; Sourisseau, Tony; Adam, Julien; Stoclin, Annabelle; Ponsonnailles, Florence; Dorvault, Nicolas; Commo, Frédéric; Saulnier, Patrick; Salome-Desmoulez, Sophie; Pottier, Géraldine; André, Fabrice; Kroemer, Guido; Soria, Jean Charles; Olaussen, Ken André

    2013-01-01

    ERCC1 (excision repair cross-complementation group 1) plays essential roles in the removal of DNA intrastrand crosslinks by nucleotide excision repair, and that of DNA interstrand crosslinks by the Fanconi anemia (FA) pathway and homology-directed repair processes (HDR). The function of ERCC1 thus impacts on the DNA damage response (DDR), particularly in anticancer therapy when DNA damaging agents are employed. ERCC1 expression has been proposed as a predictive biomarker of the response to platinum-based therapy. However, the assessment of ERCC1 expression in clinical samples is complicated by the existence of 4 functionally distinct protein isoforms, which differently impact on DDR. Here, we explored the functional competence of each ERCC1 protein isoform and obtained evidence that the 202 isoform is the sole one endowed with ERCC1 activity in DNA repair pathways. The ERCC1 isoform 202 interacts with RPA, XPA, and XPF, and XPF stability requires expression of the ERCC1 202 isoform (but none of the 3 others). ERCC1-deficient non-small cell lung cancer cells show abnormal mitosis, a phenotype reminiscent of the FA phenotype that can be rescued by isoform 202 only. Finally, we could not observe any dominant-negative interaction between ERCC1 isoforms. These data suggest that the selective assessment of the ERCC1 isoform 202 in clinical samples should accurately reflect the DDR-related activity of the gene and hence constitute a useful biomarker for customizing anticancer therapies. PMID:24036546

  4. Cloning, Sequencing, and the Expression of the Elusive Sarcomeric TPM4α Isoform in Humans

    PubMed Central

    Abbott, Lynn; Alshiekh-Nasany, Ruham; Mitschow, Charles

    2016-01-01

    In mammals, tropomyosin is encoded by four known TPM genes (TPM1, TPM2, TPM3, and TPM4) each of which can generate a number of TPM isoforms via alternative splicing and/or using alternate promoters. In humans, the sarcomeric isoform(s) of each of the TPM genes, except for the TPM4, have been known for a long time. Recently, on the basis of computational analyses of the human genome sequence, the predicted sequence of TPM4α has been posted in GenBank. We designed primer-pairs for RT-PCR and showed the expression of the transcripts of TPM4α and a novel isoform TPM4δ in human heart and skeletal muscle. qRT-PCR shows that the relative expression of TPM4α and TPM4δ is higher in human cardiac muscle. Western blot analyses using CH1 monoclonal antibodies show the absence of the expression of TPM4δ protein (~28 kDa) in human heart muscle. 2D western blot analyses with the same antibody show the expression of at least nine distinct tropomyosin molecules with a mass ~32 kD and above in adult heart. By Mass spectrometry, we determined the amino acid sequences of the extracted proteins from these spots. Spot “G” reveals the putative expression of TPM4α along with TPM1α protein in human adult heart. PMID:27703814

  5. Opposing functions of TFII-I spliced isoforms in growth factor-induced gene expression.

    PubMed

    Hakre, Shweta; Tussie-Luna, María Isabel; Ashworth, Todd; Novina, Carl D; Settleman, Jeffrey; Sharp, Phillip A; Roy, Ananda L

    2006-10-20

    Multifunctional transcription factor TFII-I has two spliced isoforms (Delta and beta) in murine fibroblasts. Here we show that these isoforms have distinct subcellular localization and mutually exclusive transcription functions in the context of growth factor signaling. In the absence of signaling, TFII-Ibeta is nuclear and recruited to the c-fos promoter in vivo. But upon growth factor stimulation, the promoter recruitment is abolished and it is exported out of the nucleus. Moreover, isoform-specific silencing of TFII-Ibeta results in transcriptional activation of the c-fos gene. In contrast, TFII-IDelta is largely cytoplasmic in the resting state but translocates to the nucleus upon growth factor signaling, undergoes signal-induced recruitment to the same site on the c-fos promoter, and activates the gene. Importantly, activated TFII-IDelta interacts with Erk1/2 (MAPK) kinase in the cell cytoplasm and imports the Erk1/2 to the nucleus, thereby transducing growth factor signaling. Our results identify a unique growth factor signaling pathway controlled by opposing activities of two TFII-I spliced isoforms.

  6. Weak anion exchange chromatographic profiling of glycoprotein isoforms on a polymer monolithic capillary.

    PubMed

    Liu, Jing; Ren, Lianbing; Liu, Yunchun; Li, Hengye; Liu, Zhen

    2012-03-09

    High resolution separation of intact glycoproteins, which is essential for many aspects such as finger-print profiling, represents a great challenge because one glycoprotein can exhibit many isoforms with close physicochemical properties. Monolithic columns are important separation media for the separation of intact proteins due to its significant advantages such as easy preparation, high column efficiency and high permeability. However, there are few reports on high resolution profiling of intact glycoproteins. Herein, we presented a polymeric weak anion exchange (WAX) monolithic capillary for high resolution separation of glycoprotein isoforms. A base monolith was first prepared through ring-opening polymerization between tris(2,3-epoxypropyl)isocyanurate and tri(2-aminoethyl), and then modified through reacting with ammonia aqueous solution to convert the unreacted epoxide moieties into primary amino groups. The prepared monolithic capillary was characterized in terms of morphology, pore size, hydrophilicity and reproducibility. The obtained WAX monolithic capillary exhibited desired through-pores and mesopore size, stable skeleton and hydrophilic nature. The performance of the capillary was evaluated using several typical glycoproteins such as α(1)-acid glycoprotein (AGP) as mode analytes. Effects of the experimental parameters on the glycoform resolution were investigated. Under the optimized separation conditions, the tested glycoproteins were all resolved into distinct glycoforms. A comparative investigation with capillary zone electrophoresis (CZE) revealed that this WAX column provided better selectivity as more isoforms were observed, although the resolution of some glycoprotein isoforms decreased.

  7. Analysis of protein isoforms: can we do it better?

    PubMed

    Stastna, Miroslava; Van Eyk, Jennifer E

    2012-10-01

    Protein isoforms/splice variants can play important roles in various biological processes and can potentially be used as biomarkers or therapeutic targets/mediators. Thus, there is a need for efficient and, importantly, accurate methods to distinguish and quantify specific protein isoforms. Since protein isoforms can share a high percentage of amino acid sequence homology and dramatically differ in their cellular concentration, the task for accuracy and efficiency in methodology and instrumentation is challenging. The analysis of intact proteins has been perceived to provide a more accurate and complete result for isoform identification/quantification in comparison to analysis of the corresponding peptides that arise from protein enzymatic digestion. Recently, novel approaches have been explored and developed that can possess the accuracy and reliability important for protein isoform differentiation and isoform-specific peptide targeting. In this review, we discuss the recent development in methodology and instrumentation for enhanced detection of protein isoforms as well as the examples of their biological importance.

  8. FSH isoform pattern in classic galactosemia.

    PubMed

    Gubbels, Cynthia S; Thomas, Chris M G; Wodzig, Will K W H; Olthaar, André J; Jaeken, Jaak; Sweep, Fred C G J; Rubio-Gozalbo, M Estela

    2011-04-01

    Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfunction. An earlier study showed less acidic isoforms of FSH in serum samples of two classic galactosemia patients compared to controls, indicating hypoglycosylation. In this study, FSH isoform patterns of five classic galactosemia patients with POI were compared to the pattern obtained in two patients with a primary glycosylation disorder (phosphomannomutase-2-deficient congenital disorders of glycosylation, PMM2-CDG) and POI, and in five postmenopausal women as controls. We used FPLC chromatofocussing with measurement of FSH concentration per fraction, and discovered that there were no significant differences between galactosemia patients, PMM2-CDG patients and postmenopausal controls. Our results do not support that FSH dysfunction due to a less acidic isoform pattern because of hypoglycosylation is a key mechanism of POI in this disease.

  9. Correlation between Saliva and Plasma Levels of Endothelin Isoforms ET-1, ET-2, and ET-3.

    PubMed

    Gurusankar, Roma; Kumarathasan, Prem; Saravanamuthu, Anusha; Thomson, Errol M; Vincent, Renaud

    2015-01-01

    Although saliva endothelins are emerging as valuable noninvasive cardiovascular biomarkers, reports on the relationship between isoforms in saliva and plasma remain scarce. We measured endothelins in concurrent saliva and plasma samples (n = 30 males; age 18-63) by HPLC-fluorescence. Results revealed statistically significant positive correlations among all isoforms between saliva and plasma: big endothelin-1 (BET-1, 0.55 ± 0.27 versus 3.35 ± 1.28 pmol/mL; r = 0.38, p = 0.041), endothelin-1 (ET-1, 0.52 ± 0.21 versus 3.45 ± 1.28 pmol/mL; r = 0.53, p = 0.003), endothelin-2 (ET-2, 0.21 ± 0.07 versus 1.63 ± 0.66 pmol/mL; r = 0.51, p = 0.004), and endothelin-3 (ET-3, 0.39 ± 0.19 versus 2.32 ± 1.44 pmol/mL; r = 0.75, p < 0.001). Correlations of BET-1, ET-1, and ET-3 within each compartment were positive in both plasma (p < 0.05) and saliva (p ≤ 0.1), whereas ET-2 was not significantly correlated with other isoforms in either plasma or saliva. For all isoforms, concentrations varied on average fivefold between individuals (90th/10th percentiles); individuals with high plasma endothelin levels generally had high saliva endothelin levels. Our results reveal that salivary ET isoform profiles portray the plasmatic profiles and support the view of coordinated regulation of ET-1 and ET-3, but distinct regulatory pathways for ET-2.

  10. Identification and characterization of two ankyrin-B isoforms in mammalian heart

    PubMed Central

    Wu, Henry C.; Yamankurt, Gokay; Luo, JiaLie; Subramaniam, Janani; Hashmi, Syed Shahrukh; Hu, Hongzhen; Cunha, Shane R.

    2015-01-01

    Aims Excitation–contraction coupling in cardiomyocytes requires the proper targeting and retention of membrane proteins to unique domains by adaptor proteins like ankyrin-B. While ankyrin-B has been shown to interact with a variety of membrane and structural proteins located at different subcellular domains in cardiomyocytes, what regulates the specificity of ankyrin-B for particular interacting proteins remains elusive. Methods and results Here, we report the identification of two novel ankyrin-B isoforms AnkB-188 and AnkB-212 in human, rat, and mouse hearts. Novel cDNAs for both isoforms were isolated by long-range PCR of reverse-transcribed mRNA isolated from human ventricular tissue. The isoforms can be discriminated based on their function and subcellular distribution in cardiomyocytes. Heterologous overexpression of AnkB-188 increases sodium–calcium exchanger (NCX) membrane expression and current, while selective knockdown of AnkB-188 in cardiomyocytes reduces NCX expression and localization in addition to causing irregular contraction rhythms. Using an isoform-specific antibody, we demonstrate that the expression of AnkB-212 is restricted to striated muscles and is localized to the M-line of cardiomyocytes by interacting with obscurin. Selective knockdown of AnkB-212 significantly attenuates the expression of endogenous ankyrin-B at the M-line but does not disrupt NCX expression at transverse tubules in cardiomyocytes. Conclusion The identification and characterization of two functionally distinct ankyrin-B isoforms in heart provide compelling evidence that alternative splicing of the ANK2 gene regulates the fidelity of ankyrin-B interactions with proteins. PMID:26109584

  11. Regulation of CDPK isoforms during tuber development.

    PubMed

    Raíces, Marcela; Gargantini, Pablo Rubén; Chinchilla, Delphine; Crespi, Martín; Téllez-Iñón, María Teresa; Ulloa, Rita María

    2003-07-01

    CDPK activities present during tuber development were analysed. A high CDPK activity was detected in the soluble fraction of early stolons and a lower one was detected in soluble and particulate fractions of induced stolons. The early and late CDPK activities displayed diverse specificity for in vitro substrates and different subcellular distribution. Western blot analysis revealed two CDPKs of 55 and 60 kDa that follow a precise spatial and temporal profile of expression. The 55 kDa protein was only detected in early-elongating stolons and the 60 kDa one was induced upon stolon swelling, correlating with early and late CDPK activities. A new member of the potato CDPK family, StCDPK3, was identified from a stolon cDNA library. Gene specific RT-PCR demonstrated that this gene is only expressed in early stolons, while the previously identified StCDPK1 is expressed upon stolon swelling. This expression profile suggests that StCDPK3 could correspond to the 55 kDa isoform while StCDPK1 could encode the 60 kDa isoform present in swelling stolons. StCDPK1 has myristoylation and palmitoylation consensus possibly involved in its dual intracellular localization. Transient expression studies with wild-type and mutated forms of StCDPK1 fused to GFP were used to show that subcellular localization of this isoform is controlled by myristoylation and palmitoylation. Altogether, our data suggest that sequential activation of StCDPK3 and StCDPK1 and the subcellular localisation of StCDPK1 might be critical regulatory steps of calcium signalling during potato tuber development.

  12. Expression of Contractile Protein Isoforms in Microgravity

    NASA Technical Reports Server (NTRS)

    Anderson, Page A. W.

    1996-01-01

    The general objective of this experiment is to determine the effect of space flight parameters, including microgravity, on ontogenesis and embryogenesis of Japanese quail. Nine U.S. and two Russian investigators are cooperating in this study. Specific objectives of the participating scientists include assessing the gross and microscopic morphological and histological development of the embryo, as well as the temporal and spacial development of specific cells, tissues, and organs. Temporally regulated production of specific proteins is also being investigated. Our objective is to determine the effects of microgravity on developmentally programmed expression of Troponin T and I isoforms known to regulate cardiac and skeletal muscle contraction.

  13. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    SciTech Connect

    Ivanov, Sergey V.; Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I.

    2009-05-08

    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  14. The function of Drosophila p53 isoforms in apoptosis

    PubMed Central

    Zhang, B; Rotelli, M; Dixon, M; Calvi, B R

    2015-01-01

    The p53 protein is a major mediator of the cellular response to genotoxic stress and is a crucial suppressor of tumor formation. In a variety of organisms, p53 and its paralogs, p63 and p73, each encode multiple protein isoforms through alternative splicing, promoters, and translation start sites. The function of these isoforms in development and disease are still being defined. Here, we evaluate the apoptotic potential of multiple isoforms of the single p53 gene in the genetic model Drosophila melanogaster. Most previous studies have focused on the p53A isoform, but it has been recently shown that a larger p53B isoform can induce apoptosis when overexpressed. It has remained unclear, however, whether one or both isoforms are required for the apoptotic response to genotoxic stress. We show that p53B is a much more potent inducer of apoptosis than p53A when overexpressed. Overexpression of two newly identified short isoforms perturbed development and inhibited the apoptotic response to ionizing radiation. Analysis of physiological protein expression indicated that p53A is the most abundant isoform, and that both p53A and p53B can form a complex and co-localize to sub-nuclear compartments. In contrast to the overexpression results, new isoform-specific loss-of-function mutants indicated that it is the shorter p53A isoform, not full-length p53B, that is the primary mediator of pro-apoptotic gene transcription and apoptosis after ionizing radiation. Together, our data show that it is the shorter p53A isoform that mediates the apoptotic response to DNA damage, and further suggest that p53B and shorter isoforms have specialized functions. PMID:25882045

  15. Thymomegaly, Microsplenia, and Defective Homeostatic Proliferation of Peripheral Lymphocytes in p51-Ets1 Isoform-Specific Null Mice▿

    PubMed Central

    Higuchi, Tsukasa; Bartel, Frank O.; Masuya, Masahiro; Deguchi, Takao; Henderson, Kelly W.; Li, Runzhao; Muise-Helmericks, Robin C.; Kern, Michael J.; Watson, Dennis K.; Spyropoulos, Demetri D.

    2007-01-01

    Ets1 is a member of the Ets transcription factor family. Alternative splicing of exon VII results in two naturally occurring protein isoforms: full-length Ets1 (p51-Ets1) and Ets1ΔVII (p42-Ets1). These isoforms bear key distinctions regarding protein-protein interactions, DNA binding kinetics, and transcriptional target specificity. Disruption of both Ets1 isoforms in mice results in the loss of detectable NK and NKT cell activity and defects in B and T lymphocytes. We generated mice that express only the Ets1ΔVII isoform. Ets1ΔVII homozygous mice express no p51-Ets1 and elevated levels of the p42-Ets1 protein relative to the wild type and display increased perinatal lethality, thymomegaly, and peripheral lymphopenia. Proliferation was increased in both the thymus and the spleen, while apoptosis was decreased in the thymus and increased in the spleen of homozygotes. Significant elevations of CD8+ and CD8+CD4+ thymocytes were observed. Lymphoid cell (CD19+, CD4+, and CD8+) reductions were predominantly responsible for diminished spleen cellularity, with fewer memory cells and a failure of homeostatic proliferation to maintain peripheral lymphocytes. Collectively, the Ets1ΔVII mutants demonstrate lymphocyte maturation defects associated with misregulation of p16Ink4a, p27Kip1, and CD44. Thus, a balance in the differential regulation of Ets1 isoforms represents a potential mechanism in the control of lymphoid maturation and homeostasis. PMID:17339335

  16. Diverse lectin-binding specificity of four ZP3 glycoprotein isoforms with a discrete isoelectric point in chicken egg coat.

    PubMed

    Okumura, Hiroki; Fukushima, Hideaki; Momoda, Masaki; Ima, Yurie; Matsuda, Tsukasa; Ujita, Minoru

    2012-08-03

    The vertebrate egg coat corresponding to mammalian zona pellucida is a filamentous matrix composed of highly and heterogeneously glycosylated proteins designated ZP glycoproteins including ZP1 to 4, ZPD and ZPAX, and play important roles in species-specific egg-sperm interactions. Recent advance in structural biology of chicken ZP3 provided new insights into molecular mechanisms of the egg-coat function involving its carbohydrate moieties. In this study, chicken ZP3 was separated into four major and distinct isoforms with different pI in 2D-PAGE. To investigate the meanings of the ZP3 heterogeneity in egg-sperm interactions, we preliminary analyzed glycan diversity on the molecules by using lectin-staining assays. The four major ZP3 isoforms 4-7 (from acidic to basic) were recognized equally with PNA (Galβ1-3GalNAc), but the isoforms 5-7 were recognized dominantly with WGA ((β-GlcNAc)n, clustered Sia), PHA-E (bi- and triantennary N-glycan containing Galβ1-4GlcNAcβ1-2Manα1-6) and RCA I (terminal Galβ1-4GlcNAc), respectively. Despite such sugar chain diversity among the ZP3 isoforms, a partner in the egg coat, ZP1, showed specific binding to each isoform equally. Localization of ZP1 and ZP3 in the egg-coat matrix were also analyzed.

  17. Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis.

    PubMed

    Pham, Phuong Anh; Wahl, Vanessa; Tohge, Takayuki; de Souza, Laise Rosado; Zhang, Youjun; Do, Phuc Thi; Olas, Justyna J; Stitt, Mark; Araújo, Wagner L; Fernie, Alisdair R

    2015-11-01

    The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds.

  18. Coexistence of both oleosin isoforms on the surface of seed oil bodies and their individual stabilization to the organelles.

    PubMed

    Tzen, J T; Chuang, R L; Chen, J C; Wu, L S

    1998-02-01

    The oil bodies of plant seeds contain a triacylglycerol matrix surrounded by a monolayer of phospholipids embedded with alkaline proteins termed oleosins. Two distinct oleosin isoforms with molecular masses of 18 and 16 kDa are present in rice oil bodies. Chicken antibodies raised against oleosin 18 kDa and rabbit antibodies raised against oleosin 16 kDa did not cross-recognize these two homologous isoforms. This peculiar non-cross recognition was used to locate the two oleosin isoforms on the surface of oil bodies via immunofluorescence detection using anti-chicken IgG conjugated with FITC (fluorescein isothiocyanate) and anti-rabbit IgG conjugated with Texas-Red. The results revealed that both oleosin isoforms resided on each oil body in vivo and in vitro. Artificial oil bodies were reconstituted via sonication using triacylglycerol, phospholipid, and oleosins. The results indicated that the two rice oleosin isoforms could stabilize artificial oil bodies individually whereas oleosin 16 kDa provided better stability to the organelles than oleosin 18 kDa.

  19. Isoform-specific subcellular localization and function of protein kinase A identified by mosaic imaging of mouse brain

    PubMed Central

    Ilouz, Ronit; Lev-Ram, Varda; Bushong, Eric A; Stiles, Travis L; Friedmann-Morvinski, Dinorah; Douglas, Christopher; Goldberg, Geoffrey; Ellisman, Mark H; Taylor, Susan S

    2017-01-01

    Protein kinase A (PKA) plays critical roles in neuronal function that are mediated by different regulatory (R) subunits. Deficiency in either the RIβ or the RIIβ subunit results in distinct neuronal phenotypes. Although RIβ contributes to synaptic plasticity, it is the least studied isoform. Using isoform-specific antibodies, we generated high-resolution large-scale immunohistochemical mosaic images of mouse brain that provided global views of several brain regions, including the hippocampus and cerebellum. The isoforms concentrate in discrete brain regions, and we were able to zoom-in to show distinct patterns of subcellular localization. RIβ is enriched in dendrites and co-localizes with MAP2, whereas RIIβ is concentrated in axons. Using correlated light and electron microscopy, we confirmed the mitochondrial and nuclear localization of RIβ in cultured neurons. To show the functional significance of nuclear localization, we demonstrated that downregulation of RIβ, but not of RIIβ, decreased CREB phosphorylation. Our study reveals how PKA isoform specificity is defined by precise localization. DOI: http://dx.doi.org/10.7554/eLife.17681.001 PMID:28079521

  20. Structural and functional plasticity of subcellular tethering, targeting and processing of RPGRIP1 by RPGR isoforms

    PubMed Central

    Patil, Hemangi; Guruju, Mallikarjuna R.; Cho, Kyoung-in; Yi, Haiqing; Orry, Andrew; Kim, Hyesung; Ferreira, Paulo A.

    2012-01-01

    Summary Mutations affecting the retinitis pigmentosa GTPase regulator-interacting protein 1 (RPGRIP1) interactome cause syndromic retinal dystrophies. RPGRIP1 interacts with the retinitis pigmentosa GTPase regulator (RPGR) through a domain homologous to RCC1 (RHD), a nucleotide exchange factor of Ran GTPase. However, functional relationships between RPGR and RPGRIP1 and their subcellular roles are lacking. We show by molecular modeling and analyses of RPGR disease-mutations that the RPGR-interacting domain (RID) of RPGRIP1 embraces multivalently the shared RHD of RPGR1–19 and RPGRORF15 isoforms and the mutations are non-overlapping with the interface found between RCC1 and Ran GTPase. RPGR disease-mutations grouped into six classes based on their structural locations and differential impairment with RPGRIP1 interaction. RPGRIP1α1 expression alone causes its profuse self-aggregation, an effect suppressed by co-expression of either RPGR isoform before and after RPGRIP1α1 self-aggregation ensue. RPGR1–19 localizes to the endoplasmic reticulum, whereas RPGRORF15 presents cytosolic distribution and they determine uniquely the subcellular co-localization of RPGRIP1α1. Disease mutations in RPGR1–19, RPGRORF15, or RID of RPGRIP1α1, singly or in combination, exert distinct effects on the subcellular targeting, co-localization or tethering of RPGRIP1α1 with RPGR1–19 or RPGRORF15 in kidney, photoreceptor and hepatocyte cell lines. Additionally, RPGRORF15, but not RPGR1–19, protects the RID of RPGRIP1α1 from limited proteolysis. These studies define RPGR- and cell-type-dependent targeting pathways with structural and functional plasticity modulating the expression of mutations in RPGR and RPGRIP1. Further, RPGR isoforms distinctively determine the subcellular targeting of RPGRIP1α1, with deficits in RPGRORF15-dependent intracellular localization of RPGRIP1α1 contributing to pathomechanisms shared by etiologically distinct syndromic retinal dystrophies. PMID

  1. Prion neuropathology follows the accumulation of alternate prion protein isoforms after infective titre has peaked

    PubMed Central

    Sandberg, Malin K.; Al-Doujaily, Huda; Sharps, Bernadette; De Oliveira, Michael Wiggins; Schmidt, Christian; Richard-Londt, Angela; Lyall, Sarah; Linehan, Jacqueline M.; Brandner, Sebastian; Wadsworth, Jonathan D. F.; Clarke, Anthony R.; Collinge, John

    2014-01-01

    Prions are lethal infectious agents thought to consist of multi-chain forms (PrPSc) of misfolded cellular prion protein (PrPC). Prion propagation proceeds in two distinct mechanistic phases: an exponential phase 1, which rapidly reaches a fixed level of infectivity irrespective of PrPC expression level, and a plateau (phase 2), which continues until clinical onset with duration inversely proportional to PrPC expression level. We hypothesized that neurotoxicity relates to distinct neurotoxic species produced following a pathway switch when prion levels saturate. Here we show a linear increase of proteinase K-sensitive PrP isoforms distinct from classical PrPSc at a rate proportional to PrPC concentration, commencing at the phase transition and rising until clinical onset. The unaltered level of total PrP during phase 1, when prion infectivity increases a million-fold, indicates that prions comprise a small minority of total PrP. This is consistent with PrPC concentration not being rate limiting to exponential prion propagation and neurotoxicity relating to critical concentrations of alternate PrP isoforms whose production is PrPC concentration dependent. PMID:25005024

  2. Spinach pyruvate kinase isoforms: partial purification and regulatory properties

    SciTech Connect

    Baysdorfer, C.; Bassham, J.A.

    1984-02-01

    Pyruvate kinase from spinach (Spinacea oleracea L.) leaves consists of two isoforms, separable by blue agarose chromatography. Both isoforms share similar pH profiles and substrate and alternate nucleotide K/sub m/ values. In addition, both isoforms are inhibited by oxalate and ATP and activated by AMP. The isoforms differ in their response to three key metabolites; citrate, aspartate, and glutamate. The first isoform is similar to previously reported plant pyruvate kinases in its sensitivity to citrate inhibition. The K/sub i/ for this inhibition is 1.2 millimolar citrate. The second isoform is not affected by citrate but is regulated by aspartate and glutamate. Aspartate is an activator with a K/sub a/ of 0.05 millimolar, and glutamate is an inhibitor with a K/sub i/ of 0.68 millimolar. A pyruvate kinase with these properties has not been previously reported. Based on these considerations, the authors suggest that the activity of the first isoform is regulated by respiratory metabolism. The second isoform, in contrast, may be regulated by the demand for carbon skeletons for use in ammonia assimilation.

  3. Tunable protein synthesis by transcript isoforms in human cells

    PubMed Central

    Floor, Stephen N; Doudna, Jennifer A

    2016-01-01

    Eukaryotic genes generate multiple RNA transcript isoforms though alternative transcription, splicing, and polyadenylation. However, the relationship between human transcript diversity and protein production is complex as each isoform can be translated differently. We fractionated a polysome profile and reconstructed transcript isoforms from each fraction, which we term Transcript Isoforms in Polysomes sequencing (TrIP-seq). Analysis of these data revealed regulatory features that control ribosome occupancy and translational output of each transcript isoform. We extracted a panel of 5′ and 3′ untranslated regions that control protein production from an unrelated gene in cells over a 100-fold range. Select 5′ untranslated regions exert robust translational control between cell lines, while 3′ untranslated regions can confer cell type-specific expression. These results expose the large dynamic range of transcript-isoform-specific translational control, identify isoform-specific sequences that control protein output in human cells, and demonstrate that transcript isoform diversity must be considered when relating RNA and protein levels. DOI: http://dx.doi.org/10.7554/eLife.10921.001 PMID:26735365

  4. Expression profiles of NOS isoforms in gingiva of nNOS knockout mice.

    PubMed

    Ishioka, M; Ishizuka, Y; Shintani, S; Yanagisawa, T; Inoue, T; Sasaki, J; Watanabe, H

    2014-04-01

    Nitric oxide is a gaseous molecule associated with many distinct physiological functions, and is derived from L-arginine catalyzed by nitric oxide synthase (NOS). Nitric oxide synthase has 3 isoforms: nNOS, iNOS and eNOS. Although these NOS isoforms are believed to play an important role in gingival tissue, little information is available on their morphological dynamics. The aim of this study was to investigate the profiles of NOS isoforms in deficiency of nNOS in gingiva of mice. Twelve male (6 normal (C57BL/6) and 6 nNOS knockout) mice were used. All mice were 5-week-old, weighing approximately 20-25 g each. After sacrifice, the jaws of the mice were removed by mechanical means and specimens analyzed by histology, in situ hybridization and immunohistochemistry. Immunohistochemical observation revealed positive staining for iNOS and eNOS, especially in lamina propria. Similar results in the mRNA expression levels were shown by in situ hybridization analysis. It may suggest that iNOS and eNOS compensated nNOS deficiency in the gingiva of nNOS knockout mice.

  5. Mice exclusively expressing the short isoform of Smad2 develop normally and are viable and fertile

    PubMed Central

    Dunn, N. Ray; Koonce, Chad H.; Anderson, Dorian C.; Islam, Ayesha; Bikoff, Elizabeth K.; Robertson, Elizabeth J.

    2005-01-01

    Smad2 and Smad3 are closely related effectors of TGFβ/Nodal/Activin-related signaling. Smad3 mutant mice develop normally, whereas Smad2 plays an essential role in patterning the embryonic axis and specification of definitive endoderm. Alternative splicing of Smad2 exon 3 gives rise to two distinct protein isoforms. The short Smad2(Δexon3) isoform, unlike full-length Smad2, Smad2(FL), retains DNA-binding activity. Here, we show that Smad2(FL) and Smad2(Δexon3) are coexpressed throughout mouse development. Directed expression of either Smad2(Δexon3) or Smad3, but not Smad2(FL), restores the ability of Smad2-deficient embryonic stem (ES) cells to contribute descendants to the definitive endoderm in wild-type host embryos. Mice engineered to exclusively express Smad2(Δexon3) correctly specify the anterior–posterior axis and definitive endoderm, and are viable and fertile. Moreover, introducing a human Smad3 cDNA into the mouse Smad2 locus similarly rescues anterior–posterior patterning and definitive endoderm formation and results in adult viability. Collectively, these results demonstrate that the short Smad2(Δexon3) isoform or Smad3, but not full-length Smad2, activates all essential target genes downstream of TGFβ-related ligands, including those regulated by Nodal. PMID:15630024

  6. NFAT2 Isoforms Differentially Regulate Gene Expression, Cell Death, and Transformation through Alternative N-Terminal Domains

    PubMed Central

    Lucena, Pedro I.; Faget, Douglas V.; Pachulec, Emilia; Robaina, Marcela C.; Klumb, Claudete E.

    2015-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors is composed of four calcium-responsive proteins (NFAT1 to -4). The NFAT2 (also called NFATc1) gene encodes the isoforms NFAT2α and NFAT2β that result mainly from alternative initiation exons that provide two different N-terminal transactivation domains. However, the specific roles of the NFAT2 isoforms in cell physiology remain unclear. Because previous studies have shown oncogenic potential for NFAT2, this study emphasized the role of the NFAT2 isoforms in cell transformation. Here, we show that a constitutively active form of NFAT2α (CA-NFAT2α) and CA-NFAT2β distinctly control death and transformation in NIH 3T3 cells. While CA-NFAT2α strongly induces cell transformation, CA-NFAT2β leads to reduced cell proliferation and intense cell death through the upregulation of tumor necrosis factor alpha (TNF-α). CA-NFAT2β also increases cell death and upregulates Fas ligand (FasL) and TNF-α in CD4+ T cells. Furthermore, we demonstrate that differential roles of NFAT2 isoforms in NIH 3T3 cells depend on the N-terminal domain, where the NFAT2β-specific N-terminal acidic motif is necessary to induce cell death. Interestingly, the NFAT2α isoform is upregulated in Burkitt lymphomas, suggesting an isoform-specific involvement of NFAT2 in cancer development. Finally, our data suggest that alternative N-terminal domains of NFAT2 could provide differential mechanisms for the control of cellular functions. PMID:26483414

  7. NFAT2 Isoforms Differentially Regulate Gene Expression, Cell Death, and Transformation through Alternative N-Terminal Domains.

    PubMed

    Lucena, Pedro I; Faget, Douglas V; Pachulec, Emilia; Robaina, Marcela C; Klumb, Claudete E; Robbs, Bruno K; Viola, João P B

    2016-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors is composed of four calcium-responsive proteins (NFAT1 to -4). The NFAT2 (also called NFATc1) gene encodes the isoforms NFAT2α and NFAT2β that result mainly from alternative initiation exons that provide two different N-terminal transactivation domains. However, the specific roles of the NFAT2 isoforms in cell physiology remain unclear. Because previous studies have shown oncogenic potential for NFAT2, this study emphasized the role of the NFAT2 isoforms in cell transformation. Here, we show that a constitutively active form of NFAT2α (CA-NFAT2α) and CA-NFAT2β distinctly control death and transformation in NIH 3T3 cells. While CA-NFAT2α strongly induces cell transformation, CA-NFAT2β leads to reduced cell proliferation and intense cell death through the upregulation of tumor necrosis factor alpha (TNF-α). CA-NFAT2β also increases cell death and upregulates Fas ligand (FasL) and TNF-α in CD4(+) T cells. Furthermore, we demonstrate that differential roles of NFAT2 isoforms in NIH 3T3 cells depend on the N-terminal domain, where the NFAT2β-specific N-terminal acidic motif is necessary to induce cell death. Interestingly, the NFAT2α isoform is upregulated in Burkitt lymphomas, suggesting an isoform-specific involvement of NFAT2 in cancer development. Finally, our data suggest that alternative N-terminal domains of NFAT2 could provide differential mechanisms for the control of cellular functions.

  8. Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules

    PubMed Central

    Chung, Peter J.; Choi, Myung Chul; Miller, Herbert P.; Feinstein, H. Eric; Raviv, Uri; Li, Youli; Wilson, Leslie; Feinstein, Stuart C.; Safinya, Cyrus R.

    2015-01-01

    Microtubules (MTs) are hollow cytoskeletal filaments assembled from αβ-tubulin heterodimers. Tau, an unstructured protein found in neuronal axons, binds to MTs and regulates their dynamics. Aberrant Tau behavior is associated with neurodegenerative dementias, including Alzheimer’s. Here, we report on a direct force measurement between paclitaxel-stabilized MTs coated with distinct Tau isoforms by synchrotron small-angle X-ray scattering (SAXS) of MT-Tau mixtures under osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the physiological submonolayer regime (Tau/tubulin-dimer molar ratio; ΦTau = 1/10), isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs, preventing bundling up to PB ∼ 10,000–20,000 Pa, an order of magnitude larger than bare MTs. Tau with short NTTs showed little additional effect in suppressing the bundling pressure (PB ∼ 1,000–2,000 Pa) over the same range. Remarkably, the abrupt increase in PB observed for longer isoforms suggests a mushroom to brush transition occurring at 1/13 < ΦTau < 1/10, which corresponds to MT-bound Tau with NTTs that are considerably more extended than SAXS data for Tau in solution indicate. Modeling of Tau-mediated MT–MT interactions supports the hypothesis that longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher pressures resulted in isoform-independent irreversible bundling because the polyampholytic nature of Tau leads to short-range attractions. These findings suggest an isoform-dependent biological role for regulation by Tau, with longer isoforms conferring MT steric stabilization against aggregation either with other biomacromolecules or into tight bundles, preventing loss of function in the crowded axon environment. PMID:26542680

  9. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton.

    PubMed

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R; Bryce, Nicole S; Whan, Renee M; Hardeman, Edna C; Fath, Thomas; Schevzov, Galina; Gunning, Peter W

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.

  10. Kinetic Evaluation of Cell Membrane Hydrolysis during Apoptosis by Human Isoforms of Secretory Phospholipase A2*

    PubMed Central

    Olson, Erin D.; Nelson, Jennifer; Griffith, Katalyn; Nguyen, Thaothanh; Streeter, Michael; Wilson-Ashworth, Heather A.; Gelb, Michael H.; Judd, Allan M.; Bell, John D.

    2010-01-01

    Some isoforms of secretory phospholipase A2 (sPLA2) distinguish between healthy and damaged or apoptotic cells. This distinction reflects differences in membrane physical properties. Because various sPLA2 isoforms respond differently to properties of artificial membranes such as surface charge, they should also behave differently as these properties evolve during a dynamic physiological process such as apoptosis. To test this idea, S49 lymphoma cell death was induced by glucocorticoid (6–48 h) or calcium ionophore. Rates of membrane hydrolysis catalyzed by various concentrations of snake venom and human groups IIa, V, and X sPLA2 were compared after each treatment condition. The data were analyzed using a model that evaluates the adsorption of enzyme to the membrane surface and subsequent binding of substrate to the active site. Results were compared temporally to changes in membrane biophysics and composition. Under control conditions, membrane hydrolysis was confined to the few unhealthy cells present in each sample. Increased hydrolysis during apoptosis and necrosis appeared to reflect substrate access to adsorbed enzyme for the snake venom and group X isoforms corresponding to weakened lipid-lipid interactions in the membrane. In contrast, apoptosis promoted initial adsorption of human groups V and IIa concurrent with phosphatidylserine exposure on the membrane surface. However, this observation was inadequate to explain the behavior of the groups V and IIa enzymes toward necrotic cells where hydrolysis was reduced or absent. Thus, a combination of changes in cell membrane properties during apoptosis and necrosis capacitates the cell for hydrolysis differently by each isoform. PMID:20139082

  11. A differential association of Apolipoprotein E isoforms with the Aβ oligomer in solution

    PubMed Central

    Petrlova, Jitka; Hong, Hyun-Seok; Bricarello, Daniel; Harishchandra, Ghimire; Lorigan, Gary; Jin, Lee-Way; Voss, John C.

    2010-01-01

    The molecular pathogenesis of disorders arising from protein mis-folding and aggregation is difficult to elucidate, involving a complex ensemble of intermediates whose toxicity depends upon their state of progression along distinct processing pathways. To address the complex mis-folding and aggregation that initiates the toxic cascade resulting in Alzheimer's disease, we have developed a TOAC spin-labeled Aβ peptide to observe its isoform-dependent interaction with the apoE protein. While most individuals carry the E3 isoform of apoE, approximately 15% of humans carry the E4 isoform, which is recognized as the most significant genetic determinant for Alzheimer's. ApoE is consistently associated with the amyloid plaque marker for Alzheimer's disease. A vital question centers on the influence of the two predominant isoforms, E3 and E4, on Aβ peptide processing and hence Aβ toxicity. We employed EPR spectroscopy of incorporated spin labels to investigate the interaction of apoE with the toxic oligomeric species of Aβ in solution. EPR spectra of the spin labeled side chain report on side chain and backbone dynamics, as well as the spatial proximity of spins in an assembly. Our results indicate oligomer binding involves the C-terminal domain of apoE, with apoE3 reporting a much greater response through this conformational marker. Coupled with SPR binding measurements, apoE3 displays a higher affinity and capacity for the toxic Aβ oligomer. These findings support the hypothesis that apoE polymorphism and Alzheimer's risk can largely be attributed to the reduced ability of apoE4 to function as a clearance vehicle for the toxic form of Aβ. PMID:21069870

  12. New Phosphospecific Antibody Reveals Isoform-Specific Phosphorylation of CPEB3 Protein

    PubMed Central

    Sehgal, Kapil; Sylvester, Marc; Skubal, Magdalena; Josten, Michele; Steinhäuser, Christian; De Koninck, Paul; Theis, Martin

    2016-01-01

    Cytoplasmic Polyadenylation Element Binding proteins (CPEBs) are a family of polyadenylation factors interacting with 3’UTRs of mRNA and thereby regulating gene expression. Various functions of CPEBs in development, synaptic plasticity, and cellular senescence have been reported. Four CPEB family members of partially overlapping functions have been described to date, each containing a distinct alternatively spliced region. This region is highly conserved between CPEBs-2-4 and contains a putative phosphorylation consensus, overlapping with the exon seven of CPEB3. We previously found CPEBs-2-4 splice isoforms containing exon seven to be predominantly present in neurons, and the isoform expression pattern to be cell type-specific. Here, focusing on the alternatively spliced region of CPEB3, we determined that putative neuronal isoforms of CPEB3 are phosphorylated. Using a new phosphospecific antibody directed to the phosphorylation consensus we found Protein Kinase A and Calcium/Calmodulin-dependent Protein Kinase II to robustly phosphorylate CPEB3 in vitro and in primary hippocampal neurons. Interestingly, status epilepticus induced by systemic kainate injection in mice led to specific upregulation of the CPEB3 isoforms containing exon seven. Extensive analysis of CPEB3 phosphorylation in vitro revealed two other phosphorylation sites. In addition, we found plethora of potential kinases that might be targeting the alternatively spliced kinase consensus site of CPEB3. As this site is highly conserved between the CPEB family members, we suggest the existence of a splicing-based regulatory mechanism of CPEB function, and describe a robust phosphospecific antibody to study it in future. PMID:26915047

  13. Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton

    PubMed Central

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R.; Bryce, Nicole S.; Whan, Renee M.; Hardeman, Edna C.

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments. PMID:25978408

  14. Protein tyrosine phosphatases from amphioxus, hagfish, and ray: divergence of tissue-specific isoform genes in the early evolution of vertebrates.

    PubMed

    Ono-Koyanagi, K; Suga, H; Katoh, K; Miyata, T

    2000-03-01

    Since separation from fungi and plants, multicellular animals evolved a variety of gene families involved in cell-cell communication from a limited number of ancestral precursors by gene duplications in two separate periods of animal evolution. In the very early evolution of animals before the separation of parazoans and eumetazoans, animals underwent extensive gene duplications by which different subtypes (subfamilies) with distinct functions diverged. The multiplicity of members (isoforms) in the same subtype increased by further gene duplications (isoform duplications) in the first half of chordate evolution before the fish-tetrapod split; different isoforms are virtually identical in structure and function but differ in tissue distribution. From cloning and phylogenetic analyses of four subfamilies of the protein tyrosine kinase (PTK) family, we recently showed extensive isoform duplications in a limited period around or just before the cyclostome-gnathostome split. To obtain a reliable estimate for the divergence time of vertebrate isoforms, we have conducted isolation of cDNAs encoding the protein tyrosine phosphatases (PTPs) from Branchiostoma belcheri, an amphioxus, Eptatretus burgeri, a hagfish, and Potamotrygon motoro, a ray. We obtained 33 different cDNAs in total, most of which belong to known PTP subfamilies. The phylogenetic analyses of five subfamilies based on the maximum likelihood method revealed frequent isoform duplications in a period around or just before the gnathostome-cyclostome split. An evolutionary implication was discussed in relation to the Cambrian explosion.

  15. Structural Basis of Protein Kinase C Isoform Function

    PubMed Central

    STEINBERG, SUSAN F.

    2010-01-01

    Protein kinase C (PKC) isoforms comprise a family of lipid-activated enzymes that have been implicated in a wide range of cellular functions. PKCs are modular enzymes comprised of a regulatory domain (that contains the membrane-targeting motifs that respond to lipid cofactors, and in the case of some PKCs calcium) and a relatively conserved catalytic domain that binds ATP and substrates. These enzymes are coexpressed and respond to similar stimulatory agonists in many cell types. However, there is growing evidence that individual PKC isoforms subserve unique (and in some cases opposing) functions in cells, at least in part as a result of isoform-specific subcellular compartmentalization patterns, protein-protein interactions, and posttranslational modifications that influence catalytic function. This review focuses on the structural basis for differences in lipid cofactor responsiveness for individual PKC isoforms, the regulatory phosphorylations that control the normal maturation, activation, signaling function, and downregulation of these enzymes, and the intra-/intermolecular interactions that control PKC isoform activation and subcellular targeting in cells. A detailed understanding of the unique molecular features that underlie isoform-specific posttranslational modification patterns, protein-protein interactions, and subcellular targeting (i.e., that impart functional specificity) should provide the basis for the design of novel PKC isoform-specific activator or inhibitor compounds that can achieve therapeutically useful changes in PKC signaling in cells. PMID:18923184

  16. Expression and regulation of pyruvate dehydrogenase kinase isoforms in the developing rat heart and in adulthood: role of thyroid hormone status and lipid supply.

    PubMed Central

    Sugden, M C; Langdown, M L; Harris, R A; Holness, M J

    2000-01-01

    Activation of the pyruvate dehydrogenase (PDH) complex (PDHC) promotes glucose disposal, whereas inactivation conserves glucose. The PDH kinases (PDHKs) regulate glucose oxidation through inhibitory phosphorylation of PDHC. The adult rat heart contains three PDHK isoforms PDHK1, PDHK2 and PDHK4. Using Western-blot analysis, with specific antibodies raised against individual recombinant PDHK1, PDHK2 and PDHK4, the present study investigated PDHK isoform expression in the developing rat heart and adulthood. We identified clear differences in the patterns of protein expression of each of these PDHK isoforms during the first 3 weeks of post-natal development, with most marked up-regulation of isoforms PDHK1 and PDHK4. Distinctions between the three cardiac PDHK isoforms were also demonstrated with respect to post-neonatal maturational up-regulation; with greatest up-regulation of PDHK1 and least up-regulation of PDHK4 from the post-neonatal period until maturity. The study also examined the role of thyroid hormone status and lipid supply on PDHK isoform expression. We observed marked selective increases in the amount of PDHK4 protein present relative to total cardiac protein in both hyperthyroidism and high-fat feeding. Overall, our data identify PDHK isoform PDHK1 as being of more potential regulatory importance for glucose oxidation in the adult compared with the neonatal heart, and cardiac PDHK4 as a PDHK isoform whose expression is specifically responsive to changes in lipid supply, suggesting that its up-regulation during early post-natal life may be the perinatal switch to use fatty acids as the energy source. We also identify regulation of pyruvate sensitivity of cardiac PDHK as a physiological variable, a change in which requires factors in addition to a change in lipid supply. PMID:11104680

  17. N-terminal isoforms of the large-conductance Ca²⁺-activated K⁺ channel are differentially modulated by the auxiliary β1-subunit.

    PubMed

    Lorca, Ramón A; Stamnes, Susan J; Pillai, Meghan K; Hsiao, Jordy J; Wright, Michael E; England, Sarah K

    2014-04-04

    The large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel is essential for maintaining the membrane in a hyperpolarized state, thereby regulating neuronal excitability, smooth muscle contraction, and secretion. The BK(Ca) α-subunit has three predicted initiation codons that generate proteins with N-terminal ends starting with the amino acid sequences MANG, MSSN, or MDAL. Because the N-terminal region and first transmembrane domain of the α-subunit are required for modulation by auxiliary β1-subunits, we examined whether β1 differentially modulates the N-terminal BK(Ca) α-subunit isoforms. In the absence of β1, all isoforms had similar single-channel conductances and voltage-dependent activation. However, whereas β1 did not modulate the voltage-activation curve of MSSN, β1 induced a significant leftward shift of the voltage activation curves of both the MDAL and MANG isoforms. These shifts, of which the MDAL was larger, occurred at both 10 μM and 100 μM Ca(2+). The β1-subunit increased the open dwell times of all three isoforms and decreased the closed dwell times of MANG and MDAL but increased the closed dwell times of MSSN. The distinct modulation of voltage activation by the β1-subunit may be due to the differential effect of β1 on burst duration and interburst intervals observed among these isoforms. Additionally, we observed that the related β2-subunit induced comparable leftward shifts in the voltage-activation curves of all three isoforms, indicating that the differential modulation of these isoforms was specific to β1. These findings suggest that the relative expression of the N-terminal isoforms can fine-tune BK(Ca) channel activity in cells, highlighting a novel mechanism of BK(Ca) channel regulation.

  18. IsoSel: Protein Isoform Selector for phylogenetic reconstructions

    PubMed Central

    Philippon, Héloïse; Souvane, Alexia; Brochier-Armanet, Céline

    2017-01-01

    The reliability of molecular phylogenies is strongly dependent on the quality of the assembled datasets. In the case of eukaryotes, the selection of only one protein isoform per genomic locus is mandatory to avoid biases linked to redundancy. Here, we present IsoSel, a tool devoted to the selection of alternative isoforms in the context of phylogenetic reconstruction. It provides a better alternative to the widely used approach consisting in the selection of the longest isoforms and it performs better than Guidance, its only available counterpart. IsoSel is publicly available at http://doua.prabi.fr/software/isosel. PMID:28323858

  19. Differential localization of tropomyosin isoforms in cultured nonmuscle cells

    PubMed Central

    1988-01-01

    We have previously shown that chicken embryo fibroblast (CEF) cells and human bladder carcinoma (EJ) cells contain multiple isoforms of tropomyosin, identified as a, b, 1, 2, and 3 in CEF cells and 1, 2, 3, 4, and 5 in human EJ cells by one-dimensional SDS-PAGE (Lin, J. J.-C., D. M. Helfman, S. H. Hughes, and C.-S. Chou. 1985. J. Cell Biol. 100: 692-703; and Lin, J. J.-C., S. Yamashiro-Matsumura, and F. Matsumura. 1984. Cancer Cells 1:57-65). Both isoform 3 (TM-3) of CEF and isoforms 4,5 (TM-4,-5) of human EJ cells are the minor isoforms found respectively in normal chicken and human cells. They have a lower apparent molecular mass and show a weaker affinity to actin filaments when compared to the higher molecular mass isoforms. Using individual tropomyosin isoforms immobilized on nitrocellulose papers and sequential absorption of polyclonal antiserum on these papers, we have prepared antibodies specific to CEF TM-3 and to CEF TM-1,-2. In addition, two of our antitropomyosin mAbs, CG beta 6 and CG3, have now been demonstrated by Western blots, immunoprecipitation, and two- dimensional gel analysis to have specificities to human EJ TM-3 and TM- 5, respectively. By using these isoform-specific reagents, we are able to compare the intracellular localizations of the lower and higher molecular mass isoforms in both CEF and human EJ cells. We have found that both lower and higher molecular mass isoforms of tropomyosin are localized along stress fibers of cells, as one would expect. However, the lower molecular mass isoforms are also distributed in regions near ruffling membranes. Further evidence for this different localization of different tropomyosin isoforms comes from double-label immunofluorescence microscopy on the same CEF cells with affinity- purified antibody against TM-3, and monoclonal CG beta 6 antibody against TM-a, -b, -1, and -2 of CEF tropomyosin. The presence of the lower molecular mass isoform of tropomyosin in ruffling membranes may indicate a novel

  20. Distribution of caveolin isoforms in the lemur retina.

    PubMed

    Berta, Agnes I; Kiss, Anna L; Lukáts, Akos; Szabó, Arnold; Szél, Agoston

    2007-09-01

    The distribution of caveolin isoforms was previously evaluated in the retinas of different species, but has not yet been described in the primate retina. In this study, the distribution of caveolins was assessed via immunochemistry using isoform-specific antibodies in the retina of the black-and-white ruffed lemur. Here, we report the presence of a variety of caveolin isoforms in many layers of the lemur retina. As normal human retinas were not available for research and the retinas of primates are fairly similar to those of humans, the lemur retina can be utilized as a model for caveolin distribution in normal humans.

  1. Characterization of Native Protein Complexes and Protein Isoform Variation Using Size-fractionation-based Quantitative Proteomics*

    PubMed Central

    Kirkwood, Kathryn J.; Ahmad, Yasmeen; Larance, Mark; Lamond, Angus I.

    2013-01-01

    Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community. PMID:24043423

  2. Oleosin Isoforms of High and Low Molecular Weights Are Present in the Oil Bodies of Diverse Seed Species 1

    PubMed Central

    Tzen, Jason T. C.; Lai, Yiu-Kay; Chan, Kwai-Lan; Huang, Anthony H. C.

    1990-01-01

    Oleosins are unique and major proteins localized on the surface of oil bodies in diverse seed species. We purified five different oleosins (maize [Zea mays L.] KD 16 and KD 18, soybean [Glycine max L.] KD 18 and KD 24, and rapeseed [Brassica campestris L.] KD 20), and raised chicken antibodies against them. These antibodies were used to test for immunological cross-reactivity among oleosins from diverse seed species. Within the same seed species, antibodies raised against one oleosin isoform did not cross-react with the other oleosin isoform (i.e. between maize oleosins KD 16 and KD 18, and between soybean oleosins KD 18 and KD 24). However, the respective antibodies were able to recognize oleosins from other seed species. Where interspecies cross-reactivity occurred, the results suggest that there are at least two immunologically distinct isoforms of oleosins present in diverse seed species, one of lower Mr, and another one of higher Mr. This suggestion is also supported by the relative similarities between the amino acid sequence of a small portion of rapeseed oleosin KD 20 and those of maize oleosins KD 16 and KD 18. In maize kernel, there was a tissue-specific differential presentation of the three oleosins, KD 16, KD 18, and KD 19, in the oil-storing scutellum, embryonic axis, and aleurone layer. The phylogenetic relationship between the high and low Mr isoforms within the same, and among diverse, seed species is discussed. Images Figure 1 Figure 2 Figure 4 PMID:16667830

  3. Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid.

    PubMed

    Silva, Alexandra; Sampaio-Marques, Belém; Fernandes, Angela; Carreto, Laura; Rodrigues, Fernando; Holcik, Martin; Santos, Manuel A S; Ludovico, Paula

    2013-01-01

    Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90) chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2α by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD) was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress.

  4. Identification of Novel Kaposi's Sarcoma-Associated Herpesvirus Orf50 Transcripts: Discovery of New RTA Isoforms with Variable Transactivation Potential.

    PubMed

    Wakeman, Brian S; Izumiya, Yoshihiro; Speck, Samuel H

    2017-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50 RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation.

  5. Characterization of the expression of the pro-metastatic Mena(INV) isoform during breast tumor progression.

    PubMed

    Oudin, Madeleine J; Hughes, Shannon K; Rohani, Nazanin; Moufarrej, Mira N; Jones, Joan G; Condeelis, John S; Lauffenburger, Douglas A; Gertler, Frank B

    2016-03-01

    Several functionally distinct isoforms of the actin regulatory Mena are produced by alternative splicing during tumor progression. Forced expression of the Mena(INV) isoform drives invasion, intravasation and metastasis. However, the abundance and distribution of endogenously expressed Mena(INV) within primary tumors during progression remain unknown, as most studies to date have only assessed relative mRNA levels from dissociated tumor samples. We have developed a Mena(INV) isoform-specific monoclonal antibody and used it to examine Mena(INV) expression patterns in mouse mammary and human breast tumors. Mena(INV) expression increases during tumor progression and to examine the relationship between Mena(INV) expression and markers for epithelial or mesenchymal status, stemness, stromal cell types and hypoxic regions. Further, while Mena(INV) robustly expressed in vascularized areas of the tumor, it is not confined to cells adjacent to blood vessels. Altogether, these data demonstrate the specificity and utility of the anti-Mena(INV)-isoform specific antibody, and provide the first description of endogenous Mena(INV) protein expression in mouse and human tumors.

  6. Three Isoforms of Isoamylase Contribute Different Catalytic Properties for the Debranching of Potato GlucansW⃞

    PubMed Central

    Hussain, Hasnain; Mant, Alexandra; Seale, Robert; Zeeman, Sam; Hinchliffe, Edward; Edwards, Anne; Hylton, Christopher; Bornemann, Stephen; Smith, Alison M.; Martin, Cathie; Bustos, Regla

    2003-01-01

    Isoamylases are debranching enzymes that hydrolyze α-1,6 linkages in α-1,4/α-1,6–linked glucan polymers. In plants, they have been shown to be required for the normal synthesis of amylopectin, although the precise manner in which they influence starch synthesis is still debated. cDNA clones encoding three distinct isoamylase isoforms (Stisa1, Stisa2, and Stisa3) have been identified from potato. The expression patterns of the genes are consistent with the possibility that they all play roles in starch synthesis. Analysis of the predicted sequences of the proteins suggested that only Stisa1 and Stisa3 are likely to have hydrolytic activity and that there probably are differences in substrate specificity between these two isoforms. This was confirmed by the expression of each isoamylase in Escherichia coli and characterization of its activity. Partial purification of isoamylase activity from potato tubers showed that Stisa1 and Stisa2 are associated as a multimeric enzyme but that Stisa3 is not associated with this enzyme complex. Our data suggest that Stisa1 and Stisa2 act together to debranch soluble glucan during starch synthesis. The catalytic specificity of Stisa3 is distinct from that of the multimeric enzyme, indicating that it may play a different role in starch metabolism. PMID:12509527

  7. Isoform/variant mRNAs for sex steroid hormone receptors in humans.

    PubMed

    Hirata, Shuji; Shoda, Tomoko; Kato, Junzo; Hoshi, Kazuhiko

    2003-04-01

    The open reading frames of human sex steroid hormone receptors (hSSHRs) are composed of eight exons. In addition, the presence of various exons - including 5'-untranslated exons, alternative coding exons and novel 'intronic' exons - has been demonstrated in the genes encoding hSSHRs. The isoform/variant hSSHR mRNAs generated from thes e exons can be tentatively classified into seven types. In type 1, different mRNAs are generated with the use of alternative transcription start sites. In type 2, one or more exons are skipped. In type 3, one or more exons are duplicated. In type 4, distinct mRNAs containing different 5'-untranslated exon(s) are synthesized. In type 5, distinct mRNAs possessing different coding exon(s) are generated. In type 6, mRNA is synthesized by intronic exons and coding exons 4/5-8. In type 7, mRNA with insertion of intronic exon(s) is generated. Here, we review the isoform/variant hSSHR mRNAs and the structure of the genes encoding them.

  8. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain

    PubMed Central

    Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J.; Polo, Simona

    2016-01-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VIshort and myosin VIlong, which differ in the C-terminal region. Their physiological and pathological role remains unknown. Here we identified an isoform-specific regulatory helix, named α2-linker that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a novel clathrin-binding domain that is unique to myosin VIlong and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, where alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VIshort for tumor cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VIshort. Thus the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VIlong) or migratory (myosin VIshort) functional roles. PMID:26950368

  9. Survivin isoform Delta Ex3 regulates tumor spheroid formation.

    PubMed

    Espinosa, Magali; Ceballos-Cancino, Gisela; Callaghan, Richard; Maldonado, Vilma; Patiño, Nelly; Ruíz, Víctor; Meléndez-Zajgla, Jorge

    2012-05-01

    Survivin is an important member of the Inhibitor of Apoptosis Proteins (IAPs) family and has essential roles in apoptosis and cell cycle progression. This gene is commonly upregulated in human cancer and provides an exciting diagnostic and therapeutic target. Survivin is expressed as several isoforms that are generated by alternative splicing, and some of these present antagonistic activities. Currently, information regarding the regulation of these isoforms is lacking. In this study, we sought to analyze survivin Delta Ex3 expression in a three-dimensional model of avascular tumors and its overexpression effects in processes such as proliferation, clonogenicity and apoptosis. We found a positive correlation between spheroid growth and survivin Delta Ex3 expression during the exponential phase. We demonstrated that this isoform not only decreased apoptosis but also inhibited tumor spheroid formation by decreasing proliferation and clonogenic survival. These results point toward a dual and antagonistic effect of this spliced survivin isoform in cancer development.

  10. Constitutive nuclear localization of an alternatively spliced sirtuin-2 isoform.

    PubMed

    Rack, Johannes G M; VanLinden, Magali R; Lutter, Timo; Aasland, Rein; Ziegler, Mathias

    2014-04-17

    Sirtuin-2 (SIRT2), the cytoplasmic member of the sirtuin family, has been implicated in the deacetylation of nuclear proteins. Although the enzyme has been reported to be located to the nucleus during G2/M phase, its spectrum of targets suggests functions in the nucleus throughout the cell cycle. While a nucleocytoplasmic shuttling mechanism has been proposed for SIRT2, recent studies have indicated the presence of a constitutively nuclear isoform. Here we report the identification of a novel splice variant (isoform 5) of SIRT2 that lacks a nuclear export signal and encodes a predominantly nuclear isoform. This novel isoform 5 fails to show deacetylase activity using several assays, both in vitro and in vivo, and we are led to conclude that this isoform is catalytically inactive. Nevertheless, it retains the ability to interact with p300, a known interaction partner. Moreover, changes in intrinsic tryptophan fluorescence upon denaturation indicate that the protein is properly folded. These data, together with computational analyses, confirm the structural integrity of the catalytic domain. Our results suggest an activity-independent nuclear function of the novel isoform.

  11. Cell-specific expression of TLR9 isoforms in inflammation.

    PubMed

    McKelvey, Kelly J; Highton, John; Hessian, Paul A

    2011-02-01

    Toll-like receptors (TLRs) are key pattern recognition receptors during an immune response. With five isoforms of human TLR9 described, we hypothesised that differential expression of TLR9 isoforms in different cell types would result in variable contributions to the overall input from TLR9 during inflammation. We assessed the molecular expression of the TLR9 isoforms, TLR9-A, -C and -D. In normal peripheral blood mononuclear cells, B-lymphocytes express ∼100-fold more TLR9-A transcript than monocytes or T-lymphocytes, which predominantly express the TLR9-C transcript. Switches in isoform predominance accompany B-lymphocyte development. TLR9 protein expression in rheumatoid inflammatory lesions reflected the TLR9 isoform expression by immune cells. Herein we suggest that B-lymphocytes and plasmacytoid dendritic cells contribute the ∼3-fold higher TLR9-A transcript levels observed in inflamed synovium when compared to subcutaneous rheumatoid nodules. In contrast, macrophages and T-lymphocytes contribute the ∼4-fold higher TLR9-C transcript levels seen in nodules, compared to synovia. From protein sequence, predictions of subcellular localisation suggest TLR9-B may locate to the mitochondria, whereas TLR9-D adopts an opposing orientation in the endoplasmic reticulum. Consistent with this, structure models raise the possibility of alternative ligands for the TLR9-B and TLR9-D variants. Our results highlight differences in the expression of human TLR9 isoforms in normal and inflamed tissues, with differing contributions to inflammation.

  12. Managing Brain Extracellular K+ during Neuronal Activity: The Physiological Role of the Na+/K+-ATPase Subunit Isoforms

    PubMed Central

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    During neuronal activity in the brain, extracellular K+ rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K+ is the Na+/K+-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na+/K+-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K+ from neurons, whereas the neurons themselves become the primary K+ absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na+/K+-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K+ from the extracellular space in the face of neuronal activity. Understanding the nature, impact and effects of the various Na+/K+-ATPase isoform combinations in K+ management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2) and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood). This review addresses aspects of the Na+/K+-ATPase in the regulation of extracellular K+ in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease. PMID:27148079

  13. Managing Brain Extracellular K(+) during Neuronal Activity: The Physiological Role of the Na(+)/K(+)-ATPase Subunit Isoforms.

    PubMed

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    During neuronal activity in the brain, extracellular K(+) rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K(+) is the Na(+)/K(+)-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na(+)/K(+)-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K(+) from neurons, whereas the neurons themselves become the primary K(+) absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na(+)/K(+)-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K(+) from the extracellular space in the face of neuronal activity. Understanding the nature, impact and effects of the various Na(+)/K(+)-ATPase isoform combinations in K(+) management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2) and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood). This review addresses aspects of the Na(+)/K(+)-ATPase in the regulation of extracellular K(+) in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease.

  14. Non-Muscle Myosin II Isoforms Have Different Functions in Matrix Rearrangement by MDA-MB-231 Cells

    PubMed Central

    Hindman, Bridget; Goeckeler, Zoe; Sierros, Kostas; Wysolmerski, Robert

    2015-01-01

    The role of a stiffening extra-cellular matrix (ECM) in cancer progression is documented but poorly understood. Here we use a conditioning protocol to test the role of nonmuscle myosin II isoforms in cell mediated ECM arrangement using collagen constructs seeded with breast cancer cells expressing shRNA targeted to either the IIA or IIB heavy chain isoform. While there are several methods available to measure changes in the biophysical characteristics of the ECM, we wanted to use a method which allows for the measurement of global stiffness changes as well as a dynamic response from the sample over time. The conditioning protocol used allows the direct measurement of ECM stiffness. Using various treatments, it is possible to determine the contribution of various construct and cellular components to the overall construct stiffness. Using this assay, we show that both the IIA and IIB isoforms are necessary for efficient matrix remodeling by MDA-MB-231 breast cancer cells, as loss of either isoform changes the stiffness of the collagen constructs as measured using our conditioning protocol. Constructs containing only collagen had an elastic modulus of 0.40 Pascals (Pa), parental MDA-MB-231 constructs had an elastic modulus of 9.22 Pa, while IIA and IIB KD constructs had moduli of 3.42 and 7.20 Pa, respectively. We also calculated the cell and matrix contributions to the overall sample elastic modulus. Loss of either myosin isoform resulted in decreased cell stiffness, as well as a decrease in the stiffness of the cell-altered collagen matrices. While the total construct modulus for the IIB KD cells was lower than that of the parental cells, the IIB KD cell-altered matrices actually had a higher elastic modulus than the parental cell-altered matrices (4.73 versus 4.38 Pa). These results indicate that the IIA and IIB heavy chains play distinct and non-redundant roles in matrix remodeling. PMID:26136073

  15. Regulation of PGC-1α Isoform Expression in Skeletal Muscles

    PubMed Central

    Popov, D. V.; Lysenko, E. A.; Kuzmin, I. V.; Vinogradova, Vinogradova; Grigoriev, A. I.

    2015-01-01

    The coactivator PGC-1α is the key regulator of mitochondrial biogenesis in skeletal muscle. Skeletal muscle expresses several PGC-1α isoforms. This review covers the functional role of PGC-1α isoforms and the regulation of their exercise-associated expression in skeletal muscle. The patterns of PGC-1α mRNA expression may markedly differ at rest and after muscle activity. Different signaling pathways are activated by different physiological stimuli, which regulate the expression of the PGC-1α gene from the canonical and alternative promoters: expression from a canonical (proximal) promoter is regulated by activation of the AMPK; expression from an alternative promoter, via a β2-adrenergic receptor. All transcripts from both promoters are subject to alternative splicing. As a result, truncated isoforms that possess different properties are translated: truncated isoforms are more stable and predominantly activate angiogenesis, whereas full-length isoforms manly regulate mitochondrial biogenesis. The existence of several isoforms partially explains the broad-spectrum function of this protein and allows the organism to adapt to different physiological stimuli. Regulation of the PGC-1α gene expression by different signaling pathways provides ample opportunity for pharmacological influence on the expression of this gene. Those opportunities might be important for the treatment and prevention of various diseases, such as metabolic syndrome and diabetes mellitus. Elucidation of the regulatory mechanisms of the PGC-1α gene expression and their functional role may provide an opportunity to control the expression of different isoforms through exercise and/or pharmacological intervention. PMID:25927001

  16. Insulin Receptor Isoform Variations in Prostate Cancer Cells

    PubMed Central

    Perks, Claire M.; Zielinska, H. A.; Wang, Jing; Jarrett, Caroline; Frankow, A.; Ladomery, Michael R.; Bahl, Amit; Rhodes, Anthony; Oxley, Jon; Holly, Jeff M. P.

    2016-01-01

    Men who develop prostate cancer (PCa) increasingly have one of the co-morbidities associated with a Western lifestyle that are characterized by hyperinsulinemia, hyperglycemia and increased expression of insulin-like growth factors-I (IGF-I) and IGF-II. Each have been associated with poor prognosis and more aggressive cancers that exhibit increased metabolism and increased glucose uptake. The insulin receptor (IR) has two splice isoforms IR-A and IR-B: IR-A has a higher affinity for IGF-II comparable to that for insulin, whereas the IR-B isoform predominantly just binds to insulin. In this study, we assessed alterations in the IR-A and IR-B isoform ratio and associated changes in cell proliferation and migration of PCa cell lines following exposure to altered concentrations of glucose and treatment with IGF-II and insulin. We observed that where IR-B predominated insulin had a greater effect on migration than IGF-II and IGF-II was more effective when IR-A was the main isoform. With regard to proliferation IGF-II was more effective than insulin regardless of which isoform was dominant. We assessed the abundance of the IR isoforms both in vivo and in vitro and observed that the majority of the tissue samples and cell lines expressed more IR-A than IR-B. Alterations in the isoforms in response to changes in their hormonal milieu could have a profound impact on how malignant cells behave and play a role in promoting carcinogenesis. A greater understanding of the mechanisms underlying changes in alternative splicing of the IR may provide additional targets for future cancer therapies. PMID:27733843

  17. All Akt Isoforms (Akt1, Akt2, Akt3) Are Involved in Normal Hearing, but Only Akt2 and Akt3 Are Involved in Auditory Hair Cell Survival in the Mammalian Inner Ear

    PubMed Central

    Brand, Yves; Levano, Soledad; Radojevic, Vesna; Naldi, Arianne Monge; Setz, Cristian; Ryan, Allen F.; Pak, Kwang; Hemmings, Brian A.; Bodmer, Daniel

    2015-01-01

    The kinase Akt is a key downstream mediator of the phosphoinositide-3-kinase signaling pathway and participates in a variety of cellular processes. Akt comprises three isoforms each encoded by a separate gene. There is evidence to indicate that Akt is involved in the survival and protection of auditory hair cells in vitro. However, little is known about the physiological role of Akt in the inner ear—especially in the intact animal. To elucidate this issue, we first analyzed the mRNA expression of the three Akt isoforms in the inner ear of C57/BL6 mice by real-time PCR. Next, we tested the susceptibility to gentamicin-induced auditory hair cell loss in isoform-specific Akt knockout mice compared to wild-types (C57/BL6) in vitro. To analyze the effect of gene deletion in vivo, hearing and cochlear microanatomy were evaluated in Akt isoform knockout animals. In this study, we found that all three Akt isoforms are expressed in the cochlea. Our results further indicate that Akt2 and Akt3 enhance hair cell resistance to ototoxicity, while Akt1 does not. Finally, we determined that untreated Akt1 and Akt2/Akt3 double knockout mice display significant hearing loss, indicating a role for these isoforms in normal hearing. Taken together, our results indicate that each of the Akt isoforms plays a distinct role in the mammalian inner ear. PMID:25811375

  18. Rice PROTEIN l-ISOASPARTYL METHYLTRANSFERASE isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity.

    PubMed

    Petla, Bhanu Prakash; Kamble, Nitin Uttam; Kumar, Meenu; Verma, Pooja; Ghosh, Shraboni; Singh, Ajeet; Rao, Venkateswara; Salvi, Prafull; Kaur, Harmeet; Saxena, Saurabh Chandra; Majee, Manoj

    2016-07-01

    PROTEIN l-ISOASPARTYL O-METHYLTRANSFERASE (PIMT) is a protein-repairing enzyme involved in seed vigor and longevity. However, the regulation of PIMT isoforms during seed development and the mechanism of PIMT-mediated improvement of seed vigor and longevity are largely unknown. In this study in rice (Oryza sativa), we demonstrate the dynamics and correlation of isoaspartyl (isoAsp)-repairing demands and PIMT activity, and their implications, during seed development, germination and aging, through biochemical, molecular and genetic studies. Molecular and biochemical analyses revealed that rice possesses various biochemically active and inactive PIMT isoforms. Transcript and western blot analyses clearly showed the seed development stage and tissue-specific accumulation of active isoforms. Immunolocalization studies revealed distinct isoform expression in embryo and aleurone layers. Further analyses of transgenic lines for each OsPIMT isoform revealed a clear role in the restriction of deleterious isoAsp and age-induced reactive oxygen species (ROS) accumulation to improve seed vigor and longevity. Collectively, our data suggest that a PIMT-mediated, protein repair mechanism is initiated during seed development in rice, with each isoform playing a distinct, yet coordinated, role. Our results also raise the intriguing possibility that PIMT repairs antioxidative enzymes and proteins which restrict ROS accumulation, lipid peroxidation, etc. in seed, particularly during aging, thus contributing to seed vigor and longevity.

  19. Differential induction of FosB isoforms throughout the brain by fluoxetine and chronic stress.

    PubMed

    Vialou, Vincent; Thibault, Mackenzie; Kaska, Sophia; Cooper, Sarah; Gajewski, Paula; Eagle, Andrew; Mazei-Robison, Michelle; Nestler, Eric J; Robison, A J

    2015-12-01

    Major depressive disorder is thought to arise in part from dysfunction of the brain's "reward circuitry", consisting of the mesolimbic dopamine system and the glutamatergic and neuromodulatory inputs onto this system. Both chronic stress and antidepressant treatment regulate gene transcription in many of the brain regions that make up these circuits, but the exact nature of the transcription factors and target genes involved in these processes remain unclear. Here, we demonstrate induction of the FosB family of transcription factors in ∼25 distinct regions of adult mouse brain, including many parts of the reward circuitry, by chronic exposure to the antidepressant fluoxetine. We further uncover specific patterns of FosB gene product expression (i.e., differential expression of full-length FosB, ΔFosB, and Δ2ΔFosB) in brain regions associated with depression--the nucleus accumbens (NAc), prefrontal cortex (PFC), and hippocampus--in response to chronic fluoxetine treatment, and contrast these patterns with differential induction of FosB isoforms in the chronic social defeat stress model of depression with and without fluoxetine treatment. We find that chronic fluoxetine, in contrast to stress, causes induction of the unstable full-length FosB isoform in the NAc, PFC, and hippocampus even 24 h following the final injection, indicating that these brain regions may undergo chronic activation when fluoxetine is on board, even in the absence of stress. We also find that only the stable ΔFosB isoform correlates with behavioral responses to stress. These data suggest that NAc, PFC, and hippocampus may present useful targets for directed intervention in mood disorders (ie, brain stimulation or gene therapy), and that determining the gene targets of FosB-mediated transcription in these brain regions in response to fluoxetine may yield novel inroads for pharmaceutical intervention in depressive disorders.

  20. Differential induction of FosB isoforms throughout the brain by fluoxetine and chronic stress

    PubMed Central

    Vialou, Vincent; Thibault, Mackenzie; Kaska, Sophia; Gajewski, Paula; Eagle, Andrew; Mazei-Robison, Michelle; Nestler, Eric J.; Robison, A.J.

    2015-01-01

    Major depressive disorder is thought to arise in part from dysfunction of the brain's “reward circuitry,” consisting of the mesolimbic dopamine system and the glutamatergic and neuromodulatory inputs onto this system. Both chronic stress and antidepressant treatment regulate gene transcription in many of the brain regions that make up these circuits, but the exact nature of the transcription factors and target genes involved in these processes remain unclear. Here, we demonstrate induction of the FosB family of transcription factors in ∼25 distinct regions of adult mouse brain, including many parts of the reward circuitry, by chronic exposure to the antidepressant fluoxetine. We further uncover specific patterns of FosB gene product expression (i.e., differential expression of full-length FosB, ΔFosB, and Δ2ΔFosB) in brain regions associated with depression – the nucleus accumbens (NAc), prefrontal cortex (PFC), and hippocampus – in response to chronic fluoxetine treatment, and contrast these patterns with differential induction of FosB isoforms in the chronic social defeat stress model of depression with and without fluoxetine treatment. We find that chronic fluoxetine, in contrast to stress, causes induction of the unstable full-length FosB isoform in the NAc, PFC, and hippocampus even 24 hours following the final injection, indicating that these brain regions may undergo chronic activation when fluoxetine is on board, even in the absence of stress. We also find that only the stable ΔFosB isoform correlates with behavioral responses to stress. These data suggest that NAc, PFC, and hippocampus may present useful targets for directed intervention in mood disorders (ie, brain stimulation or gene therapy), and that determining the gene targets of FosB-mediated transcription in these brain regions in response to fluoxetine may yield novel inroads for pharmaceutical intervention in depressive disorders. PMID:26164345

  1. Voltage-gated sodium channel isoform-specific effects of pompilidotoxins.

    PubMed

    Schiavon, Emanuele; Stevens, Marijke; Zaharenko, André J; Konno, Katsuhiro; Tytgat, Jan; Wanke, Enzo

    2010-02-01

    Pompilidotoxins (PMTXs, alpha and beta) are small peptides consisting of 13 amino acids purified from the venom of the solitary wasps Anoplius samariensis (alpha-PMTX) and Batozonellus maculifrons (beta-PMTX). They are known to facilitate synaptic transmission in the lobster neuromuscular junction, and to slow sodium channel inactivation. By using beta-PMTX, alpha-PMTX and four synthetic analogs with amino acid changes, we conducted a thorough study of the effects of PMTXs on sodium current inactivation in seven mammalian voltage-gated sodium channel (VGSC) isoforms and one insect VGSC (DmNa(v)1). By evaluating three components of which the inactivating current is composed (fast, slow and steady-state components), we could distinguish three distinct groups of PMTX effects. The first group concerned the insect and Na(v)1.6 channels, which showed a large increase in the steady-state current component without any increase in the slow component. Moreover, the dose-dependent increase in this steady-state component was correlated with the dose-dependent decrease in the fast component. A second group of effects concerned the Na(v)1.1, Na(v)1.2, Na(v)1.3 and Na(v)1.7 isoforms, which responded with a large increase in the slow component, and showed only a small steady-state component. As with the first group of effects, the slow component was dose-dependent and correlated with the decrease in the fast component. Finally, a third group of effects concerned Na(v)1.4 and Na(v)1.5, which did not show any change in the slow or steady-state component. These data shed light on the complex and intriguing behavior of VGSCs in response to PMTXs, helping us to better understand the molecular determinants explaining isoform-specific effects.

  2. Discrete forms of amylose are synthesized by isoforms of GBSSI in pea.

    PubMed

    Edwards, Anne; Vincken, Jean-Paul; Suurs, Luc C J M; Visser, Richard G F; Zeeman, Sam; Smith, Alison; Martin, Cathie

    2002-08-01

    Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be insignificant in the synthesis of amylose in pea leaves. cDNA clones encoding a second isoform of GBSSI, GBSSIb, have been isolated from pea leaves. Comparison of GBSSIa and GBSSIb activities shows them to have distinct properties. These differences have been confirmed by the expression of GBSSIa and GBSSIb in the amylose-free mutant of potato. GBSSIa and GBSSIb make distinct forms of amylose that differ in their molecular mass. These differences in product specificity, coupled with differences in the tissues in which GBSSIa and GBSSIb are most active, explain the distinct forms of amylose found in different tissues of pea. The shorter form of amylose formed by GBSSIa confers less susceptibility to the retrogradation of starch pastes than the amylose formed by GBSSIb. The product specificity of GBSSIa could provide beneficial attributes to starches for food and nonfood uses.

  3. Ontogeny of mRNA expression and activity of long-chain acyl-CoA synthetase (ACSL) isoforms in Mus musculus heart.

    PubMed

    de Jong, Hendrik; Neal, Andrea C; Coleman, Rosalind A; Lewin, Tal M

    2007-01-01

    Long-chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for virtually every metabolic pathway that catabolizes FA or synthesizes complex lipids. We have hypothesized that each of the five cloned ACSL isoforms partitions FA towards specific downstream pathways. Adult heart expresses all five cloned ACSL isoforms, but their independent functional roles have not been elucidated. Studies implicate ACSL1 in both oxidative and lipid synthetic pathways. To clarify the functional role of ACSL1 and the other ACSL isoforms (3-6), we examined ACS specific activity and Acsl mRNA expression in the developing mouse heart which increases FA oxidative pathways for energy production after birth. Compared to the embryonic heart, ACS specific activity was 14-fold higher on post-natal day 1 (P1). On P1, as compared to the fetus, only Acsl1 mRNA increased, whereas transcripts for the other Acsl isoforms remained the same, suggesting that ACSL1 is the major isoform responsible for activating long-chain FA for myocardial oxidation after birth. In contrast, the mRNA abundance of Acsl3 was highest on E16, and decreased dramatically by P7, suggesting that ACSL3 may play a critical role during the development of the fetal heart. Our data support the hypothesis that each ACSL has a specific role in the channeling of FA towards distinct metabolic fates.

  4. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells

    NASA Technical Reports Server (NTRS)

    Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)

    2002-01-01

    Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.

  5. Complex alternative cytoplasmic protein isoforms of the Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 generated through noncanonical translation initiation.

    PubMed

    Toptan, Tuna; Fonseca, Lidia; Kwun, Hyun Jin; Chang, Yuan; Moore, Patrick S

    2013-03-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) latency associated-nuclear antigen 1 (LANA1) protein is constitutively expressed in all KSHV-infected cells, as well as in all forms of KSHV-associated malignancies. LANA1 is a multifunctional KSHV oncoprotein containing multiple repeat sequences that is important for viral episome maintenance and the regulation of cellular and viral gene expression. We characterize here multiple LANA1 isoforms and show that ∼50% of LANA1 is naturally generated as N-terminally truncated shoulder proteins that are detected on SDS-PAGE as faster-migrating shoulder bands designated LANA1(S). Higher-molecular-weight LANA1(S) isoforms initiate downstream at noncanonical sites within the N-terminal region, whereas lower-molecular-weight LANA1(S) isoforms initiate downstream within the central repeat 1 domain. LANA1(S) proteins lack an N-terminal nuclear localization signal motif, and some isoforms differ from full-length, canonical LANA1 by localizing to perinuclear and cytoplasmic sites. Although LANA1 has until now been assumed to be solely active in the nucleus, this finding indicates that this major KSHV oncoprotein may have cytoplasmic activities as well. KSHV overcomes its limited genetic coding capacity by generating alternatively initiated protein isoforms that may have distinct biological functions.

  6. Isoform-targeted regulation of cardiac adenylyl cyclase.

    PubMed

    Ishikawa, Yoshihiro

    2003-01-01

    Numerous attempts have been made to develop strategies for regulating the intracellular cyclic AMP signal pharmacologically, with an intention to establish either new medical therapeutic methods or experimental tools. In the past decades, many pharmacological reagents have been identified that regulate this pathway at the level of the receptor. G protein, adenylyl cyclase, cyclic AMP, protein kinase A and phosphodiesterase. Since the cloning of adenylyl cyclase isoforms during the 1990s, investigators including ourselves have tried to find reagents that regulate the activity of this enzyme directly in an isoform-dependent manner. The ultimate goal of developing such reagents would be to regulate the cyclic AMP signal in an organ-dependent manner. Ourselves and other workers have reported that such reagents may vary from a simple cation to kinases. In a more recent study, using the results from crystallographic studies and computer-assisted drug design programs, we have identified subtype-selective regulators of adenylyl cyclase. Such regulators are mostly based upon forskolin, a diterpene compound obtained from Coleus forskolii, that acts directly on adenylyl cyclase to increase the intracellular levels of cyclic AMP. Similarly, novel reagents have been identified that inhibit a specific adenylyl cyclase isoform (e.g. type 5 adenylyl cyclase). Such reagents would potentially provide a new therapeutic strategy to treat hypertension, for example, as well as methods to selectively stimulate or inhibit this adenylyl cyclase isoform, which may be reminiscent of overexpression or knocking out of the cardiac adenylyl cyclase isoform by the use of a pharmacological method.

  7. Lobster (Panulirus argus) hepatopancreatic trypsin isoforms and their digestion efficiency.

    PubMed

    Perera, Erick; Rodríguez-Casariego, Javier; Rodríguez-Viera, Leandro; Calero, Jorge; Perdomo-Morales, Rolando; Mancera, Juan M

    2012-04-01

    It is well known that crustaceans exhibit several isoforms of trypsin in their digestive system. Although the number of known crustacean trypsin isoforms continues increasing, especially those derived from cDNA sequences, the role of particular isoenzymes in digestion remains unknown. Among invertebrates, significant advances in the understanding of the role of multiple trypsins have been made only in insects. Since it has been demonstrated that trypsin isoenzyme patterns (phenotypes) in lobster differ in digestion efficiency, we used this crustacean as a model for assessing the biochemical basis of such differences. We demonstrated that the trypsin isoform known to be present in all individuals of Panulirus argus has a high catalytic efficiency (k(cat)/K(m) ) and is the most reactive toward native proteinaceous substrates, whereas one of the isoforms present in less efficient individuals has a lower k(cat) and a lower k(cat)/K(m), and it is less competent at digesting native proteins. A fundamental question in biology is how genetic differences produce different physiological performances. This work is the first to demonstrate that trypsin phenotypic variation in crustacean protein digestion relies on the biochemical properties of the different isoforms. Results are relevant for understanding trypsin polymorphism and protein digestion in lobster.

  8. Differential expression of serum clusterin isoforms in colorectal cancer.

    PubMed

    Rodríguez-Piñeiro, Ana M; de la Cadena, María Páez; López-Saco, Angel; Rodríguez-Berrocal, Francisco J

    2006-09-01

    Clusterin is an enigmatic protein altered in tumors of colorectal cancer patients. Because there is no information available about serum clusterin regarding this pathology, we applied proteomic techniques to analyze its isoforms in donors and patients. First we separated serum proteins through concanavalin A, obtaining a fraction with non- and O-glycosylated proteins (FI) and a second fraction enriched in N-glycoproteins (FII) wherein clusterin was supposed to elute on the basis of its glycosylation. Surprisingly analysis of the FI fraction revealed the existence of an unexpected and aberrantly N-glycosylated clusterin that was overexpressed in patients and comprised at least five isoforms with different isoelectric points. On the other hand, two-dimensional electrophoretic analysis of the clusterin eluted in FII detected one isoform that was increased and 15 isoforms that were decreased or absent in serum of patients. Finally immunoquantification by slot blot showed that in total serum and in FI the clusterin levels were significantly increased in patients, whereas in FII there was no significant variation. Therefore, serum clusterin and some of its isoforms could have a potential value as colorectal tumor markers and are interesting subjects for biomarker studies.

  9. Opposing roles of glutaminase isoforms in determining glioblastoma cell phenotype.

    PubMed

    Szeliga, Monika; Albrecht, Jan

    2015-09-01

    Glutamine (Gln) and glutamate (Glu) play pivotal roles in the malignant phenotype of brain tumors via multiple mechanisms. Glutaminase (GA, EC 3.5.1.2) metabolizes Gln to Glu and ammonia. Human GA isoforms are encoded by two genes: GLS gene codes for kidney-type isoforms, KGA and GAC, whereas GLS2 codes for liver-type isoforms, GAB and LGA. The expression pattern of both genes in different neoplastic cell lines and tissues implicated that the kidney-type isoforms are associated with cell proliferation, while the liver-type isoforms dominate in, and contribute to the phenotype of quiescent cells. GLS gene has been demonstrated to be regulated by oncogene c-Myc, whereas GLS2 gene was identified as a target gene of p53 tumor suppressor. In glioblastomas (GBM, WHO grade IV), the most aggressive brain tumors, high levels of GLS and only traces or lack of GLS2 transcripts were found. Ectopic overexpression of GLS2 in human glioblastoma T98G cells decreased their proliferation and migration and sensitized them to the alkylating agents often used in the chemotherapy of gliomas. GLS silencing reduced proliferation of glioblastoma T98G cells and strengthen the antiproliferative effect evoked by previous GLS2 overexpression.

  10. p53 isoform profiling in glioblastoma and injured brain.

    PubMed

    Takahashi, R; Giannini, C; Sarkaria, J N; Schroeder, M; Rogers, J; Mastroeni, D; Scrable, H

    2013-06-27

    The tumor suppressor p53 has been found to be the most commonly mutated gene in human cancers; however, the frequency of p53 mutations varies from 10 to 70% across different cancer types. This variability can partly be explained by inactivating mechanisms aside from direct genomic polymorphisms. The p53 gene encodes 12 isoforms, some of which can modulate full-length p53 activity in cancer. In this study, we characterized p53 isoform expression patterns in glioblastoma, gliosis, non-tumor brain and neural progenitor cells by SDS-PAGE, immunoblot, mass spectrometry and reverse transcription-PCR. We found that the most consistently expressed isoform in glioblastoma, Δ40p53, was uniquely expressed in regenerative processes, such as those involving neural progenitor cells and gliosis compared with tumor samples. Isoform profiling of glioblastoma tissues revealed the presence of both Δ40p53 and full-length p53, neither of which were detected in non-tumor cerebral cortex. Upon xenograft propagation of tumors, p53 levels increased. The variability of overall p53 expression and relative levels of isoforms suggest fluctuations in subpopulations of cells with greater or lesser capacity for proliferation, which can change as the tumor evolves under different growth conditions.

  11. Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Xia, M.; Poovaiah, B. W.

    1998-01-01

    cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants.

  12. Fumarate hydratase isoforms of Leishmania major: subcellular localization, structural and kinetic properties.

    PubMed

    Feliciano, Patrícia R; Gupta, Shreedhara; Dyszy, Fabio; Dias-Baruffi, Marcelo; Costa-Filho, Antonio J; Michels, Paul A M; Nonato, M Cristina

    2012-01-01

    Fumarate hydratases (FHs; EC 4.2.1.2) are enzymes that catalyze the reversible hydration of fumarate to S-malate. Parasitic protists that belong to the genus Leishmania and are responsible for a complex of vector-borne diseases named leishmaniases possess two genes that encode distinct putative FH enzymes. Genome sequence analysis of Leishmania major Friedlin reveals the existence of genes LmjF24.0320 and LmjF29.1960 encoding the putative enzymes LmFH-1 and LmFH-2, respectively. In the present work, the FH activity of both L. major enzymes has been confirmed. Circular dichroism studies suggest important differences in terms of secondary structure content when comparing LmFH isoforms and even larger differences when comparing them to the homologous human enzyme. CD melting experiments revealed that both LmFH isoforms are thermolabile enzymes. The catalytic efficiency under aerobic and anaerobic environments suggests that they are both highly sensitive to oxidation and damaged by oxygen. Intracellular localization studies located LmFH-1 in the mitochondrion, whereas LmFH-2 was found predominantly in the cytosol with possibly also some in glycosomes. The high degree of sequence conservation in different Leishmania species, together with the relevance of FH activity for the energy metabolism in these parasites suggest that FHs might be exploited as targets for broad-spectrum antileishmanial drugs.

  13. Differential Binding of Three Major Human ADAR Isoforms to Coding and Long Non-Coding Transcripts

    PubMed Central

    Galipon, Josephine; Ishii, Rintaro; Suzuki, Yutaka; Tomita, Masaru; Ui-Tei, Kumiko

    2017-01-01

    RNA editing by deamination of adenosine to inosine is an evolutionarily conserved process involved in many cellular pathways, from alternative splicing to miRNA targeting. In humans, it is carried out by no less than three major adenosine deaminases acting on RNA (ADARs): ADAR1-p150, ADAR1-p110, and ADAR2. However, the first two derive from alternative splicing, so that it is currently impossible to delete ADAR1-p110 without also knocking out ADAR1-p150 expression. Furthermore, the expression levels of ADARs varies wildly among cell types, and no study has systematically explored the effect of each of these isoforms on the cell transcriptome. In this study, RNA immunoprecipitation (RIP)-sequencing on overexpressed ADAR isoforms tagged with green fluorescent protein (GFP) shows that each ADAR is associated with a specific set of differentially expressed genes, and that they each bind to distinct set of RNA targets. Our results show a good overlap with known edited transcripts, establishing RIP-seq as a valid method for the investigation of RNA editing biology. PMID:28208661

  14. The isoforms of proprotein convertase PC5 are sorted to different subcellular compartments

    PubMed Central

    1996-01-01

    The proprotein convertase PC5 is encoded by multiple mRNAs, two of which give rise to the COOH-terminal variant isoforms PC5-A (915 amino acids [aa]) and PC5-B (1877 aa). To investigate the differences in biosynthesis and sorting between these two proteins, we generated stably transfected AtT-20 cell lines expressing each enzyme individually and examined their respective processing pattern and subcellular localization. Biosynthetic analyses coupled to immunofluorescence studies demonstrated that the shorter and soluble PC5-A is sorted to regulated secretory granules. In contrast, the COOH- terminally extended and membrane-bound PC5-B is located in the Golgi. The presence of a sorting signal in the COOH-terminal 38 amino acids unique to PC5-A was demonstrated by the inefficient entry into the regulated secretory pathway of a mutant lacking this segment. EM of pancreatic cells established the presence of immunoreactive PC5 in glucagon-containing granules, demonstrating the sorting of this protein to dense core secretory granules in endocrine cells. Thus, a single PC5 gene generates COOH-terminally modified isoforms with different sorting signals directing these proteins to distinct subcellular localization, thereby allowing them to process their appropriate substrates. PMID:8947550

  15. Differential regulation of oestrogen receptor β isoforms by 5' untranslated regions in cancer.

    PubMed

    Smith, Laura; Brannan, Rebecca A; Hanby, Andrew M; Shaaban, Abeer M; Verghese, Eldo T; Peter, Mark B; Pollock, Steven; Satheesha, Sampoorna; Szynkiewicz, Marcin; Speirs, Valerie; Hughes, Thomas A

    2010-08-01

    Oestrogen receptors (ERs) are critical regulators of the behaviour of many cancers. Despite this, the roles and regulation of one of the two known ERs - ERβ- are poorly understood. This is partly because analyses have been confused by discrepancies between ERβ expression at mRNA and proteins levels, and because ERβ is expressed as several functionally distinct isoforms. We investigated human ERβ 5' untranslated regions (UTRs) and their influences on ERβ expression and function. We demonstrate that two alternative ERβ 5'UTRs have potent and differential influences on expression acting at the level of translation. We show that their influences are modulated by cellular context and in carcinogenesis, and demonstrate the contributions of both upstream open reading frames and RNA secondary structure. These regulatory mechanisms offer explanations for the non-concordance of ERβ mRNA and protein. Importantly, we also demonstrate that 5'UTRs allow the first reported mechanisms for differential regulation of the expression of the ERβ isoforms 1, 2 and 5, and thereby have critical influences on ERβ function.

  16. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation.

    PubMed

    Strand, D W; Jiang, M; Murphy, T A; Yi, Y; Konvinse, K C; Franco, O E; Wang, Y; Young, J D; Hayward, S W

    2012-08-09

    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithelial cells. Expression and activation of either PPARγ 1 or 2 reduced de novo lipogenesis and oxidative stress and mediated a switch from glucose to fatty acid oxidation through regulation of genes including Pdk4, Fabp4, Lpl, Acot1 and Cd36. Differential effects of PPARγ isoforms included decreased basal cell differentiation, Scd1 expression and triglyceride fatty acid desaturation and increased tumorigenicity by PPARγ1. In contrast, PPARγ2 expression significantly increased basal cell differentiation, Scd1 expression and AR expression and responsiveness. Finally, in confirmation of in vitro data, a PPARγ agonist versus high-fat diet (HFD) regimen in vivo confirmed that PPARγ agonization increased prostatic differentiation markers, whereas HFD downregulated PPARγ-regulated genes and decreased prostate differentiation. These data provide a rationale for pursuing a fundamental metabolic understanding of changes to glucose and fatty acid metabolism in benign and malignant prostatic diseases associated with systemic metabolic stress.

  17. Neurotoxin-induced selective ubiquitination and regulation of MEF2A isoform in neuronal stress response.

    PubMed

    She, Hua; Yang, Qian; Mao, Zixu

    2012-09-01

    The myocyte enhancer factor 2A-D (MEF2) proteins are members of the MCM1-agamous-deficiens-serum response factor family of transcription factors. Various MEF2 isoform proteins are enriched in neurons and exhibit distinct patterns of expression in different regions of the brain. In neurons, MEF2 functions as a converging factor to regulate many neuronal functions including survival. MEF2 activities are tightly controlled in neurons in response to stress. Whether stress signal may differentially regulate MEF2s remains largely unknown. In this work, we showed that MEF2A, but not MEF2C or MEF2D, was modified by ubiquitination in dopaminergic neuronal cell line SN4741 cells. MEF2A was ubiquitinated at its N'-terminus, and the ubiquitination of MEF2A was first detectable in the nuclear compartment and later in the cytoplasm. Ubiquitination of MEF2A correlated with reduced DNA-binding activity and transcriptional activity. More importantly, disturbing the degradation of ubiquitinated MEF2A through proteasome pathway by neurotoxins known to induce Parkinson's disease features in model animals caused accumulation of ubiquitinated MEF2A, reduced MEF2 activity, and impaired cellular viability. Our work thus provides the first evidence to demonstrate an isoforms-specific regulation of MEF2s by ubiquitination-proteasome pathway in dopaminergic neuronal cell by neurotoxins, suggesting that stress signal and cellular context-dependent dysregulation of MEF2s may underlie the loss of neuronal viability.

  18. Neurotoxin-induced selective ubiquitination and regulation of MEF2A isoform in neuronal stress response

    PubMed Central

    She, Hua; Yang, Qian; Mao, Zixu

    2014-01-01

    The myocyte enhancer factor 2A-D (MEF2) proteins are members of the MCM1-agamous-deficiens-serum (MADS) response factor family of transcription factors. Various MEF2 isoform proteins are enriched in neurons and exhibit distinct patterns of expression in different regions of the brain. In neurons, MEF2 functions as a converging factor to regulate many neuronal functions including survival. MEF2 activities are tightly controlled in neurons in response to stress. Whether stress signal may differentially regulate MEF2s remains largely unknown. In this work, we showed that MEF2A but not MEF2C or MEF2D was modified by ubiquitination in dopaminergic neuronal cell line SN4741 cells. MEF2A was ubiquitinated at its N’-terminus, and the ubiquitination of MEF2A was first detectable in the nuclear compartment and later in the cytoplasm. Ubiquitination of MEF2A correlated with reduced DNA-binding activity and transcriptional activity. More importantly, disturbing the degradation of ubiquitinated MEF2A through proteasome pathway by neurotoxins known to induce Parkinson’s disease (PD) features in model animals caused accumulation of ubiquitinated MEF2A, reduced MEF2 activity, and impaired cellular viability. Our work thus provides the first evidence to demonstrate an isoforms specific regulation of MEF2s by ubiquitination-proteasome pathway in dopaminergic neuronal cell by neurotoxins, suggesting that stress signal and cellular context dependent dysregulation of MEF2s may underlie the loss of neuronal viability. PMID:22764880

  19. Identification of caleosin and two oleosin isoforms in oil bodies of pine megagametophytes.

    PubMed

    Pasaribu, Buntora; Chung, Tse-Yu; Chen, Chii-Shiarng; Wang, Song-Liang; Jiang, Pei-Luen; Tzen, Jason T C

    2014-09-01

    Numerous oil bodies of 0.2-2 μm occupied approximately 80% of intracellular space in mature pine (Pinus massoniana) megagametophytes. They were stably isolated and found to comprise mostly triacylglycerols as examined by thin layer chromatography analysis and confirmed by both Nile red and BODIPY stainings. Fatty acids released from the triacylglycerols of pine oil bodies were mainly unsaturated, including linoleic acid (60%), adrenic acid (12.3%) and vaccenic acid (9.7%). Proteins extracted from pine oil bodies were subjected to immunological cross-recognition, and the results showed that three proteins of 28, 16 and 14 kDa were detected by antibodies against sesame seed caleosin, sesame oleosin-L and lily pollen oleosin-P, respectively. Complete cDNA fragments encoding these three pine oil-body proteins, tentatively named caleosin, oleosin-L and oleosin-G, were obtained by PCR cloning and further confirmed by mass spectrometric analysis. Consistently, phylogenetic tree analyses showed that pine caleosin was closely-related to the caleosin of cycad megagametophyte among known caleosin sequences. While pine oleosin-L was found clustered with seed oleosin isoforms of angiosperm species, oleosin-G was distinctively grouped with the oleosin-P of lily pollen. The oleosin-G identified in pine megagametophytes seems to represent a new class of seed oleosin isoform evolutionarily close to the pollen oleosin-P.

  20. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10

    SciTech Connect

    Karlsen, A.E.; Hagopian, W.A.; Grubin, C.E.; Dube, S.; Disteche, C.M.; Adler, D.A.; Baermeier, H.; Lernmark, A. ); Mathewes, S.; Grant, F.J.; Foster, D. )

    1991-10-01

    Glutamic acid decarboxylase which catalyzes formation of {gamma}-aminobutyric acid from L-glutamic acid, is detectable in different isoforms with distinct electrophoretic and kinetic characteristics. GAD has also been implicated as an autoantigen in the vastly differing autoimmune disease stiff-man syndrome and insulin-dependent diabetes mellitus. Despite the differing GAD isoforms, only one type of GAD cDNA (GAD-1), localized to a syntenic region of chromosome 2, has been isolated from rat, mouse, and cat. Using sequence information from GAD-1 to screen a human pancreatic islet cDNA library, the authors describe the isolation of an additional GAD cDNA (GAD-2), which was mapped to the short arm of human chromosome 10. Genomic Southern blotting with GAD-2 demonstrated a hybridization pattern different form that detected by GAD-1. GAD-2 recognizes a 5.6-kilobase transcript in both islets and brain, in contrast to GAD-1, which detects a 3.7-kilobase transcript in brain only. The deduced 585-amino acid sequence coded for by GAD-2 shows < 65% identify to previously published, highly conserved GAD-1 brain sequences, which show > 96% deduced amino acid sequence homology among the three species.

  1. Differential expression of laminin isoforms in diabetic nephropathy and other renal diseases.

    PubMed

    Setty, Suman; Michael, Alfred A; Fish, Alfred J; Michael Mauer, S; Butkowski, Ralph J; Virtanen, Ismo; Kim, Youngki

    2012-06-01

    Laminin a non-collagenous glycoprotein is a major component of the renal glomerular basement membrane and mesangium. Thus far eleven distinct chains have been described, permutations of which make up 15 laminin isoforms. Laminin molecules interact with cells and other matrix molecules during organ development and differentiation. We studied the distribution of laminin isoforms in patients with type 1 diabetic nephropathy, membranous nephropathy, membranoproliferative glomerulonephritis and IgA nephropathy/ Henoch-Schönlein purpura. Immunofluorescence microscopic studies with laminin-chain-specific antibodies to the α1, α2, α5, β1, β2 and γ1 chains detected α2, β1 and γ1 chain expression in the normal mesangium and α5, β2 and γ1 in normal glomerular basement membrane. Significantly, constituents of the glomerular basement membrane, α5, β2 and γ1 chains were overexpressed in kidneys with diabetic nephropathy. Initially the constituents of the mesangium increased commensurate with the degree of mesangial expansion and degree of diabetic nephropathy. Reduction in α2 chain intensity was observed with severe mesangial expansion and in the areas of nodular glomerulosclerosis. In addition, with late disease aberrant expression of α2 and β2 chains was observed in the mesangium. Glomerular basement membrane in renal disease overexpressed molecules normally present in that location. In summary, the alterations in basement membrane composition in various renal diseases seem to not only reflect the balance between synthesis and degradation of normal basement membrane constituents, but also their aberrant expression.

  2. Functional overlap between eIF4G isoforms in Saccharomyces cerevisiae.

    PubMed

    Clarkson, Bryan K; Gilbert, Wendy V; Doudna, Jennifer A

    2010-02-09

    Initiation factor eIF4G is a key regulator of eukaryotic protein synthesis, recognizing proteins bound at both ends of an mRNA to help recruit messages to the small (40S) ribosomal subunit. Notably, the genomes of a wide variety of eukaryotes encode multiple distinct variants of eIF4G. We found that deletion of eIF4G1, but not eIF4G2, impairs growth and global translation initiation rates in budding yeast under standard laboratory conditions. Not all mRNAs are equally sensitive to loss of eIF4G1; genes that encode messages with longer poly(A) tails are preferentially affected. However, eIF4G1-deletion strains contain significantly lower levels of total eIF4G, relative to eIF4G2-delete or wild type strains. Homogenic strains, which encode two copies of either eIF4G1 or eIF4G2 under native promoter control, express a single isoform at levels similar to the total amount of eIF4G in a wild type cell and have a similar capacity to support normal translation initiation rates. Polysome microarray analysis of these strains and the wild type parent showed that translationally active mRNAs are similar. These results suggest that total eIF4G levels, but not isoform-specific functions, determine mRNA-specific translational efficiency.

  3. Vitamin E isoforms as modulators of lung inflammation.

    PubMed

    Abdala-Valencia, Hiam; Berdnikovs, Sergejs; Cook-Mills, Joan M

    2013-10-31

    Asthma and allergic diseases are complex conditions caused by a combination of genetic and environmental factors. Clinical studies suggest a number of protective dietary factors for asthma, including vitamin E. However, studies of vitamin E in allergy commonly result in seemingly conflicting outcomes. Recent work indicates that allergic inflammation is inhibited by supplementation with the purified natural vitamin E isoform α-tocopherol but elevated by the isoform γ-tocopherol when administered at physiological tissue concentrations. In this review, we discuss opposing regulatory effects of α-tocopherol and γ-tocopherol on allergic lung inflammation in clinical trials and in animal studies. A better understanding of the differential regulation of inflammation by isoforms of vitamin E provides a basis towards the design of clinical studies and diets that would effectively modulate inflammatory pathways in lung disease.

  4. Actin isoform specificity is required for the maintenance of lactation

    PubMed Central

    Weymouth, Nate; Shi, Zengdun; Rockey, Don C.

    2014-01-01

    Smooth muscle α-actin (Acta2) is one of six highly conserved mammalian actin isoforms that appear to exhibit functional redundancy. Nonetheless, we have postulated a specific functional role for the smooth muscle specific isoform. Here, we show that Acta2 deficient mice have a remarkable mammary phenotype such that dams lacking Acta2 are unable to nurse their offspring effectively. The phenotype was rescued in cross fostering experiments with wild type mice, excluding a developmental defect in Acta2 null pups. The mechanism for the underlying phenotype is due to myoepithelial dysfunction postpartum resulting in precocious involution. Further, we demonstrate a specific defect in myoepithelial cell contractility in Acta2 null mammary glands, despite normal expression of cytoplasmic actins. We conclude that Acta2 specifically mediates myoepithelial cell contraction during lactation and that this actin isoform therefore exhibits functional specificity. PMID:22123032

  5. Laminin isoforms in endothelial and perivascular basement membranes.

    PubMed

    Yousif, Lema F; Di Russo, Jacopo; Sorokin, Lydia

    2013-01-01

    Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis.

  6. Oxygenation properties and isoform diversity of snake hemoglobins

    PubMed Central

    Natarajan, Chandrasekhar; Moriyama, Hideaki; Hoffmann, Federico G.; Wang, Tobias; Fago, Angela; Malte, Hans; Overgaard, Johannes; Weber, Roy E.

    2015-01-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform. PMID:26354849

  7. Oxygenation properties and isoform diversity of snake hemoglobins.

    PubMed

    Storz, Jay F; Natarajan, Chandrasekhar; Moriyama, Hideaki; Hoffmann, Federico G; Wang, Tobias; Fago, Angela; Malte, Hans; Overgaard, Johannes; Weber, Roy E

    2015-11-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform.

  8. Modulation of neuronal differentiation by CD40 isoforms

    SciTech Connect

    Hou Huayu; Obregon, Demian; Lou, Deyan; Ehrhart, Jared; Fernandez, Frank; Silver, Archie; Tan Jun

    2008-05-02

    Neuron differentiation is a complex process involving various cell-cell interactions, and multiple signaling pathways. We showed previously that CD40 is expressed and functional on mouse and human neurons. In neurons, ligation of CD40 protects against serum withdrawal-induced injury and plays a role in survival and differentiation. CD40 deficient mice display neuron dysfunction, aberrant neuron morphologic changes, and associated gross brain abnormalities. Previous studies by Tone and colleagues suggested that five isoforms of CD40 exist with two predominant isoforms expressed in humans: signal-transducible CD40 type I and a C-terminal truncated, non-signal-transducible CD40 type II. We hypothesized that differential expression of CD40 isoform type I and type II in neurons may modulate neuron differentiation. Results show that adult wild-type, and CD40{sup -/-} deficient mice predominantly express CD40 type I and II isoforms. Whereas adult wild-type mice express mostly CD40 type I in cerebral tissues at relatively high levels, in age and gender-matched CD40{sup -/-} mice CD40 type I expression was almost completely absent; suggesting a predominance of the non-signal-transducible CD40 type II isoform. Younger, 1 day old wild-type mice displayed less CD40 type I, and more CD40 type II, as well as, greater expression of soluble CD40 (CD40L/CD40 signal inhibitor), compared with 1 month old mice. Neuron-like N2a cells express CD40 type I and type II isoforms while in an undifferentiated state, however once induced to differentiate, CD40 type I predominates. Further, differentiated N2a cells treated with CD40 ligand express high levels of neuron specific nuclear protein (NeuN); an effect reduced by anti-CD40 type I siRNA, but not by control (non-targeting) siRNA. Altogether these data suggest that CD40 isoforms may act in a temporal fashion to modulate neuron differentiation during brain development. Thus, modulation of neuronal CD40 isoforms and CD40 signaling may

  9. ROCK in CNS: Different Roles of Isoforms and Therapeutic Target for Neurodegenerative Disorders.

    PubMed

    Chong, Cheong-Meng; Ai, Nana; Lee, Simon Ming-Yuen

    2017-01-01

    Rho-associated protein kinase (ROCK) is a serine-threonine kinase originally identified as a crucial regulator of actin cytoskeleton. Recent studies have defined new functions of ROCK as a critical component of diverse signaling pathways in neurons. In addition, inhibition of ROCK causes several biological events such as increase of neurite outgrowth, axonal regeneration, and activation of prosurvival Akt. Thus, it has attracted scientist's strong attentions and considered ROCK as a promising therapeutic target for the treatment of neurodegenerative disorders including Alzheimer disease, Parkinson's disease, Huntington';s disease, multiple sclerosis, and amyotrophic lateral sclerosis. However, ROCK has two highly homologous isoforms, ROCK1 and ROCK2. Accumulated evidences indicate that ROCK1 and ROCK2 might involve in distinct cellular functions in central nervous system (CNS) and neurodegenerative processes. This review summarizes recent updates regarding ROCK isoformspecific functions in CNS and the progress of ROCK inhibitors in preclinical studies for neurodegenerative diseases.

  10. Regioselective Glucuronidation of Flavonols by Six Human UGT1A Isoforms

    PubMed Central

    Wu, Baojian; Hu, Ming

    2012-01-01

    Purpose Flavonols, a class of polyphenols, show a variety of biological activities such as antioxidant and anticancer. However, rapid in vivo O-glucuronidation posed a challenge to develop them as therapeutic agents. The objective of this paper is to determine the regioselective glucuronidation of flavonols by UGT1A isoforms (i.e., UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9 and UGT1A10). Methods The kinetics of UGT1A1-, 1A3- and 1A7~1A10-mediated metabolisms of four flavonols that contain 7-OH group were characterized and kinetic parameters (Km, Vmax and intrinsic clearance (CLint=Vmax/Km)) were determined. Results UGT1A1 and 1A3 regioselectively metabolized 7-OH, whereas UGT1A7~1A10 preferred to glucuronidate 3-OH group. UGT1A1 and UGT1A9 were the most efficient conjugating enzymes with Km of ≤1 µM and Vmax/Km of >3 ml/min/mg protein, resulting in a CLint value as high as 6 ml/min/mg protein. Additionally, the four flavonols generally strongly self-inhibited the UGT1A1-mediated glucuronidation, with Ks (substrate inhibition constant) of ≤ 5.4 µM. Conclusion UGT1A isoforms displayed distinct positional preferences between 3-OH and 7-OH in the glucuronidation of flavonols. The differentiated kinetics properties between 3-O- and 7-O- glucuronidation indicated that at least two distinct binding modes within the catalytic domain were responsible for the formation of these two glucuronide isomers. PMID:21472492

  11. Molecular cloning and expression analysis of PDK family genes in Xenopus laevis reveal oocyte-specific PDK isoform.

    PubMed

    Terazawa, Yumiko; Tokmakov, Alexander A; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2005-12-30

    Pyruvate dehydrogenase kinase (PDK) inactivates the multienzyme mitochondrial pyruvate dehydrogenase complex by the phosphorylation of three seryl residues in the pyruvate dehydrogenase moiety, and thus plays an important role in the control of glucose homeostasis. Genetically and biochemically distinct PDK family isozymes have been identified in mammalian species. In the present study, we demonstrate that the complete family of expressed PDK family genes in the tissues of the African clawed frog, Xenopus laevis, consists of four members, which are divided into two evolutionary groups. Xenopus PDKs (xPDKs) share an overall homology of about 70% to the human isoforms of PDK. The abundance of mRNAs for the four xPDK isoforms was analyzed by the real-time reverse transcriptase PCR technique in the various tissues of Xenopus laevis, including heart, lung, spleen, liver, kidney, skin, testis, oocytes, and eggs. Our data suggest that one of the xPDK isozymes can be referred to as an oocyte-specific xPDK. Functional differences between the xPDK isoforms are discussed, based on their different tissue-specific distributions and phylogenetic similarities to human PDKs.

  12. Differential roles of HIC-5 isoforms in the regulation of cell death and myotube formation during myogenesis

    SciTech Connect

    Gao Zhengliang; Deblis, Ryan; Glenn, Honor; Schwartz, Lawrence M.

    2007-11-15

    Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C{sub 2}C{sub 12} myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5{alpha} and Hic-5{beta}, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results in a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5{alpha} is permissive to differentiation while expression of either Hic-5{beta} or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C{sub 2}C{sub 12} myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.

  13. Actin stress fiber disruption and tropomysin isoform switching in normal thyroid epithelial cells stimulated by thyrotropin and phorbol esters

    SciTech Connect

    Roger, P.P.; Rickaert, F.; Lamy, F.; Authelet, M.; Dumont, J.E. )

    1989-05-01

    Thyrotropin (TSH), through cyclic AMP, promotes both proliferation and differentiation expression in dog thyroid epithelial cells in primary culture, whereas the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) also stimulates proliferation but antagonizes differentiating effects of TSH. In this study, within 20 min both factors triggered the disruption of actin-containing stress fibers. This process preceded distinct morphological changes: cytoplasmic retraction and arborization in response to TSH and cyclic AMP, cell shape distortion, and increased motility in response to TPA and diacylglycerol. TSH and TPA also induced a marked decrease in the synthesis of three high M{sub r} tropomyosin isoforms, which were not present in dog thyroid tissue but appeared in culture during cell spreading and stress fiber formation. The tropomyosin isoform switching observed here closely resembled similar processes in various cells transformed by oncogenic viruses. However, it did not correlate with differentiation or mitogenic activation. Contrasting with current hypothesis on this process in transformed cells, tropomyosin isoform switching in normal thyroid cells was preceded and thus might be caused by early disruption of stress fibers.

  14. Diversified expression of NG2/CSPG4 isoforms in glioblastoma and human foetal brain identifies pericyte subsets.

    PubMed

    Girolamo, Francesco; Dallatomasina, Alice; Rizzi, Marco; Errede, Mariella; Wälchli, Thomas; Mucignat, Maria Teresa; Frei, Karl; Roncali, Luisa; Perris, Roberto; Virgintino, Daniela

    2013-01-01

    NG2/CSPG4 is a complex surface-associated proteoglycan (PG) recognized to be a widely expressed membrane component of glioblastoma (WHO grade IV) cells and angiogenic pericytes. To determine the precise expression pattern of NG2/CSPG4 on glioblastoma cells and pericytes, we generated a panel of >60 mouse monoclonal antibodies (mAbs) directed against the ectodomain of human NG2/CSPG4, partially characterized the mAbs, and performed a high-resolution distributional mapping of the PG in human foetal, adult and glioblastoma-affected brains. The reactivity pattern initially observed on reference tumour cell lines indicated that the mAbs recognized 48 immunologically distinct NG2/CSPG4 isoforms, and a total of 14 mAbs was found to identify NG2/CSPG4 isoforms in foetal and neoplastic cerebral sections. These were consistently absent in the adult brain, but exhibited a complementary expression pattern in angiogenic vessels of both tumour and foetal tissues. Considering the extreme pleomorphism of tumour areas, and with the aim of subsequently analysing the distributional pattern of the NG2/CSPG4 isoforms on similar histological vessel typologies, a preliminary study was carried out with endothelial cell and pericyte markers, and with selected vascular basement membrane (VBM) components. On both tumour areas characterized by 'glomeruloid' and 'garland vessels', which showed a remarkably similar cellular and molecular organization, and on developing brain vessels, spatially separated, phenotypically diversified pericyte subsets with a polarized expression of key surface components, including NG2/CSPG4, were disclosed. Interestingly, the majority of the immunolocalized NG2/CSPG4 isoforms present in glioblastoma tissue were present in foetal brain, except for one isoform that seemed to be exclusive of tumour cells, being absent in foetal brain. The results highlight an unprecedented, complex pattern of NG2/CSPG4 isoform expression in foetal and neoplastic CNS, discriminating

  15. Murine Sirt3 protein isoforms have variable half-lives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sirt3 is a NAD+-dependent protein deacetylase mainly localized in mitochondria. Recent studies indicate that the murine Sirt3 gene expresses different transcript variants resulting in three possible Sirt3 protein isoforms with variable lengths at the N-terminus: M1 (aa 1-334), M2 (aa 15-334), and M3...

  16. Actin and myosin isoforms in aneural and malformed chick hearts.

    PubMed

    Kirby, M L; Shimizu, N; Gagnon, J; Toyofuku, T; Kennedy, J; Conrad, D C; Zak, R

    1990-09-01

    Although it is generally accepted that actin and myosin isoforms adapt to their functional requirements, the sequence of expression of these proteins in hearts developing abnormally is unknown. In the chick embryo it is possible to change various aspects of heart development without direct manipulation of the cardiovascular system, by removing various regions of the neural crest from early embryos. The neural crest provides both neural (sympathetic and parasympathetic) and ectomesenchymal components to the heart, and selective removal of various areas results in embryos with sympathetically aneural hearts, or persistent truncus arteriosus with or without parasympathetic denervation. Myosin isoform expression was studied in each of these types of hearts using an array of myosin antibodies specific for atrium, ventricle or the conduction system. Myosin expression in experimental hearts was found to follow the normal pattern of development using these antibodies. Actin expression was studied using cDNA probes for the 3' untranslated region of actin mRNA of the alpha-skeletal, alpha-cardiac and beta-actin isoforms. Using slot-blot hybridization analysis, the pattern of actin expression in atrium and ventricle was followed throughout the period of incubation in normal hearts. The pattern of actin expression was found to be abnormal in hearts which were sympathetically aneural and those which had persistent truncus arteriosus combined with parasympathetic denervation. ATPase activity was increased only in atria of hearts with persistent truncus arteriosus. It appears from these experiments that actin isoform expression is influenced in the chick heart by autonomic innervation.

  17. Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus.

    PubMed

    Watthanasurorot, Apiruck; Jiravanichpaisal, Pikul; Liu, Haipeng; Söderhäll, Irene; Söderhäll, Kenneth

    2011-06-01

    The Down syndrome cell adhesion molecule, also known as Dscam, is a member of the immunoglobulin super family. Dscam plays an essential function in neuronal wiring and appears to be involved in innate immune reactions in insects. The deduced amino acid sequence of Dscam in the crustacean Pacifastacus leniusculus (PlDscam), encodes 9(Ig)-4(FNIII)-(Ig)-2(FNIII)-TM and it has variable regions in the N-terminal half of Ig2 and Ig3 and the complete Ig7 and in the transmembrane domain. The cytoplasmic tail can generate multiple isoforms. PlDscam can generate more than 22,000 different unique isoforms. Bacteria and LPS injection enhanced the expression of PlDscam, but no response in expression occurred after a white spot syndrome virus (WSSV) infection or injection with peptidoglycans. Furthermore, PlDscam silencing did not have any effect on the replication of the WSSV. Bacterial specific isoforms of PlDscam were shown to have a specific binding property to each tested bacteria, E. coli or S. aureus. The bacteria specific isoforms of PlDscam were shown to be associated with bacterial clearance and phagocytosis in crayfish.

  18. Characterization of a novel periodontal ligament-specific periostin isoform.

    PubMed

    Yamada, S; Tauchi, T; Awata, T; Maeda, K; Kajikawa, T; Yanagita, M; Murakami, S

    2014-09-01

    Periostin is a mesenchymal cell marker predominantly expressed in collagen-rich fibrous connective tissues, including heart valves, tendons, perichondrium, periosteum, and periodontal ligament (PDL). Knockdown of periostin expression in mice results in early-onset periodontitis and failure of cardiac healing after acute myocardial infarction, suggesting that periostin is essential for connective tissue homeostasis and regeneration. However, its role(s) in periodontal tissues has not yet been fully defined. In this study, we describe a novel human isoform of periostin (PDL-POSTN). Isoform-specific analysis by reverse-transcription polymerase chain-reaction (RT-PCR) revealed that PDL-POSTN was predominantly expressed in the PDL, with much lower expression in other tissues and organs. A PDL cell line transfected with PDL-POSTN showed enhanced alkaline phosphatase (ALPase) activity and calcified nodule formation, compared with cells transfected with the full-length periostin isoform. A neutralizing antibody against integrin-αv inhibited both ALPase activity and calcified nodule formation in cells transfected with PDL-POSTN. Furthermore, co-immunoprecipitation assays revealed that PDL-POSTN bound to integrin αvβ3 more strongly than the common isoform of periostin, resulting in strong activation of the integrin αvβ3-focal adhesion kinase (FAK) signaling pathway. These results suggest that PDL-POSTN positively regulates cytodifferentiation and mineralization in PDL cells through integrin αvβ3.

  19. Role of p53 isoforms and aggregations in cancer

    PubMed Central

    Kim, SeJin; An, Seong Soo A.

    2016-01-01

    Abstract p53 is a master regulatory protein that is involved in diverse cellular metabolic processes such as apoptosis, DNA repair, and cell cycle arrest. The protective function of p53 (in its homotetrameric form) as a tumor suppressor is lost in more than 50% of human cancers. Despite considerable experimental evidence suggesting the presence of multiple p53 states, it has been difficult to correlate the status of p53 with cancer response to treatments and clinical outcomes, which suggest the importance of complex but essential p53 regulatory pathways. Recent studies have indicated that the expression pattern of p53 isoforms may play a crucial role in regulating normal and cancer cell fates in response to diverse stresses. The human TP53 gene encodes at least 12 p53 isoforms, which are produced in normal tissue through alternative initiation of translation, usage of alternative promoters, and alternative splicing. Furthermore, some researchers have suggested that the formation of mutant p53 aggregates may be associated with cancer pathogenesis due to loss-of function (LoF), dominant-negative (DN), and gain-of function (GoF) effects. As different isoforms or the aggregation state of p53 may influence tumorigenesis, this review aims to examine the correlation of p53 isoforms and aggregation with cancer. PMID:27368003

  20. APPRIS: annotation of principal and alternative splice isoforms.

    PubMed

    Rodriguez, Jose Manuel; Maietta, Paolo; Ezkurdia, Iakes; Pietrelli, Alessandro; Wesselink, Jan-Jaap; Lopez, Gonzalo; Valencia, Alfonso; Tress, Michael L

    2013-01-01

    Here, we present APPRIS (http://appris.bioinfo.cnio.es), a database that houses annotations of human splice isoforms. APPRIS has been designed to provide value to manual annotations of the human genome by adding reliable protein structural and functional data and information from cross-species conservation. The visual representation of the annotations provided by APPRIS for each gene allows annotators and researchers alike to easily identify functional changes brought about by splicing events. In addition to collecting, integrating and analyzing reliable predictions of the effect of splicing events, APPRIS also selects a single reference sequence for each gene, here termed the principal isoform, based on the annotations of structure, function and conservation for each transcript. APPRIS identifies a principal isoform for 85% of the protein-coding genes in the GENCODE 7 release for ENSEMBL. Analysis of the APPRIS data shows that at least 70% of the alternative (non-principal) variants would lose important functional or structural information relative to the principal isoform.

  1. Cell, isoform, and environment factors shape gradients and modulate chemotaxis.

    PubMed

    Chang, S Laura; Cavnar, Stephen P; Takayama, Shuichi; Luker, Gary D; Linderman, Jennifer J

    2015-01-01

    Chemokine gradient formation requires multiple processes that include ligand secretion and diffusion, receptor binding and internalization, and immobilization of ligand to surfaces. To understand how these events dynamically shape gradients and influence ensuing cell chemotaxis, we built a multi-scale hybrid agent-based model linking gradient formation, cell responses, and receptor-level information. The CXCL12/CXCR4/CXCR7 signaling axis is highly implicated in metastasis of many cancers. We model CXCL12 gradient formation as it is impacted by CXCR4 and CXCR7, with particular focus on the three most highly expressed isoforms of CXCL12. We trained and validated our model using data from an in vitro microfluidic source-sink device. Our simulations demonstrate how isoform differences on the molecular level affect gradient formation and cell responses. We determine that ligand properties specific to CXCL12 isoforms (binding to the migration surface and to CXCR4) significantly impact migration and explain differences in in vitro chemotaxis data. We extend our model to analyze CXCL12 gradient formation in a tumor environment and find that short distance, steep gradients characteristic of the CXCL12-γ isoform are effective at driving chemotaxis. We highlight the importance of CXCL12-γ in cancer cell migration: its high effective affinity for both extracellular surface sites and CXCR4 strongly promote CXCR4+ cell migration. CXCL12-γ is also more difficult to inhibit, and we predict that co-inhibition of CXCR4 and CXCR7 is necessary to effectively hinder CXCL12-γ-induced migration. These findings support the growing importance of understanding differences in protein isoforms, and in particular their implications for cancer treatment.

  2. Isoforms of cAMP-dependent protein kinase in the bivalve mollusk Mytilus galloprovincialis: activation by cyclic nucleotides and effect of temperature.

    PubMed

    Bardales, José R; Díaz-Enrich, María J; Ibarguren, Izaskun; Villamarín, J Antonio

    2004-12-01

    Two different isoforms of cAMP-dependent protein kinase (PKA) have been partially purified from the posterior adductor muscle and the mantle tissue of the sea mussel Mytilus galloprovincialis. The holoenzymes contain as regulatory subunit (R) the previously identified isoforms Rmyt1 and Rmyt2, and were named PKAmyt1 and PKAmyt2, respectively. Both cAMP and cGMP can activate these PKA isoforms completely, although they exhibit a sensitivity approximately 100-fold higher for cAMP than for cGMP. When compared to PKAmyt2, the affinity of PKAmyt1 for cAMP and cGMP is 2- and 3.5-fold higher, respectively. The effect of temperature on the protein kinase activity of both PKA isoforms was examined. Temperature changes did not affect significantly the apparent activation constants (Ka) for cAMP. However, the protein kinase activity was clearly modified and a remarkable difference was observed between both PKA isoforms. PKAmyt1 showed a linear Arrhenius plot over the full range of temperature tested, with an activation energy of 15.3+/-1.5 kJ/mol. By contrast, PKAmyt2 showed a distinct break in the Arrhenius plot at 15 degrees C; the activation energy when temperature was above 15 degrees C was 7-fold higher than that of lower temperatures (70.9+/-8.1 kJ/mol vs 10.6+/-6.5 kJ/mol). These data indicate that, above 15 degrees C, PKAmyt2 activity is much more temperature-dependent than that of PKAmyt1. This different behavior would be related to the different role that these isoforms may play in the tissues where they are located.

  3. Overlapping Specificity of Duplicated Human Pancreatic Elastase 3 Isoforms and Archetypal Porcine Elastase 1 Provides Clues to Evolution of Digestive Enzymes.

    PubMed

    Boros, Eszter; Szabó, András; Zboray, Katalin; Héja, Dávid; Pál, Gábor; Sahin-Tóth, Miklós

    2017-02-17

    Chymotrypsin-like elastases (CELAs) are pancreatic serine proteinases that digest dietary proteins. CELAs are typically expressed in multiple isoforms that can vary among different species. The human pancreas does not express CELA1 but secretes two CELA3 isoforms, CELA3A and CELA3B. The reasons for the CELA3 duplication and the substrate preferences of the duplicated isoforms are unclear. Here, we tested whether CELA3A and CELA3B evolved unique substrate specificities to compensate for the loss of CELA1. We constructed a phage library displaying variants of the substrate-like Schistocerca gregaria proteinase inhibitor 2 (SGPI-2) to select reversible high affinity inhibitors of human CELA3A, CELA3B, and porcine CELA1. Based on the reactive loop sequences of the phage display-selected inhibitors, we recombinantly expressed and purified 12 SGPI-2 variants and determined their binding affinities. We found that the primary specificity of CELA3A, CELA3B, and CELA1 was similar; all preferred aliphatic side chains at the so-called P1 position, the amino acid residue located directly N-terminal to the scissile peptide bond. P1 Met was an interesting exception that was preferred by CELA1 but weakly recognized by the CELA3 isoforms. The extended substrate specificity of CELA3A and CELA3B was comparable, whereas CELA1 exhibited unique interactions at several subsites. These observations indicated that the CELA1 and CELA3 paralogs have some different but also overlapping specificities and that the duplicated CELA3A and CELA3B isoforms did not evolve distinct substrate preferences. Thus, increased gene dosage rather than specificity divergence of the CELA3 isoforms may compensate for the loss of CELA1 digestive activity in the human pancreas.

  4. Analysis of a lin-42/period Null Allele Implicates All Three Isoforms in Regulation of Caenorhabditis elegans Molting and Developmental Timing

    PubMed Central

    Edelman, Theresa L. B.; McCulloch, Katherine A.; Barr, Angela; Frøkjær-Jensen, Christian; Jorgensen, Erik M.; Rougvie, Ann E.

    2016-01-01

    The Caenorhabditis elegans heterochronic gene pathway regulates the relative timing of events during postembryonic development. lin-42, the worm homolog of the circadian clock gene, period, is a critical element of this pathway. lin-42 function has been defined by a set of hypomorphic alleles that cause precocious phenotypes, in which later developmental events, such as the terminal differentiation of hypodermal cells, occur too early. A subset of alleles also reveals a significant role for lin-42 in molting; larval stages are lengthened and ecdysis often fails in these mutant animals. lin-42 is a complex locus, encoding overlapping and nonoverlapping isoforms. Although existing alleles that affect subsets of isoforms have illuminated important and distinct roles for this gene in developmental timing, molting, and the decision to enter the alternative dauer state, it is essential to have a null allele to understand all of the roles of lin-42 and its individual isoforms. To remedy this problem and discover the null phenotype, we engineered an allele that deletes the entire lin-42 protein-coding region. lin-42 null mutants are homozygously viable, but have more severe phenotypes than observed in previously characterized hypomorphic alleles. We also provide additional evidence for this conclusion by using the null allele as a base for reintroducing different isoforms, showing that each isoform can provide heterochronic and molting pathway activities. Transcript levels of the nonoverlapping isoforms appear to be under coordinate temporal regulation, despite being driven by independent promoters. The lin-42 null allele will continue to be an important tool for dissecting the functions of lin-42 in molting and developmental timing. PMID:27729432

  5. Mining expression and prognosis of topoisomerase isoforms in non-small-cell lung cancer by using Oncomine and Kaplan–Meier plotter

    PubMed Central

    Hou, Guo-Xin; Liu, Panpan; Yang, Jing; Wen, Shijun

    2017-01-01

    DNA topoisomerases are essential to modulate DNA topology during various cellular genetic processes. The expression and distinct prognostic value of topoisomerase isoforms in non-small-cell lung cancer (NSCLC) is not well established. In the current study, we have examined the mRNA expression of topoisomerase isoforms by using Oncomine analysis and investigated their prognostic value via the Kaplan–Meier plotter database in NSCLC patients. Our analysis indicated that the expression level of topoisomerases in lung cancer was higher compared with normal tissues. Especially, high expression of two topoisomerase isoforms, TOP2A and TOP3A, was found to be correlated to worse overall survival (OS) in all NSCLC and lung adenocarcinoma (Ade) patients, but not in lung squamous cell carcinoma (SCC) patients. In a contrast, high expression of isoforms TOP1 and TOP2B indicated better OS in all NSCLC and Ade, but not in SCC patients. Meanwhile, high expression of TOP1MT and TOP3B was not correlated with OS in NSCLC patients. Furthermore, we also demonstrated a relationship between topoisomerase isoforms and the clinicopathological features for the NSCLC patients, such as grades, clinical stages, lymph node status, smoking status, gender, chemotherapy and radiotherapy. These results support that TOP2A and TOP3A are associated with worse prognosis in NSCLC patients. In addition, our study also shows that TOP1 and TOP2B contribute to favorable prognosis in NSCLC patients. The exact prognostic significance of TOP1MT and TOP3B need to be further elucidated. Comprehensive evaluation of expression and prognosis of topoisomerase isoforms will be a benefit for the better understanding of heterogeneity and complexity in the molecular biology of NSCLC, paving a way for more accurate prediction of prognosis and discovery of potential drug targets for NSCLC patients. PMID:28355294

  6. Analysis of a lin-42/period Null Allele Implicates All Three Isoforms in Regulation of Caenorhabditis elegans Molting and Developmental Timing.

    PubMed

    Edelman, Theresa L B; McCulloch, Katherine A; Barr, Angela; Frøkjær-Jensen, Christian; Jorgensen, Erik M; Rougvie, Ann E

    2016-12-07

    The Caenorhabditis elegans heterochronic gene pathway regulates the relative timing of events during postembryonic development. lin-42, the worm homolog of the circadian clock gene, period, is a critical element of this pathway. lin-42 function has been defined by a set of hypomorphic alleles that cause precocious phenotypes, in which later developmental events, such as the terminal differentiation of hypodermal cells, occur too early. A subset of alleles also reveals a significant role for lin-42 in molting; larval stages are lengthened and ecdysis often fails in these mutant animals. lin-42 is a complex locus, encoding overlapping and nonoverlapping isoforms. Although existing alleles that affect subsets of isoforms have illuminated important and distinct roles for this gene in developmental timing, molting, and the decision to enter the alternative dauer state, it is essential to have a null allele to understand all of the roles of lin-42 and its individual isoforms. To remedy this problem and discover the null phenotype, we engineered an allele that deletes the entire lin-42 protein-coding region. lin-42 null mutants are homozygously viable, but have more severe phenotypes than observed in previously characterized hypomorphic alleles. We also provide additional evidence for this conclusion by using the null allele as a base for reintroducing different isoforms, showing that each isoform can provide heterochronic and molting pathway activities. Transcript levels of the nonoverlapping isoforms appear to be under coordinate temporal regulation, despite being driven by independent promoters. The lin-42 null allele will continue to be an important tool for dissecting the functions of lin-42 in molting and developmental timing.

  7. Isoform-specific Binding of Selenoprotein P to the β-Propeller Domain of Apolipoprotein E Receptor 2 Mediates Selenium Supply*

    PubMed Central

    Kurokawa, Suguru; Bellinger, Frederick P.; Hill, Kristina E.; Burk, Raymond F.; Berry, Marla J.

    2014-01-01

    Sepp1 supplies selenium to tissues via receptor-mediated endocytosis. Mice, rats, and humans have 10 selenocysteines in Sepp1, which are incorporated via recoding of the stop codon, UGA. Four isoforms of rat Sepp1 have been identified, including full-length Sepp1 and three others, which terminate at the second, third, and seventh UGA codons. Previous studies have shown that the longer Sepp1 isoforms bind to the low density lipoprotein receptor apoER2, but the mechanism remains unclear. To identify the essential residues for apoER2 binding, an in vitro Sepp1 binding assay was developed using different Sec to Cys substituted variants of Sepp1 produced in HEK293T cells. ApoER2 was found to bind the two longest isoforms. These results suggest that Sepp1 isoforms with six or more selenocysteines are taken up by apoER2. Furthermore, the C-terminal domain of Sepp1 alone can bind to apoER2. These results indicate that apoER2 binds to the Sepp1 C-terminal domain and does not require the heparin-binding site, which is located in the N-terminal domain. Site-directed mutagenesis identified three residues of Sepp1 that are necessary for apoER2 binding. Sequential deletion of extracellular domains of apoER2 surprisingly identified the YWTD β-propeller domain as the Sepp1 binding site. Finally, we show that apoER2 missing the ligand-binding repeat region, which can result from cleavage at a furin cleavage site present in some apoER2 isoforms, can act as a receptor for Sepp1. Thus, longer isoforms of Sepp1 with high selenium content interact with a binding site distinct from the ligand-binding domain of apoER2 for selenium delivery. PMID:24532792

  8. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle.

    PubMed

    Winter, Lilli; Kuznetsov, Andrey V; Grimm, Michael; Zeöld, Anikó; Fischer, Irmgard; Wiche, Gerhard

    2015-08-15

    Plectin, a versatile 500-kDa cytolinker protein, is essential for muscle fiber integrity and function. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Besides displaying pathological desmin-positive protein aggregates and degenerative changes in the myofibrillar apparatus, skeletal muscle specimens of EBS-MD patients and plectin-deficient mice are characterized by massive mitochondrial alterations. In this study, we demonstrate that structural and functional alterations of mitochondria are a primary aftermath of plectin deficiency in muscle, contributing to myofiber degeneration. We found that in skeletal muscle of conditional plectin knockout mice (MCK-Cre/cKO), mitochondrial content was reduced, and mitochondria were aggregated in sarcoplasmic and subsarcolemmal regions and were no longer associated with Z-disks. Additionally, decreased mitochondrial citrate synthase activity, respiratory function and altered adenosine diphosphate kinetics were characteristic of plectin-deficient muscles. To analyze a mechanistic link between plectin deficiency and mitochondrial alterations, we comparatively assessed mitochondrial morphology and function in whole muscle and teased muscle fibers of wild-type, MCK-Cre/cKO and plectin isoform-specific knockout mice that were lacking just one isoform (either P1b or P1d) while expressing all others. Monitoring morphological alterations of mitochondria, an isoform P1b-specific phenotype affecting the mitochondrial fusion-fission machinery and manifesting with upregulated mitochondrial fusion-associated protein mitofusin-2 could be identified. Our results show that the depletion of distinct plectin isoforms affects mitochondrial network organization and function in different ways.

  9. Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms.

    PubMed

    Neumann, Daniel; Bückers, Johanna; Kastrup, Lars; Hell, Stefan W; Jakobs, Stefan

    2010-03-05

    The voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is the major transport channel mediating the transport of metabolites, including ATP, across the mitochondrial outer membrane. Biochemical data demonstrate the binding of the cytosolic protein hexokinase-I to VDAC, facilitating the direct access of hexokinase-I to the transported ATP. In human cells, three hVDAC isoforms have been identified. However, little is known on the distribution of these isoforms within the outer membrane of mitochondria and to what extent they colocalize with hexokinase-I. In this study we show that whereas hVDAC1 and hVDAC2 are localized predominantly within the same distinct domains in the outer membrane, hVDAC3 is mostly uniformly distributed over the surface of the mitochondrion. We used two-color stimulated emission depletion (STED) microscopy enabling a lateral resolution of ~40 nm to determine the detailed sub-mitochondrial distribution of the three hVDAC isoforms and hexokinase-I. Individual hVDAC and hexokinase-I clusters could thus be resolved which were concealed in the confocal images. Quantitative colocalization analysis of two-color STED images demonstrates that within the attained resolution, hexokinase-I and hVDAC3 exhibit a higher degree of colocalization than hexokinase-I with either hVDAC1 or hVDAC2. Furthermore, a substantial fraction of the mitochondria-bound hexokinase-I pool does not colocalize with any of the three hVDAC isoforms, suggesting a more complex interplay of these proteins than previously anticipated. This study demonstrates that two-color STED microscopy in conjunction with quantitative colocalization analysis is a powerful tool to study the complex distribution of membrane proteins in organelles such as mitochondria.PACS: 87.16.Tb, 87.85.Rs.

  10. Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity.

    PubMed

    Vinciguerra, Manlio; Santini, Maria Paola; Claycomb, William C; Ladurner, Andreas G; Rosenthal, Nadia

    2009-12-10

    Oxidative and hypertrophic stresses contribute to the pathogenesis of heart failure. Insulin-like growth factor-1 (IGF-1) is a peptide hormone with a complex post-transcriptional regulation, generating distinct isoforms. Locally acting IGF-1 isoform (mIGF-1) helps the heart to recover from toxic injury and from infarct. In the murine heart, moderate overexpression of the NAD(+)-dependent deacetylase SirT1 was reported to mitigate oxidative stress. SirT1 is known to promote lifespan extension and to protect from metabolic challenges. Circulating IGF-1 and SirT1 play antagonizing biological roles and share molecular targets in the heart, in turn affecting cardiomyocyte physiology. However, how different IGF-1 isoforms may impact SirT1 and affect cardiomyocyte function is unknown. Here we show that locally acting mIGF-1 increases SirT1 expression/activity, whereas circulating IGF-1 isoform does not affect it, in cultured HL-1 and neonatal cardiomyocytes. mIGF-1-induced SirT1 activity exerts protection against angiotensin II (Ang II)-triggered hypertrophy and against paraquat (PQ) and Ang II-induced oxidative stress. Conversely, circulating IGF-1 triggered itself oxidative stress and cardiomyocyte hypertrophy. Interestingly, potent cardio-protective genes (adiponectin, UCP-1 and MT-2) were increased specifically in mIGF-1-overexpressing cardiomyocytes, in a SirT1-dependent fashion. Thus, mIGF-1 protects cardiomyocytes from oxidative and hypertrophic stresses via SirT1 activity, and may represent a promising cardiac therapeutic.

  11. Purification, crystallization and preliminary X-ray studies of two isoforms of Rubisco from Alcaligenes eutrophus.

    PubMed

    Hansen, S; Hough, E; Andersen, K

    1999-01-01

    Two different isoforms of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Alcaligenes eutrophus have been purified and crystallized. Both isoforms crystallize in space group P43212. Crystals of isoform I (unit-cell dimensions a = 112.0 and c = 402.7 A) diffract to 2.7 A, whereas isoform II (unit-cell dimensions a = 111.8 and c = 400.0 A) presently diffract to 3.2 A, using synchrotron radiation in both cases.

  12. Functional roles of the alpha isoforms of the Na,K-ATPase.

    PubMed

    Lingrel, Jerry; Moseley, Amy; Dostanic, Iva; Cougnon, Marc; He, Suiwen; James, Paul; Woo, Alison; O'Connor, Kyle; Neumann, Jonathan

    2003-04-01

    The Na,K-ATPase is composed of two subunits, alpha and beta, and each subunit consists of multiple isoforms. In the case of alpha, four isoforms, alpha1, alpha2, alpha3, and alpha4 are present in mammalian cells. The distribution of these isoforms is tissue- and developmental-specific, suggesting that they may play specific roles, either during development or coupled to specific physiological processes. In order to understand the functional properties of each of these isoforms, we are using gene targeting, where animals are produced lacking either one copy or both copies of the corresponding gene or have a modified gene. To date, we have produced animals lacking the alpha1 and alpha2 isoform genes. Animals lacking both copies of the alpha1 isoform gene are not viable, while animals lacking both copies of the alpha2 isoform gene make it to birth, but are either born dead or die very soon after. In the case of animals lacking one copy of the alpha1 or alpha2 isoform gene, the animals survive and appear healthy. Heart and EDL muscle from animals lacking one copy of the alpha2 isoform exhibit an increase in force of contraction, while there is reduced force of contraction in both muscles from animals lacking one copy of the alpha1 isoform gene. These studies indicate that the alpha1 and alpha2 isoforms carry out different physiological roles. The alpha2 isoform appears to be involved in regulating Ca(2+) transients involved in muscle contraction, while the alpha1 isoform probably plays a more generalized role. While we have not yet knocked out the alpha3 or alpha4 isoform genes, studies to date indicate that the alpha4 isoform is necessary to maintain sperm motility. It is thus possible that the alpha2, alpha3, and alpha4 isoforms are involved in specialized functions of various tissues, helping to explain their tissue- and developmental-specific regulation.

  13. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    SciTech Connect

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A.

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  14. Two distinct phosphorylation events govern the function of muscle FHOD3.

    PubMed

    Iskratsch, Thomas; Reijntjes, Susan; Dwyer, Joseph; Toselli, Paul; Dégano, Irene R; Dominguez, Isabel; Ehler, Elisabeth

    2013-03-01

    Posttranslational modifications such as phosphorylation are universally acknowledged regulators of protein function. Recently we characterised a striated muscle-specific isoform of the formin FHOD3 that displays distinct subcellular targeting and protein half-life compared to its non-muscle counterpart and which is dependent on phosphorylation by CK2 (formerly casein kinase 2). We now show that the two isoforms of FHOD3 are already expressed in the vertebrate embryonic heart. Analysis of CK2 alpha knockout mice showed that phosphorylation by CK2 is also required for proper targeting of muscle FHOD3 to the myofibrils in embryonic cardiomyocytes in situ. The localisation of muscle FHOD3 in the sarcomere varies depending on the maturation state, being either broader or restricted to the Z-disc proper in the adult heart. Following myofibril disassembly, such as that in dedifferentiating adult rat cardiomyocytes in culture, the expression of non-muscle FHOD3 is up-regulated, which is reversed once the myofibrils are reassembled. The shift in expression levels of different isoforms is accompanied by an increased co-localisation with p62, which is involved in autophagy, and affects the half-life of FHOD3. Phosphorylation of three amino acids in the C-terminus of FHOD3 by ROCK1 is sufficient for activation, which results in increased actin filament synthesis in cardiomyocytes and also a broader localisation pattern of FHOD3 in the myofibrils. ROCK1 can directly phosphorylate FHOD3, and FHOD3 seems to be the downstream mediator of the exaggerated actin filament formation phenotype that is induced in cardiomyocytes upon the overexpression of constitutively active ROCK1. We conclude that the expression of the muscle FHOD3 isoform is characteristic of the healthy mature heart and that two distinct phosphorylation events are crucial to regulate the activity of this isoform in thin filament assembly and maintenance.

  15. Glutaminases in slowly proliferating gastroenteropancreatic neuroendocrine neoplasms/tumors (GEP-NETs): Selective overexpression of mRNA coding for the KGA isoform.

    PubMed

    Szeliga, Monika; Ćwikła, Jarosław; Obara-Michlewska, Marta; Cichocki, Andrzej; Albrecht, Jan

    2016-02-01

    Glutamine (Gln) is a crucial metabolite in cancer cells of different origin, and the expression and activity of different isoforms of the Gln-degrading enzyme, glutaminase (GA), have variable implications for tumor growth and metabolism. Human glutaminases are encoded by two genes: the GLS gene encodes the kidney-type glutaminases, KGA and GAC, while the GLS2 gene encodes the liver-type glutaminases, GAB and LGA. Recent studies suggest that the GAC isoform and thus high GAC/KGA ratio, are characteristic of highly proliferating tumors, while GLS2 proteins have an inhibitory effect on tumor growth. Here we analyzed the expression levels of distinct GA transcripts in 7 gastroenteropancreatic neuroendocrine tumors (GEP-NETs) with low proliferation index and 7 non-neoplastic tissues. GEP-NETs overexpressed KGA, while GAC, which was the most abundant isoform, was not different from control. The expression of the GLS2 gene showed tendency towards elevation in GEP-NETs compared to control. Collectively, the expression pattern of GA isoforms conforms to the low proliferative capacity of GEP-NETs encompassed in this study.

  16. Functional impact of splice isoform diversity in individual cells

    PubMed Central

    Yap, Karen; Makeyev, Eugene V.

    2016-01-01

    Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a ‘splicing noise’, co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities. PMID:27528755

  17. Disulfide isoforms of recombinant glia maturation factor beta.

    PubMed

    Zaheer, A; Lim, R

    1990-09-14

    Recombinant human glia maturation factor beta (r-hGMF-beta) is a single-chain polypeptide (141 amino acid residues) containing three cysteines, at positions 7, 86 and 95. Nascent r-hGMF-beta exists in the reduced state and has no biological activity. The protein can be activated through oxidative refolding by incubation with a mixture of reduced and oxidized glutathione. Reverse-phase HPLC analysis of the refolded r-hGMF-beta shows the presence of four peaks, corresponding to the reduced form plus three newly generated intrachain disulfide-containing isoforms predicted from the number of cysteine residues. Only one isoform shows biological activity when tested for growth suppression on C6 glioma cells. We infer from the HPLC elution pattern that the active form contains the disulfide bridge Cys86-Cys95.

  18. AMPK beta subunits display isoform specific affinities for carbohydrates.

    PubMed

    Koay, Ann; Woodcroft, Ben; Petrie, Emma J; Yue, Helen; Emanuelle, Shane; Bieri, Michael; Bailey, Michael F; Hargreaves, Mark; Park, Jong-Tae; Park, Kwan-Hwa; Ralph, Stuart; Neumann, Dietbert; Stapleton, David; Gooley, Paul R

    2010-08-04

    AMP-activated protein kinase (AMPK) is a heterotrimer of catalytic (alpha) and regulatory (beta and gamma) subunits with at least two isoforms for each subunit. AMPK beta1 is widely expressed whilst AMPK beta2 is highly expressed in muscle and both beta isoforms contain a mid-molecule carbohydrate-binding module (beta-CBM). Here we show that beta2-CBM has evolved to contain a Thr insertion and increased affinity for glycogen mimetics with a preference for oligosaccharides containing a single alpha-1,6 branched residue. Deletion of Thr-101 reduces affinity for single alpha-1,6 branched oligosaccharides by 3-fold, while insertion of this residue into the equivalent position in the beta1-CBM sequence increases affinity by 3-fold, confirming the functional importance of this residue.

  19. Functional impact of splice isoform diversity in individual cells.

    PubMed

    Yap, Karen; Makeyev, Eugene V

    2016-08-15

    Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a 'splicing noise', co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities.

  20. Foundations of Distinctive Feature Theory.

    ERIC Educational Resources Information Center

    Baltaxe, Christiane A. M.

    This treatise on the theoretical and historical foundations of distinctive feature theory traces the evolution of the distinctive features concept in the context of related notions current in linguistic theory, discusses the evolution of individual distinctive features, and criticizes certain acoustic and perceptual correlates attributed to these…

  1. Regulation of NADPH Oxidase 5 by Protein Kinase C Isoforms

    PubMed Central

    Chen, Feng; Yu, Yanfang; Haigh, Steven; Johnson, John; Lucas, Rudolf; Stepp, David W.; Fulton, David J. R.

    2014-01-01

    NADPH oxidase5 (Nox5) is a novel Nox isoform which has recently been recognized as having important roles in the pathogenesis of coronary artery disease, acute myocardial infarction, fetal ventricular septal defect and cancer. The activity of Nox5 and production of reactive oxygen species is regulated by intracellular calcium levels and phosphorylation. However, the kinases that phosphorylate Nox5 remain poorly understood. Previous studies have shown that the phosphorylation of Nox5 is PKC dependent, but this contention was based on the use of pharmacological inhibitors and the isoforms of PKC involved remain unknown. Thus, the major goals of this study were to determine whether PKC can directly regulate Nox5 phosphorylation and activity, to identify which isoforms are involved in the process, and to understand the functional significance of this pathway in disease. We found that a relatively specific PKCα inhibitor, Ro-32-0432, dose-dependently inhibited PMA-induced superoxide production from Nox5. PMA-stimulated Nox5 activity was significantly reduced in cells with genetic silencing of PKCα and PKCε, enhanced by loss of PKCδ and the silencing of PKCθ expression was without effect. A constitutively active form of PKCα robustly increased basal and PMA-stimulated Nox5 activity and promoted the phosphorylation of Nox5 on Ser490, Thr494, and Ser498. In contrast, constitutively active PKCε potently inhibited both basal and PMA-dependent Nox5 activity. Co-IP and in vitro kinase assay experiments demonstrated that PKCα directly binds to Nox5 and modifies Nox5 phosphorylation and activity. Exposure of endothelial cells to high glucose significantly increased PKCα activation, and enhanced Nox5 derived superoxide in a manner that was in prevented by a PKCα inhibitor, Go 6976. In summary, our study reveals that PKCα is the primary isoform mediating the activation of Nox5 and this maybe of significance in our understanding of the vascular complications of diabetes

  2. 5-lipoxygenase mRNA and protein isoforms.

    PubMed

    Ochs, Meike J; Suess, Beatrix; Steinhilber, Dieter

    2014-01-01

    5-Lipoxygenase (5-LO) catalyses the two initial steps in the biosynthesis of leukotrienes, a group of inflammatory lipid mediators derived from arachidonic acid. An increased level of leukotrienes is associated with chronic inflammatory diseases such as asthma or atherosclerosis. In this MiniReview, we focus on recent findings regarding alternative splice variants of 5-LO with a special emphasis on two potential protein isoforms expressed in human B-lymphocytes which might be of interest as new drug targets.

  3. RSK isoforms in cancer cell invasion and metastasis.

    PubMed

    Sulzmaier, Florian J; Ramos, Joe W

    2013-10-15

    Metastasis, the spreading of cancer cells from a primary tumor to secondary sites throughout the body, is the primary cause of death for patients with cancer. New therapies that prevent invasion and metastasis in combination with current treatments could therefore significantly reduce cancer recurrence and morbidity. Metastasis is driven by altered signaling pathways that induce changes in cell-cell adhesion, the cytoskeleton, integrin function, protease expression, epithelial-to-mesenchymal transition and cell survival. The ribosomal S6 kinase (RSK) family of kinases is a group of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) effectors that can regulate these steps of metastasis by phosphorylating both nuclear and cytoplasmic targets. However, our understanding of RSK function in metastasis remains incomplete and is complicated by the fact that the four RSK isoforms perform nonredundant, sometimes opposing functions. Although some isoforms promote cell motility and invasion by altering transcription and integrin activity, others impair cell motility and invasion through effects on the actin cytoskeleton. The mechanism of RSK action depends both on the isoform and the cancer type. However, despite the variance in RSK-mediated outcomes, chemical inhibition of this group of kinases has proven effective in blocking invasion and metastasis of several solid tumors in preclinical models. RSKs are therefore a promising drug target for antimetastatic cancer treatments that could supplement and improve current therapeutic approaches. This review highlights contradiction and agreement in the current data on the function of RSK isoforms in metastasis and suggests ways forward in developing RSK inhibitors as new antimetastasis drugs.

  4. Gene Isoform Specificity through Enhancer-Associated Antisense Transcription

    PubMed Central

    Onodera, Courtney S.; Underwood, Jason G.; Katzman, Sol; Jacobs, Frank; Greenberg, David; Salama, Sofie R.; Haussler, David

    2012-01-01

    Enhancers and antisense RNAs play key roles in transcriptional regulation through differing mechanisms. Recent studies have demonstrated that enhancers are often associated with non-coding RNAs (ncRNAs), yet the functional role of these enhancer:ncRNA associations is unclear. Using RNA-Sequencing to interrogate the transcriptomes of undifferentiated mouse embryonic stem cells (mESCs) and their derived neural precursor cells (NPs), we identified two novel enhancer-associated antisense transcripts that appear to control isoform-specific expression of their overlapping protein-coding genes. In each case, an enhancer internal to a protein-coding gene drives an antisense RNA in mESCs but not in NPs. Expression of the antisense RNA is correlated with expression of a shorter isoform of the associated sense gene that is not present when the antisense RNA is not expressed. We demonstrate that expression of the antisense transcripts as well as expression of the short sense isoforms correlates with enhancer activity at these two loci. Further, overexpression and knockdown experiments suggest the antisense transcripts regulate expression of their associated sense genes via cis-acting mechanisms. Interestingly, the protein-coding genes involved in these two examples, Zmynd8 and Brd1, share many functional domains, yet their antisense ncRNAs show no homology to each other and are not present in non-murine mammalian lineages, such as the primate lineage. The lack of homology in the antisense ncRNAs indicates they have evolved independently of each other and suggests that this mode of lineage-specific transcriptional regulation may be more widespread in other cell types and organisms. Our findings present a new view of enhancer action wherein enhancers may direct isoform-specific expression of genes through ncRNA intermediates. PMID:22937057

  5. Differential Effects of Hepatocyte Nuclear Factor 4α Isoforms on Tumor Growth and T-Cell Factor 4/AP-1 Interactions in Human Colorectal Cancer Cells

    PubMed Central

    Vuong, Linh M.; Chellappa, Karthikeyani; Dhahbi, Joseph M.; Deans, Jonathan R.; Fang, Bin; Bolotin, Eugene; Titova, Nina V.; Hoverter, Nate P.; Spindler, Stephen R.; Waterman, Marian L.

    2015-01-01

    The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) is tumor suppressive in the liver but amplified in colon cancer, suggesting that it also might be oncogenic. To investigate whether this discrepancy is due to different HNF4α isoforms derived from its two promoters (P1 and P2), we generated Tet-On-inducible human colon cancer (HCT116) cell lines that express either the P1-driven (HNF4α2) or P2-driven (HNF4α8) isoform and analyzed them for tumor growth and global changes in gene expression (transcriptome sequencing [RNA-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]). The results show that while HNF4α2 acts as a tumor suppressor in the HCT116 tumor xenograft model, HNF4α8 does not. Each isoform regulates the expression of distinct sets of genes and recruits, colocalizes, and competes in a distinct fashion with the Wnt/β-catenin mediator T-cell factor 4 (TCF4) at CTTTG motifs as well as at AP-1 motifs (TGAXTCA). Protein binding microarrays (PBMs) show that HNF4α and TCF4 share some but not all binding motifs and that single nucleotide polymorphisms (SNPs) in sites bound by both HNF4α and TCF4 can alter binding affinity in vitro, suggesting that they could play a role in cancer susceptibility in vivo. Thus, the HNF4α isoforms play distinct roles in colon cancer, which could be due to differential interactions with the Wnt/β-catenin/TCF4 and AP-1 pathways. PMID:26240283

  6. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes).

    PubMed

    Aquino-Silva, M R; Schwantes, M L; Schwantes, A R

    2003-02-01

    Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37) and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2) and B isoforms had similar optima pH (7.5-8.0). While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  7. The alternative translated MDMXp60 isoform regulates MDM2 activity

    PubMed Central

    Tournillon, Anne-Sophie; López, Ignacio; Malbert-Colas, Laurence; Naski, Nadia; Olivares-Illana, Vanesa; Fåhraeus, Robin

    2015-01-01

    Isoforms derived from alternative splicing, mRNA translation initiation or promoter usage extend the functional repertoire of the p53, p63 and p73 genes family and of their regulators MDM2 and MDMX. Here we show cap-independent translation of an N-terminal truncated isoform of hMDMX, hMDMXp60, which is initiated at the 7th AUG codon downstream of the initiation site for full length hMDMXFL at position +384. hMDMXp60 lacks the p53 binding motif but retains the RING domain and interacts with hMDM2 and hMDMXFL. hMDMXp60 shows higher affinity for hMDM2, as compared to hMDMXFL. In vitro data reveal a positive cooperative interaction between hMDMXp60 and hMDM2 and in cellulo data show that low levels of hMDMXp60 promote degradation of hMDM2 whereas higher levels stabilize hMDM2 and prevent hMDM2-mediated degradation of hMDMXFL. These results describe a novel alternatively translated hMDMX isoform that exhibits unique regulatory activity toward hMDM2 autoubiquitination. The data illustrate how the N-terminus of hMDMX regulates its C-terminal RING domain and the hMDM2 activity. PMID:25659040

  8. Glutaminases in brain: Multiple isoforms for many purposes.

    PubMed

    Campos-Sandoval, José A; Martín-Rufián, Mercedes; Cardona, Carolina; Lobo, Carolina; Peñalver, Ana; Márquez, Javier

    2015-09-01

    Glutaminase is expressed in most mammalian tissues and cancer cells, but recent studies are now revealing a considerably degree of complexity in its pattern of expression and functional regulation. Novel transcript variants of the mammalian glutaminase Gls2 gene have been recently found and characterized in brain. Co-expression of different isoforms in the same cell type would allow cells to fine-tune their Gln/Glu levels under a wide range of metabolic states. Moreover, the discovery of protein interacting partners and novel subcellular localizations, for example nucleocytoplasmic in neurons and astrocytes, strongly suggest non-neurotransmission roles for Gls2 isoforms associated with transcriptional regulation and cellular differentiation. Of note, Gls isoforms have been considered as an important trophic factor for neuronal differentiation and postnatal development of brain regions. On the other hand, glutaminases are taking center stage in tumor biology as new therapeutic targets to inhibit metabolic reprogramming of cancer cells. Interestingly, glutaminase isoenzymes play seemingly opposing roles in cancer cell growth and proliferation; this issue will be also succinctly discussed with special emphasis on brain tumors.

  9. Isoform-specific targeting of ROCK proteins in immune cells

    PubMed Central

    Zanin-Zhorov, Alexandra; Flynn, Ryan; Waksal, Samuel D.; Blazar, Bruce R.

    2016-01-01

    ABSTRACT Rho-associated kinase 1 (ROCK1) and ROCK2 are activated by Rho GTPase and control cytoskeleton rearrangement through modulating the phosphorylation of their down-stream effector molecules. Although these 2 isoforms share more than 90% homology within their kinase domain the question of whether ROCK proteins function identically in different cell types is not clear. By using both pharmacological inhibition and genetic knockdown approaches recent studies suggest that the ROCK2 isoform plays an exclusive role in controlling of T-cell plasticity and macrophage polarization. Specifically, selective ROCK2 inhibition shifts the balance between pro-inflammatory and regulatory T-cell subsets via concurrent regulation of STAT3 and STAT5 phosphorylation, respectively. Furthermore, the administration of an orally available selective ROCK2 inhibitor effectively ameliorates clinical manifestations in experimental models of autoimmunity and chronic graft-vs.-host disease (cGVHD). Because ROCK2 inhibition results in the suppression of M2-type macrophages while favoring polarization of M1-type macrophages, ROCK2 inhibition can correct the macrophage imbalance seen during age-related macular degeneration (AMD). In summary, the exclusive role of ROCK2 in immune system modulation argues for the development and testing of isoform-specific ROCK2 inhibitors for the treatment of inflammatory disorders. PMID:27254302

  10. Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function

    PubMed Central

    Perroy, Julie; Walwyn, Wendy M.; Smith, Monique L.; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L.; Evans, Christopher J.

    2016-01-01

    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor–Ca2+ channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. SIGNIFICANCE STATEMENT Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560

  11. Gene Turnover in the Avian Globin Gene Families and Evolutionary Changes in Hemoglobin Isoform Expression

    PubMed Central

    Opazo, Juan C.; Hoffmann, Federico G.; Natarajan, Chandrasekhar; Witt, Christopher C.; Berenbrink, Michael; Storz, Jay F.

    2015-01-01

    The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and β-type subunits of hemoglobin (Hb), the tetrameric α2β2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and β-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the αD-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the αA-globin gene), recurrent losses of αD-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa. PMID:25502940

  12. Acute and Chronic Mu Opioids Differentially Regulate Thrombospondins 1 and 2 Isoforms in Astrocytes

    PubMed Central

    2013-01-01

    Chronic opioids induce synaptic plasticity, a major neuronal adaptation. Astrocyte activation in synaptogenesis may play a critical role in opioid tolerance, withdrawal, and dependence. Thrombospondins 1 and 2 (TSP1/2) are astrocyte-secreted matricellular glycoproteins that promote neurite outgrowth as well as dendritic spine and synapse formation, all of which are inhibited by chronic μ opioids. In prior studies, we discovered that the mechanism of TSP1 regulation by μ opioids in astrocytes involves crosstalk between three different classes of receptors, μ opioid receptor, EGFR and TGFβR. Moreover, TGFβ1 stimulated TSP1 expression via EGFR and ERK/MAPK activation, indicating that EGFR is a signaling hub for opioid and TGFβ1 actions. Using various selective antagonists, and inhibitors, here we compared the mechanisms of chronic opioid regulation of TSP1/2 isoform expression in vivo and in immortalized rat cortical astrocytes. TSP1/2 release from astrocytes was also monitored. Acute and chronic μ opioids, morphine, and the prototypic μ ligand, DAMGO, modulated TSP2 protein levels. TSP2 but not TSP1 protein content was up-regulated by acute (3 h) morphine or DAMGO by an ERK/MAPK dependent mechanism. Paradoxically, TSP2 protein levels were altered neither by TGFβ1 nor by astrocytic neurotrophic factors, EGF, CNTF, and BMP4. TSP1/2 immunofluorescence was increased in astrocytes subjected to scratch-wounding, suggesting TSPs may be useful markers for the “reactive” state of these cells and potentially for different types of injury. Previously, we determined that chronic morphine attenuated both neurite outgrowth and synapse formation in cocultures of primary astrocytes and neurons under similar temporal conditions that μ opioids reduced TSP1 protein levels in astrocytes. Here we found that, after the same 8 day treatment, morphine or DAMGO diminished TSP2 protein levels in astrocytes. Therefore, μ opioids may deter synaptogenesis via both TSP1/2 isoforms

  13. Acute and chronic mu opioids differentially regulate thrombospondins 1 and 2 isoforms in astrocytes.

    PubMed

    Phamduong, Ellen; Rathore, Maanjot K; Crews, Nicholas R; D'Angelo, Alexander S; Leinweber, Andrew L; Kappera, Pranay; Krenning, Thomas M; Rendell, Victoria R; Belcheva, Mariana M; Coscia, Carmine J

    2014-02-19

    Chronic opioids induce synaptic plasticity, a major neuronal adaptation. Astrocyte activation in synaptogenesis may play a critical role in opioid tolerance, withdrawal, and dependence. Thrombospondins 1 and 2 (TSP1/2) are astrocyte-secreted matricellular glycoproteins that promote neurite outgrowth as well as dendritic spine and synapse formation, all of which are inhibited by chronic μ opioids. In prior studies, we discovered that the mechanism of TSP1 regulation by μ opioids in astrocytes involves crosstalk between three different classes of receptors, μ opioid receptor, EGFR and TGFβR. Moreover, TGFβ1 stimulated TSP1 expression via EGFR and ERK/MAPK activation, indicating that EGFR is a signaling hub for opioid and TGFβ1 actions. Using various selective antagonists, and inhibitors, here we compared the mechanisms of chronic opioid regulation of TSP1/2 isoform expression in vivo and in immortalized rat cortical astrocytes. TSP1/2 release from astrocytes was also monitored. Acute and chronic μ opioids, morphine, and the prototypic μ ligand, DAMGO, modulated TSP2 protein levels. TSP2 but not TSP1 protein content was up-regulated by acute (3 h) morphine or DAMGO by an ERK/MAPK dependent mechanism. Paradoxically, TSP2 protein levels were altered neither by TGFβ1 nor by astrocytic neurotrophic factors, EGF, CNTF, and BMP4. TSP1/2 immunofluorescence was increased in astrocytes subjected to scratch-wounding, suggesting TSPs may be useful markers for the "reactive" state of these cells and potentially for different types of injury. Previously, we determined that chronic morphine attenuated both neurite outgrowth and synapse formation in cocultures of primary astrocytes and neurons under similar temporal conditions that μ opioids reduced TSP1 protein levels in astrocytes. Here we found that, after the same 8 day treatment, morphine or DAMGO diminished TSP2 protein levels in astrocytes. Therefore, μ opioids may deter synaptogenesis via both TSP1/2 isoforms, but

  14. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression.

    PubMed

    Opazo, Juan C; Hoffmann, Federico G; Natarajan, Chandrasekhar; Witt, Christopher C; Berenbrink, Michael; Storz, Jay F

    2015-04-01

    The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and β-type subunits of hemoglobin (Hb), the tetrameric α2β2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and β-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the α(D)-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the α(A)-globin gene), recurrent losses of α(D)-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa.

  15. Molecular characterization of two metallothionein isoforms in avian species: evolutionary history, tissue distribution profile, and expression associated with metal accumulation.

    PubMed

    Nam, Dong-Ha; Kim, Eun-Young; Iwata, Hisato; Tanabe, Shinsuke

    2007-04-01

    To characterize avian MTs, MT cDNAs were cloned from liver of cormorant (Phalacrocorax carbo) and mallard (Anas platyrhynchos). Expression profiles of MT isoforms and relationships between metal accumulation and MT mRNA expression in tissues were also investigated. We succeeded in cDNA cloning of MT1/2 from cormorant and MT1 in mallard. DNA sequence of chicken MT1 was obtained from chicken (Gallus gallus) genomic database. Considering previous reports on avian MTs, birds possess at least two distinct MT isoforms. Comparison of genomic synteny among vertebrates and phylogenetic analysis of MT amino acid sequences revealed that avian MT1/2 are evolutionarily close to mammalian MT3. Messenger RNAs of both MT isoforms were detected in all the tissues/organs in cormorant and mallard. Liver was the primary organ for cormorant MT1/2, and mallard MT2, whereas MT1 was dominant in mallard heart. Interspecies comparison of tissue distribution of MT mRNA expression between cormorant and mallard indicated that MT2 profile was similar, but MT1 was not. Significant positive correlations of mRNA expression levels between MT1 and MT2 were observed in the liver and kidney of cormorants, whereas no correlation was found in mallards. Expression levels of cormorant MT1/2 showed significant positive correlations with hepatic Cu and Zn concentrations, suggesting that both MT isoforms were induced by Cu and Zn in livers. Cormorant MT2 expression level exhibited a significant positive correlation with hepatic Ag, and a negative correlation with Rb, indicating that Ag and Rb concentrations depend on the expression of MT2 by Cu and Zn. In mallard, MT1 had no correlation with any metal concentration, and MT2 expression was positively correlated only with Cu, even though hepatic Cu and Zn concentrations in mallard were much higher than in cormorant. This may indicate that cormorant is a more susceptible species than mallard in terms of MT induction. These findings suggest tissue-, species

  16. Cloning, molecular characterization, and phylogeny of two evolutionary distinct glutamine synthetase isoforms in the green microalga Haematococcus pluvialis (Chlorophyceae).

    PubMed

    Reinecke, Diana L; Zarka, Aliza; Leu, Stefan; Boussiba, Sammy

    2016-12-01

    Haematococcus pluvialis (Chlorophyta) is a widely used microalga of great economic potential, yet its molecular genetics and evolution are largely unknown. We present new detailed molecular and phylogenetic analysis of two glutamine synthetase (GS) enzymes and genes (gln) under the Astaxanthin-inducing conditions of light- and nitrogen-stress. Structure analysis identified key residues and confirmed two decameric GS2 holoenzymes, a cytoplasmic enzyme, termed GS2c , and a plastidic form, termed GS2p , due to chloroplast-transit peptides at its N-terminus. Gene expression analysis showed dissociation of mRNA, protein, and enzyme activity levels for both GS2 under different growth conditions, indicating the strong post-transcriptional regulation. Data-mining identified novel and specified published gln genes from Prasinophyceae, Chlorophyta, Trebouxiophyceae, Charophyceae, Bryophyta, Lycopodiophyta, Spermatophyta, and Rhodophyta. Phylogenetic analysis found homologues to the cytosolic GS2c of H. pluvialis in all other photo- and non-photosynthetic Eukaryota. The chloroplastic GS2p was restricted to Chlorophyta, Bryophyta, some Proteobacteria and Fungii; no homologues were identified in Spermatophyta or other Eukaryota. This indicates two independent prokaryotic donors for these two gln genes in H. pluvialis. Combined phylogenetic analysis of GS, chl-b synthase, elongation factor, and light harvesting complex homologues project a newly refined model of Viridiplantae evolution. Herein, a GS1 evolved into the cytosolic GS2c and was passed on to all Eukaryota. Later, the chloroplastic GS2p entered the Archaeplastida lineage via a horizontal gene transfer at the divergence of Chlorophyta and Rhodophyta lineages. GS2p persisted in Chlorophyta and Bryophyta, but was lost during Spermatophyta evolution. These data suggest the revision of GS classification and nomenclature, and extend our understanding of the photosynthetic Eukaryota evolution.

  17. Distinct Splice Variants of Dynamin-related Protein 1 Differentially Utilize Mitochondrial Fission Factor as an Effector of Cooperative GTPase Activity.

    PubMed

    Macdonald, Patrick J; Francy, Christopher A; Stepanyants, Natalia; Lehman, Lance; Baglio, Anthony; Mears, Jason A; Qi, Xin; Ramachandran, Rajesh

    2016-01-01

    Multiple isoforms of the mitochondrial fission GTPase dynamin-related protein 1 (Drp1) arise from the alternative splicing of its single gene-encoded pre-mRNA transcript. Among these, the longer Drp1 isoforms, expressed selectively in neurons, bear unique polypeptide sequences within their GTPase and variable domains, known as the A-insert and the B-insert, respectively. Their functions remain unresolved. A comparison of the various biochemical and biophysical properties of the neuronally expressed isoforms with that of the ubiquitously expressed, and shortest, Drp1 isoform (Drp1-short) has revealed the effect of these inserts on Drp1 function. Utilizing various biochemical, biophysical, and cellular approaches, we find that the A- and B-inserts distinctly alter the oligomerization propensity of Drp1 in solution as well as the preferred curvature of helical Drp1 self-assembly on membranes. Consequently, these sequences also suppress Drp1 cooperative GTPase activity. Mitochondrial fission factor (Mff), a tail-anchored membrane protein of the mitochondrial outer membrane that recruits Drp1 to sites of ensuing fission, differentially stimulates the disparate Drp1 isoforms and alleviates the autoinhibitory effect imposed by these sequences on Drp1 function. Moreover, the differential stimulatory effects of Mff on Drp1 isoforms are dependent on the mitochondrial lipid, cardiolipin (CL). Although Mff stimulation of the intrinsically cooperative Drp1-short isoform is relatively modest, CL-independent, and even counter-productive at high CL concentrations, Mff stimulation of the much less cooperative longest Drp1 isoform (Drp1-long) is robust and occurs synergistically with increasing CL content. Thus, membrane-anchored Mff differentially regulates various Drp1 isoforms by functioning as an allosteric effector of cooperative GTPase activity.

  18. Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L.

    PubMed

    Wang, Baoshan; Lüttge, Ulrich; Ratajczak, Rafael

    2004-03-01

    The halophyte Suaeda salsa L., exposed to different NaCl concentrations (100 and 400 mmol/L) and polyethylene glycol (isoosomotic to 100 mmol/L NaCl) containing nutrient solutions under normal or K+-deficient conditions for 7 days, was used to study effects of NaCl salinity and osmotic stress on chlorophyll content, chlorophyll fluorescence characteristics, malonedialdehyde (MDA) content, and superoxide dismutase (SOD) isoform activities. Photosynthetic capacity was not decreased by NaCl treatment, indicating that S. salsa possesses an effective antioxidative response system for avoiding oxidative damage. Seven SOD activity bands were detected in S. salsa leaf extracts, including an Mn-SOD and several isoforms of Fe-SOD and CuZn-SOD. It turned out that NaCl salinity and osmotic stress lead to a differential regulation of distinct SOD isoenzymes. This differential regulation is suggested to play a major role in stress tolerance of S. salsa.

  19. ER egress of invariant chain isoform p35 requires direct binding to MHCII molecules and is inhibited by the NleA virulence factor of enterohaemorrhagic Escherichia coli.

    PubMed

    Cloutier, Maryse; Gauthier, Catherine; Fortin, Jean-Simon; Genève, Laetitia; Kim, Kyungho; Gruenheid, Samantha; Kim, Jinoh; Thibodeau, Jacques

    2015-04-01

    Four invariant chain (Ii) isoforms assist the folding and trafficking of human MHC class II (MHCIIs). The main isoforms, Iip33 and Iip35, assemble in the ER into homo- and/or hetero-trimers. The sequential binding of up to three MHCII αβ heterodimers to Ii trimers results in the formation of pentamers, heptamers and nonamers. MHCIIs are required to overcome the p35-encoded di-arginine (RxR) ER retention motif and to allow anterograde trafficking of the complex. Here, we show that inactivation of the RxR motif requires a direct cis interaction between p35 and the MHCII, precluding ER egress of some unsaturated Ii trimers. Interestingly, as opposed to MHCII/p33 complexes, those including p35 remained in the ER when co-expressed with the NleA protein of enterohaemorrhagic Escherichia coli. Taken together, our results demonstrate that p35 influences distinctively MHCII/Ii assembly and trafficking.

  20. A Novel Isoform of Sucrose Synthase Is Targeted to the Cell Wall during Secondary Cell Wall Synthesis in Cotton Fiber[C][W][OA

    PubMed Central

    Brill, Elizabeth; van Thournout, Michel; White, Rosemary G.; Llewellyn, Danny; Campbell, Peter M.; Engelen, Steven; Ruan, Yong-Ling; Arioli, Tony; Furbank, Robert T.

    2011-01-01

    Sucrose (Suc) synthase (Sus) is the major enzyme of Suc breakdown for cellulose biosynthesis in cotton (Gossypium hirsutum) fiber, an important source of fiber for the textile industry. This study examines the tissue-specific expression, relative abundance, and temporal expression of various Sus transcripts and proteins present in cotton. A novel isoform of Sus (SusC) is identified that is expressed at high levels during secondary cell wall synthesis in fiber and is present in the cell wall fraction. The phylogenetic relationships of the deduced amino acid sequences indicate two ancestral groups of Sus proteins predating the divergence of monocots and dicots and that SusC sequences form a distinct branch in the phylogeny within the dicot-specific clade. The subcellular location of the Sus isoforms is determined, and it is proposed that cell wall-localized SusC may provide UDP-glucose for cellulose and callose synthesis from extracellular sugars. PMID:21757635

  1. PSA Isoforms' Velocities for Early Diagnosis of Prostate Cancer.

    PubMed

    Heidegger, Isabel; Klocker, Helmut; Pichler, Renate; Horninger, Wolfgang; Bektic, Jasmin

    2015-06-01

    Free prostate-specific antigen (fPSA) and its molecular isoforms are suggested for enhancement of PSA testing in prostate cancer (PCa). In the present study we evaluated whether PSA isoforms' velocities might serve as a tool to improve early PCa diagnosis. Our study population included 381 men who had undergone at least one ultrasound-guided prostate biopsy whose pathologic examination yielded PCa or showed no evidence of prostatic malignancy. Serial PSA, fPSA, and proPSA measurements were performed on serum samples covering 7 years prior to biopsy using Beckmann Coulter Access immunoassays. Afterwards, velocities of PSA (PSAV), fPSA% (fPSA%V), proPSA% (proPSA%V) and the ratio proPSA/PSA/V were calculated and their ability to discriminate cancer from benign disease was evaluated. Among 381 men included in the study, 202 (53%) were diagnosed with PCa and underwent radical prostatectomy at our Department. PSAV, fPSA%V, proPSA%V as well as proPSA/PSA/V were able to differentiate significantly between PCa and non-cancerous prostate. The highest discriminatory power between cancer and benign disease has been observed two and one year prior to diagnosis with all measured parameters. Among all measured parameters, fPSA%V showed the best cancer specificity of 45.3% with 90% of sensitivity. In summary, our results highlight the value of PSA isoforms' velocity for early detection of PCa. Especially fPSA%V should be used in the clinical setting to increase cancer detection specificity.

  2. Separation of arginase isoforms by capillary zone electrophoresis and isoelectric focusing in density gradient column.

    PubMed

    Pedrosa, M M; Legaz, M E

    1995-04-01

    Four major arginase isoforms, I, II, III and IV, have been detected in Evernia prunastri thallus. They differ in terms of both physical and biochemical properties. The isoelectric point (pI) of these proteins has been determined by both isoelectric focusing in density gradient column and high-performance capillary electrophoresis (HPCE). Isoelectric focusing revealed charge microheterogeneity for isoforms II and IV whereas arginases I and II had the same pI value of 5.8. HPCE separation confirmed this charge microheterogeneity for isoform IV but not for isoform III, and provided evidence of microheterogeneity for isoforms I and II. The effect of various electrolyte buffers and running conditions on the HPCE separation of arginase isoform were investigated. Addition of 0.5 mM spermidine (SPD) to the running buffer reduced the electroosmotic flow (EOF) and permitted discriminating between the native proteins and protein fragments.

  3. Evolutionary, environmental and tissue controls on the occurrence of multiple isoforms of acyl carrier protein

    SciTech Connect

    Battey, J.F.; Ohlrogge, J.B. )

    1989-04-01

    Previous research has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP). We have examined the development of this trait in evolutionarily diverse species. Isoforms were resolved by Western blotting and native PAGE of {sup 3}H-palmitate labelled ACP's. Multiple isoforms of ACP were observed in primitive vascular plants including gymnosperms, ferns and Psilotum and the nonvascular liverworts and mosses. Therefore, the development of ACP isoforms occurred early in evolution. However, unicellular algae and bacteria such as Chlamydomonas, Dunaliella, Synechocystis and Agmnellum have only a single electrophoretic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants. We have also examined light and tissue control over the expression of ACP isoforms. The expression of multiple forms of ACP in leaf of Spinacia and Avena is altered very little by light. Rather, the different patterns of ACP isoforms are primarily dependant on tissue source.

  4. Acidosis-mediated regulation of the NHE1 isoform of the Na⁺/H⁺ exchanger in renal cells.

    PubMed

    Odunewu, Ayodeji; Fliegel, Larry

    2013-08-01

    The mammalian Na⁺/H⁺ exchanger isoform 1 (NHE1) is a ubiquitous plasma membrane protein that regulates intracellular pH by removing a proton in exchange for extracellular sodium. Renal tissues are subject to metabolic and respiratory acidosis, and acidosis has been shown to acutely activate NHE1 activity in other cell types. We examined if NHE1 is activated by acute acidosis in HEK293 and Madin-Darby canine kidney (MDCK) cells. Acute sustained intracellular acidosis (SIA) activated NHE1 in both cell types. We expressed wild-type and mutant NHE1 cDNAs in MDCK cells. All the cDNAs had a L163F/G174S mutation, which conferred a 100-fold resistance to EMD87580, an NHE1-specific inhibitor. We assayed exogenous NHE1 activity while inhibiting endogenous activity with EMD87580 and while inhibiting the NHE3 isoform of the Na⁺/H⁺ exchanger using the isoform-specific inhibitor S3226. We examined the activation and phosphorylation of the wild-type and mutant NHE1 proteins in response to SIA. In MDCK cells we demonstrated that the amino acids Ser⁷⁷¹, Ser⁷⁷⁶, Thr⁷⁷⁹, and Ser⁷⁸⁵ are important for NHE1 phosphorylation and activation after acute SIA. SIA activated ERK-dependent pathways in MDCK cells, and this was blocked by treatment with the MEK inhibitor U0126. Treatment with U0126 also blocked activation of NHE1 by SIA. These results suggest that acute acidosis activates NHE1 in mammalian kidney cells and that in MDCK cells this activation occurs through an ERK-dependent pathway affecting phosphorylation of a distinct set of amino acids in the cytosolic regulatory tail of NHE1.

  5. Multiple phosphorylated forms of the Saccharomyces cerevisiae Mcm1 protein include an isoform induced in response to high salt concentrations.

    PubMed Central

    Kuo, M H; Nadeau, E T; Grayhack, E J

    1997-01-01

    The Saccharomyces cerevisiae Mcm1 protein is an essential multifunctional transcription factor which is highly homologous to human serum response factor. Mcm1 protein acts on a large number of distinctly regulated genes: haploid cell-type-specific genes, G2-cell-cycle-regulated genes, pheromone-induced genes, arginine metabolic genes, and genes important for cell wall and cell membrane function. We show here that Mcm1 protein is phosphorylated in vivo. Several (more than eight) isoforms of Mcm1 protein, resolved by isoelectric focusing, are present in vivo; two major phosphorylation sites lie in the N-terminal 17 amino acids immediately adjacent to the conserved MADS box DNA-binding domain. The implications of multiple species of Mcm1, particularly the notion that a unique Mcm1 isoform could be required for regulation of a specific set of Mcm1's target genes, are discussed. We also show here that Mcm1 plays an important role in the response to stress caused by NaCl. G. Yu, R. J. Deschenes, and J. S. Fassler (J. Biol. Chem. 270:8739-8743, 1995) showed that Mcm1 function is affected by mutations in the SLN1 gene, a signal transduction component implicated in the response to osmotic stress. We find that mcm1 mutations can confer either reduced or enhanced survival on high-salt medium; deletion of the N terminus or mutation in the primary phosphorylation site results in impaired growth on high-salt medium. Furthermore, Mcm1 protein is a target of a signal transduction system responsive to osmotic stress: a new isoform of Mcm1 is induced by NaCl or KCl; this result establishes that Mcm1 itself is regulated. PMID:9001236

  6. Glutamate dehydrogenase isoforms with N-terminal (His)6- or FLAG-tag retain their kinetic properties and cellular localization.

    PubMed

    Pajęcka, Kamilla; Nielsen, Camilla Wendel; Hauge, Anne; Zaganas, Ioannis; Bak, Lasse K; Schousboe, Arne; Plaitakis, Andreas; Waagepetersen, Helle S

    2014-01-01

    Glutamate dehydrogenase (GDH) is a crucial enzyme on the crossroads of amino acid and energy metabolism and it is operating in all domains of life. According to current knowledge GDH is present only in one functional isoform in most animals, including mice. In addition to this housekeeping enzyme (hGDH1 in humans), humans and apes have acquired a second isoform (hGDH2) with a distinct tissue expression profile. In the current study we have cloned both mouse and human GDH constructs containing FLAG and (His)6 small genetically-encoded tags, respectively. The hGDH1 and hGDH2 constructs containing N-terminal (His)6 tags were successfully expressed in Sf9 cells and the recombinant proteins were isolated to ≥95 % purity in a two-step procedure involving ammonium sulfate precipitation and Ni(2+)-based immobilized metal ion affinity chromatography. To explore whether the presence of the FLAG and (His)6 tags affects the cellular localization and functionality of the GDH isoforms, we studied the subcellular distribution of the expressed enzymes as well as their regulation by adenosine diphosphate monopotassium salt (ADP) and guanosine-5'-triphosphate sodium salt (GTP). Through immunoblot analysis of the mitochondrial and cytosolic fraction of the HEK cells expressing the recombinant proteins we found that neither FLAG nor (His)6 tag disturbs the mitochondrial localization of GDH. The addition of the small tags to the N-terminus of the mature mitochondrial mouse GDH1 or human hGDH1 and hGDH2 did not change the ADP activation or GTP inhibition pattern of the proteins as compared to their untagged counterparts. However, the addition of FLAG tag to the C-terminus of the mouse GDH left the recombinant protein fivefold less sensitive to ADP activation. This finding highlights the necessity of the functional characterization of recombinant proteins containing even the smallest available tags.

  7. Is Face Distinctiveness Gender Based?

    ERIC Educational Resources Information Center

    Baudouin, Jean-Yves; Gallay, Mathieu

    2006-01-01

    Two experiments were carried out to study the role of gender category in evaluations of face distinctiveness. In Experiment 1, participants had to evaluate the distinctiveness and the femininity-masculinity of real or artificial composite faces. The composite faces were created by blending either faces of the same gender (sexed composite faces,…

  8. Counselor Identity: Conformity or Distinction?

    ERIC Educational Resources Information Center

    McLaughlin, Jerry E.; Boettcher, Kathryn

    2009-01-01

    The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.

  9. Development of Distinctive Feature Theory.

    ERIC Educational Resources Information Center

    Meyer, Peggy L.

    Since the beginning of man's awareness of his language capabilities and language structure, he has assumed that speech is composed of discrete entities. The linguist attempts to establish a model of the workings of these distinctive sounds in a language. Utilizing an historical basis for discussion, this general survey of the distinctive feature…

  10. Expression of CD44 isoforms in renal cell tumors. Positive correlation to tumor differentiation.

    PubMed Central

    Terpe, H. J.; Störkel, S.; Zimmer, U.; Anquez, V.; Fischer, C.; Pantel, K.; Günthert, U.

    1996-01-01

    CD44 isoforms have been implicated in tumor progression and embryogenesis. Primary renal cell tumors (n = 100) of various histopathological differentiation and grading stages were analyzed for expression of CD44 isoforms in comparison with nonmalignant adult and fetal renal tissues. Evaluations were performed by immunohistochemistry using CD44 isoform-specific monoclonal antibodies and by reverse transcriptase polymerase chain reactions (RT-PCR). In the nonmalignant kidney no CD44 variant isoforms were detected. There was a significant increase in expression of CD44 standard (CD44s) and several variant isoforms (CD44v) in the course of tumor differentiation in clear cell carcinomas (n = 68) from stages G1 to G3 (P < 0.0001 for CD44s and isoforms containing CD44-6v, and P < 0.007 for those containing CD44-9v). Also, in chromophilic cell carcinomas (n = 13), CD44 isoform expression correlated with grading; ie, no CD44 expression was detected in G1 tumors, whereas in approximately 50% of the G2 tumors, CD44s, CD44-6v, and CD44-9v isoforms were present. Oncocytomas (n = 8), which are benign renal cell tumors, did not express CD44 isoforms, whereas invasive chromophobe cell carcinomas (n = 11) were positive for CD44s and CD44v isoforms. Transcript analyses by RT-PCR revealed that the upregulated isoforms in the carcinoma cells contained exons 8 to 10 and 3, 8 to 10 in combination from the variant region. In conclusion, expression of variant CD44 isoforms was strongly correlated with grading and appears to mediate a more aggressive phenotype to renal cell tumors. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8579108

  11. Non-raft adenylyl cyclase 2 defines a cAMP signaling compartment that selectively regulates IL-6 expression in airway smooth muscle cells: differential regulation of gene expression by AC isoforms.

    PubMed

    Bogard, Amy S; Birg, Anna V; Ostrom, Rennolds S

    2014-04-01

    Adenylyl cyclase (AC) isoforms differ in their tissue distribution, cellular localization, regulation, and protein interactions. Most cell types express multiple AC isoforms. We hypothesized that cAMP produced by different AC isoforms regulates unique cellular responses in human bronchial smooth muscle cells (BSMC). Overexpression of AC2, AC3, or AC6 had distinct effects on forskolin (Fsk)-induced expression of a number of known cAMP-responsive genes. These data show that different AC isoforms can differentially regulate gene expression. Most notable, overexpression and activation of AC2 enhanced interleukin 6 (IL-6) expression, but overexpression of AC3 or AC6 had no effect. IL-6 production by BSMC was induced by Fsk and select G protein-coupled receptor (GPCR) agonists, though IL-6 levels did not directly correlate with global cAMP levels. Treatment with PKA selective 6-Bnz-cAMP or Epac selective 8-CPT-2Me-cAMP cAMP analogs revealed a predominant role for PKA in cAMP-mediated induction of IL-6. IL-6 promoter mutations demonstrated that AP-1 and CRE transcription sites were required for Fsk to stimulate IL-6 expression. Our present study defines an AC2 cAMP signaling compartment that specifically regulates IL-6 expression in BSMC via Epac and PKA and demonstrates that other AC isoforms are excluded from this pool.

  12. Nucleus-localized 21.5-kDa myelin basic protein promotes oligodendrocyte proliferation and enhances neurite outgrowth in coculture, unlike the plasma membrane-associated 18.5-kDa isoform.

    PubMed

    Smith, Graham S T; Samborska, Bożena; Hawley, Steven P; Klaiman, Jordan M; Gillis, Todd E; Jones, Nina; Boggs, Joan M; Harauz, George

    2013-03-01

    The classic myelin basic protein (MBP) family of central nervous system (CNS) myelin arises from transcription start site 3 of the Golli (gene of oligodendrocyte lineage) complex and comprises splice isoforms ranging in nominal molecular mass from 14 kDa to (full-length) 21.5 kDa. We have determined here a number of distinct functional differences between the major 18.5-kDa and minor 21.5-kDa isoforms of classic MBP with respect to oligodendrocyte (OLG) proliferation. We have found that, in contrast to 18.5-kDa MBP, 21.5-kDa MBP increases proliferation of early developmental immortalized N19-OLGs by elevating the levels of phosphorylated ERK1/2 and Akt1 kinases and of ribosomal protein S6. Coculture of N2a neuronal cells with N19-OLGs transfected with the 21.5-kDa isoform (or conditioned medium from), but not the 18.5-kDa isoform, caused the N2a cells to have increased neurite outgrowth and process branching complexity. These roles were dependent on subcellular localization of 21.5-kDa MBP to the nucleus and on the exon II-encoded segment, suggesting that the nuclear localization of early minor isoforms of MBP may play a crucial role in regulating and/or initiating myelin and neuronal development in the mammalian CNS.

  13. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton.

    PubMed

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness.

  14. Optimal Distinctiveness Signals Membership Trust.

    PubMed

    Leonardelli, Geoffrey J; Loyd, Denise Lewin

    2016-07-01

    According to optimal distinctiveness theory, sufficiently small minority groups are associated with greater membership trust, even among members otherwise unknown, because the groups are seen as optimally distinctive. This article elaborates on the prediction's motivational and cognitive processes and tests whether sufficiently small minorities (defined by relative size; for example, 20%) are associated with greater membership trust relative to mere minorities (45%), and whether such trust is a function of optimal distinctiveness. Two experiments, examining observers' perceptions of minority and majority groups and using minimal groups and (in Experiment 2) a trust game, revealed greater membership trust in minorities than majorities. In Experiment 2, participants also preferred joining minorities over more powerful majorities. Both effects occurred only when minorities were 20% rather than 45%. In both studies, perceptions of optimal distinctiveness mediated effects. Discussion focuses on the value of relative size and optimal distinctiveness, and when membership trust manifests.

  15. Biological functions of p53 isoforms through evolution: lessons from animal and cellular models.

    PubMed

    Marcel, V; Dichtel-Danjoy, M-L; Sagne, C; Hafsi, H; Ma, D; Ortiz-Cuaran, S; Olivier, M; Hall, J; Mollereau, B; Hainaut, P; Bourdon, J-C

    2011-12-01

    The TP53 tumour-suppressor gene is expressed as several protein isoforms generated by different mechanisms, including use of alternative promoters, splicing sites and translational initiation sites, that are conserved through evolution and within the TP53 homologues, TP63 and TP73. Although first described in the eighties, the importance of p53 isoforms in regulating the suppressive functions of p53 has only become evident in the last 10 years, by analogy with observations that p63 and p73 isoforms appeared indispensable to fully understand the biological functions of TP63 and TP73. This review summarizes recent advances in the field of 'p53 isoforms', including new data on p63 and p73 isoforms. Details of the alternative mechanisms that produce p53 isoforms and cis- and trans-regulators identified are provided. The main focus is on their biological functions (apoptosis, cell cycle, aging and so on) in cellular and animal models, including mouse, zebrafish and Drosophila. Finally, the deregulation of p53 isoform expression in human cancers is reviewed. Based on these latest results, several developments are expected in the future: the identification of drugs modulating p53 isoform expression; the generation of animal models and the evaluation of the use of p53 isoform as biomarkers in human cancers.

  16. Nuclear progesterone receptor isoforms and their functions in the female reproductive tract.

    PubMed

    Rekawiecki, R; Kowalik, M K; Kotwica, J

    2011-01-01

    Progesterone (P4), which is produced by the corpus luteum (CL), creates proper conditions for the embryo implantation, its development, and ensures proper conditions for the duration of pregnancy. Besides the non-genomic activity of P4 on target cells, its main physiological effect is caused through genomic action by the progesterone nuclear receptor (PGR). This nuclear progesterone receptor occurs in two specific isoforms, PGRA and PGRB. PGRA isoform acts as an inhibitor of transcriptional action of PGRB. The inactive receptor is connected with chaperone proteins and attachment of P4 causes disconnection of chaperones and unveiling of DNA binding domain (DBD). After receptor dimerization in the cells' nucleus and interaction with hormone response element (HRE), the receptor coactivators are connected and transcription is initiated. The ratio of these isoforms changes during the estrous cycle and reflects the different levels of P4 effect on the reproductive system. Both isoforms, PGRA and PGRB, also show a different response to the P4 receptor antagonist activity. Connection of the antagonist to PGRA can block PGRB, but acting through the PGRB isoform, P4 receptor antagonist may undergo conversion to a strongly receptor agonist. A third isoform, PGRC, has also been revealed. This isoform is the shortest and does not have transcriptional activity. Alternative splicing and insertion of additional exons may lead to the formation of different PGR isoforms. This paper summarizes the available data on the progesterone receptor isoforms and its regulatory action within the female reproductive system.

  17. Multiple isoforms of β-TrCP display differential activities in the regulation of Wnt signaling

    PubMed Central

    Seo, Eunjeong; Kim, Hyunjoon; Kim, Rokki; Yun, Sangmoon; Kim, Minseong; Han, Jin-Kwan; Costantini, Frank; Jho, Eek-hoon

    2008-01-01

    The F-box proteins β-TrCP 1 and 2 (β-transducin repeat protein) have 2 and 3 isoforms, respectively, due to alternative splicing of exons encoding the N-terminal region. We identified an extra exon in between the previously known exons 1 and 2 of β-TrCP1 and β-TrCP2. Interestingly, sequence analysis suggested that many more isoforms are produced than previously identified, via the alternative splicing of all possible combination of exons II to V of β-TrCP1 and exons II to IV of β-TrCP2. Different mouse tissues show specific expression patterns of the isoforms, and the level of expression of the isoform that has been used in most published papers was very low. Yeast two-hybrid assays show that β-TrCP1 isoforms containing exon III, which are the most highly expressed isoforms in most tissues, do not interact with Skp1. Indirect immunofluorescence analysis of transiently expressed β-TrCP1 isoforms suggests that the presence of exon III causes β-TrCP1 to localize in nuclei. Consistent with the above findings, isoforms including exon III showed a reduced ability to block ectopic embryonic axes induced via injection of Wnt8 or β-catenin in Xenopus embryos. Overall, our data suggest that isoforms of β-TrCPs generated by alternative splicing may have different biological roles. PMID:18929646

  18. Quantification of spatiotemporal patterns of Ras isoform expression during development

    PubMed Central

    Newlaczyl, Anna U.; Coulson, Judy M.; Prior, Ian A.

    2017-01-01

    Ras proteins are important signalling hubs frequently dysregulated in cancer and in a group of developmental disorders called Rasopathies. Three Ras genes encode four proteins that differentially contribute to these phenotypes. Using quantitative real-time PCR (qRT-PCR) we have measured the gene expression profiles of each of the Ras isoforms in a panel of mouse tissues derived from a full developmental time course spanning embryogenesis through to adulthood. In most tissues and developmental stages we observe a relative contribution of KRas4B > > NRas ≥ KRas4A > HRas to total Ras expression with KRas4B typically representing 60–99% of all Ras transcripts. KRas4A is the most dynamically regulated Ras isoform with significant up-regulation of expression observed pre-term in stomach, intestine, kidney and heart. The expression patterns assist interpretation of the essential role of KRas in development and the preponderance of KRas mutations in cancer. PMID:28117393

  19. Isoform-dependent interaction of BRDG1 with Tec kinase.

    PubMed

    Yokohari, K; Yamashita, Y; Okada, S; Ohya, K; Oda, S; Hatano, M; Mano, H; Hirasawa, H; Tokuhisa, T

    2001-11-30

    Tec is the prototype of an emerging family of protein-tyrosine kinases. Tec and Btk, another member of this family, together participate in the development of B-cell immune system. We previously identified one of the downstream messengers for human Tec kinase, BRDG1. BRDG1 is associated with Tec and becomes tyrosine-phosphorylated in B-cells by the engagement of B-cell antigen receptor (BCR). Here we show that overexpression of BRDG1 strongly augments BCR-mediated activation of cAMP-response element binding protein (CREB) but not that of c-Jun and the promoters of c-MYC and BCL-xL genes. Furthermore, we isolated the murine orthologue of BRDG1. Three isoforms of BRDG1 are generated by alternative splicing of the message. Two of them have a deletion of 33 amino acids in a Pleckstrin homology (PH) domain of BRDG1. Both the tyrosine-phosphorylation and CREB-activating ability of BRDG1 were isoform-dependent, suggesting a role of the PH domain of BRDG1. These data have identified a novel regulatory mechanism of CREB family of transcriptional factors.

  20. Isoform-Specific Localization of A-RAF in Mitochondria

    PubMed Central

    Yuryev, Anton; Ono, Makoto; Goff, Stephen A.; Macaluso, Frank; Wennogle, Lawrence P.

    2000-01-01

    RAF kinase is a family of isoforms including A-RAF, B-RAF, and C-RAF. Despite the important role of RAF in cell growth and proliferation, little evidence exists for isoform-specific function of RAF family members. Using Western analysis and immunogold labeling, A-RAF was selectively localized in highly purified rat liver mitochondria. Two novel human proteins, which interact specifically with A-RAF, were identified, and the full-length sequences are reported. These proteins, referred to as hTOM and hTIM, are similar to components of mitochondrial outer and inner membrane protein-import receptors from lower organisms, implicating their involvement in the mitochondrial transport of A-RAF. hTOM contains multiple tetratricopeptide repeat (TPR) domains, which function in protein-protein interactions. TPR domains are frequently present in proteins involved in cellular transport systems. In contrast, protein 14-3-3, an abundant cytosolic protein that participates in many facets of signal transduction, was found to interact with C-RAF but not with A-RAF N-terminal domain. This information is discussed in view of the important role of mitochondria in cellular functions involving energy balance, proliferation, and apoptosis and the potential role of A-RAF in regulating these systems. PMID:10848612

  1. Role of cysteines in mammalian VDAC isoforms' function.

    PubMed

    De Pinto, Vito; Reina, Simona; Gupta, Ankit; Messina, Angela; Mahalakshmi, Radhakrishnan

    2016-08-01

    In this mini-review, we analyze the influence of cysteines in the structure and activity of mitochondrial outer membrane mammalian VDAC isoforms. The three VDAC isoforms show conserved sequences, similar structures and the same gene organization. The meaning of three proteins encoded in different chromosomes must thus be searched for subtle differences at the amino acid level. Among others, cysteine content is noticeable. In humans, VDAC1 has 2, VDAC2 has 9 and VDAC3 has 6 cysteines. Recent works have shown that, at variance from VDAC1, VDAC2 and VDAC3 exhibit cysteines predicted to protrude towards the intermembrane space, making them a preferred target for oxidation by ROS. Mass spectrometry in VDAC3 revealed that a disulfide bridge can be formed and other cysteine oxidations are also detectable. Both VDAC2 and VDAC3 cysteines were mutagenized to highlight their role in vitro and in complementation assays in Δporin1 yeast. Chemico-physical techniques revealed an important function of cysteines in the structural stabilization of the pore. In conclusion, the works available on VDAC cysteines support the notion that the three proteins are paralogs with a similar pore-function and slightly different, but important, ancillary biological functions. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.

  2. Tau Isoform Composition Influences Rate and Extent of Filament Formation*

    PubMed Central

    Zhong, Qi; Congdon, Erin E.; Nagaraja, Haikady N.; Kuret, Jeff

    2012-01-01

    The risk of developing tauopathic neurodegenerative disease depends in part on the levels and composition of six naturally occurring Tau isoforms in human brain. These proteins, which form filamentous aggregates in disease, vary only by the presence or absence of three inserts encoded by alternatively spliced exons 2, 3, and 10 of the Tau gene (MAPT). To determine the contribution of alternatively spliced segments to Tau aggregation propensity, the aggregation kinetics of six unmodified, recombinant human Tau isoforms were examined in vitro using electron microscopy assay methods. Aggregation propensity was then compared at the level of elementary rate constants for nucleation and extension phases. We found that all three alternatively spliced segments modulated Tau aggregation but through differing kinetic mechanisms that could synergize or compete depending on sequence context. Overall, segments encoded by exons 2 and 10 promoted aggregation, whereas the segment encoded by exon 3 depressed it with its efficacy dependent on the presence or absence of a fourth microtubule binding repeat. In general, aggregation propensity correlated with genetic risk reported for multiple tauopathies, implicating aggregation as one candidate mechanism rationalizing the correlation between Tau expression patterns and disease. PMID:22539343

  3. Expression of mouse Fbxw7 isoforms is regulated in a cell cycle- or p53-dependent manner

    SciTech Connect

    Matsumoto, Akinobu; Onoyama, Ichiro; Nakayama, Keiichi I. . E-mail: nakayak1@bioreg.kyushu-u.ac.jp

    2006-11-10

    Fbxw7 is the F-box protein component of an SCF-type ubiquitin ligase that contributes to the ubiquitin-dependent degradation of cell cycle activators and oncoproteins. Three isoforms ({alpha}, {beta}, and {gamma}) of Fbxw7 are produced from mRNAs with distinct 5' exons. We have now investigated regulation of Fbxw7 expression in mouse tissues. Fbxw7{alpha} mRNA was present in all tissues examined, whereas Fbxw7{beta} mRNA was detected only in brain and testis, and Fbxw7{gamma} mRNA in heart and skeletal muscle. The amount of Fbxw7{alpha} mRNA was high during quiescence (G phase) in mouse embryonic fibroblasts (MEFs) and T cells, but it decreased markedly as these cells entered the cell cycle. The abundance of Fbxw7{alpha} mRNA was unaffected by cell irradiation or p53 status. In contrast, X-irradiation increased the amount of Fbxw7{beta} mRNA in wild-type MEFs but not in those from p53-deficient mice, suggesting that radiation-induced up-regulation of p53 leads to production of Fbxw7{beta} mRNA. Our results thus indicate that expression of Fbxw7 isoforms is differentially regulated in a cell cycle- or p53-dependent manner.

  4. Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73

    PubMed Central

    Hoshino, Masataka; Qi, Mei-ling; Yoshimura, Natsue; Miyashita, Tomoyuki; Tagawa, Kazuhiko; Wada, Yo-ichi; Enokido, Yasushi; Marubuchi, Shigeki; Harjes, Phoebe; Arai, Nobutaka; Oyanagi, Kiyomitsu; Blandino, Giovanni; Sudol, Marius; Rich, Tina; Kanazawa, Ichiro; Wanker, Erich E.; Saitoe, Minoru; Okazawa, Hitoshi

    2006-01-01

    Transcriptional disturbance is implicated in the pathology of polyglutamine diseases, including Huntington's disease (HD). However, it is unknown whether transcriptional repression leads to neuronal death or what forms that death might take. We found transcriptional repression-induced atypical death (TRIAD) of neurons to be distinct from apoptosis, necrosis, or autophagy. The progression of TRIAD was extremely slow in comparison with other types of cell death. Gene expression profiling revealed the reduction of full-length yes-associated protein (YAP), a p73 cofactor to promote apoptosis, as specific to TRIAD. Furthermore, novel neuron-specific YAP isoforms (YAPΔCs) were sustained during TRIAD to suppress neuronal death in a dominant-negative fashion. YAPΔCs and activated p73 were colocalized in the striatal neurons of HD patients and mutant huntingtin (htt) transgenic mice. YAPΔCs also markedly attenuated Htt-induced neuronal death in primary neuron and Drosophila melanogaster models. Collectively, transcriptional repression induces a novel prototype of neuronal death associated with the changes of YAP isoforms and p73, which might be relevant to the HD pathology. PMID:16461361

  5. The Drosophila Retinoblastoma Binding Protein 6 Family Member Has Two Isoforms and Is Potentially Involved in Embryonic Patterning

    PubMed Central

    Hull, Rodney; Oosthuysen, Brent; Cajee, Umar-Faruq; Mokgohloa, Lehlogonolo; Nweke, Ekene; Antunes, Ricardo Jorge; Coetzer, Theresa H. T.; Ntwasa, Monde

    2015-01-01

    The human retinoblastoma binding protein 6 (RBBP6) is implicated in esophageal, lung, hepatocellular and colon cancers. Furthermore, RBBP6 was identified as a strong marker for colon cancer prognosis and as a predisposing factor in familial myeloproliferative neoplasms. Functionally, the mammalian protein interacts with p53 and enhances the activity of Mdm2, the prototypical negative regulator of p53. However, since RBBP6 (known as PACT in mice) exists in multiple isoforms and pact−/− mice exhibit a more severe phenotype than mdm2−/− mutants, it must possess some Mdm2-independent functions. The function of the invertebrate homologue is poorly understood. This is complicated by the absence of the Mdm2 gene in both Drosophila and Caenorhabditis elegans. We have experimentally identified the promoter region of Snama, the Drosophila homologue, analyzed potential transcription factor binding sites and confirmed the existence of an additional isoform. Using band shift and co-immunoprecipitation assays combined with mass spectrometry, we found evidence that this gene may be regulated by, amongst others, DREF, which regulates hundreds of genes related to cell proliferation. The potential transcription factors for Snama fall into distinct functional groups, including anteroposterior embryonic patterning and nucleic acid metabolism. Significantly, previous work in mice shows that pact−/− induces an anteroposterior phenotype in embryos when rescued by simultaneous deletion of p53. Taken together, these observations indicate the significance of RBBP6 proteins in carcinogenesis and in developmental defects. PMID:25955646

  6. Two distinct phosphorylation events govern the function of muscle FHOD3

    PubMed Central

    Iskratsch, Thomas; Reijntjes, Susan; Dwyer, Joseph; Toselli, Paul; Dégano, Irene R.; Dominguez, Isabel; Ehler, Elisabeth

    2013-01-01

    Posttranslational modifications such as phosphorylation are universally acknowledged regulators of protein function. Recently we characterised a striated muscle-specific isoform of the formin FHOD3 that displays distinct subcellular targeting and protein half-life compared to its non-muscle counterpart, which is dependent on phosphorylation by CK2 (formerly casein kinase 2). We now show that the two isoforms of FHOD3 are already expressed in the vertebrate embryonic heart. Analysis of CK2alpha knockout mice showed that phosphorylation by CK2 is required for proper targeting of muscle FHOD3 to the myofibrils also in embryonic cardiomyocytes in situ. The localisation of muscle FHOD3 in the sarcomere varies depending on the maturation state, being either broader or restricted to the Z-disc proper in adult heart. Following myofibril disassembly such as in dedifferentiating adult rat cardiomyocytes in culture, the expression of non-muscle FHOD3 is up-regulated, which is reversed once the myofibrils are reassembled. The shift in expression levels of different isoforms is accompanied by an increased co-localisation with p62, which is involved in autophagy, and affects the half-life of FHOD3. Phosphorylation of three amino acids in the C-terminus of FHOD3 by ROCK1 is sufficient for activation, which results in increased actin filament synthesis in cardiomyocytes and also a broader localisation pattern of FHOD3 in the myofibrils. ROCK1 can directly phosphorylate FHOD3 and FHOD3 seems to be the downstream mediator of the exaggerated actin filament formation phenotype that is induced in cardiomyocytes upon the overexpression of constitutively active ROCK1. We conclude that the expression of the muscle FHOD3 isoform is characteristic for the healthy mature heart and that two distinct phosphorylation events are crucial to regulate its activity in thin filament assembly and maintenance. PMID:23052206

  7. The invariant chain p35 isoform promotes formation of nonameric complexes with MHC II molecules.

    PubMed

    Cloutier, Maryse; Gauthier, Catherine; Fortin, Jean-Simon; Thibodeau, Jacques

    2014-07-01

    Four different isoforms of the human invariant chain (Ii) have been described (p33, p35, p41 and p43). These heterotrimerize in the endoplasmic reticulum (ER) before associating with MHC class II molecules (MHCIIs). However, the final stoichiometry of the Ii/MHCII complex remains debated. This is particularly interesting as both p35 and p43 include a di-arginine motif that requires masking by MHCII to allow ER egress. Here, to functionally address the requirement for stoichiometric interactions, we used a recombinant DR heterodimer bearing its own cytoplasmic di-lysine ER-retention motif (DRKKAA). When coexpressed with p33 and a control myc-tagged DR (DRmyc), DRKKAA was retained in the ER but had little impact on surface expression of DRmyc. However, when coexpressed with p35, DRKKAA restricted the surface expression of DRmyc, indicating that Ii trimers can be loaded with more than one MHCII. Similar results were obtained using HLA-DQ instead of DRmyc, showing that a single trimeric Ii scaffold can include distinct MHCII isotypes. Altogether, these results demonstrate that the subunit stoichiometry of oligomeric Ii/MHCII complexes is influenced by p35.

  8. The RAS-Effector Interface: Isoform-Specific Differences in the Effector Binding Regions

    PubMed Central

    Nakhaeizadeh, Hossein; Amin, Ehsan; Nakhaei-Rad, Saeideh; Dvorsky, Radovan; Ahmadian, Mohammad Reza

    2016-01-01

    RAS effectors specifically interact with the GTP-bound form of RAS in response to extracellular signals and link them to downstream signaling pathways. The molecular nature of effector interaction by RAS is well-studied but yet still incompletely understood in a comprehensive and systematic way. Here, structure-function relationships in the interaction between different RAS proteins and various effectors were investigated in detail by combining our in vitro data with in silico data. Equilibrium dissociation constants were determined for the binding of HRAS, KRAS, NRAS, RRAS1 and RRAS2 to both the RAS binding (RB) domain of CRAF and PI3Kα, and the RAS association (RA) domain of RASSF5, RALGDS and PLCε, respectively, using fluorescence polarization. An interaction matrix, constructed on the basis of available crystal structures, allowed identification of hotspots as critical determinants for RAS-effector interaction. New insights provided by this study are the dissection of the identified hotspots in five distinct regions (R1 to R5) in spite of high sequence variability not only between, but also within, RB/RA domain-containing effectors proteins. Finally, we propose that intermolecular β-sheet interaction in R1 is a central recognition region while R3 may determine specific contacts of RAS versus RRAS isoforms with effectors. PMID:27936046

  9. Muscle Lim Protein isoform negatively regulates striated muscle actin dynamics and differentiation

    PubMed Central

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A.; Papalouka, Vasiliki; Terzis, Gerasimos; Roumeliotis, Theodoros I.; Spengos, Konstantinos; Garbis, Spiros D.; Manta, Panagiota; Kranias, Evangelia G.; Sanoudou, Despina

    2015-01-01

    Muscle Lim Protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, while aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/CFL2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components including α-actinin, T-cap and MLP. Our findings unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, and in differentiated striated muscles as a contributor to sarcomeric integrity. PMID:24860983

  10. Isoforms of gelsolin from lobster striated muscles differ in calcium-dependence.

    PubMed

    Unger, Andreas; Brunne, Bianka; Hinssen, Horst

    2013-08-01

    Two distinct isoforms of the Ca-dependent actin filament severing protein gelsolin were identified in cross-striated muscles of the American lobster. The variants (termed LG1 and LG2) differ by an extension of 18 AA at the C-terminus of LG1, and by two substitutions at AA735 and AA736, the two C-terminal amino acids of LG2. Functional comparison of the isolated and purified proteins revealed gelsolin-typical properties for both with differences in Ca(2+)-sensitivity, LG2 being activated at significant lower Ca-concentration than LG1: Half maximal activation for both filament severing and G-actin binding was ∼4×10(-7)M Ca(2+) for LG2 vs. ∼2×10(-6)M Ca(2+) for LG1. This indicates a differential activation for the two isoproteins in vivo where they are present in almost equal amounts in the muscle cell. Structure prediction modeling on the basis of the known structure of mammalian gelsolin shows that LG2 lacks the C-terminal alpha-helix which is involved in contact formation between domains G6 and G2. In both mammalian gelsolin and LG1, this "latch bridge" is assumed to play a critical role in Ca(2+)-activation by keeping gelsolin in a closed, inactive conformation at low [Ca(2+)]. In LG2, the reduced contact between G6 and G2 may be responsible for its activation at low Ca(2+)-concentration.

  11. Mammotroph autoregulation: the differential roles of the 24K isoforms of prolactin.

    PubMed

    Ho, T W; Greenan, J R; Walker, A M

    1989-03-01

    In this study we have attempted to determine which of the secreted 24K isoforms was responsible for autocrine regulation of PRL secretion by comparing the isoforms synthesized and secreted by normal cells, which do autoregulate, with those synthesized and secreted by GH3 cells, which do not normally autoregulate. Comparable numbers of cells were washed free of serum and then extracted into Tris-buffered saline by sonication and detergent treatment. Proteins present in these cell extracts and in samples of culture medium were then precipitated with cold acetone (-20 C; 48 h) and subsequently dissolved in urea-lysis buffer for 2-dimensional (2-D) electrophoresis. The 2-D patterns for normal cells showed four 24K PRL isoforms inside the cells and three 24K PRL isoforms (designated 2, 3, and 3') secreted into the medium. The 2-D patterns for GH3 cells showed very little intracellular storage of PRL, but what was present was identified as 24K PRL isoform 2. The GH3 cells secreted large amounts of only 24K PRL isoform 2. Preparations of PRL containing only isoforms 1,2, and 3 (at a total radioimmunoassayable concentration of 5 micrograms/ml PRL) were capable of inducing autoregulation in GH3 cells, as evidence by decreased secretion of prelabeled intracellular PRL. Initiation of autoregulation in GH3 cells caused granulation and the intracellular production of isoform 3. Since a) a preparation containing isoforms 1, 2, and 3 was found to induce autoregulation in GH3 cells, b) isoform 1 is not a secreted form, and c) isoform 2 does not cause autoregulation (at least in GH3 cells), it is deduced that isoform 3 is an autocrine form of PRL. Since initiation of autoregulation in GH3 cells caused those cells to produce isoform 3, it is further deduced that the autoregulatory defect in GH3 cells lies in the actual lack of production of isoform 3 and not in an inherent inability of these cells to produce isoform 3.

  12. Differential sensitivity of rat voltage-sensitive sodium channel isoforms to pyrazoline-type insecticides

    SciTech Connect

    Silver, Kristopher S.; Soderlund, David M. . E-mail: dms6@cornell.edu

    2006-07-15

    Pyrazoline-type insecticides are potent inhibitors of insect and mammalian voltage-sensitive sodium channels. In mammals, there are nine sodium channel {alpha} subunit isoforms that have unique distributions and pharmacological properties, but no published data exist that compare the relative sensitivity of these different mammalian sodium channel isoforms to inhibition by pyrazoline-type insecticides. This study employed the Xenopus oocyte expression system to examine the relative sensitivity of rat Na{sub v}1.2a, Na{sub v}1.4, Na{sub v}1.5, and Na{sub v}1.8 sodium channel {alpha} subunit isoforms to the pyrazoline-type insecticides indoxacarb, DCJW, and RH 3421. Additionally, we assessed the effect of coexpression with the rat {beta}1 auxiliary subunit on the sensitivity of the Na{sub v}1.2a and Na{sub v}1.4 isoforms to these compounds. The relative sensitivity of the four sodium channel {alpha} subunits differed for each of the three compounds we examined. With DCJW, the order of sensitivity was Na{sub v}1.4 > Na{sub v}1.2a > Na{sub v}1.5 > Na{sub v}1.8. In contrast, the relative sensitivity of these isoforms to indoxacarb differed from that to DCJW: the Na{sub v}1.8 isoform was most sensitive, the Na{sub v}1.4 isoform was completely insensitive, and the sensitivities of the Na{sub v}1.5 and Na{sub v}1.2a isoforms were intermediate between these two extremes. Moreover, the pattern of sensitivity to RH 3421 among these four isoforms was different from that for either indoxacarb or DCJW: the Na{sub v}1.4 isoform was most sensitive to RH 3421, whereas the sensitivities of the remaining three isoforms were substantially less than that of the Na{sub v}1.4 isoform and were approximately equivalent. The only statistically significant effect of coexpression of either the Na{sub v}1.2a or Na{sub v}1.4 isoforms with the {beta}1 subunit was the modest reduction in the sensitivity of the Na{sub v}1.2a isoform to RH 3421. These results demonstrate that mammalian sodium

  13. Two temporally synthesized charge subunits interact to form the five isoforms of cottonseed (Gossypium hirsutum) catalase.

    PubMed Central

    Ni, W; Trelease, R N; Eising, R

    1990-01-01

    Five charge isoforms of tetrameric catalase were isolated from cotyledons of germinated cotton (Gossypium hirsutum L.) seedlings. Denaturing isoelectric focusing of the individual isoforms in polyacrylamide gels indicated that isoforms A (most anodic) and E (most cathodic) consisted of one subunit of different charge, whereas isoforms B, C and D each consisted of a mixture of these two subunits. Thus the five isoforms apparently were formed through combinations of two subunits in different ratios. Labelling cotyledons in vivo with [35S]methionine at three daily intervals in the dark, and translation in vivo of polyadenylated RNA isolated from cotyledons at the same ages, revealed synthesis of two different subunits. One of the subunits was synthesized in cotyledons at all ages studied (days 1-3), whereas the other subunit was detected only at days 2 and 3. This differential expression of two catalase subunits helped explain previous results from this laboratory showing that the two anodic forms (A and B) found in maturing seeds were supplemented with three cathodic forms (C-E) after the seeds germinated. These subunit data also helped clarify our new findings that proteins of isoforms A, B and C (most active isoforms) accumulated in cotyledons of plants kept in the dark for 3 days, then gradually disappeared during the next several days, whereas isoforms D and E (least active isoforms) remained in the cells. This shift in isoform pattern occurred whether seedlings were kept in the dark or exposed to continuous light after day 3, although exposure to light enhanced this process. These sequential molecular events were responsible for the characteristic developmental changes (rise and fall) in total catalase activity. We believe that the isoform changeover is physiologically related to the changeover in glyoxysome to leaf-type-peroxisome metabolism. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1695843

  14. Evolutionarily conserved sequences of striated muscle myosin heavy chain isoforms. Epitope mapping by cDNA expression.

    PubMed

    Miller, J B; Teal, S B; Stockdale, F E

    1989-08-05

    A cDNA expression strategy was used to localize amino acid sequences which were specific for fast, as opposed to slow, isoforms of the chicken skeletal muscle myosin heavy chain (MHC) and which were conserved in vertebrate evolution. Five monoclonal antibodies (mAbs), termed F18, F27, F30, F47, and F59, were prepared that reacted with all of the known chicken fast MHC isoforms but did not react with any of the known chicken slow nor with smooth muscle MHC isoforms. The epitopes recognized by mAbs F18, F30, F47, and F59 were on the globular head fragment of the MHC, whereas the epitope recognized by mAb F27 was on the helical tail or rod fragment. Reactivity of all five mAbs also was confined to fast MHCs in the rat, with the exception of mAb F59, which also reacted with the beta-cardiac MHC, the single slow MHC isoform common to both the rat heart and skeletal muscle. None of the five epitopes was expressed on amphioxus, nematode, or Dictyostelium MHC. The F27 and F59 epitopes were found on shark, electric ray, goldfish, newt, frog, turtle, chicken, quail, rabbit, and rat MHCs. The epitopes recognized by these mAbs were conserved, therefore, to varying degrees through vertebrate evolution and differed in sequence from homologous regions of a number of invertebrate MHCs and myosin-like proteins. The sequence of those epitopes on the head were mapped using a two-part cDNA expression strategy. First, Bal31 exonuclease digestion was used to rapidly generate fragments of a chicken embryonic fast MHC cDNA that were progressively deleted from the 3' end. These cDNA fragments were expressed as beta-galactosidase/MHC fusion proteins using the pUR290 vector; the fusion proteins were tested by immunoblotting for reactivity with the mAbs; and the approximate locations of the epitopes were determined from the sizes of the cDNA fragments that encoded a particular epitope. The epitopes were then precisely mapped by expression of overlapping cDNA fragments of known sequence that

  15. N-terminal SAP97 isoforms differentially regulate synaptic structure and postsynaptic surface pools of AMPA receptors.

    PubMed

    Goodman, Lucy; Baddeley, David; Ambroziak, Wojciech; Waites, Clarissa L; Garner, Craig C; Soeller, Christian; Montgomery, Johanna M

    2017-02-28

    The location and density of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors is controlled by scaffolding proteins within the postsynaptic density (PSD). SAP97 is a PSD protein with two N-terminal isoforms, α and β, that have opposing effects on synaptic strength thought to result from differential targeting of AMPA receptors into distinct synaptic versus extrasynaptic locations, respectively. In this study, we have applied dSTORM super resolution imaging in order to localize the synaptic and extrasynaptic pools of AMPA receptors in neurons expressing α or βSAP97. Unexpectedly, we observed that both α and βSAP97 enhanced the localization of AMPA receptors at synapses. However, this occurred via different mechanisms: αSAP97 increased PSD size and consequently the number of receptor binding sites, whilst βSAP97 increased synaptic receptor cluster size and surface AMPA receptor density at the PSD edge and surrounding perisynaptic sites without changing PSD size. αSAP97 also strongly enlarged presynaptic active zone protein clusters, consistent with both presynaptic and postsynaptic enhancement underlying the previously observed αSAP97-induced increase in AMPA receptor-mediated currents. In contrast, βSAP97-expressing neurons increased the proportion of immature filopodia that express higher levels of AMPA receptors, decreased the number of functional presynaptic terminals, and also reduced the size of the dendritic tree and delayed the maturation of mushroom spines. Our data reveal that SAP97 isoforms can specifically regulate surface AMPA receptor nanodomain clusters, with βSAP97 increasing extrasynaptic receptor domains at peri-synaptic and filopodial sites. Moreover, βSAP97 negatively regulates synaptic maturation both structurally and functionally. These data support diverging presynaptic and postsynaptic roles of SAP97 N-terminal isoforms in synapse maturation and plasticity. As numerous splice isoforms exist in

  16. NOX isoforms in the development of abdominal aortic aneurysm.

    PubMed

    Siu, Kin Lung; Li, Qiang; Zhang, Yixuan; Guo, Jun; Youn, Ji Youn; Du, Jie; Cai, Hua

    2017-04-01

    Oxidative stress plays an important role in the formation of abdominal aortic aneurysm (AAA), and we have recently established a causal role of uncoupled eNOS in this severe human disease. We have also shown that activation of NADPH oxidase (NOX) lies upstream of uncoupled eNOS. Therefore, identification of the specific NOX isoforms that are required for eNOS uncoupling and AAA formation would ultimately lead to novel therapies for AAA. In the present study, we used the Ang II infused hph-1 mice to examine the roles of NOX isoforms in the development of AAA. We generated double mutants of hph-1-NOX1, hph-1-NOX2, hph-1-p47phox, and hph-1-NOX4. After two weeks of Ang II infusion, the incidence rate of AAA substantially dropped from 76.5% in Ang II infused hph-1 mice (n=34) to 11.1%, 15.0%, 9.5% and 0% in hph-1-NOX1 (n=27), hph-1-NOX2 (n=40), hph-1-p47phox (n=21), and hph-1-NOX4 (n=33) double mutant mice, respectively. The size of abdominal aortas of the four double mutant mice, determined by ultrasound analyses, was significantly smaller than the hph-1 mice. Aortic nitric oxide and H4B bioavailabilities were markedly improved in the double mutants, while superoxide production and eNOS uncoupling activity were substantially diminished. These effects seemed attributed to an endothelial specific restoration of dihydrofolate reductase expression and activity, deficiency of which has been shown to induce eNOS uncoupling and AAA formation in both Ang II-infused hph-1 and apoE null animals. In addition, over-expression of human NOX4 N129S or T555S mutant newly identified in aneurysm patients increased hydrogen peroxide production, further implicating a relationship between NOX and human aneurysm. Taken together, these data indicate that NOX isoforms 1, 2 or 4 lies upstream of dihydrofolate reductase deficiency and eNOS uncoupling to induce AAA formation. These findings may promote development of novel therapeutics for the treatment of the disease by inhibiting NOX signaling.

  17. Different phosphoinositide 3-kinase isoforms mediate carrageenan nociception and inflammation.

    PubMed

    Pritchard, Rory A; Falk, Lovissa; Larsson, Mathilda; Leinders, Mathias; Sorkin, Linda S

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated.

  18. Role of nuclear progesterone receptor isoforms in uterine pathophysiology

    PubMed Central

    Patel, Bansari; Elguero, Sonia; Thakore, Suruchi; Dahoud, Wissam; Bedaiwy, Mohamed; Mesiano, Sam

    2015-01-01

    BACKGROUND Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors function primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcriptional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-specific expression and function of PR-A and PR-B are critical for normal uterine function. METHODS Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and Google Scholar and critically reviewed. RESULTS Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myometrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen on eutopic normal endometrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells through inhibition of key

  19. Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms.

    PubMed

    Harper, April D; Bar-Peled, Maor

    2002-12-01

    UDP-xylose (Xyl) is an important sugar donor for the synthesis of glycoproteins, polysaccharides, various metabolites, and oligosaccharides in animals, plants, fungi, and bacteria. UDP-Xyl also feedback inhibits upstream enzymes (UDP-glucose [Glc] dehydrogenase, UDP-Glc pyrophosphorylase, and UDP-GlcA decarboxylase) and is involved in its own synthesis and the synthesis of UDP-arabinose. In plants, biosynthesis of UDP-Xyl is catalyzed by different membrane-bound and soluble UDP-GlcA decarboxylase (UDP-GlcA-DC) isozymes, all of which convert UDP-GlcA to UDP-Xyl. Because synthesis of UDP-Xyl occurs both in the cytosol and in membranes, it is not known which source of UDP-Xyl the different Golgi-localized xylosyltransferases are utilizing. Here, we describe the identification of several distinct Arabidopsis genes (named AtUXS for UDP-Xyl synthase) that encode functional UDP-GlcA-DC isoforms. The Arabidopsis genome contains five UXS genes and their protein products can be subdivided into three isozyme classes (A-C), one soluble and two distinct putative membrane bound. AtUxs from each class, when expressed in Escherichia coli, generate active UDP-GlcA-DC that converts UDP-GlcA to UDP-Xyl. Members of this gene family have a large conserved C-terminal catalytic domain (approximately 300 amino acids long) and an N-terminal variable domain differing in sequence and size (30-120 amino acids long). Isoforms of class A and B appear to encode putative type II membrane proteins with their catalytic domains facing the lumen (like Golgi-glycosyltransferases) and their N-terminal variable domain facing the cytosol. Uxs class C is likely a cytosolic isoform. The characteristics of the plant Uxs support the hypothesis that unique UDP-GlcA-DCs with distinct subcellular localizations are required for specific xylosylation events.

  20. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    PubMed

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases.

  1. Characterization of the human CUTA isoform2 present in the stably transfected HeLa cells.

    PubMed

    Yang, Jingchun; Yang, Huirong; Yan, Lichong; Yang, Liu; Yu, Long

    2009-01-01

    CUTA, Homo sapiens divalent cation tolerance homolog, has been implicated in anchoring of acetylcholinesterase in neuronal cell membranes. However, a protein highly homologous to CUTA in Rattus norvegicus is structurally similar to the signal transduction protein PII, and this similarity suggests an intriguing role of CUTA in signal transduction. Recent researches indicated that CUTA was one of the 35 key genes responsible for lactation in mammary gland development. However, the physiological role of CUTA is still unclear, so more information of this gene is needed. In this study, the expression profile of CUTA gene in human tissues was examined, and our research revealed that CUTA gene was constitutively expressed in all of the 18 tissues tested. As reported, CUTA gene has five variant transcripts encoding three isoforms with different N terminals. CUTA isoform2 is encoded by three of the five variant transcripts as the common part of the three isoforms. So CUTA isoform2 was chose as representative to characterize the CUTA protein. We constructed a HeLa cell line stably transfected with the encoding sequence of CUTA isoform2 for further study. The subcellular location and oligomeric structure of the CUTA isoform2 was analyzed in the stable cell lines. It was found that the CUTA isoform2 was mainly located in mitochondria as a new potential mitochondrial protein. Furthermore, CUTA isoform2 formed trimers in cell lysate with the possible occurrence of heteropolymers. These findings would be helpful to the further study on the specific function of CUTA protein.

  2. Roles of the troponin isoforms during indirect flight muscle development in Drosophila.

    PubMed

    Singh, Salam Herojeet; Kumar, Prabodh; Ramachandra, Nallur B; Nongthomba, Upendra

    2014-08-01

    Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to another depending on physiological demands and pathological conditions. In Drosophila, amajority of themyofibrillar proteins in the indirect flight muscles (IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed exclusively in the IFMs, during later stages of development, we have looked at the developmental and functional importance of each of the troponin subunits (troponin-I, troponin-T and troponin-C) and their isoforms. We show that all the troponin subunits are required for normal myofibril assembly and flight, except for the troponin-C isoform 1 (TnC1). Moreover, rescue experiments conducted with troponin-I embryonic isoform in the IFMs, where flies were rendered flightless, show developmental and functional differences of TnI isoforms and importance of maintaining the right isoform.

  3. Novel alternative splicing isoform biomarkers identification from high-throughput plasma proteomics profiling of breast cancer

    PubMed Central

    2013-01-01

    Background In the biopharmaceutical industry, biomarkers define molecular taxonomies of patients and diseases and serve as surrogate endpoints in early-phase drug trials. Molecular biomarkers can be much more sensitive than traditional lab tests. Discriminating disease biomarkers by traditional method such as DNA microarray has proved challenging. Alternative splicing isoform represents a new class of diagnostic biomarkers. Recent scientific evidence is demonstrating that the differentiation and quantification of individual alternative splicing isoforms could improve insights into disease diagnosis and management. Identifying and characterizing alternative splicing isoforms are essential to the study of molecular mechanisms and early detection of complex diseases such as breast cancer. However, there are limitations with traditional methods used for alternative splicing isoform determination such as transcriptome-level, low level of coverage and poor focus on alternative splicing. Results Therefore, we presented a peptidomics approach to searching novel alternative splicing isoforms in clinical proteomics. Our results showed that the approach has significant potential in enabling discovery of new types of high-quality alternative splicing isoform biomarkers. Conclusions We developed a peptidomics approach for the proteomics community to analyze, identify, and characterize alternative splicing isoforms from MS-based proteomics experiments with more coverage and exclusive focus on alternative splicing. The approach can help generate novel hypotheses on molecular risk factors and molecular mechanisms of cancer in early stage, leading to identification of potentially highly specific alternative splicing isoform biomarkers for early detection of cancer. PMID:24565027

  4. Targeting of the Nuclear Receptor Coativator Isoform Delta 3aib1 in Breast Cancer. Addendum

    DTIC Science & Technology

    2007-07-01

    using a regulatable AIB1 directed ribozyme , resulted in reduced tumor growth in vivo. Overall, these data indicate a major role for AIB1 and its isoform...regulatable AIB1 directed ribozyme , resulted in reduced tumor growth in vivo. Overall, these data indicate a major role for AIB1 and its isoform ∆3AIB1 in

  5. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    EPA Science Inventory

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  6. Estrogen and progesterone receptor isoforms expression in the stomach of Mongolian gerbils

    PubMed Central

    Saqui-Salces, Milena; Neri-Gómez, Teresa; Gamboa-Dominguez, Armando; Ruiz-Palacios, Guillermo; Camacho-Arroyo, Ignacio

    2008-01-01

    AIM: We studied the estrogen receptor (ER) and progesterone receptor (PR) isoforms expression in gastric antrum and corpus of female gerbils and their regulation by estradiol (E2) and progesterone (P4). METHODS: Ovariectomized adult female gerbils were subcutaneously treated with E2, and E2 + P4. Uteri and stomachs were removed, the latter were cut along the greater curvature, and antrum and corpus were excised. Proteins were immunoblotted using antibodies that recognize ER-alpha, ER-beta, and PR-A and PR-B receptor isoforms. Tissues from rats treated in the same way were used as controls. RESULTS: Specific bands were detected for ER-alpha (68 KDa), and PR isoforms (85 and 120 KDa for PR-A and PR-B isoforms, respectively) in uteri, gastric antrum and corpus. We could not detect ER-beta isoform. PR isoforms were not regulated by E2 or P4 in uterus and gastric tissues of gerbils. ER-alpha isoform content was significantly down-regulated by E2 in the corpus, but not affected by hormones in uterus and gastric antrum. CONCLUSION: The presence of ER-alpha and PR isoforms in gerbils stomach suggests that E2 and P4 actions in this organ are in part mediated by their nuclear receptors. PMID:18837087

  7. Does Compound I Vary Significantly between Isoforms of Cytochrome P450?

    PubMed Central

    2011-01-01

    The cytochrome P450 (CYP) enzymes are important in many areas, including pharmaceutical development. Subtle changes in the electronic structure of the active species, Compound I, have been postulated previously to account partly for the experimentally observed differences in reactivity between isoforms. Current predictive models of CYP metabolism typically assume an identical Compound I in all isoforms. Here we present a method to calculate the electronic structure and to estimate the Fe–O bond enthalpy of Compound I, and apply it to several human and bacterial CYP isoforms. Conformational flexibility is accounted for by sampling large numbers of structures from molecular dynamics simulations, which are subsequently optimized with density functional theory (B3LYP) based quantum mechanics/molecular mechanics. The observed differences in Compound I between human isoforms are small: They are generally smaller than the spread of values obtained for the same isoform starting from different initial structures. Hence, it is unlikely that the variation in activity between human isoforms is due to differences in the electronic structure of Compound I. A larger difference in electronic structure is observed between the human isoforms and P450cam and may be explained by the slightly different hydrogen-bonding environment surrounding the cysteinyl sulfur. The presence of substrate in the active site of all isoforms studied appears to cause a slight decrease in the Fe–O bond enthalpy, apparently due to displacement of water out of the active site, suggesting that Compound I is less stable in the presence of substrate. PMID:21863858

  8. Functional analysis of the two cyclophilin isoforms of Sinorhizobium meliloti.

    PubMed

    Thomloudi, Eirini-Evangelia; Skagia, Aggeliki; Venieraki, Anastasia; Katinakis, Panagiotis; Dimou, Maria

    2017-02-01

    The nitrogen fixing Sinorhizobium meliloti possesses two genes, ppiA and ppiB, encoding two cyclophilin isoforms which belong to the superfamily of peptidyl prolyl cis/trans isomerases (PPIase, EC: 5.2.1.8). Here, we functionally characterize the two proteins and we demonstrate that both recombinant cyclophilins are able to isomerise the Suc-AAPF-pNA synthetic peptide but neither of them displays chaperone function in the citrate synthase thermal aggregation assay. Furthermore, we observe that the expression of both enzymes increases the viability of E. coli BL21 in the presence of abiotic stress conditions such as increased heat and salt concentration. Our results support and strengthen previous high-throughput studies implicating S. meliloti cyclophilins in various stress conditions.

  9. Quantitative isoform-profiling of highly diversified recognition molecules

    PubMed Central

    Schreiner, Dietmar; Simicevic, Jovan; Ahrné, Erik; Schmidt, Alexander; Scheiffele, Peter

    2015-01-01

    Complex biological systems rely on cell surface cues that govern cellular self-recognition and selective interactions with appropriate partners. Molecular diversification of cell surface recognition molecules through DNA recombination and complex alternative splicing has emerged as an important principle for encoding such interactions. However, the lack of tools to specifically detect and quantify receptor protein isoforms is a major impediment to functional studies. We here developed a workflow for targeted mass spectrometry by selected reaction monitoring that permits quantitative assessment of highly diversified protein families. We apply this workflow to dissecting the molecular diversity of the neuronal neurexin receptors and uncover an alternative splicing-dependent recognition code for synaptic ligands. DOI: http://dx.doi.org/10.7554/eLife.07794.001 PMID:25985086

  10. Differential expression of two scribble isoforms during Drosophila embryogenesis.

    PubMed

    Li, M; Marhold, J; Gatos, A; Török, I; Mechler, B M

    2001-10-01

    The tumour suppressor gene scribble (scrib) is required for epithelial polarity and growth control in Drosophila. Here, we report the identification and embryonic expression pattern of two Scrib protein isoforms resulting from alternative splicing during scrib transcription. Both proteins are first ubiquitously expressed during early embryogenesis. Then, during morphogenesis each Scrib protein displays a specific pattern of expression in the central and peripheral nervous systems, CNS and PNS, respectively. During germ band extension, the expression of the longer form Scrib1 occurs predominantly in the neuroblasts derived from the neuro-ectoderm and becomes later restricted to CNS neurones as well as to the pole cells in the gonads. By contrast, the shorter form Scrib2 is strongly expressed in the PNS and a subset of CNS neurones.

  11. Isoforms, structures, and functions of versatile spectraplakin MACF1

    PubMed Central

    Hu, Lifang; Su, Peihong; Li, Runzhi; Yin, Chong; Zhang, Yan; Shang, Peng; Yang, Tuanmin; Qian, Airong

    2016-01-01

    Spectraplakins are crucially important communicators, linking cytoskeletal components to each other and cellular junctions. Microtubule actin crosslinking factor 1 (MACF1), also known as actin crosslinking family 7 (ACF7), is a member of the spectraplakin family. It is expressed in numerous tissues and cells as one extensively studied spectraplakin. MACF1 has several isoforms with unique structures and well-known function to be able to crosslink F-actin and microtubules. MACF1 is one versatile spectraplakin with various functions in cell processes, embryo development, tissue-specific functions, and human diseases. The importance of MACF1 has become more apparent in recent years. Here, we summarize the current knowledge on the presence and function of MACF1 and provide perspectives on future research of MACF1 based on our studies and others. [BMB Reports 2016; 49(1): 37-44] PMID:26521939

  12. Alternative splice isoforms of small conductance calcium-activated SK2 channels differ in molecular interactions and surface levels.

    PubMed

    Scholl, Elizabeth Storer; Pirone, Antonella; Cox, Daniel H; Duncan, R Keith; Jacob, Michele H

    2014-01-01

    Small conductance Ca(2+)-sensitive potassium (SK2) channels are voltage-independent, Ca(2+)-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca(2+) permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3' terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca(2+) and Ca(2+)-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca(2+) influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses.

  13. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning

    PubMed Central

    Vempati, Prakash; Popel, Aleksander S.; Mac Gabhann, Feilim

    2014-01-01

    The regulation of vascular endothelial growth factor A (VEGF) is critical to neovascularization in numerous tissues under physiological and pathological conditions. VEGF has multiple isoforms, created by alternative splicing or proteolytic cleavage, and characterized by different receptor-binding and matrix-binding properties. These isoforms are known to give rise to a spectrum of angiogenesis patterns marked by differences in branching, which has functional implications for tissues. In this review, we detail the extensive extracellular regulation of VEGF and the ability of VEGF to dictate the vascular phenotype. We explore the role of VEGF-releasing proteases and soluble carrier molecules on VEGF activity. While proteases such as MMP9 can ‘release’ matrix-bound VEGF and promote angiogenesis, for example as a key step in carcinogenesis, proteases can also suppress VEGF’s angiogenic effects. We explore what dictates pro- or anti-angiogenic behavior. We also seek to understand the phenomenon of VEGF gradient formation. Strong VEGF gradients are thought to be due to decreased rates of diffusion from reversible matrix binding, however theoretical studies show that this scenario cannot give rise to lasting VEGF gradients in vivo. We propose that gradients are formed through degradation of sequestered VEGF. Finally, we review how different aspects of the VEGF signal, such as its concentration, gradient, matrix-binding, and NRP1-binding can differentially affect angiogenesis. We explore how this allows VEGF to regulate the formation of vascular networks across a spectrum of high to low branching densities, and from normal to pathological angiogenesis. A better understanding of the control of angiogenesis is necessary to improve upon limitations of current angiogenic therapies. PMID:24332926

  14. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  15. DISTRIBUTION OF NOS ISOFORMS IN A PORCINE ENDOTOXIN SHOCK MODEL

    PubMed Central

    Doursout, Marie-Francoise; Oguchi, Takeshi; Fischer, Uwe M.; Liang, YangYan; Chelly, Brice; Hartley, Craig J.; Chelly, Jacques E.

    2012-01-01

    Sepsis is a major cause of morbidity and mortality. NO, an endogenous vasodilator, has been associated with the hypotension, catecholamine hyporesponsiveness, and myocardial depression of septic shock. Although iNOS is thought to be responsible for the hypotension and loss of vascular tone occurring several hours after endotoxin administration, little is known on the effects of constitutive eNOS on LPS-induced organ dysfunction. This study assessed the distribution of eNOS and iNOS in various vascular beds in conscious pigs challenged with LPS. Cardiac and regional hemodynamic parameters were recorded over 8 h in the presence and absence of aminoguanidine, a rather selective inhibitor of iNOS activity, and N-methyl-L-arginine, a nonspecific NOS inhibitor. Our data show that LPS-induced cardiac depression was associated with coronary, renal, and mesenteric vasoconstrictions and a hepatic vasodilatation. LPS also induced increases in eNOS in the heart and lungs, whereas iNOS was mostly detected in the liver. Nitrotyrosine formation was mainly detected in the lungs, with traces in the kidney, liver, and gut. Accordingly, our results suggest that the early decrease in blood pressure and cardiac depression are likely due to activated eNOS, whereas both isoforms are involved in the hepatic vasodilation. In contrast, carotid, coronary, mesenteric, and renal vasoconstrictions were significant at 5 and/or 6 h after LPS infusion, suggesting that NO is not the primary mediator, facilitating and/or unmasking the release of vasoconstrictor mediators. Consequently, developing newer tissue- or isoform-specific NOS inhibitors can lead to novel therapeutic agents in septic shock. PMID:17909454

  16. Genome-wide RNAi screening identifies TMIGD3 isoform1 as a suppressor of NF-κB and osteosarcoma progression

    PubMed Central

    Iyer, Swathi V.; Ranjan, Atul; Elias, Harold K.; Parrales, Alejandro; Sasaki, Hiromi; Roy, Badal C.; Umar, Shahid; Tawfik, Ossama W.; Iwakuma, Tomoo

    2016-01-01

    The ability of cancer cells to survive and grow in anchorage- and serum-independent conditions is well correlated with their aggressiveness. Here, using a human whole-genome shRNA library, we identify TMIGD3 isoform1 (i1) as a factor that suppresses this ability in osteosarcoma (OS) cells, mainly by inhibiting NF-κB activity. Knockdown of TMIGD3 increases proliferation, tumour formation and metastasis of OS cells. Overexpression of TMIGD3 isoform1 (i1), but not isoform3 (i3) which shares a common C-terminal region, suppresses these malignant properties. Adenosine A3 receptor (A3AR) having an identical N-terminal region shows similar biological profiles to TMIGD3 i1. Protein expression of TMIGD3 and A3AR is lower in human OS tissues than normal tissues. Mechanistically, TMIGD3 i1 and A3AR commonly inhibit the PKA−Akt−NF-κB axis. However, TMIGD3 i1 only partially rescues phenotypes induced by A3AR knockdown, suggesting the presence of distinct pathways. Our findings reveal an unappreciated role for TMIGD3 i1 as a suppressor of NF-κB activity and OS progression. PMID:27886186

  17. Absolute quantification of myosin heavy chain isoforms by selected reaction monitoring can underscore skeletal muscle changes in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Peggion, Caterina; Massimino, Maria Lina; Biancotto, Giancarlo; Angeletti, Roberto; Reggiani, Carlo; Sorgato, Maria Catia; Bertoli, Alessandro; Stella, Roberto

    2017-03-01

    Skeletal muscle fibers contain different isoforms of myosin heavy chain (MyHC) that define distinctive contractile properties. In light of the muscle capacity to adapt MyHC expression to pathophysiological conditions, a rapid and quantitative assessment of MyHC isoforms in small muscle tissue quantities would represent a valuable diagnostic tool for (neuro)muscular diseases. As past protocols did not meet these requirements, in the present study we applied a targeted proteomic approach based on selected reaction monitoring that allowed the absolute quantification of slow and fast MyHC isoforms in different mouse skeletal muscles with high reproducibility. This mass-spectrometry-based method was validated also in a pathological specimen, by comparison of the MyHC expression profiles in different muscles from healthy mice and a genetic mouse model of amyotrophic lateral sclerosis (ALS) expressing the SOD1(G93A) mutant. This analysis showed that terminally ill ALS mice have a fast-to-slow shift in the fiber type composition of the tibialis anterior and gastrocnemius muscles, as previously reported. These results will likely open the way to accurate and rapid diagnoses of human (neuro)muscular diseases by the proposed method. Graphical Abstract Methods for myosin heavy chain (MyHC) quantification: a comparison of classical methods and selected reaction monitoring (SRM)-based mass spectrometry approaches.

  18. Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression.

    PubMed

    Wagener, F A; da Silva, J L; Farley, T; de Witte, T; Kappas, A; Abraham, N G

    1999-10-01

    Heme oxygenase (HO), by catabolizing heme to bile pigments, down-regulates cellular hemoprotein, hemoglobin, and heme; the latter generates pro-oxidant products, including free radicals. Two HO isozymes, the products of distinct genes, have been described; HO-1 is the inducible isoform, whereas HO-2 is suggested to be constitutively expressed. We studied the inducing effect of several metal compounds (CoCl(2), stannic mesoporphyrin, and heme) on HO activity. Additionally, we studied HO-1 expression in experimental models of adhesion molecule expression produced by heme in endothelial cells, and the relationship of HO-1 expression to the induced adhesion molecules. Flow cytometry analysis showed that heme induces intracellular adhesion molecule 1 (ICAM-1) expression in a concentration (10-100 microM)- and time (1-24 h)-dependent fashion in human umbilical vein endothelial cells. Pretreatment with stannic mesoporphyrin, an inhibitor of HO activity, caused a 2-fold increase in heme-induced ICAM-1 expression. In contrast, HO induction by CoCl(2) decreased heme-induced ICAM-1 expression by 33%. To examine the contribution of HO-1 and HO-2 to endothelial HO activity, specific antisense oligonucleotides (ODNs) of each isoform were tested for their specificity to inhibit HO activity in cells exposed to heme. Endothelial cells exposed to heme elicited increased HO activity, which was prevented (70%) by HO-1 antisense ODNs. HO-2 antisense ODN inhibited heme-induced HO activity by 21%. Addition of HO-1 antisense ODNs prevented heme degradation and resulted in elevation of microsomal heme. Western blot analysis showed that HO-1 antisense ODNs selectively inhibited HO-1 protein and failed to inhibit HO-2 protein. Incubation of endothelial cells with HO-1 antisense enhanced heme-dependent increase of ICAM-1. In contrast, addition of HO-2 antisense to endothelial cells failed to increase adhesion molecules. The role of glutathione, an important antioxidant, was examined on heme

  19. The mouse dead-end gene isoform α is necessary for germ cell and embryonic viability

    PubMed Central

    Bhattacharya, Chitralekha; Aggarwal, Sita; Zhu, Rui; Kumar, Madhu; Zhao, Ming; Meistrich, Marvin L.; Matin, Angabin

    2007-01-01

    Inactivation of the dead-end (Dnd1) gene in the Ter mouse strain results in depletion of primordial germ cells (PGCs) so that mice become sterile. However, on the 129 mouse strain background, loss of Dnd1 also increases testicular germ cell tumor incidence in parallel to PGC depletion. We report that inactivation of Dnd1 also affects embryonic viability in the 129 strain. Mouse Dnd1 encodes two protein isoforms, DND1-isoform α (DND1- α) and DND1-isoform β (DND1-β). Using isoform specific antibodies, we determined DND1-α is expressed in embryos and embryonic gonads whereas DND1-β expression is restricted to germ cells of the adult testis. Our data implicates DND1-α isoform to be necessary for germ cell viability and therefore its loss in Ter mice results in PGC depletion, germ cell tumor development and partial embryonic lethality in the 129 strain. PMID:17291453

  20. Pharmacological targeting of PI3K isoforms as a therapeutic strategy in chronic lymphocytic leukaemia

    PubMed Central

    Blunt, Matthew D.; Steele, Andrew J.

    2015-01-01

    PI3Kδ inhibitors such as idelalisib are providing improved therapeutic options for the treatment of chronic lymphocytic leukaemia (CLL). However under certain conditions, inhibition of a single PI3K isoform can be compensated by the other PI3K isoforms, therefore PI3K inhibitors which target multiple PI3K isoforms may provide greater efficacy. The development of compounds targeting multiple PI3K isoforms (α, β, δ, and γ) in CLL cells, in vitro, resulted in sustained inhibition of BCR signalling but with enhanced cytotoxicity and the potential for improve clinical responses. This review summarises the progress of PI3K inhibitor development and describes the rationale and potential for targeting multiple PI3K isoforms. PMID:26500849

  1. Dissecting signalling by individual Akt/PKB isoforms, three steps at once.

    PubMed

    Osorio-Fuentealba, Cesar; Klip, Amira

    2015-09-01

    The serine/threonine kinase Akt/PKB (protein kinase B) is key for mammalian cell growth, survival, metabolism and oncogenic transformation. The diverse level and tissue expression of its three isoforms, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ, make it daunting to identify isoform-specific actions in vivo and even in isolated tissues/cells. To date, isoform-specific knockout and knockdown have been the best strategies to dissect their individual overall functions. In a recent article in the Biochemical Journal, Kajno et al. reported a new strategy to study isoform selectivity in cell lines. Individual Akt/PKB isoforms in 3T3-L1 pre-adipocytes are first silenced via shRNA and stable cellular clones lacking one or the other isoform are selected. The stably silenced isoform is then replaced by a mutant engineered to be refractory to inhibition by MK-2206 (Akt1(W80A) or Akt2(W80A)). Akt1(W80A) or Akt2(W80A) are functional and effectively recruited to the plasma membrane in response to insulin. The system affords the opportunity to acutely control the activity of the endogenous non-silenced isoform through timely addition of MK-2206. Using this approach, it is confirmed that Akt1/PKBα is the preferred isoform sustaining adipocyte differentiation, but both Akt1/PKBα and Akt2/PKBβ can indistinctly support insulin-dependent FoxO1 (forkhead box O1) nuclear exclusion. Surprisingly, either isoform can also support insulin-dependent glucose transporter (GLUT) 4 translocation to the membrane, in contrast with the preferential role of Akt2/PKBβ assessed by knockdown studies. The new strategy should allow analysis of the plurality of Akt/PKB functions in other cells and in response to other stimuli. It should also be amenable to high-throughput studies to speed up advances in signal transmission by this pivotal kinase.

  2. Protein production, crystallization and preliminary X-ray analysis of two isoforms of the Dscam1 Ig7 domain

    PubMed Central

    Li, Shu-Ang; Cheng, Linna; Yu, Yamei; Chen, Qiang

    2015-01-01

    Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) plays a critical role in neural development. It can potentially form 38 016 isoforms through alternative RNA splicing, and exhibits isoform-specific homophilic interaction through three variable Ig domains (Ig2, Ig3 and Ig7). The diversity and homophilic interaction are essential for its functions. Ig7 has 33 isoforms and is the most variable among the three variable Ig domains. However, only one isoform of Ig7 (isoform 30) has been structurally determined to date. Here, two isoforms of Dscam1 Ig7 (isoforms 5 and 9; Ig75 and Ig79) were produced and crystallized. Diffraction data from Ig75 and Ig79 crystals were processed to resolutions of 1.95 and 2.37 Å, respectively. Comparison of different Dscam1 Ig7 isoforms will provide insight into the mechanism of its binding specificity. PMID:25760710

  3. Branchial Cilia and Sperm Flagella Recruit Distinct Axonemal Components

    PubMed Central

    Konno, Alu; Shiba, Kogiku; Cai, Chunhua; Inaba, Kazuo

    2015-01-01

    Eukaryotic cilia and flagella have highly conserved 9 + 2 structures. They are functionally diverged to play cell-type-specific roles even in a multicellular organism. Although their structural components are therefore believed to be common, few studies have investigated the molecular diversity of the protein components of the cilia and flagella in a single organism. Here we carried out a proteomic analysis and compared protein components between branchial cilia and sperm flagella in a marine invertebrate chordate, Ciona intestinalis. Distinct feature of protein recruitment in branchial cilia and sperm flagella has been clarified; (1) Isoforms of α- and β-tubulins as well as those of actins are distinctly used in branchial cilia or sperm flagella. (2) Structural components, such as dynein docking complex, tektins and an outer dense fiber protein, are used differently by the cilia and flagella. (3) Sperm flagella are specialized for the cAMP- and Ca2+-dependent regulation of outer arm dynein and for energy metabolism by glycolytic enzymes. Our present study clearly demonstrates that flagellar or ciliary proteins are properly recruited according to their function and stability, despite their apparent structural resemblance and conservation. PMID:25962172

  4. Distinct purinergic signaling pathways in prepubescent mouse spermatogonia

    PubMed Central

    Mundt, Nadine; Bruentgens, Felicitas; Geilenkirchen, Petra; Machado, Patricia A.; Veitinger, Thomas; Veitinger, Sophie; Lipartowski, Susanne M.; Engelhardt, Corinna H.; Oldiges, Marco; Spehr, Jennifer

    2016-01-01

    Spermatogenesis ranks among the most complex, yet least understood, developmental processes. The physiological principles that control male germ cell development in mammals are notoriously difficult to unravel, given the intricate anatomy and complex endo- and paracrinology of the testis. Accordingly, we lack a conceptual understanding of the basic signaling mechanisms within the testis, which control the seminiferous epithelial cycle and thus govern spermatogenesis. Here, we address paracrine signal transduction in undifferentiated male germ cells from an electrophysiological perspective. We identify distinct purinergic signaling pathways in prepubescent mouse spermatogonia, both in vitro and in situ. ATP—a dynamic, widespread, and evolutionary conserved mediator of cell to cell communication in various developmental contexts—activates at least two different spermatogonial purinoceptor isoforms. Both receptors operate within nonoverlapping stimulus concentration ranges, display distinct response kinetics and, in the juvenile seminiferous cord, are uniquely expressed in spermatogonia. We further find that spermatogonia express Ca2+-activated large-conductance K+ channels that appear to function as a safeguard against prolonged ATP-dependent depolarization. Quantitative purine measurements additionally suggest testicular ATP-induced ATP release, a mechanism that could increase the paracrine radius of initially localized signaling events. Moreover, we establish a novel seminiferous tubule slice preparation that allows targeted electrophysiological recordings from identified testicular cell types in an intact epithelial environment. This unique approach not only confirms our in vitro findings, but also supports the notion of purinergic signaling during the early stages of spermatogenesis. PMID:27574293

  5. Targeting Human Central Nervous System Protein Kinases: An Isoform Selective p38αMAPK Inhibitor That Attenuates Disease Progression in Alzheimer’s Disease Mouse Models

    PubMed Central

    2015-01-01

    The first kinase inhibitor drug approval in 2001 initiated a remarkable decade of tyrosine kinase inhibitor drugs for oncology indications, but a void exists for serine/threonine protein kinase inhibitor drugs and central nervous system indications. Stress kinases are of special interest in neurological and neuropsychiatric disorders due to their involvement in synaptic dysfunction and complex disease susceptibility. Clinical and preclinical evidence implicates the stress related kinase p38αMAPK as a potential neurotherapeutic target, but isoform selective p38αMAPK inhibitor candidates are lacking and the mixed kinase inhibitor drugs that are promising in peripheral tissue disease indications have limitations for neurologic indications. Therefore, pursuit of the neurotherapeutic hypothesis requires kinase isoform selective inhibitors with appropriate neuropharmacology features. Synaptic dysfunction disorders offer a potential for enhanced pharmacological efficacy due to stress-induced activation of p38αMAPK in both neurons and glia, the interacting cellular components of the synaptic pathophysiological axis, to be modulated. We report a novel isoform selective p38αMAPK inhibitor, MW01-18-150SRM (=MW150), that is efficacious in suppression of hippocampal-dependent associative and spatial memory deficits in two distinct synaptic dysfunction mouse models. A synthetic scheme for biocompatible product and positive outcomes from pharmacological screens are presented. The high-resolution crystallographic structure of the p38αMAPK/MW150 complex documents active site binding, reveals a potential low energy conformation of the bound inhibitor, and suggests a structural explanation for MW150’s exquisite target selectivity. As far as we are aware, MW150 is without precedent as an isoform selective p38MAPK inhibitor or as a kinase inhibitor capable of modulating in vivo stress related behavior. PMID:25676389

  6. Distinct fusion properties of synaptotagmin-1 and synaptotagmin-7 bearing dense core granules.

    PubMed

    Rao, Tejeshwar C; Passmore, Daniel R; Peleman, Andrew R; Das, Madhurima; Chapman, Edwin R; Anantharam, Arun

    2014-08-15

    Adrenal chromaffin cells release hormones and neuropeptides that are essential for physiological homeostasis. During this process, secretory granules fuse with the plasma membrane and deliver their cargo to the extracellular space. It was once believed that fusion was the final regulated step in exocytosis, resulting in uniform and total release of granule cargo. Recent evidence argues for nonuniform outcomes after fusion, in which cargo is released with variable kinetics and selectivity. The goal of this study was to identify factors that contribute to the different outcomes, with a focus on the Ca(2+)-sensing synaptotagmin (Syt) proteins. Two Syt isoforms are expressed in chromaffin cells: Syt-1 and Syt-7. We find that overexpressed and endogenous Syt isoforms are usually sorted to separate secretory granules and are differentially activated by depolarizing stimuli. In addition, overexpressed Syt-1 and Syt-7 impose distinct effects on fusion pore expansion and granule cargo release. Syt-7 pores usually fail to expand (or reseal), slowing the dispersal of lumenal cargo proteins and granule membrane proteins. On the other hand, Syt-1 diffuses from fusion sites and promotes the release of lumenal cargo proteins. These findings suggest one way in which chromaffin cells may regulate cargo release is via differential activation of synaptotagmin isoforms.

  7. Distinct regulation of dopamine D2S and D2L autoreceptor signaling by calcium

    PubMed Central

    Gantz, Stephanie C; Robinson, Brooks G; Buck, David C; Bunzow, James R; Neve, Rachael L; Williams, John T; Neve, Kim A

    2015-01-01

    D2 autoreceptors regulate dopamine release throughout the brain. Two isoforms of the D2 receptor, D2S and D2L, are expressed in midbrain dopamine neurons. Differential roles of these isoforms as autoreceptors are poorly understood. By virally expressing the isoforms in dopamine neurons of D2 receptor knockout mice, this study assessed the calcium-dependence and drug-induced plasticity of D2S and D2L receptor-dependent G protein-coupled inwardly rectifying potassium (GIRK) currents. The results reveal that D2S, but not D2L receptors, exhibited calcium-dependent desensitization similar to that exhibited by endogenous autoreceptors. Two pathways of calcium signaling that regulated D2 autoreceptor-dependent GIRK signaling were identified, which distinctly affected desensitization and the magnitude of D2S and D2L receptor-dependent GIRK currents. Previous in vivo cocaine exposure removed calcium-dependent D2 autoreceptor desensitization in wild type, but not D2S-only mice. Thus, expression of D2S as the exclusive autoreceptor was insufficient for cocaine-induced plasticity, implying a functional role for the co-expression of D2S and D2L autoreceptors. DOI: http://dx.doi.org/10.7554/eLife.09358.001 PMID:26308580

  8. China English: Its Distinctive Features

    ERIC Educational Resources Information Center

    Yang, Wei-dong; Dai, Wei-ping

    2011-01-01

    This paper attempts to expound that China English boasting its own distinctive features on the levels of phonology, words, sentences and discourse has been playing an irreplaceable role in intercultural activities, though still in its infancy and in the process of developing and perfecting itself, and it now makes every effort to move towards…

  9. Educational Psychology: The Distinctive Contribution

    ERIC Educational Resources Information Center

    Cameron, R. J.

    2006-01-01

    This paper, written in the twenty-first anniversary year of the journal "Educational Psychology in Practice", attempts to uncover those distinctive aspects of the discipline and the practice of applied psychology in general and educational psychology in particular. After considering some of the reasons for attempting this task at this point in…

  10. Distinctiveness Maps for Image Matching

    NASA Technical Reports Server (NTRS)

    Manduchi, Roberto; Tomasi, Carlo

    2000-01-01

    Stereo correspondence is hard because different image features can look alike. We propose a measure for the ambiguity of image points that allows matching distinctive points first and breaks down the matching task into smaller and separate subproblems. Experiments with an algorithm based on this measure demonstrate the ensuing efficiency and low likelihood of incorrect matches.

  11. Regulation of Cardiac Remodeling by Cardiac Na(+)/K(+)-ATPase Isoforms.

    PubMed

    Liu, Lijun; Wu, Jian; Kennedy, David J

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na(+)/K(+)-ATPase has multiple α isoforms (1-3). The expression of the α subunit of the Na(+)/K(+)-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na(+)/K(+)-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na(+)/K(+)-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na(+)/K(+)-ATPase regulates intracellular Ca(2+) signaling, contractility and pathological hypertrophy. The α3 isoform of the Na(+)/K(+)-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na(+)/K(+)-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na(+)/K(+)-ATPase in the cardiomyocytes. (2) the role of cardiac Na(+)/K(+)-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na(+)/K(+)-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  12. Inulin isoforms differ by repeated additions of one crystal unit cell.

    PubMed

    Cooper, Peter D; Barclay, Thomas G; Ginic-Markovic, Milena; Gerson, Andrea R; Petrovsky, Nikolai

    2014-03-15

    Inulin isoforms, especially delta inulin, are important biologically as immune activators and clinically as vaccine adjuvants. In exploring action mechanisms, we previously found regular increments in thermal properties of the seven-member inulin isoform series that suggested regular additions of some energetic structural unit. Because the previous isolates carried additional longer chains that masked defining ranges, these were contrasted with new isoform isolates comprising only inulin chain lengths defining that isoform. The new series began with 19 fructose units per chain (alpha-1 inulin), increasing regularly by 6 fructose units per isoform. Thus the 'energetic unit' equates to 6 fructose residues per chain. All isoforms showed indistinguishable X-ray diffraction patterns that were also identical with known inulin crystals. We conclude that an 'energetic unit' equates to one helix turn of 6 fructose units per chain as found in one unit cell of the inulin crystal. Each isoform chain comprised progressively more helix turns plus one additional fructose and glucose residues per chain.

  13. Cloning and Characterisation of Multiple Ferritin Isoforms in the Atlantic Salmon (Salmo salar)

    PubMed Central

    Lee, Jun-Hoe; Pooley, Nicholas J.; Mohd-Adnan, Adura; Martin, Samuel A. M.

    2014-01-01

    Ferritin is a highly-conserved iron-storage protein that has also been identified as an acute phase protein within the innate immune system. The iron-storage function is mediated through complementary roles played by heavy (H)-chain subunit as well as the light (L) in mammals or middle (M)-chain in teleosts, respectively. In this study, we report the identification of five ferritin subunits (H1, H2, M1, M2, M3) in the Atlantic salmon that were supported by the presence of iron-regulatory regions, gene structure, conserved domains and phylogenetic analysis. Tissue distribution analysis across eight different tissues showed that each of these isoforms is differentially expressed. We also examined the expression of the ferritin isoforms in the liver and kidney of juvenile Atlantic salmon that was challenged with Aeromonas salmonicida as well as in muscle cell culture stimulated with interleukin-1β. We found that each isoform displayed unique expression profiles, and in certain conditions the expressions between the isoforms were completely diametrical to each other. Our study is the first report of multiple ferritin isoforms from both the H- and M-chains in a vertebrate species, as well as ferritin isoforms that showed decreased expression in response to infection. Taken together, the results of our study suggest the possibility of functional differences between the H- and M-chain isoforms in terms of tissue localisation, transcriptional response to bacterial exposure and stimulation by specific immune factors. PMID:25078784

  14. Regulation of Cardiac Remodeling by Cardiac Na+/K+-ATPase Isoforms

    PubMed Central

    Liu, Lijun; Wu, Jian; Kennedy, David J.

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1–3). The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2) the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling. PMID:27667975

  15. Identification of a Genetic Factor Required for High γ-Isoform Concentration in Rice Vitamin E.

    PubMed

    Sekine, Daisuke; Murata, Kazumasa; Kimura, Toshiyuki; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2016-12-14

    The γ-isoforms of tocopherols (Tc) and tocotrienols (T3) possess high biological activities in comparison to the α-isoforms. The concentrations of Tc and T3 isoforms in rice (Oriza sativa) was cultivar-dependent. Using chromosome segment substitution lines (CSSLs) and near isogenic lines (NILs) of indica cultivar "Kasalath" in a japonica cultivar "Koshihikari" genetic background, the Kasalath genomic segment on chromosome 2 was determined to be responsible for the high γ-isoform concentration: γ-tocopherol methyltransferase (γ-TMT) was identified as a candidate gene. An amino acid substitution in the coding region and several nucleotide polymorphisms, including an insertion of 10 base pairs in the promoter region, were identified. Gene expression analysis revealed that low expression levels of the γ-TMT gene in Kasalath were not associated with the γ-isoform concentration. Genetic variations in the coding region of the γ-TMT gene may play a major role in determining the γ-isoform concentration. This information could be used to breed rice with a high γ-isoform content.

  16. Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2.

    PubMed

    Ponissery Saidu, Samsudeen; Stephan, Aaron B; Talaga, Anna K; Zhao, Haiqing; Reisert, Johannes

    2013-06-01

    Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca(2+)-activated Cl(-) channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5' rapid amplification of cDNA ends analysis was conducted to characterize the 5' end of olfactory Ano2 transcripts, which showed that the most abundant Ano2 transcripts in the olfactory epithelium contain a novel starting exon that encodes a translation initiation site, whereas transcripts of the publically available sequence variant, which has an alternative and longer 5' end, were present in lower abundance. With two alternative starting exons and alternative splicing of exon 4, four olfactory ANO2 isoforms are thus possible. Patch-clamp experiments in transfected HEK293T cells expressing these isoforms showed that N-terminal sequences affect Ca(2+) sensitivity and that the exon 4-encoded sequence is required to form functional channels. Coexpression of the two predominant isoforms, one with and one without the exon 4 sequence, as well as coexpression of the two rarer isoforms showed alterations in channel properties, indicating that different isoforms interact with each other. Furthermore, channel properties observed from the coexpression of the predominant isoforms better recapitulated the native channel properties, suggesting that the native channel may be composed of two or more splicing isoforms acting as subunits that together shape the channel properties.

  17. Human Corin Isoforms with Different Cytoplasmic Tails That Alter Cell Surface Targeting*

    PubMed Central

    Qi, Xiaofei; Jiang, Jingjing; Zhu, Mingqing; Wu, Qingyu

    2011-01-01

    Corin is a cardiac serine protease that activates natriuretic peptides. It consists of an N-terminal cytoplasmic tail, a transmembrane domain, and an extracellular region with a C-terminal trypsin-like protease domain. The transmembrane domain anchors corin on the surface of cardiomyocytes. To date, the function of the corin cytoplasmic tail remains unknown. By examining the difference between human and mouse corin cytoplasmic tails, analyzing their gene sequences, and verifying mRNA expression in hearts, we show that both human and mouse corin genes have alternative exons encoding different cytoplasmic tails. Human corin isoforms E1 and E1a have 45 and 15 amino acids, respectively, in their cytoplasmic tails. In transfected HEK 293 cells and HL-1 cardiomyocytes, corin isoforms E1 and E1a were expressed at similar levels. Compared with isoform E1a, however, isoform E1 was more active in processing natriuretic peptides. By cell surface labeling, glycosidase digestion, Western blotting, and flow cytometry, we found that corin isoform E1 was activated more readily as a result of more efficient cell surface targeting. By mutagenesis, we identified a DDNN motif in the cytoplasmic tail of isoform E1 (which is absent in isoform E1a) that promotes corin surface targeting in both HEK 293 and HL-1 cells. Our data indicate that the sequence in the cytoplasmic tail plays an important role in corin cell surface targeting and zymogen activation. PMID:21518754

  18. The isolation of parvalbumin isoforms from the tail muscle of the American alligator (Alligator mississipiensis).

    PubMed

    Laney, E L; Shabanowitz, J; King, G; Hunt, D F; Nelson, D J

    1997-04-01

    Multiple parvalbumin isoforms have been detected in the tail (skeletal) muscle of the American alligator (Alligator mississipiensis). One of these isoforms (APV-1) has been highly purified and partially characterized. Protein purification involved mainly gel filtration and anion exchange chromatography, and characterization included gel electrophoresis, amino acid composition analysis, metal ion analysis, MALDI-TOF and ESI mass spectrometry, ultraviolet and fluorescence spectroscopy, and one- and two-dimensional 500 MHz proton NMR spectroscopy. The alligator isoforms are rich in phenylalanine and deficient in the other aromatic residues as is typical for parvalbumins. In fact, the one highly purified isoform that forms the basis of this study has only phenyl-alanine as an aromatic residue. Ion exchange chromatography further indicates that this isoform has a relatively high isoelectric point (pl approximately 5.0), indicating that it is an alpha-lineage parvalbumin. This alligator parvalbumin isoform is unusual in that it has an atypically high Ca2+ content (almost 3.0 mole of Ca2+ per mole of protein) following purification, a fact supported by terbium fluorescence titration experiments. Preliminary comparative analysis of the highly purified alligator parvalbumin isoform (in the Ca2-loaded state) by two-dimensional 1H-NMR (2D 1H TOCSY and 2D 1H NOESY) indicates that there is considerable similarity in structure between the alligator protein and a homologous protein obtained from the silver hake (a saltwater fish species).

  19. Identification and evolutionary analysis of tissue-specific isoforms of mitochondrial complex I subunit NDUFV3.

    PubMed

    Guerrero-Castillo, Sergio; Cabrera-Orefice, Alfredo; Huynen, Martijn A; Arnold, Susanne

    2017-03-01

    Mitochondrial complex I is the largest respiratory chain complex. Despite the enormous progress made studying its structure and function in recent years, potential regulatory roles of its accessory subunits remained largely unresolved. Complex I gene NDUFV3, which occurs in metazoa, contains an extra exon that is only present in vertebrates and thereby evolutionary even younger than the rest of the gene. Alternative splicing of this extra exon gives rise to a short NDUFV3-S and a long NDUFV3-L protein isoform. Complexome profiling revealed that the two NDUFV3 isoforms are constituents of the multi-subunit complex I. Further mass spectrometric analyses of complex I from different murine and bovine tissues showed a tissue-specific expression pattern of NDUFV3-S and NDUFV3-L. Hence, NDUFV3-S was identified as the only isoform in heart and skeletal muscle, whereas in liver, brain, and lung NDUFV3-L was expressed as the dominant isoform, together with NDUFV3-S present in all tissues analyzed. Thus, we identified NDUFV3 as the first out of 30 accessory subunits of complex I present in vertebrate- and tissue-specific isoforms. Interestingly, the tissue-specific expression pattern of NDUFV3-S and NDUFV3-L isoforms was paralleled by changes in kinetic parameters, especially the substrate affinity of complex I. This may indicate a regulatory role of the NDUFV3 isoforms in different vertebrate tissues.

  20. Diversification of importin-α isoforms in cellular trafficking and disease states

    PubMed Central

    Pumroy, Ruth A.; Cingolani, Gino

    2015-01-01

    The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-β-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific isoforms. We illustrate how the diversification of the adaptor importin α into seven isoforms expands the dynamic range and regulatory control of nucleocytoplasmic transport, offering unexpected opportunities for pharmacological intervention. The emerging view of importin α is that of a key signalling molecule, with isoforms that confer preferential nuclear entry and spatiotemporal specificity on viral and cellular cargoes directly linked to human diseases. PMID:25656054

  1. Urinary human chorionic gonadotropin isoform concentrations in doping control samples.

    PubMed

    Butch, Anthony W; Woldemariam, Getachew A

    2016-11-01

    Anti-doping laboratories routinely use immunoassays to measure urinary concentrations of human chorionic gonadotropin (hCG). To minimize immunoassay differences and false positive screen results from inactive isoforms (free β-subunit (hCGβ), β-subunit core fragment (hCGβcf)) laboratories now use intact hCG instead of total hCG immunoassays to measure hCG. To determine the distribution of hCG isoforms in urine, we determined the concentrations of intact hCG, hCGβ, and hCGβcf in male urine samples based on immunoassay total hCG concentrations using a sequential immunoextraction and a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. hCG was isolated using antibody-conjugated magnetic beads and unique tryptic peptides were quantified by LC-MS/MS. Negative samples with detectable but low total hCG concentrations (1.2-3.5 pmol/L) had intact and hCGβ concentrations <1.2 pmol/L, and hCGβcf concentrations <2.3 pmol/L by LC-MS/MS. Urine samples from an athlete receiving hCG had intact hCG concentrations ranging from 18.8 to 57.6 pmol/L, hCGβ concentrations <0.7 pmol/L, and hCGβcf concentrations ranging from 94 to 243% of the intact hCG concentration. In 27 atypical samples with total hCG concentrations ranging from 16.7 to 412.7 pmol/L with intact hCG <2.7 pmol/L by immunoassay, all samples had intact hCG concentrations <3.8 pmol/L and hCGβ concentrations <6.2 pmol/L by LC-MS/MS. hCGβcf concentrations by LC-MS/MS varied widely and ranged from 1.03 to 21.9 pmol/L. In summary, total hCG immunoassays significantly overestimate hCG concentrations and can produce false positive results. Although the intact hCG immunoassay slightly overestimates hCG concentrations compared to LC-MS/MS, it can distinguish between cases of hCG use and atypical cases with elevated total hCG concentrations. Copyright © 2016 John Wiley & Sons, Ltd.

  2. The polysaccharide inulin is characterized by an extensive series of periodic isoforms with varying biological actions.

    PubMed

    Cooper, Peter D; Barclay, Thomas G; Ginic-Markovic, Milena; Petrovsky, Nikolai

    2013-10-01

    In studying the molecular basis for the potent immune activity of previously described gamma and delta inulin particles and to assist in production of inulin adjuvants under Good Manufacturing Practice, we identified five new inulin isoforms, bringing the total to seven plus the amorphous form. These isoforms comprise the step-wise inulin developmental series amorphous → alpha-1 (AI-1) → alpha-2 (AI-2) → gamma (GI) → delta (DI) → zeta (ZI) → epsilon (EI) → omega (OI) in which each higher isoform can be made either by precipitating dissolved inulin or by direct conversion from its precursor, both cases using regularly increasing temperatures. At higher temperatures, the shorter inulin polymer chains are released from the particle and so the key difference between isoforms is that each higher isoform comprises longer polymer chains than its precursor. An increasing trend of degree of polymerization is confirmed by end-group analysis using (1)H nuclear magnetic resonance spectroscopy. Inulin isoforms were characterized by the critical temperatures of abrupt phase-shifts (solubilizations or precipitations) in water suspensions. Such (aqueous) "melting" or "freezing" points are diagnostic and occur in strikingly periodic steps reflecting quantal increases in noncovalent bonding strength and increments in average polymer lengths. The (dry) melting points as measured by modulated differential scanning calorimetry similarly increase in regular steps. We conclude that the isoforms differ in repeated increments of a precisely repeating structural element. Each isoform has a different spectrum of biological activities and we show the higher inulin isoforms to be more potent alternative complement pathway activators.

  3. Detection of VEGF-A(xxx)b isoforms in human tissues.

    PubMed

    Bates, David O; Mavrou, Athina; Qiu, Yan; Carter, James G; Hamdollah-Zadeh, Maryam; Barratt, Shaney; Gammons, Melissa V; Millar, Ann B; Salmon, Andrew H J; Oltean, Sebastian; Harper, Steven J

    2013-01-01

    Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls.

  4. Application of denaturing gradient gel electrophoresis to detect DNA sequence differences encoding apolipoprotein E isoforms

    SciTech Connect

    Parker, S.; Angelico, M.C.; Laffel, L.; Krolewski, A.S. Harvard Medical School, Boston, MA )

    1993-04-01

    Apolipoprotein E (apoE) plays an important role in plasma lipid metabolism. Three common isoforms of this protein have been identified by the isoelectric focusing method. In this report the authors describe a new method for distinguishing these isoforms. Their method employs PCR amplification of the DNA sequence of exon 4 in the apoE gene followed by denaturing gradient gel electrophoresis (DGGE) to distinguish its different melting characteristics. Identification of the ApoE isoforms through DNA melting behavior rather than protein charge differences eliminates the problems associated with isoelectric focusing and facilitates screening for additional mutations at the apoE locus. 12 refs., 2 figs.

  5. Nitric oxide synthases activation and inhibition by metallacarborane-cluster-based isoform-specific affectors.

    PubMed

    Kaplánek, Robert; Martásek, Pavel; Grüner, Bohumír; Panda, Satya; Rak, Jakub; Masters, Bettie Sue Siler; Král, Vladimír; Roman, Linda J

    2012-11-26

    A small library of boron-cluster- and metallacarborane-cluster-based ligands was designed, prepared, and tested for isoform-selective activation or inhibition of the three nitric oxide synthase isoforms. On the basis of the concept of creating a hydrophobic analogue of a natural substrate, a stable and nontoxic basic boron cluster system, previously used for boron neutron capture therapy, was modified by the addition of positively charged moieties to its periphery, providing hydrophobic and nonclassical hydrogen bonding interactions with the protein. Several of these compounds show efficacy for inhibition of NO synthesis with differential effects on the various nitric oxide synthase isoforms.

  6. Molecular heterogeneity of photosystem I. psaD, psaE, psaF, psaH, and psaL are all present in isoforms in Nicotiana spp.

    PubMed

    Obokata, J; Mikami, K; Hayashida, N; Nakamura, M; Sugiura, M

    1993-08-01

    The protein composition of photosystem I (PSI) was examined in Nicotiana spp. by high-resolution polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and immunoblot analysis. Five PSI proteins show polymorphism in an amphidiploid species, Nicotiana tabacum, but not in its ancestral diploid species, Nicotiana sylvestris and Nicotiana tomentosiformis. These Nicotiana spp. appear to have at least 18 PSI proteins per genome that range in molecular mass from 3 to 20 kD. They include the products of nuclear genes psaD, psaE, psaF, psaG, psaH, psaK, and psaL, the product of chloroplast gene psaC, N-terminally blocked proteins of 4.5 and 3.0 kD, and an unidentified protein of 12.5 kD. The psaD, psaF, psaH, and psaL products have two isoforms each that are distinguished by different mobilities in polyacrylamide gel electrophoresis, and the psaE product has four isoforms. The two isoforms of the psaD product have distinct amino acid sequences, indicating that they are encoded by different genes within the genome. Four isoforms of the psaE products can be classified into two groups by N-terminal amino acid sequence, indicating that at least two psaE genes are present in the genome. To examine whether the polymorphic nature of PSI is peculiar to Nicotiana spp., we carried out immunoblot analysis of the psaD and psaE products in isogenic lines of tomato (Lycopersicon esculentum), Arabidopsis thaliana, red bean (Vigna angularis), and corn (Zea mays). Two electrophoretically distinct isoforms were found for the psaD products of tomato, A. thaliana, and corn, and two isoforms of psaE products were detected in tomato, A. thaliana, and red bean. These results suggest that the nuclear-encoded subunits of PSI, except for the psaG and psaK products, generally have two isoforms.

  7. Differential susceptibility of RAE-1 isoforms to mouse cytomegalovirus.

    PubMed

    Arapovic, Jurica; Lenac, Tihana; Antulov, Ronald; Polic, Bojan; Ruzsics, Zsolt; Carayannopoulos, Leonidas N; Koszinowski, Ulrich H; Krmpotic, Astrid; Jonjic, Stipan

    2009-08-01

    The NKG2D receptor is one of the most potent activating natural killer cell receptors involved in antiviral responses. The mouse NKG2D ligands MULT-1, RAE-1, and H60 are regulated by murine cytomegalovirus (MCMV) proteins m145, m152, and m155, respectively. In addition, the m138 protein interferes with the expression of both MULT-1 and H60. We show here that one of five RAE-1 isoforms, RAE-1delta, is resistant to downregulation by MCMV and that this escape has functional importance in vivo. Although m152 retained newly synthesized RAE-1delta and RAE-1gamma in the endoplasmic reticulum, no viral regulator was able to affect the mature RAE-1delta form which remains expressed on the surfaces of infected cells. This differential susceptibility to downregulation by MCMV is not a consequence of faster maturation of RAE-1delta compared to RAE-1gamma but rather an intrinsic property of the mature surface-resident protein. This difference can be attributed to the absence of a PLWY motif from RAE-1delta. Altogether, these findings provide evidence for a novel mechanism of host escape from viral immunoevasion of NKG2D-dependent control.

  8. Splice isoform estrogen receptors as integral transmembrane proteins.

    PubMed

    Kim, Kyung Hee; Toomre, Derek; Bender, Jeffrey R

    2011-11-01

    In addition to enhancing or repressing transcription, steroid hormone receptors rapidly transduce kinase activation signals. On ligand engagement, an N-terminus-truncated splice isoform of estrogen receptor (ER) α, ER46, triggers membrane-initiated signals, resulting in endothelial nitric oxide synthase (eNOS) activation and endothelial NO production. The orientation of ER46 at the plasma membrane is incompletely defined. With the use of ecliptic pHluorin-fused ER46, total internal reflection fluorescence microscopy in live human endothelial cells illustrates that ER46 can topologically conform to a type I transmembrane protein structure. Mutation of isoleucine-386 at the center of ER46's transmembrane hydrophobic core prevents membrane spanning, obscures the N-terminal ectodomain, and effects a marked reduction in membrane-impermeant estrogen binding with diminished rapid eNOS activation and NO production, despite maintained genomic induction of an estrogen response element-luciferase reporter. Thus there exist pools of transmembrane steroid hormone receptors that are efficient signaling molecules and potential novel therapeutic targets.

  9. Muscle type-specific myosin isoforms in crustacean muscles.

    PubMed

    LaFramboise, W A; Griffis, B; Bonner, P; Warren, W; Scalise, D; Guthrie, R D; Cooper, R L

    2000-01-01

    Differential expression of multiple myosin heavy chain (MyHC) genes largely determines the diversity of critical physiological, histochemical, and enzymatic properties characteristic of skeletal muscle. Hypotheses to explain myofiber diversity range from intrinsic control of expression based on myoblast lineage to extrinsic control by innervation, hormones, and usage. The unique innervation and specialized function of crayfish (Procambarus clarkii) appendicular and abdominal musculature provide a model to test these hypotheses. The leg opener and superficial abdominal extensor muscles are innervated by tonic excitatory motoneurons. High resolution SDS-PAGE revealed that these two muscles express the same MyHC profile. In contrast, the deep abdominal extensor muscles, innervated by phasic motoneurons, express MyHC profiles different from the tonic profiles. The claw closer muscles are dually innervated by tonic and phasic motoneurons and a mixed phenotype was observed, albeit biased toward the phasic profile seen in the closer muscle. These results indicate that multiple MyHC isoforms are present in the crayfish and that differential expression is associated with diversity of muscle type and function.

  10. Metabolism of hydroxylated PCB congeners by cloned laccase isoforms.

    PubMed

    Fujihiro, Satoru; Higuchi, Ryusuke; Hisamatsu, Shin; Sonoki, Shigenori

    2009-04-01

    The white-rot fungus T. versicolor UAMH 8272 produced two groups of laccases, each of which included several isoforms showing different isoelectric points (pI). Group 1 and group 2 laccases, respectively, displayed higher pI 5-6 and lower pI 3-4. Of the four cloned full-length laccase cDNAs, Lac 1 and Lac 4 were expressed in the heterologous protein expression system using Aspergillus oryzae. The measured pI of each Lac 1 and Lac 4 expressed in A. oryzae was lower than that of pI predicted from the amino acid composition. With this regard, isoelectric focusing of Lac 1 showed the presence of multiple protein bands in the 3.0-4.0 pI range, although the predicted pI value of Lac 1 was 4.7. Similarly, Lac 4 exhibited a pI value which was lower than that predicted (3.6 vs. 4.3, respectively). In all tested hydroxyPCBs, higher chlorinated hydroxyPCBs were less susceptible to in vitro degradation by laccase than lower chlorinated hydroxyPCBs. Although Lac 4 showed a generally higher activity than Lac 1, the two laccases were characterized by quite different substrate specificity toward two hydroxy-tetrachlorobiphenyl congeners. Two metabolites were obtained from the metabolism of hydroxy-pentachlorobiphenyl: a ten chlorine-substituted dimer with a C-O bond, and one with a C-C bond.

  11. Alternatively spliced orcokinin isoforms and their functions in Tribolium castaneum.

    PubMed

    Jiang, Hongbo; Kim, Hong Geun; Park, Yoonseong

    2015-10-01

    Orcokinin and orcomyotropin were originally described as neuropeptides in crustaceans but have now been uncovered in many species of insects in which they are called orcokinin-A (OK-A) and orcokinin-B (OK-B), respectively. The two groups of mature peptides are products of alternatively spliced transcripts of the single copy gene orcokinin in insects. We investigated the expression patterns and the functions of OK-A and OK-B in the red flour beetle Tribolium castaneum. In situ hybridization and immunohistochemistry using isoform-specific probes and antibodies for each OK-A and OK-B suggests that both peptides are co-expressed in 5-7 pairs of brain cells and in the midgut enteroendocrine cells, which contrasts to expression patterns in other insects in which the two peptides are expressed in different cells. We developed a novel behavioral assay to assess the phenotypes of orcokinin RNA interference (RNAi) in T. castaneum. RNAi of ok-a and ok-b alone or in combination resulted in higher frequencies and longer durations of death feigning in response to mechanical stimulation in the adult assay. In the larval behavioral assays, we observed longer recovery times from knockout induced by water submergence in the insects treated with RNAi for ok-a and ok-b alone or in combination. We conclude that both OK-A and OK-B have "awakening" activities and are potentially involved in the control of circadian rhythms.

  12. Src-independent ERK signaling through the rat α3 isoform of Na/K-ATPase.

    PubMed

    Madan, Namrata; Xu, Yunhui; Duan, Qiming; Banerjee, Moumita; Larre, Isabel; Pierre, Sandrine V; Xie, Zijian

    2017-03-01

    The Na/K-ATPase α1 polypeptide supports both ion-pumping and signaling functions. The Na/K-ATPase α3 polypeptide differs from α1 in both its primary structure and its tissue distribution. The expression of α3 seems particularly important in neurons, and recent clinical evidence supports a unique role of this isoform in normal brain function. The nature of this specific role of α3 has remained elusive, because the ubiquitous presence of α1 has hindered efforts to characterize α3-specific functions in mammalian cell systems. Using Na/K-ATPase α1 knockdown pig kidney cells (PY-17), we generated the first stable mammalian cell line expressing a ouabain-resistant form of rat Na/K-ATPase α3 in the absence of endogenous pig α1 detectable by Western blotting. In these cells, Na/K-ATPase α3 formed a functional ion-pumping enzyme and rescued the expression of Na/K-ATPase β1 and caveolin-1 to levels comparable with those observed in PY-17 cells rescued with a rat Na/K-ATPase α1 (AAC-19). The α3-containing enzymes had lower Na(+) affinity and lower ouabain-sensitive transport activity than their α1-containing counterparts under basal conditions, but showed a greater capacity to be activated when intracellular Na(+) was increased. In contrast to Na/K-ATPase α1, α3 could not regulate Src. Upon exposure to ouabain, Src activation did not occur, yet ERK was activated through Src-independent pathways involving PI3K and PKC. Hence, α3 expression confers signaling and pumping properties that are clearly distinct from that of cells expressing Na/K-ATPase α1.

  13. PKC delta-isoform translocation and enhancement of tonic contractions of gastrointestinal smooth muscle.

    PubMed

    Poole, Daniel P; Furness, John B

    2007-03-01

    PKC is involved in mediating the tonic component of gastrointestinal smooth muscle contraction in response to stimulation by agonists for G protein-coupled receptors. Here, we present pharmacological and immunohistochemical evidence indicating that a member of the novel PKC isoforms, PKC-delta, is involved in maintaining muscarinic receptor-coupled tonic contractions of the guinea pig ileum. The tonic component of carbachol-evoked contractions was enhanced by an activator of conventional and novel PKCs, phorbol 12,13-dibutyrate (PDBu; 200 nM or 1 microM), and by an activator of novel PKCs, ingenol 3,20-dibenzoate (IDB; 100 or 500 nM). Enhancement was unaffected by concentrations of bisindolylmaleimide I (BIM-I; 22 nM) that block conventional PKCs or by a PKC-epsilon-specific inhibitor peptide but was attenuated by higher doses of BIM-I (2.2 microM). Relevant proteins were localized at a cellular and subcellular level using confocal analysis. Immunohistochemical staining of the ileum showed that PKC-delta was exclusively expressed in smooth muscles distributed throughout the layers of the gut wall. PKC-epsilon immunoreactivity was prominent in enteric neurons but was largely absent from smooth muscle of the muscularis externa. Treatment with PDBu, IDB, or carbachol resulted in a time- and concentration-dependent translocation of PKC-delta from the cytoplasm to filamentous structures within smooth muscle cells. These were parallel to, but distinct from, actin filaments. The translocation of PKC-delta in response to carbachol was significantly reduced by scopolamine or calphostin C. The present study indicates that the tonic carbachol-induced contraction of the guinea pig ileum is mediated through a novel PKC, probably PKC-delta.

  14. Grima: A Distinct Emotion Concept?

    PubMed

    Schweiger Gallo, Inge; Fernández-Dols, José-Miguel; Gollwitzer, Peter M; Keil, Andreas

    2017-01-01

    People experience an unpleasant sensation when hearing a scratch on a board or plate. The present research focuses on this aversive experience known in Spanish as 'grima' with no equivalent term in English and German. We hypothesized that this aversive experience constitutes a distinctive, separate emotional concept. In Study 1, we found that the affective meaning of 'grima' was closer to disgust than to other emotion concepts. Thus, in Study 2 we explored the features of grima and compared them with disgust. As grima was reported to be predominantly elicited by certain auditory stimuli and associated with a distinctive physiological pattern, Study 3 used direct measures of physiological arousal to test the assumption of a distinctive pattern of physiological responses elicited by auditory stimuli of grima and disgust, and found different effects on heart rate but not on skin conductance. In Study 4, we hypothesized that only participants with an implementation intention geared toward down-regulating grima would be able to successfully weaken the grima- but not disgust- experience. Importantly, this effect was specific as it held true for the grima-eliciting sounds only, but did not affect disgust-related sounds. Finally, Study 5 found that English and German speakers lack a single accessible linguistic label for the pattern of aversive reactions termed by Spanish speaking individuals as 'grima', whereas the elicitors of other emotions were accessible and accurately identified by German, English, as well as Spanish speakers.

  15. Grima: A Distinct Emotion Concept?

    PubMed Central

    Schweiger Gallo, Inge; Fernández-Dols, José-Miguel; Gollwitzer, Peter M.; Keil, Andreas

    2017-01-01

    People experience an unpleasant sensation when hearing a scratch on a board or plate. The present research focuses on this aversive experience known in Spanish as ‘grima’ with no equivalent term in English and German. We hypothesized that this aversive experience constitutes a distinctive, separate emotional concept. In Study 1, we found that the affective meaning of ‘grima’ was closer to disgust than to other emotion concepts. Thus, in Study 2 we explored the features of grima and compared them with disgust. As grima was reported to be predominantly elicited by certain auditory stimuli and associated with a distinctive physiological pattern, Study 3 used direct measures of physiological arousal to test the assumption of a distinctive pattern of physiological responses elicited by auditory stimuli of grima and disgust, and found different effects on heart rate but not on skin conductance. In Study 4, we hypothesized that only participants with an implementation intention geared toward down-regulating grima would be able to successfully weaken the grima- but not disgust- experience. Importantly, this effect was specific as it held true for the grima-eliciting sounds only, but did not affect disgust-related sounds. Finally, Study 5 found that English and German speakers lack a single accessible linguistic label for the pattern of aversive reactions termed by Spanish speaking individuals as ‘grima’, whereas the elicitors of other emotions were accessible and accurately identified by German, English, as well as Spanish speakers. PMID:28217102

  16. Effect of ovine luteinizing hormone (oLH) charge isoforms on VEGF and cAMP production.

    PubMed

    Montero-Pardo, Arnulfo; Diaz, Daniel; Olivares, Aleida; González-Padilla, Everardo; Murcia, Clara; Gómez-Chavarín, Margarita; Gutiérrez-Ospina, Gabriel; Perera-Marín, Gerardo

    2015-12-01

    Although an increase in VEGF expression and synthesis in association with LH has been established; it is unknown if all LH isoforms act similarly. This study evaluated the production of cAMP and VEGF among LH isoforms in two in vitro bioassays. The LH was obtained from hypophyses and the group of isoforms was isolated by chromatofocusing. cAMP production was assessed using the in vitro bioassay of HEK-293 cells and VEGF production was evaluated in granulosa cells. Immunological activity was measured with a homologous RIA. Immunoactivity and bioactivity for each isoform were compared against a standard, by estimating the IC50 and the EC50. The basic isoforms were more immunoactive than the standard. The neutral and the moderately acidic had an immunological activity similar to the standard. The acidic isoform was the least immunoreactive. cAMP production at the EC50 dose was similar among the basic isoforms, the moderately acidic and the standard; for the neutral and the acidic, the EC50 dose was higher. It was observed that compared with the control, VEGF production at the lowest LH dose was no different in the standard and each isoform. In the intermediate dose, a positive response was caused in the standard and the neutral and basic isoforms. Although the acidic isoform showed a dose-dependent response, it was not significant relative to the control. In conclusion, the basic isoform generated the greatest cAMP and VEGF production, similar to the reference standard, and the acidic the smallest.

  17. BK Polyomavirus Genotypes Represent Distinct Serotypes with Distinct Entry Tropism

    PubMed Central

    Pastrana, Diana V.; Ray, Upasana; Magaldi, Thomas G.; Schowalter, Rachel M.; Çuburu, Nicolas

    2013-01-01

    BK polyomavirus (BKV) causes significant urinary tract pathogenesis in immunosuppressed individuals, including kidney and bone marrow transplant recipients. It is currently unclear whether BKV-neutralizing antibodies can moderate or prevent BKV disease. We developed reporter pseudoviruses based on seven divergent BKV isolates and performed neutralization assays on sera from healthy human subjects. The results demonstrate that BKV genotypes I, II, III, and IV are fully distinct serotypes. While nearly all healthy subjects had BKV genotype I-neutralizing antibodies, a majority of subjects did not detectably neutralize genotype III or IV. Surprisingly, BKV subgenotypes Ib1 and Ib2 can behave as fully distinct serotypes. This difference is governed by as few as two residues adjacent to the cellular glycan receptor-binding site on the virion surface. Serological analysis of mice given virus-like particle (VLP)-based BKV vaccines confirmed these findings. Mice administered a multivalent VLP vaccine showed high-titer serum antibody responses that potently cross-neutralized all tested BKV genotypes. Interestingly, each of the neutralization serotypes bound a distinct spectrum of cell surface receptors, suggesting a possible connection between escape from recognition by neutralizing antibodies and cellular attachment mechanisms. The finding implies that different BKV genotypes have different cellular tropisms and pathogenic potentials in vivo. Individuals who are infected with one BKV serotype may remain humorally vulnerable to other BKV serotypes after implementation of T cell immunosuppression. Thus, prevaccinating organ transplant recipients with a multivalent BKV VLP vaccine might reduce the risk of developing posttransplant BKV disease. PMID:23843634

  18. Differential Expression of Melanopsin Isoforms Opn4L and Opn4S during Postnatal Development of the Mouse Retina

    PubMed Central

    Hughes, Steven; Welsh, Laura; Katti, Christiana; González-Menéndez, Irene; Turton, Michael; Halford, Stephanie; Sekaran, Sumathi; Peirson, Stuart N.; Hankins, Mark W.; Foster, Russell G.

    2012-01-01

    Photosensitive retinal ganglion cells (pRGCs) respond to light from birth and represent the earliest known light detection system to develop in the mouse retina. A number of morphologically and functionally distinct subtypes of pRGCs have been described in the adult retina, and have been linked to different physiological roles. We have previously identified two distinct isoforms of mouse melanopsin, Opn4L and Opn4S, which are generated by alternate splicing of the Opn4 locus. These isoforms are differentially expressed in pRGC subtypes of the adult mouse retina, with both Opn4L and Opn4S detected in M1 type pRGCs, and only Opn4L detected in M2 type pRGCs. Here we investigate the developmental expression of Opn4L and Opn4S and show a differential profile of expression during postnatal development. Opn4S mRNA is detected at relatively constant levels throughout postnatal development, with levels of Opn4S protein showing a marked increase between P0 and P3, and then increasing progressively over time until adult levels are reached by P10. By contrast, levels of Opn4L mRNA and protein are low at birth and show a marked increase at P14 and P30 compared to earlier time points. We suggest that these differing profiles of expression are associated with the functional maturation of M1 and M2 subtypes of pRGCs. Based upon our data, Opn4S expressing M1 type pRGCs mature first and are the dominant pRGC subtype in the neonate retina, whereas increased expression of Opn4L and the maturation of M2 type pRGCs occurs later, between P10 and P14, at a similar time to the maturation of rod and cone photoreceptors. We suggest that the distinct functions associated with these cell types will develop at different times during postnatal development. PMID:22496826

  19. Differential expression of melanopsin isoforms Opn4L and Opn4S during postnatal development of the mouse retina.

    PubMed

    Hughes, Steven; Welsh, Laura; Katti, Christiana; González-Menéndez, Irene; Turton, Michael; Halford, Stephanie; Sekaran, Sumathi; Peirson, Stuart N; Hankins, Mark W; Foster, Russell G

    2012-01-01

    Photosensitive retinal ganglion cells (pRGCs) respond to light from birth and represent the earliest known light detection system to develop in the mouse retina. A number of morphologically and functionally distinct subtypes of pRGCs have been described in the adult retina, and have been linked to different physiological roles. We have previously identified two distinct isoforms of mouse melanopsin, Opn4L and Opn4S, which are generated by alternate splicing of the Opn4 locus. These isoforms are differentially expressed in pRGC subtypes of the adult mouse retina, with both Opn4L and Opn4S detected in M1 type pRGCs, and only Opn4L detected in M2 type pRGCs. Here we investigate the developmental expression of Opn4L and Opn4S and show a differential profile of expression during postnatal development. Opn4S mRNA is detected at relatively constant levels throughout postnatal development, with levels of Opn4S protein showing a marked increase between P0 and P3, and then increasing progressively over time until adult levels are reached by P10. By contrast, levels of Opn4L mRNA and protein are low at birth and show a marked increase at P14 and P30 compared to earlier time points. We suggest that these differing profiles of expression are associated with the functional maturation of M1 and M2 subtypes of pRGCs. Based upon our data, Opn4S expressing M1 type pRGCs mature first and are the dominant pRGC subtype in the neonate retina, whereas increased expression of Opn4L and the maturation of M2 type pRGCs occurs later, between P10 and P14, at a similar time to the maturation of rod and cone photoreceptors. We suggest that the distinct functions associated with these cell types will develop at different times during postnatal development.

  20. A cytoplasmic negative regulator isoform of ATF7 impairs ATF7 and ATF2 phosphorylation and transcriptional activity.

    PubMed

    Diring, Jessica; Camuzeaux, Barbara; Donzeau, Mariel; Vigneron, Marc; Rosa-Calatrava, Manuel; Kedinger, Claude; Chatton, Bruno

    2011-01-01

    Alternative splicing and post-translational modifications are processes that give rise to the complexity of the proteome. The nuclear ATF7 and ATF2 (activating transcription factor) are structurally homologous leucine zipper transcription factors encoded by distinct genes. Stress and growth factors activate ATF2 and ATF7 mainly via sequential phosphorylation of two conserved threonine residues in their activation domain. Distinct protein kinases, among which mitogen-activated protein kinases (MAPK), phosphorylate ATF2 and ATF7 first on Thr71/Thr53 and next on Thr69/Thr51 residues respectively, resulting in transcriptional activation. Here, we identify and characterize a cytoplasmic alternatively spliced isoform of ATF7. This variant, named ATF7-4, inhibits both ATF2 and ATF7 transcriptional activities by impairing the first phosphorylation event on Thr71/Thr53 residues. ATF7-4 indeed sequesters the Thr53-phosphorylating kinase in the cytoplasm. Upon stimulus-induced phosphorylation, ATF7-4 is poly-ubiquitinated and degraded, enabling the release of the kinase and ATF7/ATF2 activation. Our data therefore conclusively establish that ATF7-4 is an important cytoplasmic negative regulator of ATF7 and ATF2 transcription factors.

  1. A Cytoplasmic Negative Regulator Isoform of ATF7 Impairs ATF7 and ATF2 Phosphorylation and Transcriptional Activity

    PubMed Central

    Diring, Jessica; Camuzeaux, Barbara; Donzeau, Mariel; Vigneron, Marc; Rosa-Calatrava, Manuel; Kedinger, Claude; Chatton, Bruno

    2011-01-01

    Alternative splicing and post-translational modifications are processes that give rise to the complexity of the proteome. The nuclear ATF7 and ATF2 (activating transcription factor) are structurally homologous leucine zipper transcription factors encoded by distinct genes. Stress and growth factors activate ATF2 and ATF7 mainly via sequential phosphorylation of two conserved threonine residues in their activation domain. Distinct protein kinases, among which mitogen-activated protein kinases (MAPK), phosphorylate ATF2 and ATF7 first on Thr71/Thr53 and next on Thr69/Thr51 residues respectively, resulting in transcriptional activation. Here, we identify and characterize a cytoplasmic alternatively spliced isoform of ATF7. This variant, named ATF7-4, inhibits both ATF2 and ATF7 transcriptional activities by impairing the first phosphorylation event on Thr71/Thr53 residues. ATF7-4 indeed sequesters the Thr53-phosphorylating kinase in the cytoplasm. Upon stimulus-induced phosphorylation, ATF7-4 is poly-ubiquitinated and degraded, enabling the release of the kinase and ATF7/ATF2 activation. Our data therefore conclusively establish that ATF7-4 is an important cytoplasmic negative regulator of ATF7 and ATF2 transcription factors. PMID:21858082

  2. Neuronal and intestinal protein kinase d isoforms mediate Na+ (salt taste)-induced learning.

    PubMed

    Fu, Ya; Ren, Min; Feng, Hui; Chen, Lu; Altun, Zeynep F; Rubin, Charles S

    2009-08-11

    Ubiquitously expressed protein kinase D (PKD) isoforms are poised to disseminate signals carried by diacylglycerol (DAG). However, the in vivo regulation and functions of PKDs are poorly understood. We show that the Caenorhabditis elegans gene, dkf-2, encodes not just DKF-2A, but also a second previously unknown isoform, DKF-2B. Whereas DKF-2A is present mainly in intestine, we show that DKF-2B is found in neurons. Characterization of dkf-2 null mutants and transgenic animals expressing DKF-2B, DKF-2A, or both isoforms revealed that PKDs couple DAG signals to regulation of sodium ion (Na+)-induced learning. EGL-8 (a phospholipase Cbeta4 homolog) and TPA-1 (a protein kinase Cdelta homolog) are upstream regulators of DKF-2 isoforms in vivo. Thus, pathways containing EGL-8-TPA-1-DKF-2 enable learning and behavioral plasticity by receiving, transmitting, and cooperatively integrating environmental signals targeted to both neurons and intestine.

  3. Proteomics studies confirm the presence of alternative protein isoforms on a large scale

    PubMed Central

    Tress, Michael L; Bodenmiller, Bernd; Aebersold, Ruedi; Valencia, Alfonso

    2008-01-01

    Background Alternative splicing of messenger RNA permits the formation of a wide range of mature RNA transcripts and has the potential to generate a diverse spectrum of functional proteins. Although there is extensive evidence for large scale alternative splicing at the transcript level, there have been no comparable studies demonstrating the existence of alternatively spliced protein isoforms. Results Recent advances in proteomics technology have allowed us to carry out a comprehensive identification of protein isoforms in Drosophila. The analysis of this proteomic data confirmed the presence of multiple alternative gene products for over a hundred Drosophila genes. Conclusions We demonstrate that proteomics techniques can detect the expression of stable alternative splice isoforms on a genome-wide scale. Many of these alternative isoforms are likely to have regions that are disordered in solution, and specific proteomics methodologies may be required to identify these peptides. PMID:19017398

  4. Optimizing the selective recognition of protein isoforms through tuning of nanoparticle hydrophobicity†

    PubMed Central

    Moyano, Daniel F.; Xu, Yisheng; Rotello, Vincent M.

    2014-01-01

    We demonstrate that ligand hydrophobicity can be used to increase affinity and selectivity of binding between monolayer-protected cationic gold nanoparticles and β– lactoglobulin protein isoforms containing two amino acid mutations. PMID:24838611

  5. Sensitivity of small myosin II ensembles from different isoforms to mechanical load and ATP concentration

    NASA Astrophysics Data System (ADS)

    Erdmann, Thorsten; Bartelheimer, Kathrin; Schwarz, Ulrich S.

    2016-11-01

    Based on a detailed crossbridge model for individual myosin II motors, we systematically study the influence of mechanical load and adenosine triphosphate (ATP) concentration on small myosin II ensembles made from different isoforms. For skeletal and smooth muscle myosin II, which are often used in actomyosin gels that reconstitute cell contractility, fast forward movement is restricted to a small region of phase space with low mechanical load and high ATP concentration, which is also characterized by frequent ensemble detachment. At high load, these ensembles are stalled or move backwards, but forward motion can be restored by decreasing ATP concentration. In contrast, small ensembles of nonmuscle myosin II isoforms, which are found in the cytoskeleton of nonmuscle cells, are hardly affected by ATP concentration due to the slow kinetics of the bound states. For all isoforms, the thermodynamic efficiency of ensemble movement increases with decreasing ATP concentration, but this effect is weaker for the nonmuscle myosin II isoforms.

  6. Enhanced expression of two discrete isoforms of matrix metalloproteinase-2 in experimental and human diabetic nephropathy

    PubMed Central

    Bae, Sun Sik; Lee, Min Young; Rhee, Harin; Kim, Il Young; Seong, Eun Young; Lee, Dong Won; Lee, Soo Bong; Kwak, Ihm Soo; Lovett, David H.

    2017-01-01

    Background We recently reported on the enhanced expression of two isoforms of matrix metalloproteinase-2 (MMP-2) in human renal transplantation delayed graft function. These consist of the conventional secreted, full length MMP-2 isoform (FL-MMP-2) and a novel intracellular N-Terminal Truncated isoform (NTT-MMP-2) generated by oxidative stress-mediated activation of an alternate promoter in the MMP-2 first intron. Here we evaluated the effect of hyperglycemia and diabetes mellitus on the in vitro and in vivo expression of the two MMP-2 isoforms. Methods We quantified the abundance of the FL-MMP-2 and NTT-MMP-2 transcripts by qPCR in HK2 cells cultured in high glucose or 4-hydroxy-2-hexenal (HHE) and tested the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). The streptozotocin (STZ) murine model of Type I diabetes mellitus and renal biopsies of human diabetic nephropathy were used in this study. Results Both isoforms of MMP-2 in HK2 cells were upregulated by culture in high glucose or with HHE. PDTC treatment did not suppress high glucose-mediated FL-MMP-2 expression but potently inhibited NTT-MMP-2 expression. With STZ-treated mice, renal cortical expression of both isoforms was increased (FL-MMP-2, 1.8-fold; NTT-MMP-2, greater than 7-fold). Isoform-specific immunohistochemical staining revealed low, but detectable levels of the FL-MMP-2 isoform in controls, while NTT-MMP-2 was not detected. While there was a modest increase in tubular epithelial cell staining for FL-MMP-2 in STZ-treated mice, NTT-MMP-2 was intensely expressed in a basolateral pattern. FL-MMP-2 and NTT-MMP-2 isoform expression as quantified by qPCR were both significantly elevated in renal biopsies of human diabetic nephropathy (12-fold and 3-fold, respectively). Conclusions The expression of both isoforms of MMP-2 was enhanced in an experimental model of diabetic nephropathy and in human diabetic nephropathy. Selective MMP-2 isoform inhibition could offer a novel approach for

  7. Mitochondrial localization of the OAS1 p46 isoform associated with a common single nucleotide polymorphism

    PubMed Central

    2014-01-01

    Background The expression of 2′-5′-Oligoadenylate synthetases (OASs) is induced by type 1 Interferons (IFNs) in response to viral infection. The OAS proteins have a unique ability to produce 2′-5′ Oligoadenylates, which bind and activate the ribonuclease RNase L. The RNase L degrades cellular RNAs which in turn inhibits protein translation and induces apoptosis. Several single nucleotide polymorphisms (SNPs) in the OAS1 gene have been associated with disease. We have investigated the functional effect of two common SNPs in the OAS1 gene. The SNP rs10774671 affects splicing to one of the exons in the OAS1 gene giving rise to differential expression of the OAS1 isoforms, and the SNP rs1131454 (former rs3741981) resides in exon 3 giving rise to OAS1 isoforms with either a Glycine or a Serine at position 162 in the core OAS unit. Results We have used three human cell lines with different genotypes in the OAS1 SNP rs10774671, HeLa cells with the AA genotype, HT1080 cells with AG, and Daudi cells with GG. The main OAS1 isoform expressed in Daudi and HT1080 cells was p46, and the main OAS1 isoform expressed in HeLa cells was p42. In addition, low levels of the OAS1 p52 mRNA was detected in HeLa cells and p48 mRNA in Daudi cells, and trace amounts of p44a mRNA were detected in the three cell lines treated with type 1 interferon. We show that the OAS1 p46 isoform was localized in the mitochondria in Daudi cells, whereas the OAS1 isoforms in HeLa cells were primarily localized in cytoplasmic vacuoles/lysosomes. By using recombinantly expressed OAS1 mutant proteins, we found that the OAS1 SNP rs1131454 (former rs3741981) did not affect the enzymatic OAS1 activity. Conclusions The SNP rs10774671 determines differential expression of the OAS1 isoforms. In Daudi and HT1080 cells the p46 isoform is the most abundantly expressed isoform associated with the G allele, whereas in HeLa cells the most abundantly expressed isoform is p42 associated with the A allele. The SNP rs

  8. Dynamic expression of DNMT3a and DNMT3b isoforms during male germ cell development in the mouse.

    PubMed

    La Salle, Sophie; Trasler, Jacquetta M

    2006-08-01

    In the male germ line, sequence-specific methylation patterns are initially acquired prenatally in diploid gonocytes and are further consolidated after birth during spermatogenesis. It is still unclear how DNA methyltransferases are involved in establishing and/or maintaining these patterns in germ cells, or how their activity is regulated. We compared the temporal expression patterns of the postulated de novo DNA methyltransferases DNMT3a and DNMT3b in murine male germ cells. Mitotic, meiotic and post-meiotic male germ cells were isolated, and expression of various transcript variants and isoforms of Dnmt3a and Dnmt3b was examined using Quantitative RT-PCR and Western blotting. We found that proliferating and differentiating male germ cells were marked by distinctive expression profiles. Dnmt3a2 and Dnmt3b transcripts were at their highest levels in type A spermatogonia, decreased dramatically in type B spermatogonia and preleptotene spermatocytes and rose again in leptotene/zygotene spermatocytes, while Dnmt3a expression was mostly constant, except in type B spermatogonia where it increased. In all cases, expression declined as pachynema progressed. At the protein level, DNMT3a was the predominant isoform in type B spermatogonia, while DNMT3a2, DNMT3b2, and DNMT3b3 were expressed throughout most of spermatogenesis, except in pachytene spermatocytes. We also detected DNMT3a2 and DNMT3b2 in round spermatids. Taken together, these data highlight the tightly regulated expression of these genes during spermatogenesis and provide evidence that DNMTs may be contributing differentially to the establishment and/or maintenance of methylation patterns in male germ cells.

  9. Neuronal co-localization of different isoforms of tachykinin-related peptides (LemTRPs) in the cockroach brain.

    PubMed

    Nässel, Dick R; Winther, Asa M E

    2002-05-01

    Seven isoforms of tachykinin-related peptides (TRPs) have been isolated from the brain of the cockroach Leucophaea maderae. These peptides (LemTRP-1, 2, and 5-9) share the C-terminal sequence GFX(1)GX(2)Ramide (where X(1) and X(2) are variable residues). In order to determine the neuronal distribution of several of these LemTRP isoforms, we raised antisera to their variable N-termini. Antisera to LemTRP-1, 2, 3, 7, and 8 were utilized for immunocytochemistry on cryostat sections of the L. maderae brain. As expected, the gut peptide LemTRP-3 was not detected in the brain, and the antisera to LemTRP-1, 2, and 7 labeled the same sets of neurons in different regions of the brain. These neurons could also be labeled with antisera raised to the more conserved C-termini of LemTRP-1 and the locust TRP LomTK-I. The antiserum to LemTRP-8 predominantly labeled a set of neurons distinct from that seen with any other N- or C-terminus-directed antisera, suggesting that it recognizes epitope(s) other than known insect TRPs. Our findings indicate that at least three of the LemTRPs are always co-localized in neurons of the L. maderae brain. We have also been able to show that LemTRP-2, which is an N-terminally extended form (17-mere) of LemTRP-1 with a dibasic putative cleavage site, is transported throughout the processes of the neurons in the same manner as LemTRP-1 and 7. Thus, LemTRP-2 may be released with the other shorter LemTRPs. This is the first investigation of LemTRP distribution in the cockroach central nervous system utilizing antisera to native peptides.

  10. Chronic coexistence of two troponin T isoforms in adult transgenic mouse cardiomyocytes decreased contractile kinetics and caused dilatative remodeling.

    PubMed

    Yu, Zhi-Bin; Wei, Hongguang; Jin, J-P

    2012-07-01

    Our previous in vivo and ex vivo studies suggested that coexistence of two or more troponin T (TnT) isoforms in adult cardiac muscle decreased cardiac function and efficiency (Huang QQ, Feng HZ, Liu J, Du J, Stull LB, Moravec CS, Huang X, Jin JP, Am J Physiol Cell Physiol 294: C213-C22, 2008; Feng HZ, Jin JP, Am J Physiol Heart Circ Physiol 299: H97-H105, 2010). Here we characterized Ca(2+)-regulated contractility of isolated adult cardiomyocytes from transgenic mice coexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT. Without the influence of extracellular matrix, coexistence of the two TnT isoforms resulted in lower shortening amplitude, slower shortening and relengthening velocities, and longer relengthening time. The level of resting cytosolic Ca(2+) was unchanged, but the peak Ca(2+) transient was lowered and the durations of Ca(2+) rising and decaying were longer in the transgenic mouse cardiomyocytes vs. the wild-type controls. Isoproterenol treatment diminished the differences in shortening amplitude and shortening and relengthening velocities, whereas the prolonged durations of relengthening and Ca(2+) transient in the transgenic cardiomyocytes remained. At rigor state, a result from depletion of Ca(2+), resting sarcomere length of the transgenic cardiomyocytes became shorter than that in wild-type cells. Inhibition of myosin motor diminished this effect of TnT function on cross bridges. The length but not width of transgenic cardiomyocytes was significantly increased compared with the wild-type controls, corresponding to longitudinal addition of sarcomeres and dilatative remodeling at the cellular level. These dominantly negative effects of normal fast TnT demonstrated that chronic coexistence of functionally distinct variants of TnT in adult cardiomyocytes reduces contractile performance with pathological consequences.

  11. Structural and functional differences between KRIT1A and KRIT1B isoforms: a framework for understanding CCM pathogenesis.

    PubMed

    Francalanci, Floriana; Avolio, Maria; De Luca, Elisa; Longo, Dario; Menchise, Valeria; Guazzi, Paolo; Sgrò, Francesco; Marino, Marco; Goitre, Luca; Balzac, Fiorella; Trabalzini, Lorenza; Retta, Saverio Francesco

    2009-01-15

    KRIT1 is a disease gene responsible for Cerebral Cavernous Malformations (CCM). It encodes for a protein containing distinct protein-protein interaction domains, including three NPXY/F motifs and a FERM domain. Previously, we isolated KRIT1B, an isoform characterized by the alternative splicing of the 15th coding exon and suspected to cause CCM when abnormally expressed. Combining homology modeling and docking methods of protein-structure and ligand binding prediction with the yeast two-hybrid assay of in vivo protein-protein interaction and cellular biology analyses we identified both structural and functional differences between KRIT1A and KRIT1B isoforms. We found that the 15th exon encodes for the distal beta-sheet of the F3/PTB-like subdomain of KRIT1A FERM domain, demonstrating that KRIT1B is devoid of a functional PTB binding pocket. As major functional consequence, KRIT1B is unable to bind Rap1A, while the FERM domain of KRIT1A is even sufficient for this function. Furthermore, we found that a functional PTB subdomain enables the nucleocytoplasmic shuttling of KRIT1A, while its alteration confers a restricted cytoplasmic localization and a dominant negative role to KRIT1B. Importantly, we also demonstrated that KRIT1A, but not KRIT1B, may adopt a closed conformation through an intramolecular interaction involving the third NPXY/F motif at the N-terminus and the PTB subdomain of the FERM domain, and proposed a mechanism whereby an open/closed conformation switch regulates KRIT1A nuclear translocation and interaction with Rap1A in a mutually exclusive manner. As most mutations found in CCM patients affect the KRIT1 FERM domain, the new insights into the structure-function relationship of this domain may constitute a useful framework for understanding molecular mechanisms underlying CCM pathogenesis.

  12. Role of Progesterone Receptor Isoforms in Regulation of Cell Adhesion and Apoptosis

    DTIC Science & Technology

    2002-06-01

    AD Award Number: DAMD17-01-1-0507 TITLE: Role of Progesterone Receptor Isoforms in Regulation of Cell Adhesion and Apoptosis PRINCIPAL...1 Jun 01 - 31 May 02) 4. TITLE AND SUBTITLE Role of Progesterone Receptor Isoforms in Regulation of Cell Adhesion and Apoptosis 6. AUTHOR(S...information) Progesterone receptors (PR) and estrogen receptors (ER) are important prognostic indicators in breast cancer. We believe that PR, in addition to

  13. Purification and Characterization of Cinnamyl Alcohol Dehydrogenase Isoforms from the Periderm of Eucalyptus gunnii Hook.

    PubMed Central

    Hawkins, S. W.; Boudet, A. M.

    1994-01-01

    Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) isoforms were purified from the periderm (containing both suberized and lignified cell layers) of Eucalyptus gunnii Hook stems. Two isoforms (CAD 1P and CAD 2P) were initially characterized, and the major form, CAD 2P, was resolved into three further isoforms by ion-exchange chromatography. Crude extracts contained two aliphatic alcohol dehydrogenases (ADH) and one aromatic ADH, which was later resolved into two further isoforms. Aliphatic ADHs did not use hydroxycinnamyl alcohols as substrates, whereas both aromatic ADH isoforms used coniferyl and sinapyl alcohol as substrates but with a much lower specific activity when compared with benzyl alcohol. The minor form, CAD 1P, was a monomer with a molecular weight of 34,000 that did not co-elute with either aromatic or aliphatic ADH activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis demonstrated that this protein was very similar to another CAD isoform purified from Eucalyptus xylem tissue. CAD 2P had a native molecular weight of approximately 84,000 and was a dimer consisting of two heterogenous subunits (with molecular weights of 42,000 and 44,000). These subunits were differentially combined to give the heterodimer and two homodimers. SDS-PAGE, western blots, and nondenaturing PAGE indicated that the CAD 2P heterodimer was very similar to the main CAD isoform previously purified in our laboratory from differentiating xylem tissue of E. gunnii (D. Goffner, I. Joffroy, J. Grima-Pettenati, C. Halpin, M.E. Knight, W. Schuch, A.M. Boudet [1992] Planta 188: 48-53). Kinetic data indicated that the different CAD 2P isoforms may be implicated in the preferential production of different monolignols used in the synthesis of lignin and/or suberin. PMID:12232063

  14. Role of ROCK Isoforms in Regulation of Stiffness Induced Myofibroblast Differentiation in Lung Fibrosis.

    PubMed

    Htwe, Su S; Cha, Byung H; Yue, Kan; Khademhosseini, Ali; Knox, Alan J; Ghaemmaghami, Amir M

    2017-02-22

    Fibrosis is a major cause of progressive organ dysfunction in several chronic pulmonary diseases. Rho associated coiled-coil forming kinase (ROCK) has shown to be involved in myofibroblast differentiation driven by altered matrix stiffness in fibrotic state. There are two known ROCK isoforms in human, ROCK1 (ROKβ) and ROCK2 (ROKα), but specific role of each isoform in myofibroblast differentiation in lung fibrosis remains unknown. To study this, we developed a Gelatin methacryloyl (GelMA) hydrogel based culture system with different stiffness levels relevant to healthy and fibrotic lungs. We have shown that stiff matrix and not soft matrix, can induce myofibroblast differentiation with high αSMA expression. Furthermore, our data confirm that the inhibition of ROCK signalling by a pharmacological inhibitor (i.e. Y27632) attenuates stiffness induced αSMA expression and fibre assembly in myofibroblasts. To assess the role of ROCK isoforms in this process we used siRNA to knock down the expression of each isoform. Our data showed that knocking down either ROCK1 or ROCK2 did not result in a reduction in αSMA expression in myofibroblasts on stiff matrix as opposed to soft matrix where αSMA expression was reduced significantly. Paradoxically, on stiff matrix, the absence of one isoform (particularly ROCK2) exaggerated αSMA expression and led to thick fibre assembly. Moreover complete loss of αSMA fibre assembly was seen only in the absence of both ROCK isoforms suggesting that both isoforms are implicated in this process. Overall our results indicate the differential role of ROCK isoforms in myofibroblast differentiation on soft and stiff matrices.

  15. Roles of SGK Isoform Signaling in Breast Cancer Migration and Invasion

    DTIC Science & Technology

    2013-04-01

    Silencing of SGK and Akt isoforms had been confirmed March 15, 2010- March 14, 2011. However on further analysis of substrate NDRG1 it appears the...silencing of SGK3 but not Akt isoforms causes an increase in total NDRG1 protein level while simultaneously decreasing phosphorylation of NDRG1 at...substrate phosphorylation mutants and optimize their expression (month 22-23) NDRG1 has been shown to be a potent mediator of invasive migration through

  16. Isoform-Specific SCFFbw7 Ubiquitination Mediates Differential Regulation of PGC-1α

    PubMed Central

    Trausch-Azar, Julie S.; Abed, Mona; Orian, Amir; Schwartz, Alan L.

    2015-01-01

    The E3 ubiquitin ligase and tumor suppressor SCFFbw7 exists as three isoforms that govern the degradation of a host of critical cell regulators, including c-Myc, cyclin E, and PGC-1α. Peroxisome proliferator activated receptor-gamma coactivator 1α (PGC-1α) is a transcriptional coactivator with broad effects on cellular energy metabolism. Cellular PGC-1α levels are tightly controlled in a dynamic state by the balance of synthesis and rapid degradation via the ubiquitin-proteasome system. Yet, isoform-specific functions of SCFFbw7 are yet to be determined. Here, we show that the E3 ubiquitin ligase, SCFFbw7, regulates cellular PGC-1α levels via two independent, isoform specific, mechanisms. The cytoplasmic isoform (SCFFbw7β) reduces cellular PGC-1α levels via accelerated ubiquitin-proteasome degradation. In contrast, the nuclear isoform (SCFFbw7α) increases cellular PGC-1α levels and protein stability via inhibition of ubiquitin-proteasomal degradation. When nuclear Fbw7α proteins are redirected to the cytoplasm, cellular PGC-1α protein levels are reduced through accelerated ubiquitin-proteasomal degradation. We find that SCFFbw7β catalyzes high molecular weight PGC-1α-ubiquitin conjugation, whereas SCFFbw7α produces low molecular weight PGC-1α-ubiquitin conjugates that are not effective degradation signals. Thus, selective ubiquitination by specific Fbw7 isoforms represents a novel mechanism that tightly regulates cellular PGC-1α levels. Fbw7 isoforms mediate degradation of a host of regulatory proteins. The E3 ubiquitin ligase, Fbw7, mediates PGC-1α levels via selective isoform-specific ubiquitination. Fbw7β reduces cellular PGC-1α via ubiquitin-mediated degradation, whereas Fbw7α increases cellular PGC-1α via ubiquitin-mediated stabilization. PMID:25204433

  17. Kinetic properties of alternatively spliced isoforms of laccase-2 from Tribolium castaneum and Anopheles gambiae

    PubMed Central

    Gorman, Maureen J.; Sullivan, Lucinda I.; Nguyen, Thi D. T.; Dai, Huaien; Arakane, Yasuyuki; Dittmer, Neal T.; Syed, Lateef U.; Li, Jun; Hua, Duy H.; Kanost, Michael R.

    2011-01-01

    Laccase-2 is a highly conserved multicopper oxidase that functions in insect cuticle pigmentation and tanning. In many species, alternative splicing gives rise to two laccase-2 isoforms. A comparison of laccase-2 sequences from three orders of insects revealed eleven positions at which there are conserved differences between the A and B isoforms. Homology modeling suggested that these eleven residues are not part of the substrate binding pocket. To determine whether the isoforms have different kinetic properties, we compared the activity of laccase-2 isoforms from Tribolium castaneum and Anopheles gambiae. We partially purified the four laccases as recombinant enzymes and analyzed their ability to oxidize a range of laccase substrates. The predicted endogenous substrates tested were dopamine, N-acetyldopamine (NADA), N-β-alanyldopamine (NBAD) and dopa, which were detected in T. castaneum previously and in A. gambiae as part of this study. Two additional diphenols (catechol and hydroquinone) and one non-phenolic substrate (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) were also tested. We observed no major differences in substrate specificity between the A and B isoforms. Dopamine, NADA and NBAD were oxidized with catalytic efficiencies ranging from 51 – 550 min−1 mM−1. These results support the hypothesis that dopamine, NADA and NBAD are endogenous substrates for both isoforms of laccase-2. Catalytic efficiencies associated with dopa oxidation were low, ranging from 8 – 30 min−1 mM−1; in comparison, insect tyrosinase oxidized dopa with a catalytic efficiency of 201 min−1 mM−1. We found that dopa had the highest redox potential of the four endogenous substrates, and this property of dopa may explain its poor oxidation by laccase-2. We conclude that laccase-2 splice isoforms are likely to oxidize the same substrates in vivo, and additional experiments will be required to discover any isoform-specific functions. PMID:22198355

  18. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution.

    PubMed

    Aachmann-Andersen, Niels Jacob; Just Christensen, Søren; Lisbjerg, Kristian; Oturai, Peter; Meinild-Lundby, Anne-Kristine; Holstein-Rathlou, Niels-Henrik; Lundby, Carsten; Vidiendal Olsen, Niels

    2014-01-01

    The membrane-assisted isoform immunoassay (MAIIA) quantitates erythropoietin (EPO) isoforms as percentages of migrated isoforms (PMI). We evaluated the effect of recombinant human EPO (rhEPO) on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13); high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13); or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3) % (mean (SD)). High-dose Epoetin beta decreased PMI on days 4 and 11 to 31.0 (4.2)% (p<0.00001) and 45.2 (7.3)% (p<0.00001). Low-dose Epoetin beta decreased PMI on days 4 and 11 to 46.0 (12.8)% (p<0.00001) and 46.1 (10.4)% (p<0.00001). In both rhEPO groups, PMI on day 25 was still decreased (high-dose Epoetin beta: 72.9 (19.4)% (p=0.029); low-dose Epoetin beta: 73.1 (17.8)% (p=0.039)). In conclusion, Epoetin beta leaves a footprint in the plasma-EPO isoform pattern. MAIIA can detect changes in EPO isoform distribution up til at least three weeks after administration of Epoetin beta even though the total EPO concentration has returned to normal.

  19. Biologically active isoforms of CobB sirtuin deacetylase in Salmonella enterica and Erwinia amylovora.

    PubMed

    Tucker, Alex C; Escalante-Semerena, Jorge C

    2010-12-01

    Sirtuins are NAD(+)-dependent protein deacylases that are conserved in all domains of life and are involved in diverse cellular processes, including control of gene expression and central metabolism. Eukaryotic sirtuins have N-terminal extensions that have been linked to protein multimerization and cellular localization. Here the first evidence of sirtuin isoforms in bacteria is reported. The enterobacterium Salmonella enterica synthesizes two isoforms of CobB sirtuin, a shorter 236-amino-acid isoform (here CobB(S)) and a longer 273-amino-acid isoform (here CobB(L)). The N-terminal 37-amino-acid extension of CobB(L) is amphipathic, containing 18 basic amino acids (12 of which are Arg) and 13 hydrophobic ones; both isoforms were active in vivo and in vitro. Northern blot and transcription start site analyses revealed that cobB is primarily expressed as two monocistronic cobB mRNAs from two transcription start sites, one of which was mapped within the neighboring ycfX gene and the other of which was located within cobB. Additionally, a low-abundance ycfX-cobB bicistronic mRNA was observed which could encode up to three proteins (YcfX, CobB(L), and CobB(S)). CobB(L) isoforms are common within the family Enterobacteriaceae, but species of the genus Erwinia (including the plant pathogen Erwinia amylovora) encode only the CobB(L) isoform. The CobB(L) isoform from E. amylovora restored growth of as S. enterica cobB mutant strain on low acetate.

  20. Modulation of estrogen receptor-beta isoforms by phytoestrogens in breast cancer cells.

    PubMed

    Cappelletti, Vera; Miodini, Patrizia; Di Fronzo, Giovanni; Daidone, Maria Grazia

    2006-05-01

    High consumption of phytoestrogen-rich food correlates with reduced incidence of breast cancer. However, the effect of phytoestrogens on growth of pre-existing breast tumors presents concerns when planning the use of phytoestrogens as chemoprevention st rategy. Genistein, the active phytoestrogen in soy, displays weak estrogenic activity mediated by estrogen receptor (ER) with a preferential binding for the ER-beta species. However, no information is at present available on the interaction between phytoestrogens and the various isoforms generated by alternative splicing. In two human breast cancer cell lines, T47D and BT20, which express variable levels of ER-beta, the effect of genistein and quercetin was evaluated singly and in comparison with 17beta-estradiol, on mRNA expression of estrogen receptor-beta (ER-beta) isoforms evaluated by a triple primer RT-PCR assay. In T47D cells estradiol caused a 6-fold up-regulation of total ER-beta, and modified the relative expression pattern of the various isoforms, up-regulating the beta2 and down-regulating the beta5 isoform. Genistein up-regulated ER-beta2 and ER-beta1 in T47D cells, and after treatment the ER-beta2 isoform became prevalent, while in BT20 cells it almost doubled the percent contribution of ER-beta1 and ER-beta2 to total ER-beta. Quercetin did not alter the total levels nor the percent distribution of ER-beta isoforms in either cell line. Genistein, through the modulation of ER-beta isoform RNA expression inhibited estrogen-promoted cell growth, without interfering on estrogen-regulated transcription. ER-beta and its ER-beta mRNA isoforms may be involved in a self-limiting mechanism of estrogenic stimulation promoted either by the natural hormone or by weaker estrogen agonists like genistein.

  1. Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule

    PubMed Central

    2010-01-01

    Background Different isoforms of Cytochrome P450 (CYP) metabolized different types of substrates (or drugs molecule) and make them soluble during biotransformation. Therefore, fate of any drug molecule depends on how they are treated or metabolized by CYP isoform. There is a need to develop models for predicting substrate specificity of major isoforms of P450, in order to understand whether a given drug will be metabolized or not. This paper describes an in-silico method for predicting the metabolizing capability of major isoforms (e.g. CYP 3A4, 2D6, 1A2, 2C9 and 2C19). Results All models were trained and tested on 226 approved drug molecules. Firstly, 2392 molecular descriptors for each drug molecule were calculated using various softwares. Secondly, best 41 descriptors were selected using general and genetic algorithm. Thirdly, Support Vector Machine (SVM) based QSAR models were developed using 41 best descriptors and achieved an average accuracy of 86.02%, evaluated using fivefold cross-validation. We have also evaluated the performance of our model on an independent dataset of 146 drug molecules and achieved average accuracy 70.55%. In addition, SVM based models were developed using 26 Chemistry Development Kit (CDK) molecular descriptors and achieved an average accuracy of 86.60%. Conclusions This study demonstrates that SVM based QSAR model can predict substrate specificity of major CYP isoforms with high accuracy. These models can be used to predict isoform responsible for metabolizing a drug molecule. Thus these models can used to understand whether a molecule will be metabolized or not. This is possible to develop highly accurate models for predicting substrate specificity of major isoforms using CDK descriptors. A web server MetaPred has been developed for predicting metabolizing isoform of a drug molecule http://crdd.osdd.net/raghava/metapred/. PMID:20637097

  2. Kinetic properties of alternatively spliced isoforms of laccase-2 from Tribolium castaneum and Anopheles gambiae.

    PubMed

    Gorman, Maureen J; Sullivan, Lucinda I; Nguyen, Thi D T; Dai, Huaien; Arakane, Yasuyuki; Dittmer, Neal T; Syed, Lateef U; Li, Jun; Hua, Duy H; Kanost, Michael R

    2012-03-01

    Laccase-2 is a highly conserved multicopper oxidase that functions in insect cuticle pigmentation and tanning. In many species, alternative splicing gives rise to two laccase-2 isoforms. A comparison of laccase-2 sequences from three orders of insects revealed eleven positions at which there are conserved differences between the A and B isoforms. Homology modeling suggested that these eleven residues are not part of the substrate binding pocket. To determine whether the isoforms have different kinetic properties, we compared the activity of laccase-2 isoforms from Tribolium castaneum and Anopheles gambiae. We partially purified the four laccases as recombinant enzymes and analyzed their ability to oxidize a range of laccase substrates. The predicted endogenous substrates tested were dopamine, N-acetyldopamine (NADA), N-β-alanyldopamine (NBAD) and dopa, which were detected in T. castaneum previously and in A. gambiae as part of this study. Two additional diphenols (catechol and hydroquinone) and one non-phenolic substrate (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) were also tested. We observed no major differences in substrate specificity between the A and B isoforms. Dopamine, NADA and NBAD were oxidized with catalytic efficiencies ranging from 51 to 550 min⁻¹ mM⁻¹. These results support the hypothesis that dopamine, NADA and NBAD are endogenous substrates for both isoforms of laccase-2. Catalytic efficiencies associated with dopa oxidation were low, ranging from 8 to 30 min⁻¹ mM⁻¹; in comparison, insect tyrosinase oxidized dopa with a catalytic efficiency of 201 min⁻¹ mM⁻¹. We found that dopa had the highest redox potential of the four endogenous substrates, and this property of dopa may explain its poor oxidation by laccase-2. We conclude that laccase-2 splice isoforms are likely to oxidize the same substrates in vivo, and additional experiments will be required to discover any isoform-specific functions.

  3. Regulated Expression of a Calmodulin Isoform Alters Growth and Development in Potato

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Takezawa, D.; An, G.; Han, T.-J.

    1996-01-01

    A transgene approach was taken to study the consequences of altered expression of a calmodutin iso-form on plant growth and development. Eight genomic clones of potato calmodulin (PCM 1 to 8) have been isolated and characterized. Among the potato calmodulin isoforms studied, PCM 1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM 1 fused to the CAMV 35S promoter. Transgenic plants showing a moderate increase in PCM 1 MRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM 1 MRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM 1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM 1 MRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM 1 protein in transgenic plants, indicating that the expression of both MRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM 1 alters growth and development in potato plants.

  4. Cell-Specific Expression of Plasma Membrane Calcium ATPase Isoforms in Retinal Neurons

    PubMed Central

    Krizaj, David; Demarco, Steven J.; Johnson, Juliette; Strehler, Emanuel E.; Copenhagen, David R.

    2007-01-01

    Ca2+ extrusion by high-affinity plasma membrane calcium ATPases (PMCAs) is a principal mechanism for the clearance of Ca2+ from the cytosol. The PMCA family consists of four isoforms (PMCA1–4). Little is known about the selective expression of these isoforms in brain tissues or about the physiological function conferred upon neurons by any given isoform. We investigated the cellular and subcellular distribution of PMCA isoforms in a mammalian retina. Mouse photoreceptors, cone bipolar cells and horizontal cells, which respond to light with a graded polarization, express isoform 1 (PMCA1) of the PMCA family. PMCA2 is localized to rod bipolar cells, horizontal cells, amacrine cells, and ganglion cells, and PMCA3 is predominantly expressed in spiking neurons, including both amacrine and ganglion cells but is also found in horizontal cells. PMCA4 was found to be selectively expressed in both synaptic layers. Optical measurements of Ca2+ clearance showed that PMCAs mediate Ca2+ extrusion in both rod and cone bipolar cells. In addition, we found that rod bipolar cells, but not cone bipolar cells possess a prominent Na+/Ca2+ exchange mechanism. We conclude that PMCA isoforms are selectively expressed in retinal neurons and that processes of Ca2+ clearance are different in rod and cone bipolar cells. PMID:12209837

  5. N-Domain Isoform of Angiotensin I Converting Enzyme as a Marker of Hypertension: Populational Study

    PubMed Central

    Maluf-Meiken, Leila C. V.; Fernandes, Fernanda B.; Aragão, Danielle S.; Ronchi, Fernanda A.; Andrade, Maria C. C.; Franco, Maria C.; Febba, Andreia C. S.; Plavnik, Frida L.; Krieger, José E.; Mill, Jose G.; Sesso, Ricardo C. C.; Casarini, Dulce E.

    2012-01-01

    The aim of this paper was to investigate the presence of the urinary 90 kDa N-domain ACE in a cohort of the population from Vitoria, Brazil, to verify its association with essential hypertension since this isoform could be a possible genetic marker of hypertension. Anthropometric, clinical, and laboratory parameters of the individuals were evaluated (n = 1150) and the blood pressure (BP) was measured. The study population was divided according to ACE isoforms in urine as follows: ACE 65/90/190, presence of three ACE isoforms (n = 795), ACE 90+ (65/90) (n = 186), and ACE 90− (65/190) (n = 169) based on the presence (+) or absence (−) of the 90 kDa ACE isoform. The anthropometric parameters, lipid profile, serum levels of uric acid, glucose, and the systolic and diastolic BP were significantly greater in the ACE 90+ compared with the ACE 90− and ACE 65/90/190 individuals. We found that 98% of individuals from the ACE 90+ group and 38% from the ACE 65/90/190 group had hypertension, compared to only 1% hypertensive individuals in the ACE 90− group. There is a high presence of the 90 kDa N-domain ACE isoform (85%) in the studied population. The percentile of normotensive subjects with three isoforms was 62%. Our findings could contribute to the development of new efficient strategy to prevent and treat hypertension to avoid the development of cardiovascular disease. PMID:22666552

  6. Absolute quantitation of isoforms of post-translationally modified proteins in transgenic organism.

    PubMed

    Li, Yaojun; Shu, Yiwei; Peng, Changchao; Zhu, Lin; Guo, Guangyu; Li, Ning

    2012-08-01

    Post-translational modification isoforms of a protein are known to play versatile biological functions in diverse cellular processes. To measure the molar amount of each post-translational modification isoform (P(isf)) of a target protein present in the total protein extract using mass spectrometry, a quantitative proteomic protocol, absolute quantitation of isoforms of post-translationally modified proteins (AQUIP), was developed. A recombinant ERF110 gene overexpression transgenic Arabidopsis plant was used as the model organism for demonstration of the proof of concept. Both Ser-62-independent (14)N-coded synthetic peptide standards and (15)N-coded ERF110 protein standard isolated from the heavy nitrogen-labeled transgenic plants were employed simultaneously to determine the concentration of all isoforms (T(isf)) of ERF110 in the whole plant cell lysate, whereas a pair of Ser-62-dependent synthetic peptide standards were used to quantitate the Ser-62 phosphosite occupancy (R(aqu)). The P(isf) was finally determined by integrating the two empirically measured variables using the following equation: P(isf) = T(isf) · R(aqu). The absolute amount of Ser-62-phosphorylated isoform of ERF110 determined using AQUIP was substantiated with a stable isotope labeling in Arabidopsis-based relative and accurate quantitative proteomic approach. The biological role of the Ser-62-phosphorylated isoform was demonstrated in transgenic plants.

  7. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms.

    PubMed

    Talbot, W S; Swyryd, E A; Hogness, D S

    1993-07-02

    In D. melanogaster a pulse of the steroid hormone ecdysone triggers the larval-to-adult metamorphosis, a complex process in which this hormone induces imaginal tissues to generate adult structures and larval tissues to degenerate. We show that the EcR gene encodes three ecdysone receptor isoforms (EcR-A, EcR-B1, and EcR-B2) that have common DNA- and hormone-binding domains but different N-terminal regions. We have used isoform-specific monoclonal antibodies to show that at the onset of metamorphosis different ecdysone target tissues express different isoform combinations in a manner consistent with the proposition that the different metamorphic responses of these tissues require different combinations of the EcR isoforms. We have also determined temporal developmental profiles of the EcR isoforms and their mRNAs in whole animals, showing that different isoforms predominate at different developmental stages that are marked by a pulse of ecdysone.

  8. Myosin II Isoform Co-assembly and Differential Regulation in Mammalian Systems

    PubMed Central

    Beach, Jordan R.; Hammer, John A.

    2015-01-01

    Non-muscle myosin 2 (NM2) is a major force-producing, actin-based motor in mammalian non-muscle cells, where it plays important roles in a broad range of fundamental biological processes, including cytokinesis, cell migration, and epithelial barrier function.. This breadth of function at the tissue and cellular levels suggests extensive diversity and differential regulation of NM2 bipolar filaments, the major, if not sole, functional form of NM2s in vivo. Previous in vitro, cellular and animal studies indicate that some of this diversity is supported by the existence of multiple NM2 isoforms. Moreover, two recent studies have shown that these isoforms can co-assemble to form heterotypic filaments, further expanding functional diversity. In addition to isoform co-assembly, cells may differentially regulate NM2 function via isoform-specific expression, RLC phosphorylation, MHC phosphorylation or regulation via binding partners. Here, we provide a brief summary of NM2 filament assembly, summarize the recent findings regarding NM2 isoform co-assembly, consider the mechanisms cells might utilize to differentially regulate NM2 isoforms, and review the data available to support these mechanisms. PMID:25655283

  9. Quantification of amyloid precursor protein isoforms using quantification concatamer internal standard.

    PubMed

    Chen, Junjun; Wang, Meiyao; Turko, Illarion V

    2013-01-02

    It is likely that expression and/or post-translational generation of various protein isoforms can be indicative of initial pathological changes or pathology development. However, selective quantification of individual protein isoforms remains a challenge, because they simultaneously possess common and unique amino acid sequences. Quantification concatamer (QconCAT) internal standards were originally designed for a large-scale proteome quantification and are artificial proteins that are concatamers of tryptic peptides for several proteins. We developed a QconCAT for quantification of various isoforms of amyloid precursor protein (APP). APP-QconCAT includes tryptic peptides that are common for all isoforms of APP concatenated with those tryptic peptides that are unique for specific APP isoforms. Isotope-labeled APP-QconCAT was expressed, purified, characterized, and further used for quantification of total APP, APP695, and amyloid-β (Aβ) in the human frontal cortex from control and severe Alzheimer's disease donors. Potential biological implications of our quantitative measurements are discussed. It is also expected that using APP-QconCAT(s) will advance our understanding of biological mechanism by which various APP isoforms involved in the pathogenesis of Alzheimer's disease.

  10. Influence of development on Na(+)/K(+)-ATPase expression: isoform- and tissue-dependency.

    PubMed

    Lopez, Luciane B; Quintas, Luis Eduardo M; Noël, François

    2002-02-01

    The four isoforms of the catalytic subunit of Na(+)/K(+)-ATPase identified in rats differ in their affinities for ions and ouabain. Moreover, its expression is tissue-specific, developmentally and hormonally regulated. The aim of the present work was to evaluate the influence of age on the ratio and density of these isoforms in crude membrane preparations from rat brain hemispheres, brainstem, heart ventricles and kidneys. In all tissues investigated, Na(+)/K(+)-ATPase activity was higher in adults than in neonates but brain tissues presented the most remarkable differences. In these tissues, ouabain inhibition curves for Na(+)/K(+)-ATPase activity revealed the presence of two processes with different sensitivities to ouabain. An increase of approximately sixfold in the expression of the high affinity isoforms was observed between newborn and adult rats. In contrast, the low affinity isoform increased only approximately twofold in brainstem whereas it increased ninefold in brain hemispheres. Unlike brain tissues, a decrease (almost fourfold) in the number of high affinity ouabain binding sites was observed during ontogenesis of the heart. Although limited by the inability to resolve alpha(2) and alpha(3) isoforms, present data indicate that the influence of development on the expression of Na(+)/K(+)-ATPase depends not only on the isoform, but also on the tissue where the enzyme is expressed.

  11. C/EBPβ Isoforms Expression in the Rat Brain during the Estrous Cycle

    PubMed Central

    Hansberg-Pastor, Valeria; Piña-Medina, Ana Gabriela; González-Arenas, Aliesha; Camacho-Arroyo, Ignacio

    2015-01-01

    The CCAAT/enhancer-binding protein beta (C/EBPβ) is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP) with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described. In this study we demonstrate by western blot that the expression of the three C/EBPβ isoforms changes in different brain areas during the estrous cycle. In the cerebellum, LAP2 content diminished on diestrus and proestrus and LIP content diminished on proestrus and estrus days. In the prefrontal cortex, LIP content was higher on proestrus and estrus days. In the hippocampus, LAP isoforms presented a switch on diestrus day, since LAP1 content was the highest while that of LAP2 was the lowest. The LAP2 isoform was the most abundant one in all the three brain areas. The LAP/LIP ratio changed throughout the cycle and was tissue specific. These results suggest that C/EBPβ isoforms expression changes in a tissue-specific manner in the rat brain due to the changes in sex steroid hormone levels presented during the estrous cycle. PMID:26064112

  12. Role of acyl carrier protein isoforms in plant lipid metabolism: Progress report

    SciTech Connect

    Ohlrogge, J.B.

    1989-01-01

    Previous research from my lab has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP) and therefore this trait appears highly conserved among higher plants. This level of conservation suggests that the existence of ACP isoforms is not merely the results of neutral gene duplications. We have developed techniques to examine a wider range of species. Acyl carrier proteins can be labelled very specifically and to high specific activity using H-palmitate and the E. coli enzyme acyl-ACP synthetase. Isoforms were then resolved by western blotting and native PAGE of H-palmitate labelled ACP's. Multiple isoforms of ACP were observed the leaf tissue of the monocots Avena sativa and Hordeum vulgare and dicots including Arabidopsis thallina, Cuphea wrightii, and Brassica napus. Lower vascular plants including the cycad, Dioon edule, Ginkgo biloba, the gymnosperm Pinus, the fern Anernia phyllitidis and Psilotum nudum, the most primitive known extant vascular plant, were also found to have multiple ACP isoforms as were the nonvascular liverwort, Marchantia and moss, Polytrichum. Therefore, the development of ACP isoforms occurred early in evolution. However, the uniellular alge Chlamydomonas and Dunaliella and the photosynthetic cyanobacteria Synechocystis and Agmnellum have only a single elecrophotetic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants.

  13. Analysis of Exocyst Subunit EXO70 Family Reveals Distinct Membrane Polar Domains in Tobacco Pollen Tubes1[OPEN

    PubMed Central

    Šantrůček, Jiří; Vukašinović, Nemanja

    2017-01-01

    The vesicle-tethering complex exocyst is one of the crucial cell polarity regulators. The EXO70 subunit is required for the targeting of the complex and is represented by many isoforms in angiosperm plant cells. This diversity could be partly responsible for the establishment and maintenance of membrane domains with different composition. To address this hypothesis, we employed the growing pollen tube, a well-established cell polarity model system, and performed large-scale expression, localization, and functional analysis of tobacco (Nicotiana tabacum) EXO70 isoforms. Various isoforms localized to different regions of the pollen tube plasma membrane, apical vesicle-rich inverted cone region, nucleus, and cytoplasm. The overexpression of major pollen-expressed EXO70 isoforms resulted in growth arrest and characteristic phenotypic deviations of tip swelling and apical invaginations. NtEXO70A1a and NtEXO70B1 occupied two distinct and mutually exclusive plasma membrane domains. Both isoforms partly colocalized with the exocyst subunit NtSEC3a at the plasma membrane, possibly forming different exocyst complex subpopulations. NtEXO70A1a localized to the small area previously characterized as the site of exocytosis in the tobacco pollen tube, while NtEXO70B1 surprisingly colocalized with the zone of clathrin-mediated endocytosis. Both NtEXO70A1a and NtEXO70B1 colocalized to different degrees with markers for the anionic signaling phospholipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid. In contrast, members of the EXO70 C class, which are specifically expressed in tip-growing cells, exhibited exocytosis-related functional effects in pollen tubes despite the absence of apparent plasma membrane localization. Taken together, our data support the existence of multiple membrane-trafficking domains regulated by different EXO70-containing exocyst complexes within a single cell. PMID:28082718

  14. Distribution of estrogen and progesterone receptors isoforms in endometrial cancer

    PubMed Central

    2014-01-01

    Background 70–80% of sporadic endometrial carcinomas are defined as endometrioid carcinoma (EC). Early-stage, well differentiated endometrial carcinomas usually retain expression of estrogen and progesterone receptors (ER and PR, respectively), as advanced stage, poorly differentiated tumors often lack one or both of these receptors. Well-described EC prognosis includes tumor characteristics, such as depth of myometrial invasion. Therefore, in the current study, we evaluated the expression profile of ER and PR isoforms, including ER-α, PR-A and PR–B, in correlation to EC tumor histological depth. Methods Using immunohistochemistry and image analysis software, the expression of ER-α, PR-A, PR–B and Ki67 was assessed in endometrial stroma and epithelial glands of superficial, deep and extra-tumoral sections of 15 paraffin embedded EC specimens, and compared to 5 biopsies of non-malignant endometrium. Results Expression of PR-A and ER-α was found to be lower in EC compared to nonmalignant tissue, as the stromal expression was dramatically reduced compared to epithelial cells. Expression ratios of both receptors were significantly high in superficial and deep portions of EC; in non-tumoral portion of EC were close to the ratios of nonmalignant endometrium. PR-B expression was low in epithelial glands of EC superficial and deep portions, and high in the extra-tumoral region. Elevated PR-B expression was found in stroma of EC, as well. Conclusions The ratio of ER-α and PR-A expression in the epithelial glands and the stroma of EC biopsies may serve as an additional parameter in the histological evaluation of EC tumor. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1155060506119016 PMID:24684970

  15. Structure- and isoform-specific glucuronidation of six curcumin analogs.

    PubMed

    Lu, Danyi; Liu, Hui; Ye, Wencai; Wang, Ying; Wu, Baojian

    2017-04-01

    1. In the present study, we aimed to characterize the glucuronidation of six curcumin analogs (i.e. RAO-3, RAO-8, RAO-9, RAO-18, RAO-19, and RAO-23) derived from galangal using human liver microsomes (HLM) and twelve expressed UGT enzymes. 2. Formation of glucuronide was confirmed using high-resolution mass spectrometry. Single glucuronide metabolite was generated from each of six curcumin analogs. The fragmentation patterns were analyzed and were found to differ significantly between alcoholic and phenolic glucuronides. 3. All six curcumin analogs except one (RAO-23) underwent significant glucuronidation in HLM and expressed UGT enzymes. In general, the methoxy group (close to the phenolic hydroxyl group) enhanced the glucuronidation liability of the curcumin analogs. 4. UGT1A9 and UGT2B7 were primarily responsible for the glucuronidation of two alcoholic analogs (RAO-3 and RAO-18). By contrast, UGT1A9 and four UGT2Bs (UGT2B4, 2B7, 2B15 and 2B17) played important roles in conjugating three phenolic analogs (RAO-8, RAO-9, and RAO-19). Interestingly, the conjugated double bonds system (in the aliphatic chain) was crucial to the substrate selectivity of gastrointestinal UGTs (i.e. UGT1A7, 1A8 and 1A10). 5. In conclusion, glucuronidation of six curcumin analogs from galangal were structure- and isoform-specific. The knowledge should be useful in identifying a curcumin analog with improved metabolic property.

  16. Generation of choline for acetylcholine synthesis by phospholipase D isoforms

    PubMed Central

    Zhao, Di; Frohman, Michael A; Blusztajn, Jan Krzysztof

    2001-01-01

    Dedication This article is dedicated to the memory of Sue Kim Hanson, a graduate student in the department of Pathology and Laboratory Medicine at Boston University School of Medicine, who perished in the terrorist attacks of September 11, 2001. Abstract Background In cholinergic neurons, the hydrolysis of phosphatidylcholine (PC) by a phospholipase D (PLD)-type enzyme generates some of the precursor choline used for the synthesis of the neurotransmitter acetylcholine (ACh). We sought to determine the molecular identity of the relevant PLD using murine basal forebrain cholinergic SN56 cells in which the expression and activity of the two PLD isoforms, PLD1 and PLD2, were experimentally modified. ACh levels were examined in cells incubated in a choline-free medium, to ensure that their ACh was synthesized entirely from intracellular choline. Results PLD2, but not PLD1, mRNA and protein were detected in these cells and endogenous PLD activity and ACh synthesis were stimulated by phorbol 12-myristate 13-acetate (PMA). Introduction of a PLD2 antisense oligonucleotide into the cells reduced PLD2 mRNA and protein expression by approximately 30%. The PLD2 antisense oligomer similarly reduced basal- and PMA-stimulated PLD activity and ACh levels. Overexpression of mouse PLD2 by transient transfection increased basal- (by 74%) and PMA-stimulated (by 3.2-fold) PLD activity. Moreover, PLD2 transfection increased ACh levels by 26% in the absence of PMA and by 2.1-fold in the presence of PMA. Overexpression of human PLD1 by transient transfection increased PLD activity by 4.6-fold and ACh synthesis by 2.3-fold in the presence of PMA as compared to controls. Conclusions These data identify PLD2 as the endogenous enzyme that hydrolyzes PC to generate choline for ACh synthesis in cholinergic cells, and indicate that in a model system choline generated by PLD1 may also be used for this purpose. PMID:11734063

  17. Distinct responses to reduplicated chromosomes require distinct Mad2 responses.

    PubMed

    Stormo, Benjamin M; Fox, Donald T

    2016-05-09

    Duplicating chromosomes once each cell cycle produces sister chromatid pairs, which separate accurately at anaphase. In contrast, reduplicating chromosomes without separation frequently produces polytene chromosomes, a barrier to accurate mitosis. Chromosome reduplication occurs in many contexts, including: polytene tissue development, polytene tumors, and following treatment with mitosis-blocking chemotherapeutics. However, mechanisms responding to or resolving polyteny during mitosis are poorly understood. Here, using Drosophila, we uncover two distinct reduplicated chromosome responses. First, when reduplicated polytene chromosomes persist into metaphase, an anaphase delay prevents tissue malformation and apoptosis. Second, reduplicated polytene chromosomes can also separate prior to metaphase through a spindle-independent mechanism termed Separation-Into-Recent-Sisters (SIRS). Both reduplication responses require the spindle assembly checkpoint protein Mad2. While Mad2 delays anaphase separation of metaphase polytene chromosomes, Mad2's control of overall mitotic timing ensures efficient SIRS. Our results pinpoint mechanisms enabling continued proliferation after genome reduplication, a finding with implications for cancer progression and prevention.

  18. Inhibition of carbonic anhydrase isoforms I, II, IX and XII with novel Schiff bases: identification of selective inhibitors for the tumor-associated isoforms over the cytosolic ones.

    PubMed

    Sarikaya, Busra; Ceruso, Mariangela; Carta, Fabrizio; Supuran, Claudiu T

    2014-11-01

    A series of new Schiff bases was obtained from sulfanilamide, 3-fluorosulfanilamide or 4-(2-aminoethyl)-benzenesulfonamide and aromatic/heterocyclic aldehydes incorporating both hydrophobic and hydrophilic moieties. The obtained sulfonamides were investigated as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic CA I and II, as well as the transmembrane, tumor-associated CA IX and XII. Most derivatives were medium potency or weak hCA I/II inhibitors, but several of them showed nanomolar affinity for CA IX and/or XII, making them an interesting example of isoform-selective compounds. The nature of the aryl/hetaryl moiety present in the initial aldehyde was the main factor influencing potency and isoform selectivity. The best and most CA IX-selective compounds incorporated moieties such as 4-methylthiophenyl, 4-cyanophenyl-, 4-(2-pyridyl)-phenyl and the 4-aminoethylbenzenesulfonamide scaffold. The best hCA XII inhibitors, also showing selectivity for this isoform, incorporated 2-methoxy-4-nitrophenyl-, 2,3,5,6-tetrafluorophenyl and 4-(2-pyridyl)-phenyl functionalities and were also derivatives of 4-aminoethylbenzenesulfonamide. The sulfanilamide and 3-fluorosulfanilamide derived Schiff bases were less active compared to the corresponding 4-aminoethyl-benzenesulfonamide derivatives. As hCA IX/XII selective inhibition is attractive for obtaining antitumor agents/diagnostic tools with a new mechanism of action, compounds of the type described here may be considered interesting preclinical candidates.

  19. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    PubMed

    Ihnatovych, Ivanna; Sielski, Neil L; Hofmann, Wilma A

    2014-01-01

    Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C). Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP) model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate-) cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN) lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  20. Molecular Mechanical Differences between Isoforms of Contractile Actin in the Presence of Isoforms of Smooth Muscle Tropomyosin

    PubMed Central

    Hilbert, Lennart; Bates, Genevieve; Roman, Horia N.; Blumenthal, Jenna L.; Zitouni, Nedjma B.; Sobieszek, Apolinary; Mackey, Michael C.; Lauzon, Anne-Marie

    2013-01-01

    The proteins involved in smooth muscle's molecular contractile mechanism – the anti-parallel motion of actin and myosin filaments driven by myosin heads interacting with actin – are found as different isoforms. While their expression levels are altered in disease states, their relevance to the mechanical interaction of myosin with actin is not sufficiently understood. Here, we analyzed in vitro actin filament propulsion by smooth muscle myosin for -actin (A), -actin-tropomyosin- (A-Tm), -actin-tropomyosin- (A-Tm), -actin (A), -actin-tropomyosin- (A-Tm), and -actin-tropomoysin- (A-Tm). Actin sliding analysis with our specifically developed video analysis software followed by statistical assessment (Bootstrapped Principal Component Analysis) indicated that the in vitro motility of A, A, and A-Tm is not distinguishable. Compared to these three ‘baseline conditions’, statistically significant differences () were: A-Tm – actin sliding velocity increased 1.12-fold, A-Tm – motile fraction decreased to 0.96-fold, stop time elevated 1.6-fold, A-Tm – run time elevated 1.7-fold. We constructed a mathematical model, simulated actin sliding data, and adjusted the kinetic parameters so as to mimic the experimentally observed differences: A-Tm – myosin binding to actin, the main, and the secondary myosin power stroke are accelerated, A-Tm – mechanical coupling between myosins is stronger, A-Tm – the secondary power stroke is decelerated and mechanical coupling between myosins is weaker. In summary, our results explain the different regulatory effects that specific combinations of actin and smooth muscle tropomyosin have on smooth muscle actin-myosin interaction kinetics. PMID:24204225

  1. Dementia: Continuum or Distinct Entity?

    PubMed Central

    Walters, Glenn D.

    2009-01-01

    The latent structure of dementia was examined in a group of 10,775 older adults with indicators derived from a neuropsychological test battery. Subjecting these data to taxometric analysis using mean above minus below a cut (MAMBAC), maximum covariance (MAXCOV), and latent mode factor analysis (L-Mode) produced results more consistent with dementia as a dimensional (lying along a continuum) than categorical (representing a distinct entity) construct. A second study conducted on a group of 2375 21-to-64-year olds produced similar results. These findings denote that dementia, as measured by deficits in episodic memory, attention/concentration, executive function, and language, differs quantitatively rather than qualitatively from the cognitive status of non-demented adults. The implications of these results for classification, assessment, etiology, and prevention are discussed. PMID:20677881

  2. Force-generating capacity of human myosin isoforms extracted from single muscle fibre segments.

    PubMed

    Li, Meishan; Larsson, Lars

    2010-12-15

    Muscle, motor unit and muscle fibre type-specific differences in force-generating capacity have been investigated for many years, but there is still no consensus regarding specific differences between slow- and fast-twitch muscles, motor units or muscle fibres. This is probably related to a number of different confounding factors disguising the function of the molecular motor protein myosin. We have therefore studied the force-generating capacity of specific myosin isoforms or combination of isoforms extracted from short single human muscle fibre segments in a modified single fibre myosin in vitro motility assay, in which an internal load (actin-binding protein) was added in different concentrations to evaluate the force-generating capacity. The force indices were the x-axis intercept and the slope of the relationship between the fraction of moving filaments and the α-actinin concentration. The force-generating capacity of the β/slow myosin isoform (type I) was weaker (P < 0.05) than the fast myosin isoform (type II), but the force-generating capacity of the different human fast myosin isoforms types IIa and IIx or a combination of both (IIax) were indistinguishable. A single fibre in vitro motility assay for both speed and force of specific myosin isoforms is described and used to measure the difference in force-generating capacity between fast and slow human myosin isoforms. The assay is proposed as a useful tool for clinical studies on the effects on muscle function of specific mutations or post-translational modifications of myosin.

  3. Development and validation of MRM methods to quantify protein isoforms of polyphenol oxidase in loquat fruits.

    PubMed

    Martínez-Márquez, Ascensión; Morante-Carriel, Jaime; Sellés-Marchart, Susana; Martínez-Esteso, María José; Pineda-Lucas, José Luis; Luque, Ignacio; Bru-Martínez, Roque

    2013-12-06

    Multiple reaction monitoring (MRM) is emerging as a promising technique for the detection and quantification of protein biomarkers in complex biological samples. Compared to Western blotting or enzyme assays, its high sensitivity, specificity, accuracy, assay speed, and sample throughput represent a clear advantage for being the approach of choice for the analysis of proteins. MRM assays are capable of detecting and quantifying proteolytic peptides differing in mass unique to particular proteins, that is, proteotypic peptides, through which different protein isoforms can be distinguished. We have focused on polyphenol oxidase (PPO), a plant conspicuous enzyme encoded by a multigenic family in loquat (Eriobotrya japonica Lindl.) and other related species. PPO is responsible for both the protection of plants from biotic stress as a feeding deterrent for herbivore insects and the enzymatic browning of fruits and vegetables. The latter makes fruit more attractive to seed dispersal agents but is also a major cause of important economic losses in agriculture and food industry. An adequate management of PPO at plant breeding level would maximize the benefits and minimize the disadvantages of this enzyme, but it would require a precise knowledge of the biological role played by each isoform in the plant. Thus, for the functional study of the PPOs, we have cloned and overexpressed fragments of three PPO isoforms from loquat to develop MRM-based methods for the quantification of each isoform. The method was developed using an ion trap instrument and validated in a QQQ instrument. It resulted in the selection of at least two peptides for each isoform that can be monitored by at least three transitions. A combination of SDS-PAGE and MRM lead to detect two out of three monitored isoforms in different gel bands corresponding to different processing stages of PPO. The method was applied to determine the amount of the PPO2 isoform in protein extracts from fruit samples using

  4. Modeled Microgravity-Induced Protein Kinase C Isoform Expression in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2003-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited both in microgravity and modeled microgravity (MMG) as reflected in diminished DNA synthess in peripheral blood lymphocytes and their locomotion through gelled type 1 collagen. Direct activation of Protein Kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 19 and MMG-culture. Human lymphocytes were cultured and harvested at 24, 48, 72 and 96 hours and serial samples assessed for locomotion using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta and -epsilon was assessed by RT-PCR, flow cytometry and immunoblotting. Results indicated that PKC isoforms delta and epsilon were down-regulated by more than 50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 19 controls. Events upstream of PKC such as phosphorylation of Phospholipase C(gamma) (PLC-gamma) in MMG, revealed accumulation of inactive enzyme. Depressed Ca++ -independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than, but after ligand-receptor interaction. Keywords: Signal transduction, locomotion, immunity

  5. Differential dynamics of RAS isoforms in GDP- and GTP-bound states.

    PubMed

    Kapoor, Abhijeet; Travesset, Alex

    2015-06-01

    RAS subfamily proteins regulates cell growth promoting signaling processes by cycling between active (GTP-bound) and inactive (GDP-bound) states. Different RAS isoforms, though structurally similar, exhibit functional specificity and are associated with different types of cancers and developmental disorders. Understanding the dynamical differences between the isoforms is crucial for the design of inhibitors that can selectively target a particular malfunctioning isoform. In this study, we provide a comprehensive comparison of the dynamics of all the three RAS isoforms (HRAS, KRAS, and NRAS) using extensive molecular dynamics simulations in both the GDP- (total of 3.06 μs) and GTP-bound (total of 2.4 μs) states. We observed significant differences in the dynamics of the isoforms, which rather interestingly, varied depending on the type of the nucleotide bound and the simulation temperature. Both SwitchI (Residues 25-40) and SwitchII (Residues 59-75) differ significantly in their flexibility in the three isoforms. Furthermore, Principal Component Analysis showed that there are differences in the conformational space sampled by the GTP-bound RAS isoforms. We also identified a previously unreported pocket, which opens transiently during MD simulations, and can be targeted to regulate nucleotide exchange reaction or possibly interfere with membrane localization. Further, we present the first simulation study showing GDP destabilization in the wild-type RAS protein. The destabilization of GDP/GTP occurred only in 1/50 simulations, emphasizing the need of guanine nucleotide exchange factors (GEFs) to accelerate such an extremely unfavorable process. This observation along with the other results presented in this article further support our previously hypothesized mechanism of GEF-assisted nucleotide exchange.

  6. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2

    PubMed Central

    Guntur, Ananya R.; Gu, Pengyu; Takle, Kendra; Chen, Jingyi; Xiang, Yang; Yang, Chung-Hui

    2015-01-01

    The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response—a function of CC cells—when they encounter strong UV, an aversive stimulus for young larvae. PMID:26443856

  7. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2.

    PubMed

    Guntur, Ananya R; Gu, Pengyu; Takle, Kendra; Chen, Jingyi; Xiang, Yang; Yang, Chung-Hui

    2015-10-20

    The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response--a function of CC cells--when they encounter strong UV, an aversive stimulus for young larvae.

  8. Role of molecular isoforms of acetylcholinesterase in learning and memory functions.

    PubMed

    Das, Amitava; Dikshit, Madhu; Nath, Chandishwar

    2005-05-01

    In the present study, activity of salt soluble (SS) G1 and detergent soluble (DS) G4 molecular isoforms of acetylcholinesterase (AChE) has been investigated in rat brain areas in trained (learned), scopolamine (amnesic) and Tacrine (anti-dementic) treated rats to find out their role in learning and memory functions. AChE was estimated spectrophotometrically at 412 nm in rat brain areas. Isolation and partial purification of molecular isoforms G1 and G4 of AChE was done by gel filtration chromatography. Passive avoidance was used to test learning and memory functions. AChE activity was altered in both the fractions SS and DS of different brain areas following passive avoidance in control, scopolamine treated, tacrine treated and tacrine treatment in scopolamine pretreated rats. The peak AChE activity obtained in the DS (fraction 9) and the SS (fraction 13) fraction following gel filtration chromatography. On the basis of molecular weight fraction 9 (DS) and 13 (SS) represent the G4 and G1, respectively. The pattern of changes in the AChE activity of G1 isoform (fraction 13 of SS) and G4 isoform (fraction 9 of DS) in brain areas were similar to those of SS and DS fraction, respectively. In hippocampus, AChE activity in the fraction G1 isoform (fraction 13 of SS) was decreased only in tacrine treated rats but AChE activity in the G4 isoform (fraction 9 of DS) was decreased in both trained and tacrine treated rats. Changes in activity of G4 isoform of AChE in hippocampus could be correlated with passive avoidance learning, scopolamine induced deficit in passive avoidance and reversal of scopolamine deficit by tacrine.

  9. Myosin heavy chain isoform transitions in canine skeletal muscles during postnatal growth

    PubMed Central

    Štrbenc, Malan; Smerdu, Vika; Pogačnik, Azra; Fazarinc, Gregor

    2006-01-01

    To gain a better understanding of the normal characteristics of developing canine muscles, myosin heavy chain (MHC) isoform expression was analysed in the axial and limb skeletal muscles of 18 young dogs whose ages ranged from the late prenatal stage to 6 months. We compared the results of immunohistochemistry using ten monoclonal antibodies, specific to different MHC isoforms, and enzyme-histochemical reactions, which demonstrate the activity of myofibrillar ATPase, succinate dehydrogenase (SDH) and α-glycerophosphate dehydrogenase (α-GPDH). In the skeletal muscles of fetuses and neonatal dogs the developmental isoforms MHC-emb and MHC-neo were prevalent. In all muscles the primary fibres, located centrally in each muscle fascicle, strongly expressed the slow isoform MHC-I. The adult fast isoform MHC-IIa was first noted in some of the secondary fibres on fetal day 55. During the first 10 days after birth, the expression of MHC-emb declined, as did that of MHC-neo during the second and third weeks. Correspondingly, the expression of MHC-IIa, and later, of MHC-I increased in the secondary fibres. Between the sixth week and second month the expression of MHC-IIx became prominent. The slow rhomboideus muscle exhibited an early expression of the slow isoform in the secondary fibres. Our results indicate that the timing of muscle maturation depends on its activity immediately following birth. The fastest developing muscle was the diaphragm, followed by the fast muscles. A pronounced changeover from developmental to adult isoforms was noted at 4–6 weeks of age, which coincides with the increased physical activity of puppies. PMID:16879596

  10. Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2

    PubMed Central

    Ponissery Saidu, Samsudeen; Stephan, Aaron B.; Talaga, Anna K.

    2013-01-01

    Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca2+-activated Cl− channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5′ rapid amplification of cDNA ends analysis was conducted to characterize the 5′ end of olfactory Ano2 transcripts, which showed that the most abundant Ano2 transcripts in the olfactory epithelium contain a novel starting exon that encodes a translation initiation site, whereas transcripts of the publically available sequence variant, which has an alternative and longer 5′ end, were present in lower abundance. With two alternative starting exons and alternative splicing of exon 4, four olfactory ANO2 isoforms are thus possible. Patch-clamp experiments in transfected HEK293T cells expressing these isoforms showed that N-terminal sequences affect Ca2+ sensitivity and that the exon 4–encoded sequence is required to form functional channels. Coexpression of the two predominant isoforms, one with and one without the exon 4 sequence, as well as coexpression of the two rarer isoforms showed alterations in channel properties, indicating that different isoforms interact with each other. Furthermore, channel properties observed from the coexpression of the predominant isoforms better recapitulated the native channel properties, suggesting that the native channel may be composed of two or more splicing isoforms acting as subunits that together shape the channel properties. PMID:23669718

  11. Down-regulation of Na(+)/K(+)-ATPase alpha(2) isoform in denervated rat vas deferens.

    PubMed

    Quintas, L E; Caricati-Neto, A; Lafayette, S S; Jurkiewicz, A; Noël, F

    2000-09-15

    In the rat vas deferens, an organ richly innervated by peripheral sympathetic neurons, we have demonstrated recently the expression of alpha(1) and alpha(2), but not alpha(3) isoforms of the alpha subunit of Na(+)/K(+)-ATPase (EC 3.6.1.37), a membrane-bound enzyme of vital function for living cells (Noël et al., Biochem Pharmacol 55: 1531-1535, 1998). In the present work, we characterized, qualitatively and quantitatively, Na(+)/K(+)-ATPase alpha isoforms in denervated rat vasa deferentia. [(3)H]Ouabain binding at concentrations defined for high-affinity isoforms (alpha(2) and/or alpha(3)) detected only one class of specific binding sites in control (C) and denervated (D) vas deferens. Although the dissociation constant was similar for both groups [K(d) = 138 +/- 14 nM (C) and 125 +/- 8 nM (D)], a marked decrease in density was observed after denervation [716 +/- 81 fmol.mg protein(-1) (C) and 445 +/- 34 fmol.mg protein(-1) (D), P < 0.05]. In addition, western blotting revealed that denervated vasa deferentia produce the alpha(1) and alpha(2) isoforms but not alpha(3), just as we reported for the controls previously (Noël et al., Biochem Pharmacol 55: 1531-1535, 1998). Densitometric analysis showed a decrease of the alpha(2) isoform by about 40% in denervated organs, in very good agreement with what was shown with the [(3)H]ouabain binding technique, but no significant change in alpha(1) isoform density. Truncated alpha(1) (alpha(1)T), an isoform suggested to exist in the guinea pig vas deferens, was not detected. Altogether, our results demonstrated that Na(+)/K(+)-ATPase alpha(2) is down-regulated after sympathetic denervation of the rat vas deferens.

  12. Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2004-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta, and -epsilon was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms delta and epsilon were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1-g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cgamma in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.

  13. Distinct responses to reduplicated chromosomes require distinct Mad2 responses

    PubMed Central

    Stormo, Benjamin M; Fox, Donald T

    2016-01-01

    Duplicating chromosomes once each cell cycle produces sister chromatid pairs, which separate accurately at anaphase. In contrast, reduplicating chromosomes without separation frequently produces polytene chromosomes, a barrier to accurate mitosis. Chromosome reduplication occurs in many contexts, including: polytene tissue development, polytene tumors, and following treatment with mitosis-blocking chemotherapeutics. However, mechanisms responding to or resolving polyteny during mitosis are poorly understood. Here, using Drosophila, we uncover two distinct reduplicated chromosome responses. First, when reduplicated polytene chromosomes persist into metaphase, an anaphase delay prevents tissue malformation and apoptosis. Second, reduplicated polytene chromosomes can also separate prior to metaphase through a spindle-independent mechanism termed Separation-Into-Recent-Sisters (SIRS). Both reduplication responses require the spindle assembly checkpoint protein Mad2. While Mad2 delays anaphase separation of metaphase polytene chromosomes, Mad2’s control of overall mitotic timing ensures efficient SIRS. Our results pinpoint mechanisms enabling continued proliferation after genome reduplication, a finding with implications for cancer progression and prevention. DOI: http://dx.doi.org/10.7554/eLife.15204.001 PMID:27159240

  14. The N-Terminal Peptides of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion Channel Have Different Helical Propensities.

    PubMed

    Guardiani, Carlo; Scorciapino, Mariano Andrea; Amodeo, Giuseppe Federico; Grdadolnik, Joze; Pappalardo, Giuseppe; De Pinto, Vito; Ceccarelli, Matteo; Casu, Mariano

    2015-09-15

    The voltage-dependent anion channel (VDAC) is the main mitochondrial porin allowing the exchange of ions and metabolites between the cytosol and the mitochondrion. In addition, VDAC was found to actively interact with proteins playing a fundamental role in the regulation of apoptosis and being of central interest in cancer research. VDAC is a large transmembrane β-barrel channel, whose N-terminal helical fragment adheres to the channel interior, partially closing the pore. This fragment is considered to play a key role in protein stability and function as well as in the interaction with apoptosis-related proteins. Three VDAC isoforms are differently expressed in higher eukaryotes, for which distinct and complementary roles are proposed. In this work, the folding propensity of their N-terminal fragments has been compared. By using multiple spectroscopic techniques, and complementing the experimental results with theoretical computer-assisted approaches, we have characterized their conformational equilibrium. Significant differences were found in the intrinsic helical propensity of the three peptides, decreasing in the following order: hVDAC2 > hVDAC3 > hVDAC1. In light of the models proposed in the literature to explain voltage gating, selectivity, and permeability, as well as interactions with functionally related proteins, our results suggest that the different chemicophysical properties of the N-terminal domain are possibly correlated to different functions for the three isoforms. The overall emerging picture is that a similar transmembrane water accessible conduit has been equipped with not identical domains, whose differences can modulate the functional roles of the three VDAC isoforms.

  15. Structural isoforms of the circadian neuropeptide PDF expressed in the optic lobes of the cricket Gryllus bimaculatus: immunocytochemical evidence from specific monoclonal antibodies.

    PubMed

    Honda, Takeshi; Matsushima, Ayami; Sumida, Kazunori; Chuman, Yoshiro; Sakaguchi, Kazuyasu; Onoue, Hitoshi; Meinertzhagen, Ian A; Shimohigashi, Yasuyuki; Shimohigashi, Miki

    2006-11-20

    Pigment-dispersing factor (PDF) is an 18-mer peptide that acts as a principal neurotransmitter of the insect circadian clock. Our previous study, utilizing anti-Uca beta-PDH polyclonal antibody (pAb) to immunolabel the optic lobe of the cricket Gryllus bimaculatus, suggested the existence of an alternative PDF-like peptide in the outer cells of the first neuropile, or lamina (La), which were much less immunoreactive than the inner cells of the second neuropile, the medulla (Me). To obtain structural information about such a PDF-like peptide, we prepared 10 anti-Gryllus PDF monoclonal (mAb) and pAb antibodies and analyzed their detailed epitope specificities. The PDFMe and PDFLa inner cells and their axonal projections were clearly immunoreactive to all these antibodies, revealing the widespread immunocytochemical organization of the PDF system in the optic lobe, as seen previously with anti-Uca beta-PDH pAb and anti-Gryllus PDF mAb, the epitope structures of which were also clarified in this study. The lamina outer cells, which we found lacked a target pdf mRNA, displayed specific immunoreactivities, indicating that the cells contain a distinct PDF-like peptide possessing both N- and C-terminal structures. These cells were not immunolabeled by some other monoclonal antibodies, however, implying that the PDFLa outer cells have a PDF isoform peptide devoid of Asn at positions 6 and 16. This isoform was also identified in a varicose arborization in the lamina. These results suggest not only the structure of the peptide, but also the possibility of additional functions of this novel PDF isoform.

  16. Cholesteryl ester loading of mouse peritoneal macrophages is associated with changes in the expression or modification of specific cellular proteins, including increase in an alpha-enolase isoform.

    PubMed

    Bottalico, L A; Kendrick, N C; Keller, A; Li, Y; Tabas, I

    1993-02-01

    This report explores the hypothesis that massive cholesteryl ester (CE) accumulation in macrophages, such as that occurring in atheroma foam cells, results in changes in the expression or modification of specific cellular proteins. Two-dimensional (2-D) gel electrophoretic patterns of metabolically labeled cellular proteins from mouse peritoneal macrophages that were loaded with CE (through incubation with acetylated low density lipoprotein [acetyl-LDL] for 4 days) were compared with those of control macrophages. Densitometric analysis of 2-D gel autoradiograms from the cell lysates revealed statistically significant changes in seven cellular proteins (five decreases and two increases). The changes in protein expression (foam cell versus control) ranged from a 458 +/- 164% (p < 0.001) increase to a 35 +/- 34% (p < 0.001) decrease (n = 11). Incubation of macrophages with beta-very low density lipoprotein, which also increased the CE content of macrophages (albeit to a lesser extent than acetyl-LDL), resulted in changes in five of the seven proteins. In contrast, incubation of cells with LDL, fucoidan, or latex beads, none of which caused CE accumulation, did not lead to significant changes in four of these five proteins. One of these four proteins, which increased fourfold to fivefold in foam cells (M(r) = 49,000; isoelectric point of 6.8), was purified by preparative 2-D gel electrophoresis. Internal amino acid sequence of cyanogen bromide fragments of this protein as well as Western blot analysis identified this protein as an isoform of alpha-enolase. The increased expression of this alpha-enolase isoform, which was seen as early as day 2 of acetyl-LDL incubation of the macrophages, was diminished by including an inhibitor of cholesterol esterification during the acetyl-LDL incubation period. In conclusion, macrophage foam cell formation is associated with distinct changes in protein expression, including a marked increase in an isoform of alpha

  17. The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific

    PubMed Central

    Dafnis, Ioannis; Argyri, Letta; Sagnou, Marina; Tzinia, Athina; Tsilibary, Effie C.; Stratikos, Efstratios; Chroni, Angeliki

    2016-01-01

    The apolipoprotein (apo) E4 isoform is the strongest risk factor for late-onset Alzheimer’s disease (AD). ApoE4 is more susceptible to proteolysis than apoE2 and apoE3 isoforms and carboxyl-terminal truncated apoE4 forms have been found in AD patients’ brain. We have previously shown that a specific apoE4 fragment, apoE4-165, promotes amyloid-peptide beta 42 (Aβ42) accumulation in human neuroblastoma SK-N-SH cells and increased intracellular reactive oxygen species formation, two events considered to occur early in AD pathogenesis. Here, we show that these effects are allele-dependent and absolutely require the apoE4 background. Furthermore, the exact length of the fragment is critical since longer or shorter length carboxyl-terminal truncated apoE4 forms do not elicit the same effects. Structural and thermodynamic analyses showed that apoE4-165 has a compact structure, in contrast to other carboxyl-terminal truncated apoE4 forms that are instead destabilized. Compared however to other allelic backgrounds, apoE4-165 is structurally distinct and less thermodynamically stable suggesting that the combination of a well-folded structure with structural plasticity is a unique characteristic of this fragment. Overall, our findings suggest that the ability of apoE fragments to promote Aβ42 intraneuronal accumulation is specific for both the apoE4 isoform and the particular structural and thermodynamic properties of the fragment. PMID:27476701

  18. Functional Analysis of the Short Isoform of Orf Virus Protein OV20.0

    PubMed Central

    Tseng, Yeu-Yang; Lin, Fong-Yuan; Cheng, Sun-Fang; Chulakasian, Songkhla; Chou, Chia-Chi; Liu, Ya-Fen; Chang, Wei-Shan; Wong, Min-Liang

    2015-01-01

    ABSTRACT Orf virus (ORFV) OV20.0L is an ortholog of vaccinia virus (VACV) gene E3L. The function of VACV E3 protein as a virulence factor is well studied, but OV20.0 has received less attention. Here we show that like VACV E3L, OV20.0L encodes two proteins, a full-length protein and a shorter form (sh20). The shorter sh20 is an N-terminally truncated OV20.0 isoform generated when a downstream AUG codon is used for initiating translation. These isoforms differed in cellular localization, with full-length OV20.0 and sh20 found throughout the cell and predominantly in the cytoplasm, respectively. Nonetheless, both OV20.0 isoforms were able to bind double-stranded RNA (dsRNA)-activated protein kinase (PKR) and dsRNA. Moreover, both isoforms strongly inhibited PKR activation as shown by decreased phosphorylation of the translation initiation factor eIF2α subunit and protection of Sindbis virus infection again