Scharfenberger, Christian; Wong, Alexander; Clausi, David A
2015-01-01
We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.
The Flowfield Characteristics of a Mach 2 Diamond Jet
NASA Technical Reports Server (NTRS)
Washington, Donnell; Alvi, Farrukh S.; Krothapalli, Anjanevulu
1997-01-01
The potential for using a novel diamond-shaped nozzle which may allow for superior mixing characteristics of supersonic jets without significant thrust losses is explored. The results of flow visualization and pressure measurements indicate the presence of distinct structures in the shear layers, not normally observed in shear layers of axisymmetric and rectangular jets. As characteristics of these features suggests that they are a manifestation of significant streamwise vorticity in the shear layers. Despite the distinct nature of the flowfield structure of the present shear layer, the global growth rates of this shear layer were found to be very similar to its two-dimensional and axisymmetric counterparts. These and other observations suggest that the presence of streamwise vorticity may not play a significant role in the global development of a compressible shear layer.
Impact of inhomogeneity on SH-type wave propagation in an initially stressed composite structure
NASA Astrophysics Data System (ADS)
Saha, S.; Chattopadhyay, A.; Singh, A. K.
2018-02-01
The present analysis has been made on the influence of distinct form of inhomogeneity in a composite structure comprised of double superficial layers lying over a half-space, on the phase velocity of SH-type wave propagating through it. Propagation of SH-type wave in the said structure has been examined in four distinct cases of inhomogeneity viz. when inhomogeneity in double superficial layer is due to exponential variation in density only (Case I); when inhomogeneity in double superficial layers is due to exponential variation in rigidity only (Case II); when inhomogeneity in double superficial layer is due to exponential variation in rigidity, density and initial stress (Case III) and when inhomogeneity in double superficial layer is due to linear variation in rigidity, density and initial stress (Case IV). Closed-form expression of dispersion relation has been accomplished for all four aforementioned cases through extensive application of Debye asymptotic analysis. Deduced dispersion relations for all the cases are found in well-agreement to the classical Love-wave equation. Numerical computation has been carried out to graphically demonstrate the effect of inhomogeneity parameters, initial stress parameters as well as width ratio associated with double superficial layers in the composite structure for each of the four aforesaid cases on dispersion curve. Meticulous examination of distinct cases of inhomogeneity and initial stress in context of considered problem has been carried out with detailed analysis in a comparative approach.
Anatomy and histology of the transverse humeral ligament.
Snow, Brian J; Narvy, Steven J; Omid, Reza; Atkinson, Roscoe D; Vangsness, C Thomas
2013-10-01
The classic literature describes the transverse humeral ligament (THL) as a distinct anatomic structure with a role in biceps tendon stability; however, recent literature suggests that it is not a distinct anatomic structure. The purpose of this study was to evaluate the gross and microscopic anatomy of the THL, including a specific investigation of the histology of this ligament. Thirty frozen, embalmed cadaveric specimens were dissected to determine the gross anatomy of the THL. Seven specimens were evaluated histologically for the presence of mechanoreceptors and free nerve endings. Two tissue layers were identified in the area described as the THL. In the deep layer, fibers of the subscapularis tendon were found to span the bicipital groove with contributions from the coracohumeral ligament and the supraspinatus tendon. Superficial to this layer was a fibrous fascial covering consisting of distinct bands of tissue. Neurohistology staining revealed the presence of free nerve endings but no mechanoreceptors. This study's findings demonstrate that the THL is a distinct structure continuous with the rotator cuff tendons and the coracohumeral ligament. The finding of free nerve endings in the THL suggests a potential role as a shoulder pain generator. Copyright 2013, SLACK Incorporated.
Structural reducibility of multilayer networks
NASA Astrophysics Data System (ADS)
de Domenico, Manlio; Nicosia, Vincenzo; Arenas, Alexandre; Latora, Vito
2015-04-01
Many complex systems can be represented as networks consisting of distinct types of interactions, which can be categorized as links belonging to different layers. For example, a good description of the full protein-protein interactome requires, for some organisms, up to seven distinct network layers, accounting for different genetic and physical interactions, each containing thousands of protein-protein relationships. A fundamental open question is then how many layers are indeed necessary to accurately represent the structure of a multilayered complex system. Here we introduce a method based on quantum theory to reduce the number of layers to a minimum while maximizing the distinguishability between the multilayer network and the corresponding aggregated graph. We validate our approach on synthetic benchmarks and we show that the number of informative layers in some real multilayer networks of protein-genetic interactions, social, economical and transportation systems can be reduced by up to 75%.
Ayeh, Kwadwo Owusu; Lee, YeonKyeong; Ambrose, Mike J; Hvoslef-Eide, Anne Kathrine
2009-06-23
In pea seeds (Pisum sativum L.), the Def locus defines an abscission event where the seed separates from the funicle through the intervening hilum region at maturity. A spontaneous mutation at this locus results in the seed failing to abscise from the funicle as occurs in wild type peas. In this work, structural differences between wild type peas that developed a distinct abscission zone (AZ) between the funicle and the seed coat and non-abscission def mutant were characterized. A clear abscission event was observed in wild type pea seeds that were associated with a distinct double palisade layers at the junction between the seed coat and funicle. Generally, mature seeds fully developed an AZ, which was not present in young wild type seeds. The AZ was formed exactly below the counter palisade layer. In contrast, the palisade layers at the junction of the seed coat and funicle were completely absent in the def mutant pea seeds and the cells in this region were seen to be extensions of surrounding parenchymatous cells. The Def wild type developed a distinct AZ associated with palisade layer and counterpalisade layer at the junction of the seed coat and funicle while the def mutant pea seed showed non-abscission and an absence of the double palisade layers in the same region. We conclude that the presence of the double palisade layer in the hilum of the wild type pea seeds plays an important structural role in AZ formation by delimiting the specific region between the seed coat and the funicle and may play a structural role in the AZ formation and subsequent detachment of the seed from the funicle.
Unexpected structural and magnetic depth dependence of YIG thin films
NASA Astrophysics Data System (ADS)
Cooper, J. F. K.; Kinane, C. J.; Langridge, S.; Ali, M.; Hickey, B. J.; Niizeki, T.; Uchida, K.; Saitoh, E.; Ambaye, H.; Glavic, A.
2017-09-01
We report measurements on yttrium iron garnet (YIG) thin films grown on both gadolinium gallium garnet (GGG) and yttrium aluminum garnet (YAG) substrates, with and without thin Pt top layers. We provide three principal results: the observation of an interfacial region at the Pt/YIG interface, we place a limit on the induced magnetism of the Pt layer, and confirm the existence of an interfacial layer at the GGG/YIG interface. Polarized neutron reflectometry (PNR) was used to give depth dependence of both the structure and magnetism of these structures. We find that a thin film of YIG on GGG is best described by three distinct layers: an interfacial layer near the GGG, around 5 nm thick and nonmagnetic, a magnetic "bulk" phase, and a nonmagnetic and compositionally distinct thin layer near the surface. We theorize that the bottom layer, which is independent of the film thickness, is caused by Gd diffusion. The top layer is likely to be extremely important in inverse spin Hall effect measurements, and is most likely Y2O3 or very similar. Magnetic sensitivity in the PNR to any induced moment in the Pt is increased by the existence of the Y2O3 layer; any moment is found to be less than 0.02 μB/atom .
Furutani, Rui
2008-09-01
The present investigation carried out Nissl, Klüver-Barrera, and Golgi studies of the cerebral cortex in three distinct genera of oceanic dolphins (Risso's dolphin, striped dolphin and bottlenose dolphin) to identify and classify cortical laminar and cytoarchitectonic structures in four distinct functional areas, including primary motor (M1), primary sensory (S1), primary visual (V1), and primary auditory (A1) cortices. The laminar and cytoarchitectonic organization of each of these cortical areas was similar among the three dolphin species. M1 was visualized as five-layer structure that included the molecular layer (layer I), external granular layer (layer II), external pyramidal layer (layer III), internal pyramidal layer (layer V), and fusiform layer (layer VI). The internal granular layer was absent. The cetacean sensory-related cortical areas S1, V1, and A1 were also found to have a five-layer organization comprising layers I, II, III, V and VI. In particular, A1 was characterized by the broadest layer I, layer II and developed band of pyramidal neurons in layers III (sublayers IIIa, IIIb and IIIc) and V. The patch organization consisting of the layer IIIb-pyramidal neurons was detected in the S1 and V1, but not in A1. The laminar patterns of V1 and S1 were similar, but the cytoarchitectonic structures of the two areas were different. V1 was characterized by a broader layer II than that of S1, and also contained the specialized pyramidal and multipolar stellate neurons in layers III and V.
Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice.
Hatam, Ido; Charchuk, Rhianna; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian
2014-10-01
Bacterial communities in Arctic sea ice play an important role in the regulation of nutrient and energy dynamics in the Arctic Ocean. Sea ice has vertical gradients in temperature, brine salinity and volume, and light and UV levels. Multiyear ice (MYI) has at least two distinct ice layers: old fresh ice with limited permeability, and new saline ice, and may also include a surface melt pond layer. Here, we determine whether bacterial communities (1) differ with ice depth due to strong physical and chemical gradients, (2) are relatively homogenous within a layer, but differ between layers, or (3) do not vary with ice depth. Cores of MYI off northern Ellesmere Island, NU, Canada, were subsectioned in 30-cm intervals, and the bacterial assemblage structure was characterized using 16S rRNA gene pyrotag sequencing. Assemblages clustered into three distinct groups: top (0-30 cm); middle (30-150 cm); and bottom (150-236 cm). These layers correspond to the occurrence of refrozen melt pond ice, at least 2-year-old ice, and newly grown first-year ice at the bottom of the ice sheet, respectively. Thus, MYI houses multiple distinct bacterial assemblages, and in situ conditions appear to play a less important role in structuring microbial assemblages than the age or conditions of the ice at the time of formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Furutani, Rui
2008-01-01
The present investigation carried out Nissl, Klüver-Barrera, and Golgi studies of the cerebral cortex in three distinct genera of oceanic dolphins (Risso's dolphin, striped dolphin and bottlenose dolphin) to identify and classify cortical laminar and cytoarchitectonic structures in four distinct functional areas, including primary motor (M1), primary sensory (S1), primary visual (V1), and primary auditory (A1) cortices. The laminar and cytoarchitectonic organization of each of these cortical areas was similar among the three dolphin species. M1 was visualized as five-layer structure that included the molecular layer (layer I), external granular layer (layer II), external pyramidal layer (layer III), internal pyramidal layer (layer V), and fusiform layer (layer VI). The internal granular layer was absent. The cetacean sensory-related cortical areas S1, V1, and A1 were also found to have a five-layer organization comprising layers I, II, III, V and VI. In particular, A1 was characterized by the broadest layer I, layer II and developed band of pyramidal neurons in layers III (sublayers IIIa, IIIb and IIIc) and V. The patch organization consisting of the layer IIIb-pyramidal neurons was detected in the S1 and V1, but not in A1. The laminar patterns of V1 and S1 were similar, but the cytoarchitectonic structures of the two areas were different. V1 was characterized by a broader layer II than that of S1, and also contained the specialized pyramidal and multipolar stellate neurons in layers III and V. PMID:18625031
Suzuki, Michio; Kameda, Jun; Sasaki, Takenori; Saruwatari, Kazuko; Nagasawa, Hiromichi; Kogure, Toshihiro
2010-08-01
The microstructure and its crystallographic aspect of the shell of a limpet, Lottiakogamogai, have been investigated, as the first step to clarify the mechanism of shell formation in limpet. The shell consists of five distinct layers stacked along the shell thickness direction. Transmission electron microscopy (TEM) with the focused ion beam (FIB) sample preparation technique was primarily adopted, as well as scanning electron microscopy (SEM) with electron back-scattered diffraction (EBSD). The five layers were termed as M+3, M+2, M+1, M, M-1 from the outside to the inside in previous works, where M means myostracum. The outmost M+3 layer consists of calcite with a "mosaic" structure; granular submicron sub-grains with small-angle grain boundaries often accompanying dislocation arrays. M+2 layer consists of flat prismatic aragonite crystals with a leaf-like cross section, stacked obliquely to the shell surface. It looks that the prismatic crystals are surrounded by organic sheets, forming a compartment structure. M+1 and M-1 layers adopt a crossed lamellar structure consisting of aragonite flat prisms with rectangular cross section. M layer has a prismatic structure of aragonite perpendicular to the shell surface and with irregular shaped cross sections. Distinct organic sheets were not observed between the crystals in M+1, M and M-1 layers. The {110} twins are common in all aragonite M+2, M+1, M and M-1 layers, with the twin boundaries parallel to the prisms. These results for the microstructure of each layer should be considered in the discussion of the formation mechanism of the limpet shell structure. Copyright 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plomp, M; Leighton, T; Wheeler, K
2005-02-18
We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereusmore » was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.« less
Wallner, P; Ruile, W; Weigel, R
2000-01-01
Theoretical studies on the behavior of leaky-SAW (LSAW) properties in layered structures were performed. For these calculations rotYX LiTaO (3) and rotYX LiNbO(3) LSAW crystal cuts were used, assuming different layer materials. For LSAWs both the velocity and the inherent loss due to bulk wave emission into the substrate are strongly influenced by distinct layer parameters. As a result, these layer properties like elastic constants or thickness have shown a strong influence on the crystal cut angle of minimum LSAW loss. Moreover, for soft and stiff layer materials, a different shift of the LSAW loss minimum can occur. Therefore, using double-layer structures, the shift of the LSAW loss minimum can be influenced by appropriate chosen layers and ratios.
Iridescence in the neck feathers of domestic pigeons
NASA Astrophysics Data System (ADS)
Yin, Haiwei; Shi, Lei; Sha, Jing; Li, Yizhou; Qin, Youhua; Dong, Biqin; Meyer, Serge; Liu, Xiaohan; Zhao, Li; Zi, Jian
2006-11-01
We conducted structural characterizations, reflection measurements, and theoretical simulations on the iridescent green and purple neck feathers of domestic pigeons (Columba livia domestica). We found that both green and purple barbules are composed of an outer keratin cortex layer surrounding a medullary layer. The thickness of the keratin cortex layer shows a distinct difference between green and purple barbules. Green barbules vary colors from green to purple with the observing angle changed from normal to oblique, while purple barbules from purple to green in an opposite way. Both the experimental and theoretical results suggest that structural colors in green and purple neck feathers should originate from the interference in the top keratin cortex layer, while the structure beyond acts as a poor mirror.
Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan
2016-07-06
Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.
Hybrid Composite Cryogenic Tank Structure
NASA Technical Reports Server (NTRS)
DeLay, Thomas
2011-01-01
A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic temperatures, and will not crack or produce leaks. The outer layer serves as more of a high-performance structural unit for the inner layer, and can handle external environments.
Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning
NASA Astrophysics Data System (ADS)
Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.
2007-12-01
The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms also highlights the importance of strain heterogeneity for the maintenance of community structure and function. These findings explain the importance of genetic diversity in facilitating the stable performance of complex microbial processes. Furthermore, although very different in terms of habitat, both microbial communities exhibit distinct functional compartmentalization and demonstrate its role in sustaining microbial community structure.
Crystallography, chemistry and structural disorder in the new high-Tc Bi-Ca-Sr-Cu-O superconductor
NASA Technical Reports Server (NTRS)
Veblen, D. R.; Heaney, P. J.; Angel, R. J.; Finger, L. W.; Hazen, R. M.
1988-01-01
Diffraction experiments are reported which indicate that the new Bi-Ca-Sr-Cu-O layer-structure superconductor possesses a primitive orthorhombic unit cell with probable space group Pnnn. The material exhibits severe structural disorder which is primarily related to stacking within the layers. The apparent orthorhombic structure is an average resulting from orthorhombic material mixed with monoclinic domains in two twinned orientations. Two distinct types of structural disorder that are common in materials synthesized to date are also described. This disorder complicates the crystallographic analysis and suggests that X-ray and neutron diffraction methods may yield only an average structure.
Nematicity in stripe ordered cuprates probed via resonant x-ray scattering
Achkar, A. J.; Zwiebler, M.; McMahon, Christopher; ...
2016-02-05
We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M) 2CuO 4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M) 2O 2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M) 2O 2 layers and the electronic nematicity of the CuO 2 planes, with only the latter being enhancedmore » by the onset of CDW order. Our results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.« less
Nematicity in stripe ordered cuprates probed via resonant x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achkar, A. J.; Zwiebler, M.; McMahon, Christopher
We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M) 2CuO 4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M) 2O 2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M) 2O 2 layers and the electronic nematicity of the CuO 2 planes, with only the latter being enhancedmore » by the onset of CDW order. Our results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.« less
Yoshioka, Shinya; Kinoshita, Shuichi
2006-01-22
A few species of Morpho butterflies have a distinctive white stripe pattern on their structurally coloured blue wings. Since the colour pattern of a butterfly wing is formed as a mosaic of differently coloured scales, several questions naturally arise: are the microstructures the same between the blue and white scales? How is the distinctive whiteness produced, structurally or by means of pigmentation? To answer these questions, we have performed structural and optical investigations of the stripe pattern of a butterfly, Morpho cypris. It is found that besides the dorsal and ventral scale layers, the wing substrate also has the corresponding stripe pattern. Quantitative optical measurements and analysis using a simple model for the wing structure reveal the origin of the higher reflectance which makes the white stripe brighter.
NASA Astrophysics Data System (ADS)
Yan, Lei; Niu, H. J.; Rosseinsky, M. J.
2011-03-01
The (AO)(A BO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3 , butlowtemperaturelayer - by - layerthinfilmmethodsallowthepreparationofmaterialswiththickerperovskiteblocks , exploitinghighsurfacemobilityandlatticematchingwiththesubstrate . Thispresentationdescribesthegrowthofann = 6 memberCaO / (ABO 3)n (ABO 3 : CaMnO 3 , La 0.67 Ca 0.33 MnO 3 orCa 0.85 Sm 0.15 MnO 3) epitaxialsinglecrystalfilmsonthe (001) SrTiO 3 substrates by pulsed laser deposition with the assistance of a reflection high energy electron diffraction (RHEED).
Temporal identity in axonal target layer recognition.
Petrovic, Milan; Hummel, Thomas
2008-12-11
The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division but also connection diversity of projecting neurons.
Fabrication and characterization of iron oxide dextran composite layers
NASA Astrophysics Data System (ADS)
Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.
2018-02-01
Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.
Surface topography and electrical properties in Sr2FeMoO6 films studied at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Angervo, I.; Saloaro, M.; Mäkelä, J.; Lehtiö, J.-P.; Huhtinen, H.; Paturi, P.
2018-03-01
Pulsed laser deposited Sr2FeMoO6 thin films were investigated for the first time with scanning tunneling microscopy and spectroscopy. The results confirm atomic scale layer growth, with step-terrace structure corresponding to a single lattice cell scale. The spectroscopy research reveals a distribution of local electrical properties linked to structural deformation in the initial thin film layers at the film substrate interface. Significant hole structure giving rise to electrically distinctive regions in thinner film also seems to set a thickness limit for the thinnest films to be used in applications.
Influence of temperature and molecular structure on ionic liquid solvation layers.
Wakeham, Deborah; Hayes, Robert; Warr, Gregory G; Atkin, Rob
2009-04-30
Atomic force microscopy (AFM) force profiling is used to investigate the structure of adsorbed and solvation layers formed on a mica surface by various room temperature ionic liquids (ILs) ethylammonium nitrate (EAN), ethanolammonium nitrate (EtAN), ethylammonium formate (EAF), propylammonium formate (PAF), ethylmethylammonium formate (EMAF), and dimethylethylammonium formate (DMEAF). At least seven layers are observed for EAN at 14 degrees C (melting point 13 degrees C), decreasing as the temperature is increased to 30 degrees C due to thermal energy disrupting solvophobic forces that lead to segregation of cation alkyl tails from the charged ammonium and nitrate moieties. The number and properties of the solvation layers can also be controlled by introducing an alcohol moiety to the cation's alkyl tail (EtAN), or by replacing the nitrate anion with formate (EAF and PAF), even leading to the detection of distinct cation and anion sublayers. Substitution of primary by secondary or tertiary ammonium cations reduces the number of solvation layers formed, and also weakens the cation layer adsorbed onto mica. The observed solvation and adsorbed layer structures are discussed in terms of the intermolecular cohesive forces within the ILs.
Helical Root Buckling: A Transient Mechanism for Stiff Interface Penetration
NASA Astrophysics Data System (ADS)
Silverberg, Jesse; Noar, Roslyn; Packer, Michael; Harrison, Maria; Cohen, Itai; Henley, Chris; Gerbode, Sharon
2011-03-01
Tilling in agriculture is commonly used to loosen the topmost layer of soil and promote healthy plant growth. As roots navigate this mechanically heterogeneous environment, they encounter interfaces between the compliant soil and the underlying compacted soil. Inspired by this problem, we used 3D time-lapse imaging of Medicago Truncatula plants to study root growth in two-layered transparent hydrogels. The layers are mechanically distinct; the top layer is more compliant than the bottom. We observe that the roots form a transient helical structure as they attempt to penetrate the bi-layer interface. Interpreting this phenotype as a form of buckling due to root elongation, we measured the helix size as a function of the surrounding gel modulus. Our measurements show that by twisting the root tip during growth, the helical structure recruits the surrounding medium for an enhanced penetration force allowing the plants access to the lower layer of gel.
Frictional and structural characterization of ion-nitrided low and high chromium steels
NASA Technical Reports Server (NTRS)
Spalvins, T.
1985-01-01
Low Cr steels AISI 41410, AISI 4340, and high Cr austenitic stainless steels AISI 304, AISI 316 were ion nitrided in a dc glow discharge plasma consisting of a 75 percent H2 - 25 percent N2 mixture. Surface compound layer phases were identified, and compound layer microhardness and diffusion zone microhardness profiles were established. Distinct differences in surface compound layer hardness and diffusion zone profiles were determined between the low and high Cr alloy steels. The high Cr stainless steels after ion nitriding displayed a hard compound layer and an abrupt diffusion zone. The compound layers of the high Cr stainless steels had a columnar structure which accounts for brittleness when layers are exposed to contact stresses. The ion nitrided surfaces of high and low Cr steels displayed a low coefficient of friction with respect to the untreated surfaces when examined in a pin and disk tribotester.
Interfacial ionic 'liquids': connecting static and dynamic structures
Uysal, Ahmet; Zhou, Hua; Feng, Guang; ...
2014-12-05
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. For this research, we used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene–RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can bemore » described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. Lastly, the potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (~0.15 eV).« less
Interfacial ionic 'liquids': connecting static and dynamic structures.
Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T; Fulvio, Pasquale F; Dai, Sheng; McDonough, John K; Gogotsi, Yury; Fenter, Paul
2015-01-28
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (∼0.15 eV).
Tuning the structure of thermosensitive gold nanoparticle monolayers.
Rezende, Camila A; Shan, Jun; Lee, Lay-Theng; Zalczer, Gilbert; Tenhu, Heikki
2009-07-23
Gold nanoparticles grafted with poly(N-isopropylacrylamide) (PNIPAM) are rendered amphiphilic and thermosensitive. When spread on the surface of water, they form stable Langmuir monolayers that exhibit surface plasmon resonance. Using Langmuir balance and contrast-matched neutron reflectivity, the detailed structural properties of these nanocomposite monolayers are revealed. At low surface coverage, the gold nanoparticles are anchored to the interface by an adsorbed PNIPAM layer that forms a thin and compact pancake structure. Upon isothermal compression (T=20 degrees C), the adsorbed layer thickens with partial desorption of polymer chains to form brush structures. Two distinct polymer conformations thus coexist: an adsorbed conformation that assures stability of the monolayer, and brush structures that dangle in the subphase. An increase in temperature to 30 degrees C results in contractions of both adsorbed and brush layers with a concomitant decrease in interparticle distance, indicating vertical as well as lateral contractions of the graft polymer layer. The reversibility of this thermal response is also shown by the contraction-expansion of the polymer layers in heating-cooling cycles. The structure of the monolayer can thus be tuned by compression and reversibly by temperature. These compression and thermally induced conformational changes are discussed in relation to optical properties.
The atomic geometries of GaP(110) and ZnS(110) revisited - A structural ambiguity and its resolution
NASA Technical Reports Server (NTRS)
Duke, C. B.; Paton, A.; Kahn, A.
1984-01-01
The atomic geometries of GaP(110) and ZnS(110) are reexamined using the R-factor minimization procedure, developed for GaAs(110) and previously applied to GaSb(110), ZnTe(110), InAs(110), and AlP(110), to analyze experimental elastic low-energy electron diffraction intensities. Unlike most of the earlier cases, both GaP(110) and ZnS(110) exhibit two distinct minimum-Rx structures which cannot be distinguished by analysis of the shapes of the intensity profiles alone. One region of best-fit structures exhibits top-layer displacements normal to the surface characterized by a small bond-length-conserving, top-layer rotation (omega aproximately 2-3 deg), a small relaxation of the top layer away from the surface, and a 10 percent expansion of the top-layer bond length. The other region of best-fit structures is the conventional one: nearly bond-length-conserving rotations of omega = 26-28 deg in the top layer and a small (approximately 0.1 A) contraction of the uppermost layer spacing. This ambiguity may be removed, however, by consideration of the integrated beam intensities. The conventional region of structural parameters provides a decisively better description of the relative magnitudes of the integrated beam intensities and hence is the preferred structure.
NASA Astrophysics Data System (ADS)
Bustamante, María; Tajadura, Javier; Gorostiaga, José María; Saiz-Salinas, José Ignacio
2014-06-01
Macroalgae comprise a prominent part of the rocky benthos where many invertebrates develop, and are believed to be undergoing severe declines worldwide. In order to investigate how the vegetation structure (crustose, basal and canopy layers) contributes to the diversity, structure and function of benthic invertebrates, a total of 31 subtidal transects were sampled along the northeast Atlantic coast of Spain. Significant positive relationships were found between the canopy layer and faunal abundance, taxonomic diversity and functional group diversity. Canopy forming algae were also related to epiphytic invertebrates, medium size forms, colonial strategy and suspensivores. By contrast, basal algae showed negative relationships with all variables tested except for detritivores. Multivariate multiple regression analyses (DISTLM) point to crustose as well as canopy layers as the best link between seaweeds and invertebrate assemblage structure. A close relationship was found between taxonomic and functional diversities. In general, low levels of taxonomic redundancy were detected for functional groups correlated with vegetation structure. A conceptual model based on the results is proposed, describing distinct stages of invertebrate assemblages in relation to the vertical structure of vegetation.
NASA Technical Reports Server (NTRS)
Vinolo, A. R.; Clarke, J. H.
1973-01-01
The gas dynamic structures of the transport shock and the downstream collisional relaxation layer are evaluated for partially ionized monatomic gases. Elastic and inelastic collisional nonequilibrium effects are taken into consideration. In the microscopic model of the atom, three electronic levels are accounted for. By using an asymptotic technique, the shock morphology is found on a continuum flow basis. This procedure gives two distinct layers in which the nonequilibrium effects to be considered are different. A transport shock appears as the inner solution to an outer collisional relaxation layer. The results show four main interesting points: (1) on structuring the transport shock, ionization and excitation rates must be included in the formulation, since the flow is not frozen with respect to the population of the different electronic levels; (2) an electron temperature precursor appears at the beginning of the transport shock; (3) the collisional layer is rationally reduced to quadrature for special initial conditions, which (4) are obtained from new Rankine-Hugoniot relations for the inner shock.
Structure-function clustering in multiplex brain networks
NASA Astrophysics Data System (ADS)
Crofts, J. J.; Forrester, M.; O'Dea, R. D.
2016-10-01
A key question in neuroscience is to understand how a rich functional repertoire of brain activity arises within relatively static networks of structurally connected neural populations: elucidating the subtle interactions between evoked “functional connectivity” and the underlying “structural connectivity” has the potential to address this. These structural-functional networks (and neural networks more generally) are more naturally described using a multilayer or multiplex network approach, in favour of standard single-layer network analyses that are more typically applied to such systems. In this letter, we address such issues by exploring important structure-function relations in the Macaque cortical network by modelling it as a duplex network that comprises an anatomical layer, describing the known (macro-scale) network topology of the Macaque monkey, and a functional layer derived from simulated neural activity. We investigate and characterize correlations between structural and functional layers, as system parameters controlling simulated neural activity are varied, by employing recently described multiplex network measures. Moreover, we propose a novel measure of multiplex structure-function clustering which allows us to investigate the emergence of functional connections that are distinct from the underlying cortical structure, and to highlight the dependence of multiplex structure on the neural dynamical regime.
Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE
NASA Astrophysics Data System (ADS)
Bell, R. E.
2015-12-01
Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between the two IceBridge lines located 47 km apart. The ROSETTA-ICE program will begin a systematic mapping of the Ross Ice Shelf and sub-ice topography using the IcePod system beginning in 2015. Together the new gravity-derived bathymetry and the mapping of the ice shelf structure will provide key insights into the stability of the ice shelf.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.
The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this wasmore » further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.« less
Nemati, Mahdieh; Santos, Abel
2018-01-01
Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA) to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time). The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA), which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS) signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT) using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA)-modified NAA (i.e., sensing element) and quercetin (i.e., analyte). BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT) to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different concentrations of quercetin. The multi-point sensing performance of BL-NAAs was determined for each pore layer, with an average sensitivity and low limit of detection of 600 nm (mg mL−1)−1 and 0.14 mg mL−1, respectively. BL-NAAs photonic structures have the capability to be used as platforms for multi-point RIfS sensing of biomolecules that can be further extended for simultaneous size-exclusion separation and multi-analyte sensing using these bilayered nanostructures. PMID:29415436
NASA Astrophysics Data System (ADS)
Wang, Si-Jiao; Zha, Jun-Wei; Li, Wei-Kang; Dang, Zhi-Min
2016-02-01
The sandwich-structured Al2O3/low density polyethylene (Al2O3/LDPE) nanocomposite dielectrics consisting of layer-by-layer with different concentration Al2O3 loading were prepared by melt-blending and following hot pressing method. The space charge distribution from pulsed electro-acoustic method and breakdown strength of the nanocomposites were investigated. Compared with the single-layer Al2O3/LDPE nanocomposites, the sandwich-structured nanocomposites remarkably suppressed the space charge accumulation and presented higher breakdown strength. The charges in the sandwich-structured nanocomposites decayed much faster than that in the single-layer nanocomposites, which was attributed to an effective electric field caused by the formation of the interfacial space charges. The energy depth of shallow and deep traps was estimated as 0.73 eV and 1.17 eV in the sandwich-structured nanocomposites, respectively, according to the thermal excitation theoretical model we proposed. This work provides an attractive strategy of design and fabrication of polymer nanocomposites with excellent space charge suppression.
Visual texture for automated characterisation of geological features in borehole televiewer imagery
NASA Astrophysics Data System (ADS)
Al-Sit, Waleed; Al-Nuaimy, Waleed; Marelli, Matteo; Al-Ataby, Ali
2015-08-01
Detailed characterisation of the structure of subsurface fractures is greatly facilitated by digital borehole logging instruments, the interpretation of which is typically time-consuming and labour-intensive. Despite recent advances towards autonomy and automation, the final interpretation remains heavily dependent on the skill, experience, alertness and consistency of a human operator. Existing computational tools fail to detect layers between rocks that do not exhibit distinct fracture boundaries, and often struggle characterising cross-cutting layers and partial fractures. This paper presents a novel approach to the characterisation of planar rock discontinuities from digital images of borehole logs. Multi-resolution texture segmentation and pattern recognition techniques utilising Gabor filters are combined with an iterative adaptation of the Hough transform to enable non-distinct, partial, distorted and steep fractures and layers to be accurately identified and characterised in a fully automated fashion. This approach has successfully detected fractures and layers with high detection accuracy and at a relatively low computational cost.
Structure of the cold- and menthol-sensing ion channel TRPM8.
Yin, Ying; Wu, Mengyu; Zubcevic, Lejla; Borschel, William F; Lander, Gabriel C; Lee, Seok-Yong
2018-01-12
Transient receptor potential melastatin (TRPM) cation channels are polymodal sensors that are involved in a variety of physiological processes. Within the TRPM family, member 8 (TRPM8) is the primary cold and menthol sensor in humans. We determined the cryo-electron microscopy structure of the full-length TRPM8 from the collared flycatcher at an overall resolution of ~4.1 ångstroms. Our TRPM8 structure reveals a three-layered architecture. The amino-terminal domain with a fold distinct among known TRP structures, together with the carboxyl-terminal region, forms a large two-layered cytosolic ring that extensively interacts with the transmembrane channel layer. The structure suggests that the menthol-binding site is located within the voltage-sensor-like domain and thus provides a structural glimpse of the design principle of the molecular transducer for cold and menthol sensation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Competitive epidemic spreading over arbitrary multilayer networks.
Darabi Sahneh, Faryad; Scoglio, Caterina
2014-06-01
This study extends the Susceptible-Infected-Susceptible (SIS) epidemic model for single-virus propagation over an arbitrary graph to an Susceptible-Infected by virus 1-Susceptible-Infected by virus 2-Susceptible (SI_{1}SI_{2}S) epidemic model of two exclusive, competitive viruses over a two-layer network with generic structure, where network layers represent the distinct transmission routes of the viruses. We find analytical expressions determining extinction, coexistence, and absolute dominance of the viruses after we introduce the concepts of survival threshold and absolute-dominance threshold. The main outcome of our analysis is the discovery and proof of a region for long-term coexistence of competitive viruses in nontrivial multilayer networks. We show coexistence is impossible if network layers are identical yet possible if network layers are distinct. Not only do we rigorously prove a region of coexistence, but we can quantitate it via interrelation of central nodes across the network layers. Little to no overlapping of the layers' central nodes is the key determinant of coexistence. For example, we show both analytically and numerically that positive correlation of network layers makes it difficult for a virus to survive, while in a network with negatively correlated layers, survival is easier, but total removal of the other virus is more difficult.
Layer-by-layer strippable Ag multilayer films fabricated by modular assembly.
Li, Yan; Chen, Xiaoyan; Li, Qianqian; Song, Kai; Wang, Shihui; Chen, Xiaoyan; Zhang, Kai; Fu, Yu; Jiao, Yong-Hua; Sun, Ting; Liu, Fu-Chun; Han, En-Hou
2014-01-21
We have developed a new method to fabricate multilayer films, which uses prepared thin films as modular blocks and transfer as operation mode to build up multilayer structures. In order to distinguish it from the in situ fabrication manner, this method is called modular assembly in this study. On the basis of such concept, we have fabricated a multilayer film using the silver mirror film as the modular block and poly(lactic acid) as the transfer tool. Due to the special double-layer structure of the silver mirror film, the resulting multilayer film had a well-defined stratified architecture with alternate porous/compact layers. As a consequence of the distinct structure, the interaction between the adjacent layers was so weak that the multilayer film could be layer-by-layer stripped. In addition, the top layer in the film could provide an effective protection on the morphology and surface property of the underlying layers. This suggests that if the surface of the film was deteriorated, the top layer could be peeled off and the freshly exposed surface would still maintain the original function. The successful preparation of the layer-by-layer strippable silver multilayer demonstrates that modular assembly is a feasible and effective method to build up multilayer films capable of creating novel and attractive micro/nanostructures, having great potential in the fabrication of nanodevices and coatings.
Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Mahmod, D. S. A.; Khan, A. A.; Munot, M. A.; Glandut, N.; Labbe, J. C.
2016-08-01
Laser has offered a large number of benefits for surface treatment of ceramics due to possibility of localized heating, very high heating/cooling rates and possibility of growth of structural configurations only produced under non-equilibrium high temperature conditions. The present work investigates oxidation of porous ZrB2-SiC sintered ceramic substrates through treatment by a 1072 ± 10 nm ytterbium fiber laser. A multi-layer structure is hence produced showing successively oxygen rich distinct layers. The porous bulk beneath these layers remained unaffected as this laser-formed oxide scale and protected the substrate from oxidation. A glassy SiO2 structure thus obtained on the surface of the substrate becomes subject of interest for further research, specifically for its utilization as solid protonic conductor in Solid Oxide Fuel Cells (SOFCs).
Projection-specific visual feature encoding by layer 5 cortical subnetworks
Lur, Gyorgy; Vinck, Martin A.; Tang, Lan; Cardin, Jessica A.; Higley, Michael J.
2016-01-01
Summary Primary neocortical sensory areas act as central hubs, distributing afferent information to numerous cortical and subcortical structures. However, it remains unclear whether each downstream target receives distinct versions of sensory information. We used in vivo calcium imaging combined with retrograde tracing to monitor visual response properties of three distinct subpopulations of projection neurons in primary visual cortex. While there is overlap across the groups, on average corticotectal (CT) cells exhibit lower contrast thresholds and broader tuning for orientation and spatial frequency in comparison to corticostriatal (CS) cells, while corticocortical (CC) cells have intermediate properties. Noise correlational analyses support the hypothesis that CT cells integrate information across diverse layer 5 populations, whereas CS and CC cells form more selectively interconnected groups. Overall, our findings demonstrate the existence of functional subnetworks within layer 5 that may differentially route visual information to behaviorally relevant downstream targets. PMID:26972011
NASA Technical Reports Server (NTRS)
Vinolo, A. R.; Clarke, J. H.
1972-01-01
The gas dynamic structures of the transport shock and the downstream collisional relaxation layer are evaluated for partially ionized monatomic gases. Elastic and inelastic collisional nonequilibrium effects are taken into consideration. Three electronic levels are accounted for in the microscopic model of the atom. Nonequilibrium processes with respect to population of levels and species plus temperature are considered. By using an asymptotic technique the shock morphology is found on a continuum flow basis. The asymptotic procedure gives two distinct layers in which the nonequilibrium effects to be considered are different. A transport shock appears as the inner solution to an outer collisional relaxation layer in which the gas reaches local equilibrium. A family of numerical examples is displayed for different flow regimes. Argon and helium models are used in these examples.
Community detection, link prediction, and layer interdependence in multilayer networks.
De Bacco, Caterina; Power, Eleanor A; Larremore, Daniel B; Moore, Cristopher
2017-04-01
Complex systems are often characterized by distinct types of interactions between the same entities. These can be described as a multilayer network where each layer represents one type of interaction. These layers may be interdependent in complicated ways, revealing different kinds of structure in the network. In this work we present a generative model, and an efficient expectation-maximization algorithm, which allows us to perform inference tasks such as community detection and link prediction in this setting. Our model assumes overlapping communities that are common between the layers, while allowing these communities to affect each layer in a different way, including arbitrary mixtures of assortative, disassortative, or directed structure. It also gives us a mathematically principled way to define the interdependence between layers, by measuring how much information about one layer helps us predict links in another layer. In particular, this allows us to bundle layers together to compress redundant information and identify small groups of layers which suffice to predict the remaining layers accurately. We illustrate these findings by analyzing synthetic data and two real multilayer networks, one representing social support relationships among villagers in South India and the other representing shared genetic substring material between genes of the malaria parasite.
Community detection, link prediction, and layer interdependence in multilayer networks
NASA Astrophysics Data System (ADS)
De Bacco, Caterina; Power, Eleanor A.; Larremore, Daniel B.; Moore, Cristopher
2017-04-01
Complex systems are often characterized by distinct types of interactions between the same entities. These can be described as a multilayer network where each layer represents one type of interaction. These layers may be interdependent in complicated ways, revealing different kinds of structure in the network. In this work we present a generative model, and an efficient expectation-maximization algorithm, which allows us to perform inference tasks such as community detection and link prediction in this setting. Our model assumes overlapping communities that are common between the layers, while allowing these communities to affect each layer in a different way, including arbitrary mixtures of assortative, disassortative, or directed structure. It also gives us a mathematically principled way to define the interdependence between layers, by measuring how much information about one layer helps us predict links in another layer. In particular, this allows us to bundle layers together to compress redundant information and identify small groups of layers which suffice to predict the remaining layers accurately. We illustrate these findings by analyzing synthetic data and two real multilayer networks, one representing social support relationships among villagers in South India and the other representing shared genetic substring material between genes of the malaria parasite.
Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander
2015-04-22
Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED.
A new oxytelluride: Perovskite and CsCl intergrowth in Ba 3Yb 2O 5Te
Whalen, J. B.; Besara, T.; Vasquez, R.; ...
2013-04-27
The new oxytelluride Ba 3Yb 2O 5Te was obtained from an alkaline earth flux. Ba3Yb2O5Te crystallizes in the tetragonal space group P4/ mmm (#123), with a=4.3615(3) Å and c=11.7596(11) angstrom, Z=1. The structure combines two distinct building blocks, a Ba 2Yb 2O 5 perovskite-like double layer with square bipyramidal coordination of the ytterbium ions, and a CsCl-type BaTe layer. Short range magnetic order is apparent at below 5 K, with the magnetic behavior above this temperature dominated by crystal field effects. The structure may be considered as an analog to the Ruddlesden-Popper phases, where the NaCl-type layer has been replacedmore » by the CsCl-type layer. Finally, the two-dimensional magnetic behavior is expected based on the highly anisotropic nature of the structure.« less
Primary structure and glycosylation of the S-layer protein of Haloferax volcanii.
Sumper, M; Berg, E; Mengele, R; Strobel, I
1990-01-01
The outer surface of the archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer. The gene coding for the S-layer protein was cloned and sequenced. The mature polypeptide is composed of 794 amino acids and is preceded by a typical signal sequence of 34 amino acid residues. A highly hydrophobic stretch of 20 amino acids at the C-terminal end probably serves as a transmembrane domain. Clusters of threonine residues are located adjacent to this membrane anchor. The S-layer protein is a glycoprotein containing both N- and O-glycosidic bonds. Glucosyl-(1----2)-galactose disaccharides are linked to threonine residues. The primary structure and the glycosylation pattern of the S-layer glycoproteins from Haloferax volcanii and from Halobacterium halobium were compared and found to exhibit distinct differences, despite the fact that three-dimensional reconstructions from electron micrographs revealed no structural differences at least to the 2.5-nm level attained so far (M. Kessel, I. Wildhaber, S. Cohe, and W. Baumeister, EMBO J. 7:1549-1554, 1988). Images PMID:2123862
Primary structure and glycosylation of the S-layer protein of Haloferax volcanii.
Sumper, M; Berg, E; Mengele, R; Strobel, I
1990-12-01
The outer surface of the archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer. The gene coding for the S-layer protein was cloned and sequenced. The mature polypeptide is composed of 794 amino acids and is preceded by a typical signal sequence of 34 amino acid residues. A highly hydrophobic stretch of 20 amino acids at the C-terminal end probably serves as a transmembrane domain. Clusters of threonine residues are located adjacent to this membrane anchor. The S-layer protein is a glycoprotein containing both N- and O-glycosidic bonds. Glucosyl-(1----2)-galactose disaccharides are linked to threonine residues. The primary structure and the glycosylation pattern of the S-layer glycoproteins from Haloferax volcanii and from Halobacterium halobium were compared and found to exhibit distinct differences, despite the fact that three-dimensional reconstructions from electron micrographs revealed no structural differences at least to the 2.5-nm level attained so far (M. Kessel, I. Wildhaber, S. Cohe, and W. Baumeister, EMBO J. 7:1549-1554, 1988).
Dervisoglu, Riza; Middlemiss, Derek S.; Blanc, Frederic; ...
2015-05-01
Here, a structural characterization of the hydrated form of the brownmillerite-type phase Ba 2In 2O 5, Ba 2In 2O 4(OH) 2, is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H 2O fill the inherent O vacancies of the brownmillerite structure, one of the water protons remains in the same layer (O3) while the second proton is located in the neighboring layer (O2) in sites with partial occupancies, as previously demonstrated by Jayaraman et al. (Solid State Ionics 2004, 170, 25–32) using X-ray and neutron studies. Calculationsmore » of possible proton arrangements within the partially occupied layer of Ba 2In 2O 4(OH) 2 yield a set of low energy structures; GIPAW NMR calculations on these configurations yield 1H and 17O chemical shifts and peak intensity ratios, which are then used to help assign the experimental MAS NMR spectra. Three distinct 1H resonances in a 2:1:1 ratio are obtained experimentally, the most intense resonance being assigned to the proton in the O3 layer. The two weaker signals are due to O2 layer protons, one set hydrogen bonding to the O3 layer and the other hydrogen bonding alternately toward the O3 and O1 layers. 1H magnetization exchange experiments reveal that all three resonances originate from protons in the same crystallographic phase, the protons exchanging with each other above approximately 150 °C. Three distinct types of oxygen atoms are evident from the DFT GIPAW calculations bare oxygens (O), oxygens directly bonded to a proton (H-donor O), and oxygen ions that are hydrogen bonded to a proton (H-acceptor O). The 17O calculated shifts and quadrupolar parameters are used to assign the experimental spectra, the assignments being confirmed by 1H– 17O double resonance experiments.« less
Dervişoğlu, Rıza; Middlemiss, Derek S; Blanc, Frédéric; Lee, Yueh-Lin; Morgan, Dane; Grey, Clare P
2015-06-09
A structural characterization of the hydrated form of the brownmillerite-type phase Ba 2 In 2 O 5 , Ba 2 In 2 O 4 (OH) 2 , is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H 2 O fill the inherent O vacancies of the brownmillerite structure, one of the water protons remains in the same layer (O3) while the second proton is located in the neighboring layer (O2) in sites with partial occupancies, as previously demonstrated by Jayaraman et al. (Solid State Ionics2004, 170, 25-32) using X-ray and neutron studies. Calculations of possible proton arrangements within the partially occupied layer of Ba 2 In 2 O 4 (OH) 2 yield a set of low energy structures; GIPAW NMR calculations on these configurations yield 1 H and 17 O chemical shifts and peak intensity ratios, which are then used to help assign the experimental MAS NMR spectra. Three distinct 1 H resonances in a 2:1:1 ratio are obtained experimentally, the most intense resonance being assigned to the proton in the O3 layer. The two weaker signals are due to O2 layer protons, one set hydrogen bonding to the O3 layer and the other hydrogen bonding alternately toward the O3 and O1 layers. 1 H magnetization exchange experiments reveal that all three resonances originate from protons in the same crystallographic phase, the protons exchanging with each other above approximately 150 °C. Three distinct types of oxygen atoms are evident from the DFT GIPAW calculations bare oxygens (O), oxygens directly bonded to a proton (H-donor O), and oxygen ions that are hydrogen bonded to a proton (H-acceptor O). The 17 O calculated shifts and quadrupolar parameters are used to assign the experimental spectra, the assignments being confirmed by 1 H- 17 O double resonance experiments.
2015-01-01
A structural characterization of the hydrated form of the brownmillerite-type phase Ba2In2O5, Ba2In2O4(OH)2, is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H2O fill the inherent O vacancies of the brownmillerite structure, one of the water protons remains in the same layer (O3) while the second proton is located in the neighboring layer (O2) in sites with partial occupancies, as previously demonstrated by Jayaraman et al. (Solid State Ionics2004, 170, 25−32) using X-ray and neutron studies. Calculations of possible proton arrangements within the partially occupied layer of Ba2In2O4(OH)2 yield a set of low energy structures; GIPAW NMR calculations on these configurations yield 1H and 17O chemical shifts and peak intensity ratios, which are then used to help assign the experimental MAS NMR spectra. Three distinct 1H resonances in a 2:1:1 ratio are obtained experimentally, the most intense resonance being assigned to the proton in the O3 layer. The two weaker signals are due to O2 layer protons, one set hydrogen bonding to the O3 layer and the other hydrogen bonding alternately toward the O3 and O1 layers. 1H magnetization exchange experiments reveal that all three resonances originate from protons in the same crystallographic phase, the protons exchanging with each other above approximately 150 °C. Three distinct types of oxygen atoms are evident from the DFT GIPAW calculations bare oxygens (O), oxygens directly bonded to a proton (H-donor O), and oxygen ions that are hydrogen bonded to a proton (H-acceptor O). The 17O calculated shifts and quadrupolar parameters are used to assign the experimental spectra, the assignments being confirmed by 1H–17O double resonance experiments. PMID:26321789
Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling
2017-01-25
This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas.
Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J
2016-02-08
The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.
Achkar, A J; Sutarto, R; Mao, X; He, F; Frano, A; Blanco-Canosa, S; Le Tacon, M; Ghiringhelli, G; Braicovich, L; Minola, M; Sala, M Moretti; Mazzoli, C; Liang, Ruixing; Bonn, D A; Hardy, W N; Keimer, B; Sawatzky, G A; Hawthorn, D G
2012-10-19
Recently, charge density wave (CDW) order in the CuO(2) planes of underdoped YBa(2)Cu(3)O(6+δ) was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa(2)Cu(3)O(6.75) with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order in the chains is distinct from the CDW order in the planes. The ortho-III structure gives rise to a commensurate superlattice reflection at Q=[0.33 0 L] whose energy and polarization dependence agrees with expectations for oxygen ordering and a spatial modulation of the Cu valence in the chains. Incommensurate peaks at [0.30 0 L] and [0 0.30 L] from the CDW order in the planes are shown to be distinct in Q as well as their temperature, energy, and polarization dependence, and are thus unrelated to the structure of the chain layer. Moreover, the energy dependence of the CDW order in the planes is shown to result from a spatial modulation of energies of the Cu 2p to 3d(x(2)-y(2)) transition, similar to stripe-ordered 214 cuprates.
Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto
2017-02-08
Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Dong-Jin; Chung, JaeGwan; Jung, Changhoon
The material arrangement and energy level alignment of an organic bilayer comprising of phenyl-c71-butyric-acid-methyl ester (PCBM-71) and pentacene were studied using ultraviolet photoelectron spectroscopy (UPS) and the argon gas cluster ion beam (GCIB) sputtering process. Although there is a small difference in the full width at half maximum of the carbon C 1s core level peaks and differences in the oxygen O 1s core levels of an X-ray photoemission spectroscopy spectra, these differences are insufficient to clearly distinguish between PCBM-71 and pentacene layers and to classify the interface and bulk regions. On the other hand, the valence band structures inmore » the UPS spectra contain completely distinct configurations for the PCBM-71 and pentacene layers, even when they have similar atomic compositions. According to the valence band structures of the PCBM-71/pentacene/electrodes, the highest unoccupied molecular orbital (HOMO) region of pentacene is at least 0.8 eV closer to the Fermi level than that of PCBM-71 and it does not overlap with any of the chemical states in the valence band structure of PCBM-71. Therefore, by just following the variations in the area of the HOMO region of pentacene, the interface/bulk regions of the PCBM/pentacene layers were distinctly categorized. Besides, the variation of valence band structures as a function of the Ar GCIB sputtering time fully corroborated with the surface morphologies observed in the atomic force microscope images. In summary, we believe that the novel approach, which involves UPS analysis in conjunction with Ar GCIB sputtering, can be one of the best methods to characterize the material distribution and energy level alignments of stacks of organic layers.« less
NASA Astrophysics Data System (ADS)
Das, I.; Bell, R. E.; Creyts, T. T.; Wolovick, M.
2013-12-01
Large deformed ice structures have been imaged at the base of northern Greenland ice sheet by IceBridge airborne radar. Numerous deformed structures lie along the base of both Petermann Glacier and Northeast Ice stream catchments covering 10-13% of the catchment area. These structures may be combinations of basal freeze-on and folded ice that overturns and inverts stratigraphy. In the interior, where the ice velocity is low, the radar imaged height of the deformed structures are frequently a significant fraction of the ice thickness. They are related to basal freeze on and stick-slip at the base of the ice sheet and may be triggered by subglacial water, sediments or local geological conditions. The larger ones (at times up to 700 m thick and 140 km long) perturb the ice stratigraphy and create prominent undulations on the ice surface and modify the local surface mass balance. Here, we investigate the relationship between the deformed structures and surface processes using shallow and deep ice radar stratigraphy. The surface undulations caused by the deformed structures modulate the pattern of local surface snow accumulation. Using normalized differences of several near-surface stratigraphic layers, we have calculated the accumulation anomaly over these deformed structures. The accumulation anomalies can be as high as 20% of the local surface accumulation over some of the larger surface depressions caused by these deformed structures. We observe distinct differences in the phases of the near-surface internal layers on the Petermann and Northeast catchments. These differences indicate that the deformed bodies over Petermann are controlled by conditions at the bed different from the Northeast Ice stream. The distinctly different near-surface stratigraphy over the deformed structures in the Petermann and Northeast catchments have opened up a number of questions including their formation and how they influence the ice dynamics, ice stratigraphy and surface mass balance. In this study we will model the different physical conditions at the bed and ice rheology from their distinct signatures in the near-surface strata. The results will identify the distinct mechanisms that form these bodies and their control over the surface morphology and snow accumulation.
Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.
Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M
2015-12-16
Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. Copyright © 2015 Elsevier Inc. All rights reserved.
Selective nucleation of iron phthalocyanine crystals on micro-structured copper iodide.
Rochford, Luke A; Ramadan, Alexandra J; Heutz, Sandrine; Jones, Tim S
2014-12-14
Morphological and structural control of organic semiconductors through structural templating is an efficient route by which to tune their physical properties. The preparation and characterisation of iron phthalocyanine (FePc)-copper iodide (CuI) bilayers at elevated substrate temperatures is presented. Thin CuI(111) layers are prepared which are composed of isolated islands rather than continuous films previously employed in device structures. Nucleation in the early stages of FePc growth is observed at the edges of islands rather than on the top (111) faces with the use of field emission scanning electron microscopy (FE-SEM). Structural measurements show two distinct polymorphs of FePc, with CuI islands edges nucleating high aspect ratio FePc crystallites with modified intermolecular spacing. By combining high substrate temperature growth and micro-structuring of the templating CuI(111) layer structural and morphological control of the organic film is demonstrated.
Component mobility at 900 °C and 18 kbar from experimentally grown coronas in a natural gabbro
NASA Astrophysics Data System (ADS)
Keller, Lukas M.; Wunder, Bernd; Rhede, Dieter; Wirth, Richard
2008-09-01
Several approximately 100-μm-wide reaction zones were grown under experimental conditions of 900 °C and 18 kbar along former olivine-plagioclase contacts in a natural gabbro. The reaction zone comprises two distinct domains: (i) an irregularly bounded zone with idiomorphic grains of zoisite and minor corundum and kyanite immersed in a melt developed at the plagioclase side and (ii) a well-defined reaction band comprising a succession of mineral layers forming a corona structure around olivine. Between the olivine and the plagioclase reactant phases we observe the following layer sequence: olivine|pyroxene|garnet|partially molten domain|plagioclase. Within the pyroxene layer two micro-structurally distinct layers comprising enstatite and clinopyroxene can be discerned. Chemical potential gradients persisted for the CaO, Al 2O 3, SiO 2, MgO and FeO components, which drove diffusion of Ca, Al and Si bearing species from the garnet-matrix interface to the pyroxene-olivine interface and diffusion of Mg- and Fe-bearing species in the opposite direction. The systematic mineralogical organization and chemical zoning across the corona suggest that the olivine corona was formed by a "diffusion-controlled" reaction. We estimate a set of diffusion coefficients and conclude that LAlAl < LCaCa < ( LSiSi, LFeFe) < LMgMg during reaction rim growth.
Fabrication and microstructures of functional gradient SiBCN–Nb composite by hot pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Min, E-mail: lcxsunmin@163.com; Fu, Ruoyu; Chen, Jun
2016-04-15
A functional gradient material with five layers composed of SiBCN ceramic and niobium (Nb) was prepared successfully by hot pressing. The phase composition, morphology features and microstructures were investigated in each layer of the gradient material. The Nb-containing compounds involving NbC, Nb{sub 6}C{sub 5}, Nb{sub 4}C{sub 3}, Nb{sub 5}Si{sub 3} and NbN increase with the volume fraction of Nb increasing in the sub-layer. They are randomly scattered (≤ 25 vol.% Nb), then strip-like, and finally distribute continuously (≥ 75 vol.% Nb). The size of BN(C) and SiC grains in Nb-containing layers is larger than in 100% SiBCN layer due tomore » the loss of the capsule-like structures. No distinct interfaces form in the transition regions indicating the gradual changes in phase composition and microstructures. - Highlights: • A functional gradient SiBCN–Nb material was prepared successfully by hot pressing. • Phase composition, morphology features and microstructures were investigated. • Thermodynamic calculation was used to aid in the phase analysis. • No distinct interfaces form typical of the functional gradient material.« less
Zhou, Dejian; Bruckbauer, Andreas; Batchelor, Matthew; Kang, Dae-Joon; Abell, Chris; Klenerman, David
2004-10-12
The layer-by-layer (LBL) assembly of a polypeptide, poly-L-lysine (PLL), with poly(styrenesulfonate) sodium salt (PSS) on flat template-stripped gold (TSG) surfaces precoated with a self-assembled monolayer of alkanethiols terminated with positive (pyridinium), negative (carboxylic acid), and neutral [hexa(ethylene glycol)] groups is investigated. Both the topography and the rate of film thickness growth are found to be strongly dependent on the initial surface foundation layer. LBL assembly of PLL and PSS on patterned TSG surfaces produced by micro contact printing leads to structurally distinct microscale features, including pillars, ridges, and wells, whose height can be controlled with nanometer precision. Copyright 2004 American Chemical Society
Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine K; Kim, Hyoungsoo; Stone, Howard A
2017-12-12
Inducing thermal gradients in fluid systems with initial, well-defined density gradients results in the formation of distinct layered patterns, such as those observed in the ocean due to double-diffusive convection. In contrast, layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, lattes formed by pouring espresso into a glass of warm milk. Here, we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering emerges over a time scale of minutes. We identify critical conditions to produce the layering, and relate the results quantitatively to double-diffusive convection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties vary step-wise along the length of the material.
NASA Astrophysics Data System (ADS)
Wang
2015-01-01
Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared.Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04445b
Chen, Kuan-Ting; Fan, Jun Wei; Chang, Shu-Tong; Lin, Chung-Yi
2015-03-01
In this paper, the subband structure and effective mass of an Si-based alloy inversion layer in a PMOSFET are studied theoretically. The strain condition considered in our calculations is the intrinsic strain resulting from growth of the silicon-carbon alloy on a (001) Si substrate and mechanical uniaxial stress. The quantum confinement effect resulting from the vertically effective electric field was incorporated into the k · p calculation. The distinct effective mass, such as the quantization effective mass and the density-of-states (DOS) effective mass, as well as the subband structure of the silicon-carbon alloy inversion layer for a PMOSFET under substrate strain and various effective electric field strengths, were all investigated. Ore results show that subband structure of relaxed silicon-carbon alloys with low carbon content are almost the same as silicon. We find that an external stress applied parallel to the channel direction can efficiently reduce the effective mass along the channel direction, thus producing hole mobility enhancement.
Wen, Yongzheng; Ma, Wei; Bailey, Joe; Matmon, Guy; Yu, Xiaomei; Aeppli, Gabriel
2013-07-01
We design, fabricate, and characterize dual-band terahertz (THz) metamaterial absorbers with high absorption based on structures consisting of a cobalt silicide (Co-Si) ground plane, a parylene-C dielectric spacer, and a metal top layer. By combining two periodic metal resonators that couple separately within a single unit cell, a polarization-independent absorber with two distinct absorption peaks was obtained. By varying the thickness of the dielectric layer, we obtain absorptivity of 0.76 at 0.76 THz and 0.97 at 2.30 THz, which indicates the Co-Si ground plane absorbers present good performance.
Strong-interaction-mediated critical coupling at two distinct frequencies.
Gupta, S Dutta
2007-06-01
I study a multilayered medium consisting of a metal-dielectric composite film, a spacer layer, and a dielectric Bragg reflector. I demonstrate a greater flexibility over the critical coupling phenomenon [Tischler et al., Opt. Lett. 31, 2045 (2006)], whereby nearly all the incident light energy is absorbed by the composite film through suppression of both transmission and reflection from the structure. For a larger volume fraction of the metal inclusions, strong light-matter coupling is shown to lead to almost total absorption at two distinct frequencies.
Bacterial Composition and Survival on Sahara Dust Particles Transported to the European Alps
Meola, Marco; Lazzaro, Anna; Zeyer, Josef
2015-01-01
Deposition of Sahara dust (SD) particles is a frequent phenomenon in Europe, but little is known about the viability and composition of the bacterial community transported with SD. The goal of this study was to characterize SD-associated bacteria transported to the European Alps, deposited and entrapped in snow. During two distinct events in February and May 2014, SD particles were deposited and promptly covered by falling snow, thus preserving them in distinct ochre layers within the snowpack. In June 2014, we collected samples at different depths from a snow profile at the Jungfraujoch (Swiss Alps; 3621 m a.s.l.). After filtration, we performed various microbiological and physicochemical analyses of the snow and dust particles therein that originated in Algeria. Our results show that bacteria survive and are metabolically active after the transport to the European Alps. Using high throughput sequencing, we observed distinct differences in bacterial community composition and structure in SD-layers as compared to clean snow layers. Sporulating bacteria were not enriched in the SD-layers; however, phyla with low abundance such as Gemmatimonadetes and Deinococcus-Thermus appeared to be specific bio-indicators for SD. Since many members of these phyla are known to be adapted to arid oligotrophic environments and UV radiation, they are well suited to survive the harsh conditions of long-range airborne transport. PMID:26733988
Wagenführ, Lisa; Meyer, Anne K; Braunschweig, Lena; Marrone, Lara; Storch, Alexander
2015-09-01
The mammalian neocortex shows a conserved six-layered structure that differs between species in the total number of cortical neurons produced owing to differences in the relative abundance of distinct progenitor populations. Recent studies have identified a new class of proliferative neurogenic cells in the outer subventricular zone (OSVZ) in gyrencephalic species such as primates and ferrets. Lissencephalic brains of mice possess fewer OSVZ-like progenitor cells and these do not constitute a distinct layer. Most in vitro and in vivo studies have shown that oxygen regulates the maintenance, proliferation and differentiation of neural progenitor cells. Here we dissect the effects of fetal brain oxygen tension on neural progenitor cell activity using a novel mouse model that allows oxygen tension to be controlled within the hypoxic microenvironment in the neurogenic niche of the fetal brain in vivo. Indeed, maternal oxygen treatment of 10%, 21% and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal brain oxygenation. Increased oxygen tension in fetal mouse forebrain in vivo leads to a marked expansion of a distinct proliferative cell population, basal to the SVZ. These cells constitute a novel neurogenic cell layer, similar to the OSVZ, and contribute to corticogenesis by heading for deeper cortical layers as a part of the cortical plate. © 2015. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong
2015-01-15
An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, variousmore » ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.« less
Structural behavior of supercritical fluids under confinement
NASA Astrophysics Data System (ADS)
Ghosh, Kanka; Krishnamurthy, C. V.
2018-01-01
The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P =5000 bar, 240 K ≤T ≤1500 K ) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features not significantly different from that due to normal gas regime. The heterogeneity across the Frenkel line, found to be present both in bulk and confined systems, might cause the breakdown of the universal scaling between structure and dynamics of fluids necessitating the determination of a unique relationship between them.
Structural behavior of supercritical fluids under confinement.
Ghosh, Kanka; Krishnamurthy, C V
2018-01-01
The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P=5000 bar, 240K≤T≤1500K) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features not significantly different from that due to normal gas regime. The heterogeneity across the Frenkel line, found to be present both in bulk and confined systems, might cause the breakdown of the universal scaling between structure and dynamics of fluids necessitating the determination of a unique relationship between them.
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Fallah-Mehrjardi, Ata; Shishin, Denis; Jak, Evgueni; Dorreen, Mark; Taylor, Mark
2017-12-01
In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF2-AlF3-Al2O3 electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath.
Large-area, freestanding, single-layer graphene-gold: a hybrid plasmonic nanostructure.
Iyer, Ganjigunte R Swathi; Wang, Jian; Wells, Garth; Guruvenket, Srinivasan; Payne, Scott; Bradley, Michael; Borondics, Ferenc
2014-06-24
Graphene-based plasmonic devices have recently drawn great attention. However, practical limitations in fabrication and device architectures prevent studies from being carried out on the intrinsic properties of graphene and their change by plasmonic structures. The influence of a quasi-infinite object (i.e., the substrate) on graphene, being a single sheet of carbon atoms, and the plasmonic device is overwhelming. To address this and put the intrinsic properties of the graphene-plasmonic nanostructures in focus, we fabricate large-area, freestanding, single-layer graphene-gold (LFG-Au) sandwich structures and Au nanoparticle decorated graphene (formed via thermal treatment) hybrid plasmonic nanostructures. We observed two distinct plasmonic enhancement routes of graphene unique to each structure via surface-enhanced Raman spectroscopy. The localized electronic structure variation in the LFG due to graphene-Au interaction at the nanoscale is mapped using scanning transmission X-ray microscopy. The measurements show an optical density of ∼0.007, which is the smallest experimentally determined for single-layer graphene thus far. Our results on freestanding graphene-Au plasmonic structures provide great insight for the rational design and future fabrication of graphene plasmonic hybrid nanostructures.
On the origin of pure optical rotation in twisted-cross metamaterials
Barr, Lauren E.; Díaz-Rubio, Ana; Tremain, Ben; Carbonell, Jorge; Sánchez-Dehesa, José; Hendry, Euan; Hibbins, Alastair P.
2016-01-01
We present an experimental and computational study of the response of twisted-cross metamaterials that provide near dispersionless optical rotation across a broad band of frequencies from 19 GHz to 37 GHz. We compare two distinct geometries: firstly, a bilayer structure comprised of arrays of metallic crosses where the crosses in the second layer are twisted about the layer normal; and secondly where the second layer is replaced by the complementary to the original, i.e. an array of cross-shaped holes. Through numerical modelling we determine the origin of rotatory effects in these two structures. In both, pure optical rotation occurs in a frequency band between two transmission minima, where alignment of electric and magnetic dipole moments occurs. In the cross/cross metamaterial, the transmission minima occur at the symmetric and antisymmetric resonances of the coupled crosses. By contrast, in the cross/complementary-cross structure the transmission minima are associated with the dipole and quadrupole modes of the cross, the frequencies of which appear intrinsic to the cross layer alone. Hence the bandwidth of optical rotation is found to be relatively independent of layer separation. PMID:27457405
Modular assembly of thick multifunctional cardiac patches
Fleischer, Sharon; Shapira, Assaf; Feiner, Ron; Dvir, Tal
2017-01-01
In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues. PMID:28167795
Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X. J.
2016-01-01
The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors. PMID:26853801
Exploring Lithium Deficiency in Layered Oxide Cathode for Li-Ion Battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Sung-Jin; Uddin, Md-Jamal; Alaboina, Pankaj K.
Abstract or short description: The ever-growing demand for high capacity cathode materials is on the rise since the futuristic applications are knocking on the door. Conventional approach to developing such cathode relies on the lithium-excess materials to operate the cathode at high voltage and extract more lithium-ion. Yet, they fail to satiate the needs because of their unresolved issues upon cycling such as, for lithium manganese-rich layered oxides – their voltage fading, and for as nickel-based layered oxides – the structural transition. Here, in contrast, lithium-deficient ratio is demonstrated as a new approach to attain high capacity at high voltagemore » for layered oxide cathodes. Rapid and cost effective lithiation of a porous hydroxide precursor with lithium deficient ratio acted as a driving force to partially convert the layered material to spinel phase yielding in a multiphase structure (MPS) cathode material. Upon cycling, MPS revealed structural stability at high voltage and high temperature and resulted in fast lithium-ion diffusion by providing a distinctive SEI chemistry – MPS displayed minimum lithium loss in SEI and formed a thinner SEI. MPS thus offer high energy and high power applications and provides a new perspective compared to the conventional layered cathode materials denying the focus for lithium excess material.« less
Mixing Halogens To Assemble an All-Inorganic Layered Perovskite with Warm White-Light Emission.
Li, Xianfeng; Wang, Sasa; Zhao, Sangen; Li, Lina; Li, Yanqiang; Zhao, Bingqing; Shen, Yaoguo; Wu, Zhenyue; Shan, Pai; Luo, Junhua
2018-05-01
Most of single-component white-light-emitting materials focus on organic-inorganic hybrid perovskites, metal-organic frameworks, as well as all-inorganic semiconductors. In this work, we successfully assembled an all-inorganic layered perovskite by mixing two halogens of distinct ionic radii, namely, Rb 2 CdCl 2 I 2 , which emits "warm" white light with a high color rendering index of 88. To date, Rb 2 CdCl 2 I 2 is the first single-component white-light-emitting material with an all-inorganic layered perovskite structure. Furthermore, Rb 2 CdCl 2 I 2 is thermally highly stable up to 575 K. A series of luminescence measurements show that the white-light emission arises from the lattice deformation, which are closely related to the [CdCl 4 I 2 ] 2- octahedra with high distortion from the distinct ionic radii of Cl and I. The first-principles calculations reveal that both the Cl and I components make significant contributions to the electronic band structures of Rb 2 CdCl 2 I 2 . These findings indicate that mixing halogens is an effective route to design and synthesize new single-component white-light-emitting materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interior Structure of Ceres Artist Concept
2016-08-03
This artist's concept shows a diagram of how the inside of Ceres could be structured, based on data about the dwarf planet's gravity field from NASA's Dawn mission. Using information about Ceres' gravity and topography, scientists found that Ceres is "differentiated," which means that it has compositionally distinct layers at different depths. The densest layer is at the core, which scientists suspect is made of hydrated silicates. Above that is a volatile-rich shell, topped with a crust of mixed materials. This research teaches scientists about what internal processes could have occurred during the early history of Ceres. It appears that, during a heating phase early in the history of Ceres, water and other light materials partially separated from rock. These light materials and water then rose to the outer layer of Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA20867
NASA Astrophysics Data System (ADS)
Baba, Kiyoshi; Chen, Jin; Sommer, Malte; Utada, Hisashi; Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion
2017-10-01
The Tristan da Cunha (TDC) is a volcanic island located above a prominent hotspot in the Atlantic Ocean. Many geological and geochemical evidences support a deep origin of the mantle material feeding the hotspot. However, the existence of a plume has not been confirmed as an anomalous structure in the mantle resolved by geophysical data because of lack of the observations in the area. Marine magnetotelluric and seismological observations were conducted in 2012-2013 to examine the upper mantle structure adjacent to TDC. The electrical conductivity structure of the upper mantle beneath the area was investigated in this study. Three-dimensional inversion analysis depicted a high conductive layer at 120 km depth but no distinct plume-like vertical structure. The conductive layer is mostly flat independently on seafloor age and bulges upward beneath the lithospheric segment where the TDC islands are located compared to younger segment south of the TDC Fracture Zone, while the bathymetry is rather deeper than prediction for the northern segment. The apparent inconsistency between the absence of vertical structure in this study and geochemical evidences on deep origin materials suggests that either the upwelling is too small and/or weak to be resolved by the current data set or that the upwelling takes place elsewhere outside of the study area. Other observations suggest that 1) the conductivity of the upper mantle can be explained by the fact that the mantle above the high conductivity layer is depleted in volatiles as the result of partial melting beneath the spreading ridge, 2) the potential temperature of the segments north of the TDC Fracture Zone is lower than that of the southern segment at least during the past 30 Myr.
Stacking-dependent interlayer coupling in trilayer MoS 2 with broken inversion symmetry
Yan, Jiaxu; Wang, Xingli; Tay, Beng Kang; ...
2015-11-13
The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS 2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer)more » exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin–orbit coupling (SOC) and interlayer coupling in different structural symmetries. Lastly, such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS 2 blocks.« less
Stacking-dependent interlayer coupling in trilayer MoS 2 with broken inversion symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jiaxu; Wang, Xingli; Tay, Beng Kang
The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS 2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer)more » exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin–orbit coupling (SOC) and interlayer coupling in different structural symmetries. Lastly, such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS 2 blocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonysamy, A.A., E-mail: alphons.antonysamy@GKNAerospace.com; Meyer, J., E-mail: jonathan.meyer@eads.com; Prangnell, P.B., E-mail: philip.prangnell@manchester.ac.uk
With titanium alloys, the solidification conditions in Additive Manufacturing (AM) frequently lead to coarse columnar β-grain structures. The effect of geometry on the variability in the grain structure and texture, seen in Ti-6Al-4V alloy components produced by Selective Electron Beam Melting (SEBM), has been investigated. Reconstruction of the primary β-phase, from α-phase EBSD data, has confirmed that in bulk sections where in-fill “hatching” is employed growth selection favours columnar grains aligned with an <001> {sub β} direction normal to the deposited powder layers; this results in a coarse β-grain structure with a strong < 001 > {sub β} fibre texturemore » (up 8 x random) that can oscillate between a near random distribution around the fibre axis and cube reinforcement with build height. It is proposed that this behaviour is related to the highly elongated melt pool and the raster directions alternating between two orthogonal directions every layer, which on average favours grains with cube alignment. In contrast, the outline, or “contour”, pass produces a distinctly different grain structure and texture resulting in a skin layer on wall surfaces, where nucleation occurs off the surrounding powder and growth follows the curved surface of the melt pool. This structure becomes increasingly important in thin sections. Local heterogeneities have also been found within different section transitions, resulting from the growth of skin grain structures into thicker sections. Texture simulations have shown that the far weaker α-texture (∼ 3 x random), seen in the final product, arises from transformation on cooling occurring with a near random distribution of α-plates across the 12 variants possible from the Burgers relationship. - Highlights: • Distinctly different skin and bulk structures are produced by the contour and hatching passes. • Bulk sections contain coarse β-grains with a < 001 > fibre texture in the build direction. • This oscillates between a random distribution around the axis and cube reinforcement. • In the skin layer nucleation occurs off the surrounding powder bed and growth occurs inwards. • Simulations show that a weak α-texture results from a random distribution across habit variants.« less
Keratin-lipid structural organization in the corneous layer of snake.
Ripamonti, Alberto; Alibardi, Lorenzo; Falini, Giuseppe; Fermani, Simona; Gazzano, Massimo
2009-12-01
The shed epidermis (molt) of snakes comprises four distinct layers. The upper two layers, here considered as beta-layer, contain essentially beta-keratin. The following layer, known as mesos-layer, is similar to the human stratum corneum, and is formed by thin cells surrounded by intercellular lipids. The latter layer mainly contains alpha-keratin. In this study, the molecular assemblies of proteins and lipids contained in these layers have been analyzed in the scale of two species of snakes, the elapid Tiger snake (TS, Notechis scutatus) and the viperid Gabon viper (GV, Bitis gabonica). Scanning X-ray micro-diffraction, FTIR and Raman spectroscopies, thermal analysis, and scanning electron microscopy experiments confirm the presence of the three layers in the GV skin scale. Conversely, in the TS molt a typical alpha-keratin layer appears to be absent. In the latter, experimental data suggest the presence of two domains similar to those found in the lipid intercellular matrix of stratum corneum. X-ray diffraction data also allow to determine the relative orientation of keratins and lipids. The keratin fibrils are randomly oriented inside the layers parallel to the surface of scales while the lipids are organized in lamellar structures having aliphatic chains normal to the scale surface. The high ordered lipid organization in the mature mesos layer probably increases its effectiveness in limiting water-loss.
Lischka, Katharina; Ladel, Simone; Luksch, Harald; Weigel, Stefan
2018-02-15
The midbrain is an important subcortical area involved in distinct functions such as multimodal integration, movement initiation, bottom-up, and top-down attention. Our group is particularly interested in cellular computation of multisensory integration. We focus on the visual part of the avian midbrain, the optic tectum (TeO, counterpart to mammalian superior colliculus). This area has a layered structure with the great advantage of distinct input and output regions. In chicken, the TeO is organized in 15 layers where visual input targets the superficial layers while auditory input terminates in deeper layers. One specific cell type, the Shepherd's crook neuron (SCN), extends dendrites in both input regions. The characteristic feature of these neurons is the axon origin at the apical dendrite. The molecular identity of this characteristic region and thus, the site of action potential generation are of particular importance to understand signal flow and cellular computation in this neuron. We present immunohistochemical data of structural proteins (NF200, Ankyrin G, and Myelin) and ion channels (Pan-Na v , Na v 1.6, and K v 3.1b). NF200 is strongly expressed in the axon. Ankyrin G is mainly expressed at the axon initial segment (AIS). Myelination starts after the AIS as well as the distribution of Na v channels on the axon. The subtype Na v 1.6 has a high density in this region. K v 3.1b is restricted to the soma, the primary neurite and the axon branch. The distribution of functional molecules in SCNs provides insight into the information flow and the integration of sensory modalities in the TeO of the avian midbrain. © 2017 Wiley Periodicals, Inc.
Ultrastructure of the filiform papillae on the tongue of the hamster.
Fernandez, B; Suarez, I; Zapata, A
1978-01-01
The fine structure of the filiform papillae on the hamster tongue is described level by level from the basal layer to the surface. We did not observe two distinct types of cells with different morphology or components which could be held responsible for the production of two different types of keratin as have been described in other animals, but rather a uniformity of cell structures in each layer and only the so-called "smooth" type of keratin. However, keratin granules were more abundant in the anterior part of the papilla. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:689988
Zhang, Nan; Zhou, Peiheng; Cheng, Dengmu; Weng, Xiaolong; Xie, Jianliang; Deng, Longjiang
2013-04-01
We present the simulation, fabrication, and characterization of a dual-band metamaterial absorber in the mid-infrared regime. Two pairs of circular-patterned metal-dielectric stacks are employed to excite the dual-band absorption peaks. Dielectric characteristics of the dielectric spacing layer determine energy dissipation in each resonant stack, i.e., dielectric or ohmic loss. By controlling material parameters, both two mechanisms are introduced into our structure. Up to 98% absorption is obtained at 9.03 and 13.32 μm in the simulation, which is in reasonable agreement with experimental results. The proposed structure holds promise for various applications, e.g., thermal radiation modulators and multicolor infrared focal plane arrays.
Electric-field-induced structural changes in water confined between two graphene layers
NASA Astrophysics Data System (ADS)
Sobrino Fernández, Mario; Peeters, F. M.; Neek-Amal, M.
2016-07-01
An external electric field changes the physical properties of polar liquids due to the reorientation of their permanent dipoles. Using molecular dynamics simulations, we predict that an in-plane electric field applied parallel to the channel polarizes water molecules which are confined between two graphene layers, resulting in distinct ferroelectricity and electrical hysteresis. We found that electric fields alter the in-plane order of the hydrogen bonds: Reversing the electric field does not restore the system to the nonpolar initial state, instead a residual dipole moment remains in the system. The square-rhombic structure of 2D ice is transformed into two rhombic-rhombic structures. Our study provides insights into the ferroelectric state of water when confined in nanochannels and shows how this can be tuned by an electric field.
The principles of cryostratigraphy
NASA Astrophysics Data System (ADS)
French, Hugh; Shur, Yuri
2010-08-01
Cryostratigraphy adopts concepts from both Russian geocryology and modern sedimentology. Structures formed by the amount and distribution of ice within sediment and rock are termed cryostructures. Typically, layered cryostructures are indicative of syngenetic permafrost while reticulate and irregular cryostructures are indicative of epigenetic permafrost. 'Cryofacies' can be defined according to patterns of sediment characterized by distinct ice lenses and layers, volumetric ice content and ice-crystal size. Cryofacies can be subdivided according to cryostructure. Where a number of cryofacies form a distinctive cryostratigraphic unit, these are termed a 'cryofacies assemblage'. The recognition, if present, of (i) thaw unconformities, (ii) other ice bodies such as vein ice (ice wedges), aggradational ice and thermokarst-cave ('pool') ice, and (iii) ice, sand and gravelly pseudomorphs is also important in determining the nature of the freezing process, the conditions under which frozen sediment accumulates, and the history of permafrost.
Wang, Jianwei; Zhang, Yong
2016-01-01
When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III–V, and II–VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain–low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side. PMID:27090430
Multilayer block copolymer meshes by orthogonal self-assembly
Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.
2016-01-01
Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218
Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications.
An, Qi; Huang, Tao; Shi, Feng
2018-05-16
Covalent layer-by-layer (LbL) assembly is a powerful method used to construct functional ultrathin films that enables nanoscopic structural precision, componential diversity, and flexible design. Compared with conventional LbL films built using multiple noncovalent interactions, LbL films prepared using covalent crosslinking offer the following distinctive characteristics: (i) enhanced film endurance or rigidity; (ii) improved componential diversity when uncharged species or small molecules are stably built into the films by forming covalent bonds; and (iii) increased structural diversity when covalent crosslinking is employed in componential, spacial, or temporal (labile bonds) selective manners. In this review, we document the chemical methods used to build covalent LbL films as well as the film properties and applications achievable using various film design strategies. We expect to translate the achievement in the discipline of chemistry (film-building methods) into readily available techniques for materials engineers and thus provide diverse functional material design protocols to address the energy, biomedical, and environmental challenges faced by the entire scientific community.
NASA Astrophysics Data System (ADS)
Schulz, Tobias; Weinmüller, Christian; Nabavi, Majid; Poulikakos, Dimos
A single cell micro-direct methanol fuel cell (micro-DMFC) was investigated using electrochemical impedance spectroscopy. The electrodes consisted of thin, flexible polymer (SU8) film microchannel structures fabricated in-house using microfabrication techniques. AC impedance spectroscopy was used to separate contributions to the overall cell polarization from the anode, cathode and membrane. A clear distinction between the different electrochemical phenomena occurring in the micro-DMFC, especially the distinction between double layer charging and Faradaic reactions was shown. The effect of fuel flow rate, temperature, and anode flow channel structure on the impedance of the electrode reactions and membrane/electrode double layer charging were investigated. Analysis of impedance data revealed that the performance of the test cell was largely limited by the presence of intermediate carbon monoxide in the anode reaction. Higher temperatures increase cell performance by enabling intermediate CO to be oxidized at much higher rates. The results also revealed that serpentine anode flow microchannels show a lower tendency to intermediate CO coverage and a more stable cell behavior than parallel microchannels.
Characterization of human scalp hairs by optical low-coherence reflectometry
NASA Astrophysics Data System (ADS)
Wang, X. J.; Milner, T. E.; Dhond, R. P.; Sorin, W. V.; Newton, S. A.; Nelson, J. S.
1995-03-01
Optical low-coherence reflectometry is used to investigate the internal structure and optical properties of human scalp hair. Regardless of hair color, the refractive index of the cortical region remains within the range of 1.56-1.59. The amplitude of the backscattered infrared light coupled into different-colored hair confirms the relative melanin content. Discontinuities in the refractive index permit identification of distinct structural layers within the hair shaft.
Zhao, Fang; Tsien, Joe Z.
2017-01-01
Ketamine is known to induce psychotic-like symptoms, including delirium and visual hallucinations. It also causes neuronal damage and cell death in the retrosplenial cortex (RSC), an area that is thought to be a part of high visual cortical pathways and at least partially responsible for ketamine’s psychotomimetic activities. However, the basic physiological properties of RSC cells as well as their response to ketamine in vivo remained largely unexplored. Here, we combine a computational method, the Inter-Spike Interval Classification Analysis (ISICA), and in vivo recordings to uncover and profile excitatory cell subtypes within layers 2&3 and 5&6 of the RSC in mice within both conscious, sleep, and ketamine-induced unconscious states. We demonstrate two distinct excitatory principal cell sub-populations, namely, high-bursting excitatory principal cells and low-bursting excitatory principal cells, within layers 2&3, and show that this classification is robust over the conscious states, namely quiet awake, and natural unconscious sleep periods. Similarly, we provide evidence of high-bursting and low-bursting excitatory principal cell sub-populations within layers 5&6 that remained distinct during quiet awake and sleep states. We further examined how these subtypes are dynamically altered by ketamine. During ketamine-induced unconscious state, these distinct excitatory principal cell subtypes in both layer 2&3 and layer 5&6 exhibited distinct dynamics. We also uncovered different dynamics of local field potential under various brain states in layer 2&3 and layer 5&6. Interestingly, ketamine administration induced high gamma oscillations in layer 2&3 of the RSC, but not layer 5&6. Our results show that excitatory principal cells within RSC layers 2&3 and 5&6 contain multiple physiologically distinct sub-populations, and they are differentially affected by ketamine. PMID:29073221
Fox, Grace E; Li, Meng; Zhao, Fang; Tsien, Joe Z
2017-01-01
Ketamine is known to induce psychotic-like symptoms, including delirium and visual hallucinations. It also causes neuronal damage and cell death in the retrosplenial cortex (RSC), an area that is thought to be a part of high visual cortical pathways and at least partially responsible for ketamine's psychotomimetic activities. However, the basic physiological properties of RSC cells as well as their response to ketamine in vivo remained largely unexplored. Here, we combine a computational method, the Inter-Spike Interval Classification Analysis (ISICA), and in vivo recordings to uncover and profile excitatory cell subtypes within layers 2&3 and 5&6 of the RSC in mice within both conscious, sleep, and ketamine-induced unconscious states. We demonstrate two distinct excitatory principal cell sub-populations, namely, high-bursting excitatory principal cells and low-bursting excitatory principal cells, within layers 2&3, and show that this classification is robust over the conscious states, namely quiet awake, and natural unconscious sleep periods. Similarly, we provide evidence of high-bursting and low-bursting excitatory principal cell sub-populations within layers 5&6 that remained distinct during quiet awake and sleep states. We further examined how these subtypes are dynamically altered by ketamine. During ketamine-induced unconscious state, these distinct excitatory principal cell subtypes in both layer 2&3 and layer 5&6 exhibited distinct dynamics. We also uncovered different dynamics of local field potential under various brain states in layer 2&3 and layer 5&6. Interestingly, ketamine administration induced high gamma oscillations in layer 2&3 of the RSC, but not layer 5&6. Our results show that excitatory principal cells within RSC layers 2&3 and 5&6 contain multiple physiologically distinct sub-populations, and they are differentially affected by ketamine.
NASA Astrophysics Data System (ADS)
Xue, Zhen-Zhen; Pan, Jie; Li, Jin-Hua; Wang, Zong-Hua; Wang, Guo-Ming
2017-06-01
Two new gallium phosphate/phosphite-oxalates hybrid solids, {[H2dmpip][Ga2(HPO4)2(PO4)(C2O4)0.5]·H2O} (1) and [H2apm][Ga2(H2PO3)2(HPO3)2(C2O4)] (2), where dmpip = 2,6-dimethyl-piperazine and apm = N-(3-aminopropyl)morpholine, have been synthesized and structurally characterized. Both of compounds 1 and 2 are formed by the connectivity of the Ga-based polyhedral, phosphite/phosphate groups as well as oxalate units. Compound 1 possesses a two-dimensional layer structure, in which the C2O4 units via an in-plane linkage connect two Ga center within the sheet. While in 2, the C2O4 units serve as bis-bidentates ligands bridging two GaO6 octahedra from two distinct gallium-phosphite chains to give rise to inorganic-organic hybrid layer with 8-membered rings. In these materials, the structure-directing amines reside in the interlayer region and interact with the layers by way of hydrogen-bonds.
Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs.
Campbell, Gavin P; Mannix, Andrew J; Emery, Jonathan D; Lee, Tien-Lin; Guisinger, Nathan P; Hersam, Mark C; Bedzyk, Michael J
2018-05-09
Atomically thin two-dimensional (2D) materials exhibit superlative properties dictated by their intralayer atomic structure, which is typically derived from a limited number of thermodynamically stable bulk layered crystals (e.g., graphene from graphite). The growth of entirely synthetic 2D crystals, those with no corresponding bulk allotrope, would circumvent this dependence upon bulk thermodynamics and substantially expand the phase space available for structure-property engineering of 2D materials. However, it remains unclear if synthetic 2D materials can exist as structurally and chemically distinct layers anchored by van der Waals (vdW) forces, as opposed to strongly bound adlayers. Here, we show that atomically thin sheets of boron (i.e., borophene) grown on the Ag(111) surface exhibit a vdW-like structure without a corresponding bulk allotrope. Using X-ray standing wave-excited X-ray photoelectron spectroscopy, the positions of boron in multiple chemical states are resolved with sub-angström spatial resolution, revealing that the borophene forms a single planar layer that is 2.4 Å above the unreconstructed Ag surface. Moreover, our results reveal that multiple borophene phases exhibit these characteristics, denoting a unique form of polymorphism consistent with recent predictions. This observation of synthetic borophene as chemically discrete from the growth substrate suggests that it is possible to engineer a much wider variety of 2D materials than those accessible through bulk layered crystal structures.
Development of lamellar structures in natural waxes - an electron diffraction investigation
NASA Astrophysics Data System (ADS)
Dorset, Douglas L.
1999-06-01
When they are recrystallized from the melt, natural plant or insect waxes tend to form solid phases with a nematic-like structure (i.e. a parallel array of polymethylene chains with little or no aggregation of the molecules into distinct layers). An electron diffraction study of carnauba wax and two types of beeswax has shown that the degree of molecular organization into lamellar structures can be enhanced by annealing in the presence of benzoic acid, which also acts as an epitaxial substrate. Nevertheless, the resultant layer structure in the annealed solid is not the same as that found for paraffin wax fractions refined from petroleum. Probably because of a small but significant fraction of a very long chain ingredient, the lamellar separation is incomplete, incorporating a number of `bridging molecules' that span the nascent lamellar interface.The same phenomenon has been described recently for a low molecular weight polyethylene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Binzhi; Chopdekar, Rajesh V.; N'Diaye, Alpha T.
The impact of interfacial electronic reconstruction on the magnetic characteristics of La0.7Sr0.3CoO3 (LSCO)/La0.7Sr0.3MnO3 (LSMO) superlattices was investigated as a function of layer thickness using a combination of soft x-ray magnetic spectroscopy and bulk magnetometry. We found that the magnetic properties of the LSCO layers are impacted by two competing electronic interactions occurring at the LSCO/substrate and LSMO/LSCO interfaces. For thin LSCO layers (< 5 nm), the heterostructures exist in a highly coupled state where the chemically distinct layers behave as a single magnetic compound with magnetically active Co2+ ions. As the LSCO thickness increases, a high coercivity LSCO layer developsmore » which biases a low coercivity layer, which is composed not only of the LSMO layer, but also an interfacial LSCO layer. These results suggest a new route to tune the magnetic properties of transition metal oxide heterostructures through careful control of the interface structure.« less
Li, Binzhi; Chopdekar, Rajesh V.; N'Diaye, Alpha T.; ...
2016-10-10
The impact of interfacial electronic reconstruction on the magnetic characteristics of La0.7Sr0.3CoO3 (LSCO)/La0.7Sr0.3MnO3 (LSMO) superlattices was investigated as a function of layer thickness using a combination of soft x-ray magnetic spectroscopy and bulk magnetometry. We found that the magnetic properties of the LSCO layers are impacted by two competing electronic interactions occurring at the LSCO/substrate and LSMO/LSCO interfaces. For thin LSCO layers (< 5 nm), the heterostructures exist in a highly coupled state where the chemically distinct layers behave as a single magnetic compound with magnetically active Co2+ ions. As the LSCO thickness increases, a high coercivity LSCO layer developsmore » which biases a low coercivity layer, which is composed not only of the LSMO layer, but also an interfacial LSCO layer. These results suggest a new route to tune the magnetic properties of transition metal oxide heterostructures through careful control of the interface structure.« less
Ishizuka, Shogo; Koida, Takashi; Taguchi, Noboru; Tanaka, Shingo; Fons, Paul; Shibata, Hajime
2017-09-13
We found that elemental Si-doped Cu(In,Ga)Se 2 (CIGS) polycrystalline thin films exhibit a distinctive morphology due to the formation of grain boundary layers several tens of nanometers thick. The use of Si-doped CIGS films as the photoabsorber layer in simplified structure buffer-free solar cell devices is found to be effective in enhancing energy conversion efficiency. The grain boundary layers formed in Si-doped CIGS films are expected to play an important role in passivating CIGS grain interfaces and improving carrier transport. The simplified structure solar cells, which nominally consist of only a CIGS photoabsorber layer and a front transparent and a back metal electrode layer, demonstrate practical application level solar cell efficiencies exceeding 15%. To date, the cell efficiencies demonstrated from this type of device have remained relatively low, with values of about 10%. Also, Si-doped CIGS solar cell devices exhibit similar properties to those of CIGS devices fabricated with post deposition alkali halide treatments such as KF or RbF, techniques known to boost CIGS device performance. The results obtained offer a new approach based on a new concept to control grain boundaries in polycrystalline CIGS and other polycrystalline chalcogenide materials for better device performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuyuan; Wu, Zili; Wen, Jianguo
2015-01-01
Recent advances in heterogeneous catalysis have demonstrated that oxides supports with the same material but different shapes can result in metal catalysts with distinct catalytic properties. The shape-dependent catalysis was not well-understood owing to the lack of direct visualization of the atomic structures at metal-oxide interface. Herein, we utilized aberration-corrected electron microscopy and revealed the atomic structures of gold particles deposited on ceria nanocubes and nanorods with {100} or {111} facets exposed. For the ceria nanocube support, gold nanoparticles have extended atom layers at the metal-support interface. In contrast, regular gold nanoparticles and rafts are present on the ceria nanorodmore » support. After hours of water gas shift reaction, the extended gold atom layers and rafts vanish, which is associated with the decrease of the catalytic activities. By understanding the atomic structures of the support surfaces, metal-support interfaces, and morphologies of the gold particles, a direct structure-property relationship is established.« less
Anatomy of Heinrich Layer 1 and its role in the last deglaciation
NASA Astrophysics Data System (ADS)
Hodell, David A.; Nicholl, Joseph A.; Bontognali, Tomaso R. R.; Danino, Steffan; Dorador, Javier; Dowdeswell, Julian A.; Einsle, Joshua; Kuhlmann, Holger; Martrat, Belen; Mleneck-Vautravers, Maryline J.; Rodríguez-Tovar, Francisco Javier; Röhl, Ursula
2017-03-01
X-ray fluorescence (XRF) core scanning and X-ray computed tomography data were measured every 1 mm to study the structure of Heinrich Event 1 during the last deglaciation at International Ocean Discovery Program Site U1308. Heinrich Layer 1 comprises two distinct layers of ice-rafted detritus (IRD), which are rich in detrital carbonate (DC) and poor in foraminifera. Each DC layer consists of poorly sorted, coarse-grained clasts of IRD embedded in a dense, fine-grained matrix of glacial rock flour that is partially cemented. The radiocarbon ages of foraminifera at the base of the two layers indicate a difference of 1400 14C years, suggesting that they are two distinct events, but the calendar ages depend upon assumptions made for surface reservoir ages. The double peak indicates at least two distinct stages of discharge of the ice streams that drained the Laurentide Ice Sheet through Hudson Strait during HE1 or, alternatively, the discharge of two independent ice streams containing detrital carbonate. Heinrich Event 1.1 was the larger of the two events and began at 16.2 ka (15.5-17.1 ka) when the polar North Atlantic was already cold and Atlantic Meridional Overturning Circulation (AMOC) weakened. The younger peak (H1.2) at 15.1 ka (14.3 to 15.9 ka) was a weaker event than H1.1 that was accompanied by minor cooling. Our results support a complex history for Heinrich Stadial 1 (HS1) with reduction in AMOC during the early part ( 20-16.2 ka) possibly driven by melting of European ice sheets, whereas the Laurentide Ice Sheet assumed a greater role during the latter half ( 16.2-14.7 ka).
Crevasse detection with GPR across the Ross Ice Shelf, Antarctica
NASA Astrophysics Data System (ADS)
Delaney, A.; Arcone, S.
2005-12-01
We have used 400-MHz ground penetrating radar (GPR) to detect crevasses within a shear zone on the Ross Ice Shelf, Antarctica, to support traverse operations. The transducer was attached to a 6.5-m boom and pushed ahead of an enclosed tracked vehicle. Profile speeds of 4.8-11.3 km / hr allowed real-time crevasse image display and a quick, safe stop when required. Thirty-two crevasses were located with radar along the 4.8 km crossing. Generally, crevasse radar images were characterized by dipping reflections above the voids, high-amplitude reflections originating from ice layers at the base of the snow-bridges, and slanting, diffracting reflections from near-vertical crevasse walls. New cracks and narrow crevasses (<50 cm width) show no distinct snow bridge structure, few diffractions, and a distinct band where pulse reflections are absent. Wide (0.5-5.0 m), vertical wall crevasses show distinct dipping snow bridge layering and intense diffractions from ice layers near the base of the snow bridge. Pulse reflections are absent from voids beneath the snow bridges. Old, wide (3.0-8.0 m) and complexly shaped crevasses show well-developed, broad, dipping snow-bridge layers and a high-amplitude, complex, diffraction pattern. The crevasse mitigation process, which included hot-water drilling, destroying the bridges with dynamite, and back-filling with bulldozed snow, afforded an opportunity to ground-truth GPR interpretations by comparing void size and snow-bridge geometry with the radar images. While second and third season radar profiles collected along the identical flagged route confirmed stability of the filled crevasses, those profiles also identified several new cracks opened by ice extension. Our experiments demonstrate capability of high-frequency GPR in a cold-snow environment for both defining snow layers and locating voids.
Choudhary, Nitin; Park, Juhong; Hwang, Jun Yeon; Chung, Hee-Suk; Dumas, Kenneth H; Khondaker, Saiful I; Choi, Wonbong; Jung, Yeonwoong
2016-05-05
Two-dimensional (2D) van der Waal (vdW) heterostructures composed of vertically-stacked multiple transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are envisioned to present unprecedented materials properties unobtainable from any other material systems. Conventional fabrications of these hybrid materials have relied on the low-yield manual exfoliation and stacking of individual 2D TMD layers, which remain impractical for scaled-up applications. Attempts to chemically synthesize these materials have been recently pursued, which are presently limited to randomly and scarcely grown 2D layers with uncontrolled layer numbers on very small areas. Here, we report the chemical vapor deposition (CVD) growth of large-area (>2 cm(2)) patterned 2D vdW heterostructures composed of few layer, vertically-stacked MoS2 and WS2. Detailed structural characterizations by Raman spectroscopy and high-resolution/scanning transmission electron microscopy (HRTEM/STEM) directly evidence the structural integrity of two distinct 2D TMD layers with atomically sharp vdW heterointerfaces. Electrical transport measurements of these materials reveal diode-like behavior with clear current rectification, further confirming the formation of high-quality heterointerfaces. The intrinsic scalability and controllability of the CVD method presented in this study opens up a wide range of opportunities for emerging applications based on the unconventional functionalities of these uniquely structured materials.
NASA Astrophysics Data System (ADS)
Pilkington, Georgia A.; Harris, Kathryn; Bergendal, Erik; Reddy, Akepati Bhaskar; Palsson, Gunnar K.; Vorobiev, Alexei; Antzutkin, Oleg. N.; Glavatskih, Sergei; Rutland, Mark W.
2018-05-01
Using neutron reflectivity, the electro-responsive structuring of the non-halogenated ionic liquid (IL) trihexyl(tetradecyl)phosphonium-bis(mandelato)borate, [P6,6,6,14][BMB], has been studied at a gold electrode surface in a polar solvent. For a 20% w/w IL mixture, contrast matched to the gold surface, distinct Kiessig fringes were observed for all potentials studied, indicative of a boundary layer of different composition to that of the bulk IL-solvent mixture. With applied potential, the amplitudes of the fringes from the gold-boundary layer interface varied systematically. These changes are attributable to the differing ratios of cations and anions in the boundary layer, leading to a greater or diminished contrast with the gold electrode, depending on the individual ion scattering length densities. Such electro-responsive changes were also evident in the reflectivities measured for the pure IL and a less concentrated (5% w/w) IL-solvent mixture at the same applied potentials, but gave rise to less pronounced changes. These measurements, therefore, demonstrate the enhanced sensitivity achieved by contrast matching the bulk solution and that the structure of the IL boundary layers formed in mixtures is strongly influenced by the bulk concentration. Together these results represent an important step in characterising IL boundary layers in IL-solvent mixtures and provide clear evidence of electro-responsive structuring of IL ions in their solutions with applied potential.
Walker, Louise A.; Niño-Vega, Gustavo; Mora-Montes, Héctor M.; Neves, Gabriela W. P.; Villalobos-Duno, Hector; Barreto, Laura; Garcia, Karina; Franco, Bernardo; Martínez-Álvarez, José A.; Munro, Carol A.; Gow, Neil A. R.
2018-01-01
Sporotrichosis is a subcutaneous mycosis caused by pathogenic species of the Sporothrix genus. A new emerging species, Sporothrix brasiliensis, is related to cat-transmitted sporotrichosis and has severe clinical manifestations. The cell wall of pathogenic fungi is a unique structure and impacts directly on the host immune response. We reveal and compare the cell wall structures of Sporothrix schenckii and S. brasiliensis using high-pressure freezing electron microscopy to study the cell wall organization of both species. To analyze the components of the cell wall, we also used infrared and 13C and 1H NMR spectroscopy and the sugar composition was determined by quantitative high-performance anion-exchange chromatography. Our ultrastructural data revealed a bi-layered cell wall structure for both species, including an external microfibrillar layer and an inner electron-dense layer. The inner and outer layers of the S. brasiliensis cell wall were thicker than those of S. schenckii, correlating with an increase in the chitin and rhamnose contents. Moreover, the outer microfibrillar layer of the S. brasiliensis cell wall had longer microfibrils interconnecting yeast cells. Distinct from those of other dimorphic fungi, the cell wall of Sporothrix spp. lacked α-glucan component. Interestingly, glycogen α-particles were identified in the cytoplasm close to the cell wall and the plasma membrane. The cell wall structure as well as the presence of glycogen α-particles varied over time during cell culture. The structural differences observed in the cell wall of these Sporothrix species seemed to impact its uptake by monocyte-derived human macrophages. The data presented here show a unique cell wall structure of S. brasiliensis and S. schenckii during the yeast parasitic phase. A new cell wall model for Sporothrix spp. is therefore proposed that suggests that these fungi molt sheets of intact cell wall layers. This observation may have significant effects on localized and disseminated immunopathology. PMID:29522522
Multiplex lexical networks reveal patterns in early word acquisition in children
NASA Astrophysics Data System (ADS)
Stella, Massimo; Beckage, Nicole M.; Brede, Markus
2017-04-01
Network models of language have provided a way of linking cognitive processes to language structure. However, current approaches focus only on one linguistic relationship at a time, missing the complex multi-relational nature of language. In this work, we overcome this limitation by modelling the mental lexicon of English-speaking toddlers as a multiplex lexical network, i.e. a multi-layered network where N = 529 words/nodes are connected according to four relationship: (i) free association, (ii) feature sharing, (iii) co-occurrence, and (iv) phonological similarity. We investigate the topology of the resulting multiplex and then proceed to evaluate single layers and the full multiplex structure on their ability to predict empirically observed age of acquisition data of English speaking toddlers. We find that the multiplex topology is an important proxy of the cognitive processes of acquisition, capable of capturing emergent lexicon structure. In fact, we show that the multiplex structure is fundamentally more powerful than individual layers in predicting the ordering with which words are acquired. Furthermore, multiplex analysis allows for a quantification of distinct phases of lexical acquisition in early learners: while initially all the multiplex layers contribute to word learning, after about month 23 free associations take the lead in driving word acquisition.
Dynamo Tests for Stratification Below the Core-Mantle Boundary
NASA Astrophysics Data System (ADS)
Olson, P.; Landeau, M.
2017-12-01
Evidence from seismology, mineral physics, and core dynamics points to a layer with an overall stable stratification in the Earth's outer core, possibly thermal in origin, extending below the core-mantle boundary (CMB) for several hundred kilometers. In contrast, energetic deep mantle convection with elevated heat flux implies locally unstable thermal stratification below the CMB in places, consistent with interpretations of non-dipole geomagnetic field behavior that favor upwelling flows below the CMB. Here, we model the structure of convection and magnetic fields in the core using numerical dynamos with laterally heterogeneous boundary heat flux in order to rationalize this conflicting evidence. Strongly heterogeneous boundary heat flux generates localized convection beneath the CMB that coexists with an overall stable stratification there. Partially stratified dynamos have distinctive time average magnetic field structures. Without stratification or with stratification confined to a thin layer, the octupole component is small and the CMB magnetic field structure includes polar intensity minima. With more extensive stratification, the octupole component is large and the magnetic field structure includes intense patches or high intensity lobes in the polar regions. Comparisons with the time-averaged geomagnetic field are generally favorable for partial stratification in a thin layer but unfavorable for stratification in a thick layer beneath the CMB.
Cselyuszka, Norbert; Sakotic, Zarko; Kitic, Goran; Crnojevic-Bengin, Vesna; Jankovic, Nikolina
2018-05-29
In this paper, we present two novel dual-band bandpass filters based on surface plasmon polariton-like (SPP-like) propagation induced by structural dispersion of substrate integrated waveguide (SIW). Both filters are realized as a three-layer SIW where each layer represents a sub-SIW structure with intrinsic effective permittivity that depends on its width and filling dielectric material. The layers are designed to have effective permittivities of opposite signs in certain frequency ranges, which enables SPP-like propagation to occur at their interfaces. Since three layers can provide two distinct SPP-like propagations, the filters exhibit dual-band behaviour. A detailed theoretical and numerical analysis and numerical optimization have been used to design the filters, which were afterwards fabricated using standard printed circuit board technology. The independent choice of geometrical parameters of sub-SIWs and/or the corresponding dielectric materials provide a great freedom to arbitrarily position the passbands in the spectrum, which is a significant advantage of the proposed filters. At the same time, they meet the requirements for low-cost low-profile configuration since they are realized as SIW structures, as well as for excellent in-band characteristics and selectivity which is confirmed by the measurement results.
Persistent Charge-Density-Wave Order in Single-Layer TaSe2.
Ryu, Hyejin; Chen, Yi; Kim, Heejung; Tsai, Hsin-Zon; Tang, Shujie; Jiang, Juan; Liou, Franklin; Kahn, Salman; Jia, Caihong; Omrani, Arash A; Shim, Ji Hoon; Hussain, Zahid; Shen, Zhi-Xun; Kim, Kyoo; Min, Byung Il; Hwang, Choongyu; Crommie, Michael F; Mo, Sung-Kwan
2018-02-14
We present the electronic characterization of single-layer 1H-TaSe 2 grown by molecular beam epitaxy using a combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory calculations. We demonstrate that 3 × 3 charge-density-wave (CDW) order persists despite distinct changes in the low energy electronic structure highlighted by the reduction in the number of bands crossing the Fermi energy and the corresponding modification of Fermi surface topology. Enhanced spin-orbit coupling and lattice distortion in the single-layer play a crucial role in the formation of CDW order. Our findings provide a deeper understanding of the nature of CDW order in the two-dimensional limit.
Propulsion/airframe integration issues for waverider aircraft
NASA Technical Reports Server (NTRS)
Blankson, Isaiah M.; Hagseth, Paul
1993-01-01
While many propulsion concepts and technologies developed for nonwaverider-type hypersonic vehicles may apply to waveriders, some aspects of these configurations require unique technological approaches. An evaluation is made of such distinctive opportunities in the cases of engine cycle selection, inlets, nozzle designs and integration, longitudinal stability, and thermal management. Also discussed are waverider requirements for control surface effectiveness, inlet boundary layer ingestion effects, and structural/configurational optimization, giving attention to trades in volumetric/structural efficiency and vehicle L/D.
Investigation of Thin Layered Cobalt Oxide Nano-Islands on Gold
NASA Astrophysics Data System (ADS)
Bajdich, Michal; Walton, Alex S.; Fester, Jakob; Arman, Mohammad A.; Osiecki, Jacek; Knudsen, Jan; Vojvodic, Aleksandra; Lauritsen, Jeppe V.
2015-03-01
Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER), but the synergistic effect of contact with gold is yet to be fully understood. The synthesis of three distinct types of thin-layered cobalt oxide nano-islands supported on a single crystal gold (111) substrate is confirmed by combination of STM and XAS methods. In this work, we present DFT+U theoretical investigation of above nano-islands using several previously known structural models. Our calculations confirm stability of two low-oxygen pressure phases: (a) rock-salt Co-O bilayer and (b) wurtzite Co-O quadlayer and single high-oxygen pressure phase: (c) O-Co-O trilayer. The optimized geometries agree with STM structures and calculated oxidation states confirm the conversion from Co2+ to Co3+ found experimentally in XAS. The O-Co-O trilayer islands have the structure of a single layer of CoOOH proposed to be the true active phase for OER catalyst. For that reason, the effect of water on the Pourbaix stabilities of basal planes and edge sites is fully investigated. Lastly, we also present the corresponding OER theoretical overpotentials.
Epitaxial Growth of Lattice-Mismatched Core-Shell TiO2 @MoS2 for Enhanced Lithium-Ion Storage.
Dai, Rui; Zhang, Anqi; Pan, Zhichang; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Hu, Linfeng; Zheng, Gengfeng
2016-05-01
Core-shell structured nanohybrids are currently of significant interest due to their synergetic properties and enhanced performances. However, the restriction of lattice mismatch remains a severe obstacle for heterogrowth of various core-shells with two distinct crystal structures. Herein, a controlled synthesis of lattice-mismatched core-shell TiO2 @MoS2 nano-onion heterostructures is successfully developed, using unilamellar Ti0.87 O2 nanosheets as the starting material and the subsequent epitaxial growth of MoS2 on TiO2 . The formation of these core-shell nano-onions is attributed to an amorphous layer-induced heterogrowth mechanism. The number of MoS2 layers can be well tuned from few to over ten layers, enabling layer-dependent synergistic effects. The core-shell TiO2 @MoS2 nano-onion heterostructures exhibit significantly enhanced energy storage performance as lithium-ion battery anodes. The approach has also been extended to other lattice-mismatched systems such as TiO2 @MoSe2 , thus suggesting a new strategy for the growth of well-designed lattice-mismatched core-shell structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low frequency solitons and double layers in a magnetized plasma with two temperature electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rufai, O. R.; Bharuthram, R.; Singh, S. V.
2012-12-15
Finite amplitude non-linear ion-acoustic solitary waves and double layers are studied in a magnetized plasma with cold ions fluid and two distinct groups of Boltzmann electrons, using the Sagdeev pseudo-potential technique. The conditions under which the solitary waves and double layers can exist are found both analytically and numerically. We have shown the existence of negative potential solitary waves and double layers for subsonic Mach numbers, whereas in the unmagnetized plasma they can only in the supersonic Mach number regime. For the plasma parameters in the auroral region, the electric field amplitude of the solitary structures comes out to bemore » 49 mV/m which is in agreement of the Viking observations in this region.« less
Polarimetry of nacre in iridescent shells
NASA Astrophysics Data System (ADS)
Metzler, R. A.; Burgess, C.; Regan, B.; Spano, S.; Galvez, E. J.
2014-09-01
We investigate the light transmitted or reflected from nacre (mother of pearl) taken from the iridescent shell of the bivalve Pinctad a fucata. These nacre surfaces have a rich structure, composed of aragonite crystals arranged as tablets or bricks, 5 μm wide and 400-500 nm thick, surrounded by 30nm thick organic mortar. The light reflected from these shell surfaces, or transmitted through thin polished layers, is rich in its polarization content, exhibiting a space dependent variation in the state of polarization with a high density of polarization singularities. Our goal is to use the polarization information to infer the structure of the biominerals and the role of the organic layer in determining the orientation of the crystals. In the experiments we send the light from a laser with a uniform state of polarization onto the shell, and analyze the light that is either transmitted or reflected, depending on the type of experiment, imaging it after its passage through polarization filters. We use the images from distinct filters to obtain the Stokes parameters, and hence the state of polarization, of each image point. We also construct the Mueller matrix for each imaged point, via 36 measurements. We do this for distinct physical and chemical treatments of the shell sample. Preliminary data shows that the organic layer may be responsible for organizing a multi-crystalline arrangement of aragonite tablets.
Normal modes in an overmoded circular waveguide coated with lossy material
NASA Technical Reports Server (NTRS)
Lee, C. S.; Lee, S. W.; Chuang, S. L.
1985-01-01
The normal modes in an overmoded waveguide coated with a lossy material are analyzed, particularly for their attenuation properties as a function of coating material, layer thickness, and frequency. When the coating material is not too lossy, the low-order modes are highly attenuated even with a thin layer of coating. This coated guide serves as a mode suppressor of the low-order modes, which can be particularly useful for reducing the radar cross section (RCS) of a cavity structure such as a jet inlet. When the coating material is very lossy, low-order modes fall into two distinct groups: highly and lowly attenuated modes. However, as a/lambda (a = radius of the cylinder; lambda = the free-space wavelength) increases, the separation between these two groups becomes less distinctive. The attenuation constants of most of the low-order modes become small, and decrease as a function of lambda sup 2/a sup 3.
NASA Astrophysics Data System (ADS)
Romanyuk, O.; Supplie, O.; Susi, T.; May, M. M.; Hannappel, T.
2016-10-01
The atomic and electronic band structures of GaP/Si(001) heterointerfaces were investigated by ab initio density functional theory calculations. Relative total energies of abrupt interfaces and mixed interfaces with Si substitutional sites within a few GaP layers were derived. It was found that Si diffusion into GaP layers above the first interface layer is energetically unfavorable. An interface with Si/Ga substitution sites in the first layer above the Si substrate is energetically the most stable one in thermodynamic equilibrium. The electronic band structure of the epitaxial GaP/Si(001) heterostructure terminated by the (2 ×2 ) surface reconstruction consists of surface and interface electronic states in the common band gap of two semiconductors. The dispersion of the states is anisotropic and differs for the abrupt Si-Ga, Si-P, and mixed interfaces. Ga 2 p , P 2 p , and Si 2 p core-level binding-energy shifts were computed for the abrupt and the lowest-energy heterointerface structures. Negative and positive core-level shifts due to heterovalent bonds at the interface are predicted for the abrupt Si-Ga and Si-P interfaces, respectively. The distinct features in the heterointerface electronic structure and in the core-level shifts open new perspectives in the experimental characterization of buried polar-on-nonpolar semiconductor heterointerfaces.
Gao, Chengyun; Zhang, Minhua; Ding, Jianwu; Pan, Fusheng; Jiang, Zhongyi; Li, Yifan; Zhao, Jing
2014-01-01
The composite membranes with two-active-layer (a capping layer and an inner layer) were prepared by sequential spin-coatings of hyaluronic acid (HA) and sodium alginate (NaAlg) on the polyacrylonitrile (PAN) support layer. The SEM showed a mutilayer structure and a distinct interface between the HA layer and the NaAlg layer. The coating sequence of two-active-layer had an obvious influence on the pervaporation dehydration performance of membranes. When the operation temperature was 80 °C and water concentration in feed was 10 wt.%, the permeate fluxes of HA/Alg/PAN membrane and Alg/HA/PAN membrane were similar, whereas the separation factor were 1130 and 527, respectively. It was found that the capping layer with higher hydrophilicity and water retention capacity, and the inner layer with higher permselectivity could increase the separation performance of the composite membranes. Meanwhile, effects of operation temperature and water concentration in feed on pervaporation performance as well as membrane properties were studied. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lucas, N. S.; Allen, J.; Belcher, S. E.; Boyd, T.; Brannigan, L.; Inall, M.; Palmer, M.; Polton, J.; Rippeth, T. P.
2016-02-01
This study presents a new 9.5 day dataset showing the evolution of the Ocean Surface Boundary Layer (OSBL) and dissipation of turbulence kinetic energy (TKE), carried out as part of OSMOSIS[i], at a location in the North East Atlantic Ocean in September 2012. The TKE dissipation measurements were made using three methods; (i) repeated profiling between 100m and the surface by an Ocean Microstructure glider, (ii) three series of profiles made using a loosely tethered velocity microstructure glider and (iii) a moored pulse-pulse coherent high frequency ADCP. Supporting measurements show the evolution of the water column structure, including surface wave measurements from a TRIAXYS wave buoy. This data shows two distinct regimes; the first, spanning 4 days with relatively low winds, displays a distinct diurnal cycle with the deepening of the active mixing layer during the night which shoaled during the day. The second spanned a significant storm, (with maximum winds speeds reaching 20 m s-1 and significant wave heights reaching 6 m), during which, rather than a deepening of the mixed layer as predicted by classical theory, the primary effect was a broadening of the transition layer, similar to that found by Dohan and Davies (2011). During the storm, significant dissipation was observed throughout the surface mixed layer and into the transition layer, driving fluxes of heat downwards through the base of the surface mixed layer. [i] Ocean Surface Mixing and Submesoscale Interaction Study Dohan, K. & Davis, R.E., 2011. Mixing in the Transition Layer during Two Storm Events. Journal of Physical Oceanography. 41 (1). pp. 42-66.
Formation and Restacking of Disordered Smectite Osmotic Hydrates
Gilbert, Benjamin; Comolli, Luis R.; Tinnacher, Ruth M.; ...
2015-12-01
Clay swelling, an important phenomenon in natural systems, can dramatically affect the properties of soils and sediments. Something of particular interest in low-salinity, saturated systems are osmotic hydrates, forms of smectite in which the layer separation greatly exceeds the thickness of a single smectite layer due to the intercalation of water. In situ X-ray diffraction (XRD) studies have shown a strong link between ionic strength and average interlayer spacing in osmotic hydrates but also indicate the presence of structural disorder that has not been fully described. In the present study the structural state of expanded smectite in sodium chloride solutionsmore » was investigated by combining very low electron dose, high-resolution cryogenic-transmission electron microscopy observations with XRD experiments. Wyoming smectite (SWy-2) was embedded in vitreous ice to evaluate clay structure in aqua. Lattice-fringe images showed that smectite equilibrated in aqueous, low-ionic-strength solutions, exists as individual smectite layers, osmotic hydrates composed of parallel layers, as well as disordered layer conformations. There was no evidence found here for edge-to-sheet attractions, but significant variability in interlayer spacing was observed. Whether this variation could be explained by a dependence of the magnitude of long-range cohesive (van der Waals) forces on the number of layers in a smectite particle was investigated here. Calculations of the Hamaker constant for layer-layer interactions showed that van der Waals forces may span at least five layers plus the intervening water and confirmed that forces vary with layer number. The drying of the disordered osmotic hydrates induced re-aggregation of the smectite to form particles that exhibited coherent scattering domains. Clay disaggregation and restacking may be considered as an example of oriented attachment, with the unusual distinction that it may be cycled repeatedly by changing solution conditions.« less
NASA Astrophysics Data System (ADS)
Liu, Jian; Li, Xi-Bo; Wang, Da; Lau, Woon-Ming; Peng, Ping; Liu, Li-Min
2014-02-01
The family of bulk metal phosphorus trichalcogenides (APX3, A = MII, M_{0.5}^IM_{0.5}^{III}; X = S, Se; MI, MII, and MIII represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functional theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX3 should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe3, CdPSe3, Ag0.5Sc0.5PSe3, and Ag0.5In0.5PX3 (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag0.5Sc0.5PSe3 is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting.
Formation and Restacking of Disordered Smectite Osmotic Hydrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Benjamin; Comolli, Luis R.; Tinnacher, Ruth M.
Clay swelling, an important phenomenon in natural systems, can dramatically affect the properties of soils and sediments. Something of particular interest in low-salinity, saturated systems are osmotic hydrates, forms of smectite in which the layer separation greatly exceeds the thickness of a single smectite layer due to the intercalation of water. In situ X-ray diffraction (XRD) studies have shown a strong link between ionic strength and average interlayer spacing in osmotic hydrates but also indicate the presence of structural disorder that has not been fully described. In the present study the structural state of expanded smectite in sodium chloride solutionsmore » was investigated by combining very low electron dose, high-resolution cryogenic-transmission electron microscopy observations with XRD experiments. Wyoming smectite (SWy-2) was embedded in vitreous ice to evaluate clay structure in aqua. Lattice-fringe images showed that smectite equilibrated in aqueous, low-ionic-strength solutions, exists as individual smectite layers, osmotic hydrates composed of parallel layers, as well as disordered layer conformations. There was no evidence found here for edge-to-sheet attractions, but significant variability in interlayer spacing was observed. Whether this variation could be explained by a dependence of the magnitude of long-range cohesive (van der Waals) forces on the number of layers in a smectite particle was investigated here. Calculations of the Hamaker constant for layer-layer interactions showed that van der Waals forces may span at least five layers plus the intervening water and confirmed that forces vary with layer number. The drying of the disordered osmotic hydrates induced re-aggregation of the smectite to form particles that exhibited coherent scattering domains. Clay disaggregation and restacking may be considered as an example of oriented attachment, with the unusual distinction that it may be cycled repeatedly by changing solution conditions.« less
Nishida, Harufumi; Pigg, Kathleen B; Kudo, Kensuke; Rigby, John F
2007-07-01
This study describes Homevaleia gouldii H. Nishida, Pigg, Kudo et Rigby gen. et sp. nov., an ovule-bearing glossopterid organ, based on a combination of recently collected permineralized specimens from the Late Permian Homevale Station locality in the Bowen Basin of Queensland, Australia, and on previously studied material from the 1977 Gould and Delevoryas study. Homevaleia, which resembles the compression-impression genus Dictyopteridium, is an inrolled megasporophyll with a distinct keel that bears numerous (over 70) stalked ovules on its adaxial surface. Ovules are small, oval, with an elaborate mesh-like structure that is developed from the outermost integumentary layers. Specimens interpreted as representing different developmental stages show there is an apparent interrelationship between megagametophyte development and the opening of the surrounding fertile structure for pollination. Together, new information provided by this material enables better understanding of glossopterid reproductive structure and its function in one distinctive form.
NASA Astrophysics Data System (ADS)
Baines, Kevin; Sromovsky, Lawrence A.; Fry, Patrick M.; Carlson, Robert W.; Momary, Thomas W.
2016-10-01
We report results incorporating the red-tinted photochemically-generated aerosols of Carlson et al (2016, Icarus 274, 106-115) in spectral models of Jupiter's Great Red Spot (GRS). Spectral models of the 0.35-1.0-micron spectrum show good agreement with Cassini/VIMS near-center-meridian and near-limb GRS spectra for model morphologies incorporating an optically-thin layer of Carlson (2016) aerosols at high altitudes, either at the top of the tropospheric GRS cloud, or in a distinct stratospheric haze layer. Specifically, a two-layer "crème brûlée" structure of the Mie-scattering Carlson et al (2016) chromophore attached to the top of a conservatively scattering (hereafter, "white") optically-thick cloud fits the spectra well. Currently, best agreement (reduced χ2 of 0.89 for the central-meridian spectrum) is found for a 0.195-0.217-bar, 0.19 ± 0.02 opacity layer of chromophores with mean particle radius of 0.14 ± 0.01 micron. As well, a structure with a detached stratospheric chromophore layer ~0.25 bar above a white tropospheric GRS cloud provides a good spectral match (reduced χ2 of 1.16). Alternatively, a cloud morphology with the chromophore coating white particles in a single optically- and physically-thick cloud (the "coated-shell model", initially explored by Carlson et al 2016) was found to give significantly inferior fits (best reduced χ2 of 2.9). Overall, we find that models accurately fit the GRS spectrum if (1) most of the optical depth of the chromophore is in a layer near the top of the main cloud or in a distinct separated layer above it, but is not uniformly distributed within the main cloud, (2) the chromophore consists of relatively small, 0.1-0.2-micron-radius particles, and (3) the chromophore layer optical depth is small, ~ 0.1-0.2. Thus, our analysis supports the exogenic origin of the red chromophore consistent with the Carlson et al (2016) photolytic production mechanism rather than an endogenic origin, such as upwelling of material from the depths of Jupiter.
NASA Astrophysics Data System (ADS)
Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.
2013-12-01
3D-CMCC-Forest Ecosystem Model is a process based model formerly developed for complex forest ecosystems to estimate growth, water and carbon cycles, phenology and competition processes on a daily/monthly time scale. The Model integrates some characteristics of the functional-structural tree models with the robustness of the light use efficiency approach. It treats different heights, ages and species as discrete classes, in competition for light (vertical structure) and space (horizontal structure). The present work evaluates the results of the recently developed daily version of 3D-CMCC-FEM for two neighboring different even aged and mono specific study cases. The former is a heterogeneous Pedunculate oak forest (Quercus robur L. ), the latter a more homogeneous Scot pine forest (Pinus sylvestris L.). The multi-layer approach has been evaluated against a series of simplified versions to determine whether the improved model complexity in canopy structure definition increases its predictive ability. Results show that a more complex structure (three height layers) should be preferable to simulate heterogeneous scenarios (Pedunculate oak stand), where heights distribution within the canopy justify the distinction in dominant, dominated and sub-dominated layers. On the contrary, it seems that using a multi-layer approach for more homogeneous stands (Scot pine stand) may be disadvantageous. Forcing the structure of an homogeneous stand to a multi-layer approach may in fact increase sources of uncertainty. On the other hand forcing complex forests to a mono layer simplified model, may cause an increase in mortality and a reduction in average DBH and Height. Compared with measured CO2 flux data, model results show good ability in estimating carbon sequestration trends, on both a monthly/seasonal and daily time scales. Moreover the model simulates quite well leaf phenology and the combined effects of the two different forest stands on CO2 fluxes.
Inferring the mesoscale structure of layered, edge-valued, and time-varying networks
NASA Astrophysics Data System (ADS)
Peixoto, Tiago P.
2015-10-01
Many network systems are composed of interdependent but distinct types of interactions, which cannot be fully understood in isolation. These different types of interactions are often represented as layers, attributes on the edges, or as a time dependence of the network structure. Although they are crucial for a more comprehensive scientific understanding, these representations offer substantial challenges. Namely, it is an open problem how to precisely characterize the large or mesoscale structure of network systems in relation to these additional aspects. Furthermore, the direct incorporation of these features invariably increases the effective dimension of the network description, and hence aggravates the problem of overfitting, i.e., the use of overly complex characterizations that mistake purely random fluctuations for actual structure. In this work, we propose a robust and principled method to tackle these problems, by constructing generative models of modular network structure, incorporating layered, attributed and time-varying properties, as well as a nonparametric Bayesian methodology to infer the parameters from data and select the most appropriate model according to statistical evidence. We show that the method is capable of revealing hidden structure in layered, edge-valued, and time-varying networks, and that the most appropriate level of granularity with respect to the additional dimensions can be reliably identified. We illustrate our approach on a variety of empirical systems, including a social network of physicians, the voting correlations of deputies in the Brazilian national congress, the global airport network, and a proximity network of high-school students.
Flexible session management in a distributed environment
NASA Astrophysics Data System (ADS)
Miller, Zach; Bradley, Dan; Tannenbaum, Todd; Sfiligoi, Igor
2010-04-01
Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems.
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. PMID:28611747
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
Fe/Si(001) Ferromagnetic Layers: Reactivity, Local Atomic Structure and Magnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lungu, G. A.; Costescu, R. M.; Husanu, M. A.
2011-10-03
Ultrathin ferromagnetic Fe layers on Si(001) have recently been synthesized using the molecular beam epitaxy (MBE) technique, and their structural and magnetic properties, as well as their interface reactivity have been investigated. The study was undertaken as function of the amount of Fe deposited and of substrate temperature. The interface reactivity was characterized by Auger electron spectroscopy (AES). The surface structure was characterized by low-energy electron diffraction (LEED). The magnetism was investigated by magneto-optical Kerr effect (MOKE). A higher deposition temperature stabilizes a better surface ordering, but it also enhances Fe and Si interdiffusion and it therefore decreases the magnetism.more » Despite the rapid disappearance of the long range order with Fe deposition at room temperature, the material exhibits a significant uniaxial in-plane magnetic anisotropy. For the Fe deposition performed at high temperature (500 deg. C), a weak ferromagnetism is still observed, with saturation magnetization of about 10% of the value obtained previously. MOKE studies allowed inferring the main properties of the distinct formed layers.« less
Fabritius, Helge; Walther, Paul; Ziegler, Andreas
2005-05-01
Before the molt terrestrial isopods resorb calcium from the posterior cuticle and store it in large deposits within the first four anterior sternites. In Porcellio scaber the deposits consist of three structurally distinct layers consisting of amorphous CaCO3 (ACC) and an organic matrix that consists of concentric and radial elements. It is thought that the organic matrix plays a role in the structural organization of deposits and in the stabilization of ACC, which is unstable in vitro. In this paper, we present a thorough analysis of the ultrastructure of the organic matrix in the CaCO3 deposits using high-resolution field-emission scanning electron microscopy. The spherules and the homogeneous layer contain an elaborate organic matrix with similar structural organization consisting of concentric reticules and radial strands. The decalcification experiments reveal an inhomogeneous solubility of ACC within the spherules probably caused by variations in the stabilizing properties of matrix components. The transition between the three layers can be explained by changes in the number of spherule nucleation sites.
Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin
2018-05-21
The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousse, Gwenaelle; Ahouari, Hania; Pomjakushin, Vladimir
We report on a thorough structural study on two members of layered fluorocarbonates KMCO3F (M = Ca, Mn). The Ca-based member demonstrates a phase transition at ~320 °C, evidenced for the first time. The crystal structure of the high temperature phase (HT-KCaCO3F) was solved using neutron powder diffraction. A new Mn-based phase KMnCO3F was synthesized, and its crystal structure was solved from electron diffraction tomography data and refined from a combination of X-ray synchrotron and neutron powder diffraction. In contrast to other members of the fluorocarbonate family, the carbonate groups in the KMnCO3F and HT-KCaCO3F structures are not fixed tomore » two distinct orientations corresponding to mono- and bidentate coordinations of the M cation. In KMnCO3F, the carbonate group can be considered as nearly “monodentate”, forming one short (2.14 Å) and one long (3.01 Å) Mn–O contact. This topology provides more flexibility to the MCO3 layer and enables diminishing the mismatch between the MCO3 and KF layers. This conclusion is corroborated by the HT-KCaCO3F structure, in which the carbonate groups can additionally be tilted away from the layer plane thus relieving the strain arising from geometrical mismatch between the layers. The correlation between denticity of the carbonate groups, their mobility, and cation size variance is discussed. KMnCO3 orders antiferromagnetically below TN = 40 K.« less
Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; ...
2015-09-21
Ruddlesden-Popper structured oxides, general form A n+1B nO 3n+1, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo 0.5Fe 0.5O 4-δ (n = 1), La 0.3Sr 2.7CoFeO 7-δ (n = 2), and LaSr 3Co 1.5Fe 1.5O 10-δ (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO 2 of 10 -1 atm. Then, the structures were fit to a tetragonal I4/mmm space group, andmore » were found to have increased total oxygen vacancy concentration in the order La 0.3Sr 2.7CoFeO 7-δ > LaSr 3Co 1.5Fe 1.5O 10-δ > LaSrCo 0.5Fe 0.5O 4-δ, following the trend predicted for charge compensation upon increasing Sr 2+/La 3+ ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.« less
Dehomogenized Elastic Properties of Heterogeneous Layered Materials in AFM Indentation Experiments.
Lee, Jia-Jye; Rao, Satish; Kaushik, Gaurav; Azeloglu, Evren U; Costa, Kevin D
2018-06-05
Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples indented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, utilizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tissues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of heterogeneous multilayered samples without destructively separating individual components before testing. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
1992-07-01
materials. The calculatedelectronic band structure of Ga,.,lnSb/lnAs superlattices is qualitatively distinct from that of conventional LWIR materials...have grown MCT layers on (I I I)B CdTe and CdZnTe for LWIR applications with uniformity in thickness within 1.5% (largest difference from the mean...at 300K over the same area. For undoped n-type LWIR layers mobilities in the range of 7-10xI04 cm 2/volt.sec and carrier concentrations of 5-10x10 14
Structural Analysis of MoS2 and other 2D layered materials using LEEM/LEED-I(V) and STM
NASA Astrophysics Data System (ADS)
Grady, Maxwell; Dai, Zhongwei; Jin, Wencan; Dadap, Jerry; Osgood, Richard; Sadowski, Jerzy; Pohl, Karsten
Layered two-dimensional materials, such as molybdenum disulfide, MoS2, are of interest for the development of many types of novel electronic devices. To fully understand the interfaces between these new materials, the atomic reconstructions at their surfaces must be understood. Low Energy Electron Microscopy and Diffraction, LEEM/ μLEED, present a unique method for rapid material characterization in real space and reciprocal space with high resolution. Here we present a study of the surface structure of 2H-MoS2 using μLEED intensity-voltage analysis. To aid this analysis, software is under development to automate the procedure of extracting I(V) curves from LEEM and LEED data. When matched with computational modeling, this data provides information with angstrom level resolution concerning the three dimensional atomic positions. We demonstrate that the surface structure of bulk MoS2 is distinct from the bulk crystal structure and exhibits a smaller surface relaxation at 320K compared to previous results at 95K. Furthermore, suspended monolayer samples exhibit large interlayer relaxations compared to the bulk surface termination. Further techniques for refining layer thickness determination are under development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudo, Takuya; Inoue, Tomoya; Kita, Takashi
2008-10-01
Self-assembling process of InAs/GaAs quantum dots has been investigated by analyzing reflection high-energy electron diffraction chevron images reflecting the crystal facet structure surrounding the island. The chevron image shows dramatic changes during the island formation. From the temporal evolution of the chevron tail structure, the self-assembling process has been found to consist of four steps. The initial islands do not show distinct facet structures. Then, the island surface is covered by high-index facets, and this is followed by the formation of stable low-index facets. Finally, the flow of In atoms from the islands occurs, which contributes to flatten the wettingmore » layer. Furthermore, we have investigated the island shape evolution during the GaAs capping layer growth by using the same real-time analysis technique.« less
Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle.
Salorinne, Kirsi; Malola, Sami; Wong, O Andrea; Rithner, Christopher D; Chen, Xi; Ackerson, Christopher J; Häkkinen, Hannu
2016-01-21
Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of (1)H and (13)C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications.
Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle
Salorinne, Kirsi; Malola, Sami; Wong, O. Andrea; Rithner, Christopher D.; Chen, Xi; Ackerson, Christopher J.; Häkkinen, Hannu
2016-01-01
Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of 1H and 13C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications. PMID:26791253
Room temperature electroluminescence from the n-ZnO/p-GaN heterojunction device grown by MOCVD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, T.P.; Zhu, H.C.; Bian, J.M.
2008-12-01
The heterojunction light-emitting diode with n-ZnO/p-GaN structure was grown on (0 0 0 1) sapphire substrate by metalorganic chemical vapor deposition (MOCVD) technique. The heterojunction structure was consisted of an Mg-doped p-type GaN layer with a hole concentration of {approx}10{sup 17} cm{sup -3} and a unintentionally doped n-type ZnO layer with an electron concentration of {approx}10{sup 18} cm{sup -3}. A distinct blue-violet electroluminescence with a dominant emission peak centered at {approx}415 nm was observed at room temperature from the heterojunction structure under forward bias conditions. The origins of the electroluminescence (EL) emissions are discussed in comparison with the photoluminescence spectra,more » and it was supposed to be attributed to a radiative recombination in both n-ZnO and p-GaN sides.« less
Interfaces between hexagonal and cubic oxides and their structure alternatives
Zhou, Hua; Wu, Lijun; Wang, Hui-Qiong; ...
2017-11-14
Multi-layer structure of functional materials often involves the integration of different crystalline phases. The film growth orientation thus frequently exhibits a transformation, owing to multiple possibilities caused by incompatible in-plane structural symmetry. Nevertheless, the detailed mechanism of the transformation has not yet been fully explored. Here we thoroughly probe the heteroepitaxially grown hexagonal zinc oxide (ZnO) films on cubic (001)-magnesium oxide (MgO) substrates using advanced scanning transition electron microscopy, X-ray diffraction and first principles calculations, revealing two distinct interface models of (001) ZnO/(001) MgO and (100) ZnO/(001) MgO. Here we have found that the structure alternatives are controlled thermodynamically bymore » the nucleation, while kinetically by the enhanced Zn adsorption and O diffusion upon the phase transformation. Finally, this work not only provides a guideline for the interface fabrication with distinct crystalline phases but also shows how polar and non-polar hexagonal ZnO films might be manipulated on the same cubic substrate.« less
Angiographic and structural imaging using high axial resolution fiber-based visible-light OCT
Pi, Shaohua; Camino, Acner; Zhang, Miao; Cepurna, William; Liu, Gangjun; Huang, David; Morrison, John; Jia, Yali
2017-01-01
Optical coherence tomography using visible-light sources can increase the axial resolution without the need for broader spectral bandwidth. Here, a high-resolution, fiber-based, visible-light optical coherence tomography system is built and used to image normal retina in rats and blood vessels in chicken embryo. In the rat retina, accurate segmentation of retinal layer boundaries and quantification of layer thicknesses are accomplished. Furthermore, three distinct capillary plexuses in the retina and the choriocapillaris are identified and the characteristic pattern of the nerve fiber layer thickness in rats is revealed. In the chicken embryo model, the microvascular network and a venous bifurcation are examined and the ability to identify and segment large vessel walls is demonstrated. PMID:29082087
First-principles studies of electric field effects on the electronic structure of trilayer graphene
NASA Astrophysics Data System (ADS)
Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping
2016-10-01
A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.
Fe/Rh (100) multilayer magnetism probed by x-ray magnetic circular dichroism
NASA Astrophysics Data System (ADS)
Tomaz, M. A.; Ingram, D. C.; Harp, G. R.; Lederman, D.; Mayo, E.; O'brien, W. L.
1997-09-01
We report the layer-averaged magnetic moments of both Fe and Rh in sputtered Fe/Rh (100) multilayer thin films as measured by x-ray magnetic circular dichroism. We observe two distinct regimes in these films. The first is characterized by Rh moments of at least 1μB, Fe moments enhanced as much as 30% above bulk, and a bct crystal structure. The second regime is distinguished by sharp declines of both Fe and Rh moments accompanied by a transition to an fct crystal lattice. The demarcation between the two regions is identified as the layer thickness for which both bct and fct phases first coexist, which we term the critical thickness tcrit. We attribute the change in magnetic behavior to the structural transformation.
On Valence-Band Splitting in Layered MoS2.
Zhang, Youwei; Li, Hui; Wang, Haomin; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun
2015-08-25
As a representative two-dimensional semiconducting transition-metal dichalcogenide (TMD), the electronic structure in layered MoS2 is a collective result of quantum confinement, interlayer interaction, and crystal symmetry. A prominent energy splitting in the valence band gives rise to many intriguing electronic, optical, and magnetic phenomena. Despite numerous studies, an experimental determination of valence-band splitting in few-layer MoS2 is still lacking. Here, we show how the valence-band maximum (VBM) splits for one to five layers of MoS2. Interlayer coupling is found to contribute significantly to phonon energy but weakly to VBM splitting in bilayers, due to a small interlayer hopping energy for holes. Hence, spin-orbit coupling is still predominant in the splitting. A temperature-independent VBM splitting, known for single-layer MoS2, is, thus, observed for bilayers. However, a Bose-Einstein type of temperature dependence of VBM splitting prevails in three to five layers of MoS2. In such few-layer MoS2, interlayer coupling is enhanced with a reduced interlayer distance, but thermal expansion upon temperature increase tends to decouple adjacent layers and therefore decreases the splitting energy. Our findings that shed light on the distinctive behaviors about VBM splitting in layered MoS2 may apply to other hexagonal TMDs as well. They will also be helpful in extending our understanding of the TMD electronic structure for potential applications in electronics and optoelectronics.
Depth-Profiling Electronic and Structural Properties of Cu(In,Ga)(S,Se)2 Thin-Film Solar Cell.
Chiang, Ching-Yu; Hsiao, Sheng-Wei; Wu, Pin-Jiun; Yang, Chu-Shou; Chen, Chia-Hao; Chou, Wu-Ching
2016-09-14
Utilizing a scanning photoelectron microscope (SPEM) and grazing-incidence X-ray powder diffraction (GIXRD), we studied the electronic band structure and the crystalline properties of the pentanary Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cell as a function of sample depth on measuring the thickness-gradient sample. A novel approach is proposed for studying the depth-dependent information on thin films, which can provide a gradient thickness and a wide cross-section of the sample by polishing process. The results exhibit that the CIGSSe absorber layer possesses four distinct stoichiometries. The growth mechanism of this distinctive compositional distribution formed by a two-stage process is described according to the thermodynamic reaction and the manufacturing process. On the basis of the depth-profiling results, the gradient profiles of the conduction and valence bands were constructed to elucidate the performance of the electrical properties (in this case, Voc = 620 mV, Jsc = 34.6 mA/cm(2), and η = 14.04%); the valence-band maxima (VBM) measured with a SPEM in the spectroscopic mode coincide with this band-structure model, except for a lowering of the VBM observed in the surface region of the absorber layer due to the ordered defect compound (ODC). In addition, the depth-dependent texturing X-ray diffraction pattern presents the crystalline quality and the residual stress for each depth of a thin-film device. We find that the randomly oriented grains in the bottom region of the absorber layer and the different residual stress between the underlying Mo and the absorber interface, which can deteriorate the electrical performance due to peeling-off effect. An anion interstitial defect can be observed on comparing the anion concentration of the elemental distribution with crystalline composition; a few excess sulfur atoms insert in interstitial sites at the front side of the absorber layer, whereas the interstitial selenium atoms insert at the back side.
NASA Astrophysics Data System (ADS)
Sarafopoulos, D. V.
2010-02-01
For the first time we identify a bi-layer structure of energetic electron fluxes in the Earth's magnetotail and establish (using datasets mainly obtained by the Geotail Energetic Particles and Ion Composition (EPIC/ICS) instrument) that it actually provides strong evidence for a purely spatial structure. Each bi-layer event is composed of two distinct layers with counterstreaming energetic electron fluxes, parallel and antiparallel to the local ambient magnetic field lines; in particular, the tailward directed fluxes always occur in a region adjacent to the lobes. Adopting the X-line as a standard reconnection model, we determine the occurrence of bi-layer events relatively to the neutral point, in the substorm frame; four (out of the shown seven) events are observed earthward and three tailward, a result implying that four events probably occurred with the substorm's local recovery phase. We discuss the bi-layer events in terms of the X-line model; they add more constraints for any candidate electron acceleration mechanism. It should be stressed that until this time, none proposed electron acceleration mechanism has discussed or predicted these layered structures with all their properties. Then we discuss the bi-layer events in terms of the much promising "akis model", as introduced by Sarafopoulos (2008). The akis magnetic field topology is embedded in a thinned plasma sheet and is potentially causing charge separation. We assume that as the Rc curvature radius of the magnetic field line tends to become equal to the ion gyroradius rg, then the ions become non-adiabatic. At the limit Rc=rg the demagnetization process is also under way and the frozen-in magnetic field condition is violated by strong wave turbulence; hence, the ion particles in this geometry are stochastically scattered. In addition, ion diffusion probably takes place across the magnetic field, since an intense pressure gradient is directed earthward; hence, ions are ejected tailward of akis. This way, in front of akis an "ion capsule region" is formed with net positive charge. In between them a distinct region with an electric field E⊥ orthogonal to the magnetic field is emerged; E⊥ in front of akis is directed earthward. The field-aligned and highly anisotropic energetic electron populations have probably resulted via spatially separated antiparallel and field-aligned electric fields being the very heart of the acceleration source. We assume that the ultimate cause for the field-aligned electric fields are the net positive capsule charge and the net negative charge trapped at the tip of akis; both charges will be eventually neutralized through field aligned currents, but they remain unshielded for sufficient time to produce the observed events.
NASA Astrophysics Data System (ADS)
Li, Shi-Yao; She, Zhen-Su; Chen, Jun
2017-11-01
A velocity-vorticity correlation structure (VVCS) analysis is applied to the direct numerical simulation (DNS) of compressible turbulent boundary layer (CTBL) at Mach numbers, Ma = 2.25 , 4.50 and 6.0 . It is shown that the VVCS analysis captures the geometry variation in the streamwise direction during the transition and in the wall-normal direction in the fully developed regime. Specifically, before transition, the VVCS captures the instability wave number, while in the transition region it displays a distinct scaling change of the dimensions. The fully developed turbulence regime is characterized by a nearly constant spatial extension of the VVCS. Particularly, after turbulence is well developed, a multi-layer structure in the wall normal direction is observed in the maximum correlation coefficient and in the length scales of the VVCS, as expected from a recent symmetry-based theory, the ensemble structure dynamics (SED). The most interesting outcome is an observed linear dependence of the length scale of the VVCS from y+ 50 to 200, which is a direct support to Townsend's attached-eddy theory. In conclusion, the VVCS analysis quantifies the geometrical characteristics of the coherent structures in turbulent compressible shear flows throughout the whole domain. Supported by NSFC (11172006, 11221062, 11452002) and by MOST (China) 973 project (2009CB724100).
Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films
NASA Astrophysics Data System (ADS)
Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva
2017-11-01
Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.
GaS multi-walled nanotubes from the lamellar precursor
NASA Astrophysics Data System (ADS)
Hu, P. A.; Liu, Y. Q.; Fu, L.; Cao, L. C.; Zhu, D. B.
2005-04-01
Inorganic fullerene-like (IF) nanotubes constructed from layered metal chalcogenides are of particular significance because of their excellent physical properties and potential application in wide fields. But very few previous studies were focused on the IF nanotubes of layered III-VI semiconductor. Therefore we investigate the preparation, structure and photoluminescence (PL) properties of GaS nanotube (an important III-VI semiconductor IF nanotube). A simple method is introduced to prepare GaS multi-walled nanotubes for the first time by annealing the natural lamellar precursor in Ar. The reaction temperature is crucial for the formation of nanotube. A suitable temperature range is 500-850 °C. Bulk quantities of GaS nanotubes with diameters of 30-150 nm and lengths up to ten micrometers were produced. Some of these nanotubes show corrugated and interlinked structure and form many segments, demonstrating a bamboo-like structure. As compared to bulk materials, the obvious distinction of the products in PL spectra at liquid nitrogen temperature of 77 K was due to the structure variety.
Traditional Semiconductors in the Two-Dimensional Limit.
Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B
2018-02-23
Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.
Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.
Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J
2012-07-03
The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.
Spatial analysis of extension fracture systems: A process modeling approach
Ferguson, C.C.
1985-01-01
Little consensus exists on how best to analyze natural fracture spacings and their sequences. Field measurements and analyses published in geotechnical literature imply fracture processes radically different from those assumed by theoretical structural geologists. The approach adopted in this paper recognizes that disruption of rock layers by layer-parallel extension results in two spacing distributions, one representing layer-fragment lengths and another separation distances between fragments. These two distributions and their sequences reflect mechanics and history of fracture and separation. Such distributions and sequences, represented by a 2 ?? n matrix of lengthsL, can be analyzed using a method that is history sensitive and which yields also a scalar estimate of bulk extension, e (L). The method is illustrated by a series of Monte Carlo experiments representing a variety of fracture-and-separation processes, each with distinct implications for extension history. Resulting distributions of e (L)are process-specific, suggesting that the inverse problem of deducing fracture-and-separation history from final structure may be tractable. ?? 1985 Plenum Publishing Corporation.
"Subpial Fan Cell" - A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex.
Gabbott, Paul L A
2016-01-01
Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class - termed "subpial fan (SPF) cell" - described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A - presumed excitatory) and symmetric (S - presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata - with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells indicated a unique class of CRet+/GABA- neuron in adult monkey PFC - possibly a subtype of persisting Cajal-Retzius cell. The distribution and connectivity of SPF cells suggest they act as integrative hubs in upper layer 1 during postnatal maturation. The main synaptic output of SPF cells likely provides a transminicolumnar excitatory influence across swathes of apical dendritic tufts - thus affecting information processing in discrete patches of layer 1 in adult monkey PFC.
Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; ...
2015-04-30
The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy numbermore » of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.« less
Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders
2015-01-01
The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731
USDA-ARS?s Scientific Manuscript database
Soil organic matter (SOM) contributes to soil processes and is found both in shallow and deep soil layers. Its activity can be affected by its chemical composition, yet knowledge is incomplete of how land use alters the structural composition of SOM throughout the profiles of different soil types. T...
Kwon, Miye; Kim, Mincheol; Takacs-Vesbach, Cristina; Lee, Jaejin; Hong, Soon Gyu; Kim, Sang Jong; Priscu, John C; Kim, Ok-Sun
2017-06-01
Perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five ice-covered Antarctic lakes by 16S rRNA gene-based pyrosequencing. Distinct communities were present in each lake, reflecting the unique biogeochemical characteristics of these environments. Further, certain bacterial lineages were confined exclusively to specific depths within each lake. For example, candidate division WM88 occurred solely at a depth of 15 m in Lake Fryxell, whereas unknown lineages of Chlorobi were found only at a depth of 18 m in Lake Miers, and two distinct classes of Firmicutes inhabited East and West Lobe Bonney at depths of 30 m. Redundancy analysis revealed that community variation of bacterioplankton could be explained by the distinct conditions of each lake and depth; in particular, assemblages from layers beneath the chemocline had biogeochemical associations that differed from those in the upper layers. These patterns of community composition may represent bacterial adaptations to the extreme and unique biogeochemical gradients of ice-covered lakes in the McMurdo Dry Valleys. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Controlled surface functionality of magnetic nanoparticles by layer-by-layer assembled nano-films
NASA Astrophysics Data System (ADS)
Choi, Daheui; Son, Boram; Park, Tai Hyun; Hong, Jinkee
2015-04-01
Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated.Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07373h
A θ-γ oscillation code for neuronal coordination during motor behavior.
Igarashi, Jun; Isomura, Yoshikazu; Arai, Kensuke; Harukuni, Rie; Fukai, Tomoki
2013-11-20
Sequential motor behavior requires a progression of discrete preparation and execution states. However, the organization of state-dependent activity in neuronal ensembles of motor cortex is poorly understood. Here, we recorded neuronal spiking and local field potential activity from rat motor cortex during reward-motivated movement and observed robust behavioral state-dependent coordination between neuronal spiking, γ oscillations, and θ oscillations. Slow and fast γ oscillations appeared during distinct movement states and entrained neuronal firing. γ oscillations, in turn, were coupled to θ oscillations, and neurons encoding different behavioral states fired at distinct phases of θ in a highly layer-dependent manner. These findings indicate that θ and nested dual band γ oscillations serve as the temporal structure for the selection of a conserved set of functional channels in motor cortical layer activity during animal movement. Furthermore, these results also suggest that cross-frequency couplings between oscillatory neuronal ensemble activities are part of the general coding mechanism in cortex.
Raman Signatures of Polytypism in Molybdenum Disulfide.
Lee, Jae-Ung; Kim, Kangwon; Han, Songhee; Ryu, Gyeong Hee; Lee, Zonghoon; Cheong, Hyeonsik
2016-02-23
Since the stacking order sensitively affects various physical properties of layered materials, accurate determination of the stacking order is important for studying the basic properties of these materials as well as for device applications. Because 2H-molybdenum disulfide (MoS2) is most common in nature, most studies so far have focused on 2H-MoS2. However, we found that the 2H, 3R, and mixed stacking sequences exist in few-layer MoS2 exfoliated from natural molybdenite crystals. The crystal structures are confirmed by HR-TEM measurements. The Raman signatures of different polytypes are investigated by using three different excitation energies that are nonresonant and resonant with A and C excitons, respectively. The low-frequency breathing and shear modes show distinct differences for each polytype, whereas the high-frequency intralayer modes show little difference. For resonant excitations at 1.96 and 2.81 eV, distinct features are observed that enable determination of the stacking order.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Wendel, D. E.
2012-01-01
We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions - typically detected in the layers immediately outside of the current layer proper - form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed near the local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X-IO-nulls and magnetic spine connected null pairs, as well as their correlation - if any - to the amount of magnetic energy converted by the process of magnetic reconnection.
NASA Astrophysics Data System (ADS)
Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.
2002-11-01
In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.
Multi-responsive hydrogels for drug delivery and tissue engineering applications
Knipe, Jennifer M.; Peppas, Nicholas A.
2014-01-01
Multi-responsive hydrogels, or ‘intelligent’ hydrogels that respond to more than one environmental stimulus, have demonstrated great utility as a regenerative biomaterial in recent years. They are structured biocompatible materials that provide specific and distinct responses to varied physiological or externally applied stimuli. As evidenced by a burgeoning number of investigators, multi-responsive hydrogels are endowed with tunable, controllable and even biomimetic behavior well-suited for drug delivery and tissue engineering or regenerative growth applications. This article encompasses recent developments and challenges regarding supramolecular, layer-by-layer assembled and covalently cross-linked multi-responsive hydrogel networks and their application to drug delivery and tissue engineering. PMID:26816625
NASA Technical Reports Server (NTRS)
Adrian, M. L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X- and O-nulls, as well as their correlation to the amount of magnetic energy converted by the process of magnetic reconnection.
Geography of Genetic Structure in Barley Wild Relative Hordeum vulgare subsp. spontaneum in Jordan.
Thormann, Imke; Reeves, Patrick; Reilley, Ann; Engels, Johannes M M; Lohwasser, Ulrike; Börner, Andreas; Pillen, Klaus; Richards, Christopher M
2016-01-01
Informed collecting, conservation, monitoring and utilization of genetic diversity requires knowledge of the distribution and structure of the variation occurring in a species. Hordeum vulgare subsp. spontaneum (K. Koch) Thell., a primary wild relative of barley, is an important source of genetic diversity for barley improvement and co-occurs with the domesticate within the center of origin. We studied the current distribution of genetic diversity and population structure in H. vulgare subsp. spontaneum in Jordan and investigated whether it is correlated with either spatial or climatic variation inferred from publically available climate layers commonly used in conservation and ecogeographical studies. The genetic structure of 32 populations collected in 2012 was analyzed with 37 SSRs. Three distinct genetic clusters were identified. Populations were characterized by admixture and high allelic richness, and genetic diversity was concentrated in the northern part of the study area. Genetic structure, spatial location and climate were not correlated. This may point out a limitation in using large scale climatic data layers to predict genetic diversity, especially as it is applied to regional genetic resources collections in H. vulgare subsp. spontaneum.
Design of Multilayer Dual-Band BPF and Diplexer with Zeros Implantation Using Suspended Stripline
NASA Astrophysics Data System (ADS)
Ho, Min-Hua; Hsu, Wei-Hong
In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.
NASA Astrophysics Data System (ADS)
Zhang, Lixiang; Wang, Wenquan; Guo, Yakun
Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.
Geography of Genetic Structure in Barley Wild Relative Hordeum vulgare subsp. spontaneum in Jordan
Reeves, Patrick; Reilley, Ann; Engels, Johannes M. M.; Lohwasser, Ulrike; Börner, Andreas; Pillen, Klaus; Richards, Christopher M.
2016-01-01
Informed collecting, conservation, monitoring and utilization of genetic diversity requires knowledge of the distribution and structure of the variation occurring in a species. Hordeum vulgare subsp. spontaneum (K. Koch) Thell., a primary wild relative of barley, is an important source of genetic diversity for barley improvement and co-occurs with the domesticate within the center of origin. We studied the current distribution of genetic diversity and population structure in H. vulgare subsp. spontaneum in Jordan and investigated whether it is correlated with either spatial or climatic variation inferred from publically available climate layers commonly used in conservation and ecogeographical studies. The genetic structure of 32 populations collected in 2012 was analyzed with 37 SSRs. Three distinct genetic clusters were identified. Populations were characterized by admixture and high allelic richness, and genetic diversity was concentrated in the northern part of the study area. Genetic structure, spatial location and climate were not correlated. This may point out a limitation in using large scale climatic data layers to predict genetic diversity, especially as it is applied to regional genetic resources collections in H. vulgare subsp. spontaneum. PMID:27513459
Seasonal Overturning Circulation in the Red Sea
NASA Astrophysics Data System (ADS)
Yao, F.; Hoteit, I.; Koehl, A.
2010-12-01
The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.
Light-Activated Gigahertz Ferroelectric Domain Dynamics
NASA Astrophysics Data System (ADS)
Akamatsu, Hirofumi; Yuan, Yakun; Stoica, Vladimir A.; Stone, Greg; Yang, Tiannan; Hong, Zijian; Lei, Shiming; Zhu, Yi; Haislmaier, Ryan C.; Freeland, John W.; Chen, Long-Qing; Wen, Haidan; Gopalan, Venkatraman
2018-03-01
Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO3 are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20 ×106 V /m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies. The advances in spatiotemporal imaging and dynamical modeling tools open up opportunities for disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains.
Atomically thin gallium layers from solid-melt exfoliation
Kochat, Vidya; Samanta, Atanu; Zhang, Yuan; Bhowmick, Sanjit; Manimunda, Praveena; Asif, Syed Asif S.; Stender, Anthony S.; Vajtai, Robert; Singh, Abhishek K.; Tiwary, Chandra S.; Ajayan, Pulickel M.
2018-01-01
Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices. PMID:29536039
Ye, Han; Zhou, Jiadong; Er, Dequan; Price, Christopher C; Yu, Zhongyuan; Liu, Yumin; Lowengrub, John; Lou, Jun; Liu, Zheng; Shenoy, Vivek B
2017-12-26
Vertical stacking of monolayers via van der Waals (vdW) interaction opens promising routes toward engineering physical properties of two-dimensional (2D) materials and designing atomically thin devices. However, due to the lack of mechanistic understanding, challenges remain in the controlled fabrication of these structures via scalable methods such as chemical vapor deposition (CVD) onto substrates. In this paper, we develop a general multiscale model to describe the size evolution of 2D layers and predict the necessary growth conditions for vertical (initial + subsequent layers) versus in-plane lateral (monolayer) growth. An analytic thermodynamic criterion is established for subsequent layer growth that depends on the sizes of both layers, the vdW interaction energies, and the edge energy of 2D layers. Considering the time-dependent growth process, we find that temperature and adatom flux from vapor are the primary criteria affecting the self-assembled growth. The proposed model clearly demonstrates the distinct roles of thermodynamic and kinetic mechanisms governing the final structure. Our model agrees with experimental observations of various monolayer and bilayer transition metal dichalcogenides grown by CVD and provides a predictive framework to guide the fabrication of vertically stacked 2D materials.
Thermally Induced Lateral Motion of α-Zirconium Phosphate Layers Intercalated with Hexadecylamines
NASA Astrophysics Data System (ADS)
Char, Kookheon
2005-03-01
Well-defined intercalated structure, either interdigitated layers or bilayers, of hexadecylamines (HDAs) in a confined space of a highly-functionalized layered material, α- zirconium phosphate (α-ZrP), was prepared and these two distinct intercalated structures can serve as model systems to investigate the interaction of the two monolayers whose amphiphilic tails are adjacent to each other. Acidic functional groups (-POH) on the α-ZrP are in well-ordered array and the number of functional group is quite high (i.e., cationic exchange capacity (CEC) = 664 mmole/100 g, area per one charge site = 0.24 nm^2) enough to realize the bilayers (i.e., discrete two monolayers) of HDAs within the α-ZrP interlayer. We employed the two-step intercalation mechanism for the preparation of well- ordered interdigitated layers as well as the bilayers of alkyl chains attached to both sides of the α-ZrP intergallery. An intriguing lateral motion of the α-ZrP sheets was observed with in-situ SAXS measurements for the interdigitated layer during heating and cooling cycle and verified with TEM. This lateral motion is believed to be due to the transition from the tilted to the untilted conformation of the interdigitated HDA chains and this transition is found to be thermally reversible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jian; Beijing Computational Science Research Center, Beijing 100084; College of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411105, Hunan
2014-02-07
The family of bulk metal phosphorus trichalcogenides (APX{sub 3}, A = M{sup II}, M{sub 0.5}{sup I}M{sub 0.5}{sup III}; X = S, Se; M{sup I}, M{sup II}, and M{sup III} represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functionalmore » theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX{sub 3} should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe{sub 3}, CdPSe{sub 3}, Ag{sub 0.5}Sc{sub 0.5}PSe{sub 3}, and Ag{sub 0.5}In{sub 0.5}PX{sub 3} (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag{sub 0.5}Sc{sub 0.5}PSe{sub 3} is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting.« less
[Effect of electroacupuncture on cellular structure of hippocampus in splenic asthenia pedo-rats].
Yang, Zhuo-xin; Zhuo, Yuan-yuan; Yu, Hai-bo; Wang, Ning
2010-02-01
To observe the effect of electroacupuncture (EA) on hippocampal structure in splenic asthenia pedo-rats. A total of 15 SD male rats were randomly assigned to normal control group (n=5), model group (n=5) and EA group (n=5). Splenic asthenic syndrome model was established by intragastric administration of rhubarb and intraperitoneal injection of Reserpine for 14 d. EA (1 mA, 3 Hz/iS Hz) was applied to bilateral "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) for 20 mm, once a day for 14 days. The cellular structure of hippocampus was observed by light microscope and transmission electron microscope. Optical microscopic observation showed that in normal control group, the cellular nucleus was distinct, and the granular cell layer well-arranged and tight. In model group, the intracellular space was widened, and the granular cell layer was out of order in the arrangement. In EA group, the celluldr nucleus and the granular cell layer were nearly normal. Results of the electronic microscope showed that cells in model group had a karyopyknosis with irregular appearance and clear incisure, and some of them presented dissolving and necrotic phenomena; and those in EA group were milder in injury, had nearly-normal nucleus with visible nucleoli and relatively-intact nuclear membrane. Regarding the cellular plasma, in comparison with rich normal organelles of control group, the mitochondria in model group were swelling, with vague, dissolved and broken cristae, while in EA group, majority of the organelles were well-kept, and slightly dissolved mitochondrial cristae found. In regard to the synaptic structure, in comparison with control group, synaptic apomorphosis and swelling mitochondria were found in model group While in EA group, milder swelling and hydropic degeneration were seen. Different from the distinct pre- and post-synaptic membrane and synaptic vesicles of control group, while those in EA group were nearly-normal. electroacupunture can effectively relieve splenasthenic syndrome induced pathohistological changes of neurons of the hippocampus in the rat.
Anatomic and Histological Investigation of the Anterolateral Capsular Complex in the Fetal Knee.
Sabzevari, Soheil; Rahnemai-Azar, Amir Ata; Albers, Marcio; Linde, Monica; Smolinski, Patrick; Fu, Freddie H
2017-05-01
There is currently disagreement with regard to the presence of a distinct ligament in the anterolateral capsular complex of the knee and its role in the pivot-shift mechanism and rotatory laxity of the knee. To investigate the anatomic and histological properties of the anterolateral capsular complex of the fetal knee to determine whether there exists a distinct ligamentous structure running from the lateral femoral epicondyle inserting into the anterolateral tibia. Descriptive laboratory study. Twenty-one unpaired, fresh fetal lower limbs, gestational age 18 to 22 weeks, were used for anatomic investigation. Two experienced orthopaedic surgeons performed the anatomic dissection using loupes (magnification ×3.5). Attention was focused on the anterolateral and lateral structures of the knee. After the skin and superficial fascia were removed, the iliotibial band was carefully separated from underlying structures. The anterolateral capsule was then examined under internal and external rotation and varus-valgus manual loading and at different knee flexion angles for the presence of any ligamentous structures. Eight additional unpaired, fetal lower limbs, gestational age 11 to 23 weeks, were used for histological analysis. This study was not able to prove the presence of a distinct capsular or extracapsular ligamentous structure in the anterolateral capsular complex area. The presence of the fibular collateral ligament, a distal attachment of the biceps femoris, the entire lateral capsule, the iliotibial band, and the popliteus tendon in the anterolateral and lateral area of the knee was confirmed in all the samples. Histological analysis of the anterolateral capsule revealed a loose, hypocellular connective tissue with less organized collagen fibers compared with ligament and tendinous structures. The main finding of this study was that the presence of a distinct ligamentous structure in the anterolateral complex is not supported from a developmental point of view, while all other anatomic structures were present. The inability to prove the existence of a distinct ligamentous structure, called the anterolateral ligament, in the anterolateral knee capsule may indicate that the other components of the anterolateral complex, such as the lateral capsule, the iliotibial band, and its capsule-osseous layer, are more important for knee rotatory stability.
Lee, Eun-Hee; Moon, Kyung-Eun; Cho, Kyung-Suk
2017-01-20
The long-term performance of lab-scale biocovers for the simulation of engineered landfill cover soils was evaluated. Methane (CH 4 ), trimethylamine (TMA), and dimethyl sulfide (DMS) were introduced into the biocovers as landfill gases for 134 days and the removal performance was evaluated. The biocover systems were capable of simultaneously removing methane, TMA, and DMS. Methane was mostly eliminated in the top layer of the systems, while TMA and DMS were removed in the bottom layer. Overall, the methane removal capacity and efficiency were 224.8±55.6g-CH 4 m -2 d -1 and 66.6±12.8%, respectively, whereas 100% removal efficiencies of both TMA and DMS were achieved. Using quantitative PCR and pyrosequencing assay, the bacterial and methanotrophic communities in the top and bottom layers were analyzed along with the removal performance of landfill gases in the biocovers. The top and bottom soil layers possessed distinct communities from the original inoculum, but their structure dynamics were different from each other. While the structures of the bacterial and methanotrophic communities showed little change in the top layer, both communities in the bottom layer were considerably shifted by adding TMA and DMA. These findings provide information that can extend the understanding of full-scale biocover performance in landfills. Copyright © 2016 Elsevier B.V. All rights reserved.
Kazakova, L I; Dubrovskiĭ, A V; Moshkov, D A; Shabarchina, L I; Sukhorukov, B I
2007-01-01
Electron micrographs of ultrathin sections of polyelectrolyte microparticles containing protein and free from protein for the formation of which CaCO3 spherulites served as a core basis have been obtained and analyzed. Polyelectrolyte microparticles with the number of alternately layered polyelectrolyte layers of polystyrene sulfonate and polyallylamine from 6 to 11 have been studied. It follows from the data obtained that protein-free polyelectrolyte particles having the dimensions 4.5-5 mm are formations of an intricate internal organization, which consist of a set of threadlike and closed nanoelements of polyelectrolyte nature with a thickness of 20-30 nm. The particles containing six to eight polyelectrolyte layers lack the external envelope; therefore, they were called polyelectrolyte microspherulites. With the number of layers nine and more, when a polyelectrolyte envelope appears on the surface, they transfer into polyelectrolyte microcapsules. It was found that, in a protein-containing polyelectrolyte microcapsule, as distinct from protein-free polyelectrolyte microspherulite and microcapsule, polyelectrolytes are located only in the nearsurface layer, and the external spatially organized envelope restricts the internal volume filled with protein solution. As the number of polyelectrolyte layers increases, the thickness of the envelope increases. The reasons for such substantial differences in the structures of polyelectrolyte microcapsules formed on protein-containing and protein-free CaCO3 spherulite are discussed.
Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces
NASA Astrophysics Data System (ADS)
Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao
2014-07-01
A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of <200 nm mainly composed of bioactive sodium titanate and rutile phases of TiO2 covered the interior and exterior of porous titanium cells, and redundant Ca ion was detected in the titanate layer. The concentration distribution of Ti, O, Ca and Na in the coating showed a compositional gradient from the intermediate layer toward the outer surface. These compositional gradients indicate that the coating bonded to Ti substrate without a distinct interface. After immersion into the SBF solution for 3 days, a bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.
NASA Technical Reports Server (NTRS)
Zakraysek, Louis
1987-01-01
Printed Wiring Multilayer Board (PWMLB) structures for high speed, high density circuits are prone to failure due to the microcracking of electrolytic copper interconnections. The failure can occur in the foil that makes up the inner layer traces or in the plated through holes (PTH) deposit that forms the layer to layer interconnections. It is shown that there are some distinctive differences in the quality of Type E copper and that these differences can be detected before its use in a PWMLB. It is suggested that the strength of some Type E copper can be very low when the material is hot and that it is the use of this poor quality material in a PWMLB that results in PTH and inner layer microcracking. Since the PWMLB failure in question are induced by a thermal stress, and since the poorer grades of Type E materials used in these structures are susceptible to premature failure under thermal stress, the use of elevated temperature rupture and creep rupture testing is proposed as a means for screening copper foil, or its PTH equivalent, in order to eliminate the problem of Type E copper microcracking in advanced PWMLBs.
ERIC Educational Resources Information Center
Farmer, Richard F.; Goldberg, Lewis R.
2008-01-01
In this reply the authors address comments by C. R. Cloninger (2008) related to their report (R. F. Farmer & L. R. Goldberg, 2008) on the psychometric properties of the revised Temperament and Character Inventory (TCI-R) and a short inventory derivative, the TCI-140. Even though Cloninger's psychobiological model has undergone substantial…
Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays
NASA Astrophysics Data System (ADS)
Chang-Hasnain, Connie
1994-04-01
Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. In this program, we concentrated on novel epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays.
Freeze Casting for Assembling Bioinspired Structural Materials.
Cheng, Qunfeng; Huang, Chuanjin; Tomsia, Antoni P
2017-12-01
Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel
2016-10-01
Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.
The Residual Polar Caps of Mars: Geological Differences and Possible Consequences
NASA Technical Reports Server (NTRS)
Thomas, P. C.; Sullivan, R.; Ingersoll, A. P.; Murray, B. C.; Danielson, G. E.; Herkenhoff, K. E.; Soderblom, L.; Malin, M. C.; Edgett, K. S.; James, P. B.
2000-01-01
The Martian polar regions have been known to have thick layered sequences (presumed to consist of silicates and ice), CO2 seasonal frost, and residual frosts that remain through the summer: H2O in the north, largely CO2 in the south. The relationship of the residual frosts to the underlying layered deposits could not be determined from Viking images. The Mars Orbiter Camera on Mars Global Surveyor has provided a 50-fold increase in resolution that shows more differences between the two poles. The north residual cap surface has rough topography of pits, cracks, and knobs, suggestive of ablational forms. This topography is less than a few meters in height, and grades in to surfaces exposing the layers underneath. In contrast, the south residual cap has distinctive collapse and possibly ablational topography emplaced in four or more layers, each approx. two meters thick. The top surface has polygonal depressions suggestive of thermal contraction cracks. The collapse and erosional forms include circular and cycloidal depressions, long sinuous troughs, and nearly parallel sets of troughs. The distinctive topography occurs throughout the residual cap area, but not outside it. Unconformities exposed in polar layers, or other layered materials, do not approximate the topography seen on the south residual cap. The coincidence of a distinct geologic feature, several layers modified by collapse, ablation, and mass movement with the residual cap indicates a distinct composition and/or climate compared to both the remainder of the south polar layered units and those in the north.
Cotel, Florence; Fletcher, Lee N; Kalita-de Croft, Simon; Apergis-Schoute, John; Williams, Stephen R
2018-07-01
Neocortical information processing is powerfully influenced by the activity of layer 6 projection neurons through control of local intracortical and subcortical circuitry. Morphologically distinct classes of layer 6 projection neuron have been identified in the mammalian visual cortex, which exhibit contrasting receptive field properties, but little information is available on their functional specificity. To address this we combined anatomical tracing techniques with high-resolution patch-clamp recording to identify morphological and functional distinct classes of layer 6 projection neurons in the rat primary visual cortex, which innervated separable subcortical territories. Multisite whole-cell recordings in brain slices revealed that corticoclaustral and corticothalamic layer 6 projection neurons exhibited similar somatically recorded electrophysiological properties. These classes of layer 6 projection neurons were sparsely and reciprocally synaptically interconnected, but could be differentiated by cell-class, but not target-cell-dependent rules of use-dependent depression and facilitation of unitary excitatory synaptic output. Corticoclaustral and corticothalamic layer 6 projection neurons were differentially innervated by columnar excitatory circuitry, with corticoclaustral, but not corticothalamic, neurons powerfully driven by layer 4 pyramidal neurons, and long-range pathways conveyed in neocortical layer 1. Our results therefore reveal projection target-specific, functionally distinct, streams of layer 6 output in the rodent neocortex.
NASA Astrophysics Data System (ADS)
Hiraoui, M.; Guendouz, M.; Lorrain, N.; Haji, L.; Oueslati, M.
2012-11-01
A buried anti resonant reflecting optical waveguide for an integrated Mach Zehnder structure based on porous silicon material is achieved using a classical photolithography process. Three distinct porous silicon layers are then elaborated in a single step, by varying the porosity (thus the refractive index) and the thickness while respecting the anti-resonance conditions. Simulations and experimental results clearly show the antiresonant character of the buried waveguides. Significant variation of the reflectance and light propagation with different behavior depending on the polarization and the Mach Zehnder dimensions is obtained. Finally, we confirm the feasibility of this structure for sensing applications.
EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide.
Leyva-Porras, César; Ornelas-Gutiérrez, C; Miki-Yoshida, M; Avila-Vega, Yazmín I; Macossay, Javier; Bonilla-Cruz, José
2014-01-01
A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite.
EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide
Leyva-Porras, César; Ornelas-Gutiérrez, C.; Miki-Yoshida, M.; Avila-Vega, Yazmín I.; Macossay, Javier; Bonilla-Cruz, José
2014-01-01
A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite. PMID:24634536
An evaluation of information-theoretic methods for detecting structural microbial biosignatures.
Wagstaff, Kiri L; Corsetti, Frank A
2010-05-01
The first observations of extraterrestrial environments will most likely be in the form of digital images. Given an image of a rock that contains layered structures, is it possible to determine whether the layers were created by life (biogenic)? While conclusive judgments about biogenicity are unlikely to be made solely on the basis of image features, an initial assessment of the importance of a given sample can inform decisions about follow-up searches for other types of possible biosignatures (e.g., isotopic or chemical analysis). In this study, we evaluated several quantitative measures that capture the degree of complexity in visible structures, in terms of compressibility (to detect order) and the entropy (spread) of their intensity distributions. Computing complexity inside a sliding analysis window yields a map of each of these features that indicates how they vary spatially across the sample. We conducted experiments on both biogenic and abiogenic terrestrial stromatolites and on laminated structures found on Mars. The degree to which each feature separated biogenic from abiogenic samples (separability) was assessed quantitatively. None of the techniques provided a consistent, statistically significant distinction between all biogenic and abiogenic samples. However, the PNG compression ratio provided the strongest distinction (2.80 in standard deviation units) and could inform future techniques. Increasing the analysis window size or the magnification level, or both, improved the separability of the samples. Finally, data from all four Mars samples plotted well outside the biogenic field suggested by the PNG analyses, although we caution against a direct comparison of terrestrial stromatolites and martian non-stromatolites.
Yang, Huachao; Yang, Jinyuan; Bo, Zheng; Chen, Xia; Shuai, Xiaorui; Kong, Jing; Yan, Jianhua; Cen, Kefa
2017-08-03
The chemical nature of electrolytes has been demonstrated to play a pivotal role in the charge storage of electric double-layer capacitors (EDLCs), whereas primary mechanisms are still partially resolved but controversial. In this work, a systematic exploration into EDL structures and kinetics of representative aqueous electrolytes is performed with numerical simulation and experimental research. Unusually, a novel charging mechanism exclusively predominated by kinetics is recognized, going beyond traditional views of manipulating capacitances preferentially via interfacial structural variations. Specifically, strikingly distinctive EDL structures stimulated by diverse ion sizes, valences, and mixtures manifest a virtually identical EDL capacitance, where the dielectric nature of solvents attenuates ionic effects on electrolyte redistributions, in stark contradiction with solvent-free counterpart and traditional Helmholtz theory. Meanwhile, corresponding kinetics evolve conspicuously with ionic species, intimately correlated with ion-solvent interactions. The achieved mechanisms are subsequently illuminated by electrochemical measurements, highlighting the crucial interplay between ions and solvents in regulating EDLC performances.
Ye, Chunhong; Nikolov, Svetoslav V; Calabrese, Rossella; Dindar, Amir; Alexeev, Alexander; Kippelen, Bernard; Kaplan, David L; Tsukruk, Vladimir V
2015-07-13
We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engstrom, T. A.; Yoder, N. C.; Crespi, V. H., E-mail: tae146@psu.edu, E-mail: ncy5007@psu.edu, E-mail: vhc2@psu.edu
A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferencesmore » of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.« less
NASA Astrophysics Data System (ADS)
Engstrom, T. A.; Yoder, N. C.; Crespi, V. H.
2016-02-01
A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas-Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass-radius-composition dependence, both of which are reported for He-C-O and C-O-Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.
Flow characteristics and scaling past highly porous wall-mounted fences
NASA Astrophysics Data System (ADS)
Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.
2017-07-01
An extensive characterization of the flow past wall-mounted highly porous fences based on single- and multi-scale geometries has been performed using hot-wire anemometry in a low-speed wind tunnel. Whilst drag properties (estimated from the time-averaged momentum equation) seem to be mostly dependent on the grids' blockage ratio; wakes of different size and orientation bars seem to generate distinct behaviours regarding turbulence properties. Far from the near-grid region, the flow is dominated by the presence of two well-differentiated layers: one close to the wall dominated by the near-wall behaviour and another one corresponding to the grid's wake and shear layer, originating from between this and the freestream. It is proposed that the effective thickness of the wall layer can be inferred from the wall-normal profile of root-mean-square streamwise velocity or, alternatively, from the wall-normal profile of streamwise velocity correlation. Using these definitions of wall-layer thickness enables us to collapse different trends of the turbulence behaviour inside this layer. In particular, the root-mean-square level of the wall shear stress fluctuations, longitudinal integral length scale, and spanwise turbulent structure is shown to display a satisfactory scaling with this thickness rather than with the whole thickness of the grid's wake. Moreover, it is shown that certain grids destroy the spanwise arrangement of large turbulence structures in the logarithmic region, which are then re-formed after a particular streamwise extent. It is finally shown that for fences subject to a boundary layer of thickness comparable to their height, the effective thickness of the wall layer scales with the incoming boundary layer thickness. Analogously, it is hypothesized that the growth rate of the internal layer is also partly dependent on the incoming boundary layer thickness.
Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control
NASA Technical Reports Server (NTRS)
Heyliger, P. R.; Ramirez, G.; Pei, K. C.
1994-01-01
The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when possible, and initial conclusions regarding the accuracy and limitations of these models are given.
Lei, Xiao-Wu; Yue, Cheng-Yang; Zhao, Jian-Qiang; Han, Yong-Fang; Yang, Jiang-Tao; Meng, Rong-Rong; Gao, Chuan-Sheng; Ding, Hao; Wang, Chun-Yan; Chen, Wan-Dong; Hong, Mao-Chun
2015-11-16
With mixed transition-metal-complex, alkali-metal, or organic cations as structure-directing agents, a series of novel two-dimensional (2D) layered inorganic-organic hybrid iodoargentates, namely, Kx[TM(2,2-bipy)3]2Ag6I11 (TM = Mn (1), Fe (2), Co (3), Ni (4), Zn (5); x = 0.89-1) and [(Ni(2,2-bipy)3][H-2,2-bipy]Ag3I6 (6), have been solvothermally synthesized and structurally characterized. All the title compounds feature 2D microporous layers composed by [Ag3I7] secondary building units based on AgI4 tetrahedra. Differently, the [Ag3I7] trimers are directly interconnected via corner-sharing to form the 2D [Ag6I11](5-) layer in compounds 1-5, whereas two neighboring [Ag3I7] trimers are initially condensed into a hexameric [Ag6I12] ternary building unit as a new node, which further self-assembles, leading to the 2D [Ag6I10](4-) layer in compound 6. The UV-vis diffuse-reflectance measurements reveal that all the compounds possess proper semiconductor behaviors with tunable band gaps of 1.66-2.75 eV, which lead to highly efficient photocatalytic degradation activities over organic pollutants under visible light irradiation compared to that of N-dotted P25. Interestingly, all the samples feature distinct photodegradative speeds at the same reaction conditions, and compound 1 features the highest photocatalytic activity among the title phases. The luminescence properties, band structures, and thermal stabilities were also studied.
NASA Astrophysics Data System (ADS)
Bo, Wang; Weidong, Liu; Yuxin, Zhao; Xiaoqiang, Fan; Chao, Wang
2012-05-01
Using a nanoparticle-based planar laser-scattering technique and supersonic particle image velocimetry, we investigated the effects of micro-ramp control on incident shockwave and boundary-layer interaction (SWBLI) in a low-noise supersonic wind-tunnel with Mach number 2.7 and Reynolds number Rθ = 5845. High spatiotemporal resolution wake structures downstream of the micro-ramps were detected, while a complex evolution process containing a streamwise counter-rotating vortex pair and large-scale hairpin-like vortices with Strouhal number Stδ of about 0.5-0.65 was revealed. The large-scale structures could survive while passing through the SWBLI region. Reflected shockwaves are clearly seen to be distorted accompanied by high-frequency fluctuations. Micro-ramp applications have a distinct influence on flow patterns of the SWBLI field that vary depending on spanwise locations. Both the shock foot and separation line exhibit undulations corresponding with modifications of the velocity distribution of the incoming boundary layer. Moreover, by energizing parts of the boundary flow, the micro-ramp is able to dampen the separation.
Light-activated Gigahertz Ferroelectric Domain Dynamics
Akamatsu, Hirofumii; Yuan, Yakun; Stoica, Vladimir A.; ...
2018-02-26
Using time- and spatially-resolved hard X-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO 3 are simultaneously captured on sub-nanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photo-induced electric field of up to 20 million volts per meter is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling (DPFM) method is developed that reveals the microscopic origin of these dynamics, leading to GHz polarization andmore » elastic waves travelling in the crystal with sonic speeds and spatially varying frequencies. The advance of spatiotemporal imaging and dynamical modeling tools open opportunities of disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains« less
Dark field photoelectron emission microscopy of micron scale few layer graphene
NASA Astrophysics Data System (ADS)
Barrett, N.; Conrad, E.; Winkler, K.; Krömker, B.
2012-08-01
We demonstrate dark field imaging in photoelectron emission microscopy (PEEM) of heterogeneous few layer graphene (FLG) furnace grown on SiC(000-1). Energy-filtered, threshold PEEM is used to locate distinct zones of FLG graphene. In each region, selected by a field aperture, the k-space information is imaged using appropriate transfer optics. By selecting the photoelectron intensity at a given wave vector and using the inverse transfer optics, dark field PEEM gives a spatial distribution of the angular photoelectron emission. In the results presented here, the wave vector coordinates of the Dirac cones characteristic of commensurate rotations of FLG on SiC(000-1) are selected providing a map of the commensurate rotations across the surface. This special type of contrast is therefore a method to map the spatial distribution of the local band structure and offers a new laboratory tool for the characterisation of technically relevant, microscopically structured matter.
NASA Astrophysics Data System (ADS)
Steffen, Holger; Wu, Patrick
2015-04-01
This poster will present the results of Steffen & Wu (2014). The sensitivity of GNSS measurements in Fennoscandia to nearby viscosity variations in the upper mantle is investigated using a three-dimensional finite element model of glacial isostatic adjustment (GIA). Based on the lateral viscosity structure inferred from seismic tomography and the location of the ice margin at the last glacial maximum (LGM), the GIA earth model is subdivided into four layers, where each of them contains an amalgamation of about 20 blocks of different shapes in the central area. The sensitivity kernels of the three velocity components at 10 selected GNSS stations are then computed for all the blocks. We find that GNSS stations within the formerly glaciated area are most sensitive to mantle viscosities below and in its near proximity, i.e., within about 250 km in general. However, this can be as large as 1000 km if the stations lie near the center of uplift. The sensitivity of all stations to regions outside the ice margin during the LGM is generally negligible. In addition, it is shown that prominent structures in the second (250-450 km depth) and third layers (450-550 km depth) of the upper mantle may be readily detected by GNSS measurements, while the viscosity in the first mantle layer below the lithosphere (70-250 km depth) along the Norwegian coast, which is related to lateral lithospheric thickness variation there, can also be detected but with limited sensitivity. For future investigations on the lateral viscosity structure, preference should be on GNSS stations within the LGM ice margin. But these stations can be grouped into clusters to improve the inference of viscosity in a specific area. However, the GNSS measurements used in such inversion should be weighted according to their sensitivity. Such weighting should also be applied when they are used in combination with other GIA data (e.g., relative sea-level and gravity data) for the inference of mantle viscosity. Reference: Steffen, H. and Wu, P.: The sensitivity of GNSS measurements in Fennoscandia to distinct three-dimensional upper-mantle structures, Solid Earth, 5, 557-567, doi:10.5194/se-5-557-2014, 2014.
Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.
Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M
2015-06-30
Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.
Chung, Wen-Hsin; Lai, Kung-Ming; Hsu, Kuo-chiang
2010-02-10
The histological structures of the vitelline membranes (VM) of hen and duck eggs were observed by cryo-scanning electron microscopy (cryo-SEM), and the chemical characteristics were also compared. The outer layer surface (OLS) of duck egg VM showed networks constructed by fibrils and sheets (0.1-5.2 microm in width), and that of hen egg presented networks formed only by sheets (2-6 microm in width). Thicker fibrils (0.5-1.5 microm in width) with different arrangement were observed on the inner layer surface (ILS) of duck egg VM as compared to those (0.3-0.7 microm in width) of hen egg VM. Upon separation, the outer surface of the outer layer (OSOL) and the inner surface of the inner layer (ISIL) of hen and duck egg VMs were quite similar to fresh VM except that the OSOL of duck egg VM showed networks constructed only by sheets. Thin fibrils interlaced above a bumpy or flat structure were observed at the exposed surface of the outer layer (ESOL) of hen and duck egg VMs. The exposed surfaces of inner layers (ESIL) of hen and duck egg VMs showed similar structures of fibrils, which joined, branched, and ran in straight lines for long distances up to 30 microm; however, the widths of the fibrils shown in ESOL and ESIL of duck egg VM were 0.1 and 0.7-1.4 microm, respectively, and were greater than those (<0.1 and 0.5-0.8 microm) of hen egg VM. The continuous membranes of both hen and duck egg VMs were still attached to the outer layers when separated. The content of protein, the major component of VM, was higher in duck egg VM (88.6%) than in hen egg VM (81.6%). Four and six major SDS-soluble protein patterns with distinct localization were observed in hen and duck egg VMs, respectively. Overall, the different histological structures of hen and duck egg VMs were suggested to be majorly attributable to the diverse protein components.
“Subpial Fan Cell” — A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex
Gabbott, Paul L. A.
2016-01-01
Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class — termed “subpial fan (SPF) cell” — described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A — presumed excitatory) and symmetric (S — presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata — with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells indicated a unique class of CRet+/GABA- neuron in adult monkey PFC — possibly a subtype of persisting Cajal-Retzius cell. The distribution and connectivity of SPF cells suggest they act as integrative hubs in upper layer 1 during postnatal maturation. The main synaptic output of SPF cells likely provides a transminicolumnar excitatory influence across swathes of apical dendritic tufts — thus affecting information processing in discrete patches of layer 1 in adult monkey PFC. PMID:27147978
Yuan, Kun; Zhao, Rui-Sheng; Zheng, Jia-Jia; Zheng, Hong; Nagase, Shigeru; Zhao, Sheng-Dun; Liu, Yan-Zhi; Zhao, Xiang
2017-04-15
Noncovalent interactions involving aromatic rings, such as π···π stacking, CH···π are very essential for supramolecular carbon nanostructures. Graphite is a typical homogenous carbon matter based on π···π stacking of graphene sheets. Even in systems not involving aromatic groups, the stability of diamondoid dimer and layer-layer graphane dimer originates from C - H···H - C noncovalent interaction. In this article, the structures and properties of novel heterogeneous layer-layer carbon-nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on [n]-graphane and [n]-graphene and their derivatives are theoretically investigated for n = 16-54 using dispersion corrected density functional theory B3LYP-D3 method. Energy decomposition analysis shows that dispersion interaction is the most important for the stabilization of both double- and multi-layer-layer [n]-graphane@graphene. Binding energy between graphane and graphene sheets shows that there is a distinct additive nature of CH···π interaction. For comparison and simplicity, the concept of H-H bond energy equivalent number of carbon atoms (noted as NHEQ), is used to describe the strength of these noncovalent interactions. The NHEQ of the graphene dimers, graphane dimers, and double-layered graphane@graphene are 103, 143, and 110, indicating that the strength of C-H···π interaction is close to that of π···π and much stronger than that of C-H···H-C in large size systems. Additionally, frontier molecular orbital, electron density difference and visualized noncovalent interaction regions are discussed for deeply understanding the nature of the C-H···π stacking interaction in construction of heterogeneous layer-layer graphane@graphene structures. We hope that the present study would be helpful for creations of new functional supramolecular materials based on graphane and graphene carbon nano-structures. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Internal stratigraphy of the South Polar Layered Deposits, Mars from SHARAD data
NASA Astrophysics Data System (ADS)
Whitten, J. L.; Campbell, B. A.
2017-12-01
The South Polar Layered Deposits (SPLD) are one of the largest deposits of water ice on Mars, composed of alternating layers of ice and dust. The accumulation of the layers is driven by orbital forcings (e.g., obliquity) and both the cadence and structure of these layers preserve a record of the past martian climate. Image of very limited exposed layering suggest several distinct sequences, demarcated by erosional hiatuses, with a gently domical shape. Here we use the Shallow Radar (SHARAD) sounder dataset to investigate the internal stratigraphy of the SPLD in order to further constrain the south polar climate record. We identify four distinct units based in part on their degree of vertical sharpness (focus) in the SHARAD data: (1) upper focused layer packets, (2) focused layer packets, (3) blurred layer packets, and (4) reflection free zones (RFZs). A diffuse echo pattern related to uncertain aspects of composition or layer roughness is termed fog. The upper focused layer packets are concentrated in the area between 270° to 90°E, close to the residual polar cap. The focused and blurred layer packets cover a large portion of the SPLD and are subdivided into two different units, those with an average reflecting-interface brightness and those with substantially brighter reflectors. The brighter radar reflectors have a coherent spatial distribution and only comprise a small portion of the entire unit. The diffuse echoes are separated into a fog that is present throughout the entire vertical column of the SPLD and a fog that begins at the surface and traverses only the uppermost layers. Depending on the geometry of individual SHARAD tracks, reflectors can be traced for hundreds of kilometers, but the fog obscures much of the internal layering, and is related to the focusing distortion that prevents individual reflectors from being traced across the entire SPLD. We identify a major deviation from a gently domical SPLD shape in a 200 km dome. Its presence suggests that the depositional history of the SPLD was more complicated than previously proposed. Differences in the distribution of the identified units further supports the dynamic and changing nature of the south polar climate. We also explore the distribution and radar characteristics of other ice-rich deposits in the south polar region of Mars.
NASA Astrophysics Data System (ADS)
Sugiyama, K.; Nakajima, K.; Odaka, M.; Kuramoto, K.; Hayashi, Y.-Y.
2014-02-01
A series of long-term numerical simulations of moist convection in Jupiter’s atmosphere is performed in order to investigate the idealized characteristics of the vertical structure of multi-composition clouds and the convective motions associated with them, varying the deep abundances of condensable gases and the autoconversion time scale, the latter being one of the most questionable parameters in cloud microphysical parameterization. The simulations are conducted using a two-dimensional cloud resolving model that explicitly represents the convective motion and microphysics of the three cloud components, H2O, NH3, and NH4SH imposing a body cooling that substitutes the net radiative cooling. The results are qualitatively similar to those reported in Sugiyama et al. (Sugiyama, K. et al. [2011]. Intermittent cumulonimbus activity breaking the three-layer cloud structure of Jupiter. Geophys. Res. Lett. 38, L13201. doi:10.1029/2011GL047878): stable layers associated with condensation and chemical reaction act as effective dynamical and compositional boundaries, intense cumulonimbus clouds develop with distinct temporal intermittency, and the active transport associated with these clouds results in the establishment of mean vertical profiles of condensates and condensable gases that are distinctly different from the hitherto accepted three-layered structure (e.g., Atreya, S.K., Romani, P.N. [1985]. Photochemistry and clouds of Jupiter, Saturn and Uranus. In: Recent Advances in Planetary Meteorology. Cambridge Univ. Press, London, pp. 17-68). Our results also demonstrate that the period of intermittent cloud activity is roughly proportional to the deep abundance of H2O gas. The autoconversion time scale does not strongly affect the results, except for the vertical profiles of the condensates. Changing the autoconversion time scale by a factor of 100 changes the intermittency period by a factor of less than two, although it causes a dramatic increase in the amount of condensates in the upper troposphere. The moist convection layer becomes potentially unstable with respect to an air parcel rising from below the H2O lifting condensation level (LCL) well before the development of cumulonimbus clouds. The instability accumulates until an appropriate trigger is provided by the H2O condensate that falls down through the H2O LCL; the H2O condensate drives a downward flow below the H2O LCL as a result of the latent cooling associated with the re-evaporation of the condensate, and the returning updrafts carry moist air from below to the moist convection layer. Active cloud development is terminated when the instability is completely exhausted. The period of intermittency is roughly equal to the time obtained by dividing the mean temperature increase, which is caused by active cumulonimbus development, by the body cooling rate.
NASA Astrophysics Data System (ADS)
He, Yuandan; Gong, Jinhui; Zhu, Yiyuan; Feng, Xingcan; Peng, Hong; Wang, Wei; He, Haiyang; Liu, Hu; Wang, Li
2018-06-01
High-quality all-inorganic perovskite CsPb(BrxI1-x)3 quantum dots (QDs) with quantum yield of 50% were systematically studied as yellow light convertor for light emitting diodes (LEDs). A novel heat insulation structure was designed for the QD-converted yellow LEDs. In this structure, a silicone layer was set on top of the GaN LED chip to prevent directly heating of the QDs by the LED chip. Then the CsPb(BrxI1-x)3 QDs were filled in the bowl-shaped silicone layer after ultrasonic dispersion treatment. Finally, an Al2O3 passivation layer was grown on the QDs layer by Atomic Layer Disposition at 40 °C. When x = 0.55, highly pure yellow LEDs with an emission peak at ∼570 nm and a full width at half maximum of 25 nm were achieved. The chromaticity coordinates of the QD-converted yellow LEDs (0.4920 ± 0.0017, 0.4988 ± 0.0053) showed almost no variation under driving current from 5 mA to 150 mA. During an operation period of 60 min, the emission wavelength of the yellow LEDs showed no distinct shift. Moreover, the luminous efficiency of the QD-converted yellow LEDs achieved 13.51 l m/W at 6 mA. These results demonstrated that CsPb(BrxI1-x)3 QDs and the heat insulation structure are promising candidate for high purity yellow LEDs.
Han, Uiyoung; Seo, Younghye; Hong, Jinkee
2016-04-07
Layer by layer (lbl) assembled multilayer thin films are used in drug delivery systems with attractive advantages such as unlimited selection of building blocks and free modification of the film structure. In this paper, we report the fundamental properties of lbl films constructed from different substances such as PS-b-PAA amphiphilic block copolymer micelles (BCM) as nano-sized drug vehicles, 2D-shaped graphene oxide (GO), and branched polyethylenimine (bPEI). These films were fabricated by successive lbl assembly as a result of electrostatic interactions between the carboxyl group of BCM and amine group of functionalized GO or bPEI under various pH conditions. We also compared the thickness, roughness, morphology and degree of adsorption of the (bPEI/BCM) films to those in the (GO/BCM) films. The results showed significant difference because of the distinct pH dependence of each material. In addition, drug release rates of the GO/BCM film were more rapid those of the (bPEI/BCM) film in pH 7.4 and pH 2 PBS buffer solutions. In (bPEI/BCM/GO/BCM) film, the inserted GO layers into bPEI/BCM multilayer induced rapid drug release. We believe that these materials &pH dependent film properties allow developments in the control of coating techniques for biological and biomedical applications.
NASA Technical Reports Server (NTRS)
Gatski, T. B.
1979-01-01
The sound due to the large-scale (wavelike) structure in an infinite free turbulent shear flow is examined. Specifically, a computational study of a plane shear layer is presented, which accounts, by way of triple decomposition of the flow field variables, for three distinct component scales of motion (mean, wave, turbulent), and from which the sound - due to the large-scale wavelike structure - in the acoustic field can be isolated by a simple phase average. The computational approach has allowed for the identification of a specific noise production mechanism, viz the wave-induced stress, and has indicated the effect of coherent structure amplitude and growth and decay characteristics on noise levels produced in the acoustic far field.
Hughes Clarke, John E.
2016-01-01
Field observations of turbidity currents remain scarce, and thus there is continued debate about their internal structure and how they modify underlying bedforms. Here, I present the results of a new imaging method that examines multiple surge-like turbidity currents within a delta front channel, as they pass over crescent-shaped bedforms. Seven discrete flows over a 2-h period vary in speed from 0.5 to 3.0 ms−1. Only flows that exhibit a distinct acoustically attenuating layer at the base, appear to cause bedform migration. That layer thickens abruptly downstream of the bottom of the lee slope of the bedform, and the upper surface of the layer fluctuates rapidly at that point. The basal layer is inferred to reflect a strong near-bed gradient in density and the thickening is interpreted as a hydraulic jump. These results represent field-scale flow observations in support of a cyclic step origin of crescent-shaped bedforms. PMID:27283503
Materials design principles of ancient fish armour
NASA Astrophysics Data System (ADS)
Bruet, Benjamin J. F.; Song, Juha; Boyce, Mary C.; Ortiz, Christine
2008-09-01
Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present within individual ganoid scales from the `living fossil' Polypterus senegalus. This fish belongs to the ancient family Polypteridae, which first appeared 96 million years ago during the Cretaceous period and still retains many of their characteristics. The mechanistic origins of penetration resistance (approximating a biting attack) were investigated and found to include the juxtaposition of multiple distinct reinforcing composite layers that each undergo their own unique deformation mechanisms, a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, and layers with an undetectable gradation, load-dependent effective material properties, circumferential surface cracking, orthogonal microcracking in laminated sublayers and geometrically corrugated junctions between layers.
Materials design principles of ancient fish armour.
Bruet, Benjamin J F; Song, Juha; Boyce, Mary C; Ortiz, Christine
2008-09-01
Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present within individual ganoid scales from the 'living fossil' Polypterus senegalus. This fish belongs to the ancient family Polypteridae, which first appeared 96 million years ago during the Cretaceous period and still retains many of their characteristics. The mechanistic origins of penetration resistance (approximating a biting attack) were investigated and found to include the juxtaposition of multiple distinct reinforcing composite layers that each undergo their own unique deformation mechanisms, a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, and layers with an undetectable gradation, load-dependent effective material properties, circumferential surface cracking, orthogonal microcracking in laminated sublayers and geometrically corrugated junctions between layers.
NASA Astrophysics Data System (ADS)
Pradhan, A.; Maitra, T.; Mukherjee, S.; Mukherjee, S.; Satpati, B.; Nayak, A.; Bhunia, S.
2018-04-01
Spontaneous superlattice ordering in a length scale larger than an atomic layer has been observed in AlxGa1-xAs layers grown on (100) GaAs substrates by metalorganic vapor phase epitaxy. Transmission electron microscopic image clearly revealed superlattice structures and the selected area electron diffraction showed closely spaced superlattice spots around the main diffraction pattern. High resolution x-ray diffraction showed distinct and sharp superlattice peaks symmetrically positioned around the central (004) Bragg peak and the similar measurement for (002) planes, which is quasi-forbidden for Bragg reflections showed only superlattice peaks. Thermal annealing studies showed the superlattice structure was stable up to 800 °C and disappeared after annealing at 900 °C retaining the crystallinity of the epilayer. Study of inter-diffusivitiesin such superlattice structures has been carried out using high temperaturex-ray diffraction results. Here we present (004) x-ray θ-2θ scans of the AlGaAs/GaAs (100) sample with annealing time for different temperatures. Conclusions regarding interdiffusion in such superlattice structures are drawn from high temperature X-ray measurements.
NASA Astrophysics Data System (ADS)
Baars, Woutijn J.; Hutchins, Nicholas; Marusic, Ivan
2017-11-01
An organization in wall-bounded turbulence is evidenced by the classification of distinctly different flow structures, including large-scale motions such as hairpin packets and very large-scale motions or superstructures. In conjunction with less organized turbulence, these flow structures all contribute to the streamwise turbulent kinetic energy
An Analysis of Cassini Observations Regarding the Structure of Jupiter's Equatorial Atmosphere
NASA Technical Reports Server (NTRS)
Choi, David S.; Simon-Miller, Amy A.
2012-01-01
A variety of intriguing atmospheric phenomena reside on both sides of Jupiter's equator. 5-micron bright hot spots and opaque plumes prominently exhibit dynamic behavior to the north, whereas compact, dark chevron-shaped features and isolated anticyclonic disturbances periodically occupy the southern equatorial latitudes. All of these phenomena are associated with the vertical and meridional perturbations of Rossby waves disturbing the mean atmospheric state. As previous observational analysis and numerical simulations have investigated the dynamics of the region, an examination of the atmosphere's vertical structure though radiative transfer analysis is necessary for improved understanding of this unique environment. Here we present preliminary analysis of a multispectral Cassini imaging data set acquired during the spacecraft's flyby of Jupiter in 2000. We evaluated multiple methane and continuum spectral channels at available viewing angles to improve constraints on the vertical structure of the haze and cloud layers comprising these interesting features. Our preliminary results indicate distinct differences in the structure for both hemispheres. Upper troposphere hazes and cloud layers are prevalent in the northern equatorial latitudes, but are not present in corresponding southern latitudes. Continued analysis will further constrain the precise structure present in these phenomena and the differences between them.
Deviatoric stresses promoted metallization in rhenium disulfide
NASA Astrophysics Data System (ADS)
Zhuang, Yukai; Dai, Lidong; Li, Heping; Hu, Haiying; Liu, Kaixiang; Yang, Linfei; Pu, Chang; Hong, Meiling; Liu, Pengfei
2018-04-01
The structural, vibrational and electronic properties of ReS2 were investigated up to ~34 GPa by Raman spectroscopy, AC impedance spectroscopy, atomic force microscopy and high-resolution transmission electron microscopy, combining with first-principle calculations under two different pressure environments. The experimental results showed that ReS2 endured a structural transition at ~2.5 GPa both under non-hydrostatic and hydrostatic conditions. We found that a metallization occurred at ~27.5 GPa under non-hydrostatic conditions and at ~35.4 GPa under hydrostatic conditions. The occurrence of distinct metallization point attributed to the influence of deviatoric stresses, which significantly affected the layered structure and the weak van der Waals interaction for ReS2.
Structure and dynamics of water inside hydrophobic and hydrophilic nanotubes
NASA Astrophysics Data System (ADS)
Köhler, Mateus Henrique; Bordin, José Rafael; da Silva, Leandro B.; Barbosa, Marcia C.
2018-01-01
We have used Molecular Dynamics simulations to investigate the structure and dynamics of TIP4P/2005 water confined inside nanotubes. The nanotubes have distinct sizes and were built with hydrophilic or hydrophobic sites, and we compare the water behavior inside each nanotube. Our results shows that the structure and dynamics are strongly influenced by polarity inside narrow nanotubes, where water layers were observed, and the influence is negligible for wider nanotubes, where the water has a bulk-like density profile. As well, we show that water at low density can have a smaller diffusion inside nanotubes than water at higher densities. This result is a consequence of water diffusion anomaly.
Ozel, Tuncay; Zhang, Benjamin A; Gao, Ruixuan; Day, Robert W; Lieber, Charles M; Nocera, Daniel G
2017-07-12
Development of new synthetic methods for the modification of nanostructures has accelerated materials design advances to furnish complex architectures. Structures based on one-dimensional (1D) silicon (Si) structures synthesized using top-down and bottom-up methods are especially prominent for diverse applications in chemistry, physics, and medicine. Yet further elaboration of these structures with distinct metal-based and polymeric materials, which could open up new opportunities, has been difficult. We present a general electrochemical method for the deposition of conformal layers of various materials onto high aspect ratio Si micro- and nanowire arrays. The electrochemical deposition of a library of coaxial layers comprising metals, metal oxides, and organic/inorganic semiconductors demonstrate the materials generality of the synthesis technique. Depositions may be performed on wire arrays with varying diameter (70 nm to 4 μm), pitch (5 μ to 15 μ), aspect ratio (4:1 to 75:1), shape (cylindrical, conical, hourglass), resistivity (0.001-0.01 to 1-10 ohm/cm 2 ), and substrate orientation. Anisotropic physical etching of wires with one or more coaxial shells yields 1D structures with exposed tips that can be further site-specifically modified by an electrochemical deposition approach. The electrochemical deposition methodology described herein features a wafer-scale synthesis platform for the preparation of multifunctional nanoscale devices based on a 1D Si substrate.
2017-01-01
The solid form landscape of 5-HT2a antagonist 3-(4-(benzo[d]isoxazole-3-yl)piperazin-1-yl)-2,2-dimethylpropanoic acid hydrochloride (B5HCl) proved difficult to establish. Many crystalline materials were produced by solid form screening, but few forms readily grew high quality crystals to afford a clear picture or understanding of the solid form landscape. Careful control of crystallization conditions, a range of experimental methods, computational modeling of solvate structures, and crystal structure prediction were required to see potential arrangements of the salt in its crystal forms. Structural diversity in the solid form landscape of B5HCl was apparent in the layer structures for the anhydrate polymorphs (Forms I and II), dihydrate and a family of solvates with alcohols. The alcohol solvates, which provided a distinct packing from the neat forms and the dihydrate, form layers with conserved hydrogen bonding between B5HCl and the solvent, as well as stacking of the aromatic rings. The ability of the alcohol hydrocarbon moieties to efficiently pack between the layers accounted for the difficulty in growing some solvate crystals and the inability of other solvates to crystallize altogether. Through a combination of experiment and computation, the crystallization problems, form stability, and desolvation pathways of B5HCl have been rationalized at a molecular level. PMID:29018305
Crystalline oxides on semiconductors: A structural transition of the interface phase
NASA Astrophysics Data System (ADS)
Walker, F. J.; Buongiorno-Nardelli, Marco; Billman, C. A.; McKee, R. A.
2004-03-01
The growth of crystalline oxides on silicon is facilitated by the preparation of a surface phase of alkaline earth silicide. We describe how the surface phase serves as a precursor of the final interface phase using reflection high energy electron diffraction (RHEED) and density functional theory (DFT). RHEED intensity oscillations of the growth of BaSrO show layer-by-layer build up of the oxide on the interface. The 2x1 symmetry of the surface precursor persists up to 3 ML BaSrO coverage at which point a 1x1 pattern characteristic of the rock-salt structure of BaSrO is observed. Prior to 3 ML growth of alkaline earth oxide, DFT calculations and RHEED show that the surface precursor persists as the interface phase and induces large displacements in the growing oxide layer away from the rock-salt structure and having a 2x1 symmetry. These distortions of the rock-salt structure are energetically unfavorable and become more unfavorable as the oxide thickness increases. At 3 ML, the stability of the rock-salt structure drives a structural transformation of the film and the interface phase to a structure that is distinct from the surface precursor. Research sponsored jointly by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle, LLC and at the University of Tennessee under contract DE-FG02-01ER45937. Calculations have been performed on CCS supercomputers at Oak Ridge National Laboratory.
Diagnosis of boundary-layer circulations.
Beare, Robert J; Cullen, Michael J P
2013-05-28
Diagnoses of circulations in the vertical plane provide valuable insights into aspects of the dynamics of the climate system. Dynamical theories based on geostrophic balance have proved useful in deriving diagnostic equations for these circulations. For example, semi-geostrophic theory gives rise to the Sawyer-Eliassen equation (SEE) that predicts, among other things, circulations around mid-latitude fronts. A limitation of the SEE is the absence of a realistic boundary layer. However, the coupling provided by the boundary layer between the atmosphere and the surface is fundamental to the climate system. Here, we use a theory based on Ekman momentum balance to derive an SEE that includes a boundary layer (SEEBL). We consider a case study of a baroclinic low-level jet. The SEEBL solution shows significant benefits over Ekman pumping, including accommodating a boundary-layer depth that varies in space and structure, which accounts for buoyancy and momentum advection. The diagnosed low-level jet is stronger than that determined by Ekman balance. This is due to the inclusion of momentum advection. Momentum advection provides an additional mechanism for enhancement of the low-level jet that is distinct from inertial oscillations.
Comparative study of the interfaces of graphene and hexagonal boron nitride with silver
NASA Astrophysics Data System (ADS)
Garnica, Manuela; Schwarz, Martin; Ducke, Jacob; He, Yuanqin; Bischoff, Felix; Barth, Johannes V.; Auwärter, Willi; Stradi, Daniele
2016-10-01
Silver opens up interesting perspectives in the fabrication of complex systems based on heteroepitaxial layers after the growth of a silicene layer on its (111) face has been proposed. In this work we explore different synthesis methods of hexagonal boron nitride (h -BN) and graphene sheets on silver. The resulting layers have been examined by high-resolution scanning tunneling microscopy. A comparison of the interfacial electronic band structure upon growth of the distinct two-dimensional (2D) layers has been performed by scanning tunneling spectroscopy and complementary first-principle calculations. We demonstrate that the adsorption of the 2D layers has an effect on the binding energy of the Shockley state and the surface potential by lowering the local work function. These effects are larger in the case of graphene where the surface state of Ag(111) is depopulated due to charge transfer to the graphene. Furthermore, we show that the electronic properties of the h -BN/silver system can be tuned by employing different thicknesses of silver ranging from a few monolayers on Cu(111) to the single crystal Ag substrate.
NASA Technical Reports Server (NTRS)
Shaw, R. J.
1979-01-01
The forced mixing process of a turbulent boundary layer in an axisymmetric annular diffuser using conventional wing-like vortex generators was studied. Flow field measurements were made at four axial locations downstream of the vortex generators. At each axial location, a total of 25 equally spaced profiles were measured behind three consecutive vortex generators which formed two pairs of vortex generators. Hot film anemometry probes measured the boundary layer turbulence structure at the same locations where pressure measurements were made. Both single and cross film probes were used. The diffuser turbulence data was teken only for a nominal inlet Mach number of 0.3. Three vortex generator configurations were tested. The differences between configurations involved changes in size and relative vortex generator positions. All three vortex generator configurations tested provided increases in diffuser performance. Distinct differences in the boundary layer integral properties and skin friction levels were noted between configurations. The axial turbulence intensity and Reynolds stress profiles measured displayed similarities in trends but differences in levels for the three configurations.
Machineni, Lakshmi; Rajapantul, Anil; Nandamuri, Vandana; Pawar, Parag D
2017-03-01
The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.
Formation of aggregated nanoparticle spheres through femtosecond laser surface processing
NASA Astrophysics Data System (ADS)
Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.
2017-10-01
A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.
Multilayer adsorption of C2H4 and CF4 on graphite: Grand Canonical Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Abdelatif, H.; Drir, M.
2016-11-01
We study the phase transitions in adsorbed multilayers by Grand Canonical Monte Carlo simulations (GCMC) of the lattice-gas model. The focus will be on ethylene (C2H4) and tetrafluoromethane (CF4) on a homogeneous graphite surface. Earlier simulations of these systems investigated structural properties, dynamical behaviors of adsorbed films and thermodynamic quantities such as isosteric heat. The main purpose of this study is to consider the adsorbed multilayers by the evaluation of the layering behavior, the wetting phenomena and the critical temperatures. The isotherms obtained for temperature from 50 K to 170 K reproduce a number of interesting features observed experimentally: (i) we observe an important number of layers in contrast with previous simulations, (ii) a finite number of layers at saturated pressure for low temperatures are found, (iii) the isotherms present vertical steps typical of layer-by-layer growth, at higher temperatures these distinct layers tend to disappear signifying that the film thickness increases continuously, (iv) a thin film to thick film transition near the triple point temperature is noticed. In addition to this qualitative description, quantitative information are determined including temperatures and relative pressures of layers formation, layer-critical-point temperatures and phase diagrams. Comparing the two systems, ethylene/graphite and tetrafluoromethane/graphite, we observe a qualitatively similar behavior.
Hwang, Wang-Taek; Min, Misook; Jeong, Hyunhak; Kim, Dongku; Jang, Jingon; Yoo, Daekyung; Jang, Yeonsik; Kim, Jun-Woo; Yoon, Jiyoung; Chung, Seungjun; Yi, Gyu-Chul; Lee, Hyoyoung; Wang, Gunuk; Lee, Takhee
2016-11-25
We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude.
Stpiczyńska, Malgorzata; Davies, Kevin L.
2008-01-01
Background and Aims Many orchid flowers have glands called elaiophores and these reward pollinating insects with oil. In contrast to other reward-producing structures such as nectaries, the anatomy of the elaiophore and the process of oil secretion have not been extensively studied. In this paper, elaiophore structure is described for two members of Oncidiinae, Oncidium trulliferum Lindl. and Ornithophora radicans (Rchb.f.) Garay & Pabst. Methods Elaiophores of both species were examined using light microscopy, scanning electron microscopy and transmission electron microscopy. Key Results and Conclusions In flowers of Oncidium trulliferum and Ornithophora radicans, oil is secreted by morphologically distinct elaiophores associated with the labellar callus. However, in O. trulliferum, elaiophores also occur on the lateral lobes of the labellum. In both these species, the epithelial elaiophores are composed of a single layer of palisade-like epidermal cells and a distinct subepithelial layer. Secretory elaiophore cells may contain numerous, starchless plastids, mitochondria and smooth endoplasmic reticulum profiles. In O. trulliferum, the cytoplasm contains myelin-like figures but these are absent from O. radicans. In the former species, cavities occur in the cell wall and these presumably facilitate the passage of oil onto the elaiophore surface. In O. radicans, the accumulation of oil between the outer tangential wall and the cuticle causes the latter to become distended. Since it is probable that the full discharge of oil from the elaiophores of O. radicans occurs only when the cuticle is ruptured by a visiting insect, this may contribute towards pollinator specificity. The structure of the elaiophore in these species resembles both that found in previously investigated species of Oncidiinae and that of certain members of the Malpighiaceae. PMID:18056056
Liu, Gongping; Jin, Wanqin; Xu, Nanping
2015-08-07
Graphene is a well-known two-dimensional material that exhibits preeminent electrical, mechanical and thermal properties owing to its unique one-atom-thick structure. Graphene and its derivatives (e.g., graphene oxide) have become emerging nano-building blocks for separation membranes featuring distinct laminar structures and tunable physicochemical properties. Extraordinary molecular separation properties for purifying water and gases have been demonstrated by graphene-based membranes, which have attracted a huge surge of interest during the past few years. This tutorial review aims to present the latest groundbreaking advances in both the theoretical and experimental chemical science and engineering of graphene-based membranes, including their design, fabrication and application. Special attention will be given to the progresses in processing graphene and its derivatives into separation membranes with three distinct forms: a porous graphene layer, assembled graphene laminates and graphene-based composites. Moreover, critical views on separation mechanisms within graphene-based membranes will be provided based on discussing the effect of inter-layer nanochannels, defects/pores and functional groups on molecular transport. Furthermore, the separation performance of graphene-based membranes applied in pressure filtration, pervaporation and gas separation will be summarized. This article is expected to provide a compact source of relevant and timely information and will be of great interest to all chemists, physicists, materials scientists, engineers and students entering or already working in the field of graphene-based membranes and functional films.
Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet.
Bons, Paul D; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C; Binder, Tobias; Eisen, Olaf; Jessell, Mark W; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka
2016-04-29
The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.
Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet
NASA Astrophysics Data System (ADS)
Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka
2016-04-01
The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.
Velocity structure of the shallow lunar crust
NASA Technical Reports Server (NTRS)
Gangi, A. F.; Yen, T. E.
1979-01-01
Data from the thumper shots of the Apollo 14 and Apollo 16 active seismic experiments, testing whether the velocity variation in the shallow lunar crust (depths less than or equal to 10 m) can be represented by a self-compacting-power-layer or by a constant-velocity-layer model, are analyzed. Although filtering and stacking improved the S/N ratios, it was found that measuring the arrival times or amplitudes of arrivals beyond 32 m was not possible. The data quality precluded a definitive distinction between the power-law velocity variation and the layered-velocity model. Furthermore, it was found that the shallow lunar regolith is made up of fine particles, which supports the idea of a 1/6 power-velocity model. Analysis of the amplitudes of first arrivals revealed large errors in the data due to variations in the geophone sensitivities and shot strengths; a least-squares method, that uses data redundancy was employed to eliminate them.
Asymmetric organic-inorganic hybrid membrane formation via block copolymer-nanoparticle co-assembly.
Gu, Yibei; Dorin, Rachel M; Wiesner, Ulrich
2013-01-01
A facile method for forming asymmetric organic-inorganic hybrid membranes for selective separation applications is developed. This approach combines co-assembly of block copolymer (BCP) and inorganic nanoparticles (NPs) with non-solvent induced phase separation. The method is successfully applied to two distinct molar mass BCPs with different fractions of titanium dioxide (TiO2) NPs. The resulting hybrid membranes exhibit structural asymmetry with a thin nanoporous surface layer on top of a macroporous fingerlike support layer. Key parameters that dictate membrane surface morphology include the fraction of inorganics used and the length of time allowed for surface layer development. The resulting membranes exhibit both good selectivity and high permeability (3200 ± 500 Lm(-2) h(-1) bar(-1)). This fast and straightforward synthesis method for asymmetric hybrid membranes provides a new self-assembly platform upon which multifunctional and high-performance organic-inorganic hybrid membranes can be formed.
NASA Technical Reports Server (NTRS)
Chang, A. T. C.
1985-01-01
Microwave data collected by field experiments over Vermont and Hokkaido and Nimbus-7 SMMR over North Dakota and Hokkaido were studied. The measured 37 GHz brightness temperatures show considerable effect of volume scattering by snow grains. The 37 GHz brightness for a new snowpack with average grain radius of 0.25 mm is generally about 40 K higher than the naturally compacted pack with average grain radius of 0.4 mm. The scattering effect is much less distinct for the 6.6 GHz. However, the layering effect is much stronger at the longer wavelength. For 10.7 and 18 GHz, the effect of layering and scattering vary due to different combinations of internal snow grain distribution and layering structures. Over the Hokkaido test site, the SMMR data are too coarse for the snow field. A better spatial resolution is required to study these snow fields.
Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...
2017-02-17
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
Duncker, Tobias; Lee, Winston; Jiang, Fan; Ramachandran, Rithambara; Hood, Donald C; Tsang, Stephen H; Sparrow, Janet R; Greenstein, Vivienne C
2018-01-01
To assess structure and function across the transition zone (TZ) between relatively healthy and diseased retina in acute zonal occult outer retinopathy. Six patients (6 eyes; age 22-71 years) with acute zonal occult outer retinopathy were studied. Spectral-domain optical coherence tomography, fundus autofluorescence, near-infrared reflectance, color fundus photography, and fundus perimetry were performed and images were registered to each other. The retinal layers of the spectral-domain optical coherence tomography scans were segmented and the thicknesses of two outer retinal layers, that is, the total receptor and outer segment plus layers, and the retinal nerve fiber layer were measured. All eyes showed a TZ on multimodal imaging. On spectral-domain optical coherence tomography, the TZ was in the nasal retina at varying distances from the fovea. For all eyes, it was associated with loss of the ellipsoid zone band, significant thinning of the two outer retinal layers, and in three eyes with thickening of the retinal nerve fiber layer. On fundus autofluorescence, all eyes had a clearly demarcated peripapillary area of abnormal fundus autofluorescence delimited by a border of high autofluorescence; the latter was associated with loss of the ellipsoid zone band and with a change from relatively normal to markedly decreased or nonrecordable visual sensitivity on fundus perimetry. The results of multimodal imaging clarified the TZ in acute zonal occult outer retinopathy. The TZ was outlined by a distinct high autofluorescence border that correlated with loss of the ellipsoid zone band on spectral-domain optical coherence tomography. However, in fundus areas that seemed healthy on fundus autofluorescence, thinning of the outer retinal layers and thickening of the retinal nerve fiber layer were observed near the TZ. The TZ was also characterized by a decrease in visual sensitivity.
NASA Astrophysics Data System (ADS)
de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.
1998-10-01
The long-term growth and stability of compositionally layered continental upper mantle has been investigated by numerical modelling. We present the first numerical model of a convecting mantle including differentiation through partial melting resulting in a stable compositionally layered continental upper mantle structure. This structure includes a continental root extending to a depth of about 200 km. The model covers the upper mantle including the crust and incorporates physical features important for the study of the continental upper mantle during secular cooling of the Earth since the Archaean. Among these features are: a partial melt generation mechanism allowing consistent recurrent melting, time-dependent non-uniform radiogenic heat production, and a temperature- and pressure-dependent rheology. The numerical results reveal a long-term growth mechanism of the continental compositional root. This mechanism operates through episodical injection of small diapiric upwellings from the deep layer of undepleted mantle into the continental root which consists of compositionally distinct depleted mantle material. Our modelling results show the layered continental structure to remain stable during at least 1.5 Ga. After this period mantle differentiation through partial melting ceases due to the prolonged secular cooling and small-scale instabilities set in through continental delamination. This stable period of 1.5 Ga is related to a number of limitations in our model. By improving on these limitations in the future this stable period will be extended to more realistic values.
Direct observation of nanowire growth and decomposition.
Rackauskas, Simas; Shandakov, Sergey D; Jiang, Hua; Wagner, Jakob B; Nasibulin, Albert G
2017-09-26
Fundamental concepts of the crystal formation suggest that the growth and decomposition are determined by simultaneous embedding and removal of the atoms. Apparently, by changing the crystal formation conditions one can switch the regimes from the growth to decomposition. To the best of our knowledge, so far this has been only postulated, but never observed at the atomic level. By means of in situ environmental transmission electron microscopy we monitored and examined the atomic layer transformation at the conditions of the crystal growth and its decomposition using CuO nanowires selected as a model object. The atomic layer growth/decomposition was studied by varying an O 2 partial pressure. Three distinct regimes of the atomic layer evolution were experimentally observed: growth, transition and decomposition. The transition regime, at which atomic layer growth/decomposition switch takes place, is characterised by random nucleation of the atomic layers on the growing {111} surface. The decomposition starts on the side of the nanowire by removing the atomic layers without altering the overall crystal structure, which besides the fundamental importance offers new possibilities for the nanowire manipulation. Understanding of the crystal growth kinetics and nucleation at the atomic level is essential for the precise control of 1D crystal formation.
Mandú, Larissa O; Batagin-Neto, Augusto
2018-06-09
Conjugated organic polymers represent an important class of materials for varied technological applications including in active layers of chemical sensors. In this context, polyaniline (PANI) derivatives are promising candidates, mainly due to their high chemical stability, good processability, versatility of synthesis, polymerization, and doping, as well as relative low cost. In this study, electronic structure calculations were carried out for varied N-substituted PANI derivatives in order to investigate the potential sensory properties of these materials. The opto-electronic properties of nine distinct compounds were evaluated and discussed in terms of the employed substituents. Preliminary reactivity studies were performed in order to identify adsorption centers on the oligomer structures via condensed-to-atoms Fukui indexes (CAFI). Finally, adsorption studies were carried out for selected derivatives considering five distinct gaseous analytes. The influence of the analytes on the oligomer properties were investigated via the evaluation of average binding energies and changes on the structural features, optical absorption spectra, frontier orbitals distribution, and total density of states in relation to the isolated oligomers. The obtained results indicate the derivatives PANI-NO 2 and PANI-C 6 H 5 as promising materials for the development of improved chemical sensors.
Influence of Freestream and Forced Disturbances on the Shear Layers of a Square Prism
NASA Astrophysics Data System (ADS)
Lander, Daniel Chapman
Flow around the square prism, an archetypal bluff body, has applications in all areas of fluid mechanics: vibration, mixing, combustion and noise production to name a few. It also has distinct importance to wind loading on architectural and industrial structures such as tall buildings, bridges, and towers. The von-Karman (VK) vortex street is a major reason for its significance: a flow phenomenon which has received intense scrutiny from scientific and engineering communities for more than 100 years! However, the characteristics of the shear layers separating from the sharp edges, essential to the vortex shedding, have received comparatively little attention. This is surprising considering the Kelvin-Helmholtz (KH) instability of shear layers produce the first signatures of turbulence in the wake. Furthermore, the shear layers are conduits for the passage of vorticity between the boundary layer and the turbulent wake. Many details of their structure and role in the shedding process remain unexplored. This dissertation aims to address this deficiency. Specifically, this project considered the influence of three variables on the characteristics of the transition-to-turbulence in the square prism shear layers. These are: (1) Reynolds number; (2) freestream disturbances and (3) forced disturbances. In each case, the dynamics of the shear layer-wake interaction were considered. Particle image velocimetry and constant temperature anemometry measurements were used to document the shear layer during inception and evolution as it passes into the wake. With increasing Reynolds number, ReD = UinfinityD/nu, in the range 16,700-148,000, the transition-to-turbulence in the initially laminar shear layer moves toward separation. A coordinate system local to the time-averaged shear layer axis was used such that the tangent and normal velocities, turbulent stresses and gradient quantities could be obtained for the curved shear layer. Characteristic frequencies, lengths and transition points of the KH instability were documented and shown to exhibit features distinct from the plane mixing layer. The evolution of the integrated turbulent kinetic energy was documented and a linear region of growth was associated with the amplification of the KH instability. A scaling relationship of the Kelvin-Helmholtz to von-Karman frequencies was established for the square prism shear layer. ƒKH/ƒ VK was shown to be a power-law function of Re D, with differing characteristics to the much more studied circular cylinder. Increasing ReD up to ˜ 70,000 bolsters the Reynolds stresses in the shear layers as they enter the wake, shortening the wake formation length, LF. The shear layer diffusion length, LD was quantified and the Gerrard-Product, LF x LD, was introduced to account for constant St D in the presence of the reduced LF as function of ReD. A freestream disturbance condition with intensity □ u¯¯ 2¯ / U infinity = 0.065 and longitudinal integral length scale, Lxu = 0.33 was considered for the case of ReD = 50,000. Disturbances were introduced by means of small circular cylinder placed upstream of the stagnation streamline. The disturbance moved the time-averaged position of the shear layer towards the body but did not substantially alter the growth rate of its width. The "normal" transition-to-turbulence pathway, via laminar vortex formation and subsequent pairing of vortices in the initial stages of the shear layer was shown to be highly sensitive to external disturbances. The disturbance interrupted the typical transition pathway and was associated with a Bypass-transition mechanism, which subsequently increased the likelihood of intermittent shear layer reattachment on the downstream surface of the body. Triple decomposition was used to study the random and coherent components of the VK structures in the wake. Data indicated a narrowing and lengthening of the wake, which was accompanied by a rise in base pressure and a reduction in time-averaged drag. The unsteady coherent vorticity field revealed a streamwise elongation of the VK vortex structures, which complemented the time-averaged wake lengthening. It appears that the influence of freestream disturbances, in particular, by their stochastic nature, is to suppress the formation of the coherent structures in the shear layer. Forced disturbances imposed on the shear layers at the leading edges of the square prism were considered at ReD=16,700 for excitation frequencies ƒe = ƒ KH, ƒVK and 0. The response of the shear layer to forcing at steady and ƒVK frequencies had little impact on the time-averaged position or growth.
Electronic transport properties of graphene doped by gallium.
Mach, J; Procházka, P; Bartošík, M; Nezval, D; Piastek, J; Hulva, J; Švarc, V; Konečný, M; Kormoš, L; Šikola, T
2017-10-13
In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10 -7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.
Electronic transport properties of graphene doped by gallium
NASA Astrophysics Data System (ADS)
Mach, J.; Procházka, P.; Bartošík, M.; Nezval, D.; Piastek, J.; Hulva, J.; Švarc, V.; Konečný, M.; Kormoš, L.; Šikola, T.
2017-10-01
In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10-7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.
Vascular Cells in Blood Vessel Wall Development and Disease.
Mazurek, R; Dave, J M; Chandran, R R; Misra, A; Sheikh, A Q; Greif, D M
2017-01-01
The vessel wall is composed of distinct cellular layers, yet communication among individual cells within and between layers results in a dynamic and versatile structure. The morphogenesis of the normal vascular wall involves a highly regulated process of cell proliferation, migration, and differentiation. The use of modern developmental biological and genetic approaches has markedly enriched our understanding of the molecular and cellular mechanisms underlying these developmental events. Additionally, the application of similar approaches to study diverse vascular diseases has resulted in paradigm-shifting insights into pathogenesis. Further investigations into the biology of vascular cells in development and disease promise to have major ramifications on therapeutic strategies to combat pathologies of the vasculature. © 2017 Elsevier Inc. All rights reserved.
Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau.
Chen, Yong-Liang; Deng, Ye; Ding, Jin-Zhi; Hu, Hang-Wei; Xu, Tian-Le; Li, Fei; Yang, Gui-Biao; Yang, Yuan-He
2017-12-01
Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Li, L. L.; Partoens, B.; Peeters, F. M.
2018-04-01
By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.
In vitro developmental model of the gastrointestinal tract from mouse embryonic stem cells.
Torihashi, Shigeko; Kuwahara, Masaki; Kurahashi, Masaaki
2007-10-01
Mouse embryonic stem (ES) cells are pluripotent and retain their potential to form cells, tissues and organs originated from three embryonic germ layers. Recently, we developed in vitro organ--gut-like structures--from mouse ES cells. They had basically similar morphological features to a mouse gastrointestinal tract in vivo composed of three distinct layers (i.e., epithelium, connective tissue and musculature). Gut-like structures showed spontaneous contractions derived from pacemaker cells (interstitial cells of Cajal) in the musculature. We also examined their formation process and expression pattern of transcription factors crucial for gut organogenesis such as Id2, Sox17, HNF3beta/Foxa2 and GATA4. We found that they mimic the development of embryonic gut in vivo and showed a similar expression pattern of common transcription factors. They also maintain their developmental potential after transplantation to a renal capsule. Therefore, gut-like structures are suitable for in vitro models of gastrointestinal tracts and their development. In addition, we pointed out several unique features different from gut in vivo that provide useful and advantageous tools to investigate the developmental mechanism of the gastrointestinal tract.
Li, Yuk Mun; Srinivasan, Divya; Vaidya, Parth; Gu, Yibei; Wiesner, Ulrich
2016-10-01
Deviating from the traditional formation of block copolymer derived isoporous membranes from one block copolymer chemistry, here asymmetric membranes with isoporous surface structure are derived from two chemically distinct block copolymers blended during standard membrane fabrication. As a first proof of principle, the fabrication of asymmetric membranes is reported, which are blended from two chemically distinct triblock terpolymers, poly(isoprene-b-styrene-b-(4-vinyl)pyridine) (ISV) and poly(isoprene-b-styrene-b-(dimethylamino)ethyl methacrylate) (ISA), differing in the pH-responsive hydrophilic segment. Using block copolymer self-assembly and nonsolvent induced phase separation process, pure and blended membranes are prepared by varying weight ratios of ISV to ISA. Pure and blended membranes exhibit a thin, selective layer of pores above a macroporous substructure. Observed permeabilities at varying pH values of blended membranes depend on relative triblock terpolymer composition. These results open a new direction for membrane fabrication through the use of mixtures of chemically distinct block copolymers enabling the tailoring of membrane surface chemistries and functionalities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Constraints on Lunar Structure from Combined Geochemical, Mineralogical, and Geophysical modeling
NASA Astrophysics Data System (ADS)
Bremner, P. M.; Fuqua, H.; Mallik, A.; Diamond, M. R.; Lock, S. J.; Panovska, S.; Nishikawa, Y.; Jiménez-Pérez, H.; Shahar, A.; Panero, W. R.; Lognonne, P. H.; Faul, U.
2016-12-01
The internal physical and geochemical structure of the Moon is still poorly constrained. Here, we take a multidisciplinary approach to attempt to constrain key parameters of the lunar structure. We use an ensemble of 1-D lunar compositional models with chemically and mineralogically distinct layers, and forward calculated physical parameters, in order to constrain the internal structure. We consider both a chemically well-mixed model with uniform bulk composition, and a chemically stratified model that includes a mantle with preserved mineralogical stratigraphy from magma ocean crystallization. Additionally, we use four different lunar temperature profiles that span the range of proposed selenotherms, giving eight separate sets of lunar models. In each set, we employed a grid search and a differential evolution genetic search algorithm to extensively explore model space, where the thickness of individual compositional layers was varied. In total, we forward calculated over one hundred thousand lunar models. It has been proposed that a dense, partially molten layer exists at the CMB to explain the lack of observed far-side deep moonquakes, the observation of reflected seismic phases from deep moonquakes, and enhanced tidal dissipation. However, subsequent models have proposed that these observables can be explained in other ways. In this study, using a variety of modeling techniques, we find that such a layer may have been formed by overturn of an ilmenite-rich layer, formed after the crystallization of a magma ocean. We therefore include a denser layer (modeled as an ilmenite-rich layer) at both the top and bottom of the lunar mantle in our models. For each set of models, we find models that explain the observed lunar mass and moment of inertia. We find that only a narrow range of core radii are consistent with the mass and moment of inertia constraints. Furthermore, in the chemically well-mixed models, we find that a dense layer is required in the upper mantle to meet the moment of inertia requirement. In no set of models is the mass of the lower dense layer well constrained. For the models that fit the observed mass and moment of inertia, we calculated 1-D seismic velocity profiles, the majority of which compare well with those determined by inverting the Apollo seismic data (Garcia et al., 2011 and Weber et al., 2011).
Multivalent Lipid--DNA Complexes: Distinct DNA Compaction Regimes
NASA Astrophysics Data System (ADS)
Evans, Heather M.; Ahmad, A.; Ewert, K.; Safinya, C. R.
2004-03-01
Cationic liposomes (CL), while intrinsically advantageous in comparison to viruses, still have limited success for gene therapy and require more study. CL spontaneously self-assemble with DNA via counterion release, forming small particles approximately 200nm in diameter. X-ray diffraction reveals CL-DNA structures that are typically a multilamellar organization of lipids with DNA intercalated between the layers. We explore the structural properties of CL-DNA complexes formed with new multivalent lipids (Ewert et al, J. Med. Chem. 2002; 45:5023) that range from 2+ to 16+. Contrary to a simple prediction for the DNA interaxial spacing d_DNA based on a geometrical space-filling model, these lipids show dramatic DNA compaction, down to d_DNA ˜ 25 ÅVariations in the membrane charge density, σ _M, lead to distinct spacing regimes. We propose that this DNA condensation is controlled by a unique locking mechanism between the DNA double helix and the large, multivalent lipid head groups. Funded by NSF DMR-0203755 and NIH GM-59288.
Three Types of Cortical L5 Neurons that Differ in Brain-Wide Connectivity and Function
Kim, Euiseok J.; Juavinett, Ashley L.; Kyubwa, Espoir M.; Jacobs, Matthew W.; Callaway, Edward M.
2015-01-01
SUMMARY Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. PMID:26671462
NASA Astrophysics Data System (ADS)
Adewoyin, O. O.; Joshua, E. O.; Akinyemi, M. L.; Omeje, M.; Joel, E. S.
2017-05-01
Adequate knowledge of the geology and the structures of the subsurface would assist engineers in the best way to carry out constructions to avoid building collapse. In this study, near surface seismic refraction method was used to determine the geotechnical parameters of the subsurface, the results obtained were correlated with the result of borehole data drilled in the study area. The results of seismic refraction method delineated mostly two distinct layers with the first layer having the lower geotechnical parameters. It was observed that in the first layer, the Young’s modulus ranged from 0.168 to 0.458 GPa, shear modulus ranged between 0.068 and 0.185 GPa, the bulk modulus ranged between 0.106 and 0.287 GPa while the bearing capacity ranged from 0.083 to 0.139 MPa. On the other hand, in the second layer, the Young’s modulus ranged between 3.717 and 7.018 GPa, shear modulus ranged from 1.500 to 2.830 GPa while the bulk modulus ranged from 2.383 to 4.449 GPa. Significantly, the formation of the second layer appeared to be more competent than the first layer, therefore engineering construction in this geological setting is recommended to be founded on the second layer at depth ranging between 7 and 16 m.
Lian, Qing; Chen, Mu; Mokhtar, Muhamad Z; Wu, Shanglin; Zhu, Mingning; Whittaker, Eric; O'Brien, Paul; Saunders, Brian R
2018-05-07
Blends of semiconducting nanocrystals and conjugated polymers continue to attract major research interest because of their potential applications in optoelectronic devices, such as solar cells, photodetectors and light-emitting diodes. In this study we investigate the surface structure, morphological and optoelectronic properties of multilayer films constructed from ZnO nanocrystals (NCs) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV). The effects of layer number and ZnO concentration (C ZnO ) used on the multilayer film properties are investigated. An optimised solvent blend enabled well-controlled layers to be sequentially spin coated and the construction of multilayer films containing six ZnO NC (Z) and MDMO-PPV (M) layers (denoted as (ZM) 6 ). Contact angle data showed a strong dependence on C ZnO and indicated distinct differences in the coverage of MDMO-PPV by the ZnO NCs. UV-visible spectroscopy showed that the MDMO-PPV absorption increased linearly with the number of layers in the films and demonstrates highly tuneable light absorption. Photoluminescence spectra showed reversible quenching as well as a surprising red-shift of the MDMO-PPV emission peak. Solar cells were constructed to probe vertical photo-generated charge transport. The measurements showed that (ZM) 6 devices prepared using C ZnO = 14.0 mg mL -1 had a remarkably high open circuit voltage of ∼800 mV. The device power conversion efficiency was similar to that of a control bilayer device prepared using a much thicker MDMO-PPV layer. The results of this study provide insight into the structure-optoelectronic property relationships of new semiconducting multilayer films which should also apply to other semiconducting NC/polymer combinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Missert, Nancy; Kotula, Paul G.; Rye, Michael
We used a focused ion beam to obtain cross-sectional specimens from both magnetic multilayer and Nb/Al-AlOx/Nb Josephson junction devices for characterization by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX). An automated multivariate statistical analysis of the EDX spectral images produced chemically unique component images of individual layers within the multilayer structures. STEM imaging elucidated distinct variations in film morphology, interface quality, and/or etch artifacts that could be correlated to magnetic and/or electrical properties measured on the same devices.
2013-07-01
plates usually experiences separation near or at the leading-edge, creating an aerodynamic shear layer that either reattaches to form a separation...blunt-body shedding. At low angle-of-attack, however, flat plates do not exhibit strong blunt-body shedding, thus, is an unlikely driver. Additionally...range from 0 – 10% for typical flat plate membrane models in low-Re flow. Two distinct regions of membrane vibration relative to the tensioning
Photoelectric properties of the metamorphic InAs/InGaAs quantum dot structure at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovynskyi, S. L., E-mail: golovynskyi@isp.kiev.ua; Seravalli, L.; Trevisi, G.
We present the study of optical and photoelectric properties of InAs quantum dots (QDs) grown on a metamorphic In{sub 0.15}Ga{sub 0.85}As buffer layer: such nanostructures show efficient light emission in the telecom window at 1.3 μm (0.95 eV) at room temperature. We prepared a sample with vertical geometry of contacts isolated from the GaAs substrate. The structure is found to be photosensitive in the spectral range above 0.9 eV at room temperature, showing distinctive features in the photovoltage and photocurrent spectra attributed to QDs, InAs wetting layer, and In{sub 0.15}Ga{sub 0.85}As metamorphic buffer, while a drop in the photoelectric signal above 1.36 eV ismore » related to the GaAs layer. No effect of defect centers on the photoelectrical properties is found, although they are observed in the absorption spectrum. We conclude that metamorphic QDs have a low amount of interface-related defects close to the optically active region and charge carriers can be effectively collected into InAs QDs.« less
NASA Astrophysics Data System (ADS)
Wallace, K. L.; Kaufman, D. S.; Schiff, C. J.; Kathan, K.; Werner, A.; Hancock, J.; Hagel, L. A.
2010-12-01
Sediment cores recovered from three kettle lakes, all within 10 km of Anchorage, Alaska contain a record of tephra fall from major eruptive events of Cook Inlet volcanoes during the past 11250 yr. Prominent tephra layers from multiple cores within each lake were first correlated within each basin using physical properties, major-oxide glass geochemistry, and constrained by bracketing radiocarbon age. Distinct tephra from each lake were then correlated among all three lakes using the same criteria to develop a composite tephrostratigraphic framework for the Anchorage area. Lorraine Lake, the northern-most lake contains 17 distinct tephra layers; Goose Lake, the eastern most lake contains 10 distinct tephra layers; and Little Campbell Lake, to the west, contains 7 distinct tephra layers. Thinner, less-prominent tephra layers, reflecting smaller or more distant eruptions, also occur but are not included as part of this study. Of the 33 tephra layers, only two could be confidently correlated among all three lakes, and four other correlative deposits were recognized in two of the three lakes. The minimum number of unique major tephra-fall events in the Anchorage area is 22 in the past 11200 years, or about 1 event every 500 years. This number underestimates the actual number of eruptions because not attempt was made to locate crypto-tephra. All but perhaps one tephra deposit originated from Cook Inlet volcanoes with the most prolific source being Mount Spurr/Crater Peak, which is accountable for at least 8 deposits. Combining radiocarbon ages to produce an independent age model for each lake is in progress and will aid in confirming correlations and assigning detailed modeled-tephra age and uncertainty to each tephra layer.
Basic Components of Vascular Connective Tissue and Extracellular Matrix.
Halper, Jaroslava
2018-01-01
Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy. © 2018 Elsevier Inc. All rights reserved.
Mechanical and biocompatible characterizations of a readily available multilayer vascular graft
Madhavan, Krishna; Elliott, Winston H; Bonani, Walter; Monnet, Eric; Tan, Wei
2013-01-01
There is always a considerable clinical need for vascular grafts. Considering the availability, physical and mechanical properties, and regenerative potential, we have developed and characterized readily available, strong, and compliant multilayer grafts that support cell culture and ingrowth. The grafts were made from heterogeneous materials and structures, including a thin, dense, nanofibrous core composed of poly-ε-caprolactone (PCL), and a thick, porous, hydrogel sleeve composed of genipin-crosslinked collagen–chitosan (GCC). Because the difference in physicochemical properties between PCL and GCC caused layer separation, the layer adhesion was identified as a determinant to graft property and integrity under physiological conditions. Thus, strategies to modify the layer interface, including increasing porosity of the PCL surface, decreasing hydrophobicity, and increasing interlayer crosslinking, were developed. Results from microscopic images showed that increasing PCL porosity was characterized by improved layer adhesion. The resultant graft was characterized by high compliance (4.5%), and desired permeability (528 mL/cm2/min), burst strength (695 mmHg), and suture strength (2.38 N) for readily grafting. Results also showed that PCL mainly contributed to the graft mechanical properties, whereas GCC reduced the water permeability. In addition to their complementary contributions to physical and mechanical properties, the distinct graft layers also provided layer-specific structures for seeding and culture of vascular endothelial and smooth muscle cells in vitro. Acellular graft constructs were readily used to replace abdominal aorta of rabbits, resulting in rapid cell ingrowth and flow reperfusion. The multilayer constructs capable of sustaining physiological conditions and promoting cellular activities could serve as a platform for future development of regenerative vascular grafts. PMID:23165922
Thermodynamic and radiative structure of stratocumulus-topped boundary layers*
Ghate, Virendra P.; Miller, Mark A.; Albrecht, Bruce A.; ...
2015-01-05
Stratocumulus Topped Boundary Layers (STBL) observed in three different regions with distinctive environments are described in the context of their thermodynamic and radiative properties. Here, the primary data set consisted of 131 soundings from the South East Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic and 83 soundings from the US Southern Great Plains (SGP). A new technique that preserves the depths of the sub-layers within a STBL is proposed for averaging the profiles of thermodynamic and radiative variables. The STBL was deepest over SEP and had the strongest radiative cooling rates near cloudmore » top among the three locations. Although the radiative cooling rates were comparable over GRW and SGP, the STBL was deeper over GRW compared to that over SGP. On average the STBL inversion was strongest over SEP (11.7 k and -5.43 g kg -1) and weakest over the SGP (6.89 k and -0.41 g kg -1). Significantly larger liquid water path, integrated water vapor, and variability in these two properties was found over GRW and evidence presented suggests that conditions at cloud top may play a lesser role in determining the resident cloud structure over GRW than over SEP. A modal analysis revealed ~26% of the STBL to be well-mixed, ~20% of STBL to be stable and ~30% STBL having a stable layer in-between a surface mixed layer and the cloud layer. Over all the three locations, the STBL was shallowest in well-mixed mode and deepest in the stable mode.« less
Multiple Path Static Routing Protocols for Packet Switched Networks.
1983-09-01
model are: (1) Physical Layer (2) Data Link Layer (3) Network Layer (4) Transport Layer (5) Session Layer (6) Presentation Layer (7) pplication Layer The...The transport layer, also known as the host-host layer, accepts data from the session layer, splits it into smaller units if needed, passes these to...the network layer, and ensures that all the pieces arrive correctly at the other end. It creates a distinct network connection for each transport
NASA Technical Reports Server (NTRS)
Iguchi, Takamichi; Matsui, Toshihisa; Shi, Jainn J.; Tao, Wei-Kuo; Khain, Alexander P.; Hao, Arthur; Cifelli, Robert; Heymsfield, Andrew; Tokay, Ali
2012-01-01
Two distinct snowfall events are observed over the region near the Great Lakes during 19-23 January 2007 under the intensive measurement campaign of the Canadian CloudSat/CALIPSO validation project (C3VP). These events are numerically investigated using the Weather Research and Forecasting model coupled with a spectral bin microphysics (WRF-SBM) scheme that allows a smooth calculation of riming process by predicting the rimed mass fraction on snow aggregates. The fundamental structures of the observed two snowfall systems are distinctly characterized by a localized intense lake-effect snowstorm in one case and a widely distributed moderate snowfall by the synoptic-scale system in another case. Furthermore, the observed microphysical structures are distinguished by differences in bulk density of solid-phase particles, which are probably linked to the presence or absence of supercooled droplets. The WRF-SBM coupled with Goddard Satellite Data Simulator Unit (G-SDSU) has successfully simulated these distinctive structures in the three-dimensional weather prediction run with a horizontal resolution of 1 km. In particular, riming on snow aggregates by supercooled droplets is considered to be of importance in reproducing the specialized microphysical structures in the case studies. Additional sensitivity tests for the lake-effect snowstorm case are conducted utilizing different planetary boundary layer (PBL) models or the same SBM but without the riming process. The PBL process has a large impact on determining the cloud microphysical structure of the lake-effect snowstorm as well as the surface precipitation pattern, whereas the riming process has little influence on the surface precipitation because of the small height of the system.
Strategies To Discover the Structural Components of Cyst and Oocyst Walls
Bushkin, G. Guy; Chatterjee, Aparajita; Robbins, Phillips W.
2013-01-01
Cysts of Giardia lamblia and Entamoeba histolytica and oocysts of Toxoplasma gondii and Cryptosporidium parvum are the infectious and sometimes diagnostic forms of these parasites. To discover the structural components of cyst and oocyst walls, we have developed strategies based upon a few simple assumptions. Briefly, the most abundant wall proteins are identified by monoclonal antibodies or mass spectrometry. Structural components include a sugar polysaccharide (chitin for Entamoeba, β-1,3-linked glucose for Toxoplasma, and β-1,3-linked GalNAc for Giardia) and/or acid-fast lipids (Toxoplasma and Cryptosporidium). Because Entamoeba cysts and Toxoplasma oocysts are difficult to obtain, studies of walls of nonhuman pathogens (E. invadens and Eimeria, respectively) accelerate discovery. Biochemical methods to dissect fungal walls work well for cyst and oocyst walls, although the results are often unexpected. For example, echinocandins, which inhibit glucan synthases and kill fungi, arrest the development of oocyst walls and block their release into the intestinal lumen. Candida walls are coated with mannans, while Entamoeba cysts are coated in a dextran-like glucose polymer. Models for cyst and oocyst walls derive from their structural components and organization within the wall. Cyst walls are composed of chitin fibrils and lectins that bind chitin (Entamoeba) or fibrils of the β-1,3-GalNAc polymer and lectins that bind the polymer (Giardia). Oocyst walls of Toxoplasma have two distinct layers that resemble those of fungi (β-1,3-glucan in the inner layer) or mycobacteria (acid-fast lipids in the outer layer). Oocyst walls of Cryptosporidium have a rigid bilayer of acid-fast lipids and inner layer of oocyst wall proteins. PMID:24096907
Identifying Molecular Targets for Chemoprevention in a Rat Model
2007-06-01
accompanied by a reactive stromal proliferation resulting in a distinct thickening of the thin muscular layer surrounding individual glands. These...accompanied by reactive stromal proliferation, resulting in a distinct thickening of the thin muscular layer surrounding individual glands. These proliferations...epithelial cells forming solid bridges and circular apolar lumina. The lesions filled the glandular lumen but did not show distension with foci of
Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes
Fei, Linfeng; Lei, Shuijin; Zhang, Wei-Bing; Lu, Wei; Lin, Ziyuan; Lam, Chi Hang; Chai, Yang; Wang, Yu
2016-01-01
A microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct formation stages for MoS2 flakes from the thermolysis of ammonium thiomolybdates using in situ transmission electron microscopy. In the initial stage (400 °C), vertically aligned MoS2 structures grow in a layer-by-layer mode. With the increasing temperature of up to 780 °C, the orientation of MoS2 structures becomes horizontal. When the growth temperature reaches 850 °C, the crystalline size of MoS2 increases by merging adjacent flakes. Our study shows direct observations of MoS2 growth as the temperature evolves, and sheds light on the controllable orientation and grain size of two-dimensional materials. PMID:27412892
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in
2014-08-15
Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. Formore » the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.« less
Photonic confinement in laterally structured metal-organic microcavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mischok, Andreas, E-mail: andreas.mischok@iapp.de; Brückner, Robert; Sudzius, Markas
2014-08-04
We investigate the formation of optical modes in organic microcavities with an incorporated perforated silver layer. The metal leads to a formation of Tamm-plasmon-polaritons and thus separates the sample into metal-free or metal-containing areas, supporting different resonances. This mode splitting is exploited to confine photons in elliptic holes and triangular cuts, forming distinctive standing wave patterns showing the strong lateral confinement. A comparison with a Maxwell-Bloch based rate equation model clearly shows the nonlinear transition into the lasing regime. The concentration of the electric field density and inhibition of lateral loss channels in turn decreases the lasing threshold by upmore » to one order of magnitude, to 0.1 nJ. By spectroscopic investigation of such a triangular wedge, we observe the transition from the unperturbed cavity state to a strongly confined complex transversal mode. Such a structured silver layer can be utilized in future for charge carrier injection in an electrically driven organic solid state laser.« less
Neilson, James R; Schwenzer, Birgit; Seshadri, Ram; Morse, Daniel E
2009-12-07
We report the synthesis and characterization of new structural variants of the isotypic compound with the generic chemical formula, Co(1-0.5x)(oct) Co(x)(tet) (OH)2 (Cl)x (H2O)n, all modifications of an alpha-Co(OH)2 lattice. We show that the occupancy of tetrahedrally coordinated cobalt sites and associated chloride ligands, x, is modulated by the rate of formation of the respective layered hydroxide salts from kinetically controlled aqueous hydrolysis at an air-water interface. This new level of structural control is uniquely enabled by the slow diffusion of a hydrolytic catalyst, a simple technique. Independent structural characterizations of the compounds separately describe various attributes of the materials on different length scales, revealing details hidden by the disordered average structures. The precise control over the population of distinct octahedrally and tetrahedrally coordinated cobalt ions in the lattice provides a gentle, generic method for modulating the coordination geometry of cobalt in the material without disturbing the lattice or using additional reagents. A mechanism is proposed to reconcile the observation of the kinetic control of the structure with competing interactions during the initial stages of hydrolysis and condensation.
Adsorption isotherms of water on mica: redistribution and film growth.
Malani, Ateeque; Ayappa, K G
2009-01-29
Adsorption isotherms of water on muscovite mica are obtained using grand canonical Monte Carlo simulations over a wide range of relative vapor pressures, p/p(0) at 298 K. Three distinct stages are observed in the adsorption isotherm. A sharp rise in the water coverage occurs for 0 < p/p(0) < 0.1. This is followed by a relatively slow increase in the coverage for 0.1 < or = p/p(0) < or = 0.7. Above p/p(0) = 0.7, a second increase in the coverage occurs due to the adsorption of water with bulklike features. The derived film thickness and isotherm shape for the simple point charge (SPC) water model is in excellent agreement with recent experiments of Balmer et al. [ Langmuir 2008 , 24 , 1566 ]. A novel observation is the significant redistribution of water between adsorbed layers as the water film develops. This redistribution is most pronounced for 0.1 < or = p/p(0) < or = 0.7, where water is depleted from the inner layers and film growth is initiated on the outer layer. During this stage, potassium hydration is found to play a dominant role in the rearrangement of water near the mica surface. The analysis of structural features reveals a strongly bound first layer of water molecules occupying the ditrigonal cavities between the potassium ions. In-plane structure of oxygen in the second layer, which forms part of the first hydration shell of potassium, reveals a liquidlike structure with the oxygen-oxygen pair correlation function displaying features similar to bulk water. Isosteric heats of adsorption were found to be in good agreement with the differential microcalorimetric data of Rakhmatkariev ( Clays Clay Miner. 2006 , 54 , 402 ), over the entire range of pressures investigated. Both SPC and extended simple point charge (SPC/E) water models were found to yield qualitatively similar adsorption and structural characteristics, with the SPC/E model predicting lower coverages than the SPC model for p/p(0) > 0.7.
NASA Astrophysics Data System (ADS)
Goteti, Rajesh; Agar, Susan M.; Brown, John P.; Ball, Philip; Zuhlke, Rainer
2017-04-01
Mechanical stratification in LES (Layered Evaporate Sequences) can have a distinct impact on structural and depositional styles in rifted margin salt tectonics. The bulk mechanical response of an LES under geological loading is dependent, among other factors, on the relative proportions of salt and sediment, salt mobility and sedimentation rate. To assess the interactions among the aforementioned factors in a physically consistent manner, we present 2D, large-strain finite element models of an LES salt minibasin and diapirs. Loading from the deposition of alternating salt and sediment layers (i.e., LES), gravity and a prescribed geothermal gradient provide the driving force for halokinesis in the models. To accurately capture the mechanical impact of stratification within the modeled LES, salt is assigned a temperature-dependent visco-plastic rheology, whereas the sediments are assigned a non-associative cap-plasticity model that supports both compaction and shear localization. Perturbations in the initial salt-sediment interface are used to initiate the salt diapirs. Model results suggest that active diapirism in the basal halite layer initiates when the pressure at the base of the incipient salt diapir exceeds that beneath the minibasin. Vertical growth of the diapir is also accompanied by its lateral expansion at higher structural levels where it preferentially intrudes the adjacent pre- and syn-kinematic salt layers. This pressure pumping of deeper salt into shallow salt layers, can result in rapid thickness changes between successive sediment layers within the LES. Caution needs to be exercised as such thickness changes observed in seismic images may not be entirely due to the shifting of depocenters but also due to the lateral pumping of salt within the LES. The presence of salt layers at multiple structural levels decouples the deformation between successive clastic layers resulting in disharmomic folding with contrasting strain histories in the sedimentary stringers. A significant proportion of the bulk deviatoric strain is preferentially partitioned into the salt layers. Effective plastic shear strains within the sediment stringers generally remain low in the minibasin but can be significantly higher with attendant intense folding near the diapirs. In non-LES systems, the shape of a salt diapir is often used as indicator of relative rates of salt supply and sedimentation over geological time. However our models suggest that this rule-of-thumb may not apply in LES where the shape of the salt diapir is a function of the mechanical properties of the salt layers at various structural levels in addition to the relative rates of salt supply and sedimentation. Imaging challenges in LES may preclude placing strong constraints on structural timing based on interpretation of interfaces between the stringers and the salt diapir. In such situations, geomechanical forward modeling can be a useful tool in placing physics-based quantitative constraints on the timing of LES structures.
Impulse propagation in the nocturnal boundary layer: analysis of the geometric component.
Blom, Philip; Waxler, Roger
2012-05-01
On clear dry nights over flat land, a temperature inversion and stable nocturnal wind jet lead to an acoustic duct in the lowest few hundred meters of the atmosphere. An impulsive signal propagating in such a duct is received at long ranges from the source as an extended wave train consisting of a series of weakly dispersed distinct arrivals followed by a strongly dispersed low-frequency tail. The leading distinct arrivals have been previously shown to be well modeled by geometric acoustics. In this paper, the geometric acoustics approximation for the leading arrivals is investigated. Using the solutions of the eikonal and transport equations, travel times, amplitudes, and caustic structures of the distinct arrivals have been determined. The time delay between and relative amplitudes of the direct-refracted and single ground reflection arrivals have been investigated as parameters for an inversion scheme. A two parameter quadratic approximation to the effective sound speed profile has been fit and found to be in strong agreement with meteorological measurements from the time of propagation.
Geologic Structures in Crater Walls on Vesta
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Beck, A. W.; Ammannito, E.; Carsenty, U.; DeSanctis, M. C.; LeCorre, L.; McCoy, T. J.; Reddy, V.; Schroeder, S. E.
2012-01-01
The Framing Camera (FC) on the Dawn spacecraft has imaged most of the illuminated surface of Vesta with a resolution of apporpx. 20 m/pixel through different wavelength filters that allow for identification of lithologic units. The Visible and Infrared Mapping Spectrometer (VIR) has imaged the surface at lower spatial resolution but high spectral resolution from 0.25 to 5 micron that allows for detailed mineralogical interpretation. The FC has imaged geologic structures in the walls of fresh craters and on scarps on the margin of the Rheasilvia basin that consist of cliff-forming, competent units, either as blocks or semi-continuous layers, hundreds of m to km below the rims. Different units have different albedos, FC color ratios and VIR spectral characteristics, and different units can be juxtaposed in individual craters. We will describe different examples of these competent units and present preliminary interpretations of the structures. A common occurrence is of blocks several hundred m in size of high albedo (bright) and low albedo (dark) materials protruding from crater walls. In many examples, dark material deposits lie below coherent bright material blocks. In FC Clementine color ratios, bright material is green indicating deeper 1 m pyroxene absorption band. VIR spectra show these to have deeper and wider 1 and 2 micron pyroxene absorption bands than the average vestan surface. The associated dark material has subdued pyroxene absorption features compared to the average vestan surface. Some dark material deposits are consistent with mixtures of HED materials with carbonaceous chondrites. This would indicate that some dark material deposits in crater walls are megabreccia blocks. The same would hold for bright material blocks found above them. Thus, these are not intact crustal units. Marcia crater is atypical in that the dark material forms a semi-continuous, thin layer immediately below bright material. Bright material occurs as one or more layers. In one region, there is an apparent angular unconformity between the bright material and the dark material where bright material layers appear to be truncated against the underlying dark layer. One crater within the Rheasilvia basin contains two distinct types of bright materials outcropping on its walls, one like that found elsewhere on Vesta and the other an anomalous block 200 m across. This material has the highest albedo; almost twice that of the vestan average. Unlike all other bright materials, this block has a subdued 1 micron pyroxene absorption band in FC color ratios. These data indicate that this block represents a distinct vestan lithology that is rarely exposed.
NASA Astrophysics Data System (ADS)
Hinkey, Robert T.; Tian, Zhaobing; Yang, Rui Q.; Mishima, Tetsuya D.; Santos, Michael B.
2011-08-01
Noninvasive infrared reflectance measurements have been explored as a method for studying the optical properties of Si-doped cladding layers of plasmon waveguide interband cascade lasers. Measurements and theoretical simulations of the reflectance spectra were carried out on both the laser structures themselves, as well as highly doped InAs films grown on GaAs substrates. We have found that there is a sharp drop in the signal of the reflectance spectrum for p-polarized light oscillating near the plasma frequency. This is a manifestation of the so-called Berreman effect, which occurs at frequencies where the dielectric function approaches zero. This is distinct from the plasma edge feature seen in the reflectance spectrum of thick samples. The plasma frequencies of the highly doped layers were obtained by identifying the Berreman feature in the measured spectrum and fitting the spectrum to a modeled curve. Using a model for the effective mass, we were able to obtain measurements of the conduction electron concentration (in a range from 1018 to 1019 cm-3) in the waveguide cladding layers with values that were in good agreement with those found using Hall effect and SIMS measurements. The reflectance data was effectively used to achieve better calibration of the Si-doping during the growth of the n++-type InAs layers in the plasmon waveguide laser structures.
Drug nano-reservoirs synthesized using layer-by-layer technologies.
Costa, Rui R; Alatorre-Meda, Manuel; Mano, João F
2015-11-01
The pharmaceutical industry has been able to tackle the emergence of new microorganisms and diseases by synthesizing new specialized drugs to counter them. Their administration must ensure that a drug is effectively encapsulated and protected until it reaches its target, and that it is released in a controlled way. Herein, the potential of layer-by-layer (LbL) structures to act as drug reservoirs is presented with an emphasis to "nano"-devices of various geometries, from planar coatings to fibers and capsules. The inherent versatile nature of this technique allows producing carriers resorting to distinct classes of materials, variable geometry and customized release profiles that fit within adequate criteria required for disease treatment or for novel applications in the tissue engineering field. The production methods of LbL reservoirs are varied and allow for different kinds of molecules to be incorporated, such as antibiotics, growth factors and biosensing substances, not limited to water-soluble molecules but including hydrophobic drugs. We will also debate the future of LbL in the pharmaceutical industry. Currently, multilayered structures are yet to be covered by the regulatory guidelines that govern the fabrication of nanotechnology products. However, as they stand now, LbL nanodevices have already shown usefulness for antifouling applications, gene therapy, nanovaccines and the formation of de novo tissues. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Bao-hua; Li, Pingyang; Li, Ya-tang; Sun, Yujiao J.; Yanagawa, Yuchio; Obata, Kunihiko; Zhang, Li I.; Tao, Huizhong W.
2009-01-01
Synaptic inhibition plays an important role in shaping receptive field (RF) properties in the visual cortex. However, the underlying mechanisms remain not well understood, partly due to difficulties in systematically studying functional properties of cortical inhibitory neurons in vivo. Here, we established two-photon imaging guided cell-attached recordings from genetically labelled inhibitory neurons and nearby “shadowed” excitatory neurons in the primary visual cortex of adult mice. Our results revealed that in layer 2/3, the majority of excitatory neurons exhibited both On and Off spike subfields, with their spatial arrangement varying from being completely segregated to overlapped. On the other hand, most layer 4 excitatory neurons exhibited only one discernable subfield. Interestingly, no RF structure with significantly segregated On and Off subfields was observed for layer 2/3 inhibitory neurons of either the fast-spike or regular-spike type. They predominantly possessed overlapped On and Off subfields with a significantly larger size than the excitatory neurons, and exhibited much weaker orientation tuning. These results from the mouse visual cortex suggest that different from the push-pull model proposed for simple cells, layer 2/3 simple-type neurons with segregated spike On and Off subfields likely receive spatially overlapped inhibitory On and Off inputs. We propose that the phase-insensitive inhibition can enhance the spatial distinctiveness of On and Off subfields through a gain control mechanism. PMID:19710305
Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction
NASA Astrophysics Data System (ADS)
Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi
2017-02-01
The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec-1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm-2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction.
Learning Midlevel Auditory Codes from Natural Sound Statistics.
Młynarski, Wiktor; McDermott, Josh H
2018-03-01
Interaction with the world requires an organism to transform sensory signals into representations in which behaviorally meaningful properties of the environment are made explicit. These representations are derived through cascades of neuronal processing stages in which neurons at each stage recode the output of preceding stages. Explanations of sensory coding may thus involve understanding how low-level patterns are combined into more complex structures. To gain insight into such midlevel representations for sound, we designed a hierarchical generative model of natural sounds that learns combinations of spectrotemporal features from natural stimulus statistics. In the first layer, the model forms a sparse convolutional code of spectrograms using a dictionary of learned spectrotemporal kernels. To generalize from specific kernel activation patterns, the second layer encodes patterns of time-varying magnitude of multiple first-layer coefficients. When trained on corpora of speech and environmental sounds, some second-layer units learned to group similar spectrotemporal features. Others instantiate opponency between distinct sets of features. Such groupings might be instantiated by neurons in the auditory cortex, providing a hypothesis for midlevel neuronal computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinson, A. B. F.; DeVries, M. J.; Libera, J. A.
Growing interest in Fe{sub 2}O{sub 3} as a light harvesting layer in solar energy conversion devices stems from its unique combination of stability, nontoxicity, and exceptionally low material cost. Unfortunately, the known methods for conformally coating high aspect ratio structures with Fe{sub 2}O{sub 3} leave a glaring gap in the technologically relevant temperature range of 170-350 C. Here, we elucidate a self-limiting atomic layer deposition (ALD) process for the growth of hematite, {alpha}-Fe{sub 2}O{sub 3}, over a moderate temperature window using ferrocene and ozone. At 200 C, the self-limiting growth of Fe{sub 2}O{sub 3} is observed at rates up tomore » 1.4 {angstrom}/cycle. Dense and robust thin films grown on both fused quartz and silicon exhibit the expected optical bandgap (2.1 eV). In situ mass spectrometric analysis reveals the evolution of two distinct cyclic reaction products during the layer-by-layer growth. The readily available and relatively high vapor pressure iron precursor is utilized to uniformly coat a high surface area template with aspect ratio 150.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinson, Alex B.F.; DeVries, Michael J.; Libera, J. A.
Growing interest in Fe 2O 3 as a light harvesting layer in solar energy conversion devices stems from its unique combination of stability, nontoxicity, and exceptionally low material cost. Unfortunately, the known methods for conformally coating high aspect ratio structures with Fe 2O 3 leave a glaring gap in the technologically relevant temperature range of 170-350 °C. Here, we elucidate a self-limiting atomic layer deposition (ALD) process for the growth of hematite, α-Fe 2O 3, over a moderate temperature window using ferrocene and ozone. At 200 °C, the self-limiting growth of Fe 2O 3 is observed at rates up tomore » 1.4 Å/cycle. Dense and robust thin films grown on both fused quartz and silicon exhibit the expected optical bandgap (2.1 eV). In situ mass spectrometric analysis reveals the evolution of two distinct cyclic reaction products during the layer-by-layer growth. The readily available and relatively high vapor pressure iron precursor is utilized to uniformly coat a high surface area template with aspect ratio ~150.« less
The structure and possible functions of the milkfish Chanos chanos adipose eyelid.
Chang, C-H; Chiao, C-C; Yan, H Y
2009-07-01
Basic histological sections (with different staining methods) and scanning electron microscopy (SEM) examinations showed that there were three distinctive layers in the adipose eyelid of milkfish Chanos chanos, which is found in the cephalie region and covers the entire eye. The outer and inner layers were epithelial tissues and the middle layer was composed of connective tissue formed by type I collagen fibrils. No adipose tissue was found in any of the three layers of the so-called adipose eyelid. Examination by transmission spectrophotometer showed that the adipose tissue could filter out ambient light with a wavelength shorter than 305 nm. A photoretinoscope was used to investigate whether the adipose eyelid influenced the mechanism of eye focusing. Eye diopter values did not differ before or after eyelid removal, which indicated that the adipose eyelid did not play a role in eye focusing. In light of these findings, it is suggested that the adipose eyelid serves to block exposure of harmful ultraviolet light into eyes and may also to offer some protection against impact to the eye in the aquatic environment.
NASA Astrophysics Data System (ADS)
Kolle, Mathias; Li, Ling; Kolle, Stefan; Weaver, James; Ortiz, Christine; Aizenberg, Joanna
2013-03-01
Many terrestrial biological organisms have evolved a variety of micro- and nanostructures that provide unique optical signatures including distinctive, dynamic coloration, high reflectivity or superior whiteness. Recently, photonic structures have also been found in the shells or spines of marine animals. Life under water imposes very distinct constraints on organisms relying on visual communication and on the designs and the materials involved in aquatic photonic structures. Here, we present a bio-mineralized calcium carbonate - based crystalline photonic system buried in the shell of the blue-rayed limpet Ansates pellucida. The structure consists of a layered stack of calcite lamellae with uniform thickness and inter-lamella spacing. This arrangement lies at the origin of the blue-green iridescence of the organism's characteristic stripes, which is caused by multilayer interference. The multilayer is supported by a disordered array of spherical particles with an average diameter of 300nm, likely serving to enhance the contrast of the blue stripes. We present a full structural and optical characterization of this bio-mineralised marine photonic system, supported by optical FDTD modeling. The authors gratefully acknowledge financial support by the Air Force Office of Scientific Research under Award No. FA9550-09-1-0669-DOD35CAP. M. Kolle is grateful for support from the Alexander von Humboldt - Foundation.
Bastos, André M.; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K.
2018-01-01
All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50–250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4–22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. PMID:29339471
Bastos, André M; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K
2018-01-30
All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50-250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4-22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. Copyright © 2018 the Author(s). Published by PNAS.
Tuning the magnetism of the top-layer FeAs on BaFe2As2 (001): First-principles study
NASA Astrophysics Data System (ADS)
Zhang, Bing-Jing; Liu, Kai; Lu, Zhong-Yi
2018-04-01
Magnetism may play an important role in inducing the superconductivity in iron-based superconductors. As a prototypical system, the surface of BaFe2As2 provides a good platform for studying related magnetic properties. We have designed systematic first-principles calculations to clarify the surface magnetism of BaFe2As2 (001), which previously has received little attention in comparison with surface structures and electronic states. We find that the surface environment has an important influence on the magnetic properties of the top-layer FeAs. For As-terminated surfaces, the magnetic ground state of the top-layer FeAs is in the staggered dimer antiferromagnetic (AFM) order, distinct from that of the bulk, while for Ba-terminated surfaces the collinear (single-stripe) AFM order is the most stable, the same as that in the bulk. When a certain coverage of Ba or K atoms is deposited onto the As-terminated surface, the calculated energy differences among different AFM orders for the top-layer FeAs on BaFe2As2 (001) can be much reduced, indicating enhanced spin fluctuations. To compare our results with available scanning tunneling microscopy (STM) measurements, we have simulated the STM images of several structural/magnetic terminations. Astonishingly, when the top-layer FeAs is in the staggered dimer AFM order, a stripe pattern appears in the simulated STM image even when the surface Ba atoms adopt a √{2 }×√{2 } structure, while a √{2 }×√{2 } square pattern comes out for the 1 ×1 full As termination. Our results suggest: (i) the magnetic state at the BaFe2As2 (001) surface can be quite different from that in the bulk; (ii) the magnetic properties of the top-layer FeAs can be tuned effectively by surface doping, which may likely induce superconductivity at the surface layer; (iii) both the surface termination and the AFM order in the top-layer FeAs can affect the STM image of BaFe2As2 (001), which needs to be taken into account when identifying the surface termination.
Konsolaki, Eleni; Skaliora, Irini
2015-08-01
The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Growth and characterization of single crystal rocksalt LaAs using LuAs barrier layers
NASA Astrophysics Data System (ADS)
Krivoy, E. M.; Rahimi, S.; Nair, H. P.; Salas, R.; Maddox, S. J.; Ironside, D. J.; Jiang, Y.; Dasika, V. D.; Ferrer, D. A.; Kelp, G.; Shvets, G.; Akinwande, D.; Bank, S. R.
2012-11-01
We demonstrate the growth of high-quality, single crystal, rocksalt LaAs on III-V substrates; employing thin well-behaved LuAs barriers layers at the III-V/LaAs interfaces to suppress nucleation of other LaAs phases, interfacial reactions between GaAs and LaAs, and polycrystalline LaAs growth. This method enables growth of single crystal epitaxial rocksalt LaAs with enhanced structural and electrical properties. Temperature-dependent resistivity and optical reflectivity measurements suggest that epitaxial LaAs is semimetallic, consistent with bandstructure calculations in literature. LaAs exhibits distinct electrical and optical properties, as compared with previously reported rare-earth arsenide materials, with a room-temperature resistivity of ˜459 μΩ-cm and an optical transmission window >50% between ˜3-5 μm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
NASA Astrophysics Data System (ADS)
Asadi, Reza; Ouyang, Zhengbiao
2018-03-01
A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.
NASA Astrophysics Data System (ADS)
Choi, WooJhon; Drexler, Wolfgang; Fujimoto, James G.
Developing and validating new techniques and methods for small animal imaging is an important research area because there are many small animal models of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma [1-6]. Because the retina is a multilayered structure with distinct abnormalities occurring in different intraretinal layers at different stages of disease progression, there is a need for imaging techniques that enable visualization of these layers individually at different time points. Although postmortem histology and ultrastructural analysis can be performed for investigating microscopic changes in the retina in small animal models, this requires sacrificing animals, which makes repeated assessment of the same animal at different time points impossible and increases the number of animals required. Furthermore, some retinal processes such as neurovascular coupling cannot be fully characterized postmortem.
Platinum-Based Nanocages with Subnanometer-Thick Walls and Well-Defined Facets
Zhang, Lei; Wang, Xue; Chi, Miaofang; ...
2015-07-24
A cost-effective catalyst should have a high dispersion of the active atoms, together with a controllable surface structure for the optimization of activity, selectivity, or both. We fabricated nanocages by depositing a few atomic layers of platinum (Pt) as conformal shells on palladium (Pd) nanocrystals with well-defined facets and then etching away the Pd templates. Density functional theory calculations suggest that the etching is initiated via a mechanism that involves the formation of vacancies through the removal of Pd atoms incorporated into the outermost layer during the deposition of Pt. With the use of Pd nanoscale cubes and octahedra asmore » templates, we obtained Pt cubic and octahedral nanocages enclosed by {100} and {111} facets, respectively, which exhibited distinctive catalytic activities toward oxygen reduction.« less
NASA Astrophysics Data System (ADS)
Zuo, Hao-Ran; Cao, Gui-Ping; Wang, Meng; Zhang, Huan-Huan; Song, Chen-Chen; Fang, Xu; Wang, Tao
2018-03-01
Forward osmosis (FO) has received great interest for its considerable potential in a wide range of fields. In this work, the morphology and performance of FO membrane were regulated by adjusting the atmosphere humidity (HC) of casting procedure. The polysulfone support layer was casted under various atmosphere humidity levels ranging from 40% to 80%. By multi-techniques such as SEM, AFM, and XPS, it was proved that the atmosphere humidity had modified the surface morphology and thickness of the skin layer in support layer, which contributed up to 90% of the structure parameter, resulting in distinct morphology, thickness, and cross-linking degree of active layer. The active layer with sparse bead-like wrinkles on the smooth surface of support layer casted at HC = 65% showed the highest water permeability [26.9 (L/m2 h MPa)] and considerable low salt permeability [0.0390 (L/m2 h)]. It was found that the water flux of FO-65 was 27% and 46% higher than that of FO-80 in AL-DS and AL-FS mode, respectively, and the salt rejection was as high as 98%. Our work highlighted the importance of considering the effect of atmosphere humidity during casting when design an FO membrane for appropriate performance.
Petrovsky, Roman; Krohne, Georg; Großhans, Jörg
2018-03-01
The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope. Copyright © 2018 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Meinen, Christopher S.; Luther, Douglas S.
2016-06-01
Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.
NASA Astrophysics Data System (ADS)
Meinen, Christopher S.; Luther, Douglas S.
2016-05-01
Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.
Yu, Chunxiu; Sellers, Kristin K; Radtke-Schuller, Susanne; Lu, Jinghao; Xing, Lei; Ghukasyan, Vladimir; Li, Yuhui; Shih, Yen-Yu I; Murrow, Richard; Fröhlich, Flavio
2016-01-01
The role of higher-order thalamic structures in sensory processing remains poorly understood. Here, we used the ferret (Mustela putorius furo) as a novel model species for the study of the lateral posterior (LP)-pulvinar complex and its structural and functional connectivity with area 17 [primary visual cortex (V1)]. We found reciprocal anatomical connections between the lateral part of the LP nucleus of the LP-pulvinar complex (LPl) and V1. In order to investigate the role of this feedback loop between LPl and V1 in shaping network activity, we determined the functional interactions between LPl and the supragranular, granular and infragranular layers of V1 by recording multiunit activity and local field potentials. Coherence was strongest between LPl and the supragranular V1, with the most distinct peaks in the delta and alpha frequency bands. Inter-area interaction measured by spike-phase coupling identified the delta frequency band being dominated by the infragranular V1 and multiple frequency bands that were most pronounced in the supragranular V1. This inter-area coupling was differentially modulated by full-field synthetic and naturalistic visual stimulation. We also found that visual responses in LPl were distinct from those in V1 in terms of their reliability. Together, our data support a model of multiple communication channels between LPl and the layers of V1 that are enabled by oscillations in different frequency bands. This demonstration of anatomical and functional connectivity between LPl and V1 in ferrets provides a roadmap for studying the interaction dynamics during behaviour, and a template for identifying the activity dynamics of other thalamo-cortical feedback loops. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Anion mediated polytype selectivity among the basic salts of Co(II)
NASA Astrophysics Data System (ADS)
Ramesh, T. N.; Rajamathi, Michael; Vishnu Kamath, P.
2006-08-01
Basic salts of Co(II) crystallize in the rhombohedral structure. Two different polytypes, 3R 1 and 3R 2, with distinct stacking sequences of the metal hydroxide slabs, are possible within the rhombohedral structure. These polytypes are generated by simple translation of successive layers by (2/3, 1/3, z) or (1/3, 2/3, z). The symmetry of the anion and the mode of coordination influences polytype selection. Cobalt hydroxynitrate crystallizes in the structure of the 3R 2 polytype while the hydroxytartarate, hydroxychloride and α-cobalt hydroxide crystallize in the structure of the 3R 1 polytype. Cobalt hydroxysulfate is turbostratically disordered. The turbostratic disorder is a direct consequence of the mismatch between the crystallographically defined interlayer sites generated within the crystal and the tetrahedral symmetry of the SO 42- ions.
The impact of aging on epithelial barriers.
Parrish, Alan R
2017-10-02
The epithelium has many critical roles in homeostasis, including an essential responsibility in establishing tissue barriers. In addition to the fundamental role in separating internal from external environment, epithelial barriers maintain nutrient, fluid, electrolyte and metabolic waste balance in multiple organs. While, by definition, barrier function is conserved, the structure of the epithelium varies across organs. For example, the skin barrier is a squamous layer of cells with distinct structural features, while the lung barrier is composed of a very thin single cell to minimize diffusion space. With the increased focus on age-dependent alterations in organ structure and function, there is an emerging interest in the impact of age on epithelial barriers. This review will focus on the impact of aging on the epithelial barrier of several organs, including the skin, lung, gastrointestinal tract and the kidney, at a structural and functional level.
Wagner, Stephan; Stuttmann, Johannes; Rietz, Steffen; Guerois, Raphael; Brunstein, Elena; Bautor, Jaqueline; Niefind, Karsten; Parker, Jane E
2013-12-11
Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separate EDS1 family member clades through angiosperm evolution suggests distinct functional attributes. We report the Arabidopsis EDS1-SAG101 heterodimer crystal structure with juxtaposed N-terminal α/β hydrolase and C-terminal α-helical EP domains aligned via a large conserved interface. Mutational analysis of the EDS1-SAG101 heterodimer and a derived EDS1-PAD4 structural model shows that EDS1 signals within mutually exclusive heterocomplexes. Although there is evolutionary conservation of α/β hydrolase topology in all three proteins, a noncatalytic resistance mechanism is indicated. Instead, the respective N-terminal domains appear to facilitate binding of the essential EP domains to create novel interaction surfaces on the heterodimer. Transitions between distinct functional EDS1 heterodimers might explain the central importance and versatility of this regulatory node in plant immunity. Copyright © 2013 Elsevier Inc. All rights reserved.
The endoplasmic reticulum: structure, function and response to cellular signaling.
Schwarz, Dianne S; Blower, Michael D
2016-01-01
The endoplasmic reticulum (ER) is a large, dynamic structure that serves many roles in the cell including calcium storage, protein synthesis and lipid metabolism. The diverse functions of the ER are performed by distinct domains; consisting of tubules, sheets and the nuclear envelope. Several proteins that contribute to the overall architecture and dynamics of the ER have been identified, but many questions remain as to how the ER changes shape in response to cellular cues, cell type, cell cycle state and during development of the organism. Here we discuss what is known about the dynamics of the ER, what questions remain, and how coordinated responses add to the layers of regulation in this dynamic organelle.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., or conditions and which is stacked or arranged in layers with the same kinds together so that the tobacco in the lower layer or layers is distinctly inferior in grade, quality, or condition from the tobacco in the top or upper layers. (See Rule 24, § 29.3625.) [30 FR 9207, July 23, 1965. Redesignated and...
Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet
Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka
2016-01-01
The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier. PMID:27126274
Airborne measurements of total reactive odd nitrogen (NO(y))
NASA Technical Reports Server (NTRS)
Huebler, G.; Fahey, D. W.; Ridley, B. A.; Gregory, G. L.; Fehsenfeld, F. C.
1992-01-01
Airborne total reactive odd nitrogen measurements were made during August and September 1986 over the continental United States and off the west coast over the Pacific Ocean during NASA's Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation 2 program. Measurements were made in the marine and continental boundary layer and the free troposphere up to 6.1 km altitude. NO(y) mixing ratios between 24 pptv and more than 1 ppbv were found, with median values of 101 pptv in the marine boundary layer, 298 pptv in the marine free troposphere, and 288 pptv in the continental free troposphere, respectively. The marine troposphere exhibited layered structure which was also seen in the simultaneously measured ozone mixing ratio and dew point temperature. The averaged vertical NO(y) profile over the ocean does not show a distinct gradient. The NO(y) mixing ratio over the continent decreases with increasing altitude. The latter is consistent with our understanding that the continents are the major source region for these gases.
Unsuccessful initial search for a midmantle chemical boundary with seismic arrays
Vidale, J.E.; Schubert, G.; Earle, P.S.
2001-01-01
Compositional layering of the midmantle has been proposed to account for seismic and geochemical patterns [van der Hilst and Karason, 1999], and inferred radiogenic heat source concentrations [Kellogg et al., 1999]. Compositional layering would require thermal boundary layers both above and below an interface. We construct a minimal 1-D model of a mid-mantle boundary consistent with the observed nearly adiabatic compressional velocity structure [Dziewonksi and Anderson, 1981] and the proposed high heat flow from the lower mantle [Albarede and van der Hilst, 1999; Kellogg et al., 1999]. Ray tracing and reflectivity synthetic seismograms show that a distinct triplication is predicted for short-period P waves. Although topography on a boundary would cause uncertainty in the strength and the range of the triplication, many clear observations would be expected. We examine data from the US West Coast regional networks in the most likely distance range of 60?? to 70?? for a 1770-km-depth boundary, and find no evidence for P wave triplications.
Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice
Sánchez, M. Alejandra; Kling, Tanja; Ishiyama, Tatsuya; van Zadel, Marc-Jan; Mezger, Markus; Jochum, Mara N.; Cyran, Jenée D.; Smit, Wilbert J.; Bakker, Huib J.; Shultz, Mary Jane; Morita, Akihiro; Donadio, Davide; Nagata, Yuki; Bonn, Mischa; Backus, Ellen H. G.
2017-01-01
On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hydrogen-bonded structure of the outermost water layers occurs at 257 K. The spectral calculations from the molecular dynamics simulations reproduce the experimental findings; this allows us to interpret our experimental findings in terms of a stepwise change from one to two molten bilayers at the transition temperature. PMID:27956637
Instabilities in a staircase stratified shear flow
NASA Astrophysics Data System (ADS)
Ponetti, G.; Balmforth, N. J.; Eaves, T. S.
2018-01-01
We study stratified shear flow instability where the density profile takes the form of a staircase of interfaces separating uniform layers. Internal gravity waves riding on density interfaces can resonantly interact due to a background shear flow, resulting in the Taylor-Caulfield instability. The many steps of the density profile permit a multitude of interactions between different interfaces, and a rich variety of Taylor-Caulfield instabilities. We analyse the linear instability of a staircase with piecewise-constant density profile embedded in a background linear shear flow, locating all the unstable modes and identifying the strongest. The interaction between nearest-neighbour interfaces leads to the most unstable modes. The nonlinear dynamics of the instabilities are explored in the long-wavelength, weakly stratified limit (the defect approximation). Unstable modes on adjacent interfaces saturate by rolling up the intervening layer into a distinctive billow. These nonlinear structures coexist when stacked vertically and are bordered by the sharp density gradients that are the remnants of the steps of the original staircase. Horizontal averages remain layer-like.
Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex.
Briggs, F; Callaway, E M
2001-05-15
Layer 6 of monkey V1 contains a physiologically and anatomically diverse population of excitatory pyramidal neurons. Distinctive arborization patterns of axons and dendrites within the functionally specialized cortical layers define eight types of layer 6 pyramidal neurons and suggest unique information processing roles for each cell type. To address how input sources contribute to cellular function, we examined the laminar sources of functional excitatory input onto individual layer 6 pyramidal neurons using scanning laser photostimulation. We find that excitatory input sources correlate with cell type. Class I neurons with axonal arbors selectively targeting magnocellular (M) recipient layer 4Calpha receive input from M-dominated layer 4B, whereas class I neurons whose axonal arbors target parvocellular (P) recipient layer 4Cbeta receive input from P-dominated layer 2/3. Surprisingly, these neuronal types do not differ significantly in the inputs they receive directly from layers 4Calpha or 4Cbeta. Class II cells, which lack dense axonal arbors within layer 4C, receive excitatory input from layers targeted by their local axons. Specifically, type IIA cells project axons to and receive input from the deep but not superficial layers. Type IIB neurons project to and receive input from the deepest and most superficial, but not middle layers. Type IIC neurons arborize throughout the cortical layers and tend to receive inputs from all cortical layers. These observations have implications for the functional roles of different layer 6 cell types in visual information processing.
Mesoscopic Free Path of Nonthermalized Photogenerated Carriers in a Ferroelectric Insulator.
Gu, Zongquan; Imbrenda, Dominic; Bennett-Jackson, Andrew L; Falmbigl, Matthias; Podpirka, Adrian; Parker, Thomas C; Shreiber, Daniel; Ivill, Mathew P; Fridkin, Vladimir M; Spanier, Jonathan E
2017-03-03
We show how finite-size scaling of a bulk photovoltaic effect-generated electric field in epitaxial ferroelectric insulating BaTiO_{3}(001) films and a photo-Hall response involving the bulk photovoltaic current reveal a large room-temperature mean free path of photogenerated nonthermalized electrons. Experimental determination of mesoscopic ballistic optically generated carrier transport opens a new paradigm for hot electron-based solar energy conversion, and for facile control of ballistic transport distinct from existing low-dimensional semiconductor interfaces, surfaces, layers, or other structures.
Clendenin, C.W.; Garihan, J.M.
2006-01-01
Four periods of deformation (D1-D4) are recognized in the Lion Park Road borrow pit near Marietta, South Carolina. Although each period is characterized by distinct structures, D3 produced two structural styles (D3a, D3b) resulting from layer-parallel shortening. D3a is characterized by detachment folding at the tip of an underlying thrust. D3b is a fold-to-fault progression that was localized by east-dipping, quartz-filled gash fractures. The fold-to-fault progression demonstrates the influence of a mechanical anisotropy on ramp development. The early stages of D3b were formed by deflection of northwest-directed, layer-parallel shortening and active, down-section propagation of folds and thrusts. Following connection with a splay of basal detachment, later D3b stages resulted from up-section movement that produced kink folding and a throughgoing thrust. This up-section movement deformed and modified the geometries of older, down-section structures. Detailed mesoscopic field observations, integrated with a combination of current thrust fault models, are used to interpret the D3b fold-to-fault progression. ?? 2006 Elsevier Ltd. All rights reserved.
Theoretical insights into aggregation-induced helicity modulation of a perylene bisimide derivative.
Liang, Lijun; Li, Xin
2018-02-12
Formation of helical chiroptical self-assemblies via noncovalent interaction is a widely observed phenomenon in nature, the mechanism of which remains insufficiently understood. Employing an amphiphilic perylene-sugar dyad molecule (PBI-HAG) as an example, we report that the modulatable supramolecular helicity may emerge from an aggregating process that is dominated by competition between two types of noncovalent interaction: hydrogen bonding and π-π stacking. The interplay between these two driving forces, which is greatly affected by the solvent environment, determines the morphology the supramolecular assembly of PBI-HAGs. In particular, a non-layered supramolecular structure was formed in octane owing to stabilization effects of intermolecular hydrogen bonds, whereas a layered supramolecular structure was formed in water because of energetically favorable π-π stacking of aromatic rings. The formation of distinct supramolecular architectures in different solvents was reinforced by simulated circular dichroism spectra, which show opposite signals consistent with experimental observations. The results of this study could help us understand aggregation-induced supramolecular chirality of noncovalent self-assemblies. Graphical abstract Left Typical structures of amphiphilic perylene-sugar dyad (PBI-HAG) aggregates in different octane and water. Right Simulated CD and UV-Vis spectra of core PBIs aggregates in octane and water.
Structure and formation of convection of secondary rainbands in a simulated typhoon Jangmi (2008)
NASA Astrophysics Data System (ADS)
Xiao, Jing; Tan, Zhe-Min; Chow, Kim-Chiu
2018-04-01
Secondary rainbands in tropical cyclone are relatively transient compared with the quasi-stationary principle rainbands. To have a better understanding on their convective structure, a cloud-resolving scale numerical simulation of the super typhoon Jangmi (2008) was performed. The results suggest that the convections in secondary rainbands have some distinctive features that may not be seen in other types of rainbands in tropical cyclone. First, they have a front-like structure and are triggered to form above the boundary layer by the convergence of the above-boundary outflow from the inner side (warmer) and the descending inflow (colder) from the outer side. These elevated convections can be further confirmed by the three-dimensional backward trajectory calculations. Second, due to the release in baroclinic energy, the lower portion of the mid-level inflow from outside may penetrate into the bottom of the convection tower and may help accelerate the boundary layer inflow in the inner side. Third, the local maximum tangential wind is concentrated in the updraft region, with a lower portion which is dipping inward. Tangential wind budget analysis also suggests that the maxima are mainly contributed by the updraft advection, and can be advected cyclonically downstream by the tangential advection.
Gatome, Catherine W; Slomianka, Lutz; Mwangi, Dieter K; Lipp, Hans-Peter; Amrein, Irmgard
2010-05-01
This study describes the organisation of the entorhinal cortex of the Megachiroptera, straw-coloured fruit bat and Wahlberg's epauletted fruit bat. Using Nissl and Timm stains, parvalbumin and SMI-32 immunohistochemistry, we identified five fields within the medial (MEA) and lateral (LEA) entorhinal areas. MEA fields E(CL) and E(C) are characterised by a poor differentiation between layers II and III, a distinct layer IV and broad, stratified layers V and VI. LEA fields E(I), E(R) and E(L) are distinguished by cell clusters in layer II, a clear differentiation between layers II and III, a wide columnar layer III and a broad sublayer Va. Clustering in LEA layer II was more typical of the straw-coloured fruit bat. Timm-staining was most intense in layers Ib and II across all fields and layer III of field E(R). Parvalbumin-like staining varied along a medio-lateral gradient with highest immunoreactivity in layers II and III of MEA and more lateral fields of LEA. Sparse SMI-32-like immunoreactivity was seen only in Wahlberg's epauletted fruit bat. Of the neurons in MEA layer II, ovoid stellate cells account for approximately 38%, polygonal stellate cells for approximately 8%, pyramidal cells for approximately 18%, oblique pyramidal cells for approximately 6% and other neurons of variable morphology for approximately 29%. Differences between bats and other species in cellular make-up and cytoarchitecture of layer II may relate to their three-dimensional habitat. Cytoarchitecture of layer V in conjunction with high encephalisation and structural changes in the hippocampus suggest similarities in efferent hippocampal --> entorhinal --> cortical interactions between fruit bats and primates.
Exhibition of veiled features in diffusion bonding of titanium alloy and stainless steel via copper
NASA Astrophysics Data System (ADS)
Thirunavukarasu, Gopinath; Kundu, Sukumar; Laha, Tapas; Roy, Deb; Chatterjee, Subrata
2017-11-01
An investigation was carried out to know the extent of influence of bonding-time on the interface structure and mechanical properties of diffusion bonding (DB) of TiA|Cu|SS. DB of Ti6Al4V (TiA) and 304 stainless steel (SS) using pure copper (Cu) of 200-μm thickness were processed in vacuum using 4-MPa bonding-pressure at 1123 K from 15 to 120 min in steps of 15 min. Preparation of DB was not possible when bonding-time was less than 60 min as the bonding at Cu|SS interface was unsuccessful in spite of effective bonding at TiA|Cu interface; however, successful DB were produced when the bonding-time was 60 min and beyond. DB processed for 60 and 75 min (classified as shorter bonding-time interval) showed distinctive characteristics (structural, mechanical, and fractural) as compared to the DB processed for 90, 105, and 120 min (classified as longer bonding-time interval). DB processed for 60 and 75 min exhibited layer-wise Cu-Ti-based intermetallics at TiA|Cu interface, whereas Cu|SS interface was completely free from reaction products. The layer-wise structure of Cu-Ti-based intermetallics were not observed at TiA|Cu interface in the DB processed for longer bonding-time; however, the Cu|SS interface had layer-wise ternary intermetallic compounds (T1, T2, and T3) of Cu-Fe-Ti-based along with σ phase depending upon the bonding-time chosen. Diffusivity of Ti-atoms in Cu-layer (DTi in Cu-layer) was much greater than the diffusivity of Fe-atoms in Cu-layer (DFe in Cu-layer). Ti-atoms reached Cu|SS interface but Fe-atoms were unable to reach TiA|Cu interface. It was observed that DB fractured at Cu|SS interface when processed for shorter bonding-time interval, whereas the DB processed for longer bonding-time interval fractured apparently at the middle of Cu-foil region predominantly due to the existence of brittle Cu-Fe-Ti-based intermetallics.
Lionard, Marie; Péquin, Bérangère; Lovejoy, Connie; Vincent, Warwick F
2012-01-01
Cyanobacterial mats are often a major biological component of extreme aquatic ecosystems, and in polar lakes and streams they may account for the dominant fraction of total ecosystem biomass and productivity. In this study we examined the vertical structure and physiology of Arctic microbial mats relative to the question of how these communities may respond to ongoing environmental change. The mats were sampled from Ward Hunt Lake (83°5.297'N, 74°9.985'W) at the northern coast of Arctic Canada, and were composed of three visibly distinct layers. Microsensor profiling showed that there were strong gradients in oxygen within each layer, with an overall decrease from 100% saturation at the mat surface to 0%, at the bottom, accompanied by an increase of 0.6 pH units down the profile. Gene clone libraries (16S rRNA) revealed the presence of Oscillatorian sequences throughout the mat, while Nostoc related species dominated the two upper layers, and Nostocales and Synechococcales sequences were common in the bottom layer. High performance liquid chromatography analyses showed a parallel gradient in pigments, from high concentrations of UV-screening scytonemin in the upper layer to increasing zeaxanthin and myxoxanthin in the bottom layer, and an overall shift from photoprotective to photosynthetic carotenoids down the profile. Climate change is likely to be accompanied by lake level fluctuations and evaporative concentration of salts, and thus increased osmotic stress of the littoral mat communities. To assess the cellular capacity to tolerate increasing osmolarity on physiology and cell membrane integrity, mat sections were exposed to a gradient of increasing salinities, and PAM measurements of in vivo chlorophyll fluorescence were made to assess changes in maximum quantum yield. The results showed that the mats were tolerant of up to a 46-fold increase in salinity. These features imply that cyanobacterial mats are resilient to ongoing climate change, and that in the absence of major biological perturbations, these vertically structured communities will continue to be a prominent feature of polar aquatic ecosystems.
Baltar, Federico; Arístegui, Javier; Gasol, Josep M; Lekunberri, Itziar; Herndl, Gerhard J
2010-08-01
To investigate the effects of mesoscale eddies on prokaryotic assemblage structure and activity, we sampled two cyclonic eddies (CEs) and two anticyclonic eddies (AEs) in the permanent eddy-field downstream the Canary Islands. The eddy stations were compared with two far-field (FF) stations located also in the Canary Current, but outside the influence of the eddy field. The distribution of prokaryotic abundance (PA), bulk prokaryotic heterotrophic activity (PHA), various indicators of single-cell activity (such as nucleic acid content, proportion of live cells, and fraction of cells actively incorporating leucine), as well as bacterial and archaeal community structure were determined from the surface to 2000 m depth. In the upper epipelagic layer (0-200 m), the effect of eddies on the prokaryotic community was more apparent, as indicated by the higher PA, PHA, fraction of living cells, and percentage of active cells incorporating leucine within eddies than at FF stations. Prokaryotic community composition differed also between eddy and FF stations in the epipelagic layer. In the mesopelagic layer (200-1000 m), there were also significant differences in PA and PHA between eddy and FF stations, although in general, there were no clear differences in community composition or single-cell activity. The effects on prokaryotic activity and community structure were stronger in AE than CE, decreasing with depth in both types of eddies. Overall, both types of eddies show distinct community compositions (as compared with FF in the epipelagic), and represent oceanic 'hotspots' of prokaryotic activity (in the epi- and mesopelagic realms).
NASA Astrophysics Data System (ADS)
Dong, Xiaowan; Zhang, Yadi; Ding, Bing; Hao, Xiaodong; Dou, Hui; Zhang, Xiaogang
2018-06-01
Multifarious layered materials have received extensive concern in the field of energy storage due to their distinctive two-dimensional (2D) structure. However, the natural tendency to be re-superimposed and the inherent disadvantages of a single 2D material significantly limit their performance. In this work, the delaminated Ti3C2Tx (d-Ti3C2Tx)/cobalt-aluminum layered double hydroxide (Ti3C2Tx/CoAl-LDH) composites are prepared by layer-by-layer self-assembly driven by electrostatic interaction. The alternate Ti3C2Tx and CoAl-LDH layers prevent each other from restacking and the obtained Ti3C2Tx/CoAl-LDH heterostructure combine the advantages of high electron conductivity of Ti3C2Tx and high electrochemical activity of CoAl-LDH, thus effectively improving the electrochemical reactivity of electrode materials and accelerating the kinetics of Faraday reaction. As a consequence, as a cathode for alkaline hybrid battery, the Ti3C2Tx/CoAl-LDH electrode exhibits a high specific capacity of 106 mAh g-1 at a current density of 0.5 A g-1 and excellent rate capability (78% at 10 A g-1), with an excellent cycling stability of 90% retention after 5000 cycles at 4 A g-1. This work provides an alternative route to design advanced 2D electrode materials, thus exploiting their full potentials for alkaline hybrid batteries.
Character Recognition Using Genetically Trained Neural Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, C.; Stantz, K.M.; Trahan, M.W.
1998-10-01
Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfidmore » recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of noise significantly degrades character recognition efficiency, some of which can be overcome by adding noise during training and optimizing the form of the network's activation fimction.« less
Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices.
Black, Jennifer M; Come, Jeremy; Bi, Sheng; Zhu, Mengyang; Zhao, Wei; Wong, Anthony T; Noh, Joo Hyon; Pudasaini, Pushpa R; Zhang, Pengfei; Okatan, Mahmut Baris; Dai, Sheng; Kalinin, Sergei V; Rack, Philip D; Ward, Thomas Zac; Feng, Guang; Balke, Nina
2017-11-22
Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.
NASA Astrophysics Data System (ADS)
Haslauer, C. P.; Bárdossy, A.; Sudicky, E. A.
2017-09-01
This paper demonstrates quantitative reasoning to separate the dataset of spatially distributed variables into different entities and subsequently characterize their geostatistical properties, properly. The main contribution of the paper is a statistical based algorithm that matches the manual distinction results. This algorithm is based on measured data and is generally applicable. In this paper, it is successfully applied at two datasets of saturated hydraulic conductivity (K) measured at the Borden (Canada) and the Lauswiesen (Germany) aquifers. The boundary layer was successfully delineated at Borden despite its only mild heterogeneity and only small statistical differences between the divided units. The methods are verified with the more heterogeneous Lauswiesen aquifer K data-set, where a boundary layer has previously been delineated. The effects of the macro- and the microstructure on solute transport behaviour are evaluated using numerical solute tracer experiments. Within the microscale structure, both Gaussian and non-Gaussian models of spatial dependence of K are evaluated. The effects of heterogeneity both on the macro- and the microscale are analysed using numerical tracer experiments based on four scenarios: including or not including the macroscale structures and optimally fitting a Gaussian or a non-Gaussian model for the spatial dependence in the micro-structure. The paper shows that both micro- and macro-scale structures are important, as in each of the four possible geostatistical scenarios solute transport behaviour differs meaningfully.
Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices
Black, Jennifer M.; Come, Jeremy; Bi, Sheng; ...
2017-10-24
Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less
Quantum structure in economics: The Ellsberg paradox
NASA Astrophysics Data System (ADS)
Aerts, Diederik; Sozzo, Sandro
2012-03-01
The expected utility hypothesis and Savage's Sure-Thing Principle are violated in real life decisions, as shown by the Allais and Ellsberg paradoxes. The popular explanation in terms of ambiguity aversion is not completely accepted. As a consequence, uncertainty is still problematical in economics. To overcome these difficulties a distinction between risk and ambiguity has been introduced which depends on the existence of a Kolmogorovian probabilistic structure modeling these uncertainties. On the other hand, evidence of everyday life suggests that context plays a fundamental role in human decisions under uncertainty. Moreover, it is well known from physics that any probabilistic structure modeling contextual interactions between entities structurally needs a non-Kolmogorovian framework admitting a quantum-like representation. For this reason, we have recently introduced a notion of contextual risk to mathematically capture situations in which ambiguity occurs. We prove in this paper that the contextual risk approach can be applied to the Ellsberg paradox, and elaborate a sphere model within our hidden measurement formalism which reveals that it is the overall conceptual landscape that is responsible of the disagreement between actual human decisions and the predictions of expected utility theory, which generates the paradox. This result points to the presence of a quantum conceptual layer in human thought which is superposed to the usually assumed classical logical layer, and conceptually supports the thesis of several authors suggesting the presence of quantum structure in economics and decision theory.
Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Jennifer M.; Come, Jeremy; Bi, Sheng
Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less
Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl 3 crystals
McGuire, Michael A.; Clark, Genevieve; KC, Santosh; ...
2017-06-19
CrCl 3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl 3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stagesmore » on cooling, with ferromagnetic correlations forming before long-range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First-principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Lastly, we demonstrate that monolayer and few-layer CrCl 3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.« less
Vargas, Anthony; Liu, Fangze; Lane, Christopher; Rubin, Daniel; Bilgin, Ismail; Hennighausen, Zachariah; DeCapua, Matthew; Bansil, Arun; Kar, Swastik
2017-01-01
Vertical stacking is widely viewed as a promising approach for designing advanced functionalities using two-dimensional (2D) materials. Combining crystallographically commensurate materials in these 2D stacks has been shown to result in rich new electronic structure, magnetotransport, and optical properties. In this context, vertical stacks of crystallographically incommensurate 2D materials with well-defined crystallographic order are a counterintuitive concept and, hence, fundamentally intriguing. We show that crystallographically dissimilar and incommensurate atomically thin MoS2 and Bi2Se3 layers can form rotationally aligned stacks with long-range crystallographic order. Our first-principles theoretical modeling predicts heterocrystal electronic band structures, which are quite distinct from those of the parent crystals, characterized with an indirect bandgap. Experiments reveal striking optical changes when Bi2Se3 is stacked layer by layer on monolayer MoS2, including 100% photoluminescence (PL) suppression, tunable transmittance edge (1.1→0.75 eV), suppressed Raman, and wide-band evolution of spectral transmittance. Disrupting the interface using a focused laser results in a marked the reversal of PL, Raman, and transmittance, demonstrating for the first time that in situ manipulation of interfaces can enable “reconfigurable” 2D materials. We demonstrate submicrometer resolution, “laser-drawing” and “bit-writing,” and novel laser-induced broadband light emission in these heterocrystal sheets. PMID:28740860
Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl 3 crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, Michael A.; Clark, Genevieve; KC, Santosh
CrCl 3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl 3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stagesmore » on cooling, with ferromagnetic correlations forming before long-range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First-principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Lastly, we demonstrate that monolayer and few-layer CrCl 3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.« less
High-Flow Asymmetric Reverse-Osmosis Membranes
NASA Technical Reports Server (NTRS)
Katz, M. C.; Wydeven, T. J.
1984-01-01
Water-soluble polymer membrane insolubilized by transition-metal salt. Thin layer of lower permeability material joined with thicker layer of highpermeability material. Two layers chemically identical or chemically distinct. They differ in density, compactness or other respects. Used to purify or desalinate seawater, brackish water, or industrial or domestic wastewater.
InSe monolayer: synthesis, structure and ultra-high second-harmonic generation
NASA Astrophysics Data System (ADS)
Zhou, Jiadong; Shi, Jia; Zeng, Qingsheng; Chen, Yu; Niu, Lin; Liu, Fucai; Yu, Ting; Suenaga, Kazu; Liu, Xinfeng; Lin, Junhao; Liu, Zheng
2018-04-01
III–IV layered materials such as indium selenide have excellent photoelectronic properties. However, synthesis of materials in such group, especially with a controlled thickness down to monolayer, still remains challenging. Herein, we demonstrate the successful synthesis of monolayer InSe by physical vapor deposition (PVD) method. The high quality of the sample was confirmed by complementary characterization techniques such as Raman spectroscopy, atomic force microscopy (AFM) and high resolution annular dark field scanning transmission electron microscopy (ADF-STEM). We found the co-existence of different stacking sequence (β- and γ-InSe) in the same flake with a sharp grain boundary in few-layered InSe. Edge reconstruction is also observed in monolayer InSe, which has a distinct atomic structure from the bulk lattice. Moreover, we discovered that the second-harmonic generation (SHG) signal from monolayer InSe shows large optical second-order susceptibility that is 1–2 orders of magnitude higher than MoS2, and even 3 times of the largest value reported in monolayer GaSe. These results make atom-thin InSe a promising candidate for optoelectronic and photosensitive device applications.
Spin-Valve Effect in NiFe/MoS2/NiFe Junctions.
Wang, Weiyi; Narayan, Awadhesh; Tang, Lei; Dolui, Kapildeb; Liu, Yanwen; Yuan, Xiang; Jin, Yibo; Wu, Yizheng; Rungger, Ivan; Sanvito, Stefano; Xiu, Faxian
2015-08-12
Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have been recently proposed as appealing candidate materials for spintronic applications owing to their distinctive atomic crystal structure and exotic physical properties arising from the large bonding anisotropy. Here we introduce the first MoS2-based spin-valves that employ monolayer MoS2 as the nonmagnetic spacer. In contrast with what is expected from the semiconducting band-structure of MoS2, the vertically sandwiched-MoS2 layers exhibit metallic behavior. This originates from their strong hybridization with the Ni and Fe atoms of the Permalloy (Py) electrode. The spin-valve effect is observed up to 240 K, with the highest magnetoresistance (MR) up to 0.73% at low temperatures. The experimental work is accompanied by the first principle electron transport calculations, which reveal an MR of ∼9% for an ideal Py/MoS2/Py junction. Our results clearly identify TMDs as a promising spacer compound in magnetic tunnel junctions and may open a new avenue for the TMDs-based spintronic applications.
Experiments in free shear flows: Status and needs for the future
NASA Technical Reports Server (NTRS)
Kline, S. J.; Coles, D. E.; Eggers, J. M.; Harsha, P. T.
1973-01-01
Experiments in free turbulent flows are recommended with the primary concern placed on classical flows in order to augment understanding and for model building. Five classes of experiments dealing with classical free turbulent flows are outlined and proposed as being of particular significance for the near future. These classes include the following: (1) Experiments clarifying the effect of density variation owing to use of different gases, with and without the additional effect of density variation due to high Mach number or other effects; (2) experiments clarifying the role and importance of various parameters which determine the behavior of the near field as well as the condictions under which any of these parameters can be neglected; (3) experiments determining the cumulative effect of initial conditions in terms of distance to fully established flow; (4) experiments for cases where two layers of distinctly different initial turbulence structure flow side by side at the same mean speed; and (5) experiment using contemporary experimental techniques to study structure in free turbulent shear flows in order to compliment and support contemporary work on boundary layers.
Defeyt, C; Van Pevenage, J; Moens, L; Strivay, D; Vandenabeele, P
2013-11-01
In art analysis, copper phthalocyanine (CuPc) is often identified as an important pigment (PB15) in 20th century artworks. Raman spectroscopy is a very valuable technique for the detection of this pigment in paint systems. However, PB15 is used in different polymorphic forms and identification of the polymorph could retrieve information on the production process of the pigment at the moment. Raman spectroscopy, being a molecular spectroscopic method of analysis, is able to discriminate between polymorphs of crystals. However, in the case of PB15, spectral interpretation is not straightforward, and Raman data treatment requires some improvements concerning the PB15 polymorphic discrimination in paints. Here, Raman spectroscopy is combined with chemometrical analysis in order to develop a procedure allowing us to identify the PB15 crystalline structure in painted layers and in artworks. The results obtained by Linear Discriminant Analysis (LDA), using intensity ratios as variables, demonstrate the ability of this procedure to predict the crystalline structure of a PB15 pigment in unknown paint samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Mathematical Modeling of Language Games
NASA Astrophysics Data System (ADS)
Loreto, Vittorio; Baronchelli, Andrea; Puglisi, Andrea
In this chapter we explore several language games of increasing complexity. We first consider the so-called Naming Game, possibly the simplest example of the complex processes leading progressively to the establishment of human-like languages. In this framework, a globally shared vocabulary emerges as a result of local adjustments of individual word-meaning association. The emergence of a common vocabulary only represents a first stage while it is interesting to investigate the emergence of higher forms of agreement, e.g., compositionality, categories, syntactic or grammatical structures. As an example in this direction we consider the so-called Category Game. Here one focuses on the process by which a population of individuals manages to categorize a single perceptually continuous channel. The problem of the emergence of a discrete shared set of categories out of a continuous perceptual channel is a notoriously difficult problem relevant for color categorization, vowels formation, etc. The central result here is the emergence of a hierarchical category structure made of two distinct levels: a basic layer, responsible for fine discrimination of the environment, and a shared linguistic layer that groups together perceptions to guarantee communicative success.
O' Connell bridge inspection by means of Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Santos Assuncao, Sonia, ,, Dr
2016-04-01
Ground Penetrating Radar (GPR) is a well-known technique successfully applied in different areas. In structural inspection the methodology may expose information about structural arrangement and pathologies. GPR emits high frequency electromagnetic impulses allowing to detect changes on the electromagnetic properties: electrical conductivity, dielectric constant and magnetic permeability. The central frequency of the each antenna is characterized by a specific resolution and penetration depth. Therefore, different scales of structures can be analysed. High frequency antennas output high resolution images/signals about the shallowest elements such as rebar and the thickness of the first layer. On the other hand, intermediate or lower frequency antennas locate deeper structures, such as the thickness of the arch. The compilation of distinct frequencies gives a better understanding and a more accurate detection of elements in the inner structure. O'Connell Bridge (1877) is one of 24 bridges along River Liffey and one the most famous historical structures in Dublin. It is composed by sandstones and granite and covered by asphalt which represents a suitable structure to evaluate by means of GPR. The lack of inner structural information, especially the thickness of the layer, presence of reinforcement or other metallic elements of support required, at least, a dual frequency analysis of the bridge. In this case, it was applied the (200 MHz and 600 MHz) Multi-Channel Stream EM combined with 1.6 GHz GSSI high frequency antenna. The inspection of bridges by means of GPR may provide not exclusively interesting structural data but historical information and the state of conservation.
Self-Organization of Polymer Brush Layers in a Poor Solvent
NASA Astrophysics Data System (ADS)
Karim, A.; Tsukruk, V. V.; Douglas, J. F.; Satija, S. K.; Fetters, L. J.; Reneker, D. H.; Foster, M. D.
1995-10-01
Synthesis of densely grafted polymer brushes from good solvent polymer solutions is difficult when the surface interaction is only weakly attractive because of the strong steric repulsion between the polymer chains. To circumvent this difficulty we graft polymer layers in a poor solvent to exploit attractive polymer-polymer interactions which largely nullify the repulsive steric interactions. This simple strategy gives rise to densely grafted and homogeneous polymer brush layers. Model end-grafted polystyrene chains (M_w = 105,000) are prepared in the poor solvent cyclohexane (9.5 °C) where the chains are chemically attached to the surface utilizing a trichlorosilane end-group. Polished silicon wafers were then exposed to the reactive polymer solutions for a series of “induction times” tau_I and the evolving layer was characterized by X-ray reflectivity and atomic force microscopy. Distinct morphologies were found depending on tau_I. For short tau_I, corresponding to a grafting density less than 5 mg/m^2, the grafted layer forms an inhomogeneous island-like structure. At intermediate tau_I, where the coverage becomes percolating, a surface pattern develops which appears similar to spinodal decomposition in bulk solution. Finally, after sufficiently long tau_I, a dense and nearly homogeneous layer with a sharp interface is formed which does not exhibit surface pattern formation. The stages of brush growth are discussed qualitatively in terms of a random deposition model.
The ocean mixed layer under Southern Ocean sea-ice: Seasonal cycle and forcing
NASA Astrophysics Data System (ADS)
Pellichero, Violaine; Sallée, Jean-Baptiste; Schmidtko, Sunke; Roquet, Fabien; Charrassin, Jean-Benoît
2017-02-01
The oceanic mixed layer is the gateway for the exchanges between the atmosphere and the ocean; in this layer, all hydrographic ocean properties are set for months to millennia. A vast area of the Southern Ocean is seasonally capped by sea-ice, which alters the characteristics of the ocean mixed layer. The interaction between the ocean mixed layer and sea-ice plays a key role for water mass transformation, the carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the under-ice mixed layer are poorly understood due to the sparseness of in situ observations and measurements. In this study, we combine distinct sources of observations to overcome this lack in our understanding of the polar regions. Working with elephant seal-derived, ship-based, and Argo float observations, we describe the seasonal cycle of the ocean mixed-layer characteristics and stability of the ocean mixed layer over the Southern Ocean and specifically under sea-ice. Mixed-layer heat and freshwater budgets are used to investigate the main forcing mechanisms of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity, and vertical entrainment play only secondary roles. Our results suggest that changes in regional sea-ice distribution and annual duration, as currently observed, widely affect the buoyancy budget of the underlying mixed layer, and impact large-scale water mass formation and transformation with far reaching consequences for ocean ventilation.
Understanding the dimensional and mechanical properties of coastal Langmuir Circulations
NASA Astrophysics Data System (ADS)
Shrestha, Kalyan; Kuehl, Joseph; Anderson, William
2017-11-01
Non-linear interaction of surface waves and wind-driven shear instability in the upper ocean mixed layer form counter-rotating vortical structures called Langmuir Circulations. This oceanic microscale turbulence is one of the key contributors of mixing and vertical transport in the upper ocean mixed layer. Langmuir turbulence in the open (deep) ocean has already been the topic of a large research effort. However, coastal Langmuir cells are distinctly different from Langmuir cells in open-ocean regions, where additional bottom-boundary layer shear alters the kinematic properties of Langmuir cells. For this study, we have conducted a wide-ranging numerical study (solving the grid-filtered Craik-Leibovich equations) of coastal Langmuir turbulence, assessing which parameters affect Langmuir cells and defining the parametric hierarchy. The Stokes profile (aggregate velocity due to orbital wave motion) is functionally dependent on Stokes drift velocity and wavenumber of the surface waves. We explain that these parameters, which correspond to the environmental forcing variables, control the horizontal and vertical length scales of Langmuir cell respectively. This result is important in understanding the transport and dispersion of materials in the upper mixed layer of coastal ocean. We argue that wind stress is a parameter governing the strength of Langmuir cells.
Growth mechanisms of GaSb heteroepitaxial films on Si with an AlSb buffer layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajargah, S. Hosseini; Botton, G. A.; Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1
2013-09-21
The initial growth stages of GaSb epilayers on Si substrates and the role of the AlSb buffer layer were studied by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Heteroepitaxy of GaSb and AlSb on Si both occur by Volmer-Weber (i.e., island mode) growth. However, the AlSb and GaSb islands have distinctly different characteristics as revealed through an atomic-resolution structural study using Z-contrast of HAADF-STEM imaging. While GaSb islands are sparse and three dimensional, AlSb islands are numerous and flattened. The introduction of 3D island-forming AlSb buffer layer facilitates the nucleation of GaSb islands. The AlSb islands-assisted nucleation of GaSbmore » islands results in the formation of drastically higher quality planar film at a significantly smaller thickness of films. The interface of the AlSb and GaSb epilayers with the Si substrate was further investigated with energy dispersive X-ray spectrometry to elucidate the key role of the AlSb buffer layer in the growth of GaSb epilayers on Si substrates.« less
Chang, Jingbo; Zhou, Guihua; Gao, Xianfeng; ...
2015-08-01
Field-effect transistor (FET) sensors based on reduced graphene oxide (rGO) for detecting chemical species provide a number of distinct advantages, such as ultrasensitivity, label-free, and real-time response. However, without a passivation layer, channel materials directly exposed to an ionic solution could generate multiple signals from ionic conduction through the solution droplet, doping effect, and gating effect. Therefore, a method that provides a passivation layer on the surface of rGO without degrading device performance will significantly improve device sensitivity, in which the conductivity changes solely with the gating effect. In this work, we report rGO FET sensor devices with Hg 2+-dependentmore » DNA as a probe and the use of an Al 2O 3 layer to separate analytes from conducting channel materials. The device shows good electronic stability, excellent lower detection limit (1 nM), and high sensitivity for real-time detection of Hg 2+ in an underwater environment. Our work shows that optimization of an rGO FET structure can provide significant performance enhancement and profound fundamental understanding for the sensor mechanism.« less
Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes
Wang, Ru-Zhi; Zhao, Wei; Yan, Hui
2017-01-01
Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.
Design of a five-band terahertz perfect metamaterial absorber using two resonators
NASA Astrophysics Data System (ADS)
Meng, Tianhua; Hu, Dan; Zhu, Qiaofen
2018-05-01
We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.
Mapping hydration dynamics around a protein surface
Zhang, Luyuan; Wang, Lijuan; Kao, Ya-Ting; Qiu, Weihong; Yang, Yi; Okobiah, Oghaghare; Zhong, Dongping
2007-01-01
Protein surface hydration is fundamental to its structure and activity. We report here the direct mapping of global hydration dynamics around a protein in its native and molten globular states, using a tryptophan scan by site-specific mutations. With 16 tryptophan mutants and in 29 different positions and states, we observed two robust, distinct water dynamics in the hydration layer on a few (≈1–8 ps) and tens to hundreds of picoseconds (≈20–200 ps), representing the initial local relaxation and subsequent collective network restructuring, respectively. Both time scales are strongly correlated with protein's structural and chemical properties. These results reveal the intimate relationship between hydration dynamics and protein fluctuations and such biologically relevant water–protein interactions fluctuate on picosecond time scales. PMID:18003912
Hard X-ray Microscopic Images of the Human Hair
NASA Astrophysics Data System (ADS)
Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Yon, Hwa Shik; Lee, Won-Soo
2007-01-01
The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.
Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes
NASA Astrophysics Data System (ADS)
Wang, Ru-Zhi; Zhao, Wei; Yan, Hui
2017-03-01
Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.
NASA Astrophysics Data System (ADS)
Shea, Thomas; van Wyk de Vries, Benjamin; Pilato, Martín
2008-07-01
We study the lithology, structure, and emplacement of two debris-avalanche deposits (DADs) with contrasting origins and materials from the Quaternary-Holocene Mombacho Volcano, Nicaragua. A clear comparison is possible because both DADs were emplaced onto similar nearly flat (3° slope) topography with no apparent barrier to transport. This lack of confinement allows us to study, in nature, the perfect case scenario of a freely spreading avalanche. In addition, there is good evidence that no substratum was incorporated in the events during flow, so facies changes are related only to internal dynamics. Mombacho shows evidence of at least three large flank collapses, producing the two well-preserved debris avalanches of this study; one on its northern flank, “Las Isletas,” directed northeast, and the other on its southern flank, “El Crater,” directed south. Other south-eastern features indicate that the debris-avalanche corresponding to the third collapse (La Danta) occurred before Las Isletas and El Crater events. The materials involved in each event were similar, except in their alteration state and in the amount of substrata initially included in the collapse. While “El Crater” avalanche shows no signs of substratum involvement and has characteristics of a hydrothermal weakening-related collapse, the “Las Isletas” avalanche involves significant substratum and was generated by gravity spreading-related failure. The latter avalanche may have interacted with Lake Nicaragua during transport, in which case its run-out could have been modified. Through a detailed morphological and structural description of the Mombacho avalanches, we provide two contrasting examples of non-eruptive volcanic flank collapse. We show that, remarkably, even with two distinct collapse mechanisms, the debris avalanches developed the same gross stratigraphy of a coarse layer above a fine layer. This fine layer provided a low friction basal slide layer. Whereas DAD layering and the run-outs are roughly similar, the distribution of structures is different and related to lithology: Las Isletas has clear proximal faults replaced distally by inter-hummock depressions where basal unit zones are exhumed, whereas El Crater has faults throughout, but the basal layer is hidden in the distal zone. Hummocky forms depend on material type, with steep hummocks being formed of coherent lava units, and low hummocks by matrix-rich units. In both avalanches, extensional structures predominate; the upper layers exclusively underwent longitudinal and lateral extension. This is consistent with evidence of only small amounts of block-to-block interactions during bulk horizontal spreading. The base of the moving mass accommodated transport by large amounts of simple shear. We suggest that contractional structures and inter-block collisions seen in many other avalanches are artifacts related to topographic confinement.
Measuring and modelling the reflectance spectra of male Swinhoe's pheasant feather barbules
Lee, Cheng-Chung; Liao, Shih-Fang; Vukusic, Pete
2015-01-01
A range of iridescent colour appearances are presented by male Swinhoe's pheasants' (Lophura swinhoii) mantle feathers. Two distinct regions of the open pennaceous portion of its feathers display particularly conspicuous angle-dependent reflection. A bright blue band appears in one region at normal incidence that spatially shifts to another at higher illumination angles. The two-dimensional photonic crystal-like nanostructures inside the barbules of these two regions are similar. However, this study found that the spatial variation in their colour appearance results from a continuously changing orientation of barbules with respect to the alignment of their associated barb. A multi-layered rigorous coupled-wave analysis approach was used to model the reflections from the identified intra-barbule structures. Well-matched simulated and measured reflectance spectra, at both normal and oblique incidence, support our elucidation of the origin of the bird's distinctive feather colour appearance. PMID:25788537
NASA Astrophysics Data System (ADS)
Wang, Chiao-Yi; Liao, Andy Ying Chi; Sung, Kung Bin
2018-02-01
Collagen provides skin structure integrity and its concentration is related to the severity of scars. The objective of this study is to develop a hand-held and relatively inexpensive system to detect changes of the dermal collagen concentration in vivo. Diffuse reflectance spectroscopy and two-layer diffusion model have often been used to quantify the collagen concentration and other optical properties of the skin. However, the influences of fat and muscle, which are just below the dermis, have not been thoroughly investigated. We applied Monte Carlo simulations to find source-detector separations most sensitive to changes in collagen absorption and identify four wavelengths between 650 nm and 1000 nm suitable for separating influences of other chromophores including melanin, oxyhemoglobin and deoxyhemoglobin. Our tissue model consisted of at least three layers including the epidermis, dermis and subcutaneous fat with an optional forth layer representing the muscle. Results showed that the reflectance of the three-layered tissue model differed significantly from that of the two-layered tissue model, and the additional muscle layer might also influence the reflectance depending on the thickness of the fat layer. In addition, whether scattering coefficients of the epidermis and dermis were the same significantly affected the reflectance. Differences in reflectance due to changes in the collagen concentration were distinct from those due to changes in scattering coefficients and other chromophores. Further in-vivo experiments are ongoing to to validate the proposed approach.
NASA Astrophysics Data System (ADS)
Radożycki, Tomasz; Bargieła, Piotr
2018-07-01
The propagation of electromagnetic waves trapped within dielectric and magnetic layers is considered. The description within the three-dimensional theory is compared to the simplified analysis in two dimensions. Two distinct media configurations of different topology are dealt with: a plane slab and a hollow cylinder. Choosing the appropriate values for the geometrical parameters (layer thickness, radius of the cylinder) and for the electromagnetic properties of the media one can trap exactly one mode corresponding to that obtained within the two-dimensional electromagnetism. However, the symmetry between electric and magnetic fields suggests, that the two versions of the simplified electromagnetism ought to be equally considered. Its usual form is incomplete to describe all modes. It is also found that there exists a domain of optimal values of parameters for which the 2D model works relatively correctly. However, in the case of a cylindrical surface we observe several differences which may be attributed to the curvature of the layer, and which exclude the propagation of evanescent modes. The two-dimensional electrodynamics, whichever form is used, turns out still too poor to describe the so-called 'hybrid modes' excited in a real layer. The obtained results can be essential for proper description of the propagating waves within thin layers for which 3D approach is not available due to mathematical complexity and reducing the layer to a lower dimensional structure seems the only possible option.
Ontogenetic expression of the vanilloid receptors TRPV1 and TRPV2 in the rat retina.
Leonelli, Mauro; Martins, Daniel O; Kihara, Alexandre H; Britto, Luiz R G
2009-11-01
The present study aimed to analyze the gene and protein expression and the pattern of distribution of the vanilloid receptors TRPV1 and TRPV2 in the developing rat retina. During the early phases of development, TRPV1 was found mainly in the neuroblastic layer of the retina and in the pigmented epithelium. In the adult, TRPV1 was found in microglial cells, blood vessels, astrocytes and in neuronal structures, namely synaptic boutons of both retinal plexiform layers, as well as in cell bodies of the inner nuclear layer and the ganglion cell layer. The pattern of distribution of TRPV1 was mainly punctate, and there was higher TRPV1 labeling in the peripheral retina than in central regions. TRPV2 expression was quite distinct. Its expression was virtually undetectable by immunoblotting before P1, and that receptor was found by immunohistochemistry only by postnatal day 15 (P15). RNA and protein analysis showed that the adult levels are only reached by P60, which includes small processes in the retinal plexiform layers, and labeled cellular bodies in the inner nuclear layer and the ganglion cell layer. There was no overlapping between the signal observed for both receptors. In conclusion, our results showed that the patterns of distribution of TRPV1 and TRPV2 are different during the development of the rat retina, suggesting that they have specific roles in both visual processing and in providing specific cues to neural development.
Subset of Cortical Layer 6b Neurons Selectively Innervates Higher Order Thalamic Nuclei in Mice.
Hoerder-Suabedissen, Anna; Hayashi, Shuichi; Upton, Louise; Nolan, Zachary; Casas-Torremocha, Diana; Grant, Eleanor; Viswanathan, Sarada; Kanold, Patrick O; Clasca, Francisco; Kim, Yongsoo; Molnár, Zoltán
2018-05-01
The thalamus receives input from 3 distinct cortical layers, but input from only 2 of these has been well characterized. We therefore investigated whether the third input, derived from layer 6b, is more similar to the projections from layer 6a or layer 5. We studied the projections of a restricted population of deep layer 6 cells ("layer 6b cells") taking advantage of the transgenic mouse Tg(Drd1a-cre)FK164Gsat/Mmucd (Drd1a-Cre), that selectively expresses Cre-recombinase in a subpopulation of layer 6b neurons across the entire cortical mantle. At P8, 18% of layer 6b neurons are labeled with Drd1a-Cre::tdTomato in somatosensory cortex (SS), and some co-express known layer 6b markers. Using Cre-dependent viral tracing, we identified topographical projections to higher order thalamic nuclei. VGluT1+ synapses formed by labeled layer 6b projections were found in posterior thalamic nucleus (Po) but not in the (pre)thalamic reticular nucleus (TRN). The lack of TRN collaterals was confirmed with single-cell tracing from SS. Transmission electron microscopy comparison of terminal varicosities from layer 5 and layer 6b axons in Po showed that L6b varicosities are markedly smaller and simpler than the majority from L5. Our results suggest that L6b projections to the thalamus are distinct from both L5 and L6a projections.
NASA Astrophysics Data System (ADS)
Chia, Wei‑Kuo; Yokoyama, Meiso; Yang, Cheng‑Fu; Chiang, Wang‑Ta; Chen, Ying‑Chung
2006-07-01
Bi4Ti3O12 thin films are deposited on indium tin oxide (ITO)/glass substrates using RF magnetron sputtering technology and are annealed at 675 °C in a rapid thermal annealing furnace in an oxygen atmosphere. The resulting films have high optical transmittances and good crystalline characteristics. ZnS:TbOF films are then deposited on the Bi4Ti3O12 films, causing the originally highly transparent specimens to blacken and to resemble a glass surface coated with carbon powder. The optical transmittance of the specimen is less than 15% under the visible wavelength range, and neither a crystalline phase nor a distinct ZnS grain structure is evident in X-ray diffractometer (XRD) and scanning electronic microscope (SEM). Secondary ion mass spectrometer (SIMS) analysis reveals the occurrence of interdiffusion between the ZnS and Bi4Ti3O12 layers. This suggests that one or more unknown chemical reactions take place among the elements Bi, S, and O at the interface during the deposition of ZnS:TbOF film on a Bi4Ti3O12/ITO/glass substrate. These reactions cause the visible transmittance of the specimens to deteriorate dramatically. To prevent interdiffusion, a silicon dioxide (SiO2) buffer layer 100 nm thick was grown on the Bi4Ti3O12/ITO/glass substrate using plasma-enhanced chemical vapor deposition (PECVD), then the ZnS:TbOF film was grown on the SiO2 buffer layer. The transmittance of the resulting specimen is enhanced approximately 8-fold in the visible region. XRD patterns reveal the ZnS(111)-oriented phase is dominant. Furthermore, dense, crack-free ZnS:TbOF grains are observed by SEM. The results imply that the SiO2 buffer layer sandwiched between the ZnS:TbOF and Bi4Ti3O2 layers effectively separates the two layers. Therefore, interdiffusion and chemical reactions are prevented at the interface of the two layers, and the crystalline characteristics of the ZnS:TbOF layer and the optical transmittance of the specimen are improved as a result. Finally, the dielectric constant of the stacked structure is lower than that of the single layer structure without SiO2, but the dielectric breakdown strength is enhanced.
Edge effects on band gap energy in bilayer 2H-MoS{sub 2} under uniaxial strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Liang; Wang, Jin; Dongare, Avinash M., E-mail: dongare@uconn.edu
2015-06-28
The potential of ultrathin MoS{sub 2} nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS{sub 2} film. In this study, a bilayer MoS{sub 2} supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS{sub 2} film under uniaxial mechanical deformations. The supercell contains an MoS{sub 2} bottom layer andmore » a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS{sub 2} flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS{sub 2} films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.« less
Surface grafted glycopolymer brushes to enhance selective adhesion of HepG2 cells.
Chernyy, Sergey; Jensen, Bettina E B; Shimizu, Kyoko; Ceccato, Marcel; Pedersen, Steen Uttrup; Zelikin, Alexander N; Daasbjerg, Kim; Iruthayaraj, Joseph
2013-08-15
This work demonstrates the application of carbohydrate based methacrylate polymer brush, poly(2-lactobionamidoethyl methacrylate), for the purpose of cell adhesion studies. The first part of the work illustrates the effects of the structure of the aminosilane based ATRP initiator layer on the polymerization kinetics of 2-lactobionamidoethyl methacrylate) (LAMA) monomer on thermally oxidized silicon wafer. Both monolayer and multilayered aminosilane precursor layers have been prepared followed by reaction with 2-bromoisobutyrylbromide to form the ATRP initiator layer. It is inferred from the kinetic studies that the rate of termination is low on a multilayered initiator layer compared to a disordered monolayer structure. However both initiator types results in similar graft densities. Furthermore, it is shown that thick comb-like poly(LAMA) brushes can be constructed by initiating a second ATRP process on a previously formed poly(LAMA) brushes. The morphology of human hepatocellular carcinoma cancer cells (HepG2) on the comb-like poly(LAMA) brush layer has been studied. The fluorescent images of the HepG2 cells on the glycopolymer brush surface display distinct protrusions that extend outside of the cell periphery. On the other hand the cells on bare glass substrate display spheroid morphology. Further analysis using ToF-SIMS imaging shows that the HepG2 cells on glycopolymer surfaces is enriched with protein fragment along the cell periphery which is absent in the case of cells on bare glass substrate. It is suggested that the interaction of the galactose units of the polymer brush with the asialoglycoprotein receptor (ASGPR) of HepG2 cells has resulted in the protein enrichment along the cell periphery. Copyright © 2013 Elsevier Inc. All rights reserved.
SFG and SPR Study of Sodium Dodecyl Sulfate Film Assembly on Positively Charged Surfaces
NASA Astrophysics Data System (ADS)
Song, Sanghun; Weidner, Tobias; Wagner, Matthew; Castner, David
2012-02-01
This study uses sum frequency generation (SFG) vibrational spectroscopy and surface plasmon resonance (SPR) sensing to investigate the structure of sodium dodecyl sulfate (SDS) films formed on positively charged and hydrophilic surfaces. The SPR signals show a good surface coverage suggesting that full monolayer coverage is reached at 1 mM. SFG spectra of SDS adsorbed exhibits well resolved CH3 peaks and OH peaks. At both 0.2 mM and 1 mM SDS concentration the intensity of both the CH3 and OH peaks decreased close to background levels. We found that the loss of SFG signal at 0.2 mM occurs at this concentration independent of surface charge density. It is more likely that the loss of signal is related to structural inhomogeneity induced by a striped phase - stand-up phase transition. This is supported by a distinct change of the relative SFG phase between CH3/OH near 0.2 mM. The second intensity minimum might be related to charge compensation effects. We observed a substrate dependence for the high concentration transition. We also observed distinct SFG signal phase changes for water molecules associated with SDS layers at different SDS solution concentrations indicating that the orientation of bound water changed with SDS surface structure.
The dynamic bacterial communities of a melting High Arctic glacier snowpack
Hell, Katherina; Edwards, Arwyn; Zarsky, Jakub; Podmirseg, Sabine M; Girdwood, Susan; Pachebat, Justin A; Insam, Heribert; Sattler, Birgit
2013-01-01
Snow environments can occupy over a third of land surface area, but little is known about the dynamics of snowpack bacteria. The effect of snow melt on bacterial community structure and diversity of surface environments of a Svalbard glacier was examined using analyses of 16S rRNA genes via T-RFLP, qPCR and 454 pyrosequencing. Distinct community structures were found in different habitat types, with changes over 1 week apparent, in particular for the dominant bacterial class present, Betaproteobacteria. The differences observed were consistent with influences from depositional mode (snowfall vs aeolian dusts), contrasting snow with dust-rich snow layers and near-surface ice. Contrary to that, slush as the decompositional product of snow harboured distinct lineages of bacteria, further implying post-depositional changes in community structure. Taxa affiliated to the betaproteobacterial genus Polaromonas were particularly dynamic, and evidence for the presence of betaproteobacterial ammonia-oxidizing bacteria was uncovered, inviting the prospect that the dynamic bacterial communities associated with snowpacks may be active in supraglacial nitrogen cycling and capable of rapid responses to changes induced by snowmelt. Furthermore the potential of supraglacial snowpack ecosystems to respond to transient yet spatially extensive melting episodes such as that observed across most of Greenland's ice sheet in 2012 merits further investigation. PMID:23552623
The dynamic bacterial communities of a melting High Arctic glacier snowpack.
Hell, Katherina; Edwards, Arwyn; Zarsky, Jakub; Podmirseg, Sabine M; Girdwood, Susan; Pachebat, Justin A; Insam, Heribert; Sattler, Birgit
2013-09-01
Snow environments can occupy over a third of land surface area, but little is known about the dynamics of snowpack bacteria. The effect of snow melt on bacterial community structure and diversity of surface environments of a Svalbard glacier was examined using analyses of 16S rRNA genes via T-RFLP, qPCR and 454 pyrosequencing. Distinct community structures were found in different habitat types, with changes over 1 week apparent, in particular for the dominant bacterial class present, Betaproteobacteria. The differences observed were consistent with influences from depositional mode (snowfall vs aeolian dusts), contrasting snow with dust-rich snow layers and near-surface ice. Contrary to that, slush as the decompositional product of snow harboured distinct lineages of bacteria, further implying post-depositional changes in community structure. Taxa affiliated to the betaproteobacterial genus Polaromonas were particularly dynamic, and evidence for the presence of betaproteobacterial ammonia-oxidizing bacteria was uncovered, inviting the prospect that the dynamic bacterial communities associated with snowpacks may be active in supraglacial nitrogen cycling and capable of rapid responses to changes induced by snowmelt. Furthermore the potential of supraglacial snowpack ecosystems to respond to transient yet spatially extensive melting episodes such as that observed across most of Greenland's ice sheet in 2012 merits further investigation.
NASA Astrophysics Data System (ADS)
Schöpfer, Martin; Lehner, Florian; Grasemann, Bernhard; Kaserer, Klemens; Hinsch, Ralph
2017-04-01
John G. Ramsay's sketch of structures developed in a layer progressively folded and deformed by tangential longitudinal strain (Figure 7-65 in Folding and Fracturing of Rocks) and the associated strain pattern analysis have been reproduced in many monographs on Structural Geology and are referred to in numerous publications. Although the origin of outer-arc extension fractures is well-understood and documented in many natural examples, geomechanical factors controlling their (finite or saturation) spacing are hitherto unexplored. This study investigates the formation of bending-induced fractures during constant-curvature forced folding using Distinct Element Method (DEM) numerical modelling. The DEM model comprises a central brittle layer embedded within weaker (low modulus) elastic layers; the layer interfaces are frictionless (free slip). Folding of this three-layer system is enforced by a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The models illustrate several key stages of fracture array development: (i) Prior to the onset of fracture, the neutral surface is located midway between the layer boundaries; (ii) A first set of regularly spaced fractures develops once the tensile stress in the outer-arc equals the tensile strength of the layer. Since the layer boundaries are frictionless, these bending-induced fractures propagate through the entire layer; (iii) After the appearance of the first fracture set, the rate of fracture formation decreases rapidly and so-called infill fractures develop approximately midway between two existing fractures (sequential infilling); (iv) Eventually no new fractures form, irrespective of any further increase in fold curvature (fracture saturation). Analysis of the interfacial normal stress distributions suggests that at saturation the fracture-bound blocks are subjected to a loading condition similar to three-point bending. Using classical beam theory an analytical solution is derived for the critical fracture spacing, i.e. the spacing below which the maximum tensile stress cannot reach the layer strength. The model results are consistent with an approximate analytical solution, and illustrate that the spacing of bending-induced fractures is proportional to layer thickness and a square root function of the ratio of layer tensile strength to confining pressure. Although highly idealised, models and analysis presented in this study offer an explanation for fracture saturation during folding and point towards certain key factors that may control fracture spacing in natural systems.
In vitro degradation of ZnO flowered coated Zn-Mg alloys in simulated physiological conditions.
Alves, Marta M; Prosek, Tomas; Santos, Catarina F; Montemor, Maria F
2017-01-01
Flowered coatings composed by ZnO crystals were successfully electrodeposited on Zn-Mg alloys. The distinct coatings morphologies were found to be dependent upon the solid interfaces distribution, with the smaller number of bigger flowers (ø 46μm) obtained on Zn-Mg alloy containing 1wt.% Mg (Zn-1Mg) contrasting with the higher number of smaller flowers (ø 38μm) achieved on Zn-Mg alloy with 2wt.% Mg (Zn-2Mg). To assess the in vitro behaviour of these novel resorbable materials, a detailed evaluation of the degradation behaviour, in simulated physiological conditions, was performed by electrochemical impedance spectroscopy (EIS). The opposite behaviours observed in the corrosion resistances resulted in the build-up of distinct corrosion layers. The products forming these layers, preferentially detected at the flowers, were identified and their spatial distribution disclosed by EDS and Raman spectroscopy techniques. The presence of smithsonite, simonkolleite, hydrozincite, skorpionite and hydroxyapatite were assigned to both corrosion layers. However the distinct spatial distributions depicted may impact the biocompatibility of these resorbable materials, with the bone analogue compounds (hydroxyapatite and skorpionite) depicted in-between the ZnO crystals and on the top corrosion layer of Zn-1Mg flowers clearly contrasting with the hindered layer formed at the interface of the substrate with the flowers on Zn-2Mg. Copyright © 2016 Elsevier B.V. All rights reserved.
Dalal, Krishna; Elanchezhiyan, D; Das, Raunak; Dalal, Devjyoti; Pandey, Ravindra Mohan; Chatterjee, Subhamoy; Upadhyay, Ashish Datt; Maran, V Bharathi; Chatterjee, Jyotirmoy
2013-01-01
Objective. When exploring the scientific basis of reflexology techniques, elucidation of the surface and subsurface features of reflexology areas (RAs) is crucial. In this study, the subcutaneous features of RAs related to the lumbar vertebrae were evaluated by swept source-optical coherence tomography (SS-OCT) in subjects with and without low back pain (LBP). Methods. Volunteers without LBP (n = 6 (male : female = 1 : 1)) and subjects with LBP (n = 15 (male : female = 2 : 3)) were clinically examined in terms of skin colour (visual perception), localised tenderness (visual analogue scale) and structural as well as optical attributes as per SS-OCT. From each subject, 6 optical tomograms were recorded from equidistant transverse planes along the longitudinal axis of the RAs, and from each tomogram, 25 different spatial locations were considered for recording SS-OCT image attributes. The images were analysed with respect to the optical intensity distributions and thicknesses of different skin layers by using AxioVision Rel. 4.8.2 software. The SS-OCT images could be categorised into 4 pathological grades (i.e., 0, 1, 2, and 3) according to distinctness in the visible skin layers. Results. Three specific grades for abnormalities in SS-OCT images were identified considering gradual loss of distinctness and increase in luminosity of skin layers. Almost 90.05% subjects were of mixed type having predominance in certain grades. Conclusion. The skin SS-OCT system demonstrated a definite association of the surface features of healthy/unhealthy RAs with cutaneous features and the clinical status of the lumbar vertebrae.
Dalal, Krishna; Elanchezhiyan, D.; Das, Raunak; Dalal, Devjyoti; Pandey, Ravindra Mohan; Chatterjee, Subhamoy; Upadhyay, Ashish Datt; Maran, V. Bharathi; Chatterjee, Jyotirmoy
2013-01-01
Objective. When exploring the scientific basis of reflexology techniques, elucidation of the surface and subsurface features of reflexology areas (RAs) is crucial. In this study, the subcutaneous features of RAs related to the lumbar vertebrae were evaluated by swept source-optical coherence tomography (SS-OCT) in subjects with and without low back pain (LBP). Methods. Volunteers without LBP (n = 6 (male : female = 1 : 1)) and subjects with LBP (n = 15 (male : female = 2 : 3)) were clinically examined in terms of skin colour (visual perception), localised tenderness (visual analogue scale) and structural as well as optical attributes as per SS-OCT. From each subject, 6 optical tomograms were recorded from equidistant transverse planes along the longitudinal axis of the RAs, and from each tomogram, 25 different spatial locations were considered for recording SS-OCT image attributes. The images were analysed with respect to the optical intensity distributions and thicknesses of different skin layers by using AxioVision Rel. 4.8.2 software. The SS-OCT images could be categorised into 4 pathological grades (i.e., 0, 1, 2, and 3) according to distinctness in the visible skin layers. Results. Three specific grades for abnormalities in SS-OCT images were identified considering gradual loss of distinctness and increase in luminosity of skin layers. Almost 90.05% subjects were of mixed type having predominance in certain grades. Conclusion. The skin SS-OCT system demonstrated a definite association of the surface features of healthy/unhealthy RAs with cutaneous features and the clinical status of the lumbar vertebrae. PMID:23662156
Borgeaud, Anselme F E; Kawai, Kenji; Konishi, Kensuke; Geller, Robert J
2017-11-01
D″ (Dee double prime), the lowermost layer of the Earth's mantle, is the thermal boundary layer (TBL) of mantle convection immediately above the Earth's liquid outer core. As the origin of upwelling of hot material and the destination of paleoslabs (downwelling cold slab remnants), D″ plays a major role in the Earth's evolution. D″ beneath Central America and the Caribbean is of particular geodynamical interest, because the paleo- and present Pacific plates have been subducting beneath the western margin of Pangaea since ~250 million years ago, which implies that paleoslabs could have reached the lowermost mantle. We conduct waveform inversion using a data set of ~7700 transverse component records to infer the detailed three-dimensional S-velocity structure in the lowermost 400 km of the mantle in the study region so that we can investigate how cold paleoslabs interact with the hot TBL above the core-mantle boundary (CMB). We can obtain high-resolution images because the lowermost mantle here is densely sampled by seismic waves due to the full deployment of the USArray broadband seismic stations during 2004-2015. We find two distinct strong high-velocity anomalies, which we interpret as paleoslabs, just above the CMB beneath Central America and Venezuela, respectively, surrounded by low-velocity regions. Strong low-velocity anomalies concentrated in the lowermost 100 km of the mantle suggest the existence of chemically distinct denser material connected to low-velocity anomalies in the lower mantle inferred by previous studies, suggesting that plate tectonics on the Earth's surface might control the modality of convection in the lower mantle.
Self-Organized Mantle Layering After the Magma-Ocean Period
NASA Astrophysics Data System (ADS)
Hansen, U.; Dude, S.
2017-12-01
The thermal history of the Earth, it's chemical differentiation and also the reaction of the interior with the atmosphere is largely determined by convective processes within the Earth's mantle. A simple physical model, resembling the situation, shortly after core formation, consists of a compositionally stable stratified mantle, as resulting from fractional crystallization of the magma ocean. The early mantle is subject to heating from below by the Earth's core and cooling from the top through the atmosphere. Additionally internal heat sources will serve to power the mantle dynamics. Under such circumstances double diffusive convection will eventually lead to self -organized layer formation, even without the preexisting jumps is material properties. We have conducted 2D and 3D numerical experiments in Cartesian and spherical geometry, taking into account mantle realistic values, especially a strong temperature dependent viscosity and a pressure dependent thermal expansivity . The experiments show that in a wide parameter range. distinct convective layers evolve in this scenario. The layering strongly controls the heat loss from the core and decouples the dynamics in the lower mantle from the upper part. With time, individual layers grow on the expense of others and merging of layers does occur. We observe several events of intermittent breakdown of individual layers. Altogether an evolution emerges, characterized by continuous but also spontaneous changes in the mantle structure, ranging from multiple to single layer flow. Such an evolutionary path of mantle convection allows to interpret phenomena ranging from stagnation of slabs at various depth to variations in the chemical signature of mantle upwellings in a new framework.
Thermal imitators with single directional invisibility
NASA Astrophysics Data System (ADS)
Wang, Ruizhe; Xu, Liujun; Huang, Jiping
2017-12-01
Thermal metamaterials have been intensively studied during the past years to achieve the long-standing dream of invisibility, illusion, and other inconceivable thermal phenomena. However, many thermal metamaterials can only exhibit omnidirectional thermal response, which take on the distinct feature of geometrical isotropy. In this work, we theoretically design and experimentally fabricate a pair of thermal imitators by applying geometrical anisotropy provided by elliptical/ellipsoidal particles and layered structures. This pair of thermal imitators possesses thermal invisibility in one direction, while having thermal opacity in other directions. This work may open a gate in designing direction-dependent thermal metamaterials.
Missert, Nancy; Kotula, Paul G.; Rye, Michael; ...
2017-02-15
We used a focused ion beam to obtain cross-sectional specimens from both magnetic multilayer and Nb/Al-AlOx/Nb Josephson junction devices for characterization by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX). An automated multivariate statistical analysis of the EDX spectral images produced chemically unique component images of individual layers within the multilayer structures. STEM imaging elucidated distinct variations in film morphology, interface quality, and/or etch artifacts that could be correlated to magnetic and/or electrical properties measured on the same devices.
NASA Technical Reports Server (NTRS)
Weber, Renee C.
2013-01-01
A variety of geophysical measurements made from Earth, from spacecraft in orbit around the Moon, and by astronauts on the lunar surface allow us to probe beyond the lunar surface to learn about its interior. Similarly to the Earth, the Moon is thought to consist of a distinct crust, mantle, and core. The crust is globally asymmetric in thickness, the mantle is largely homogeneous, and the core is probably layered, with evidence for molten material. This chapter will review a range of methods used to infer the Moon's internal structure, and briefly discuss the implications for the Moon's formation and evolution.
On hairpin vortices as model of wall turbulence structure
NASA Technical Reports Server (NTRS)
Liu, N.-S.; Shamroth, S. J.; Mcdonald, H.
1985-01-01
A model of the hairpin vortex has been constructed and used in two distinct but related approaches. The first approach is kinematic in nature in which a synthesis procedure using hairpin vortices to provide a quantitative link between mean flow quantities and the statistical quantities of near wall turbulence has become developed. The second approach is dynamic in nature, and the evolution of an incipient 'representative' hairpin vortex as well as the distortion of a background laminar boundary layer flow, in which the hairpin vortex is immersed, has been simulated by numerical solution of the unsteady, three-dimensional Navier-Stokes equations.
3D-Mapping of Dolomitized Structures in Lower Cambrian Phosphorites
NASA Astrophysics Data System (ADS)
Hippler, Dorothee; Stammeier, Jessica A.; Brunner, Roland; Rosc, Jördis; Franz, Gerhard; Dietzel, Martin
2016-04-01
Dolomitization is a widespread phenomenon in ancient sedimentary rocks, particularly close to the Precambrian-Cambrian boundary. Dolomite can form in synsedimentary or hydrothermal environments, preferentially via the replacement of solid carbonate precursor phases. Synsedimentary dolomite formation is often associated with microbial activity, such as bacterial sulfate reduction or methanogenesis. In this study, we investigate dolomitic phosphorites from the Lowermost Cambrian Tal Group, Mussoori Syncline, Lesser Himalaya, India, using micro-CT 3D-mapping, in order to unravel the complex diagenetic history of the rocks. The selected sample shows alternating layering of phosphatic mudstones and sparitic dolostone, in which brecciated layers of phosphorite or phosphatic mudstones are immersed in a dolomite-rich matrix. Lamination occurs on a sub-millimetre scale, with lamination sometimes wavy to crinkly. This fabric is interpreted as former microbial mats, providing the environment for early diagenetic phosphatization. Preliminary electron backscatter imaging with scanning microscopy revealed that dolomite crystals often occur in spherical to ellipsoidal structures, typically with a high porosity. This dolomite is associated with botryoidal apatite, organic matter and small amounts of calcite. Micro-CT 3D-mappings reveal that dolomite structures are cigar-shaped, elongated and up to 600 μm long. They are further arranged in a Mikado-like oriented framework spanning a layer thickness of a few millimetres. Analyses of ambient pore space, with similar elongated outlines and filled with organic matter, suggest a potential coherence of ambient pore space and shape of the dolomite structures. Allowing for other associated mineral phases, such as pyrite and silicates, and their spatial distribution, the present approach can be used to unravel distinct diagenetic reaction pathways, and might thus constrain the proxy potential of these Lower Cambrian dolomitic phosphorites to reconstruct ambient environmental at the time of deposition.
NASA Astrophysics Data System (ADS)
Ma, Zehao; Ooi, Poh Choon; Li, Fushan; Yun, Dong Yeol; Kim, Tae Whan
2015-10-01
Nonvolatile memory (NVM) devices based on a metal-insulator-metal structure consisting of CdSe/ZnS quantum dots embedded in polymethylsilsesquioxane dielectric layers were fabricated. The current-voltage ( I- V) curves showed a bistable current behavior and the presence of hysteresis. The current-time ( I- t) curves showed that the fabricated NVM memory devices were stable up to 1 × 104 s with a distinct ON/OFF ratio of 104 and were reprogrammable when the endurance test was performed. The extrapolation of the I- t curve to 105 s with corresponding current ON/OFF ratio 1 × 105 indicated a long performance stability of the NVM devices. Schottky emission, Poole-Frenkel emission, trapped-charge limited-current and Child-Langmuir law were proposed as the dominant conduction mechanisms for the fabricated NVM devices based on the obtained I- V characteristics.
Elucidating anionic oxygen activity in lithium-rich layered oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jing; Sun, Meiling; Qiao, Ruimin
Recent research has explored combining conventional transition metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. For this study, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely differentmore » oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.« less
Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.
2016-12-06
This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation undermore » ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freytag, Stefan, E-mail: stefan.freytag@ovgu.de; Feneberg, Martin; Berger, Christoph
2016-07-07
In{sub x}Ga{sub 1–x}N/GaN single and multi quantum well (MQW) structures with x ≈ 0.13 were investigated optically by photoreflectance, photoluminescence excitation spectroscopy, and luminescence. Clear evidence of unintentional indium incorporation into the nominal GaN barrier layers is found. The unintentional In content is found to be around 3%. Inhomogeneous distribution of In atoms occurs within the distinct quantum well (QW) layers, which is commonly described as statistical alloy fluctuation and leads to the characteristic S-shape temperature shift of emission energy. Furthermore, differences in emission energy between the first and the other QWs of a MQW stack are found experimentally. Thismore » effect is discussed with the help of model calculations and is assigned to differences in the confining potential due to unwanted indium incorporation for the upper QWs.« less
Convergence and Extrusion Are Required for Normal Fusion of the Mammalian Secondary Palate
Kim, Seungil; Lewis, Ace E.; Singh, Vivek; Ma, Xuefei; Adelstein, Robert; Bush, Jeffrey O.
2015-01-01
The fusion of two distinct prominences into one continuous structure is common during development and typically requires integration of two epithelia and subsequent removal of that intervening epithelium. Using confocal live imaging, we directly observed the cellular processes underlying tissue fusion, using the secondary palatal shelves as a model. We find that convergence of a multi-layered epithelium into a single-layer epithelium is an essential early step, driven by cell intercalation, and is concurrent to orthogonal cell displacement and epithelial cell extrusion. Functional studies in mice indicate that this process requires an actomyosin contractility pathway involving Rho kinase (ROCK) and myosin light chain kinase (MLCK), culminating in the activation of non-muscle myosin IIA (NMIIA). Together, these data indicate that actomyosin contractility drives cell intercalation and cell extrusion during palate fusion and suggest a general mechanism for tissue fusion in development. PMID:25848986
Elucidating anionic oxygen activity in lithium-rich layered oxides
Xu, Jing; Sun, Meiling; Qiao, Ruimin; ...
2018-03-05
Recent research has explored combining conventional transition metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. For this study, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely differentmore » oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.« less
The thalamus as a monitor of motor outputs.
Guillery, R W; Sherman, S M
2002-01-01
Many of the ascending pathways to the thalamus have branches involved in movement control. In addition, the recently defined, rich innervation of 'higher' thalamic nuclei (such as the pulvinar) from pyramidal cells in layer five of the neocortex also comes from branches of long descending axons that supply motor structures. For many higher thalamic nuclei the clue to understanding the messages that are relayed to the cortex will depend on knowing the nature of these layer five motor outputs and on defining how messages from groups of functionally distinct output types are combined as inputs to higher cortical areas. Current evidence indicates that many and possibly all thalamic relays to the neocortex are about instructions that cortical and subcortical neurons are contributing to movement control. The perceptual functions of the cortex can thus be seen to represent abstractions from ongoing motor instructions. PMID:12626014
Mechanical properties of atomically thin boron nitride and the role of interlayer interactions
Falin, Aleksey; Cai, Qiran; Santos, Elton J. G.; Scullion, Declan; Qian, Dong; Zhang, Rui; Yang, Zhi; Huang, Shaoming; Watanabe, Kenji; Taniguchi, Takashi; Barnett, Matthew R.; Chen, Ying; Ruoff, Rodney S.; Li, Lu Hua
2017-01-01
Atomically thin boron nitride (BN) nanosheets are important two-dimensional nanomaterials with many unique properties distinct from those of graphene, but investigation into their mechanical properties remains incomplete. Here we report that high-quality single-crystalline mono- and few-layer BN nanosheets are one of the strongest electrically insulating materials. More intriguingly, few-layer BN shows mechanical behaviours quite different from those of few-layer graphene under indentation. In striking contrast to graphene, whose strength decreases by more than 30% when the number of layers increases from 1 to 8, the mechanical strength of BN nanosheets is not sensitive to increasing thickness. We attribute this difference to the distinct interlayer interactions and hence sliding tendencies in these two materials under indentation. The significantly better interlayer integrity of BN nanosheets makes them a more attractive candidate than graphene for several applications, for example, as mechanical reinforcements. PMID:28639613
Functional divisions for visual processing in the central brain of flying Drosophila
Weir, Peter T.; Dickinson, Michael H.
2015-01-01
Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit. PMID:26324910
Functional divisions for visual processing in the central brain of flying Drosophila.
Weir, Peter T; Dickinson, Michael H
2015-10-06
Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit.
DNA Packaging in Bacteriophage: Is Twist Important?
Spakowitz, Andrew James; Wang, Zhen-Gang
2005-01-01
We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces. PMID:15805174
DNA packaging in bacteriophage: is twist important?
Spakowitz, Andrew James; Wang, Zhen-Gang
2005-06-01
We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces.
Kuppan, Saravanan; Shukla, Alpesh Khushalchand; Membreno, Daniel; ...
2017-01-06
Surface properties of cathode particles play important roles in the transport of ions and electrons and they may ultimately dominate cathode's performance and stability in lithium-ion batteries. Through the use of carefully prepared Li 1.2Ni 0.13Mn 0.54Co 0.13O 2 crystal samples with six distinct morphologies, surface transition-metal redox activities and crystal structural transformation are investigated as a function of surface area and surface crystalline orientation. Complementary depth-profiled core-level spectroscopy, namely, X-ray absorption spectroscopy, electron energy loss spectroscopy, and atomic-resolution scanning transmission electron microscopy, are applied in the study, presenting a fine example of combining advanced diagnostic techniques with a well-definedmore » model system of battery materials. Here, we report the following findings: (1) a thin layer of defective spinel with reduced transition metals, similar to what is reported on cycled conventional secondary particles in the literature, is found on pristine oxide surface even before cycling, and (2) surface crystal structure and chemical composition of both pristine and cycled particles are facet dependent. Oxide structural and cycling stabilities improve with maximum expression of surface facets stable against transition-metal reduction. Finally, the intricate relationships among morphology, surface reactivity and structural transformation, electrochemical performance, and stability of the cathode materials are revealed.« less
NASA Astrophysics Data System (ADS)
Hassdorf, R.; Arend, M.; Felsch, W.
1995-04-01
The flexural modulus EF of pure and hydrided cerium-iron multilayer films has been measured at 300 K as a function of the modulation wavelength Λ using a vibrating-reed technique. EF is strongly correlated to the structure of the layered systems. In the pure Ce/Fe multilayers, the Fe sublayers show a structural transition from an amorphous to the bcc crystalline phase for a thickness near 20 Å. At this transition, the modulus EF is reduced by ~70%. The elastic softening occurs already, as a precursor to the structural change, for the crystalline Fe sublayers somewhat above the thickness for amorphous growth. This behavior reveals close similarities to the crystal-to-glass transition in bulk metallic alloys and compounds which seems to be driven by a shear instability of the crystal lattice. Hydrogenation leads to multilayers built of CeH~2/Fe. The Fe sublayers grow in the bcc structure above 10 Å, with a pronounced (110) or (111) texture for low- or room-temperature deposition. The flexural moduli are larger as compared to the nonhydrided multilayers and distinctly different for the two Fe textures. A simple calculation shows that the texture-related differences mainly result from the bulk properties of the Fe layers, but a contribution of interfacial effects cannot be excluded.
Tuzlakoglu, Kadriye; Santos, Marina I; Neves, Nuno; Reis, Rui L
2011-02-01
Mimicking the structural organization and biologic function of natural extracellular matrix has been one of the main goals of tissue engineering. Nevertheless, the majority of scaffolding materials for bone regeneration highlights biochemical functionality in detriment of mechanical properties. In this work we present a rather innovative construct that combines in the same structure electrospun type I collagen nanofibers with starch-based microfibers. These combined structures were obtained by a two-step methodology and structurally consist in a type I collagen nano-network incorporated on a macro starch-based support. The morphology of the developed structures was assessed by several microscopy techniques and the collagenous nature of the nano-network was confirmed by immunohistochemistry. In addition, and especially regarding the requirements of large bone defects, we also successfully introduced the concept of layer by layer, as a way to produce thicker structures. In an attempt to recreate bone microenvironment, the design and biochemical composition of the combined structures also envisioned bone-forming cells and endothelial cells (ECs). The inclusion of a type I collagen nano-network induced a stretched morphology and improved the metabolic activity of osteoblasts. Regarding ECs, the presence of type I collagen on the combined structures provided adhesive support and obviated the need of precoating with fibronectin. It was also importantly observed that ECs on the nano-network organized into circular structures, a three-dimensional arrangement distinct from that observed for osteoblasts and resembling the microcappillary-like organizations formed during angiogenesis. By providing simultaneously physical and chemical cues for cells, the herein-proposed combined structures hold a great potential in bone regeneration as a man-made equivalent of extracellular matrix.
Connecting Interface Structure to Energy Level Alignment at Aqueous Semiconductor Interfaces
NASA Astrophysics Data System (ADS)
Hybertsen, Mark
Understanding structure-function relationships at aqueous semiconductor interfaces presents fundamental challenges, including the discovery of the key interface structure motifs themselves. Important examples include the alignment of electrochemical redox levels with the semiconductor band edges and the identification of catalytic active sites. We have developed a multistep approach, initially demonstrated for GaN, ZnO and their alloys, motivated by measured high efficiency for photocatalytic water oxidation. The interface structure is simulated using ab initio molecular dynamics (AIMD). The calculated, average interface dipole is combined with the GW approach from many-body perturbation theory to calculate the energy level alignment between the semiconductor band edges and the centroid of the occupied 1b1 energy level of water and thus, the electrochemical levels. Cluster models are used to study reaction pathways. The emergent interface motif is the full (GaN) or partial (ZnO) dissociated interface water layer. Here I will focus on the aqueous interfaces to the stable TiO2 anatase (101) and rutile (110) facets. The AIMD calculations reveal interface water dissociation and reassociation processes through distinct pathways: one direct at the interface and the other via a spectator water molecule from the hydration layer. Comparisons between the two interfaces shows that the energy landscape for these pathways depends on the local hydrogen bonding patterns and the interplay with the interface template. Combined results from different initial conditions and AIMD temperatures demonstrate a partially dissociated interface water layer in both cases. Specifically for rutile, structure and the GW-based analysis of the interface energy level alignment agree with experiment. Finally, hole localization at different interface structure motifs will be discussed. Work performed in collaboration with J. Lyons, N. Kharche, M. Ertem and J. Muckerman, done in part at the CFN, which is a U.S. DOE Office of Science Facility, at BNL under Contract No. DE-SC0012704 and with resources from NERSC under Contract No. DE-AC02-05CH11231.
Wind tunnel experiments to study chaparral crown fires
Jeanette Cobian-Iñiguez; AmirHessam Aminfar; Joey Chong; Gloria Burke; Albertina Zuniga; David R. Weise; Marko Princevac
2017-01-01
The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer...
North Polar Cap Layers and Ledges
2016-08-24
At the edge of Mars' permanent North Polar cap, we see an exposure of the internal layers, each with a different mix of water ice, dust and dirt. These layers are believed to correspond to different climate conditions over the past tens of thousands of years. When we zoom in closer, we see that the distinct layers erode differently. Some are stronger and more resistant to erosion, others only weakly cemented. The strong layers form ledges. http://photojournal.jpl.nasa.gov/catalog/PIA21022
Multiscale Currents Observed by MMS in the Flow Braking Region
NASA Astrophysics Data System (ADS)
Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.
2018-02-01
We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yan; Fong, Dillon D.; Herbert, F. William
Transition metal oxide hetero-structures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide hetero-structures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard x-ray photoelectron spectroscopy (HAXPES) and high resolution xray diffraction (HRXRD) to probe the local oxygen defectmore » distribution across the buried interfaces of oxide heterolayers. This approach provides a non-destructive way to qualitatively probe locally the oxygen defects in transition metal oxide hetero-structures. We studied two trilayer structures as model systems - the La 0.8Sr 0.2CoO 3-δ/(La 0.5Sr 0.5) 2CoO 4/La 0.8Sr 0.2CoO 3-δ (LSC 113/LSC 214) and the La 0.8Sr 0.2CoO 3-δ/La 2NiO 4+δ/La 0.8Sr 0.2CoO 3-δ (LSC 113/LNO 214) on SrTiO 3(001) single crystal substrates. We found that the oxygen defect chemistry of these transition metal oxides was strongly impacted by the presence of interfaces and the properties of the adjacent phases. Under reducing conditions, the LSC 113 in the LSC 113/LNO 214 tri-layer had less oxygen vacancies than the LSC 113 in the LSC 113/LSC 214 tri-layer and the LSC 113 single phase film. On the other hand, LSC 214 and LNO 214 were more reduced in the two tri-layer structures when in contact with the LSC 113 layer compared to their single phase counterparts. Furthermore, the results point out a potential way to modify the local oxygen defect states at oxide hetero-interfaces.« less
Chen, Yan; Fong, Dillon D.; Herbert, F. William; ...
2018-04-17
Transition metal oxide hetero-structures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide hetero-structures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard x-ray photoelectron spectroscopy (HAXPES) and high resolution xray diffraction (HRXRD) to probe the local oxygen defectmore » distribution across the buried interfaces of oxide heterolayers. This approach provides a non-destructive way to qualitatively probe locally the oxygen defects in transition metal oxide hetero-structures. We studied two trilayer structures as model systems - the La 0.8Sr 0.2CoO 3-δ/(La 0.5Sr 0.5) 2CoO 4/La 0.8Sr 0.2CoO 3-δ (LSC 113/LSC 214) and the La 0.8Sr 0.2CoO 3-δ/La 2NiO 4+δ/La 0.8Sr 0.2CoO 3-δ (LSC 113/LNO 214) on SrTiO 3(001) single crystal substrates. We found that the oxygen defect chemistry of these transition metal oxides was strongly impacted by the presence of interfaces and the properties of the adjacent phases. Under reducing conditions, the LSC 113 in the LSC 113/LNO 214 tri-layer had less oxygen vacancies than the LSC 113 in the LSC 113/LSC 214 tri-layer and the LSC 113 single phase film. On the other hand, LSC 214 and LNO 214 were more reduced in the two tri-layer structures when in contact with the LSC 113 layer compared to their single phase counterparts. Furthermore, the results point out a potential way to modify the local oxygen defect states at oxide hetero-interfaces.« less
Rolling hills on the core-mantle boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Daoyuan; Helmberger, Don V.; Jackson, Jennifer M.
2014-07-17
Recent results suggest that an iron-rich oxide may have fractionally crystallized from a primordial magma ocean and settled on the core–mantle boundary (CMB). Based on experimental results, the presence of only a few percent of Fe-rich oxide could slow seismic waves down by several percent. This heavy layer can become highly undulating as predicted from dynamic modeling but can remain as a distinct structure with uniform velocity reductions. Here, we use the large USArray seismic network to search for such structures. Strong constraints on D" are provided by the core-phase SKS where it bifurcates, containing a short segment of P-wavemore » diffractions (P d) when crossing the CMB, called SKS d. Synthetics from models with moderate velocity drops (less than 10%) involving a layer with variable thickness, perhaps a composite of sharp small structures, with strong variation in thickness can explain both the observed SKS d waveforms and large scatter in differential times between SKKS and SKS. A smooth 3D image is obtained from inverting SKS d waveforms displaying rolling-hills with elongated dome-like structures sitting on the CMB. The most prominent one has an 80-km height, ~8° length, and ~4° width, thus adding still more structural complexity to the lower mantle. We suggest that these results can be explained by a dynamically-stabilized material containing small amounts (~5%) iron-rich (Mg,Fe)O providing a self-consistent physical interpretation.« less
Xu, Gui -Liang; Amine, Rachid; Xu, Yue -Feng; ...
2017-06-08
Cathode materials are critical to the energy density, power density and safety of sodium-ion batteries (SIBs). Herein, we performed a comprehensive study to elucidate and exemplify the interplay mechanism between phase structures, interfacial microstrain and electrochemical properties of layered-structured Na xNi 1/3Co 1/3Mn 1/3O 2 cathode materials for high voltage SIBs. The electrochemical test results showed that Na xNi 1/3Co 1/3Mn 1/3O 2 with an intergrowth P2/O3/O1 structure demonstrates better electrochemical performance and better thermal stability than Na xNi 1/3Co 1/3Mn 1/3O 2 with P2/O3 binary-phase integration and Na xNi 1/3Co 1/3Mn 1/3O 2 where only the P phase ismore » dominant. This result is caused by the distinct interfacial microstrain development during the synthesis and cycling of the P2/O3/O1 phase. In operando high energy X-ray diffraction further revealed that the intergrowth P2/O1/O3 cathode can inhibit the irreversible P2–O2 phase transformation and simultaneously improve the structure stability of the O3 and O1 phases during cycling. Here, we believe that interfacial microstrain can serve as an indispensable bridge to guide future design and synthesis of high performance SIB cathode materials and other high energy battery materials.« less
Yaacobi-Gross, Nir; Garphunkin, Natalia; Solomeshch, Olga; Vaneski, Aleksandar; Susha, Andrei S; Rogach, Andrey L; Tessler, Nir
2012-04-24
We show that it is possible to combine several charge generation strategies in a single device structure, the performance of which benefits from all methods used. Exploiting the inherent type II heterojunction between layered structures of CdSe and CdTe colloidal quantum dots, we systematically study different ways of combining such nanocrystals of different size and surface chemistry and with different linking agents in a bilayer solar cell configuration. We demonstrate the beneficial use of two distinctly different sizes of NCs not only to improve the solar spectrum matching but also to reduce exciton binding energy, allowing their efficient dissociation at the interface. We further make use of the ligand-induced quantum-confined Stark effect in order to enhance charge generation and, hence, overall efficiency of nanocrystal-based solar cells.
Müller, Werner E G; Wang, Xiaohong; Kropf, Klaus; Ushijima, Hiroshi; Geurtsen, Werner; Eckert, Carsten; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Boreiko, Alexandra; Schlossmacher, Ute; Li, Jinhe; Schröder, Heinz C
2008-02-01
The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 microm), (ii) the bulky axial cylinder (radius: <75 microm), and (iii) the central axial canal (diameter: <2 microm) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 microm large holes; the net can be silicified. The silica layers forming the lamellar zone are approximately 5 microm thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission.
Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans
Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura; ...
2016-10-19
One important advance in fluid surface control was the amphiphilic surfactant composed of coupled molecular structures (i.e., hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e., hard water). This disrupts surfactant function and requires extensive use of undesirable and expensive chelating additives. We show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel–Crafts acylation within single layer (SPP) zeolite catalysts. Finally, these alkylfuran surfactants independently suppress the effects of hard water whilemore » simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.« less
Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura
2016-11-23
An important advance in fluid surface control was the amphiphilic surfactant comprised of coupled molecular structures (i.e. hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e. hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel-Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water whilemore » simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.« less
Bending at the base of a dragged-out viscous thread
NASA Astrophysics Data System (ADS)
Blount, Maurice; Lister, John
2007-11-01
We consider steady flow of a slender viscous thread falling from a nozzle onto a moving horizontal belt. We analyse the asymptotic limit of a very slender thread, and show that it has a boundary-layer structure in which bending stresses only become important near the belt, where they support a vertical stress and allow the velocity and rolling conditions to be satisfied. The outer solution is analogous to a viscous catenary, with velocity fixed at the belt and at the nozzle. There are three asymptotic regimes, with distinct structures, corresponding to the cases that the belt speed is larger than, smaller than, or close to the velocity of a freely falling thread. The implications for the onset and amplitude of meanders in the `fluid-mechanical sewing machine' are explored.
Coverage Dependent Assembly of Anthraquinone on Au(111)
NASA Astrophysics Data System (ADS)
Conrad, Brad; Deloach, Andrew; Einstein, Theodore; Dougherty, Daniel
A study of adsorbate-adsorbate and surface state mediated interactions of anthraquinone (AnQ) on Au(111) is presented. We utilize scanning tunneling microscopy (STM) to characterize the coverage dependence of AnQ structure formation. Ordered structures are observed up to a single monolayer (ML) and are found to be strongly dependent on molecular surface density. While the complete ML forms a well-ordered close-packed layer, for a narrow range of sub-ML coverages irregular close-packed islands are observed to coexist with a disordered pore network linking neighboring islands. This network displays a characteristic pore size and at lower coverages, the soliton walls of the herringbone reconstruction are shown to promote formation of distinct pore nanostructures. We will discuss these nanostructure formations in the context of surface mediated and more direct adsorbate interactions.
A unique skeletal microstructure of the deep-sea micrabaciid scleractinian corals
NASA Astrophysics Data System (ADS)
Janiszewska, Katarzyna; Stolarski, Jaroslaw; Benzerara, Karim; Meibom, Anders; Mazur, Maciej; Kitahara, Marcelo; Cairns, Stephen D.
2010-05-01
Structural and biogeochemical properties of the skeleton of many invertebrates rely on organic matrix-mediated biomineralization processes. Organic matrices, composed of complex assemblages of macromolecules (proteins, polysaccharides), may control nucleation, spatial delineation and organization of basic microstructural units. Biologically controlled mineralization is also suggested for the scleractinian corals whose different, molecularly recognized clades are supported by distinct types of skeletal microstructures. Main differences in scleractinian coral skeletal microstructures suggested so far consist in (1) varying spatial relationships between Rapid Accretion Deposits (RAD, 'centers of calcification') and thickening deposits (TD, 'fibers'), and (2) varying arrangements of biomineral fibers into higher order structures (e.g., bundles of fibers perpendicular to skeletal surfaces in some 'caryophylliid' corals vs. scale-like units with fibers parallel to the surface in acroporiids). However, a common feature of biomineral fibers in corals described thus far was their similar crystallographic arrangement within larger meso-scale structures (bundles of fibers) and continuity between successive growth layers. Herein we show that representatives of the deep-sea scleractinian family Micrabaciidae (genera: Letepsammia, Rhombopsammia, Stephanophyllia, Leptopenus) have thickening deposits composed of irregular meshwork of short (1-2 μm) and extremely thin (ca. 100-300 nm) fibers organized into small bundles (ca. 1-2 μm thick). Longer axes of fibers are aligned within individual bundles that, in turn, show rather irregular arrangement on the growing surfaces and within the skeleton (irregular criss-cross pattern). In contrast to other scleractinians (including deep-water 'caryophylliids', fungiacyathids, and anthemiphyllids sympatric with micrabaciids), growth layers are not distinct. Also the regions of rapid accretion and thickening deposits are not clearly separated at the meso-scale. However, AFM and FESEM observations of RAD show nanogranular units (ca. 30-100 nm in diameter) typical of fast growing skeletal regions. Unique microstructural organization of the micrabaciid skeleton supports their monophyletic status (reinforced by macromorphological and molecular data), and points to a diversity of organic matrix-mediated biomineralization strategies in Scleractinia.
Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO
NASA Astrophysics Data System (ADS)
Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.
2012-12-01
One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.
NASA Astrophysics Data System (ADS)
Hyart, T.; Ojajärvi, R.; Heikkilä, T. T.
2018-04-01
Three-dimensional topological semimetals can support band crossings along one-dimensional curves in the momentum space (nodal lines or Dirac lines) protected by structural symmetries and topology. We consider rhombohedrally (ABC) stacked honeycomb lattices supporting Dirac lines protected by time-reversal, inversion and spin rotation symmetries. For typical band structure parameters there exists a pair of nodal lines in the momentum space extending through the whole Brillouin zone in the stacking direction. We show that these Dirac lines are topologically distinct from the usual Dirac lines which form closed loops inside the Brillouin zone. In particular, an energy gap can be opened only by first merging the Dirac lines going through the Brillouin zone in a pairwise manner so that they turn into closed loops inside the Brillouin zone, and then by shrinking these loops into points. We show that this kind of topological phase transition can occur in rhombohedrally stacked honeycomb lattices by tuning the ratio of the tunneling amplitudes in the directions perpendicular and parallel to the layers. We also discuss the properties of the surface states in the different phases of the model.
Morphology of isolated mouse inner cell masses developing in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, L.M.; Spindle, A.I.; Pedersen, R.A.
1978-01-01
The purpose of this study was to examine the developmental capacity of the mouse inner cell mass (ICM) in the absence of the trophoblast. ICMs were isolated from blastocysts by immunosurgery and cultured under conditions that support egg cylinder formation by intact blastocysts. After 2 or 3 days of culture, the ICMs consisted of an outer layer of endoderm and an inner layer of ectoderm that had cavitated centrally. By 4 or 5 days of culture, 25 to 60% of these ICMs had developed into paired cysts, apparently by secondary cavity formation. The inner cell layer surrounding this secondary cavitymore » resembled the extraembryonic ectoderm of cultured egg cylinders. By 6 days of culture, 60% of the ICMs had expanded into yolk sac-like structures that subsequently produced capillaries containing blood cells. The ICMs appeared to develop mesoderm in two distinct ways. A few of them developed mesoderm as a third layer of cells in the cleft separating endoderm and ectoderm, presumably by migrating from the inner, ectodermal layer, through the primitive streak, as in the intact egg cylinder. In the rest of the ICMs the embryonic ectoderm gradually differentiated into mesoderm while still in the inner layer, without primitive streak formation. We suggest, therefore, that the continuous presence of the trophoblast or of its derivatives is not required for the cytodifferentiation of mesoderm although it may be important in establishing embryonic polarity or in providinginductive signals necessary for the morphogenetic aspects of mesoderm differentiation, specifically primitive streak formation.« less
Wide field OCT based microangiography in living human eye (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhang, Qinqin; Chen, Chieh-Li; Chu, Zhongdi; Zhang, Anqi; An, Lin; Durbin, Mary; Sharma, Utkarsh; Rosenfeld, Philip J.; Wang, Ruikang K.
2016-03-01
To investigate the application of optical microangiography (OMAG) in living human eye. Patients with different macular diseases were recruited, including diabetic retinopathy (DR), geographic atrophy (GA), retinitis pigmentosa (RP), and venous occlusion, et al. Wide field OCT angiography images can be generated by montage scanning protocol based on the tracking system. OMAG algorithm based on complex differentiation was used to extract the blood flow and removed the bulk motion by 2D cross-correlation method. The 3D angiography was segmented into 3 layers in the retina and 2 layers in the choroid. The en-face maximum projection was used to obtain 2-dimensional angiograms of different layers coded with different colors. Flow and structure images were combined for cross-sectional view. En face OMAG images of different macular diseases showed a great agreement with FA. Meanwhile, OMAG gave more distinct vascular network visions that were less affected by hemorrhage and leakage. The MAs were observed in both superficial and middle retinal layers based on OMAG angiograms in different layers of DR patients. The contour line of FAZ was extracted as well, which can be quantitative the retinal diseases. For GA patient, the damage of RPE layer enhanced the penetration of light and enabled the acquisition of choriocapillaries and choroidal vessels. The wide field OMAG angiogram enabled the capability of capturing the entire geographic atrophy. OMAG provides depth-resolved information and detailed vascular images of DR and GA patients, providing a better visualization of vascular network compared to FA.
A New Theory of Mix in Omega Capsule Implosions
NASA Astrophysics Data System (ADS)
Knoll, Dana; Chacon, Luis; Rauenzahn, Rick; Simakov, Andrei; Taitano, William; Welser-Sherrill, Leslie
2014-10-01
We put forth a new mix model that relies on the development of a charge-separation electrostatic double-layer at the fuel-pusher interface early in the implosion of an Omega plastic ablator capsule. The model predicts a sizable pusher mix (several atom %) into the fuel. The expected magnitude of the double-layer field is consistent with recent radial electric field measurements in Omega plastic ablator implosions. Our theory relies on two distinct physics mechanisms. First, and prior to shock breakout, the formation of a double layer at the fuel-pusher interface due to fast preheat-driven ionization. The double-layer electric field structure accelerates pusher ions fairly deep into the fuel. Second, after the double-layer mix has occurred, the inward-directed fuel velocity and temperature gradients behind the converging shock transports these pusher ions inward. We first discuss the foundations of this new mix theory. Next, we discuss our interpretation of the radial electric field measurements on Omega implosions. Then we discuss the second mechanism that is responsible for transporting the pusher material, already mixed via the double-layer deep into the fuel, on the shock convergence time scale. Finally we make a connection to recent mix motivated experimental data on. This work conducted under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory, managed by LANS, LLC under Contract DE-AC52-06NA25396.
STS-67 sunset and earth limb view
1995-03-17
STS067-709-007 (2-18 March 1995) --- This shot, taken just after sunset, shows several distinct layers of gases in the atmosphere on the Earths limb. The distinct colors formed by the amount of scattered light that passes through these gases.
Plated lamination structures for integrated magnetic devices
Webb, Bucknell C.
2014-06-17
Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.
NASA Astrophysics Data System (ADS)
Sagy, A.; Tesei, T.; Collettini, C.
2016-12-01
Geometrical irregularity of contacting surfaces is a fundamental factor controlling friction and energy dissipation during sliding. We performed direct shear experiments on 20x20 cm limestone surfaces by applying constant normal load (40-200 kN) and sliding velocity 1-300 µm/s. Before shearing, the surfaces were polished with maximal measured amplitudes of less than 0.1 mm. After shear, elongated islands of shear zones are observed, characterized by grooves ploughed into the limestone surfaces and by layers of fine grain wear. These structures indicate that the contact areas during shear are scattered and occupy a limited portion of the entire surface area. The surfaces was scanned by a laser profilometer that measures topography using 640 parallel beams in a single run, offer up to 10 µm accuracy and working ranges of 200 mm. Two distinctive types of topographical end members are defined: rough wavy sections and smooth polished ones. The rough zones display ridges with typical amplitudes of 0.1-1 mm that cross the grooves perpendicular to the slip direction. These features are associated with penetrative brittle damage and with fragmentation. The smoother zones display reflective mirror-like surfaces bordered by topographical sharp steps at heights of 0.3-0.5 mm. These sections are localized inside the wear layer or between the wear layer and the host rock, and are not associated with observed penetrative damage. Preliminary statistical analysis suggests that the roughness of the ridges zones can be characterized using a power-low relationship between profile length and mean roughness, with relatively high values of Hurst exponents (e.g. H > 0.65) parallel to the slip direction. The polished zones, on the other hand, corresponded to lower values of Hurst exponents (e.g. H ≤ 0.6). Both structural and roughness measurements indicate that the distinctive topographic variations on the surfaces reflect competing mechanical processes which occur simultaneously during shear. The wavy ridged zone is the surface expression of penetrative cracking and fragmentation which widen the shear zone, while the smooth zones reflect localized flow and plastic deformation of the wear material. The similarity in topography of shear structures between experimental and natural faults suggests similar mechanical processes.
Biofabricated Structures Reconstruct Functional Urinary Bladders in Radiation-injured Rat Bladders.
Imamura, Tetsuya; Shimamura, Mitsuru; Ogawa, Teruyuki; Minagawa, Tomonori; Nagai, Takashi; Silwal Gautam, Sudha; Ishizuka, Osamu
2018-05-08
The ability to repair damaged urinary bladders through the application of bone marrow-derived cells is in the earliest stages of development. We investigated the application of bone marrow-derived cells to repair radiation-injured bladders. We used a three-dimensional (3D) bioprinting robot system to biofabricate bone marrow-derived cell structures. We then determined if the biofabricated structures could restore the tissues and functions of radiation-injured bladders. The bladders of female 10-week-old Sprague-Dawley (SD) rats were irradiated with 2-Gy once a week for 5 weeks. Adherent and proliferating bone marrow-derived cells harvested from the femurs of male 17-week-old green fluorescence protein-transfected Tg-SD rats were cultured in collagen-coated flasks. Bone marrow-derived cell spheroids were formed in 96-well plates. Three layers of spheroids were assembled by the bioprinter onto a 9x9 microneedle array. The assembled spheroids were perfusion cultured for 7 days, and then the microneedle array was removed. Two weeks after the last radiation treatment, the biofabricated structures were transplanted into an incision on the anterior wall of the bladders (n=10). Control rats received the same surgery but without the biofabricated structures (sham-structure, n=12). At 2 and 4 weeks after surgery, the sham-structure control bladder tissues exhibited disorganized smooth muscle layers, decreased nerve cells, and significant fibrosis with increased presence of fibrosis-marker P4HB-positive cells and hypoxia-marker HIF1α-positive cells. The transplanted structures survived within the recipient tissues, and blood vessels extended within them from the recipient tissues. The bone marrow-derived cells in the structures differentiated into smooth muscle cells and formed smooth muscle clusters. The recipient tissues near the transplanted structures had distinct smooth muscle layers and reconstructed nerve cells, and only minimal fibrosis with decreased presence of P4HB- and HIF1α-positive cells. At 4 weeks after surgery, the sham-structure control rats exhibited significant urinary frequency symptoms with irregular and short voiding intervals, and low micturition volumes. In contrast, the structure-transplanted rats had regular micturition with longer voiding intervals and higher micturition volumes compared to the control rats. Further, the residual volume of the structure-transplanted rats was lower than for the controls. Therefore, transplantation of biofabricated bone marrow-derived cell structures reconstructed functional bladders.
NASA Astrophysics Data System (ADS)
Smith, Gennifer T.; Lurie, Kristen L.; Khan, Saara A.; Liao, Joseph C.; Ellerbee, Audrey K.
2014-03-01
Optical coherence tomography (OCT) has shown potential as a complementary modality to white light cystoscopy (WLC), the gold standard for imaging bladder cancer. OCT can visualize sub-surface details of the bladder wall, which enables it to stage cancers and detect tumors that are otherwise invisible to WLC. Currently, OCT systems have too slow a speed and too small a field of view for comprehensive bladder imaging, which limits its clinical utility. Validation and feasibility testing of technological refinements aimed to provide faster imaging and wider fields of view necessitates a realistic bladder phantom. We present a novel process to fabricate the first such phantom that mimics both the optical and morphological properties of layers of the healthy and pathologic bladder wall as they characteristically appear with OCT. The healthy regions of the silicone-based phantom comprises three layers: the urothelium, lamina propria and muscularis propria, each containing an appropriate concentration of titanium dioxide to mimic its distinct scattering properties. As well, the layers each possess a unique surface appearance imposed by a textured mold. Within this phantom, pathologic tissue-mimicking regions are created by thickening specific layers or creating inclusions that disrupt the layered appearance of the bladder wall, as is characteristic of bladder carcinomas. This phantom can help to evaluate the efficacy of new OCT systems and software for tumor localization. Moreover, the procedure we have developed is highly generalizable for the creation of OCT-relevant, multi-layer phantoms for tissues that incorporate diseased states characterized by the loss of layered structures.
Kamasawa, N; Furman, C S; Davidson, K G V; Sampson, J A; Magnie, A R; Gebhardt, B R; Kamasawa, M; Yasumura, T; Zumbrunnen, J R; Pickard, G E; Nagy, J I; Rash, J E
2006-11-03
Neuronal gap junctions are abundant in both outer and inner plexiform layers of the mammalian retina. In the inner plexiform layer (IPL), ultrastructurally-identified gap junctions were reported primarily in the functionally-defined and anatomically-distinct ON sublamina, with few reported in the OFF sublamina. We used freeze-fracture replica immunogold labeling and confocal microscopy to quantitatively analyze the morphologies and distributions of neuronal gap junctions in the IPL of adult rat and mouse retina. Under "baseline" conditions (photopic illumination/general anesthesia), 649 neuronal gap junctions immunogold-labeled for connexin36 were identified in rat IPL, of which 375 were photomapped to OFF vs. ON sublaminae. In contrast to previous reports, the volume-density of gap junctions was equally abundant in both sublaminae. Five distinctive morphologies of gap junctions were identified: conventional crystalline and non-crystalline "plaques" (71% and 3%), plus unusual "string" (14%), "ribbon" (7%) and "reticular" (2%) forms. Plaque and reticular gap junctions were distributed throughout the IPL. However, string and ribbon gap junctions were restricted to the OFF sublamina, where they represented 48% of gap junctions in that layer. In string and ribbon junctions, curvilinear strands of connexons were dispersed over 5 to 20 times the area of conventional plaques having equal numbers of connexons. To define morphologies of gap junctions under different light-adaptation conditions, we examined an additional 1150 gap junctions from rats and mice prepared after 30 min of photopic, mesopic and scotopic illumination, with and without general anesthesia. Under these conditions, string and ribbon gap junctions remained abundant in the OFF sublamina and absent in the ON sublamina. Abundant gap junctions in the OFF sublamina of these two rodents with rod-dominant retinas revealed previously-undescribed but extensive pathways for inter-neuronal communication; and the wide dispersion of connexons in string and ribbon gap junctions suggests unique structural features of gap junctional coupling in the OFF vs. ON sublamina.
NASA Astrophysics Data System (ADS)
Benoit-Bird, K. J.
2016-02-01
We explored the behavior of Risso's dolphins foraging in scattering layers off California using an integrated approach comprising echosounders deployed in a deep-diving autonomous underwater vehicle, ship based acoustics, visual observations, direct prey sampling, and animal-borne tags on deep-diving predators. We identified three distinct prey layers: a persistent layer around 425 m, a vertically migrating layer around 300 m, and a layer intermittently present near 50 m, all of which were used by individual tagged animals. Active acoustic measurements demonstrated that Risso's dolphins dove to discrete prey layers throughout the day and night with only slightly higher detection rates at night. Dolphins were detected in all three layers during the day with over half of detections in the middle layer, 20% of detections in the deepest layer, and 10% falling outside the main layers. Dolphins were found less frequently in areas where the shallow, intermittent layer was absent, suggesting that this layer, while containing the smallest prey and the lowest densities of squid, was an important component of their foraging strategy. The deepest layer was targeted equally both during the day and at night. Using acoustic data collected from the AUV, we found layers were made up of distinct, small patches of animals of similar size and taxonomy adjacent to contrasting patches. Squid made up over 70% of the patches in which dolphins were found and more than 95% of those in deep water. Squid targeted by dolphins in deep water were also relatively large, indicating significant benefit from these relatively rare, physically demanding dives. Within these patches, prey formed tighter aggregations when Risso's dolphins were present. Careful integration of a suite of traditional and novel tools is providing insight into the ecology and dynamics of predator and prey in the mesopelagic.
NASA Astrophysics Data System (ADS)
Krivovichev, Sergey V.; Zhitova, Elena S.; Ismagilova, Rezeda M.; Zolotarev, Andrey A.
2018-05-01
Philipsburgite, Cu5Zn((As,P)O4)2(OH)6·H2O, from the Middle Pit, Gold Hill Mine, Tooele Co., Utah, USA, was studied by single-crystal X-ray diffraction and scanning electron microscopy. The empirical formula of the studied sample is (Cu4.69Zn1.23)(As0.86P0.18O4)2(OH)5.61·H2O, which agrees well with the previous reports on the mineral. Philipsburgite is monoclinic, P21/c, a = 12.385(6), b = 9.261(4), c = 10.770(5) Å, β = 97.10(1)o, V = 1225.7(9) Å3 (at 100 K), and Z = 4. The crystal structure was refined to R 1 = 0.046 for 2563 unique observed reflections with |F o| ≥ 4σ F . The crystal structure of philipsburgite is isotypic to that of kipushite and can be considered as a complex three-dimensional framework consisting of two types of layers stacked parallel to the a-axis. The A-type layer is formed by the edge-sharing Jahn-Teller-distorted Cuφ6 octahedra [φ = O2-, (OH)-, H2O]. Two adjacent octahedral layers are linked via (As2O4) tetrahedra. The B-type layer is built by corner-sharing (ZnO4) and (As1O4) tetrahedra and is formed by the four- and eight-membered tetrahedral rings. The A:B ratio of the A and B layers is equal to 2:1. The hydrogen bonding network in philipsburgite is rather complex and consists of two- and three-center hydrogen bonds. The As1 site accommodates ca. 18% of P and is a preferable position for the P substitution in philipsburgite. The observed selectivity of the As1 site for P may indicate that, for the intermediate compositions with the P:As ratios close to 1:1, there is a fully ordered species with P prevalent at the As1 site and As prevalent at the As2 site. The intermediate composition would, therefore, be Cu5Zn(AsO4)(PO4)(OH)6·H2O and such a mineral can be considered as a separate species, according to the rules of the International Mineralogical Association (IMA). Philipsburgite should be considered as structurally complex with the Shannon information contents of 4.954 bits/atom and 614.320 bits/cell. The obvious reason for the structural complexity of the mineral is its modularity, i.e., the presence of two structurally distinct modules, the octahedral-tetrahedral (A) and tetrahedral (B) layers.
Structure and seasonal variations of the nocturnal mesospheric K layer at Arecibo
NASA Astrophysics Data System (ADS)
Yue, Xianchang; Friedman, Jonathan S.; Wu, Xiongbin; Zhou, Qihou H.
2017-07-01
We present the seasonal variations of the nocturnal mesospheric potassium (K) layer at Arecibo, Puerto Rico (18.35°N, 66.75°W) from 160 nights of K Doppler lidar observations between December 2003 and January 2010, during which the solar activity is mostly low. The background temperature is also measured simultaneously by the lidar and shows a strong semiannual oscillation with maxima occurring during equinoxes at all altitudes. The annual mean K density profile is approximately Gaussian with a peak altitude of 91.7 km. The K column abundance and the centroid height have strong semiannual variations, with maxima at the solstices. Both parameters are negatively correlated to the mean background temperature with a correlation coefficient < -0.5. The root-mean-square (RMS) width has a distinct annual oscillation with the largest width occurring in May. The seasonal variation of the centroid height is similar to that of the Fe layer at the same site. The seasonal temperature variation indicates significant enhanced wave-induced downward transport for both species during spring and autumn. This explains the metal layer centroid height and column abundance variations at Arecibo and provides a general mechanism to account for the seasonal variations in the centroid height of all metal species measured at low-latitude and midlatitude sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, I. L.; Nascimento, V. P.; Passamani, E. C.
2013-05-28
Magnetic properties of sputtered NiFe/IrMn/Co trilayers grown on different seed layers (Cu or Ta) deposited on Si (100) substrates were investigated by magnetometry and ferromagnetic resonance measurements. Exchange bias effect and magnetic spring behavior have been studied by changing the IrMn thickness. As shown by X-ray diffraction, Ta and Cu seed layers provoke different degrees of (111) fcc-texture that directly affect the exchange bias and indirectly modify the exchange spring coupling behavior. Increasing the IrMn thickness, it was observed that the coupling angle between the Co and NiFe ferromagnetic layers increases for the Cu seed system, but it reduces formore » the Ta case. The results were explained considering (i) different anisotropies of the Co and IrMn layers induced by the different degree of the (111) texture and (ii) the distinct exchange bias set at the NiFe/IrMn and IrMn/Co interfaces in both systems. The NiFe and Co interlayer coupling angle is strongly correlated with both exchange bias and exchange magnetic spring phenomena. It was also shown that the highest exchange bias field occurs when an unstressed L1{sub 2} IrMn structure is stabilized.« less
Oxygen Reduction Reaction on Platinum-Terminated “Onion-structured” Alloy Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herron, Jeffrey A.; Jiao, Jiao; Hahn, Konstanze
Using periodic, self-consistent density functional theory (GGA-PW91) calculations, a series of onion-structured metal alloys have been investigated for their catalytic performance towards the oxygen reduction reaction (ORR). The onion-structures consist of a varying number of atomic layers of one or two metals each, pseudomorphically deposited on top of one another to form the overall structure. All catalysts studied feature a Pt overlayer, and often consist of at least one Pd layer below the surface. Three distinct ORR mechanisms were analyzed on the close-packed facets of all the structures considered. These mechanisms include a direct route of O2 dissociation and twomore » hydrogen-assisted routes of O–O bond-breaking in peroxyl (OOH) and in hydrogen peroxide (HOOH) intermediates. A thermochemical analysis of the elementary steps provides information on the operating potential, and thereby energy efficiency of each electrocatalyst. A Sabatier analysis of catalytic activity based on thermochemistry of proton/electron transfer steps and activation energy barrier for O–O bond-breaking steps leads to a “volcano” relation between the surfaces’ activity and the binding energy of O. Several of the onion-structured alloys studied here show promise for achieving energy efficiency higher than that of Pt, by being active at potentials higher than the operating potential of Pt. Furthermore, some have at least as good activity as pure Pt at that operating potential. Thus, a number of the onion-structured alloys studied here are promising as cathode electrocatalysts in proton exchange membrane fuel cells.« less
New structure of high-pressure body-centered orthorhombic Fe 2SiO 4
Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki; ...
2015-08-01
Here, a structural change in Fe 2SiO 4 spinel and the structure of a new high pressure phase are determined by Rietveld 26 profile fitting of x-ray diffraction data up to 64 GPa at ambient temperature. The compression curve of the spinel is discontinuous at approximately 20 GPa. Fe Kβ x-ray emission measurements at high pressure show that the transition from a high spin (HS) to an intermediate spin (IS) state begins at 17 GPa in the spinel phase. The IS electronic state is gradually enhanced with pressure, which results in an isostructural phase transition. A transition from the cubic spinel structure to a body centered orthorhombic phase (I-Fe 2SiO 4) with space group Imma and Z=4 was observed at approximately 34 GPa. The structure of I-Fe 2SiO 4 has two crystallographically distinct FeO 6 octahedra, which are arranged in layers parallel to (101) and (011) and are very similar to the layers of FeO 6 octahedra that constitute the spinel structure. Silicon also exists in six-fold coordination in I-Fe 2SiO 4. The transformation to the new high-pressure phase is reversible under decompression at ambient temperature. A Martensitic transformation of each slab of the spinel structure with translation vector [more » $$\\vec{1/8}$$ $$\\vec{1/8}$$ $$\\vec{1/8}$$] generates the I-Fe 2SiO 4 structure. Laser heating of I-Fe 2SiO 4 at 1500 K results in a decomposition of the material to rhombohedral FeO and SiO 2 stishovite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebecker, Matthew G.; Sparks, Donald L.
2017-09-07
Layered double hydroxides (LDHs) are anionic clays important in disciplines such as environmental chemistry, geochemistry, and materials science. Developments in signal processing of extended X-ray absorption fine structure (EXAFS) data, such as wavelet transformation (WT), have been used to identify transition metals and Al present in the hydroxide sheets of LDHs. The WT plots of LDHs should be distinct from those of isostructural single metal hydroxides. However, no direct comparison of these minerals appears in the literature using WT. This work systematically analyzes a suite of Ni-rich mineral standards, including Ni–Al LDHs, single metal Ni hydroxides, and Ni-rich silicates usingmore » WT. The results illustrate that the WT plots for α-Ni(OH)2 and Ni–Al LDHs are often indistinguishable from each other, with similar two-component plots for the different mineral types. This demonstrates that the WT of the first metal shell often cannot be used to differentiate an LDH from a single metal hydroxide. Interlayer anions adsorbed to the hydroxide sheet of α-Ni(OH)2 affect the EXAFS spectra and are not visible in the FT but are clearly resolved and discrete in the WT.« less
Electrical and optical transport properties of single layer WSe2
NASA Astrophysics Data System (ADS)
Tahir, M.
2018-03-01
The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.
Structure of rigid polymers confined to nanoparticles: Molecular dynamics simulations insight
Maskey, Sabina; Lane, J. Matthew D.; Perahia, Dvora; ...
2016-02-04
Nanoparticles (NPs) grafted with organic layers form hybrids able to retain their unique properties through integration into the mesoscopic scale. The organic layer structure and response often determine the functionality of the hybrids on the mesoscopic length scale. Using molecular dynamics (MD) simulations, we probe the conformation of luminescent rigid polymers, dialkyl poly(p-phenylene ethynylene)s (PPE), end-grafted onto a silica nanoparticle in different solvents as the molecular weights and polymer coverages are varied. We find that, in contrast to NP-grafted flexible polymers, the chains are fully extended independent of the solvent. In toluene and decane, which are good solvents, the graftedmore » PPEs chains assume a similar conformation to that observed in dilute solutions. In water, which is a poor solvent for the PPEs, the polymer chains form one large cluster but remain extended. The radial distribution of the chains around the core of the nanoparticle is homogeneous in good solvents, whereas in poor solvents clusters are formed independent of molecular weights and coverages. As a result, the clustering is distinctively different from the response of grafted flexible and semiflexible polymers.« less
Polariton Local States in Periodic Bragg Multiple Quantum Well Structures
NASA Astrophysics Data System (ADS)
Deych, Lev; Yamilov, Alexey; Lisyansky, Alexander
2000-11-01
We analytically study defect polariton states in Bragg MQW structures, and defect induced changes in transmission and reflection spectra. Defect layers can differ from the host layers in three different ways: in the exciton-light coupling strength, in the exciton resonance frequency, and in interwell spacing. We show that a single defect leads to two local polariton modes in the photonic band gap. These modes lead to peculiarities in reflection and transmission spectra. Each type of defect can be reproduced experimentally, and we show that each of them play distinctly different roles in the optical properties of the system. We obtain closed analytical expressions for respective local frequencies, as well as for reflection and transmission coefficients. On the basis of the results obtained, we give practical recommendation for experimental observation of the studied effects in samples used in Refs. [1,2]. [1] M.Hübner, J. Kuhl, T. Stroucken, A. Knorr, S.W. Koch, R. Hey, K. Ploog, Phys. Rev. Lett. 76, 4199 (1996). [2] M.Hübner, J.P. Prineas, C. Ell, P. Brick, E.S. Lee, G. Khitrova, H.M. Gibbs, S.W. Koch, Phys. Rev. Lett. 83, 2841 (1999).
Chen, Tianwu; Zhao, Peng; Guo, Xu; Zhang, Sulin
2017-04-12
Phosphorus represents a promising anode material for sodium ion batteries owing to its extremely high theoretical capacity. Recent in situ transmission electron microscopy studies evidenced anisotropic swelling in sodiated black phosphorus, which may find an origin from the two intrinsic anisotropic properties inherent to the layered structure of black phosphorus: sodium diffusional directionality and insertion strain anisotropy. To understand the morphological evolution and stress generation in sodiated black phosphorus, we develop a chemo-mechanical model by incorporating the intrinsic anisotropic properties into the large elasto-plastic deformation. Our modeling results reveal that the apparent morphological evolution in sodiated black phosphorus is critically controlled by the coupled effect of the two intrinsic anisotropic properties. In particular, sodium diffusional directionality generates sharp interphases along the [010] and [001] directions, which constrain anisotropic development of the insertion strain. The coupled effect renders distinctive stress-generation and fracture mechanisms when sodiation starts from different crystal facets. In addition to providing a powerful modeling framework for sodiation and lithiation of layered structures, our findings shed significant light on the sodiation-induced chemo-mechanical degradation of black phosphorus as a promising anode for the next-generation sodium ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinde, Sachin M.; Tanemura, Masaki; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp
2014-12-07
Combination of two dimensional graphene and semi-conducting molybdenum disulfide (MoS{sub 2}) is of great interest for various electronic device applications. Here, we demonstrate fabrication of a hybridized structure with the chemical vapor deposited graphene and MoS{sub 2} crystals to configure a memory device. Elongated hexagonal and rhombus shaped MoS{sub 2} crystals are synthesized by sulfurization of thermally evaporated molybdenum oxide (MoO{sub 3}) thin film. Scanning transmission electron microscope studies reveal atomic level structure of the synthesized high quality MoS{sub 2} crystals. In the prospect of a memory device fabrication, poly(methyl methacrylate) (PMMA) is used as an insulating dielectric material asmore » well as a supporting layer to transfer the MoS{sub 2} crystals. In the fabricated device, PMMA-MoS{sub 2} and graphene layers act as the functional and electrode materials, respectively. Distinctive bistable electrical switching and nonvolatile rewritable memory effect is observed in the fabricated PMMA-MoS{sub 2}/graphene heterostructure. The developed material system and demonstrated memory device fabrication can be significant for next generation data storage applications.« less
Impact of shock waves on the conductive properties and structure of MgB2 tapes
NASA Astrophysics Data System (ADS)
Mikhailov, Boris P.; Mikhailova, Alexandra B.; Borovitskaya, Irina V.; Nikulin, Valerii Ya.; Peregudova, Elena N.; Polukhin, Sergei N.; Silin, Pavel V.
2017-10-01
This article presents data on shock waves effect on the structure and the critical current of superconducting MgB2 tapes. To generate shock waves, a plasma focus installation (PF) was used. The conductive characteristics of the superconducting tapes dependence on the intensity of the impact and the number of shock pulses were studied. A distinct pattern of change in critical currents in transversal and longitudinal magnetic fields in the range of 2-9 T is studied at a temperature of 4.2 K. The microstructure of the superconducting tape and chemical composition of its layer are studied in the original state and after the shock wave effect. Changes were found in a microstructure of layers of MgB2 (granulation, subdivision of grains and consolidation), which arose due to the shock-wave impact (SWI), are found. The possibility of increasing the critical current of tapes on 50-80 A in a transversal magnetic field of 2-3 T by means of SWI has been established. In a parallel magnetic field, the impact of the shock effect was essential in magnetic fields lower than 4 T.
Lee, Woongkyu; Yoo, Sijung; Yoon, Kyung Jean; Yeu, In Won; Chang, Hye Jung; Choi, Jung-Hae; Hoffmann-Eifert, Susanne; Waser, Rainer; Hwang, Cheol Seong
2016-01-01
Identification of microstructural evolution of nanoscale conducting phase, such as conducting filament (CF), in many resistance switching (RS) devices is a crucial factor to unambiguously understand the electrical behaviours of the RS-based electronic devices. Among the diverse RS material systems, oxide-based redox system comprises the major category of these intriguing electronic devices, where the local, along both lateral and vertical directions of thin films, changes in oxygen chemistry has been suggested to be the main RS mechanism. However, there are systems which involve distinctive crystallographic phases as CF; the Magnéli phase in TiO2 is one of the very well-known examples. The current research reports the possible presence of distinctive local conducting phase in atomic layer deposited SrTiO3 RS thin film. The conducting phase was identified through extensive transmission electron microscopy studies, which indicated that oxygen-deficient Sr2Ti6O13 or Sr1Ti11O20 phase was presumably present mainly along the grain boundaries of SrTiO3 after the unipolar set switching in Pt/TiN/SrTiO3/Pt structure. A detailed electrical characterization revealed that the samples showed typical bipolar and complementary RS after the memory cell was unipolar reset. PMID:26830978
Engineering of acidic O/W emulsions with pectin.
Alba, K; Sagis, L M C; Kontogiorgos, V
2016-09-01
Pectins with distinct molecular design were isolated by aqueous extraction at pH 2.0 or 6.0 and were examined in terms of their formation and stabilisation capacity of model n-alkane-in-water emulsions at acidic pH (pH 2.0). The properties and stability of the resulting emulsions were examined by means of droplet size distribution analysis, Lifshitz-Slyozov-Wagner modelling, bulk rheology, interfacial composition analysis, large-amplitude oscillatory surface dilatational rheology, electrokinetic analysis and fluorescence microscopy. Both pectin preparations were able to emulsify alkanes in water but exhibited distinct ageing characteristics. Emulsions prepared using pectin isolated at pH 6.0 were remarkably stable with respect to droplet growth after thirty days of ageing, while those prepared with pectin isolated at pH 2.0 destabilised rapidly. Examination of chemical composition of interfacial layers indicated multi-layered adsorption of pectins at the oil-water interface. The higher long-term stability of emulsions prepared with pectin isolated at high pH is attributed to mechanically stronger interfaces, the highly branched nature and the low hydrodynamic volume of the chains that result in effective steric stabilisation whereas acetyl and methyl contents do not contribute to the long-term stability. The present work shows that it is possible by tailoring the fine structure of pectin to engineer emulsions that operate in acidic environments. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roethe, T.; Bakke, J.; Støren, E.
2016-12-01
Here we present work in progress from Buarvatnet at the Folgefonn Peninsula, located on the west coast of Norway. Earlier work from Buarvatnet indicated several distinct spikes in the Silica count rates, detected by the ITRAX surface XRF-scanner. However, the process behind these distinct spikes was not understood. The arrival of high-resolution and innovative instruments at EARTHLAB, in particular the computed tomography (CT) scanner and grain Morphometer, have the potential to get a process-based understanding of these distinct layers and unravel the frequency and timing of such events. Multiple sediment cores were retrieved using a modified piston corer and a Uwitech corer from Buarvatnet. The sediments have been analysed using a multi-proxy approach and the analyses included magnetic properties, loss-on-ignition, dry bulk density, grain size/shape, geochemical analysis (XRF scanning) and CT-scanning. Accurate age-control will be achieved through 210Pb dating of the top-most sediments and 14C dating of terrestrial macrofossils. The lithostratigraphy of the 3.6 m long master sediment core from Buarvatnet is divided into three distinct units. The lower most unit ( 87 cm) is massive with fine-grained greyish sediments, most likely representing the deglaciation of the area. A 224 cm long unit is found above, characterised as dark brown gyttja with multiple thin layers (sub-mm to cm thick) of fine grained sediments. Also in this unit is two distinct sub-units showing a finer upwards sequence. At top, a gradual transition from dark brown gyttja to grey fine-grained sediments is found in the upper-most 19 cm of the sediment core. In total 16 distinct layers is found in the gyttja sequence, including the two sub-units, based on the lithostratigraphy and the prelimnary results from the magnetic, physical and geochemical properties. A preliminary hypothesis is that these distinct layers are due to outburst floods from a glacier-dammed lake upstream from Buarvatnet. In such a scenario, a bedrock threshold dams the meltwater from the retreating glacier and an outburst flood is triggered when the glacier calves or advances into the lake. Understanding the processes behind the multiple events is therefore important in order to highlight the potential hazards in rapid outburst floods in a warming world.
Engineering 1D Quantum Stripes from Superlattices of 2D Layered Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruenewald, John H.; Kim, Jungho; Kim, Heung Sik
Dimensional tunability from two dimensions to one dimension is demonstrated for the first time using an artificial superlattice method in synthesizing 1D stripes from 2D layered materials. The 1D confinement of layered Sr2IrO4 induces distinct 1D quantum-confined electronic states, as observed from optical spectroscopy and resonant inelastic X-ray scattering. This 1D superlattice approach is generalizable to a wide range of layered materials.
NASA Astrophysics Data System (ADS)
Tejedor, A.; Longjas, A.; Foufoula-Georgiou, E.
2017-12-01
Previous work [e.g. Tejedor et al., 2016 - GRL] has demonstrated the potential of using graph theory to study key properties of the structure and dynamics of river delta channel networks. Although the distribution of fluxes in river deltas is mostly driven by the connectivity of its channel network a significant part of the fluxes might also arise from connectivity between the channels and islands due to overland flow and seepage. This channel-island-subsurface interaction creates connectivity pathways which facilitate or inhibit transport depending on their degree of coupling. The question we pose here is how to collectively study system connectivity that emerges from the aggregated action of different processes (different in nature, intensity and time scales). Single-layer graphs as those introduced for delta channel networks are inadequate as they lack the ability to represent coupled processes, and neglecting across-process interactions can lead to mis-representation of the overall system dynamics. We present here a framework that generalizes the traditional representation of networks (single-layer graphs) to the so-called multi-layer networks or multiplex. A multi-layer network conceptualizes the overall connectivity arising from different processes as distinct graphs (layers), while allowing at the same time to represent interactions between layers by introducing interlayer links (across process interactions). We illustrate this framework using a study of the joint connectivity that arises from the coupling of the confined flow on the channel network and the overland flow on islands, on a prototype delta. We show the potential of the multi-layer framework to answer quantitatively questions related to the characteristic time scales to steady-state transport in the system as a whole when different levels of channel-island coupling are modulated by different magnitudes of discharge rates.
NASA Astrophysics Data System (ADS)
Rolim, S.
2015-12-01
The characterization of the tectonic framework of Paleozoic terrains is crucial for the investigation of unconventional fractured volcanic reservoirs. In recent years, the need for exploitation of these areas showed the value of the non-seismic methods in Brazil. Here we present the results of a magnetotelluric imaging (MT) to identify and characterize the structural framework of the southern portion of the Paraná Basin, southern Brazil. We carried out a SW-NE ,1200 km-long MT profile, with 68 stations spaced between 5-15 km on the southernmost states in Brazil. The observation of the PSI profile highlights the presence of large scale NW-SE faults and emphasize the presence of two major regional structures: (i) the Rio Grande Arc in the southern portion, and (ii) the Torres Syncline in the northern portion. The Rio Grande Arc is a horst highlighted by the basement uplift and the thicker layers of sedimentary rocks in the extremes south and north of this structure. The fault system observed along the profile suggests simultaneously uplifting of the basement and deposition of the sedimentary sequences of the Paraná Basin. This hypothesis is in agreement with stratigraphic, borehole and geochronological data, which have shown that the Rio Grande arc is contemporaneous with the deposition of the Triassic to Early Jurassic sediments. The Torres Syncline is a structure characterized by the increasing thickness of sedimentary layers in the north section of our MT profile. The continuity of the layers is interrupted by large regional fault systems, which also affect the volcanic rocks of the Serra Geral Formation, indicating that the faults were active after the Cretaceous. The results show that the MT modeling brings a distinct contribution to the understanding of the present structural architecture of the Paraná basin and the construction of a model for potential fractured volcanic reservoirs.
NASA Astrophysics Data System (ADS)
MacAlister, E.; Skalbeck, J.; Stewart, E.
2016-12-01
Since the late 1800's, geologic studies have been completed in Wisconsin in pursuit of understanding the basement topography and locating economically viable mineral resources. The doubly plunging Baraboo Syncline located in Columbia and Sauk Counties provides a classic record of Precambrian deformation. A similar buried structure is thought to exist in adjacent Dodge County based on a prominent aeromagnetic anomaly. For this study, 3-D modeling of gravity and aeromagnetic survey data was used to approximate the structure of the Precambrian basement topography beneath Dodge County, Wisconsin. The aim of the research was to determine a suitable basement topography grid using potential field data and then use this grid as the base for groundwater flow models. Geosoft Oasis Montaj GM-SYS 3D modeling software was used to build grids of subsurface layers and the model was constrained by well records of basement rock elevations located throughout the county. The study demonstrated that there is a complex network of crystalline basement structures that have been folded through tectonic activity during the Precambrian. A thick layer of iron rich sedimentary material was deposited on top of the basement rocks, causing a distinct magnetic signature that outlined the basement structure in the magnetic survey. Preliminary results reveal an iron layer with a density of 3.7 g/cm3 and magnetic susceptibility of 8000 x 10-6 cgs that is approximately 500 feet thick and ranges between elevations of -300 meters below and 400 meters above sea level. The 3-D model depths are consistent with depths from recent core drilling operations performed by the Wisconsin Geological and Natural History Survey. Knowing the depth to and structure of basement rock throughout Dodge County and Wisconsin plays an important role in understanding the geologic history of the region. Also, better resolution of the basement topography can enhance the accuracy of future groundwater flow models.
TEM characterization of a silorane composite bonded to enamel/dentin.
Mine, Atsushi; De Munck, Jan; Van Ende, Annelies; Cardoso, Marcio Vivan; Kuboki, Takuo; Yoshida, Yasuhiro; Van Meerbeek, Bart
2010-06-01
The low-shrinking composite composed of combined siloxane-oxirane technology (Filtek Silorane, 3M ESPE, Seefeld, Germany) required the development of a specific adhesive (Silorane System Adhesive, 3M ESPE), in particular because of the high hydrophobicity of the silorane composite. The purpose of this study was to characterize the interfacial ultra-structure at enamel and dentin using transmission electron microscopy (TEM). Non-demineralized/demineralized 70-90 nm sections were prepared following common TEM specimen processing procedures. TEM revealed a typical twofold build-up of the adhesive resin, resulting in a total adhesive layer thickness of 10-20 microm. At bur-cut enamel, a tight interface without distinct dissolution of hydroxyapatite was observed. At bur-cut dentin, a relatively thin hybrid layer of maximum a few hundreds of nanometer was formed without clear surface demineralization. No clear resin tags were formed. At fractured dentin, the interaction appeared very superficial (100-200 nm). Distinct resin tags were formed due to the absence of smear plugs. Silver-nitrate infiltration showed a varying pattern of both spot- and cluster-like appearance of nano-leakage. Traces of Ag were typically detected along some part of the enamel-adhesive interface and/or between the two adhesive resin layers. Substantially more Ag-infiltration was observed along the dentin-adhesive interface of bur-cut dentin, as compared to that of fractured dentin. The nano-interaction of Silorane System Adhesive should be attributed to its relatively high pH of 2.7. The obtained tight interface at both enamel and dentin indicates that the two-step self-etch adhesive effectively bridged the hydrophilic tooth substrate with the hydrophobic silorane composite. Copyright (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Zhang, Lijun; Zunger, Alex
2015-02-11
Layered group-VIB transition metal dichalcogenides (with the formula of MX2) are known to show a transition from an indirect band gap in the thick n-monolayer stack (MX2)n to a direct band gap at the n = 1 monolayer limit, thus converting the system into an optically active material suitable for a variety of optoelectronic applications. The origin of this transition has been attributed predominantly to quantum confinement effect at reduced n. Our analysis of the evolution of band-edge energies and wave functions as a function of n using ab initio density functional calculations including the long-range dispersion interaction reveals (i) the indirect-to-direct band gap transformation is triggered not only by (kinetic-energy controlled) quantum confinement but also by (potential-energy controlled) band repulsion and localization. On its own, neither of the two effects can explain by itself the energy evolution of the band-edge states relevant to the transformation; (ii) when n decreased, there emerge distinct regimes with characteristic localization prototypes of band-edge states deciding the optical response of the system. They are distinguished by the real-space direct/indirect in combination with momentum-space direct/indirect nature of electron and hole states and give rise to distinct types of charge distribution of the photoexcited carriers that control excitonic behaviors; (iii) the various regimes associated with different localization prototypes are predicted to change with modification of cations and anions in the complete MX2 (M = Cr, Mo, W and X = S, Se, Te) series. These results offer new insight into understanding the excitonic properties (e.g., binding energy, lifetime etc.) of multiple layered MX2 and their heterostructures.
Borgeaud, Anselme F. E.; Kawai, Kenji; Konishi, Kensuke; Geller, Robert J.
2017-01-01
D″ (Dee double prime), the lowermost layer of the Earth’s mantle, is the thermal boundary layer (TBL) of mantle convection immediately above the Earth’s liquid outer core. As the origin of upwelling of hot material and the destination of paleoslabs (downwelling cold slab remnants), D″ plays a major role in the Earth’s evolution. D″ beneath Central America and the Caribbean is of particular geodynamical interest, because the paleo- and present Pacific plates have been subducting beneath the western margin of Pangaea since ~250 million years ago, which implies that paleoslabs could have reached the lowermost mantle. We conduct waveform inversion using a data set of ~7700 transverse component records to infer the detailed three-dimensional S-velocity structure in the lowermost 400 km of the mantle in the study region so that we can investigate how cold paleoslabs interact with the hot TBL above the core-mantle boundary (CMB). We can obtain high-resolution images because the lowermost mantle here is densely sampled by seismic waves due to the full deployment of the USArray broadband seismic stations during 2004–2015. We find two distinct strong high-velocity anomalies, which we interpret as paleoslabs, just above the CMB beneath Central America and Venezuela, respectively, surrounded by low-velocity regions. Strong low-velocity anomalies concentrated in the lowermost 100 km of the mantle suggest the existence of chemically distinct denser material connected to low-velocity anomalies in the lower mantle inferred by previous studies, suggesting that plate tectonics on the Earth’s surface might control the modality of convection in the lower mantle. PMID:29209659
Dynamics of Compressible Convection and Thermochemical Mantle Convection
NASA Astrophysics Data System (ADS)
Liu, Xi
The Earth's long-wavelength geoid anomalies have long been used to constrain the dynamics and viscosity structure of the mantle in an isochemical, whole-mantle convection model. However, there is strong evidence that the seismically observed large low shear velocity provinces (LLSVPs) in the lowermost mantle are chemically distinct and denser than the ambient mantle. In this thesis, I investigated how chemically distinct and dense piles influence the geoid. I formulated dynamically self-consistent 3D spherical convection models with realistic mantle viscosity structure which reproduce Earth's dominantly spherical harmonic degree-2 convection. The models revealed a compensation effect of the chemically dense LLSVPs. Next, I formulated instantaneous flow models based on seismic tomography to compute the geoid and constrain mantle viscosity assuming thermochemical convection with the compensation effect. Thermochemical models reconcile the geoid observations. The viscosity structure inverted for thermochemical models is nearly identical to that of whole-mantle models, and both prefer weak transition zone. Our results have implications for mineral physics, seismic tomographic studies, and mantle convection modelling. Another part of this thesis describes analyses of the influence of mantle compressibility on thermal convection in an isoviscous and compressible fluid with infinite Prandtl number. A new formulation of the propagator matrix method is implemented to compute the critical Rayleigh number and the corresponding eigenfunctions for compressible convection. Heat flux and thermal boundary layer properties are quantified in numerical models and scaling laws are developed.
NASA Astrophysics Data System (ADS)
Schmidt, Jerome Michael
This study addresses the production of sustained, straight-line, severe surface winds associated with mesoscale convective systems (MCSs) of extratropical origin otherwise known as derechos. The physical processes which govern the observed derecho characteristics are identified and their possible forcing mechanisms are determined. Detailed observations of two derechos are presented along with simulations using the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS). The observations revealed a derecho environment characterized by strong vertical wind shear through the depth of the troposphere and large values of convective available potential energy (CAPE). The thermodynamic environment of the troposphere in each case had a distinct three-layer structure consisting of: (i) a surface-based stable layer of 1-to-2 km in depth, (ii) an elevated well -mixed layer of 2-4 km in depth, and (iii) an upper tropospheric layer of intermediate stability that extended to the tropopause. Two primary sets of simulations were performed to assess the impact of the observed environmental profiles on the derecho structure, propagation, and longevity. The first set consisted of nested-grid regional-scale simulations initialized from the standard NMC analyses on a domain having relatively coarse horizontal resolution (75 km). The second set of simulations consisted of two and three-dimensional experiments initialized in a horizontally homogeneous environment having a relatively fine horizontal resolution (2 km) and explicit microphysics. The results from these experiments indicate the importance of convectively -induced gravity waves on the MCS structure, propagation, longevity, and severe surface wind development. The sensitivity of the simulated convection and gravity waves to variations in the vertical wind shear and moisture profiles are described. Detailed Doppler radar analyses and 3-D simulations of a severe, bow echo squall line are presented which reveal the unique 3-D circulation features which accompany these mesoscale convective systems. We illustrate how the mesoscale and convective-scale flow fields within the bow echo establish the severe surface wind maximum. (Abstract shortened with permission of author.).
Schneider, Ling; Feidenhans’l, Nikolaj A.; Telecka, Agnieszka; Taboryski, Rafael J.
2016-01-01
We report a simple one-step maskless fabrication of inverted pyramids on silicon wafers by reactive ion etching. The fabricated surface structures exhibit excellent anti-reflective properties: The total reflectance of the nano inverted pyramids fabricated by our method can be as low as 12% without any anti-reflective layers, and down to only 0.33% with a silicon nitride coating. The results from angle resolved scattering measurements indicate that the existence of triple reflections is responsible for the reduced reflectance. The surfaces with the nano inverted pyramids also exhibit a distinct milky white color. PMID:27725703
2011-01-01
In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7)O3 (PZT)] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM) and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data. PMID:21794156
Structuralism, Post-Structuralism, and Neo-Liberalism: Assessing Foucault's Legacy.
ERIC Educational Resources Information Center
Olssen, Mark
2003-01-01
Traces Foucault's distinctive commitment to "post-structuralism." Argues that under the influence of Nietzsche, Foucault's approach marks a distinct break with structuralism in several crucial aspects. What results is a materialist post-structuralism that is also distinctively different from the post-structuralism of Derrida, Lyotard,…
NASA Astrophysics Data System (ADS)
Garvie, Laurence A. J.; Knauth, L. Paul; Morris, Melissa A.
2017-08-01
Prominent macroscopic sedimentary laminations, consisting of mm- to cm-thick alternating well-sorted but poorly mixed silicate and metal-rich layers cut by faults and downward penetrating load structures, are prevalent in the Isheyevo (CH/CBb) carbonaceous chondrite. The load structures give the up direction of this sedimentary rock that accumulated from in-falling metal- and silicate-rich grains under near vacuum conditions onto the surface of an accreting planetesimal. The Isheyevo meteorite is the end result of a combination of events and processes that we suggest was initiated by the glancing blow impact of two planetesimals. The smaller impactor was disrupted forming an impact plume downrange of the impact. The components within the plume were aerodynamically size sorted by the nebular gas and swept up by the impacted planetesimal before turbulent mixing within the plume could blur the effects of the sorting. This plume would have contained a range of materials including elementally zoned Fe-Ni metal grains that condensed in the plume to disrupted unaltered material from the crust of the impactor, such as the hydrated matrix lumps. The juxtaposition of hydrated matrix lumps, some of which have not been heated above 150 °C, together with components that formed above 1000 °C, is compelling evidence that they were swept up together. Sweep-up would have occurred as the rotating impactor moved through the plume producing layers of material: the Isheyevo sample thus represents material accumulated while that part of the rotating planetesimal moved into the plume. Vibrations from subsequent impacts helped to form the load structures and induced weak grading within the layers via kinetic sieving. Following sweep-up, the particles were compacted under low static temperatures as evidenced by the preservation of elementally zoned Fe-Ni metal grains with preserved martensite α2 cores, distinct metal-metal grain boundaries, and metal-deformation microstructures. This meteorite provides evidence of gentle layer-by-layer accretion in the early Solar System, and also extends the terrestrial sedimentary source-to-sink paradigm to a near vacuum environment where neither fluvial nor aeolian processes operate.
Surface-stabilized gold nanocatalysts
Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN
2009-12-08
A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.
Ion Layer Separation and Equilibrium Zonal Winds in Midlatitude Sporadic E
NASA Technical Reports Server (NTRS)
Earle, G. D.; Kane, T. J.; Pfaff, R. F.; Bounds, S. R.
2000-01-01
In-situ observations of a moderately strong mid-latitude sporadic-E layer show a separation in altitude between distinct sublayers composed of Fe(+), Mg(+), and NO(+). From these observations it is possible to estimate the zonal wind field consistent with diffusive equilibrium near the altitude of the layer. The amplitude of the zonal wind necessary to sustain the layer against diffusive effects is less than 10 meters per second, and the vertical wavelength is less than 10 km.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Museur, T.; Roest, W. R.; Graindorge, D.; Chauvet, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Lebrun, J. F.; Perrot, J.; Heuret, A.
2017-12-01
Many transform margins have associated intermediate depth marginal plateaus, which are commonly located between two oceanic basins. The Demerara plateau is located offshore Surinam and French Guiana. Plate kinematic reconstructions show that the plateau is located between the central and equatorial Atlantic in a position conjugate to the Guinean Plateau. In the fall of 2016, the MARGATS cruise acquired geophysical data along the 400 km wide Demerara plateau. The main objective of the cruise was to image the deep structure of the Demerara plateau and to study its tectonic history. A set of 4 combined wide-angle and reflection seismic profiles was acquired along the plateau, using 80 ocean-bottom seismometers, a 3 km long seismic streamer and a 8000 cu inch tuned airgun array. Forward modelling of the wide-angle seismic data on a profile, located in the eastern part of the plateau and oriented in a NE-SW direction, images the crustal structure of the plateau, the transition zone and the neighbouring crust of oceanic origin, up to a depth of 40 km. The plateau itself is characterised by a crust of 30 km thickness, subdivided into three distinct layers. However, the velocities and velocity gradients do not fit typical continental crust, with a lower crustal layer showing untypically high velocities and an upper layer having a steep velocity gradient. From this model we propose that the lowermost layer is probably formed from volcanic underplated material and that the upper crustal layer likely consists of the corresponding extrusive volcanic material, forming thick seaward-dipping reflector sequences on the plateau. A basement high is imaged at the foot of the slope and forms the ocean-continent transition zone. Further oceanward, a 5-6 km thick crust is imaged with velocities and velocity gradients corresponding to a thin oceanic crust. A compilation of magnetic data from the MARGATS and 3 previous cruises shows a high amplitude magnetic anomaly along the northern edge of the plateau thereby strengthening the hypothesis of an volcanic origin of at least part of the structure. We propose, that the plateau was formed by large-scale volcanism, possibly intruding into a thinner existing continental crust.
Lee, Seung-Hoon; Kang, Hojeong
2016-02-01
The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to biogeochemical factors, the study of the microbial community even in surface soil should be performed in detail by considering the soil depth.
Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Hutchins, N.; Hambleton, W. T.; Marusic, Ivan
2005-10-01
This work can be viewed as a reprise of Head & Bandyopadhyay's (J. Fluid Mech. vol. 107, p. 297) original boundary-layer visualization study although in this instance we make use of stereo particle image velocimetry (PIV), techniques to obtain a quantitative view of the turbulent structure. By arranging the laser light-sheet and image plane of a stereo PIV system in inclined spanwise/wall-normal planes (inclined at both 45(°) and 135(°) to the streamwise axis) a unique quantitative view of the turbulent boundary layer is obtained. Experiments are repeated across a range of Reynolds numbers, Re_{tau} {≈} 690-2800. Despite numerous experimental challenges (due to the large out-of-plane velocity components), mean flow and Reynolds stress profiles indicate that the salient features of the turbulent flow have been well resolved. The data are analysed with specific attention to a proposed hairpin eddy model. In-plane two-dimensional swirl is used to identify vortical eddy structures piercing the inclined planes. The vast majority of this activity occurs in the 135(°) plane, indicating an inclined eddy structure, and Biot-Savart law calculations are carried out to aid in the discussion. Conditional averaging and linear stochastic estimation results also support the presence of inclined eddies, arranged about low-speed regions. In the 135(°) plane, instantaneous swirl patterns exhibit a predisposition for counter-rotating vortex pairs (arranged with an ejection at their confluence). Such arrangements are consistent with the hairpin packet model. Correlation and scaling results show outer-scaling to be the correct way to quantify the characteristic spanwise length scale across the log and wake regions of the boundary layers (for the range of Reynolds numbers tested). A closer investigation of two-point velocity correlation contours indicates the occurrence of a distinct two-regime behaviour, in which contours (and hence streamwise velocity fluctuations) either appear to be ‘attached’ to the buffer region, or ‘detaching’ from it. The demarcation between these two regimes is found to scale well with outer variables. The results are consistent with a coherent structure that becomes increasingly uncoupled (or decorrelated) from the wall as it grows beyond the logarithmic region, providing additional support for a wall awake description of turbulent boundary layers.
NASA Astrophysics Data System (ADS)
Song, Hwan-Jin; Sohn, Byung-Ju
2018-01-01
The Korean peninsula is the region of distinctly showing the heavy rain associated with relatively low storm height and small ice water content in the upper part of cloud system (i.e., so-called warm-type heavy rainfall). The satellite observations for the warmtype rain over Korea led to a conjecture that the cloud microphysics parameterization suitable for the continental deep convection may not work well for the warm-type heavy rainfall over the Korean peninsula. Therefore, there is a growing need to examine the performance of cloud microphysics schemes for simulating the warm-type heavy rain structures over the Korean peninsula. This study aims to evaluate the capabilities of eight microphysics schemes in the Weather Research and Forecasting (WRF) model how warmtype heavy rain structures can be simulated, in reference to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity measurements. The results indicate that the WRF Double Moment 6-class (WDM6) scheme simulated best the vertical structure of warm-type heavy rain by virtue of a reasonable collisioncoalescence process between liquid droplets and the smallest amount of snow. Nonetheless the WDM6 scheme appears to have limitations that need to be improved upon for a realistic reflectivity structure, in terms of the reflectivity slope below the melting layer, discontinuity in reflectivity profiles around the melting layer, and overestimation of upper-level reflectivity due to high graupel content.
NASA Astrophysics Data System (ADS)
Song, Hwan-Jin; Sohn, Byung-Ju
2018-05-01
The Korean peninsula is the region of distinctly showing the heavy rain associated with relatively low storm height and small ice water content in the upper part of cloud system (i.e., so-called warm-type heavy rainfall). The satellite observations for the warm-type rain over Korea led to a conjecture that the cloud microphysics parameterization suitable for the continental deep convection may not work well for the warm-type heavy rainfall over the Korean peninsula. Therefore, there is a growing need to examine the performance of cloud microphysics schemes for simulating the warm-type heavy rain structures over the Korean peninsula. This study aims to evaluate the capabilities of eight microphysics schemes in the Weather Research and Forecasting (WRF) model how warm-type heavy rain structures can be simulated, in reference to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity measurements. The results indicate that the WRF Double Moment 6-class (WDM6) scheme simulated best the vertical structure of warm-type heavy rain by virtue of a reasonable collision-coalescence process between liquid droplets and the smallest amount of snow. Nonetheless the WDM6 scheme appears to have limitations that need to be improved upon for a realistic reflectivity structure, in terms of the reflectivity slope below the melting layer, discontinuity in reflectivity profiles around the melting layer, and overestimation of upper-level reflectivity due to high graupel content.
Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis.
Ma, Lu; Rebane, Aleksander A; Yang, Guangcan; Xi, Zhiqun; Kang, Yuhao; Gao, Ying; Zhang, Yongli
2015-12-23
Synaptic-soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins couple their stage-wise folding/assembly to rapid exocytosis of neurotransmitters in a Munc18-1-dependent manner. The functions of the different assembly stages in exocytosis and the role of Munc18-1 in SNARE assembly are not well understood. Using optical tweezers, we observed four distinct stages of assembly in SNARE N-terminal, middle, C-terminal, and linker domains (or NTD, MD, CTD, and LD, respectively). We found that SNARE layer mutations differentially affect SNARE assembly. Comparison of their effects on SNARE assembly and on exocytosis reveals that NTD and CTD are responsible for vesicle docking and fusion, respectively, whereas MD regulates SNARE assembly and fusion. Munc18-1 initiates SNARE assembly and structures t-SNARE C-terminus independent of syntaxin N-terminal regulatory domain (NRD) and stabilizes the half-zippered SNARE complex dependent upon the NRD. Our observations demonstrate distinct functions of SNARE domains whose assembly is intimately chaperoned by Munc18-1.
Spatial localization of excitons and charge carriers in hybrid perovskite thin films
Simpson, Mary Jane; Doughty, Benjamin; Yang, Bin; ...
2015-07-21
The fundamental photophysics underlying the remarkably high power conversion efficiency of organic-inorganic hybrid perovskite-based solar cells has been increasingly studied using complementary spectroscopic techniques. The spatially heterogeneous polycrystalline morphology of the photoactive layers owing to the presence of distinct crystalline grains has been generally neglected in optical measurements and therefore the reported results are typically averaged over hundreds or even thousands of such grains. Here, we apply femtosecond transient absorption microscopy to spatially and temporally probe ultrafast electronic excited-state dynamics in pristine methylammonium lead tri-iodide (CH 3NH 3PbI 3) thin films and composite structures. We found that the electronic excited-statemore » relaxation kinetics are extremely sensitive to the sample location probed, which was manifested by position-dependent decay timescales and transient signals. As a result, analysis of transient absorption kinetics acquired at distinct spatial positions enabled us to identify contributions of excitons and free charge carriers.« less
Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas.
Palomero-Gallagher, Nicola; Zilles, Karl
2017-08-12
Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen
2011-08-01
We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.
Do, Danh Bich; Lin, Jian Hung; Lai, Ngoc Diep; Kan, Hung-Chih; Hsu, Chia Chen
2011-08-10
We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest-host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.
On the electron dynamics during island coalescence in asymmetric magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cazzola, E., E-mail: emanuele.cazzola@wis.kuleuven.be; Innocenti, M. E., E-mail: mariaelena.innocenti@wis.kuleuven.be; Lapenta, G., E-mail: giovanni.lapenta@wis.kuleuven.be
We present an analysis of the electron dynamics during rapid island merging in asymmetric magnetic reconnection. We consider a doubly periodic system with two asymmetric transitions. The upper layer is an asymmetric Harris sheet of finite width perturbed initially to promote a single reconnection site. The lower layer is a tangential discontinuity that promotes the formation of many X-points, separated by rapidly merging islands. Across both layers, the magnetic field and the density have a strong jump, but the pressure is held constant. Our analysis focuses on the consequences of electron energization during island coalescence. We focus first on themore » parallel and perpendicular components of the electron temperature to establish the presence of possible anisotropies and non-gyrotropies. Thanks to the direct comparison between the two different layers simulated, we can distinguish three main types of behavior characteristic of three different regions of interest. The first type represents the regions where traditional asymmetric reconnections take place without involving island merging. The second type of regions instead shows reconnection events between two merging islands. Finally, the third regions identify the regions between two diverging island and where typical signature of reconnection is not observed. Electrons in these latter regions additionally show a flat-top distribution resulting from the saturation of a two-stream instability generated by the two interacting electron beams from the two nearest reconnection points. Finally, the analysis of agyrotropy shows the presence of a distinct double structure laying all over the lower side facing the higher magnetic field region. This structure becomes quadrupolar in the proximity of the regions of the third type. The distinguishing features found for the three types of regions investigated provide clear indicators to the recently launched Magnetospheric Multiscale NASA mission for investigating magnetopause reconnection involving multiple islands.« less
Structure of the integument of southern right whales, Eubalaena australis.
Reeb, Desray; Best, Peter Barrington; Kidson, Susan Hillary
2007-06-01
Skin (integument) anatomy reflects adaptations to particular environments. It is hypothesized that cetacean (whale) integument will show unique anatomical adaptations to an aquatic environment, particularly regarding differences in temperature, density, and pressure. In this study, the gross and histological structure of the southern right whale integument is described and compared with terrestrial mammals and previous descriptions of mysticete (baleen whale) and odontocete (toothed whale) species. Samples were taken of the integument of 98 free-swimming southern right whales, Eubalaena australis, and examined by both light and electron microscopy. Results show that three epidermal layers are present, with the stratum corneum being parakeratotic in nature. As in bowhead whales, southern right whales possess an acanthotic epidermis and a notably thick hypodermis, with epidermal rods and extensive papillomatosis. However, unlike bowhead whales, southern right whales possess an uninterrupted hypodermal layer. Surprisingly, the integument of balaenids (right and bowhead mysticetes) in general is more like that of odontocetes than that of the more closely related balaenopterids (rorqual mysticetes). Similarities to odontocetes were found specifically in the collagen fibers in a fat-free zone of the reticular dermal layer and the elastic fibers in the dermal and hypodermal layers. Callosities, a distinctive feature of this genus, have a slightly thicker stratum corneum and are usually associated with hairs that have innervated and vascularized follicles. These hairs may function as vibrissae, thus aiding in aquatic foraging by allowing rapid detection of changes in prey density. Although the thick insulatory integument makes right whales bulky and slow-moving, it is an adaptation for living in cold water. Epidermal thickness, presence of epidermal rods, and callosities may act as barriers against mechanical injury from bodily contact with conspecifics or hard surfaces in the environment (e.g., rocks, ice). 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Gilson, Gaëlle F.; Jiskoot, Hester; Cassano, John J.; Gultepe, Ismail; James, Timothy D.
2018-05-01
An automated method to classify Arctic fog into distinct thermodynamic profiles using historic in-situ surface and upper-air observations is presented. This classification is applied to low-resolution Integrated Global Radiosonde Archive (IGRA) soundings and high-resolution Arctic Summer Cloud Ocean Study (ASCOS) soundings in low- and high-Arctic coastal and pack-ice environments. Results allow investigation of fog macrophysical properties and processes in coastal East Greenland during melt seasons 1980-2012. Integrated with fog observations from three synoptic weather stations, 422 IGRA soundings are classified into six fog thermodynamic types based on surface saturation ratio, type of temperature inversion, fog-top height relative to inversion-base height and stability using the virtual potential temperature gradient. Between 65-80% of fog observations occur with a low-level inversion, and statically neutral or unstable surface layers occur frequently. Thermodynamic classification is sensitive to the assigned dew-point depression threshold, but categorization is robust. Despite differences in the vertical resolution of radiosonde observations, IGRA and ASCOS soundings yield the same six fog classes, with fog-class distribution varying with latitude and environmental conditions. High-Arctic fog frequently resides within an elevated inversion layer, whereas low-Arctic fog is more often restricted to the mixed layer. Using supplementary time-lapse images, ASCOS microwave radiometer retrievals and airmass back-trajectories, we hypothesize that the thermodynamic classes represent different stages of advection fog formation, development, and dissipation, including stratus-base lowering and fog lifting. This automated extraction of thermodynamic boundary-layer and inversion structure can be applied to radiosonde observations worldwide to better evaluate fog conditions that affect transportation and lead to improvements in numerical models.
Multiscale Currents Observed by MMS in the Flow Braking Region.
Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A; Apatenkov, Sergey; Ergun, Robert E; Fuselier, Stephen A; Gershman, Daniel J; Giles, Barbara J; Khotyaintsev, Yuri V; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T; Stawarz, Julia; Strangeway, Robert J; Anderson, Brian; Burch, James L; Bromund, Ken R; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J; Slavin, James A; Torbert, Roy B; Turner, Drew L
2018-02-01
We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.
The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependentmore » microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 10 5 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Moreover, subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.« less
Characterization of an aluminum alloy hemispherical shell fabricated via direct metal laser melting
Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.; ...
2016-01-11
The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependentmore » microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 10 5 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Moreover, subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.« less
Characterization of an Aluminum Alloy Hemispherical Shell Fabricated via Direct Metal Laser Melting
NASA Astrophysics Data System (ADS)
Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.; Patterson, B. M.; Papin, P. A.; Swenson, H.; Cordes, N. L.
2016-03-01
The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependent microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 105 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.
Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex
Naumann, Robert K.; Ray, Saikat; Prokop, Stefan; Las, Liora; Heppner, Frank L.
2016-01-01
ABSTRACT To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin‐positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin‐negative and calbindin‐positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin‐positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin‐positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10‐fold over a 20,000‐fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex. J. Comp. Neurol. 524:783–806, 2016. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26223342
Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex.
Naumann, Robert K; Ray, Saikat; Prokop, Stefan; Las, Liora; Heppner, Frank L; Brecht, Michael
2016-03-01
To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin-positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin-negative and calbindin-positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin-positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin-positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10-fold over a 20,000-fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone
Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.
2015-01-01
Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.
Off-great-circle paths in transequatorial propagation: 2. Nonmagnetic-field-aligned reflections
NASA Astrophysics Data System (ADS)
Tsunoda, Roland T.; Maruyama, Takashi; Tsugawa, Takuya; Yokoyama, Tatsuhiro; Ishii, Mamoru; Nguyen, Trang T.; Ogawa, Tadahiko; Nishioka, Michi
2016-11-01
There is considerable evidence that plasma structure in nighttime equatorial F layer develops from large-scale wave structure (LSWS) in bottomside F layer. However, crucial details of how this process proceeds, from LSWS to equatorial plasma bubbles (EPBs), remain to be sorted out. A major obstacle to success is the paucity of measurements that provide a space-time description of the bottomside F layer over a broad geographical region. The transequatorial propagation (TEP) experiment is one of few methods that can do so. New findings using a TEP experiment, between Shepparton (SHP), Australia, and Oarai (ORI), Japan, are presented in two companion papers. In Paper 1 (P1), (1) off-great-circle (OGC) paths are described in terms of discrete and diffuse types, (2) descriptions of OGC paths are generalized from a single-reflection to a multiple-reflection process, and (3) discrete type is shown to be associated with an unstructured but distorted upwelling, whereas the diffuse type is shown to be associated with EPBs. In Paper 2 (P2), attention is placed on differences in east-west (EW) asymmetry, found between OGC paths from the SHP-ORI experiment and those from another near-identical TEP experiment. Differences are reconciled by allowing three distinct sources for the EW asymmetries: (1) reflection properties within an upwelling (see P1), (2) OGC paths that depend on magnetic declination of geomagnetic field (B), and (3) OGC paths supported by non-B-aligned reflectors at latitudes where inclination of B is finite.
Dual-band reflective polarization converter based on slotted wire resonators
NASA Astrophysics Data System (ADS)
Li, Fengxia; Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Zhao, Rui; Zhou, Yang; Liang, Difei; Lu, Haipeng; Deng, Longjiang
2018-02-01
A dual-band and high-efficiency reflective linear polarization converter composed of a layer of slotted metal wires has been proposed. Both the simulated and experimental results indicate that the structure can convert a linearly polarized wave to its cross-polarized state for two distinct frequency bands under normal incidence: 9.8-15.1 and 19.2-25.7 GHz. This phenomenon is attributed to a resonance that corresponds to the "trapped mode" at 15.8 GHz. This mode is stable with structural parameters and incident angle at a relatively wide range, and thus becomes promising for dual-band (also multiband) devices design. By surface current distribution and electric field analysis, the operation mechanism has been illuminated, especially for the "trapped mode", identified by the equally but also oppositely directed currents in each unit cell.
SiO2/AlON stacked gate dielectrics for AlGaN/GaN MOS heterojunction field-effect transistors
NASA Astrophysics Data System (ADS)
Watanabe, Kenta; Terashima, Daiki; Nozaki, Mikito; Yamada, Takahiro; Nakazawa, Satoshi; Ishida, Masahiro; Anda, Yoshiharu; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji
2018-06-01
Stacked gate dielectrics consisting of wide bandgap SiO2 insulators and thin aluminum oxynitride (AlON) interlayers were systematically investigated in order to improve the performance and reliability of AlGaN/GaN metal–oxide–semiconductor (MOS) devices. A significantly reduced gate leakage current compared with that in a single AlON layer was achieved with these structures, while maintaining the superior thermal stability and electrical properties of the oxynitride/AlGaN interface. Consequently, distinct advantages in terms of the reliability of the gate dielectrics, such as an improved immunity against electron injection and an increased dielectric breakdown field, were demonstrated for AlGaN/GaN MOS capacitors with optimized stacked structures having a 3.3-nm-thick AlON interlayer.
The structure of phytoplankton communities in the eastern part of the Laptev Sea
NASA Astrophysics Data System (ADS)
Sukhanova, I. N.; Flint, M. V.; Georgieva, E. Ju.; Lange, E. K.; Kravchishina, M. D.; Demidov, A. B.; Nedospasov, A. A.; Polukhin, A. A.
2017-01-01
Studies have been performed on a transect along 130°30' E from the Lena River delta (71°60' N) to the continental slope and adjacent deepwater area (78°22' N) of the Laptev Sea in September 2015. The structure of phytoplankton communities has distinct latitudinal zoning. The southern part of the shelf (southward of 73°10' N), the most desalinated by riverine discharge, houses a phytoplankton community with a biomass of 175-840 mg/m2, domination of freshwater Aulacoseira diatoms, and significant contribution of green algae (both in abundance and biomass). The northern border for the distribution range of the southern complex of phytoplankton species lies between the 8 and 18 psu isohalines ( 73°10' N). The continental slope and deepwater areas of the Laptev Sea (north of 77°30' N), with a salinity of >27 psu in the upper mixed layer, are populated by the community prevalently composed of Chaetoceros and Rhizosolenia diatoms, very abundant in the Arctic, and dinoflagellates. The phytoplankton number in this area fall in the range of 430-1100 × 106 cell/m2, and the biomass, in the range of 3600 mg/m2. A moderate desalinating impact of the Lena River discharge is observed in the outer shelf area between 73°20' and 77°30' N; the salinity in the upper mixed layer is 18-24 psu. The phytocenosis in this area has a mosaic spatial structure with between-station variation in the shares of different alga groups in the community, cell number of 117-1200 × 106 cells/m2, and a biomass of 1600-3600 mg/m2. As is shown, local inflow of "fresh" nutrients to the euphotic layer in the fall season leads to mass growth of diatoms.
NASA Astrophysics Data System (ADS)
Zhurbas, Nataliya; Kuzmina, Natalia; Lyzhkov, Dmitry; Ostapchuk, Alexey
2017-04-01
In order to give detailed description of the interleaving structure in the Eurasian basin results of observations carried out during NABOS 2008 and Polarstern cruise in 1996 were analyzed. The study was focused on interleaving parameters (structure and vertical scale of intrusions) variability in the upper (150-300 meters) and intermediate (300-700 meters) layers of the ocean. Based on θ,S/θ,σ-diagrams (θ, S and σ are the potential temperature, salinity and potential density, correspondingly) analysis two main results were obtained. First of all it was shown that intrusive layers carried by the mean current along the Eurasian Basin continental margin become deeper relatively isopycnals and thus stimulate ventilation of pycnocline. Second, the area in Eurasian Basin thermocline was found where intrusive layers of large and small scale were absent. This distinctive feature can be explained by intensive mixing between two branches of Atlantic Water, one of which propagates along Eurasian basin continental margin and the other spreads across the basin due to large scale interleaving processes. Among others, one of the possible methods of integral estimation of Atlantic water masses heat and salt contents variations during their expansion along basin continental margin was proposed. Thus it is reasonable to assess variation of square under the θ(S)-diagrams, which illustrate the data obtained from two CTD-stations located on diametrically opposite sides of Eurasian Basin, taking 0.5°C isotherm as a reference value. For verification of the introduced approach the estimates of heat and salt contents variations were made by different methods. Detailed discussion of the results is presented. Work was supported by the Russian Foundation for Basic Research (Grant No 15-05-01479-a).
Alignment hierarchies: engineering architecture from the nanometre to the micrometre scale.
Kureshi, Alvena; Cheema, Umber; Alekseeva, Tijna; Cambrey, Alison; Brown, Robert
2010-12-06
Natural tissues are built of metabolites, soluble proteins and solid extracellular matrix components (largely fibrils) together with cells. These are configured in highly organized hierarchies of structure across length scales from nanometre to millimetre, with alignments that are dominated by anisotropies in their fibrillar matrix. If we are to successfully engineer tissues, these hierarchies need to be mimicked with an understanding of the interaction between them. In particular, the movement of different elements of the tissue (e.g. molecules, cells and bulk fluids) is controlled by matrix structures at distinct scales. We present three novel systems to introduce alignment of collagen fibrils, cells and growth factor gradients within a three-dimensional collagen scaffold using fluid flow, embossing and layering of construct. Importantly, these can be seen as different parts of the same hierarchy of three-dimensional structure, as they are all formed into dense collagen gels. Fluid flow aligns collagen fibrils at the nanoscale, embossed topographical features provide alignment cues at the microscale and introducing layered configuration to three-dimensional collagen scaffolds provides microscale- and mesoscale-aligned pathways for protein factor delivery as well as barriers to confine protein diffusion to specific spatial directions. These seemingly separate methods can be employed to increase complexity of simple extracellular matrix scaffolds, providing insight into new approaches to directly fabricate complex physical and chemical cues at different hierarchical scales, similar to those in natural tissues.
Livermore, Philip W.; Bailey, Lewis M.; Hollerbach, Rainer
2016-01-01
We investigate how the choice of either no-slip or stress-free boundary conditions affects numerical models of rapidly rotating flow in Earth’s core by computing solutions of the weakly-viscous magnetostrophic equations within a spherical shell, driven by a prescribed body force. For non-axisymmetric solutions, we show that models with either choice of boundary condition have thin boundary layers of depth E1/2, where E is the Ekman number, and a free-stream flow that converges to the formally inviscid solution. At Earth-like values of viscosity, the boundary layer thickness is approximately 1 m, for either choice of condition. In contrast, the axisymmetric flows depend crucially on the choice of boundary condition, in both their structure and magnitude (either E−1/2 or E−1). These very large zonal flows arise from requiring viscosity to balance residual axisymmetric torques. We demonstrate that switching the mechanical boundary conditions can cause a distinct change of structure of the flow, including a sign-change close to the equator, even at asymptotically low viscosity. Thus implementation of stress-free boundary conditions, compared with no-slip conditions, may yield qualitatively different dynamics in weakly-viscous magnetostrophic models of Earth’s core. We further show that convergence of the free-stream flow to its asymptotic structure requires E ≤ 10−5. PMID:26980289
Room Temperature Sensing Achieved by GaAs Nanowires and oCVD Polymer Coating.
Wang, Xiaoxue; Ermez, Sema; Goktas, Hilal; Gradečak, Silvija; Gleason, Karen
2017-06-01
Novel structures comprised of GaAs nanowire arrays conformally coated with conducting polymers (poly(3,4-ethylenedioxythiophene) (PEDOT) or poly(3,4-ethylenedioxythiophene-co-3-thiophene acetic acid) display both sensitivity and selectivity to a variety of volatile organic chemicals. A key feature is room temperature operation, so that neither a heater nor the power it would consume, is required. It is a distinct difference from traditional metal oxide sensors, which typically require elevated operational temperature. The GaAs nanowires are prepared directly via self-seeded metal-organic chemical deposition, and conducting polymers are deposited on GaAs nanowires using oxidative chemical vapor deposition (oCVD). The range of thickness for the oCVD layer is between 100 and 200 nm, which is controlled by changing the deposition time. X-ray diffraction analysis indicates an edge-on alignment of the crystalline structure of the PEDOT coating layer on GaAs nanowires. In addition, the positive correlation between the improvement of sensitivity and the increasing nanowire density is demonstrated. Furthermore, the effect of different oCVD coating materials is studied. The sensing mechanism is also discussed with studies considering both nanowire density and polymer types. Overall, the novel structure exhibits good sensitivity and selectivity in gas sensing, and provides a promising platform for future sensor design. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cawood, Adam J.; Bond, Clare E.
2018-01-01
Stratigraphic influence on structural style and strain distribution in deformed sedimentary sequences is well established, in models of 2D mechanical stratigraphy. In this study we attempt to refine existing models of stratigraphic-structure interaction by examining outcrop scale 3D variations in sedimentary architecture and the effects on subsequent deformation. At Monkstone Point, Pembrokeshire, SW Wales, digital mapping and virtual scanline data from a high resolution virtual outcrop have been combined with field observations, sedimentary logs and thin section analysis. Results show that significant variation in strain partitioning is controlled by changes, at a scale of tens of metres, in sedimentary architecture within Upper Carboniferous fluvio-deltaic deposits. Coupled vs uncoupled deformation of the sequence is defined by the composition and lateral continuity of mechanical units and unit interfaces. Where the sedimentary sequence is characterized by gradational changes in composition and grain size, we find that deformation structures are best characterized by patterns of distributed strain. In contrast, distinct compositional changes vertically and in laterally equivalent deposits results in highly partitioned deformation and strain. The mechanical stratigraphy of the study area is inherently 3D in nature, due to lateral and vertical compositional variability. Consideration should be given to 3D variations in mechanical stratigraphy, such as those outlined here, when predicting subsurface deformation in multi-layers.
Bourg, Ian C; Sposito, Garrison
2011-08-15
We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaCl-CaCl(2) electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO(2) or high-level radioactive waste (0.34-1.83 mol(c) dm(-3)). Our results confirm the existence of three distinct ion adsorption planes (0-, β-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the β- and d-planes are independent of ionic strength or ion type and (2) "indifferent electrolyte" ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl(+) ion pairs. Therefore, at concentrations ≥0.34 mol(c) dm(-3), properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid "ice-like" structures for water on clay mineral surfaces. Published by Elsevier Inc.
Electronic structure and superconductivity of FeSe-related superconductors.
Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J
2015-05-13
FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.
NASA Astrophysics Data System (ADS)
Chen, X. D.; Zhang, C. K.; Zhou, Z.; Gong, Z.; Zhou, J. J.; Tao, J. F.; Paterson, D. M.; Feng, Q.
2017-12-01
Biofilms, consisting of microorganisms and their secreted extracellular polymeric substances (EPSs), serve as "ecosystem engineers" stabilizing sedimentary environments. Natural sediment bed provides an excellent substratum for biofilm growth. The porous structure and rich nutrients allow the EPS matrix to spread deeper into the bed. A series of laboratory-controlled experiments were conducted to investigate sediment colonization of Bacillus subtilis and the penetration of EPS into the sediment bed with incubation time. In addition to EPS accumulation on the bed surface, EPS also penetrated downward. However, EPS distribution developed strong vertical heterogeneity with a much higher content in the surface layer than in the bottom layer. Scanning electron microscope images of vertical layers also displayed different micromorphological properties of sediment-EPS matrix. In addition, colloidal and bound EPSs exhibited distinctive distribution patterns. After the full incubation, the biosedimentary beds were eroded to test the variation of bed stability induced by biological effects. This research provides an important reference for the prediction of sediment transport and hence deepens the understanding of the biologically mediated sediment system and broadens the scope of the burgeoning research field of "biomorphodynamics."
Vertical Structure of Heat and Momentum Transport in the Urban Surface Layer
NASA Astrophysics Data System (ADS)
Hrisko, J.; Ramamurthy, P.
2017-12-01
Vertical transport of heat and momentum during convective periods is investigated in the urban surface layer using eddy covariance measurements at 5 levels. The Obukhov length is used to divide the dataset into distinct stability regimes: weakly unstable, unstable and very unstable. Our preliminary analysis indicates critical differences in the transport of heat and momentum as the instability increases. Particularly, during periods of increased instability the vertical heat flux deviates from surface layer similarity theory. Further analysis of primary quadrant sweeps and ejections also indicate deviations from the theory, alluding that ejections dominate during convective periods for heat transport, but equally contribute with sweeps for momentum transport. The transport efficiencies of momentum at all 5 levels uniformly decreases as the instability increases, in stark contrast the heat transport efficiencies increase non-linearly as the instability increases. Collectively, these results demonstrate the breakdown of similarity theory during convective periods, and reaffirm that revised and improved methods for characterizing heat and momentum transport in urban areas is needed. These implications could ultimately advance weather prediction and estimation of scalar transport for urban areas susceptible to weather hazards and large amounts of pollution.
Lattice distortion and stripelike antiferromagnetic order in Ca10(Pt3As8)(Fe2As2)5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapkota, Aashish; Tucker, Gregory S; Ramazanoglu, Mehmet
2014-09-01
Ca10(Pt3As8)(Fe2As2)5 is the parent compound for a class of Fe-based high-temperature superconductors where superconductivity with transition temperatures up to 30 K can be introduced by partial element substitution. We present a combined high-resolution high-energy x-ray diffraction and elastic neutron scattering study on a Ca10(Pt3As8)(Fe2As2)5 single crystal. This study reveals the microscopic nature of two distinct and continuous phase transitions to be very similar to other Fe-based high-temperature superconductors: an orthorhombic distortion of the high-temperature tetragonal Fe-As lattice below TS=110(2) K followed by stripelike antiferromagnetic ordering of the Fe moments below TN=96(2) K. These findings demonstrate that major features of themore » Fe-based high-temperature superconductors are very robust against variations in chemical constitution as well as structural imperfection of the layers separating the Fe-As layers from each other and confirms that the Fe-As layers primarily determine the physics in this class of material.« less
Extrinsic curvature, geometric optics, and lamellar order on curved substrates
NASA Astrophysics Data System (ADS)
Kamien, Randall D.; Nelson, David R.; Santangelo, Christian D.; Vitelli, Vincenzo
2009-11-01
When thermal energies are weak, two-dimensional lamellar structures confined on a curved substrate display complex patterns arising from the competition between layer bending and compression in the presence of geometric constraints. We present broad design principles to engineer the geometry of the underlying substrate so that a desired lamellar pattern can be obtained by self-assembly. Two distinct physical effects are identified as key factors that contribute to the interaction between the shape of the underlying surface and the resulting lamellar morphology. The first is a local ordering field for the direction of each individual layer, which tends to minimize its curvature with respect to the three-dimensional embedding. The second is a nonlocal effect controlled by the intrinsic geometry of the surface that forces the normals to the (nearly incompressible) layers to lie on geodesics, leading to caustic formation as in optics. As a result, different surface morphologies with predominantly positive or negative Gaussian curvature can act as converging or diverging lenses, respectively. By combining these ingredients, as one would with different optical elements, complex lamellar morphologies can be obtained. This smectic optometry enables the manipulation of lamellar configurations for the design of materials.
Forbes, Scott; Kong, Tai; Cava, Robert J
2018-04-02
The previously unreported RE 3 Mo 14 O 30 and RE 2 Mo 9 O 19 phases were synthesized in vacuo from rare-earth oxides, molybdenum oxide, and molybdenum metal using halide fluxes at 875-1000 °C. Both phases adopt structures in the triclinic P1̅ space group albeit with several notable differences. The structures display an ordering of layers along the a direction of the unit cell, forming distinct honeycomb-related lattice arrangements composed of MoO 6 octahedra and vacancies. Mo-Mo bonding and clusters are present; the RE 3 Mo 14 O 30 structure contains Mo dimers and rhomboid tetramers, while the RE 2 Mo 9 O 19 structure contains rhomboid tetramers and an unusual arrangement of planar tetramers, pentamers, and hexamers. The magnetic measurements found the RE 2 Mo 9 O 19 phases to be simple paramagnets, while La 3 Mo 14 O 30 was observed to order antiferromagnetically at 18 K. Electrical resistivity measurements confirmed all of the samples to behave as nondegenerate semiconductors.
Janus monolayers of transition metal dichalcogenides.
Lu, Ang-Yu; Zhu, Hanyu; Xiao, Jun; Chuu, Chih-Piao; Han, Yimo; Chiu, Ming-Hui; Cheng, Chia-Chin; Yang, Chih-Wen; Wei, Kung-Hwa; Yang, Yiming; Wang, Yuan; Sokaras, Dimosthenis; Nordlund, Dennis; Yang, Peidong; Muller, David A; Chou, Mei-Yin; Zhang, Xiang; Li, Lain-Jong
2017-08-01
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS 2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.
Heterogeneous targeting of centrifugal inputs to the glomerular layer of the main olfactory bulb.
Gómez, C; Briñón, J G; Barbado, M V; Weruaga, E; Valero, J; Alonso, J R
2005-06-01
The centrifugal systems innervating the olfactory bulb are important elements in the functional regulation of the olfactory pathway. In this study, the selective innervation of specific glomeruli by serotonergic, noradrenergic and cholinergic centrifugal axons was analyzed. Thus, the morphology, distribution and density of positive axons were studied in the glomerular layer of the main olfactory bulb of the rat, using serotonin-, serotonin transporter- and dopamine-beta-hydroxylase-immunohistochemistry and acetylcholinesterase histochemistry in serial sections. Serotonin-, serotonin transporter-immunostaining and acetylcholinesterase-staining revealed a higher heterogeneity in the glomerular layer of the main olfactory bulb than previously reported. In this sense, four types of glomeruli could be identified according to their serotonergic innervation. The main distinctive feature of these four types of glomeruli was their serotonergic fibre density, although they also differed in their size, morphology and relative position throughout the rostro-caudal main olfactory bulb. In this sense, some specific regions of the glomerular layer were occupied by glomeruli with a particular morphology and a characteristic serotonergic innervation pattern that was consistent from animal to animal. Regarding the cholinergic system, we offer a new subclassification of glomeruli based on the distribution of cholinergic fibres in the glomerular structure. Finally, the serotonergic and cholinergic innervation patterns were compared in the glomerular layer. Sexual differences concerning the density of serotonergic fibres were observed in the atypical glomeruli (characterized by their strong cholinergic innervation). The present report provides new data on the heterogeneity of the centrifugal innervation of the glomerular layer that constitutes the morphological substrate supporting the existence of differential modulatory levels among the entire glomerular population.
The Layer-Oriented Approach to Declarative Languages for Biological Modeling
Raikov, Ivan; De Schutter, Erik
2012-01-01
We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language. PMID:22615554
The layer-oriented approach to declarative languages for biological modeling.
Raikov, Ivan; De Schutter, Erik
2012-01-01
We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language.
The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing.
NASA Astrophysics Data System (ADS)
Violaine, P.; Sallee, J. B.; Schmidtko, S.; Roquet, F.; Charrassin, J. B.
2016-02-01
The mixed-layer at the surface of the ocean is the gateway for all exchanges between air and sea. A vast area of the Southern Ocean is however seasonally capped by sea-ice, which alters this gateway and the characteristic the ocean mixed-layer. The interaction between the ocean mixed-layer and sea-ice plays a key role for water-mass formation and circulation, carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the mixed layer, as well as the processes responsible for its evolution, are poorly understood due to the lack of in-situ observations and measurements. We urgently need to better understand the forcing and the characteristics of the ocean mixed-layer under sea-ice if we are to understand and predict the world's climate. In this study, we combine a range of distinct sources of observation to overcome this lack in our understanding of the Polar Regions. Working on Elephant Seal-derived data as well as ship-based observations and Argo float data, we describe the seasonal cycle of the characteristics and stability of the ocean mixed layer over the entire Southern Ocean (South of 40°S), and specifically under sea-ice. Mixed-layer budgets of heat and freshwater are used to investigate the main forcings of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget, and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity and vertical entrainment play only secondary role.Our results suggest that changes in regional sea-ice distribution or sea-ice seasonal cycle duration, as currently observed, would widely affect the buoyancy budget of the underlying mixed-layer, and impacts large-scale water-mass formation and transformation.
Reeves, Ian; Emery, R J Neil
2007-11-01
Seasonal patterns of cytokinins (CKs) and microclimate were examined in the upper, middle and lower canopy layers of mature Acer saccharum Marsh. (sugar maple) trees to elucidate the potential role of CKs in the mediation of gas exchange. The upper canopy showed a distinctly dissimilar microclimate from the middle and lower canopy layers with higher photosynthetically active radiation and wind speed, but showed no corresponding differences in transpiration (E) or stomatal conductance (g(s)). Although E and g(s) tended to be higher in the upper canopy than in the middle and lower canopies, the differences were not significant, indicating regulation beyond the passive response to changes in microclimate. The upper canopy accumulated significantly higher concentrations of CKs, predominantly as ribosides, and all canopy layers showed distinct seasonal patterns in CK profiles. Multiple regression models showed significant relationships between both g(s) and E and foliar CK concentration, although these relationships varied among canopy layers. The relationships were strongest in the middle and lower canopy layers where there was less fluctuation in leaf water status and less variability in abiotic variables. The relationships between gas exchange parameters and leaf CK concentration began to decouple near the end of the growing season as foliar phytohormone concentrations changed with the approach of dormancy.
Development of layer 1 neurons in the mouse neocortex.
Ma, Jian; Yao, Xing-Hua; Fu, Yinghui; Yu, Yong-Chun
2014-10-01
Layer 1 of the neocortex harbors a unique group of neurons that play crucial roles in synaptic integration and information processing. Although extensive studies have characterized the properties of layer 1 neurons in the mature neocortex, it remains unclear how these neurons progressively acquire their distinct morphological, neurochemical, and physiological traits. In this study, we systematically examined the dynamic development of Cajal-Retzius cells and γ-aminobutyric acid (GABA)-ergic interneurons in layer 1 during the first 2 postnatal weeks. Cajal-Retzius cells underwent morphological degeneration after birth and gradually disappeared from layer 1. The majority of GABAergic interneurons showed clear expression of at least 1 of the 6 distinct neurochemical markers, including Reelin, GABA-A receptor subunit delta (GABAARδ), neuropeptide Y, vasoactive intestinal peptide (VIP), calretinin, and somatostatin from postnatal day 8. Furthermore, according to firing pattern, layer 1 interneurons can be divided into 2 groups: late-spiking (LS) and burst-spiking (BS) neurons. LS neurons preferentially expressed GABAARδ, whereas BS neurons preferentially expressed VIP. Interestingly, both LS and BS neurons exhibited a rapid electrophysiological and morphological development during the first postnatal week. Our results provide new insights into the molecular, morphological, and functional developments of the neurons in layer 1 of the neocortex. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Inter-layer synchronization in multiplex networks of identical layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevilla-Escoboza, R.; Sendiña-Nadal, I.; Leyva, I.
2016-06-15
Inter-layer synchronization is a distinctive process of multiplex networks whereby each node in a given layer evolves synchronously with all its replicas in other layers, irrespective of whether or not it is synchronized with the other units of the same layer. We analytically derive the necessary conditions for the existence and stability of such a state, and verify numerically the analytical predictions in several cases where such a state emerges. We further inspect its robustness against a progressive de-multiplexing of the network, and provide experimental evidence by means of multiplexes of nonlinear electronic circuits affected by intrinsic noise and parametermore » mismatch.« less
Vertebrate development: the subtle art of germ-layer specification.
Stemple, D L
2001-10-30
Nodal signalling is essential for vertebrate germ-layer formation. How this single signal can generate such a diverse array of tissues remains a mystery and is an area of intense research. Three recent reports reveal unanticipated subtleties to the process and provide new mechanisms for generating distinct responses.
Chlorophyll-a thin layers in the Magellan fjord system: The role of the water column stratification
NASA Astrophysics Data System (ADS)
Ríos, Francisco; Kilian, Rolf; Mutschke, Erika
2016-08-01
Fjord systems represent hotspots of primary productivity and organic carbon burial. However, the factors which control the primary production in mid-latitude fjords are poorly understood. In this context, results from the first fine-scale measurements of bio-oceanographic features in the water column of fjords associated with the Strait of Magellan are presented. A submersible fluorescence probe (FP) was used to measure the Chlorophyll-a (Chl-a) concentration in situ, along with conductivity, temperature, hydrostatic pressure (depth) and dissolved oxygen (CTD-O2) of the water column. The Austral spring results of 14 FP-CTD-O2 profiles were used to define the vertical and horizontal patches of the fluorescent pigment distribution and their spatial relations with respect to the observed hydrographic features. Three zones with distinct water structures were defined. In all zones, the 'brown' spectral group (diatoms and dinoflagellates) predominated accounting for >80 wt% of the phytoplankton community. Thin layers with high Chl-a concentration were detected in 50% of the profiles. These layers harbored a substantial amount (30-65 wt%) of the phytoplankton biomass. Stratification was positively correlated to the occurrence of Chl-a thin layers. In stable and highly stratified water columns the integrated Chl-a concentration was higher and frequently located within thin layers whereas well mixed water columns displayed lower values and more homogeneous vertical distribution of Chl-a. These results indicate that mixing/stability processes are important factors accounting to the vertical distribution of Chl-a in Magellan fjords.
Fabrication of subcutaneous veins phantom for vessel visualization system
NASA Astrophysics Data System (ADS)
Cheng, Kai; Narita, Kazuyuki; Morita, Yusuke; Nakamachi, Eiji; Honda, Norihiro; Awazu, Kunio
2013-09-01
The technique of subcutaneous veins imaging by using NIR (Near Infrared Radiation) is widely used in medical applications, such as the intravenous injection and the blood sampling. In the previous study, an automatic 3D blood vessel search and automatic blood sampling system was newly developed. In order to validate this NIR imaging system, we adopted the subcutaneous vein in the human arm and its artificial phantom, which imitate the human fat and blood vessel. The human skin and subcutaneous vein is characterized as the uncertainty object, which has the individual specificity, non-accurate depth information, non-steady state and hardly to be fixed in the examination apparatus. On the other hand, the conventional phantom was quite distinct from the human's characteristics, such as the non-multilayer structure, disagreement of optical property. In this study, we develop a multilayer phantom, which is quite similar with human skin, for improvement of NIR detection system evaluation. The phantom consists of three layers, such as the epidermis layer, the dermis layer and the subcutaneous fat layer. In subcutaneous fat layer, we built a blood vessel. We use the intralipid to imitate the optical scattering characteristics of human skin, and the hemoglobin and melanin for the optical absorption characteristics. In this study, we did two subjects. First, we decide the fabrication process of the phantom. Second, we compared newly developed phantoms with human skin by using our NIR detecting system, and confirm the availability of these phantoms.
Integrity of the Cone Photoreceptor Mosaic in Oligocone Trichromacy
Rha, Jungtae; Dees, Elise W.; Baraas, Rigmor C.; Wagner-Schuman, Melissa L.; Mollon, John D.; Dubis, Adam M.; Andersen, Mette K. G.; Rosenberg, Thomas; Larsen, Michael; Moore, Anthony T.
2011-01-01
Purpose. Oligocone trichromacy (OT) is an unusual cone dysfunction syndrome characterized by reduced visual acuity, mild photophobia, reduced amplitude of the cone electroretinogram with normal rod responses, normal fundus appearance, and normal or near-normal color vision. It has been proposed that these patients have a reduced number of normal functioning cones (oligocone). This paper has sought to evaluate the integrity of the cone photoreceptor mosaic in four patients previously described as having OT. Methods. Retinal images were obtained from two brothers (13 and 15 years) and two unrelated subjects, one male (47 years) and one female (24 years). High-resolution images of the cone mosaic were obtained using high-speed adaptive optics (AO) fundus cameras. Visible structures were analyzed for density using custom software. Additional retinal images were obtained using spectral domain optical coherence tomography (SD-OCT), and the four layers of the photoreceptor-retinal pigment epithelium complex (ELM, IS/OS, RPE1, RPE2) were evaluated. Cone photoreceptor length and the thickness of intraretinal layers were measured and compared to previously published normative data. Results. The adult male subject had infantile onset nystagmus while the three other patients did not. In the adult male patient, a normal appearing cone mosaic was observed. However, the three other subjects had a sparse mosaic of cones remaining at the fovea, with no structure visible outside the central fovea. On SD-OCT, the adult male subject had a very shallow foveal pit, with all major retinal layers being visible, and both inner segment (IS) and outer segment (OS) length were within normal limits. In the other three patients, while all four layers were visible in the central fovea and IS length was within normal limits, the OS length was significantly decreased. Peripherally the IS/OS layer decreased in intensity, and the RPE1 layer was no longer discernable, in keeping with the lack of cone structure observed on AO imaging outside the central fovea. Conclusions. Findings are consistent with the visual deficits being caused by a reduced number of healthy cones in the two brothers and the adult female. In the unrelated adult subject, no structural basis for the disorder was found. These data suggest two distinct groups on the basis of structural imaging. It is proposed that the former group with evidence of a reduction in cone numbers is more in keeping with typical OT, with the latter group representing an OT-like phenotype. These two groups may be difficult to readily discern on the basis of phenotypic features alone, and high-resolution imaging may be an effective way to distinguish between these phenotypes. PMID:21436275
Shin, Jungwoo; Ryu, Won-Hee; Park, Kyu-Sung; Kim, Il-Doo
2013-08-27
Two distinctive one-dimensional (1-D) carbon nanofibers (CNFs) encapsulating irregularly and homogeneously segregated SnCo nanoparticles were synthesized via electrospinning of polyvinylpyrrolidone (PVP) and polyacrylonitrile (PAN) polymers containing Sn-Co acetate precursors and subsequent calcination in reducing atmosphere. CNFs synthesized with PVP, which undergoes structural degradation of the polymer during carbonization processes, exhibited irregular segregation of heterogeneous alloy particles composed of SnCo, Co3Sn2, and SnO with a size distribution of 30-100 nm. Large and exposed multiphase SnCo particles in PVP-driven amorphous CNFs (SnCo/PVP-CNFs) kept decomposing liquid electrolyte and were partly detached from CNFs during cycling, leading to a capacity fading at the earlier cycles. The closer study of solid electrolyte interphase (SEI) layers formed on the CNFs reveals that the gradual growth of fiber radius due to continuous increment of SEI layer thickness led to capacity fading. In contrast, SnCo particles in PAN-driven CNFs (SnCo/PAN-CNFs) showed dramatically reduced crystallite sizes (<10 nm) of single phase SnCo nanoparticles which were entirely embedded in dense, semicrystalline, and highly conducting 1-D carbon matrix. The growth of SEI layer was limited and saturated during cycling. As a result, SnCo/PAN-CNFs showed much improved cyclability (97.9% capacity retention) and lower SEI layer thickness (86 nm) after 100 cycles compared to SnCo/PVP-CNFs (capacity retention, 71.9%; SEI layer thickness, 593 nm). This work verifies that the thermal behavior of carbon precursor is highly responsible for the growth mechanism of SEI layer accompanied with particles detachment and cyclability of alloy particle embedded CNFs.
NASA Astrophysics Data System (ADS)
Maurrasse, F. J.; Lamolda, M. A.
2004-05-01
Major physical disruptions characterize the sedimentary record of the K/T boundary (KTB) layer from different sites in the Southern Peninsula of Haiti as well as in diverse areas of the world. These disturbances are most important within the vicinity of the crater at Chicxulub, Yucatan, Mexico, and 65 million years ago that can be chronologically correlated with the bolide impact postulated by Alvarez et al (1981). At all sites the KTB layer shows spatial and temporal differences even within short distances, and the complexity of its characteristic signals includes serious micropaleontological inconsistencies with mixed biotic assemblages that perpetuate divergence of interpretations, thereby they raise doubts on the timing and real causal mechanisms of the biotic turnover that characterizes the boundary. Indeed, often the biostratigraphic signals are difficult to resolve because of hiatuses, or sediments are highly reworked, and distinct taxonomic successions are not clearly defined. Well defined as well as cryptic primary sedimentary structures within the boundary layer are constant at all outcrops, and they indicate complex, multiphase, subaqueous flow processes that affected sedimentation of the KTB layer at different times. The structures are known to characterize oscillatory wave processes that affect cohesionless sediments, and such water motion is only known to be associated with seiche as a modern analog that may have generated the amalgamation recorded at the KTB layer. We believe that "Megaseiche" associated with the KT impact event and its subsequent effects provides a plausible unifying mechanism to explain how various levels of the water column in different large basins can oscillate to develop the structures observed. Because of the magnitude of the bolide impact that generated initial tsunamis and large seismic waves worldwide, megaseiches of different frequencies and nodal modes must have developed in the oceans worldwide to leave different signatures in the mixing pattern. Most importantly, the heterogeneity must have been further intensified in subsequent times when more localized megaseiches developed in independent basins at different times during major crustal readjustment. These phenomena may explain the heterogeneity of patterns and apparent irreconcilable discrepancies observed at KTB sites worldwide, as the structures represent a record of water movement and resuspension of sediment of different intensities and at different timesat certain locations. As observed in smaller-scale modern seiche, various oscillatory modes controlled the duration and attenuation of the water movement, the magnitude of bottom traction and resuspension that led to complex sedimentary structures and reworking patterns of the sediments and microfossils.
[CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers.
Xu, Zhengtao; Mitzi, David B
2003-10-20
The organic-inorganic hybrid [CH(3)(CH(2))(11)NH(3)]SnI(3) presents a lamellar structure with a Sn-I framework isotypic to that of MoO(3). The SnI(3)(-) layer consists of edge and corner-sharing SnI(6) octahedra in which one of the six Sn-I bonds is distinctly elongated (e.g., 3.62 A), indicating lone-pair stereoactivity for the Sn(II) atom. The overall electronic character remains comparable with that of the well-studied SnI(4)(2)(-)-based perovskite semiconductors, such as [CH(3)(CH(2))(11)NH(3)](2)SnI(4), with a red-shifted and broadened exciton peak associated with the band gap, apparently due to the increased dimensionality of the Sn-I framework. The title compound offers, aside from the hybrid perovskites, a new type of solution-processable Sn-I network for potential applications in semiconductive devices.
Resource management and scheduling policy based on grid for AIoT
NASA Astrophysics Data System (ADS)
Zou, Yiqin; Quan, Li
2017-07-01
This paper has a research on resource management and scheduling policy based on grid technology for Agricultural Internet of Things (AIoT). Facing the situation of a variety of complex and heterogeneous agricultural resources in AIoT, it is difficult to represent them in a unified way. But from an abstract perspective, there are some common models which can express their characteristics and features. Based on this, we proposed a high-level model called Agricultural Resource Hierarchy Model (ARHM), which can be used for modeling various resources. It introduces the agricultural resource modeling method based on this model. Compared with traditional application-oriented three-layer model, ARHM can hide the differences of different applications and make all applications have a unified interface layer and be implemented without distinction. Furthermore, it proposes a Web Service Resource Framework (WSRF)-based resource management method and the encapsulation structure for it. Finally, it focuses on the discussion of multi-agent-based AG resource scheduler, which is a collaborative service provider pattern in multiple agricultural production domains.
Patra, Chandra N
2014-11-14
A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.
First-order metal-insulator transitions in vanadates from first principles
NASA Astrophysics Data System (ADS)
Kumar, Anil; Rabe, Karin
2013-03-01
Materials that exhibit first-order metal-insulator transitions, with the accompanying abrupt change in the conductivity, have potential applications as switches in future electronic devices. Identification of materials and exploration of the atomic-scale mechanisms for switching between the two electronic states is a focus of current research. In this work, we search for first-order metal-insulator transitions in transition metal compounds, with a particular focus on d1 and d2 systems, by using first principles calculations to screen for an alternative low-energy state having not only a electronic character opposite to that of the ground state, but a distinct structure and/or magnetic ordering which would permit switching by an applied field or stress. We will present the results of our investigation of the perovskite compounds SrVO3, LaVO3, CaVO3, YVO3, LaTiO3 and related layered phase, including superlattices and Ruddlesden-Popper phases. While the pure compounds do not satisfy the search criteria, the layered phases show promising results.
Huang, Kuan-Chung; Hsiao, Yu-Cheng; Timofeev, Ivan V; Zyryanov, Victor Ya; Lee, Wei
2016-10-31
We report on the spectral properties of an optically switchable tristable chiral-tilted homeotropic nematic liquid crystal (LC) incorporated as a tunable defect layer in one-dimensional photonic crystal. By varying the polarization angle of the incident light and modulating the light intensity ratio between UV and green light, various transmission characteristics of the composite were obtained. The hybrid structure realizes photo-tunability in transmission of defect-mode peaks within the photonic bandgap in addition to optical switchability among three distinct sets of defect modes via photoinduced tristable state transitions. Because the fabrication process is easier and less critical in terms of cell parameters or sample preparation conditions and the LC layer itself possesses an extra stable state compared with the previously reported bistable counterpart operating on the basis of biased-voltage dual-frequency switching, it has much superior potential for photonic applications such as a low-power-consumption multichannel filter and an optically controllable intensity modulator.