Sample records for distinct neural processes

  1. Object-processing neural efficiency differentiates object from spatial visualizers.

    PubMed

    Motes, Michael A; Malach, Rafael; Kozhevnikov, Maria

    2008-11-19

    The visual system processes object properties and spatial properties in distinct subsystems, and we hypothesized that this distinction might extend to individual differences in visual processing. We conducted a functional MRI study investigating the neural underpinnings of individual differences in object versus spatial visual processing. Nine participants of high object-processing ability ('object' visualizers) and eight participants of high spatial-processing ability ('spatial' visualizers) were scanned, while they performed an object-processing task. Object visualizers showed lower bilateral neural activity in lateral occipital complex and lower right-lateralized neural activity in dorsolateral prefrontal cortex. The data indicate that high object-processing ability is associated with more efficient use of visual-object resources, resulting in less neural activity in the object-processing pathway.

  2. Neural correlates of processing negative and sexually arousing pictures.

    PubMed

    Bailey, Kira; West, Robert; Mullaney, Kellie M

    2012-01-01

    Recent work has questioned whether the negativity bias is a distinct component of affective picture processing. The current study was designed to determine whether there are different neural correlates of processing positive and negative pictures using event-related brain potentials. The early posterior negativity and late positive potential were greatest in amplitude for erotic pictures. Partial Least Squares analysis revealed one latent variable that distinguished erotic pictures from neutral and positive pictures and another that differentiated negative pictures from neutral and positive pictures. The effects of orienting task on the neural correlates of processing negative and erotic pictures indicate that affective picture processing is sensitive to both stimulus-driven, and attentional or decision processes. The current data, together with other recent findings from our laboratory, lead to the suggestion that there are distinct neural correlates of processing negative and positive stimuli during affective picture processing.

  3. Neural Correlates of Processing Negative and Sexually Arousing Pictures

    PubMed Central

    Bailey, Kira; West, Robert; Mullaney, Kellie M.

    2012-01-01

    Recent work has questioned whether the negativity bias is a distinct component of affective picture processing. The current study was designed to determine whether there are different neural correlates of processing positive and negative pictures using event-related brain potentials. The early posterior negativity and late positive potential were greatest in amplitude for erotic pictures. Partial Least Squares analysis revealed one latent variable that distinguished erotic pictures from neutral and positive pictures and another that differentiated negative pictures from neutral and positive pictures. The effects of orienting task on the neural correlates of processing negative and erotic pictures indicate that affective picture processing is sensitive to both stimulus-driven, and attentional or decision processes. The current data, together with other recent findings from our laboratory, lead to the suggestion that there are distinct neural correlates of processing negative and positive stimuli during affective picture processing. PMID:23029071

  4. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    PubMed

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-07-15

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions.

    PubMed

    Hyafil, Alexandre; Giraud, Anne-Lise; Fontolan, Lorenzo; Gutkin, Boris

    2015-11-01

    Neural oscillations are ubiquitously observed in the mammalian brain, but it has proven difficult to tie oscillatory patterns to specific cognitive operations. Notably, the coupling between neural oscillations at different timescales has recently received much attention, both from experimentalists and theoreticians. We review the mechanisms underlying various forms of this cross-frequency coupling. We show that different types of neural oscillators and cross-frequency interactions yield distinct signatures in neural dynamics. Finally, we associate these mechanisms with several putative functions of cross-frequency coupling, including neural representations of multiple environmental items, communication over distant areas, internal clocking of neural processes, and modulation of neural processing based on temporal predictions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Distinct Neural Circuits Subserve Interpersonal and Non-interpersonal Emotions

    PubMed Central

    Landa, Alla; Wang, Zhishun; Russell, James A.; Posner, Jonathan; Duan, Yunsuo; Kangarlu, Alayar; Huo, Yuankai; Fallon, Brian A.; Peterson, Bradley S.

    2013-01-01

    Emotions elicited by interpersonal versus non-interpersonal experiences have different effects on neurobiological functioning in both animals and humans. However, the extent to which the brain circuits underlying interpersonal and non-interpersonal emotions are distinct still remains unclear. The goal of our study was to assess whether different neural circuits are implicated in the processing of arousal and valence of interpersonal versus non-interpersonal emotions. During functional magnetic resonance imaging, participants imagined themselves in emotion-eliciting interpersonal or non-interpersonal situations and then rated the arousal and valence of emotions they experienced. We identified (a) separate neural circuits that are implicated in the arousal and valence dimensions of interpersonal versus non-interpersonal emotions, (b) circuits that are implicated in arousal and valence for both types of emotion, and (c) circuits that are responsive to the type of emotion, regardless of the valence or arousal level of the emotion. We found extensive recruitment of limbic (for arousal) and temporal-parietal (for valence) systems associated with processing of specifically interpersonal emotions compared to non-interpersonal ones. The neural bases of interpersonal and non-interpersonal emotions may, therefore, be largely distinct. PMID:24028312

  7. Distinct Neural Activity Associated with Focused-Attention Meditation and Loving-Kindness Meditation

    PubMed Central

    Lee, Tatia M. C.; Leung, Mei-Kei; Hou, Wai-Kai; Tang, Joey C. Y.; Yin, Jing; So, Kwok-Fai; Lee, Chack-Fan; Chan, Chetwyn C. H.

    2012-01-01

    This study examined the dissociable neural effects of ānāpānasati (focused-attention meditation, FAM) and mettā (loving-kindness meditation, LKM) on BOLD signals during cognitive (continuous performance test, CPT) and affective (emotion-processing task, EPT, in which participants viewed affective pictures) processing. Twenty-two male Chinese expert meditators (11 FAM experts, 11 LKM experts) and 22 male Chinese novice meditators (11 FAM novices, 11 LKM novices) had their brain activity monitored by a 3T MRI scanner while performing the cognitive and affective tasks in both meditation and baseline states. We examined the interaction between state (meditation vs. baseline) and expertise (expert vs. novice) separately during LKM and FAM, using a conjunction approach to reveal common regions sensitive to the expert meditative state. Additionally, exclusive masking techniques revealed distinct interactions between state and group during LKM and FAM. Specifically, we demonstrated that the practice of FAM was associated with expertise-related behavioral improvements and neural activation differences in attention task performance. However, the effect of state LKM meditation did not carry over to attention task performance. On the other hand, both FAM and LKM practice appeared to affect the neural responses to affective pictures. For viewing sad faces, the regions activated for FAM practitioners were consistent with attention-related processing; whereas responses of LKM experts to sad pictures were more in line with differentiating emotional contagion from compassion/emotional regulation processes. Our findings provide the first report of distinct neural activity associated with forms of meditation during sustained attention and emotion processing. PMID:22905090

  8. Dissociation of neural mechanisms underlying orientation processing in humans

    PubMed Central

    Ling, Sam; Pearson, Joel; Blake, Randolph

    2009-01-01

    Summary Orientation selectivity is a fundamental, emergent property of neurons in early visual cortex, and discovery of that property [1, 2] dramatically shaped how we conceptualize visual processing [3–6]. However, much remains unknown about the neural substrates of these basic building blocks of perception, and what is known primarily stems from animal physiology studies. To probe the neural concomitants of orientation processing in humans, we employed repetitive transcranial magnetic stimulation (rTMS) to attenuate neural responses evoked by stimuli presented within a local region of the visual field. Previous physiological studies have shown that rTMS can significantly suppress the neuronal spiking activity, hemodynamic responses, and local field potentials within a focused cortical region [7, 8]. By suppressing neural activity with rTMS, we were able to dissociate components of the neural circuitry underlying two distinct aspects of orientation processing: selectivity and contextual effects. Orientation selectivity gauged by masking was unchanged by rTMS, whereas an otherwise robust orientation repulsion illusion was weakened following rTMS. This dissociation implies that orientation processing relies on distinct mechanisms, only one of which was impacted by rTMS. These results are consistent with models positing that orientation selectivity is largely governed by the patterns of convergence of thalamic afferents onto cortical neurons, with intracortical activity then shaping population responses contained within those orientation-selective cortical neurons. PMID:19682905

  9. Different Timescales for the Neural Coding of Consonant and Vowel Sounds

    PubMed Central

    Perez, Claudia A.; Engineer, Crystal T.; Jakkamsetti, Vikram; Carraway, Ryan S.; Perry, Matthew S.

    2013-01-01

    Psychophysical, clinical, and imaging evidence suggests that consonant and vowel sounds have distinct neural representations. This study tests the hypothesis that consonant and vowel sounds are represented on different timescales within the same population of neurons by comparing behavioral discrimination with neural discrimination based on activity recorded in rat inferior colliculus and primary auditory cortex. Performance on 9 vowel discrimination tasks was highly correlated with neural discrimination based on spike count and was not correlated when spike timing was preserved. In contrast, performance on 11 consonant discrimination tasks was highly correlated with neural discrimination when spike timing was preserved and not when spike timing was eliminated. These results suggest that in the early stages of auditory processing, spike count encodes vowel sounds and spike timing encodes consonant sounds. These distinct coding strategies likely contribute to the robust nature of speech sound representations and may help explain some aspects of developmental and acquired speech processing disorders. PMID:22426334

  10. The neural basis of emotions varies over time: different regions go with onset- and offset-bound processes underlying emotion intensity.

    PubMed

    Résibois, Maxime; Verduyn, Philippe; Delaveau, Pauline; Rotgé, Jean-Yves; Kuppens, Peter; Van Mechelen, Iven; Fossati, Philippe

    2017-08-01

    According to theories of emotion dynamics, emotions unfold across two phases in which different types of processes come to the fore: emotion onset and emotion offset. Differences in onset-bound processes are reflected by the degree of explosiveness or steepness of the response at onset, and differences in offset-bound processes by the degree of accumulation or intensification of the subsequent response. Whether onset- and offset-bound processes have distinctive neural correlates and, hence, whether the neural basis of emotions varies over time, still remains unknown. In the present fMRI study, we address this question using a recently developed paradigm that allows to disentangle explosiveness and accumulation. Thirty-one participants were exposed to neutral and negative social feedback, and asked to reflect on its contents. Emotional intensity while reading and thinking about the feedback was measured with an intensity profile tracking approach. Using non-negative matrix factorization, the resulting profile data were decomposed in explosiveness and accumulation components, which were subsequently entered as continuous regressors of the BOLD response. It was found that the neural basis of emotion intensity shifts as emotions unfold over time with emotion explosiveness and accumulation having distinctive neural correlates. © The Author (2017). Published by Oxford University Press.

  11. The neural basis of emotions varies over time: different regions go with onset- and offset-bound processes underlying emotion intensity

    PubMed Central

    Verduyn, Philippe; Delaveau, Pauline; Rotgé, Jean-Yves; Kuppens, Peter; Van Mechelen, Iven; Fossati, Philippe

    2017-01-01

    Abstract According to theories of emotion dynamics, emotions unfold across two phases in which different types of processes come to the fore: emotion onset and emotion offset. Differences in onset-bound processes are reflected by the degree of explosiveness or steepness of the response at onset, and differences in offset-bound processes by the degree of accumulation or intensification of the subsequent response. Whether onset- and offset-bound processes have distinctive neural correlates and, hence, whether the neural basis of emotions varies over time, still remains unknown. In the present fMRI study, we address this question using a recently developed paradigm that allows to disentangle explosiveness and accumulation. Thirty-one participants were exposed to neutral and negative social feedback, and asked to reflect on its contents. Emotional intensity while reading and thinking about the feedback was measured with an intensity profile tracking approach. Using non-negative matrix factorization, the resulting profile data were decomposed in explosiveness and accumulation components, which were subsequently entered as continuous regressors of the BOLD response. It was found that the neural basis of emotion intensity shifts as emotions unfold over time with emotion explosiveness and accumulation having distinctive neural correlates. PMID:28402478

  12. Neural Correlates of Written Emotion Word Processing: A Review of Recent Electrophysiological and Hemodynamic Neuroimaging Studies

    ERIC Educational Resources Information Center

    Citron, Francesca M. M.

    2012-01-01

    A growing body of literature investigating the neural correlates of emotion word processing has emerged in recent years. Written words have been shown to represent a suitable means to study emotion processing and most importantly to address the distinct and interactive contributions of the two dimensions of emotion: valence and arousal. The aim of…

  13. Discrete Neural Correlates for the Recognition of Negative Emotions: Insights from Frontotemporal Dementia

    PubMed Central

    Kumfor, Fiona; Irish, Muireann; Hodges, John R.; Piguet, Olivier

    2013-01-01

    Patients with frontotemporal dementia have pervasive changes in emotion recognition and social cognition, yet the neural changes underlying these emotion processing deficits remain unclear. The multimodal system model of emotion proposes that basic emotions are dependent on distinct brain regions, which undergo significant pathological changes in frontotemporal dementia. As such, this syndrome may provide important insight into the impact of neural network degeneration upon the innate ability to recognise emotions. This study used voxel-based morphometry to identify discrete neural correlates involved in the recognition of basic emotions (anger, disgust, fear, sadness, surprise and happiness) in frontotemporal dementia. Forty frontotemporal dementia patients (18 behavioural-variant, 11 semantic dementia, 11 progressive nonfluent aphasia) and 27 healthy controls were tested on two facial emotion recognition tasks: The Ekman 60 and Ekman Caricatures. Although each frontotemporal dementia group showed impaired recognition of negative emotions, distinct associations between emotion-specific task performance and changes in grey matter intensity emerged. Fear recognition was associated with the right amygdala; disgust recognition with the left insula; anger recognition with the left middle and superior temporal gyrus; and sadness recognition with the left subcallosal cingulate, indicating that discrete neural substrates are necessary for emotion recognition in frontotemporal dementia. The erosion of emotion-specific neural networks in neurodegenerative disorders may produce distinct profiles of performance that are relevant to understanding the neurobiological basis of emotion processing. PMID:23805313

  14. Neural dissociations in attitude strength: Distinct regions of cingulate cortex track ambivalence and certainty.

    PubMed

    Luttrell, Andrew; Stillman, Paul E; Hasinski, Adam E; Cunningham, William A

    2016-04-01

    People's behaviors are often guided by valenced responses to objects in the environment. Beyond positive and negative evaluations, attitudes research has documented the importance of attitude strength--qualities of an attitude that enhance or attenuate its impact and durability. Although neuroscience research has extensively investigated valence, little work exists on other related variables like metacognitive judgments about one's attitudes. It remains unclear, then, whether the various indicators of attitude strength represent a single underlying neural process or whether they reflect independent processes. To examine this, we used functional MRI (fMRI) to identify the neural correlates of attitude strength. Specifically, we focus on ambivalence and certainty, which represent metacognitive judgments that people can make about their evaluations. Although often correlated, prior neuroscience research suggests that these 2 attributes may have distinct neural underpinnings. We investigate this by having participants make evaluative judgments of visually presented words while undergoing fMRI. After scanning, participants rated the degree of ambivalence and certainty they felt regarding their attitudes toward each word. We found that these 2 judgments corresponded to distinct brain regions' activity during the process of evaluation. Ambivalence corresponded to activation in anterior cingulate cortex, dorsomedial prefrontal cortex, and posterior cingulate cortex. Certainty, however, corresponded to activation in unique areas of the precuneus/posterior cingulate cortex. These results support a model treating ambivalence and certainty as distinct, though related, attitude strength variables, and we discuss implications for both attitudes and neuroscience research. (c) 2016 APA, all rights reserved).

  15. Neural activity and emotional processing following military deployment: Effects of mild traumatic brain injury and posttraumatic stress disorder.

    PubMed

    Zuj, Daniel V; Felmingham, Kim L; Palmer, Matthew A; Lawrence-Wood, Ellie; Van Hooff, Miranda; Lawrence, Andrew J; Bryant, Richard A; McFarlane, Alexander C

    2017-11-01

    Posttraumatic Stress Disorder (PTSD) and mild traumatic brain injury (mTBI) are common comorbidities during military deployment that affect emotional brain processing, yet few studies have examined the independent effects of mTBI and PTSD. The purpose of this study was to examine distinct differences in neural responses to emotional faces in mTBI and PTSD. Twenty-one soldiers reporting high PTSD symptoms were compared to 21 soldiers with low symptoms, and 16 soldiers who reported mTBI-consistent injury and symptoms were compared with 16 soldiers who did not sustain an mTBI. Participants viewed emotional face expressions while their neural activity was recorded (via event-related potentials) prior to and following deployment. The high-PTSD group displayed increased P1 and P2 amplitudes to threatening faces at post-deployment compared to the low-PTSD group. In contrast, the mTBI group displayed reduced face-specific processing (N170 amplitude) to all facial expressions compared to the no-mTBI group. Here, we identified distinctive neural patterns of emotional face processing, with attentional biases towards threatening faces in PTSD, and reduced emotional face processing in mTBI. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Journey to the Edges: Social Structures and Neural Maps of Intergroup Processes

    PubMed Central

    Fiske, Susan T.

    2013-01-01

    This article explores boundaries of the intellectual map of intergroup processes, going to the macro (social structure) boundary and the micro (neural systems) boundary. Both are illustrated by with my own and others’ work on social structures and on neural structures related to intergroup processes. Analyzing the impact of social structures on intergroup processes led to insights about distinct forms of sexism and underlies current work on forms of ageism. The stereotype content model also starts with the social structure of intergroup relations (interdependence and status) and predicts images, emotions, and behaviors. Social structure has much to offer the social psychology of intergroup processes. At the other, less explored boundary, social neuroscience addresses the effects of social contexts on neural systems relevant to intergroup processes. Both social structural and neural analyses circle back to traditional social psychology as converging indicators of intergroup processes. PMID:22435843

  17. Dividing the Self: Distinct Neural Substrates of Task-Based and Automatic Self-Prioritization after Brain Damage

    ERIC Educational Resources Information Center

    Sui, Jie; Chechlacz, Magdalena; Humphreys, Glyn W.

    2012-01-01

    Facial self-awareness is a basic human ability dependent on a distributed bilateral neural network and revealed through prioritized processing of our own over other faces. Using non-prosopagnosic patients we show, for the first time, that facial self-awareness can be fractionated into different component processes. Patients performed two face…

  18. Neural Activity When People Solve Verbal Problems with Insight

    PubMed Central

    Bowden, Edward M; Haberman, Jason; Frymiare, Jennifer L; Arambel-Liu, Stella; Greenblatt, Richard; Reber, Paul J

    2004-01-01

    People sometimes solve problems with a unique process called insight, accompanied by an “Aha!” experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1) revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2) revealed a sudden burst of high-frequency (gamma-band) neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them. PMID:15094802

  19. Unfolding the Spatial and Temporal Neural Processing of Making Dishonest Choices

    PubMed Central

    Wang, Zhaoxin; Chan, Chetwyn C. H.

    2016-01-01

    To understand the neural processing that underpins dishonest behavior in an economic exchange game task, this study employed both functional magnetic resonance imaging (fMRI) and event-related potential (ERP) methodologies to examine the neural conditions of 25 participants while they were making either dishonest or honest choices. It was discovered that dishonest choices, contrary to honest choices, elicited stronger fMRI activations in bilateral striatum and anterior insula. It also induced fluctuations in ERP amplitudes within two time windows, which are 270–30 milliseconds before and 110–290 milliseconds after the response, respectively. Importantly, when making either dishonest or honest choices, human and computer counterparts were associated with distinct fMRI activations in the left insula and different ERP amplitudes at medial and right central sites from 80 milliseconds before to 250 milliseconds after the response. These results support the hypothesis that there would be distinct neural processing during making dishonest decisions, especially when the subject considers the interests of the counterpart. Furthermore, the fMRI and ERP findings, together with ERP source reconstruction, clearly delineate the temporal sequence of the neural processes of a dishonest decision: the striatum is activated before response, then the left insula is involved around the time of response, and finally the thalamus is activated after response. PMID:27096474

  20. Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe

    PubMed Central

    Shlizerman, Eli; Riffell, Jeffrey A.; Kutz, J. Nathan

    2014-01-01

    The antennal lobe (AL), olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units), and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (1) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (2) characterize scent recognition, i.e., decision-making based on olfactory signals and (3) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns. PMID:25165442

  1. The neural bases for valuing social equality.

    PubMed

    Aoki, Ryuta; Yomogida, Yukihito; Matsumoto, Kenji

    2015-01-01

    The neural basis of how humans value and pursue social equality has become a major topic in social neuroscience research. Although recent studies have identified a set of brain regions and possible mechanisms that are involved in the neural processing of equality of outcome between individuals, how the human brain processes equality of opportunity remains unknown. In this review article, first we describe the importance of the distinction between equality of outcome and equality of opportunity, which has been emphasized in philosophy and economics. Next, we discuss possible approaches for empirical characterization of human valuation of equality of opportunity vs. equality of outcome. Understanding how these two concepts are distinct and interact with each other may provide a better explanation of complex human behaviors concerning fairness and social equality. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  2. SPIDER OR NO SPIDER? NEURAL CORRELATES OF SUSTAINED AND PHASIC FEAR IN SPIDER PHOBIA.

    PubMed

    Münsterkötter, Anna Luisa; Notzon, Swantje; Redlich, Ronny; Grotegerd, Dominik; Dohm, Katharina; Arolt, Volker; Kugel, Harald; Zwanzger, Peter; Dannlowski, Udo

    2015-09-01

    Processes of phasic fear responses to threatening stimuli are thought to be distinct from sustained, anticipatory anxiety toward an unpredicted, potential threat. There is evidence for dissociable neural correlates of phasic fear and sustained anxiety. Whereas increased amygdala activity has been associated with phasic fear, sustained anxiety has been linked with activation of the bed nucleus of stria terminalis (BNST), anterior cingulate cortex (ACC), and the insula. So far, only a few studies have focused on the dissociation of neural processes related to both phasic and sustained fear in specific phobia. We suggested that first, conditions of phasic and sustained fear would involve different neural networks and, second, that overall neural activity would be enhanced in a sample of phobic compared to nonphobic participants. Pictures of spiders and neutral stimuli under conditions of either predicted (phasic) or unpredicted (sustained) fear were presented to 28 subjects with spider phobia and 28 nonphobic control subjects during functional magnetic resonance imaging (fMRI) scanning. Phobic patients revealed significantly higher amygdala activation than controls under conditions of phasic fear. Sustained fear processing was significantly related to activation in the insula and ACC, and phobic patients showed a stronger activation than controls of the BNST and the right ACC under conditions of sustained fear. Functional connectivity analysis revealed enhanced connectivity of the BNST and the amygdala in phobic subjects. Our findings support the idea of distinct neural correlates of phasic and sustained fear processes. Increased neural activity and functional connectivity in these networks might be crucial for the development and maintenance of anxiety disorders. © 2015 Wiley Periodicals, Inc.

  3. More than a feeling: Pervasive influences of memory without awareness of retrieval

    PubMed Central

    Voss, Joel L.; Lucas, Heather D.; Paller, Ken A.

    2015-01-01

    The subjective experiences of recollection and familiarity have featured prominently in the search for neurocognitive mechanisms of memory. However, these two explicit expressions of memory, which involve conscious awareness of memory retrieval, are distinct from an entire category of implicit expressions of memory that do not entail such awareness. This review summarizes recent evidence showing that neurocognitive processing related to implicit memory can powerfully influence the behavioral and neural measures typically associated with explicit memory. Although there are striking distinctions between the neurocognitive processing responsible for implicit versus explicit memory, tests designed to measure only explicit memory nonetheless often capture implicit memory processing as well. In particular, the evidence described here suggests that investigations of familiarity memory are prone to the accidental capture of implicit memory processing. These findings have considerable implications for neurocognitive accounts of memory, as they suggest that many neural and behavioral measures often accepted as signals of explicit memory instead reflect the distinct operation of implicit memory mechanisms that are only sometimes related to explicit memory expressions. Proper identification of the explicit and implicit mechanisms for memory is vital to understanding the normal operation of memory, in addition to the disrupted memory capabilities associated with many neurological disorders and mental illnesses. We suggest that future progress requires utilizing neural, behavioral, and subjective evidence to dissociate implicit and explicit memory processing so as to better understand their distinct mechanisms as well as their potential relationships. When searching for the neurocognitive mechanisms of memory, it is important to keep in mind that memory involves more than a feeling. PMID:24171735

  4. Perceptions as Hypotheses

    NASA Astrophysics Data System (ADS)

    Gregory, R. L.

    1980-07-01

    Perceptions may be compared with hypotheses in science. The methods of acquiring scientific knowledge provide a working paradigm for investigating processes of perception. Much as the information channels of instruments, such as radio telescopes, transmit signals which are processed according to various assumptions to give useful data, so neural signals are processed to give data for perception. To understand perception, the signal codes and the stored knowledge or assumptions used for deriving perceptual hypotheses must be discovered. Systematic perceptual errors are important clues for appreciating signal channel limitations, and for discovering hypothesis-generating procedures. Although this distinction between `physiological' and `cognitive' aspects of perception may be logically clear, it is in practice surprisingly difficult to establish which are responsible even for clearly established phenomena such as the classical distortion illusions. Experimental results are presented, aimed at distinguishing between and discovering what happens when there is mismatch with the neural signal channel, and when neural signals are processed inappropriately for the current situation. This leads us to make some distinctions between perceptual and scientific hypotheses, which raise in a new form the problem: What are `objects'?

  5. Distinct spatial frequency sensitivities for processing faces and emotional expressions.

    PubMed

    Vuilleumier, Patrik; Armony, Jorge L; Driver, Jon; Dolan, Raymond J

    2003-06-01

    High and low spatial frequency information in visual images is processed by distinct neural channels. Using event-related functional magnetic resonance imaging (fMRI) in humans, we show dissociable roles of such visual channels for processing faces and emotional fearful expressions. Neural responses in fusiform cortex, and effects of repeating the same face identity upon fusiform activity, were greater with intact or high-spatial-frequency face stimuli than with low-frequency faces, regardless of emotional expression. In contrast, amygdala responses to fearful expressions were greater for intact or low-frequency faces than for high-frequency faces. An activation of pulvinar and superior colliculus by fearful expressions occurred specifically with low-frequency faces, suggesting that these subcortical pathways may provide coarse fear-related inputs to the amygdala.

  6. Reading for Meaning in Dyslexic and Young Children: Distinct Neural Pathways but Common Endpoints

    ERIC Educational Resources Information Center

    Schulz, Enrico; Maurer, Urs; van der Mark, Sanne; Bucher, Kerstin; Brem, Silvia; Martin, Ernst; Brandeis, Daniel

    2009-01-01

    Developmental dyslexia is a highly prevalent and specific disorder of reading acquisition characterised by impaired reading fluency and comprehension. We have previously identified fMRI- and ERP-based neural markers of impaired sentence reading in dyslexia that indicated both deviant basic word processing and deviant semantic incongruency…

  7. Sadness is unique: neural processing of emotions in speech prosody in musicians and non-musicians.

    PubMed

    Park, Mona; Gutyrchik, Evgeny; Welker, Lorenz; Carl, Petra; Pöppel, Ernst; Zaytseva, Yuliya; Meindl, Thomas; Blautzik, Janusch; Reiser, Maximilian; Bao, Yan

    2014-01-01

    Musical training has been shown to have positive effects on several aspects of speech processing, however, the effects of musical training on the neural processing of speech prosody conveying distinct emotions are yet to be better understood. We used functional magnetic resonance imaging (fMRI) to investigate whether the neural responses to speech prosody conveying happiness, sadness, and fear differ between musicians and non-musicians. Differences in processing of emotional speech prosody between the two groups were only observed when sadness was expressed. Musicians showed increased activation in the middle frontal gyrus, the anterior medial prefrontal cortex, the posterior cingulate cortex and the retrosplenial cortex. Our results suggest an increased sensitivity of emotional processing in musicians with respect to sadness expressed in speech, possibly reflecting empathic processes.

  8. The neural signatures of distinct psychopathic traits

    PubMed Central

    Carré, Justin M.; Hyde, Luke W.; Neumann, Craig S.; Viding, Essi; Hariri, Ahmad R.

    2016-01-01

    Recent studies suggest that psychopathy may be associated with dysfunction in the neural circuitry supporting both threat- and reward-related processes. However, these studies have involved small samples and often focused on extreme groups. Thus, it is unclear to what extent current findings may generalize to psychopathic traits in the general population. Furthermore, no studies have systematically and simultaneously assessed associations between distinct psychopathy facets and both threat- and reward-related brain function in the same sample of participants. Here, we examined the relationship between threat-related amygdala reactivity and reward-related ventral striatum (VS) reactivity and variation in four facets of self-reported psychopathy in a sample of 200 young adults. Path models indicated that amygdala reactivity to fearful facial expressions is negatively associated with the interpersonal facet of psychopathy, whereas amygdala reactivity to angry facial expressions is positively associated with the lifestyle facet. Furthermore, these models revealed that differential VS reactivity to positive versus negative feedback is negatively associated with the lifestyle facet. There was suggestive evidence for gender-specific patterns of association between brain function and psychopathy facets. Our findings are the first to document differential associations between both threat- and reward-related neural processes and distinct facets of psychopathy and thus provide a more comprehensive picture of the pattern of neural vulnerabilities that may predispose to maladaptive outcomes associated with psychopathy. PMID:22775289

  9. The neural signatures of distinct psychopathic traits.

    PubMed

    Carré, Justin M; Hyde, Luke W; Neumann, Craig S; Viding, Essi; Hariri, Ahmad R

    2013-01-01

    Recent studies suggest that psychopathy may be associated with dysfunction in the neural circuitry supporting both threat- and reward-related processes. However, these studies have involved small samples and often focused on extreme groups. Thus, it is unclear to what extent current findings may generalize to psychopathic traits in the general population. Furthermore, no studies have systematically and simultaneously assessed associations between distinct psychopathy facets and both threat- and reward-related brain function in the same sample of participants. Here, we examined the relationship between threat-related amygdala reactivity and reward-related ventral striatum (VS) reactivity and variation in four facets of self-reported psychopathy in a sample of 200 young adults. Path models indicated that amygdala reactivity to fearful facial expressions is negatively associated with the interpersonal facet of psychopathy, whereas amygdala reactivity to angry facial expressions is positively associated with the lifestyle facet. Furthermore, these models revealed that differential VS reactivity to positive versus negative feedback is negatively associated with the lifestyle facet. There was suggestive evidence for gender-specific patterns of association between brain function and psychopathy facets. Our findings are the first to document differential associations between both threat- and reward-related neural processes and distinct facets of psychopathy and thus provide a more comprehensive picture of the pattern of neural vulnerabilities that may predispose to maladaptive outcomes associated with psychopathy.

  10. Dissociating hippocampal and striatal contributions to sequential prediction learning

    PubMed Central

    Bornstein, Aaron M.; Daw, Nathaniel D.

    2011-01-01

    Behavior may be generated on the basis of many different kinds of learned contingencies. For instance, responses could be guided by the direct association between a stimulus and response, or by sequential stimulus-stimulus relationships (as in model-based reinforcement learning or goal-directed actions). However, the neural architecture underlying sequential predictive learning is not well-understood, in part because it is difficult to isolate its effect on choice behavior. To track such learning more directly, we examined reaction times (RTs) in a probabilistic sequential picture identification task. We used computational learning models to isolate trial-by-trial effects of two distinct learning processes in behavior, and used these as signatures to analyze the separate neural substrates of each process. RTs were best explained via the combination of two delta rule learning processes with different learning rates. To examine neural manifestations of these learning processes, we used functional magnetic resonance imaging to seek correlates of timeseries related to expectancy or surprise. We observed such correlates in two regions, hippocampus and striatum. By estimating the learning rates best explaining each signal, we verified that they were uniquely associated with one of the two distinct processes identified behaviorally. These differential correlates suggest that complementary anticipatory functions drive each region's effect on behavior. Our results provide novel insights as to the quantitative computational distinctions between medial temporal and basal ganglia learning networks and enable experiments that exploit trial-by-trial measurement of the unique contributions of both hippocampus and striatum to response behavior. PMID:22487032

  11. Unpacking the neural associations of emotion and judgment in emotion-congruent judgment

    PubMed Central

    Beer, Jennifer S.

    2012-01-01

    The current study takes a new approach to understand the neural systems that support emotion-congruent judgment. The bulk of previous neural research has inferred emotional influences on judgment from disadvantageous judgments or non-random individual differences. The current study manipulated the influence of emotional information on judgments of stimuli that were equivocally composed of positive and negative attributes. Emotion-congruent processing was operationalized in two ways: neural activation significantly associated with primes that lead to emotionally congruent judgments and neural activation significantly associated with judgments that were preceded by emotionally congruent primes. Distinct regions of medial orbitofrontal cortex were associated with these patterns of emotion-congruent processing. Judgments that were incongruent with preceding primes were associated with dorsomedial prefrontal cortex, ventrolateral prefrontal cortex and lateral orbitofrontal cortex activity. The current study demonstrates a new approach to investigate the neural systems associated with emotion-congruent judgment. The findings suggest that medial OFC may support attentional processes that underlie emotion-congruent judgment. PMID:21511825

  12. Similar patterns of neural activity predict memory function during encoding and retrieval.

    PubMed

    Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J

    2017-07-15

    Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Converging Intracranial Markers of Conscious Access

    PubMed Central

    Gaillard, Raphaël; Dehaene, Stanislas; Adam, Claude; Clémenceau, Stéphane; Hasboun, Dominique; Baulac, Michel; Cohen, Laurent; Naccache, Lionel

    2009-01-01

    We compared conscious and nonconscious processing of briefly flashed words using a visual masking procedure while recording intracranial electroencephalogram (iEEG) in ten patients. Nonconscious processing of masked words was observed in multiple cortical areas, mostly within an early time window (<300 ms), accompanied by induced gamma-band activity, but without coherent long-distance neural activity, suggesting a quickly dissipating feedforward wave. In contrast, conscious processing of unmasked words was characterized by the convergence of four distinct neurophysiological markers: sustained voltage changes, particularly in prefrontal cortex, large increases in spectral power in the gamma band, increases in long-distance phase synchrony in the beta range, and increases in long-range Granger causality. We argue that all of those measures provide distinct windows into the same distributed state of conscious processing. These results have a direct impact on current theoretical discussions concerning the neural correlates of conscious access. PMID:19296722

  14. Neural signatures of co-occurring reading and mathematical difficulties.

    PubMed

    Skeide, Michael A; Evans, Tanya M; Mei, Edward Z; Abrams, Daniel A; Menon, Vinod

    2018-06-19

    Impaired abilities in multiple domains is common in children with learning difficulties. Co-occurrence of low reading and mathematical abilities (LRLM) appears in almost every second child with learning difficulties. However, little is known regarding the neural bases of this combination. Leveraging a unique and tightly controlled sample including children with LRLM, isolated low reading ability (LR), and isolated low mathematical ability (LM), we uncover a distinct neural signature in children with co-occurring low reading and mathematical abilities differentiable from LR and LM. Specifically, we show that LRLM is neuroanatomically distinct from both LR and LM based on reduced cortical folding of the right parahippocampal gyrus, a medial temporal lobe region implicated in visual associative learning. LRLM children were further distinguished from LR and LM by patterns of intrinsic functional connectivity between parahippocampal gyrus and brain circuitry underlying reading and numerical quantity processing. Our results critically inform cognitive and neural models of LRLM by implicating aberrations in both domain-specific and domain-general brain regions involved in reading and mathematics. More generally, our results provide the first evidence for distinct multimodal neural signatures associated with LRLM, and suggest that this population displays an independent phenotype of learning difficulty that cannot be explained simply as a combination of isolated low reading and mathematical abilities. © 2018 John Wiley & Sons Ltd.

  15. Signature neural networks: definition and application to multidimensional sorting problems.

    PubMed

    Latorre, Roberto; de Borja Rodriguez, Francisco; Varona, Pablo

    2011-01-01

    In this paper we present a self-organizing neural network paradigm that is able to discriminate information locally using a strategy for information coding and processing inspired in recent findings in living neural systems. The proposed neural network uses: 1) neural signatures to identify each unit in the network; 2) local discrimination of input information during the processing; and 3) a multicoding mechanism for information propagation regarding the who and the what of the information. The local discrimination implies a distinct processing as a function of the neural signature recognition and a local transient memory. In the context of artificial neural networks none of these mechanisms has been analyzed in detail, and our goal is to demonstrate that they can be used to efficiently solve some specific problems. To illustrate the proposed paradigm, we apply it to the problem of multidimensional sorting, which can take advantage of the local information discrimination. In particular, we compare the results of this new approach with traditional methods to solve jigsaw puzzles and we analyze the situations where the new paradigm improves the performance.

  16. Neural signatures of conscious and unconscious emotional face processing in human infants.

    PubMed

    Jessen, Sarah; Grossmann, Tobias

    2015-03-01

    Human adults can process emotional information both with and without conscious awareness, and it has been suggested that the two processes rely on partly distinct brain mechanisms. However, the developmental origins of these brain processes are unknown. In the present event-related brain potential (ERP) study, we examined the brain responses of 7-month-old infants in response to subliminally (50 and 100 msec) and supraliminally (500 msec) presented happy and fearful facial expressions. Our results revealed that infants' brain responses (Pb and Nc) over central electrodes distinguished between emotions irrespective of stimulus duration, whereas the discrimination between emotions at occipital electrodes (N290 and P400) only occurred when faces were presented supraliminally (above threshold). This suggests that early in development the human brain not only discriminates between happy and fearful facial expressions irrespective of conscious perception, but also that, similar to adults, supraliminal and subliminal emotion processing relies on distinct neural processes. Our data further suggest that the processing of emotional facial expressions differs across infants depending on their behaviorally shown perceptual sensitivity. The current ERP findings suggest that distinct brain processes underpinning conscious and unconscious emotion perception emerge early in ontogeny and can therefore be seen as a key feature of human social functioning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    PubMed

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition contributes to clinically relevant cognitive deficits, and we consider pharmacological strategies for ameliorating cognitive deficits by rebalancing disinhibition-induced aberrant neural activity. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc. © 2017 The British Pharmacological Society.

  18. Adolescent transformations of behavioral and neural processes as potential targets for prevention.

    PubMed

    Eldreth, Dana; Hardin, Michael G; Pavletic, Nevia; Ernst, Monique

    2013-06-01

    Adolescence is a transitional period in development that is marked by a distinct, typical behavioral profile of high rates of exploration, novelty-seeking, and emotional lability. While these behaviors generally assist the adolescent transition to independence, they can also confer vulnerability for excessive risk-taking and psychopathology, particularly in the context of specific environmental or genetic influences. As prevention research depends on the identification of targets of vulnerability, the following review will discuss the interplay among motivational systems including reward-related, avoidance-related, and regulatory processes in typical and atypical adolescent development. Each set of processes will be discussed in relation to their underlying neural correlates and distinct developmental trajectories. Evidence suggests that typical adolescent behavior and the risk for atypical development are mediated by heightened adolescent responsiveness of reward-related and avoidance-related systems under specific conditions, concurrent with poor modulation by immature regulatory processes. Finally, we will propose strategies to exploit heightened reward processing to reinforce inhibitory control, which is an essential component of regulatory processes in prevention interventions.

  19. Parkinson’s disease dementia: a neural networks perspective

    PubMed Central

    Jahanshahi, Marjan; Foltynie, Thomas

    2015-01-01

    In the long-term, with progression of the illness, Parkinson’s disease dementia affects up to 90% of patients with Parkinson’s disease. With increasing life expectancy in western countries, Parkinson’s disease dementia is set to become even more prevalent in the future. However, current treatments only give modest symptomatic benefit at best. New treatments are slow in development because unlike the pathological processes underlying the motor deficits of Parkinson’s disease, the neural mechanisms underlying the dementing process and its associated cognitive deficits are still poorly understood. Recent insights from neuroscience research have begun to unravel the heterogeneous involvement of several distinct neural networks underlying the cognitive deficits in Parkinson’s disease dementia, and their modulation by both dopaminergic and non-dopaminergic transmitter systems in the brain. In this review we collate emerging evidence regarding these distinct brain networks to give a novel perspective on the pathological mechanisms underlying Parkinson’s disease dementia, and discuss how this may offer new therapeutic opportunities. PMID:25888551

  20. Parkinson's disease dementia: a neural networks perspective.

    PubMed

    Gratwicke, James; Jahanshahi, Marjan; Foltynie, Thomas

    2015-06-01

    In the long-term, with progression of the illness, Parkinson's disease dementia affects up to 90% of patients with Parkinson's disease. With increasing life expectancy in western countries, Parkinson's disease dementia is set to become even more prevalent in the future. However, current treatments only give modest symptomatic benefit at best. New treatments are slow in development because unlike the pathological processes underlying the motor deficits of Parkinson's disease, the neural mechanisms underlying the dementing process and its associated cognitive deficits are still poorly understood. Recent insights from neuroscience research have begun to unravel the heterogeneous involvement of several distinct neural networks underlying the cognitive deficits in Parkinson's disease dementia, and their modulation by both dopaminergic and non-dopaminergic transmitter systems in the brain. In this review we collate emerging evidence regarding these distinct brain networks to give a novel perspective on the pathological mechanisms underlying Parkinson's disease dementia, and discuss how this may offer new therapeutic opportunities. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  1. Sadness is unique: neural processing of emotions in speech prosody in musicians and non-musicians

    PubMed Central

    Park, Mona; Gutyrchik, Evgeny; Welker, Lorenz; Carl, Petra; Pöppel, Ernst; Zaytseva, Yuliya; Meindl, Thomas; Blautzik, Janusch; Reiser, Maximilian; Bao, Yan

    2015-01-01

    Musical training has been shown to have positive effects on several aspects of speech processing, however, the effects of musical training on the neural processing of speech prosody conveying distinct emotions are yet to be better understood. We used functional magnetic resonance imaging (fMRI) to investigate whether the neural responses to speech prosody conveying happiness, sadness, and fear differ between musicians and non-musicians. Differences in processing of emotional speech prosody between the two groups were only observed when sadness was expressed. Musicians showed increased activation in the middle frontal gyrus, the anterior medial prefrontal cortex, the posterior cingulate cortex and the retrosplenial cortex. Our results suggest an increased sensitivity of emotional processing in musicians with respect to sadness expressed in speech, possibly reflecting empathic processes. PMID:25688196

  2. Neural Systems Underlying Emotional and Non-emotional Interference Processing: An ALE Meta-Analysis of Functional Neuroimaging Studies

    PubMed Central

    Xu, Min; Xu, Guiping; Yang, Yang

    2016-01-01

    Understanding how the nature of interference might influence the recruitments of the neural systems is considered as the key to understanding cognitive control. Although, interference processing in the emotional domain has recently attracted great interest, the question of whether there are separable neural patterns for emotional and non-emotional interference processing remains open. Here, we performed an activation likelihood estimation meta-analysis of 78 neuroimaging experiments, and examined common and distinct neural systems for emotional and non-emotional interference processing. We examined brain activation in three domains of interference processing: emotional verbal interference in the face-word conflict task, non-emotional verbal interference in the color-word Stroop task, and non-emotional spatial interference in the Simon, SRC and Flanker tasks. Our results show that the dorsal anterior cingulate cortex (ACC) was recruited for both emotional and non-emotional interference. In addition, the right anterior insula, presupplementary motor area (pre-SMA), and right inferior frontal gyrus (IFG) were activated by interference processing across both emotional and non-emotional domains. In light of these results, we propose that the anterior insular cortex may serve to integrate information from different dimensions and work together with the dorsal ACC to detect and monitor conflicts, whereas pre-SMA and right IFG may be recruited to inhibit inappropriate responses. In contrast, the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) showed different degrees of activation and distinct lateralization patterns for different processing domains, which suggests that these regions may implement cognitive control based on the specific task requirements. PMID:27895564

  3. Speech perception in autism spectrum disorder: An activation likelihood estimation meta-analysis.

    PubMed

    Tryfon, Ana; Foster, Nicholas E V; Sharda, Megha; Hyde, Krista L

    2018-02-15

    Autism spectrum disorder (ASD) is often characterized by atypical language profiles and auditory and speech processing. These can contribute to aberrant language and social communication skills in ASD. The study of the neural basis of speech perception in ASD can serve as a potential neurobiological marker of ASD early on, but mixed results across studies renders it difficult to find a reliable neural characterization of speech processing in ASD. To this aim, the present study examined the functional neural basis of speech perception in ASD versus typical development (TD) using an activation likelihood estimation (ALE) meta-analysis of 18 qualifying studies. The present study included separate analyses for TD and ASD, which allowed us to examine patterns of within-group brain activation as well as both common and distinct patterns of brain activation across the ASD and TD groups. Overall, ASD and TD showed mostly common brain activation of speech processing in bilateral superior temporal gyrus (STG) and left inferior frontal gyrus (IFG). However, the results revealed trends for some distinct activation in the TD group showing additional activation in higher-order brain areas including left superior frontal gyrus (SFG), left medial frontal gyrus (MFG), and right IFG. These results provide a more reliable neural characterization of speech processing in ASD relative to previous single neuroimaging studies and motivate future work to investigate how these brain signatures relate to behavioral measures of speech processing in ASD. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The neurophysiological and evolutionary considerations of close combat: A modular approach.

    PubMed

    Dervenis, Kostas; Tsialogiannis, Evangelos

    2017-01-01

    Close Combat may be identified as a physical confrontation involving armed or unarmed fighting, lethal and/or non-lethal methods, or even simply escape from and/or de-escalation of the confrontation. Our model hypothesizes that distinct areas of the brain are utilized for specific levels of violence, based on evolutionary criteria, and that these levels of violence bring into effect distinct physiological criteria and kinesiology. This model is outlined similar to Paul D. MacLean's triune brain theory, but incorporates distinct processes inherent to the autonomic nervous system (i.e. a "quadrune brain"), and correlates the observed level of violence to a particular response to a specific neural complex associated with very specific reactive kinesiology in the body. Our hypothesis is that the reverse also holds true: specific movements, scenarios and breathing will "activate" corresponding neural centres that in turn correlate to a respective level of violence. Moreover, socio-historic records bear out the premise that specific behavioural violations of social protocols act as "triggers" for assaultive and lethal force involving weapons, and it is very likely that these triggers (and the concomitant decision to engage in assault or lethal force) are processed through neural centres in what McLean has described as his "limbic system." A modular system of close combat is being researched and developed in accord with the above, readily adaptable to the level of violence professional peacekeepers and law enforcement officers may encounter in the course of their duties, but also directly relevant to the self-protection needs of civilians and youth. Distinct modular training regimes have been identified and developed for situations involving escape from a threat, submission of an adversary, and assaultive/lethal force, with the hope of strengthening neural bridges between the four neural complexes postulated in our model, and therefore via these bridges limiting adverse reactions to the psyche from combat stress.

  5. Distinct effects of ASD and ADHD symptoms on reward anticipation in participants with ADHD, their unaffected siblings and healthy controls: a cross-sectional study.

    PubMed

    van Dongen, Eelco V; von Rhein, Daniel; O'Dwyer, Laurence; Franke, Barbara; Hartman, Catharina A; Heslenfeld, Dirk J; Hoekstra, Pieter J; Oosterlaan, Jaap; Rommelse, Nanda; Buitelaar, Jan

    2015-01-01

    Autism spectrum disorder (ASD) traits are continuously distributed throughout the population, and ASD symptoms are also frequently observed in patients with attention-deficit/hyperactivity disorder (ADHD). Both ASD and ADHD have been linked to alterations in reward-related neural processing. However, whether both symptom domains interact and/or have distinct effects on reward processing in healthy and ADHD populations is currently unknown. We examined how variance in ASD and ADHD symptoms in individuals with ADHD and healthy participants was related to the behavioural and neural response to reward during a monetary incentive delay (MID) task. Participants (mean age: 17.7 years, range: 10-28 years) from the NeuroIMAGE study with a confirmed diagnosis of ADHD (n = 136), their unaffected siblings (n = 83), as well as healthy controls (n = 105) performed an MID task in a magnetic resonance imaging (MRI) scanner. ASD and ADHD symptom scores were used as predictors of the neural response to reward anticipation and reward receipt. Behavioural responses were modeled using linear mixed models; neural responses were analysed using FMRIB's Software Library (FSL) proprietary mixed effects analysis (FLAMEO). ASD and ADHD symptoms were associated with alterations in BOLD activity during reward anticipation, but not reward receipt. Specifically, ASD scores were related to increased insular activity during reward anticipation across the sample. No interaction was found between this effect and the presence of ADHD, suggesting that ASD symptoms had no differential effect in ADHD and healthy populations. ADHD symptom scores were associated with reduced dorsolateral prefrontal activity during reward anticipation. No interactions were found between the effects of ASD and ADHD symptoms on reward processing. Variance in ASD and ADHD symptoms separately influence neural processing during reward anticipation in both individuals with (an increased risk of) ADHD and healthy participants. Our findings therefore suggest that both symptom domains affect reward processing through distinct mechanisms, underscoring the importance of multidimensional and multimodal assessment in psychiatry.

  6. Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain.

    PubMed

    Lopopolo, Alessandro; Frank, Stefan L; van den Bosch, Antal; Willems, Roel M

    2017-01-01

    Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.

  7. Neuronal integration in visual cortex elevates face category tuning to conscious face perception

    PubMed Central

    Fahrenfort, Johannes J.; Snijders, Tineke M.; Heinen, Klaartje; van Gaal, Simon; Scholte, H. Steven; Lamme, Victor A. F.

    2012-01-01

    The human brain has the extraordinary capability to transform cluttered sensory input into distinct object representations. For example, it is able to rapidly and seemingly without effort detect object categories in complex natural scenes. Surprisingly, category tuning is not sufficient to achieve conscious recognition of objects. What neural process beyond category extraction might elevate neural representations to the level where objects are consciously perceived? Here we show that visible and invisible faces produce similar category-selective responses in the ventral visual cortex. The pattern of neural activity evoked by visible faces could be used to decode the presence of invisible faces and vice versa. However, only visible faces caused extensive response enhancements and changes in neural oscillatory synchronization, as well as increased functional connectivity between higher and lower visual areas. We conclude that conscious face perception is more tightly linked to neural processes of sustained information integration and binding than to processes accommodating face category tuning. PMID:23236162

  8. Optoelectronic analogs of self-programming neural nets - Architecture and methodologies for implementing fast stochastic learning by simulated annealing

    NASA Technical Reports Server (NTRS)

    Farhat, Nabil H.

    1987-01-01

    Self-organization and learning is a distinctive feature of neural nets and processors that sets them apart from conventional approaches to signal processing. It leads to self-programmability which alleviates the problem of programming complexity in artificial neural nets. In this paper architectures for partitioning an optoelectronic analog of a neural net into distinct layers with prescribed interconnectivity pattern to enable stochastic learning by simulated annealing in the context of a Boltzmann machine are presented. Stochastic learning is of interest because of its relevance to the role of noise in biological neural nets. Practical considerations and methodologies for appreciably accelerating stochastic learning in such a multilayered net are described. These include the use of parallel optical computing of the global energy of the net, the use of fast nonvolatile programmable spatial light modulators to realize fast plasticity, optical generation of random number arrays, and an adaptive noisy thresholding scheme that also makes stochastic learning more biologically plausible. The findings reported predict optoelectronic chips that can be used in the realization of optical learning machines.

  9. Visemic Processing in Audiovisual Discrimination of Natural Speech: A Simultaneous fMRI-EEG Study

    ERIC Educational Resources Information Center

    Dubois, Cyril; Otzenberger, Helene; Gounot, Daniel; Sock, Rudolph; Metz-Lutz, Marie-Noelle

    2012-01-01

    In a noisy environment, visual perception of articulatory movements improves natural speech intelligibility. Parallel to phonemic processing based on auditory signal, visemic processing constitutes a counterpart based on "visemes", the distinctive visual units of speech. Aiming at investigating the neural substrates of visemic processing in a…

  10. A Cognitive Framework for Understanding and Improving Interference Resolution in the Brain

    PubMed Central

    Mishra, Jyoti; Anguera, Joaquin A.; Ziegler, David A.; Gazzaley, Adam

    2014-01-01

    All of us are familiar with the negative impact of interference on achieving our task goals. We are referring to interference by information, which either impinges on our senses from an external environmental source or is internally generated by our thoughts. Informed by more than a decade of research on the cognitive and neural processing of interference, we have developed a framework for understanding how interference impacts our neural systems and especially how it is regulated and suppressed during efficient on-task performance. Importantly, externally and internally generated interferences have distinct neural signatures, and further, distinct neural processing emerges depending on whether individuals must ignore and suppress the interference, as for distractions, or engage with them in a secondary task, as during multitasking. Here, we elaborate on this cognitive framework and how it changes throughout the human lifespan, focusing mostly on research evidence from younger adults and comparing these findings to data from older adults, children, and cognitively impaired populations. With insights gleaned from our growing understanding, we then describe three novel translational efforts in our lab directed at improving distinct aspects of interference resolution using cognitive training. Critically, these training approaches were specifically developed to target improved interference resolution based on neuroplasticity principles and have shown much success in randomized controlled first version evaluations in healthy aging. Our results show not only on-task training improvements but also robust generalization of benefit to other cognitive control abilities. This research showcases how an in-depth understanding of neural mechanisms can then inform the development of effective deficit-targeted interventions, which can in turn benefit both healthy and cognitively impaired populations. PMID:24309262

  11. Distinct pathways of neural coupling for different basic emotions.

    PubMed

    Tettamanti, Marco; Rognoni, Elena; Cafiero, Riccardo; Costa, Tommaso; Galati, Dario; Perani, Daniela

    2012-01-16

    Emotions are complex events recruiting distributed cortical and subcortical cerebral structures, where the functional integration dynamics within the involved neural circuits in relation to the nature of the different emotions are still unknown. Using fMRI, we measured the neural responses elicited by films representing basic emotions (fear, disgust, sadness, happiness). The amygdala and the associative cortex were conjointly activated by all basic emotions. Furthermore, distinct arrays of cortical and subcortical brain regions were additionally activated by each emotion, with the exception of sadness. Such findings informed the definition of three effective connectivity models, testing for the functional integration of visual cortex and amygdala, as regions processing all emotions, with domain-specific regions, namely: i) for fear, the frontoparietal system involved in preparing adaptive motor responses; ii) for disgust, the somatosensory system, reflecting protective responses against contaminating stimuli; iii) for happiness: medial prefrontal and temporoparietal cortices involved in understanding joyful interactions. Consistently with these domain-specific models, the results of the effective connectivity analysis indicate that the amygdala is involved in distinct functional integration effects with cortical networks processing sensorimotor, somatosensory, or cognitive aspects of basic emotions. The resulting effective connectivity networks may serve to regulate motor and cognitive behavior based on the quality of the induced emotional experience. Copyright © 2011. Published by Elsevier Inc.

  12. Perceptual priming versus explicit memory: dissociable neural correlates at encoding.

    PubMed

    Schott, Björn; Richardson-Klavehn, Alan; Heinze, Hans-Jochen; Düzel, Emrah

    2002-05-15

    We addressed the hypothesis that perceptual priming and explicit memory have distinct neural correlates at encoding. Event-related potentials (ERPs) were recorded while participants studied visually presented words at deep versus shallow levels of processing (LOPs). The ERPs were sorted by whether or not participants later used studied words as completions to three-letter word stems in an intentional memory test, and by whether or not they indicated that these completions were remembered from the study list. Study trials from which words were later used and not remembered (primed trials) and study trials from which words were later used and remembered (remembered trials) were compared to study trials from which words were later not used (forgotten trials), in order to measure the ERP difference associated with later memory (DM effect). Primed trials involved an early (200-450 msec) centroparietal negative-going DM effect. Remembered trials involved a late (900-1200 msec) right frontal, positive-going DM effect regardless of LOP, as well as an earlier (600-800 msec) central, positive-going DM effect during shallow study processing only. All three DM effects differed topographically, and, in terms of their onset or duration, from the extended (600-1200 msec) fronto-central, positive-going shift for deep compared with shallow study processing. The results provide the first clear evidence that perceptual priming and explicit memory have distinct neural correlates at encoding, consistent with Tulving and Schacter's (1990) distinction between brain systems concerned with perceptual representation versus semantic and episodic memory. They also shed additional light on encoding processes associated with later explicit memory, by suggesting that brain processes influenced by LOP set the stage for other, at least partially separable, brain processes that are more directly related to encoding success.

  13. Differential neural circuitry and self-interest in real vs hypothetical moral decisions

    PubMed Central

    Dalgleish, Tim; Thompson, Russell; Evans, Davy; Schweizer, Susanne; Mobbs, Dean

    2012-01-01

    Classic social psychology studies demonstrate that people can behave in ways that contradict their intentions—especially within the moral domain. We measured brain activity while subjects decided between financial self-benefit (earning money) and preventing physical harm (applying an electric shock) to a confederate under both real and hypothetical conditions. We found a shared neural network associated with empathic concern for both types of decisions. However, hypothetical and real moral decisions also recruited distinct neural circuitry: hypothetical moral decisions mapped closely onto the imagination network, while real moral decisions elicited activity in the bilateral amygdala and anterior cingulate—areas essential for social and affective processes. Moreover, during real moral decision-making, distinct regions of the prefrontal cortex (PFC) determined whether subjects make selfish or pro-social moral choices. Together, these results reveal not only differential neural mechanisms for real and hypothetical moral decisions but also that the nature of real moral decisions can be predicted by dissociable networks within the PFC. PMID:22711879

  14. Neuroanatomical substrates involved in unrelated false facial recognition.

    PubMed

    Ronzon-Gonzalez, Eliane; Hernandez-Castillo, Carlos R; Pasaye, Erick H; Vaca-Palomares, Israel; Fernandez-Ruiz, Juan

    2017-11-22

    Identifying faces is a process central for social interaction and a relevant factor in eyewitness theory. False recognition is a critical mistake during an eyewitness's identification scenario because it can lead to a wrongful conviction. Previous studies have described neural areas related to false facial recognition using the standard Deese/Roediger-McDermott (DRM) paradigm, triggering related false recognition. Nonetheless, misidentification of faces without trying to elicit false memories (unrelated false recognition) in a police lineup could involve different cognitive processes, and distinct neural areas. To delve into the neural circuitry of unrelated false recognition, we evaluated the memory and response confidence of participants while watching faces photographs in an fMRI task. Functional activations of unrelated false recognition were identified by contrasting the activation on this condition vs. the activations related to recognition (hits) and correct rejections. The results identified the right precentral and cingulate gyri as areas with distinctive activations during false recognition events suggesting a conflict resulting in a dysfunction during memory retrieval. High confidence suggested that about 50% of misidentifications may be related to an unconscious process. These findings add to our understanding of the construction of facial memories and its biological basis, and the fallibility of the eyewitness testimony.

  15. The neural basis of visual word form processing: a multivariate investigation.

    PubMed

    Nestor, Adrian; Behrmann, Marlene; Plaut, David C

    2013-07-01

    Current research on the neurobiological bases of reading points to the privileged role of a ventral cortical network in visual word processing. However, the properties of this network and, in particular, its selectivity for orthographic stimuli such as words and pseudowords remain topics of significant debate. Here, we approached this issue from a novel perspective by applying pattern-based analyses to functional magnetic resonance imaging data. Specifically, we examined whether, where and how, orthographic stimuli elicit distinct patterns of activation in the human cortex. First, at the category level, multivariate mapping found extensive sensitivity throughout the ventral cortex for words relative to false-font strings. Secondly, at the identity level, the multi-voxel pattern classification provided direct evidence that different pseudowords are encoded by distinct neural patterns. Thirdly, a comparison of pseudoword and face identification revealed that both stimulus types exploit common neural resources within the ventral cortical network. These results provide novel evidence regarding the involvement of the left ventral cortex in orthographic stimulus processing and shed light on its selectivity and discriminability profile. In particular, our findings support the existence of sublexical orthographic representations within the left ventral cortex while arguing for the continuity of reading with other visual recognition skills.

  16. Using Dual Process Models to Examine Impulsivity Throughout Neural Maturation.

    PubMed

    Leshem, Rotem

    2016-01-01

    The multivariate construct of impulsivity is examined through neural systems and connections that comprise the executive functioning system. It is proposed that cognitive and behavioral components of impulsivity can be divided into two distinct groups, mediated by (1) the cognitive control system: deficits in top-down cognitive control processes referred to as action/cognitive impulsivity and (2) the socioemotional system: related to bottom-up affective/motivational processes referred to as affective impulsivity. Examination of impulsivity from a developmental viewpoint can guide future research, potentially enabling the selection of more effective interventions for impulsive individuals, based on the cognitive components requiring improvement.

  17. Rapid Processing of a Global Feature in the ON Visual Pathways of Behaving Monkeys.

    PubMed

    Huang, Jun; Yang, Yan; Zhou, Ke; Zhao, Xudong; Zhou, Quan; Zhu, Hong; Yang, Yingshan; Zhang, Chunming; Zhou, Yifeng; Zhou, Wu

    2017-01-01

    Visual objects are recognized by their features. Whereas, some features are based on simple components (i.e., local features, such as orientation of line segments), some features are based on the whole object (i.e., global features, such as an object having a hole in it). Over the past five decades, behavioral, physiological, anatomical, and computational studies have established a general model of vision, which starts from extracting local features in the lower visual pathways followed by a feature integration process that extracts global features in the higher visual pathways. This local-to-global model is successful in providing a unified account for a vast sets of perception experiments, but it fails to account for a set of experiments showing human visual systems' superior sensitivity to global features. Understanding the neural mechanisms underlying the "global-first" process will offer critical insights into new models of vision. The goal of the present study was to establish a non-human primate model of rapid processing of global features for elucidating the neural mechanisms underlying differential processing of global and local features. Monkeys were trained to make a saccade to a target in the black background, which was different from the distractors (white circle) in color (e.g., red circle target), local features (e.g., white square target), a global feature (e.g., white ring with a hole target) or their combinations (e.g., red square target). Contrary to the predictions of the prevailing local-to-global model, we found that (1) detecting a distinction or a change in the global feature was faster than detecting a distinction or a change in color or local features; (2) detecting a distinction in color was facilitated by a distinction in the global feature, but not in the local features; and (3) detecting the hole was interfered by the local features of the hole (e.g., white ring with a squared hole). These results suggest that monkey ON visual systems have a subsystem that is more sensitive to distinctions in the global feature than local features. They also provide the behavioral constraints for identifying the underlying neural substrates.

  18. Brain substrates of implicit and explicit memory: the importance of concurrently acquired neural signals of both memory types.

    PubMed

    Voss, Joel L; Paller, Ken A

    2008-11-01

    A comprehensive understanding of human memory requires cognitive and neural descriptions of memory processes along with a conception of how memory processing drives behavioral responses and subjective experiences. One serious challenge to this endeavor is that an individual memory process is typically operative within a mix of other contemporaneous memory processes. This challenge is particularly disquieting in the context of implicit memory, which, unlike explicit memory, transpires without the subject necessarily being aware of memory retrieval. Neural correlates of implicit memory and neural correlates of explicit memory are often investigated in different experiments using very different memory tests and procedures. This strategy poses difficulties for elucidating the interactions between the two types of memory process that may result in explicit remembering, and for determining the extent to which certain neural processing events uniquely contribute to only one type of memory. We review recent studies that have succeeded in separately assessing neural correlates of both implicit memory and explicit memory within the same paradigm using event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI), with an emphasis on studies from our laboratory. The strategies we describe provide a methodological framework for achieving valid assessments of memory processing, and the findings support an emerging conceptualization of the distinct neurocognitive events responsible for implicit and explicit memory.

  19. Functional Roles of Neural Preparatory Processes in a Cued Stroop Task Revealed by Linking Electrophysiology with Behavioral Performance.

    PubMed

    Wang, Chao; Ding, Mingzhou; Kluger, Benzi M

    2015-01-01

    It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs) were identified: 1) A left-frontotemporal negativity (250-700 ms) that was positively associated with word-reading performance; 2) a midline-frontal negativity (450-800 ms) that was positively associated with color-naming and incongruent performance; 3) a left-frontal negativity (450-800 ms) that was positively associated with switch trial performance; and 4) a centroparietal positivity (450-800 ms) that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1) domain-specific task facilitation; 2) switch-specific task-set reconfiguration; 3) preparation for response conflict; and 4) proactive attentional control. Examining the relationship between ERPs and behavioral performance provides a functional link between neural markers and the cognitive processes they index.

  20. The neural basis of body form and body action agnosia.

    PubMed

    Moro, Valentina; Urgesi, Cosimo; Pernigo, Simone; Lanteri, Paola; Pazzaglia, Mariella; Aglioti, Salvatore Maria

    2008-10-23

    Visual analysis of faces and nonfacial body stimuli brings about neural activity in different cortical areas. Moreover, processing body form and body action relies on distinct neural substrates. Although brain lesion studies show specific face processing deficits, neuropsychological evidence for defective recognition of nonfacial body parts is lacking. By combining psychophysics studies with lesion-mapping techniques, we found that lesions of ventromedial, occipitotemporal areas induce face and body recognition deficits while lesions involving extrastriate body area seem causatively associated with impaired recognition of body but not of face and object stimuli. We also found that body form and body action recognition deficits can be double dissociated and are causatively associated with lesions to extrastriate body area and ventral premotor cortex, respectively. Our study reports two category-specific visual deficits, called body form and body action agnosia, and highlights their neural underpinnings.

  1. Aggression differentially modulates brain responses to fearful and angry faces: an exploratory study.

    PubMed

    Lu, Hui; Wang, Yu; Xu, Shuang; Wang, Yifeng; Zhang, Ruiping; Li, Tsingan

    2015-08-19

    Aggression is reported to modulate neural responses to the threatening information. However, whether aggression can modulate neural response to different kinds of threatening facial expressions (angry and fearful expressions) remains unknown. Thus, event-related potentials were measured in individuals (13 high aggressive, 12 low aggressive) exposed to neutral, angry, and fearful facial expressions while performing a frame-distinguishing task, irrespective of the emotional valence of the expressions. Highly aggressive participants showed no distinct neural responses between the three facial expressions. In addition, compared with individuals with low aggression, highly aggressive individuals showed a decreased frontocentral response to fearful faces within 250-300 ms and to angry faces within 400-500 ms of exposure. These results indicate that fearful faces represent a more threatening signal requiring a quick cognitive response during the early stage of facial processing, whereas angry faces elicit a stronger response during the later processing stage because of its eminent emotional significance. The present results represent the first known evidence that aggression is associated with different neural responses to fearful and angry faces. By exploring the distinct temporal responses to fearful and angry faces modulated by aggression, this study more precisely characterizes the cognitive characteristics of aggressive individuals. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  2. Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: A comprehensive meta-analysis.

    PubMed

    Noori, Hamid R; Cosa Linan, Alejandro; Spanagel, Rainer

    2016-09-01

    Cue reactivity to natural and social rewards is essential for motivational behavior. However, cue reactivity to drug rewards can also elicit craving in addicted subjects. The degree to which drug and natural rewards share neural substrates is not known. The objective of this study is to conduct a comprehensive meta-analysis of neuroimaging studies on drug, gambling and natural stimuli (food and sex) to identify the common and distinct neural substrates of cue reactivity to drug and natural rewards. Neural cue reactivity studies were selected for the meta-analysis by means of activation likelihood estimations, followed by sensitivity and clustering analyses of averaged neuronal response patterns. Data from 176 studies (5573 individuals) suggests largely overlapping neural response patterns towards all tested reward modalities. Common cue reactivity to natural and drug rewards was expressed by bilateral neural responses within anterior cingulate gyrus, insula, caudate head, inferior frontal gyrus, middle frontal gyrus and cerebellum. However, drug cues also generated distinct activation patterns in medial frontal gyrus, middle temporal gyrus, posterior cingulate gyrus, caudate body and putamen. Natural (sexual) reward cues induced unique activation of the pulvinar in thalamus. Neural substrates of cue reactivity to alcohol, drugs of abuse, food, sex and gambling are largely overlapping and comprise a network that processes reward, emotional responses and habit formation. This suggests that cue-mediated craving involves mechanisms that are not exclusive for addictive disorders but rather resemble the intersection of information pathways for processing reward, emotional responses, non-declarative memory and obsessive-compulsive behavior. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  3. A shared resource between declarative memory and motor memory.

    PubMed

    Keisler, Aysha; Shadmehr, Reza

    2010-11-03

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and nondeclarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/nondeclarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system.

  4. A shared resource between declarative memory and motor memory

    PubMed Central

    Keisler, Aysha; Shadmehr, Reza

    2010-01-01

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and non-declarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/non-declarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system. PMID:21048140

  5. Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.

    PubMed

    Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora

    2018-07-01

    Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Dynamic Changes in Amygdala Psychophysiological Connectivity Reveal Distinct Neural Networks for Facial Expressions of Basic Emotions.

    PubMed

    Diano, Matteo; Tamietto, Marco; Celeghin, Alessia; Weiskrantz, Lawrence; Tatu, Mona-Karina; Bagnis, Arianna; Duca, Sergio; Geminiani, Giuliano; Cauda, Franco; Costa, Tommaso

    2017-03-27

    The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective.

  7. Distinct neural processes are engaged in the modulation of mimicry by social group-membership and emotional expressions.

    PubMed

    Rauchbauer, Birgit; Majdandžić, Jasminka; Hummer, Allan; Windischberger, Christian; Lamm, Claus

    2015-09-01

    People often spontaneously engage in copying each other's postures and mannerisms, a phenomenon referred to as behavioral mimicry. Social psychology experiments indicate that mimicry denotes an implicit affiliative signal flexibly regulated in response to social requirements. Yet, the mediating processes and neural underpinnings of such regulation are largely unexplored. The present functional magnetic resonance imaging (fMRI) study examined mimicry regulation by combining an automatic imitation task with facial stimuli, varied on two social-affective dimensions: emotional expression (angry vs happy) and ethnic group membership (in- vs out-group). Behavioral data revealed increased mimicry when happy and when out-group faces were shown. Imaging results revealed that mimicry regulation in response to happy faces was associated with increased activation in the right temporo-parietal junction (TPJ), right dorsal premotor cortex (dPMC), and right superior parietal lobule (SPL). Mimicry regulation in response to out-group faces was related to increased activation in the left ventral premotor cortex (vPMC) and inferior parietal lobule (IPL), bilateral anterior insula, and mid-cingulate cortex (MCC). We suggest that mimicry in response to happy and to out-group faces is driven by distinct affiliative goals, and that mimicry regulation to attain these goals is mediated by distinct neuro-cognitive processes. Higher mimicry in response to happy faces seems to denote reciprocation of an affiliative signal. Higher mimicry in response to out-group faces, reflects an appeasement attempt towards an interaction partner perceived as threatening (an interpretation supported by implicit measures showing that out-group members are more strongly associated with threat). Our findings show that subtle social cues can result in the implicit regulation of mimicry. This regulation serves to achieve distinct affiliative goals, is mediated by different regulatory processes, and relies on distinct parts of an overarching network of task-related brain areas. Our findings shed new light on the neural mechanisms underlying the interplay between implicit action control and social cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Ageing differentially affects neural processing of different conflict types-an fMRI study.

    PubMed

    Korsch, Margarethe; Frühholz, Sascha; Herrmann, Manfred

    2014-01-01

    Interference control and conflict resolution is affected by ageing. There is increasing evidence that ageing does not compromise interference control in general but rather shows distinctive effects on different components of interference control. Different conflict types, [e.g., stimulus-stimulus (S-S) or stimulus-response (S-R) conflicts] trigger different cognitive processes and thus activate different neural networks. In the present functional magnetic resonance imaging (fMRI) study, we used a combined Flanker and Stimulus Response Conflict (SRC) task to investigate the effect of ageing on S-S and S-R conflicts. Behavioral data analysis revealed larger SRC effects in elderly. fMRI Results show that both age groups recruited similar regions [caudate nucleus, cingulate gyrus and middle occipital gyrus (MOG)] during Flanker conflict processing. Furthermore, elderly show an additional activation pattern in parietal and frontal areas. In contrast, no common activation of both age groups was found in response to the SRC. These data suggest that ageing has distinctive effects on S-S and S-R conflicts.

  9. Neural correlates of differential retrieval orientation: Sustained and item-related components.

    PubMed

    Woodruff, C Chad; Uncapher, Melina R; Rugg, Michael D

    2006-01-01

    Retrieval orientation refers to a cognitive state that biases processing of retrieval cues in service of a specific goal. The present study used a mixed fMRI design to investigate whether adoption of different retrieval orientations - as indexed by differences in the activity elicited by retrieval cues corresponding to unstudied items - is associated with differences in the state-related activity sustained across a block of test trials sharing a common retrieval goal. Subjects studied mixed lists comprising visually presented words and pictures. They then undertook a series of short test blocks in which all test items were visually presented words. The blocks varied according to whether the test items were used to cue retrieval of studied words or studied pictures. In several regions, neural activity elicited by correctly classified new items differed according to whether words or pictures were the targeted material. The loci of these effects suggest that one factor driving differential cue processing is modulation of the degree of overlap between cue and targeted memory representations. In addition to these item-related effects, neural activity sustained throughout the test blocks also differed according to the nature of the targeted material. These findings indicate that the adoption of different retrieval orientations is associated with distinct neural states. The loci of these sustained effects were distinct from those where new item activity varied, suggesting that the effects may play a role in biasing retrieval cue processing in favor of the current retrieval goal.

  10. Four Mechanistic Models of Peer Influence on Adolescent Cannabis Use.

    PubMed

    Caouette, Justin D; Feldstein Ewing, Sarah W

    2017-06-01

    Most adolescents begin exploring cannabis in peer contexts, but the neural mechanisms that underlie peer influence on adolescent cannabis use are still unknown. This theoretical overview elucidates the intersecting roles of neural function and peer factors in cannabis use in adolescents. Novel paradigms using functional magnetic resonance imaging (fMRI) in adolescents have identified distinct neural mechanisms of risk decision-making and incentive processing in peer contexts, centered on reward-motivation and affect regulatory neural networks; these findings inform a theoretical model of peer-driven cannabis use decisions in adolescents. We propose four "mechanistic profiles" of social facilitation of cannabis use in adolescents: (1) peer influence as the primary driver of use; (2) cannabis exploration as the primary driver, which may be enhanced in peer contexts; (3) social anxiety; and (4) negative peer experiences. Identification of "neural targets" involved in motivating cannabis use may inform clinicians about which treatment strategies work best in adolescents with cannabis use problems, and via which social and neurocognitive processes.

  11. Neural mechanisms underlying human consensus decision-making

    PubMed Central

    Suzuki, Shinsuke; Adachi, Ryo; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P.

    2015-01-01

    SUMMARY Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a novel computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority of group-members’ prior choices, as well as inferences about how much each option was stuck to by the other people. These distinct decision variables were separately encoded in distinct brain areas: the ventromedial prefrontal cortex, posterior superior temporal sulcus/temporoparietal junction and intraparietal sulcus, and were integrated in the dorsal anterior cingulate cortex. Our findings provide support for a theoretical account in which collective decisions are made through integrating multiple types of inference about oneself, others and environments, processed in distinct brain modules. PMID:25864634

  12. Neural mechanisms underlying human consensus decision-making.

    PubMed

    Suzuki, Shinsuke; Adachi, Ryo; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P

    2015-04-22

    Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority group members' prior choices, as well as inferences about how much each option was stuck to by the other people. These distinct decision variables were separately encoded in distinct brain areas-the ventromedial prefrontal cortex, posterior superior temporal sulcus/temporoparietal junction, and intraparietal sulcus-and were integrated in the dorsal anterior cingulate cortex. Our findings provide support for a theoretical account in which collective decisions are made through integrating multiple types of inference about oneself, others, and environments, processed in distinct brain modules. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. I know I've seen you before: Distinguishing recent-single-exposure-based familiarity from pre-existing familiarity

    PubMed Central

    Gimbel, Sarah I.; Brewer, James B.; Maril, Anat

    2018-01-01

    This study examines how individuals differentiate recent-single-exposure-based familiarity from pre-existing familiarity. If these are two distinct cognitive processes, are they supported by the same neural bases? This study examines how recent-single-exposure-based familiarity and multiple-previous-exposure-based familiarity are supported and represented in the brain using functional MRI. In a novel approach, we first behaviorally show that subjects can divide retrieval of items in pre-existing memory into judgments of recollection and familiarity. Then, using functional magnetic resonance imaging, we examine the differences in blood oxygen level dependent activity and regional connectivity during judgments of recent-single-exposure-based and pre-existing familiarity. Judgments of these two types of familiarity showed distinct regions of activation in a whole-brain analysis, in medial temporal lobe (MTL) substructures, and in MTL substructure functional-correlations with other brain regions. Specifically, within the MTL, perirhinal cortex showed increased activation during recent-single-exposure-based familiarity while parahippocampal cortex showed increased activation during judgments of pre-existing familiarity. We find that recent-single-exposure-based and pre-existing familiarity are represented as distinct neural processes in the brain; this is supported by differing patterns of brain activation and regional correlations. This spatially distinct regional brain involvement suggests that the two separate experiences of familiarity, recent-exposure-based familiarity and pre-existing familiarity, may be cognitively distinct. PMID:28073651

  14. Common and distinct modulation of electrophysiological indices of feedback processing by autistic and psychopathic traits.

    PubMed

    Carter Leno, Virginia; Naples, Adam; Cox, Anthony; Rutherford, Helena; McPartland, James C

    2016-01-01

    Both autism spectrum disorder (ASD) and psychopathy are primarily characterized by social dysfunction; overlapping phenotypic features may reflect altered function in common brain mechanisms. The current study examined the degree to which neural response to social and nonsocial feedback is modulated by autistic versus psychopathic traits in a sample of typically developing adults (N = 31, 11 males, 18-52 years). Event-related potentials were recorded whilst participants completed a behavioral task and received feedback on task performance. Both autistic and psychopathic traits were associated with alterations in the neural correlates of feedback processing. Sensitivity to specific forms of feedback (social, nonsocial, positively valenced, negatively valenced) differed between the two traits. Autistic traits were associated with decreased sensitivity to social feedback. In contrast, the antisocial domain of psychopathic traits was associated with an overall decrease in sensitivity to feedback, and the interpersonal manipulation domain was associated with preserved processing of positively valenced feedback. Results suggest distinct alterations within specific mechanisms of feedback processing may underlie similar difficulties in social behavior.

  15. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes.

    PubMed

    Stöckel, Tino; Carroll, Timothy J; Summers, Jeffery J; Hinder, Mark R

    2016-08-01

    Performance benefits conferred in the untrained limb after unilateral motor practice are termed cross-limb transfer. Although the effect is robust, the neural mechanisms remain incompletely understood. In this study we used noninvasive brain stimulation to reveal that the neural adaptations that mediate motor learning in the trained limb are distinct from those that underlie cross-limb transfer to the opposite limb. Thirty-six participants practiced a ballistic motor task with their right index finger (150 trials), followed by intermittent theta-burst stimulation (iTBS) applied to the trained (contralateral) primary motor cortex (cM1 group), the untrained (ipsilateral) M1 (iM1 group), or the vertex (sham group). After stimulation, another 150 training trials were undertaken. Motor performance and corticospinal excitability were assessed before motor training, pre- and post-iTBS, and after the second training bout. For all groups, training significantly increased performance and excitability of the trained hand, and performance, but not excitability, of the untrained hand, indicating transfer at the level of task performance. The typical facilitatory effect of iTBS on MEPs was reversed for cM1, suggesting homeostatic metaplasticity, and prior performance gains in the trained hand were degraded, suggesting that iTBS interfered with learning. In stark contrast, iM1 iTBS facilitated both performance and excitability for the untrained hand. Importantly, the effects of cM1 and iM1 iTBS on behavior were exclusive to the hand contralateral to stimulation, suggesting that adaptations within the untrained M1 contribute to cross-limb transfer. However, the neural processes that mediate learning in the trained hemisphere vs. transfer in the untrained hemisphere appear distinct. Copyright © 2016 the American Physiological Society.

  16. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes

    PubMed Central

    Carroll, Timothy J.; Summers, Jeffery J.; Hinder, Mark R.

    2016-01-01

    Performance benefits conferred in the untrained limb after unilateral motor practice are termed cross-limb transfer. Although the effect is robust, the neural mechanisms remain incompletely understood. In this study we used noninvasive brain stimulation to reveal that the neural adaptations that mediate motor learning in the trained limb are distinct from those that underlie cross-limb transfer to the opposite limb. Thirty-six participants practiced a ballistic motor task with their right index finger (150 trials), followed by intermittent theta-burst stimulation (iTBS) applied to the trained (contralateral) primary motor cortex (cM1 group), the untrained (ipsilateral) M1 (iM1 group), or the vertex (sham group). After stimulation, another 150 training trials were undertaken. Motor performance and corticospinal excitability were assessed before motor training, pre- and post-iTBS, and after the second training bout. For all groups, training significantly increased performance and excitability of the trained hand, and performance, but not excitability, of the untrained hand, indicating transfer at the level of task performance. The typical facilitatory effect of iTBS on MEPs was reversed for cM1, suggesting homeostatic metaplasticity, and prior performance gains in the trained hand were degraded, suggesting that iTBS interfered with learning. In stark contrast, iM1 iTBS facilitated both performance and excitability for the untrained hand. Importantly, the effects of cM1 and iM1 iTBS on behavior were exclusive to the hand contralateral to stimulation, suggesting that adaptations within the untrained M1 contribute to cross-limb transfer. However, the neural processes that mediate learning in the trained hemisphere vs. transfer in the untrained hemisphere appear distinct. PMID:27169508

  17. Avalanche and edge-of-chaos criticality do not necessarily co-occur in neural networks.

    PubMed

    Kanders, Karlis; Lorimer, Tom; Stoop, Ruedi

    2017-04-01

    There are indications that for optimizing neural computation, neural networks may operate at criticality. Previous approaches have used distinct fingerprints of criticality, leaving open the question whether the different notions would necessarily reflect different aspects of one and the same instance of criticality, or whether they could potentially refer to distinct instances of criticality. In this work, we choose avalanche criticality and edge-of-chaos criticality and demonstrate for a recurrent spiking neural network that avalanche criticality does not necessarily entrain dynamical edge-of-chaos criticality. This suggests that the different fingerprints may pertain to distinct phenomena.

  18. Avalanche and edge-of-chaos criticality do not necessarily co-occur in neural networks

    NASA Astrophysics Data System (ADS)

    Kanders, Karlis; Lorimer, Tom; Stoop, Ruedi

    2017-04-01

    There are indications that for optimizing neural computation, neural networks may operate at criticality. Previous approaches have used distinct fingerprints of criticality, leaving open the question whether the different notions would necessarily reflect different aspects of one and the same instance of criticality, or whether they could potentially refer to distinct instances of criticality. In this work, we choose avalanche criticality and edge-of-chaos criticality and demonstrate for a recurrent spiking neural network that avalanche criticality does not necessarily entrain dynamical edge-of-chaos criticality. This suggests that the different fingerprints may pertain to distinct phenomena.

  19. The implicit processing of categorical and dimensional strategies: an fMRI study of facial emotion perception

    PubMed Central

    Matsuda, Yoshi-Taka; Fujimura, Tomomi; Katahira, Kentaro; Okada, Masato; Ueno, Kenichi; Cheng, Kang; Okanoya, Kazuo

    2013-01-01

    Our understanding of facial emotion perception has been dominated by two seemingly opposing theories: the categorical and dimensional theories. However, we have recently demonstrated that hybrid processing involving both categorical and dimensional perception can be induced in an implicit manner (Fujimura etal., 2012). The underlying neural mechanisms of this hybrid processing remain unknown. In this study, we tested the hypothesis that separate neural loci might intrinsically encode categorical and dimensional processing functions that serve as a basis for hybrid processing. We used functional magnetic resonance imaging to measure neural correlates while subjects passively viewed emotional faces and performed tasks that were unrelated to facial emotion processing. Activity in the right fusiform face area (FFA) increased in response to psychologically obvious emotions and decreased in response to ambiguous expressions, demonstrating the role of the FFA in categorical processing. The amygdala, insula and medial prefrontal cortex exhibited evidence of dimensional (linear) processing that correlated with physical changes in the emotional face stimuli. The occipital face area and superior temporal sulcus did not respond to these changes in the presented stimuli. Our results indicated that distinct neural loci process the physical and psychological aspects of facial emotion perception in a region-specific and implicit manner. PMID:24133426

  20. Common and distinct neural correlates of inhibitory dysregulation: Stroop fMRI study of cocaine addiction and intermittent explosive disorder

    PubMed Central

    Moeller, Scott J.; Froböse, Monja I.; Konova, Anna B.; Misyrlis, Michail; Parvaz, Muhammad A.; Goldstein, Rita Z.; Alia-Klein, Nelly

    2014-01-01

    Despite the high prevalence and consequences associated with externalizing psychopathologies, little is known about their underlying neurobiological mechanisms. Studying multiple externalizing disorders, each characterized by compromised inhibition, could reveal both common and distinct mechanisms of impairment. The present study therefore compared individuals with intermittent explosive disorder (IED) (N=11), individuals with cocaine use disorder (CUD) (N=21), and healthy controls (N=17) on task performance and functional magnetic resonance imaging (fMRI) activity during an event-related color-word Stroop task; self-reported trait anger expression was also collected in all participants. Results revealed higher error-related activity in the two externalizing psychopathologies as compared with controls in two subregions of the dorsolateral prefrontal cortex (DLPFC) (a region known to be involved in exerting cognitive control during this task), suggesting a neural signature of inhibitory-related error processing common to these psychopathologies. Interestingly, in one DLPFC subregion, error-related activity was especially high in IED, possibly indicating a specific neural correlate of clinically high anger expression. Supporting this interpretation, error-related DLPFC activity in this same subregion positively correlated with trait anger expression across all participants. These collective results help to illuminate common and distinct neural signatures of impaired self-control, and could suggest novel therapeutic targets for increasing self-control in clinical aggression specifically and/or in various externalizing psychopathologies more generally. PMID:25106072

  1. Functional Roles of Neural Preparatory Processes in a Cued Stroop Task Revealed by Linking Electrophysiology with Behavioral Performance

    PubMed Central

    Wang, Chao; Ding, Mingzhou; Kluger, Benzi M.

    2015-01-01

    It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs) were identified: 1) A left-frontotemporal negativity (250-700 ms) that was positively associated with word-reading performance; 2) a midline-frontal negativity (450-800 ms) that was positively associated with color-naming and incongruent performance; 3) a left-frontal negativity (450-800 ms) that was positively associated with switch trial performance; and 4) a centroparietal positivity (450-800 ms) that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1) domain-specific task facilitation; 2) switch-specific task-set reconfiguration; 3) preparation for response conflict; and 4) proactive attentional control. Examining the relationship between ERPs and behavioral performance provides a functional link between neural markers and the cognitive processes they index. PMID:26230662

  2. Specific aspects of cognitive and language proficiency account for variability in neural indices of semantic and syntactic processing in children.

    PubMed

    Hampton Wray, Amanda; Weber-Fox, Christine

    2013-07-01

    The neural activity mediating language processing in young children is characterized by large individual variability that is likely related in part to individual strengths and weakness across various cognitive abilities. The current study addresses the following question: How does proficiency in specific cognitive and language functions impact neural indices mediating language processing in children? Thirty typically developing seven- and eight-year-olds were divided into high-normal and low-normal proficiency groups based on performance on nonverbal IQ, auditory word recall, and grammatical morphology tests. Event-related brain potentials (ERPs) were elicited by semantic anomalies and phrase structure violations in naturally spoken sentences. The proficiency for each of the specific cognitive and language tasks uniquely contributed to specific aspects (e.g., timing and/or resource allocation) of neural indices underlying semantic (N400) and syntactic (P600) processing. These results suggest that distinct aptitudes within broader domains of cognition and language, even within the normal range, influence the neural signatures of semantic and syntactic processing. Furthermore, the current findings have important implications for the design and interpretation of developmental studies of ERPs indexing language processing, and they highlight the need to take into account cognitive abilities both within and outside the classic language domain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Basic perceptual changes that alter meaning and neural correlates of recognition memory

    PubMed Central

    Gao, Chuanji; Hermiller, Molly S.; Voss, Joel L.; Guo, Chunyan

    2015-01-01

    It is difficult to pinpoint the border between perceptual and conceptual processing, despite their treatment as distinct entities in many studies of recognition memory. For instance, alteration of simple perceptual characteristics of a stimulus can radically change meaning, such as the color of bread changing from white to green. We sought to better understand the role of perceptual and conceptual processing in memory by identifying the effects of changing a basic perceptual feature (color) on behavioral and neural correlates of memory in circumstances when this change would be expected to either change the meaning of a stimulus or to have no effect on meaning (i.e., to influence conceptual processing or not). Abstract visual shapes (“squiggles”) were colorized during study and presented during test in either the same color or a different color. Those squiggles that subjects found to resemble meaningful objects supported behavioral measures of conceptual priming, whereas meaningless squiggles did not. Further, changing color from study to test had a selective effect on behavioral correlates of priming for meaningful squiggles, indicating that color change altered conceptual processing. During a recognition memory test, color change altered event-related brain potential (ERP) correlates of memory for meaningful squiggles but not for meaningless squiggles. Specifically, color change reduced the amplitude of frontally distributed N400 potentials (FN400), implying that these potentials indicated conceptual processing during recognition memory that was sensitive to color change. In contrast, color change had no effect on FN400 correlates of recognition for meaningless squiggles, which were overall smaller in amplitude than for meaningful squiggles (further indicating that these potentials signal conceptual processing during recognition). Thus, merely changing the color of abstract visual shapes can alter their meaning, changing behavioral and neural correlates of memory. These findings are relevant to understanding similarities and distinctions between perceptual and conceptual processing as well as the functional interpretation of neural correlates of recognition memory. PMID:25717298

  4. Lesion Mapping the Four-Factor Structure of Emotional Intelligence

    PubMed Central

    Operskalski, Joachim T.; Paul, Erick J.; Colom, Roberto; Barbey, Aron K.; Grafman, Jordan

    2015-01-01

    Emotional intelligence (EI) refers to an individual’s ability to process and respond to emotions, including recognizing the expression of emotions in others, using emotions to enhance thought and decision making, and regulating emotions to drive effective behaviors. Despite their importance for goal-directed social behavior, little is known about the neural mechanisms underlying specific facets of EI. Here, we report findings from a study investigating the neural bases of these specific components for EI in a sample of 130 combat veterans with penetrating traumatic brain injury. We examined the neural mechanisms underlying experiential (perceiving and using emotional information) and strategic (understanding and managing emotions) facets of EI. Factor scores were submitted to voxel-based lesion symptom mapping to elucidate their neural substrates. The results indicate that two facets of EI (perceiving and managing emotions) engage common and distinctive neural systems, with shared dependence on the social knowledge network, and selective engagement of the orbitofrontal and parietal cortex for strategic aspects of emotional information processing. The observed pattern of findings suggests that sub-facets of experiential and strategic EI can be characterized as separable but related processes that depend upon a core network of brain structures within frontal, temporal and parietal cortex. PMID:26858627

  5. Neural Decoding Reveals Impaired Face Configural Processing in the Right Fusiform Face Area of Individuals with Developmental Prosopagnosia

    PubMed Central

    Zhang, Jiedong; Liu, Jia

    2015-01-01

    Most of human daily social interactions rely on the ability to successfully recognize faces. Yet ∼2% of the human population suffers from face blindness without any acquired brain damage [this is also known as developmental prosopagnosia (DP) or congenital prosopagnosia]). Despite the presence of severe behavioral face recognition deficits, surprisingly, a majority of DP individuals exhibit normal face selectivity in the right fusiform face area (FFA), a key brain region involved in face configural processing. This finding, together with evidence showing impairments downstream from the right FFA in DP individuals, has led some to argue that perhaps the right FFA is largely intact in DP individuals. Using fMRI multivoxel pattern analysis, here we report the discovery of a neural impairment in the right FFA of DP individuals that may play a critical role in mediating their face-processing deficits. In seven individuals with DP, we discovered that, despite the right FFA's preference for faces and it showing decoding for the different face parts, it exhibited impaired face configural decoding and did not contain distinct neural response patterns for the intact and the scrambled face configurations. This abnormality was not present throughout the ventral visual cortex, as normal neural decoding was found in an adjacent object-processing region. To our knowledge, this is the first direct neural evidence showing impaired face configural processing in the right FFA in individuals with DP. The discovery of this neural impairment provides a new clue to our understanding of the neural basis of DP. PMID:25632131

  6. Neural correlates of continuous causal word generation.

    PubMed

    Wende, Kim C; Straube, Benjamin; Stratmann, Mirjam; Sommer, Jens; Kircher, Tilo; Nagels, Arne

    2012-09-01

    Causality provides a natural structure for organizing our experience and language. Causal reasoning during speech production is a distinct aspect of verbal communication, whose related brain processes are yet unknown. The aim of the current study was to investigate the neural mechanisms underlying the continuous generation of cause-and-effect coherences during overt word production. During fMRI data acquisition participants performed three verbal fluency tasks on identical cue words: A novel causal verbal fluency task (CVF), requiring the production of multiple reasons to a given cue word (e.g. reasons for heat are fire, sun etc.), a semantic (free association, FA, e.g. associations with heat are sweat, shower etc.) and a phonological control task (phonological verbal fluency, PVF, e.g. rhymes with heat are meat, wheat etc.). We found that, in contrast to PVF, both CVF and FA activated a left lateralized network encompassing inferior frontal, inferior parietal and angular regions, with further bilateral activation in middle and inferior as well as superior temporal gyri and the cerebellum. For CVF contrasted against FA, we found greater bold responses only in the left middle frontal cortex. Large overlaps in the neural activations during free association and causal verbal fluency indicate that the access to causal relationships between verbal concepts is at least partly based on the semantic neural network. The selective activation in the left middle frontal cortex for causal verbal fluency suggests that distinct neural processes related to cause-and-effect-relations are associated with the recruitment of middle frontal brain areas. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Dynamic neural activity during stress signals resilient coping

    PubMed Central

    Sinha, Rajita; Lacadie, Cheryl M.; Constable, R. Todd; Seo, Dongju

    2016-01-01

    Active coping underlies a healthy stress response, but neural processes supporting such resilient coping are not well-known. Using a brief, sustained exposure paradigm contrasting highly stressful, threatening, and violent stimuli versus nonaversive neutral visual stimuli in a functional magnetic resonance imaging (fMRI) study, we show significant subjective, physiologic, and endocrine increases and temporally related dynamically distinct patterns of neural activation in brain circuits underlying the stress response. First, stress-specific sustained increases in the amygdala, striatum, hypothalamus, midbrain, right insula, and right dorsolateral prefrontal cortex (DLPFC) regions supported the stress processing and reactivity circuit. Second, dynamic neural activation during stress versus neutral runs, showing early increases followed by later reduced activation in the ventrolateral prefrontal cortex (VLPFC), dorsal anterior cingulate cortex (dACC), left DLPFC, hippocampus, and left insula, suggested a stress adaptation response network. Finally, dynamic stress-specific mobilization of the ventromedial prefrontal cortex (VmPFC), marked by initial hypoactivity followed by increased VmPFC activation, pointed to the VmPFC as a key locus of the emotional and behavioral control network. Consistent with this finding, greater neural flexibility signals in the VmPFC during stress correlated with active coping ratings whereas lower dynamic activity in the VmPFC also predicted a higher level of maladaptive coping behaviors in real life, including binge alcohol intake, emotional eating, and frequency of arguments and fights. These findings demonstrate acute functional neuroplasticity during stress, with distinct and separable brain networks that underlie critical components of the stress response, and a specific role for VmPFC neuroflexibility in stress-resilient coping. PMID:27432990

  8. Common and disorder-specific neural responses to emotional faces in generalised anxiety, social anxiety and panic disorders

    PubMed Central

    Fonzo, Gregory A.; Ramsawh, Holly J.; Flagan, Taru M.; Sullivan, Sarah G.; Letamendi, Andrea; Simmons, Alan N.; Paulus, Martin P.; Stein, Murray B.

    2015-01-01

    Background Although evidence exists for abnormal brain function across various anxiety disorders, direct comparison of neural function across diagnoses is needed to elicit abnormalities common across disorders and those distinct to a particular diagnosis. Aims To delineate common and distinct abnormalities within generalised anxiety (GAD), panic and social anxiety disorder (SAD) during affective processing. Method Fifty-nine adults (15 with GAD, 15 with panic disorder, 14 with SAD, and 15 healthy controls) underwent functional magnetic resonance imaging while completing a facial emotion matching task with fearful, angry and happy faces. Results Greater differential right amygdala activation to matching fearful v. happy facial expressions related to greater negative affectivity (i.e. trait anxiety) and was heightened across all anxiety disorder groups compared with controls. Collapsing across emotional face types, participants with panic disorder uniquely displayed greater posterior insula activation. Conclusions These preliminary results highlight a common neural basis for clinical anxiety in these diagnoses and also suggest the presence of disorder-specific dysfunction. PMID:25573399

  9. Neural organization of linguistic short-term memory is sensory modality-dependent: evidence from signed and spoken language.

    PubMed

    Pa, Judy; Wilson, Stephen M; Pickell, Herbert; Bellugi, Ursula; Hickok, Gregory

    2008-12-01

    Despite decades of research, there is still disagreement regarding the nature of the information that is maintained in linguistic short-term memory (STM). Some authors argue for abstract phonological codes, whereas others argue for more general sensory traces. We assess these possibilities by investigating linguistic STM in two distinct sensory-motor modalities, spoken and signed language. Hearing bilingual participants (native in English and American Sign Language) performed equivalent STM tasks in both languages during functional magnetic resonance imaging. Distinct, sensory-specific activations were seen during the maintenance phase of the task for spoken versus signed language. These regions have been previously shown to respond to nonlinguistic sensory stimulation, suggesting that linguistic STM tasks recruit sensory-specific networks. However, maintenance-phase activations common to the two languages were also observed, implying some form of common process. We conclude that linguistic STM involves sensory-dependent neural networks, but suggest that sensory-independent neural networks may also exist.

  10. Common and distinct networks for self-referential and social stimulus processing in the human brain.

    PubMed

    Herold, Dorrit; Spengler, Stephanie; Sajonz, Bastian; Usnich, Tatiana; Bermpohl, Felix

    2016-09-01

    Self-referential processing is a complex cognitive function, involving a set of implicit and explicit processes, complicating investigation of its distinct neural signature. The present study explores the functional overlap and dissociability of self-referential and social stimulus processing. We combined an established paradigm for explicit self-referential processing with an implicit social stimulus processing paradigm in one fMRI experiment to determine the neural effects of self-relatedness and social processing within one study. Overlapping activations were found in the orbitofrontal cortex and in the intermediate part of the precuneus. Stimuli judged as self-referential specifically activated the posterior cingulate cortex, the ventral medial prefrontal cortex, extending into anterior cingulate cortex and orbitofrontal cortex, the dorsal medial prefrontal cortex, the ventral and dorsal lateral prefrontal cortex, the left inferior temporal gyrus, and occipital cortex. Social processing specifically involved the posterior precuneus and bilateral temporo-parietal junction. Taken together, our data show, not only, first, common networks for both processes in the medial prefrontal and the medial parietal cortex, but also, second, functional differentiations for self-referential processing versus social processing: an anterior-posterior gradient for social processing and self-referential processing within the medial parietal cortex and specific activations for self-referential processing in the medial and lateral prefrontal cortex and for social processing in the temporo-parietal junction.

  11. The Repetition Paradigm: Enhancement of Novel Metaphors and Suppression of Conventional Metaphors in the Left Inferior Parietal Lobe

    ERIC Educational Resources Information Center

    Subramaniam, Karuna; Faust, Miriam; Beeman, Mark; Mashal, Nira

    2012-01-01

    The neural mechanisms underlying the process of understanding novel and conventional metaphoric expressions remain unclear largely because the specific brain regions that support the formation of novel semantic relations are still unknown. A well established way to study distinct cognitive processes specifically associated with an event of…

  12. Neural Correlates of Arithmetic and Language Comprehension: A Common Substrate?

    ERIC Educational Resources Information Center

    Baldo, Juliana V.; Dronkers, Nina F.

    2007-01-01

    There is debate as to the relationship between mathematical ability and language. Some research has suggested that common processes underlie arithmetic and grammar while other research has suggested that these are distinct processes. The current study aimed to address this issue in a large group of 68 left hemisphere stroke patients who were all…

  13. Agent-specific learning signals for self–other distinction during mentalising

    PubMed Central

    Dolan, Raymond J.; Kurth-Nelson, Zeb

    2018-01-01

    Humans have a remarkable ability to simulate the minds of others. How the brain distinguishes between mental states attributed to self and mental states attributed to someone else is unknown. Here, we investigated how fundamental neural learning signals are selectively attributed to different agents. Specifically, we asked whether learning signals are encoded in agent-specific neural patterns or whether a self–other distinction depends on encoding agent identity separately from this learning signal. To examine this, we tasked subjects to learn continuously 2 models of the same environment, such that one was selectively attributed to self and the other was selectively attributed to another agent. Combining computational modelling with magnetoencephalography (MEG) enabled us to track neural representations of prediction errors (PEs) and beliefs attributed to self, and of simulated PEs and beliefs attributed to another agent. We found that the representational pattern of a PE reliably predicts the identity of the agent to whom the signal is attributed, consistent with a neural self–other distinction implemented via agent-specific learning signals. Strikingly, subjects exhibiting a weaker neural self–other distinction also had a reduced behavioural capacity for self–other distinction and displayed more marked subclinical psychopathological traits. The neural self–other distinction was also modulated by social context, evidenced in a significantly reduced decoding of agent identity in a nonsocial control task. Thus, we show that self–other distinction is realised through an encoding of agent identity intrinsic to fundamental learning signals. The observation that the fidelity of this encoding predicts psychopathological traits is of interest as a potential neurocomputational psychiatric biomarker. PMID:29689053

  14. Agent-specific learning signals for self-other distinction during mentalising.

    PubMed

    Ereira, Sam; Dolan, Raymond J; Kurth-Nelson, Zeb

    2018-04-01

    Humans have a remarkable ability to simulate the minds of others. How the brain distinguishes between mental states attributed to self and mental states attributed to someone else is unknown. Here, we investigated how fundamental neural learning signals are selectively attributed to different agents. Specifically, we asked whether learning signals are encoded in agent-specific neural patterns or whether a self-other distinction depends on encoding agent identity separately from this learning signal. To examine this, we tasked subjects to learn continuously 2 models of the same environment, such that one was selectively attributed to self and the other was selectively attributed to another agent. Combining computational modelling with magnetoencephalography (MEG) enabled us to track neural representations of prediction errors (PEs) and beliefs attributed to self, and of simulated PEs and beliefs attributed to another agent. We found that the representational pattern of a PE reliably predicts the identity of the agent to whom the signal is attributed, consistent with a neural self-other distinction implemented via agent-specific learning signals. Strikingly, subjects exhibiting a weaker neural self-other distinction also had a reduced behavioural capacity for self-other distinction and displayed more marked subclinical psychopathological traits. The neural self-other distinction was also modulated by social context, evidenced in a significantly reduced decoding of agent identity in a nonsocial control task. Thus, we show that self-other distinction is realised through an encoding of agent identity intrinsic to fundamental learning signals. The observation that the fidelity of this encoding predicts psychopathological traits is of interest as a potential neurocomputational psychiatric biomarker.

  15. Delineating the Neural Signatures of Tracking Spatial Position and Working Memory during Attentive Tracking

    PubMed Central

    Drew, Trafton; Horowitz, Todd S.; Wolfe, Jeremy M.; Vogel, Edward K.

    2015-01-01

    In the attentive tracking task, observers track multiple objects as they move independently and unpredictably among visually identical distractors. Although a number of models of attentive tracking implicate visual working memory as the mechanism responsible for representing target locations, no study has ever directly compared the neural mechanisms of the two tasks. In the current set of experiments, we used electrophysiological recordings to delineate similarities and differences between the neural processing involved in working memory and attentive tracking. We found that the contralateral electrophysiological response to the two tasks was similarly sensitive to the number of items attended in both tasks but that there was also a unique contralateral negativity related to the process of monitoring target position during tracking. This signal was absent for periods of time during tracking tasks when objects briefly stopped moving. These results provide evidence that, during attentive tracking, the process of tracking target locations elicits an electrophysiological response that is distinct and dissociable from neural measures of the number of items being attended. PMID:21228175

  16. Notochord-derived Shh concentrates in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning.

    PubMed

    Chamberlain, Chester E; Jeong, Juhee; Guo, Chaoshe; Allen, Benjamin L; McMahon, Andrew P

    2008-03-01

    Sonic hedgehog (Shh) ligand secreted by the notochord induces distinct ventral cell identities in the adjacent neural tube by a concentration-dependent mechanism. To study this process, we genetically engineered mice that produce bioactive, fluorescently labeled Shh from the endogenous locus. We show that Shh ligand concentrates in close association with the apically positioned basal body of neural target cells, forming a dynamic, punctate gradient in the ventral neural tube. Both ligand lipidation and target field response influence the gradient profile, but not the ability of Shh to concentrate around the basal body. Further, subcellular analysis suggests that Shh from the notochord might traffic into the neural target field by means of an apical-to-basal-oriented microtubule scaffold. This study, in which we directly observe, measure, localize and modify notochord-derived Shh ligand in the context of neural patterning, provides several new insights into mechanisms of Shh morphogen action.

  17. Four Mechanistic Models of Peer Influence on Adolescent Cannabis Use

    PubMed Central

    Caouette, Justin D.; Feldstein Ewing, Sarah W.

    2017-01-01

    Purpose of review Most adolescents begin exploring cannabis in peer contexts, but the neural mechanisms that underlie peer influence on adolescent cannabis use are still unknown. This theoretical overview elucidates the intersecting roles of neural function and peer factors in cannabis use in adolescents. Recent findings Novel paradigms using functional magnetic resonance imaging (fMRI) in adolescents have identified distinct neural mechanisms of risk decision-making and incentive processing in peer contexts, centered on reward-motivation and affect regulatory neural networks; these findings inform a theoretical model of peer-driven cannabis use decisions in adolescents. Summary We propose four “mechanistic profiles” of social facilitation of cannabis use in adolescents: (1) peer influence as the primary driver of use; (2) cannabis exploration as the primary driver, which may be enhanced in peer contexts; (3) social anxiety; and (4) negative peer experiences. Identification of “neural targets” involved in motivating cannabis use may inform clinicians about which treatment strategies work best in adolescents with cannabis use problems, and via which social and neurocognitive processes. PMID:29104847

  18. I know I've seen you before: Distinguishing recent-single-exposure-based familiarity from pre-existing familiarity.

    PubMed

    Gimbel, Sarah I; Brewer, James B; Maril, Anat

    2017-03-01

    This study examines how individuals differentiate recent-single-exposure-based familiarity from pre-existing familiarity. If these are two distinct cognitive processes, are they supported by the same neural bases? This study examines how recent-single-exposure-based familiarity and multiple-previous-exposure-based familiarity are supported and represented in the brain using functional MRI. In a novel approach, we first behaviorally show that subjects can divide retrieval of items in pre-existing memory into judgments of recollection and familiarity. Then, using functional magnetic resonance imaging, we examine the differences in blood oxygen level dependent activity and regional connectivity during judgments of recent-single-exposure-based and pre-existing familiarity. Judgments of these two types of familiarity showed distinct regions of activation in a whole-brain analysis, in medial temporal lobe (MTL) substructures, and in MTL substructure functional-correlations with other brain regions. Specifically, within the MTL, perirhinal cortex showed increased activation during recent-single-exposure-based familiarity while parahippocampal cortex showed increased activation during judgments of pre-existing familiarity. We find that recent-single-exposure-based and pre-existing familiarity are represented as distinct neural processes in the brain; this is supported by differing patterns of brain activation and regional correlations. This spatially distinct regional brain involvement suggests that the two separate experiences of familiarity, recent-exposure-based familiarity and pre-existing familiarity, may be cognitively distinct. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Hybrid Thin Film Organosilica Sol-Gel Coatings To Support Neuronal Growth and Limit Astrocyte Growth.

    PubMed

    Capeletti, Larissa Brentano; Cardoso, Mateus Borba; Dos Santos, João Henrique Zimnoch; He, Wei

    2016-10-07

    Thin films of silica prepared by a sol-gel process are becoming a feasible coating option for surface modification of implantable neural sensors without imposing adverse effects on the devices' electrical properties. In order to advance the application of such silica-based coatings in the context of neural interfacing, the characteristics of silica sol-gel are further tailored to gain active control of interactions between cells and the coating materials. By incorporating various readily available organotrialkoxysilanes carrying distinct organic functional groups during the sol-gel process, a library of hybrid organosilica coatings is developed and investigated. In vitro neural cultures using PC12 cells and primary cortical neurons both reveal that, among these different types of hybrid organosilica, the introduction of aminopropyl groups drastically transforms the silica into robust neural permissive substrate, supporting neuron adhesion and neurite outgrowth. Moreover, when this organosilica is cultured with astrocytes, a key type of glial cells responsible for glial scar response toward neural implants, such cell growth promoting effect is not observed. These findings highlight the potential of organo-group-bearing silica sol-gel to function as advanced coating materials to selectively modulate cell response and promote neural integration with implantable sensing devices.

  20. Isolating N400 as neural marker of vocal anger processing in 6-11-year old children.

    PubMed

    Chronaki, Georgia; Broyd, Samantha; Garner, Matthew; Hadwin, Julie A; Thompson, Margaret J J; Sonuga-Barke, Edmund J S

    2012-04-01

    Vocal anger is a salient social signal serving adaptive functions in typical child development. Despite recent advances in the developmental neuroscience of emotion processing with regard to visual stimuli, little remains known about the neural correlates of vocal anger processing in childhood. This study represents the first attempt to isolate a neural marker of vocal anger processing in children using electrophysiological methods. We compared ERP wave forms during the processing of non-word emotional vocal stimuli in a population sample of 55 6-11-year-old typically developing children. Children listened to three types of stimuli expressing angry, happy, and neutral prosody and completed an emotion identification task with three response options (angry, happy and neutral/'ok'). A distinctive N400 component which was modulated by emotional content of vocal stimulus was observed in children over parietal and occipital scalp regions-amplitudes were significantly attenuated to angry compared to happy and neutral voices. Findings of the present study regarding the N400 are compatible with adult studies showing reduced N400 amplitudes to negative compared to neutral emotional stimuli. Implications for studies of the neural basis of vocal anger processing in children are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. A single-trace dual-process model of episodic memory: a novel computational account of familiarity and recollection.

    PubMed

    Greve, Andrea; Donaldson, David I; van Rossum, Mark C W

    2010-02-01

    Dual-process theories of episodic memory state that retrieval is contingent on two independent processes: familiarity (providing a sense of oldness) and recollection (recovering events and their context). A variety of studies have reported distinct neural signatures for familiarity and recollection, supporting dual-process theory. One outstanding question is whether these signatures reflect the activation of distinct memory traces or the operation of different retrieval mechanisms on a single memory trace. We present a computational model that uses a single neuronal network to store memory traces, but two distinct and independent retrieval processes access the memory. The model is capable of performing familiarity and recollection-based discrimination between old and new patterns, demonstrating that dual-process models need not to rely on multiple independent memory traces, but can use a single trace. Importantly, our putative familiarity and recollection processes exhibit distinct characteristics analogous to those found in empirical data; they diverge in capacity and sensitivity to sparse and correlated patterns, exhibit distinct ROC curves, and account for performance on both item and associative recognition tests. The demonstration that a single-trace, dual-process model can account for a range of empirical findings highlights the importance of distinguishing between neuronal processes and the neuronal representations on which they operate.

  2. Cortical control of intraspinal microstimulation: Toward a new approach for restoration of function after spinal cord injury.

    PubMed

    Shahdoost, Shahab; Frost, Shawn; Dunham, Caleb; DeJong, Stacey; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2015-08-01

    Approximately 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress toward developing a miniaturized brain-machine-spinal cord interface (BMSI) that converts in real time the neural command signals recorded from the cortical motor regions to electrical stimuli delivered to the spinal cord below the injury level. Using a combination of custom integrated circuit (IC) technology for corticospinal interfacing and field-programmable gate array (FPGA)-based technology for embedded signal processing, we demonstrate proof-of-concept of distinct muscle pattern activation via intraspinal microstimulation (ISMS) controlled in real time by intracortical neural spikes in an anesthetized laboratory rat.

  3. Functional Connectivity with Distinct Neural Networks Tracks Fluctuations in Gain/Loss Framing Susceptibility

    PubMed Central

    Smith, David V.; Sip, Kamila E.; Delgado, Mauricio R.

    2016-01-01

    Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames compared to gain frames—was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. PMID:25858445

  4. Functional connectivity with distinct neural networks tracks fluctuations in gain/loss framing susceptibility.

    PubMed

    Smith, David V; Sip, Kamila E; Delgado, Mauricio R

    2015-07-01

    Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial-prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility-indexed as the increase in gambling behavior in loss frames compared to gain frames-was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. © 2015 Wiley Periodicals, Inc.

  5. Individual Movement Variability Magnitudes Are Explained by Cortical Neural Variability.

    PubMed

    Haar, Shlomi; Donchin, Opher; Dinstein, Ilan

    2017-09-13

    Humans exhibit considerable motor variability even across trivial reaching movements. This variability can be separated into specific kinematic components such as extent and direction that are thought to be governed by distinct neural processes. Here, we report that individual subjects (males and females) exhibit different magnitudes of kinematic variability, which are consistent (within individual) across movements to different targets and regardless of which arm (right or left) was used to perform the movements. Simultaneous fMRI recordings revealed that the same subjects also exhibited different magnitudes of fMRI variability across movements in a variety of motor system areas. These fMRI variability magnitudes were also consistent across movements to different targets when performed with either arm. Cortical fMRI variability in the posterior-parietal cortex of individual subjects explained their movement-extent variability. This relationship was apparent only in posterior-parietal cortex and not in other motor system areas, thereby suggesting that individuals with more variable movement preparation exhibit larger kinematic variability. We therefore propose that neural and kinematic variability are reliable and interrelated individual characteristics that may predispose individual subjects to exhibit distinct motor capabilities. SIGNIFICANCE STATEMENT Neural activity and movement kinematics are remarkably variable. Although intertrial variability is rarely studied, here, we demonstrate that individual human subjects exhibit distinct magnitudes of neural and kinematic variability that are reproducible across movements to different targets and when performing these movements with either arm. Furthermore, when examining the relationship between cortical variability and movement variability, we find that cortical fMRI variability in parietal cortex of individual subjects explained their movement extent variability. This enabled us to explain why some subjects performed more variable movements than others based on their cortical variability magnitudes. Copyright © 2017 the authors 0270-6474/17/379076-10$15.00/0.

  6. Dissociable neural correlates of contour completion and contour representation in illusory contour perception.

    PubMed

    Wu, Xiang; He, Sheng; Bushara, Khalaf; Zeng, Feiyan; Liu, Ying; Zhang, Daren

    2012-10-01

    Object recognition occurs even when environmental information is incomplete. Illusory contours (ICs), in which a contour is perceived though the contour edges are incomplete, have been extensively studied as an example of such a visual completion phenomenon. Despite the neural activity in response to ICs in visual cortical areas from low (V1 and V2) to high (LOC: the lateral occipital cortex) levels, the details of the neural processing underlying IC perception are largely not clarified. For example, how do the visual areas function in IC perception and how do they interact to archive the coherent contour perception? IC perception involves the process of completing the local discrete contour edges (contour completion) and the process of representing the global completed contour information (contour representation). Here, functional magnetic resonance imaging was used to dissociate contour completion and contour representation by varying each in opposite directions. The results show that the neural activity was stronger to stimuli with more contour completion than to stimuli with more contour representation in V1 and V2, which was the reverse of that in the LOC. When inspecting the neural activity change across the visual pathway, the activation remained high for the stimuli with more contour completion and increased for the stimuli with more contour representation. These results suggest distinct neural correlates of contour completion and contour representation, and the possible collaboration between the two processes during IC perception, indicating a neural connection between the discrete retinal input and the coherent visual percept. Copyright © 2011 Wiley Periodicals, Inc.

  7. Common and distinct neural mechanisms of the fundamental dimensions of social cognition.

    PubMed

    Han, Mengfei; Bi, Chongzeng; Ybarra, Oscar

    2016-01-01

    In the present study, we used a valence classification task to investigate the common and distinct neural basis of the two fundamental dimensions of social cognition (agency and communion) using functional magnetic resonance imaging (fMRI). The results showed that several brain areas associated with mentalizing, along with the inferior parietal gyrus in the mirror system, showed overlap in response to both agentic and communal words. These findings suggest that both content categories are related to the neural basis of social cognition; further, several areas in the default mode network (DMN) showed similar deactivations between agency and communion, reflecting task-induced deactivation (TID). In terms of distinct activations, the findings indicated greater deactivations for communal than agentic content in the ventral anterior cingulate (vACC) and medial orbitofrontal cortex (mOFC). Communion also showed greater activation in some visual areas compared to agentic content, including occipital gyrus, lingual gyrus, and fusiform gyrus. These activations may reflect greater allocation of attentional resources to visual areas when processing communal content, or inhibition of cognitive activity irrelevant to task performance. If so, this suggests greater attention and engagement with communion-related content. The present research thus suggests common and differential activations for agency- versus communion-related content.

  8. Machine Vision Within The Framework Of Collective Neural Assemblies

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.; Knopf, George K.

    1990-03-01

    The proposed mechanism for designing a robust machine vision system is based on the dynamic activity generated by the various neural populations embedded in nervous tissue. It is postulated that a hierarchy of anatomically distinct tissue regions are involved in visual sensory information processing. Each region may be represented as a planar sheet of densely interconnected neural circuits. Spatially localized aggregates of these circuits represent collective neural assemblies. Four dynamically coupled neural populations are assumed to exist within each assembly. In this paper we present a state-variable model for a tissue sheet derived from empirical studies of population dynamics. Each population is modelled as a nonlinear second-order system. It is possible to emulate certain observed physiological and psychophysiological phenomena of biological vision by properly programming the interconnective gains . Important early visual phenomena such as temporal and spatial noise insensitivity, contrast sensitivity and edge enhancement will be discussed for a one-dimensional tissue model.

  9. Electrical brain responses to descriptive versus evaluative judgments of music.

    PubMed

    Brattico, Elvira; Jacobsen, Thomas; De Baene, Wouter; Nakai, Noa; Tervaniemi, Mari

    2003-11-01

    The present study was aimed at finding neural correlates of aesthetic versus descriptive listening of the same musical cadences. Results showed that aesthetic listening generated greater right frontocentral negativities than did descriptive listening, indicating distinct cortical mechanisms for aesthetic versus descriptive processing of music.

  10. Neural dichotomy of word concreteness: a view from functional neuroimaging.

    PubMed

    Kumar, Uttam

    2016-02-01

    Our perception about the representation and processing of concrete and abstract concepts is based on the fact that concrete words are highly imagined and remembered faster than abstract words. In order to explain the processing differences between abstract and concrete concepts, various theories have been proposed, yet there is no unanimous consensus about its neural implication. The present study investigated the processing of concrete and abstract words during an orthography judgment task (implicit semantic processing) using functional magnetic resonance imaging to validate the involvement of the neural regions. Relative to non-words, both abstract and concrete words show activation in the regions of bilateral hemisphere previously associated with semantic processing. The common areas (conjunction analyses) observed for abstract and concrete words are bilateral inferior frontal gyrus (BA 44/45), left superior parietal (BA 7), left fusiform gyrus and bilateral middle occipital. The additional areas for abstract words were noticed in bilateral superior temporal and bilateral middle temporal region, whereas no distinct region was noticed for concrete words. This suggests that words with abstract concepts recruit additional language regions in the brain.

  11. Imaging first impressions: distinct neural processing of verbal and nonverbal social information.

    PubMed

    Kuzmanovic, Bojana; Bente, Gary; von Cramon, D Yves; Schilbach, Leonhard; Tittgemeyer, Marc; Vogeley, Kai

    2012-03-01

    First impressions profoundly influence our attitudes and behavior toward others. However, little is known about whether and to what degree the cognitive processes that underlie impression formation depend on the domain of the available information about the target person. To investigate the neural bases of the influence of verbal as compared to nonverbal information on interpersonal judgments, we identified brain regions where the BOLD signal parametrically increased with increasing strength of evaluation based on either short text vignettes or mimic and gestural behavior. While for verbal stimuli the increasing strength of subjective evaluation was correlated with increased neural activation of precuneus and posterior cingulate cortex (PC/PCC), a similar effect was observed for nonverbal stimuli in the amygdala. These findings support the assumption that qualitatively different cognitive operations underlie person evaluation depending upon the stimulus domain: while the processing of nonverbal person information may be more strongly associated with affective processing as indexed by recruitment of the amygdala, verbal person information engaged the PC/PCC that has been related to social inferential processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Signal Processing in Periodically Forced Gradient Frequency Neural Networks

    PubMed Central

    Kim, Ji Chul; Large, Edward W.

    2015-01-01

    Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858

  13. Three Pillars for the Neural Control of Appetite.

    PubMed

    Sternson, Scott M; Eiselt, Anne-Kathrin

    2017-02-10

    The neural control of appetite is important for understanding motivated behavior as well as the present rising prevalence of obesity. Over the past several years, new tools for cell type-specific neuron activity monitoring and perturbation have enabled increasingly detailed analyses of the mechanisms underlying appetite-control systems. Three major neural circuits strongly and acutely influence appetite but with notably different characteristics. Although these circuits interact, they have distinct properties and thus appear to contribute to separate but interlinked processes influencing appetite, thereby forming three pillars of appetite control. Here, we summarize some of the key characteristics of appetite circuits that are emerging from recent work and synthesize the findings into a provisional framework that can guide future studies.

  14. Feature-selective Attention in Frontoparietal Cortex: Multivoxel Codes Adjust to Prioritize Task-relevant Information.

    PubMed

    Jackson, Jade; Rich, Anina N; Williams, Mark A; Woolgar, Alexandra

    2017-02-01

    Human cognition is characterized by astounding flexibility, enabling us to select appropriate information according to the objectives of our current task. A circuit of frontal and parietal brain regions, often referred to as the frontoparietal attention network or multiple-demand (MD) regions, are believed to play a fundamental role in this flexibility. There is evidence that these regions dynamically adjust their responses to selectively process information that is currently relevant for behavior, as proposed by the "adaptive coding hypothesis" [Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820-829, 2001]. Could this provide a neural mechanism for feature-selective attention, the process by which we preferentially process one feature of a stimulus over another? We used multivariate pattern analysis of fMRI data during a perceptually challenging categorization task to investigate whether the representation of visual object features in the MD regions flexibly adjusts according to task relevance. Participants were trained to categorize visually similar novel objects along two orthogonal stimulus dimensions (length/orientation) and performed short alternating blocks in which only one of these dimensions was relevant. We found that multivoxel patterns of activation in the MD regions encoded the task-relevant distinctions more strongly than the task-irrelevant distinctions: The MD regions discriminated between stimuli of different lengths when length was relevant and between the same objects according to orientation when orientation was relevant. The data suggest a flexible neural system that adjusts its representation of visual objects to preferentially encode stimulus features that are currently relevant for behavior, providing a neural mechanism for feature-selective attention.

  15. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    PubMed

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.

  16. Affect is a form of cognition: A neurobiological analysis

    PubMed Central

    Duncan, Seth; Barrett, Lisa Feldman

    2008-01-01

    In this paper, we suggest that affect meets the traditional definition of “cognition” such that the affect–cognition distinction is phenomenological, rather than ontological. We review how the affect–cognition distinction is not respected in the human brain, and discuss the neural mechanisms by which affect influences sensory processing. As a result of this sensory modulation, affect performs several basic “cognitive” functions. Affect appears to be necessary for normal conscious experience, language fluency, and memory. Finally, we suggest that understanding the differences between affect and cognition will require systematic study of how the phenomenological distinction characterising the two comes about, and why such a distinction is functional. PMID:18509504

  17. The time course of symbolic number adaptation: oscillatory EEG activity and event-related potential analysis.

    PubMed

    Hsu, Yi-Fang; Szűcs, Dénes

    2012-02-15

    Several functional magnetic resonance imaging (fMRI) studies have used neural adaptation paradigms to detect anatomical locations of brain activity related to number processing. However, currently not much is known about the temporal structure of number adaptation. In the present study, we used electroencephalography (EEG) to elucidate the time course of neural events in symbolic number adaptation. The numerical distance of deviants relative to standards was manipulated. In order to avoid perceptual confounds, all levels of deviants consisted of perceptually identical stimuli. Multiple successive numerical distance effects were detected in event-related potentials (ERPs). Analysis of oscillatory activity further showed at least two distinct stages of neural processes involved in the automatic analysis of numerical magnitude, with the earlier effect emerging at around 200ms and the later effect appearing at around 400ms. The findings support for the hypothesis that numerical magnitude processing involves a succession of cognitive events. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  18. Visual Attention Modulates Insight versus Analytic Solving of Verbal Problems

    ERIC Educational Resources Information Center

    Wegbreit, Ezra; Suzuki, Satoru; Grabowecky, Marcia; Kounios, John; Beeman, Mark

    2012-01-01

    Behavioral and neuroimaging findings indicate that distinct cognitive and neural processes underlie solving problems with sudden insight. Moreover, people with less focused attention sometimes perform better on tests of insight and creative problem solving. However, it remains unclear whether different states of attention, within individuals,…

  19. Simulating Biological and Non-Biological Motion

    ERIC Educational Resources Information Center

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  20. Dissociating Visual Form from Lexical Frequency Using Japanese

    ERIC Educational Resources Information Center

    Twomey, Tae; Duncan, Keith J. Kawabata; Hogan, John S.; Morita, Kenji; Umeda, Kazumasa; Sakai, Katsuyuki; Devlin, Joseph T.

    2013-01-01

    In Japanese, the same word can be written in either morphographic Kanji or syllabographic Hiragana and this provides a unique opportunity to disentangle a word's lexical frequency from the frequency of its visual form--an important distinction for understanding the neural information processing in regions engaged by reading. Behaviorally,…

  1. Shared neural coding for social hierarchy and reward value in primate amygdala.

    PubMed

    Munuera, Jérôme; Rigotti, Mattia; Salzman, C Daniel

    2018-03-01

    The social brain hypothesis posits that dedicated neural systems process social information. In support of this, neurophysiological data have shown that some brain regions are specialized for representing faces. It remains unknown, however, whether distinct anatomical substrates also represent more complex social variables, such as the hierarchical rank of individuals within a social group. Here we show that the primate amygdala encodes the hierarchical rank of individuals in the same neuronal ensembles that encode the rewards associated with nonsocial stimuli. By contrast, orbitofrontal and anterior cingulate cortices lack strong representations of hierarchical rank while still representing reward values. These results challenge the conventional view that dedicated neural systems process social information. Instead, information about hierarchical rank-which contributes to the assessment of the social value of individuals within a group-is linked in the amygdala to representations of rewards associated with nonsocial stimuli.

  2. Distinct neural markers of TVA-based visual processing speed and short-term storage capacity parameters.

    PubMed

    Wiegand, Iris; Töllner, Thomas; Habekost, Thomas; Dyrholm, Mads; Müller, Hermann J; Finke, Kathrin

    2014-08-01

    An individual's visual attentional capacity is characterized by 2 central processing resources, visual perceptual processing speed and visual short-term memory (vSTM) storage capacity. Based on Bundesen's theory of visual attention (TVA), independent estimates of these parameters can be obtained from mathematical modeling of performance in a whole report task. The framework's neural interpretation (NTVA) further suggests distinct brain mechanisms underlying these 2 functions. Using an interindividual difference approach, the present study was designed to establish the respective ERP correlates of both parameters. Participants with higher compared to participants with lower processing speed were found to show significantly reduced visual N1 responses, indicative of higher efficiency in early visual processing. By contrast, for participants with higher relative to lower vSTM storage capacity, contralateral delay activity over visual areas was enhanced while overall nonlateralized delay activity was reduced, indicating that holding (the maximum number of) items in vSTM relies on topographically specific sustained activation within the visual system. Taken together, our findings show that the 2 main aspects of visual attentional capacity are reflected in separable neurophysiological markers, validating a central assumption of NTVA. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. The neural monitoring of visceral inputs, rather than attention, accounts for first-person perspective in conscious vision.

    PubMed

    Tallon-Baudry, Catherine; Campana, Florence; Park, Hyeong-Dong; Babo-Rebelo, Mariana

    2018-05-01

    Why should a scientist whose aim is to unravel the neural mechanisms of perception consider brain-body interactions seriously? Brain-body interactions have traditionally been associated with emotion, effort, or stress, but not with the "cold" processes of perception and attention. Here, we review recent experimental evidence suggesting a different picture: the neural monitoring of bodily state, and in particular the neural monitoring of the heart, affects visual perception. The impact of spontaneous fluctuations of neural responses to heartbeats on visual detection is as large as the impact of explicit manipulations of spatial attention in perceptual tasks. However, we propose that the neural monitoring of visceral inputs plays a specific role in conscious perception, distinct from the role of attention. The neural monitoring of organs such as the heart or the gut would generate a subject-centered reference frame, from which the first-person perspective inherent to conscious perception can develop. In this view, conscious perception results from the integration of visual content with first-person perspective. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Coding of visual object features and feature conjunctions in the human brain.

    PubMed

    Martinovic, Jasna; Gruber, Thomas; Müller, Matthias M

    2008-01-01

    Object recognition is achieved through neural mechanisms reliant on the activity of distributed coordinated neural assemblies. In the initial steps of this process, an object's features are thought to be coded very rapidly in distinct neural assemblies. These features play different functional roles in the recognition process--while colour facilitates recognition, additional contours and edges delay it. Here, we selectively varied the amount and role of object features in an entry-level categorization paradigm and related them to the electrical activity of the human brain. We found that early synchronizations (approx. 100 ms) increased quantitatively when more image features had to be coded, without reflecting their qualitative contribution to the recognition process. Later activity (approx. 200-400 ms) was modulated by the representational role of object features. These findings demonstrate that although early synchronizations may be sufficient for relatively crude discrimination of objects in visual scenes, they cannot support entry-level categorization. This was subserved by later processes of object model selection, which utilized the representational value of object features such as colour or edges to select the appropriate model and achieve identification.

  5. Amplification of local changes along the timescale processing hierarchy.

    PubMed

    Yeshurun, Yaara; Nguyen, Mai; Hasson, Uri

    2017-08-29

    Small changes in word choice can lead to dramatically different interpretations of narratives. How does the brain accumulate and integrate such local changes to construct unique neural representations for different stories? In this study, we created two distinct narratives by changing only a few words in each sentence (e.g., "he" to "she" or "sobbing" to "laughing") while preserving the grammatical structure across stories. We then measured changes in neural responses between the two stories. We found that differences in neural responses between the two stories gradually increased along the hierarchy of processing timescales. For areas with short integration windows, such as early auditory cortex, the differences in neural responses between the two stories were relatively small. In contrast, in areas with the longest integration windows at the top of the hierarchy, such as the precuneus, temporal parietal junction, and medial frontal cortices, there were large differences in neural responses between stories. Furthermore, this gradual increase in neural differences between the stories was highly correlated with an area's ability to integrate information over time. Amplification of neural differences did not occur when changes in words did not alter the interpretation of the story (e.g., sobbing to "crying"). Our results demonstrate how subtle differences in words are gradually accumulated and amplified along the cortical hierarchy as the brain constructs a narrative over time.

  6. Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors

    PubMed Central

    Nieh, Edward H.; Kim, Sung-Yon; Namburi, Praneeth; Tye, Kay M.

    2014-01-01

    The neural circuits underlying emotional valence and motivated behaviors are several synapses away from both defined sensory inputs and quantifiable motor outputs. Electrophysiology has provided us with a suitable means for observing neural activity during behavior, but methods for controlling activity for the purpose of studying motivated behaviors have been inadequate: electrical stimulation lacks cellular specificity and pharmacological manipulation lacks temporal resolution. The recent emergence of optogenetic tools provides a new means for establishing causal relationships between neural activity and behavior. Optogenetics, the use of genetically-encodable light-activated proteins, permits the modulation of specific neural circuit elements with millisecond precision. The ability to control individual cell types, and even projections between distal regions, allows us to investigate functional connectivity in a causal manner. The greatest consequence of controlling neural activity with finer precision has been the characterization of individual neural circuits within anatomical brain regions as defined functional units. Within the mesolimbic dopamine system, optogenetics has helped separate subsets of dopamine neurons with distinct functions for reward, aversion and salience processing, elucidated GABA neuronal effects on behavior, and characterized connectivity with forebrain and cortical structures. Within the striatum, optogenetics has confirmed the opposing relationship between direct and indirect pathway medium spiny neurons (MSNs), in addition to characterizing the inhibition of MSNs by cholinergic interneurons. Within the hypothalamus, optogenetics has helped overcome the heterogeneity in neuronal cell-type and revealed distinct circuits mediating aggression and feeding. Within the amygdala, optogenetics has allowed the study of intra-amygdala microcircuitry as well as interconnections with distal regions involved in fear and anxiety. In this review, we will present the body of optogenetic studies that has significantly enhanced our understanding of emotional valence and motivated behaviors. PMID:23142759

  7. Establishing the pre-placodal region and breaking it into placodes with distinct identities

    PubMed Central

    Saint-Jeannet, Jean-Pierre; Moody, Sally A.

    2014-01-01

    Specialized sensory organs in the vertebrate head originate from thickenings in the embryonic ectoderm called cranial sensory placodes. These placodes, as well as the neural crest, arise from a zone of ectoderm that borders the neural plate. This zone separates into a precursor field for the neural crest that lies adjacent to the neural plate, and a precursor field for the placodes, called the pre-placodal region (PPR), that lies lateral to the neural crest. The neural crest domain and the PPR are established in response to signaling events mediated by BMPs, FGFs and Wnts, which differentially activate transcription factors in these territories. In the PPR, members of the Six and Eya families, act in part to repress neural crest specific transcription factors, thus solidifying a placode developmental program. Subsequently, in response to environmental cues the PPR is further subdivided into placodal territories with distinct characteristics, each expressing a specific repertoire of transcription factors that provides the necessary information for their progression to mature sensory organs. In this review we summarize recent advances in the characterization of the signaling molecules and transcriptional effectors that regulate PPR specification and its subdivision into placodal domains with distinct identities. PMID:24576539

  8. SOX2 expression levels distinguish between neural progenitor populations of the developing dorsal telencephalon.

    PubMed

    Hutton, Scott R; Pevny, Larysa H

    2011-04-01

    The HMG-Box transcription factor SOX2 is expressed in neural progenitor populations throughout the developing and adult central nervous system and is necessary to maintain their progenitor identity. However, it is unclear whether SOX2 levels are uniformly expressed across all neural progenitor populations. In the developing dorsal telencephalon, two distinct populations of neural progenitors, radial glia and intermediate progenitor cells, are responsible for generating a majority of excitatory neurons found in the adult neocortex. Here we demonstrate, using both cellular and molecular analyses, that SOX2 is differentially expressed between radial glial and intermediate progenitor populations. Moreover, utilizing a SOX2(EGFP) mouse line, we show that this differential expression can be used to prospectively isolate distinct, viable populations of radial glia and intermediate cells for in vitro analysis. Given the limited repertoire of cell-surface markers currently available for neural progenitor cells, this provides an invaluable tool for prospectively identifying and isolating distinct classes of neural progenitor cells from the central nervous system. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Culture and its neurofunctional correlates when death is in mind.

    PubMed

    Graupmann, Verena; Peres, Isabella; Michaely, Tonia; Meindl, Thomas; Frey, Dieter; Reiser, Maximilian; Pöppel, Ernst; Fehse, Kai; Gutyrchik, Evgeny

    2013-08-26

    The human fear of death is marked by specific psychological reactions that affirm cultural belonging. Terror management theory explains this phenomenon with the symbolic immortality provided by collective meaning in culture. This coping has also been explained with the motive of maintaining a meaningful representation of the world. Here we show that neural patterns of activations corresponding to cultural worldview defense processes differed when images that affirmed participants' cultural heritage were preceded by death-related verbal primes versus verbal primes threatening meaning. Cultural content was drawn upon distinctly on a neural basis when facing death-related cognitions. The neural representation of cultural coping sheds light on the immediate mechanisms in compensating the human fear of death. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. The neural circuits for arithmetic principles.

    PubMed

    Liu, Jie; Zhang, Han; Chen, Chuansheng; Chen, Hui; Cui, Jiaxin; Zhou, Xinlin

    2017-02-15

    Arithmetic principles are the regularities underlying arithmetic computation. Little is known about how the brain supports the processing of arithmetic principles. The current fMRI study examined neural activation and functional connectivity during the processing of verbalized arithmetic principles, as compared to numerical computation and general language processing. As expected, arithmetic principles elicited stronger activation in bilateral horizontal intraparietal sulcus and right supramarginal gyrus than did language processing, and stronger activation in left middle temporal lobe and left orbital part of inferior frontal gyrus than did computation. In contrast, computation elicited greater activation in bilateral horizontal intraparietal sulcus (extending to posterior superior parietal lobule) than did either arithmetic principles or language processing. Functional connectivity analysis with the psychophysiological interaction approach (PPI) showed that left temporal-parietal (MTG-HIPS) connectivity was stronger during the processing of arithmetic principle and language than during computation, whereas parietal-occipital connectivities were stronger during computation than during the processing of arithmetic principles and language. Additionally, the left fronto-parietal (orbital IFG-HIPS) connectivity was stronger during the processing of arithmetic principles than during computation. The results suggest that verbalized arithmetic principles engage a neural network that overlaps but is distinct from the networks for computation and language processing. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Neural Global Pattern Similarity Underlies True and False Memories.

    PubMed

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  12. Preserved learning of novel information in amnesia: evidence for multiple memory systems.

    PubMed

    Gordon, B

    1988-06-01

    Four of five patients with marked global amnesia, and others with new learning impairments, showed normal processing facilitation for novel stimuli (nonwords) and/or for familiar stimuli (words) on a word/nonword (lexical) decision task. The data are interpreted as a reflection of the learning capabilities of in-line neural processing stages with multiple, distinct, informational codes. These in-line learning processes are separate from the recognition/recall memory impaired by amygdalohippocampal/dosomedial thalamic damage, but probably supplement such memory in some tasks in normal individuals. Preserved learning of novel information seems incompatible with explanations of spared learning in amnesia that are based on the episodic/semantic or memory/habit distinctions, but is consistent with the procedural/declarative hypothesis.

  13. Differential Involvement of Left Prefrontal Cortexin Inductive and Deductive Reasoning

    ERIC Educational Resources Information Center

    Goel, Vinod; Dolan, Raymond J.

    2004-01-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by…

  14. Neural correlates of the food/non-food visual distinction.

    PubMed

    Tsourides, Kleovoulos; Shariat, Shahriar; Nejati, Hossein; Gandhi, Tapan K; Cardinaux, Annie; Simons, Christopher T; Cheung, Ngai-Man; Pavlovic, Vladimir; Sinha, Pawan

    2016-03-01

    An evolutionarily ancient skill we possess is the ability to distinguish between food and non-food. Our goal here is to identify the neural correlates of visually driven 'edible-inedible' perceptual distinction. We also investigate correlates of the finer-grained likability assessment. Our stimuli depicted food or non-food items with sub-classes of appealing or unappealing exemplars. Using data-classification techniques drawn from machine-learning, as well as evoked-response analyses, we sought to determine whether these four classes of stimuli could be distinguished based on the patterns of brain activity they elicited. Subjects viewed 200 images while in a MEG scanner. Our analyses yielded two successes and a surprising failure. The food/non-food distinction had a robust neural counterpart and emerged as early as 85 ms post-stimulus onset. The likable/non-likable distinction too was evident in the neural signals when food and non-food stimuli were grouped together, or when only the non-food stimuli were included in the analyses. However, we were unable to identify any neural correlates of this distinction when limiting the analyses only to food stimuli. Taken together, these positive and negative results further our understanding of the substrates of a set of ecologically important judgments and have clinical implications for conditions like eating-disorders and anhedonia. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Two Anatomically and Computationally Distinct Learning Signals Predict Changes to Stimulus-Outcome Associations in Hippocampus.

    PubMed

    Boorman, Erie D; Rajendran, Vani G; O'Reilly, Jill X; Behrens, Tim E

    2016-03-16

    Complex cognitive processes require sophisticated local processing but also interactions between distant brain regions. It is therefore critical to be able to study distant interactions between local computations and the neural representations they act on. Here we report two anatomically and computationally distinct learning signals in lateral orbitofrontal cortex (lOFC) and the dopaminergic ventral midbrain (VM) that predict trial-by-trial changes to a basic internal model in hippocampus. To measure local computations during learning and their interaction with neural representations, we coupled computational fMRI with trial-by-trial fMRI suppression. We find that suppression in a medial temporal lobe network changes trial-by-trial in proportion to stimulus-outcome associations. During interleaved choice trials, we identify learning signals that relate to outcome type in lOFC and to reward value in VM. These intervening choice feedback signals predicted the subsequent change to hippocampal suppression, suggesting a convergence of signals that update the flexible representation of stimulus-outcome associations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Neural Specificity for Grammatical Operations is Revealed by Content-Independent fMR Adaptation

    PubMed Central

    Shapiro, Kevin A.; Moo, Lauren R.; Caramazza, Alfonso

    2012-01-01

    The ability to generate novel sentences depends on cognitive operations that specify the syntactic function of nouns, verbs, and other words retrieved from the mental lexicon. Although neuropsychological studies suggest that such operations rely on neural circuits distinct from those encoding word form and meaning, it has not been possible to characterize this distinction definitively with neuroimaging. We used functional magnetic resonance imaging (fMRI) to show that a brain area engaged in a given grammatical operation can be identified uniquely by a monotonic decrease in activation as that operation is repeated. We applied this methodology to identify areas involved selectively in the operation of inflection of nouns or verbs. By contrast, areas involved in processing word meaning do not show this monotonic adaptation across stimuli. These results are the first to demonstrate adaptation in the fMR signal evoked not by specific stimuli, but by well-defined cognitive linguistic operations. PMID:22347206

  17. Neural signatures of economic parameters during decision-making: a functional MRI (FMRI), electroencephalography (EEG) and autonomic monitoring study.

    PubMed

    Minati, Ludovico; Grisoli, Marina; Franceschetti, Silvana; Epifani, Francesca; Granvillano, Alice; Medford, Nick; Harrison, Neil A; Piacentini, Sylvie; Critchley, Hugo D

    2012-01-01

    Adaptive behaviour requires an ability to obtain rewards by choosing between different risky options. Financial gambles can be used to study effective decision-making experimentally, and to distinguish processes involved in choice option evaluation from outcome feedback and other contextual factors. Here, we used a paradigm where participants evaluated 'mixed' gambles, each presenting a potential gain and a potential loss and an associated variable outcome probability. We recorded neural responses using autonomic monitoring, electroencephalography (EEG) and functional neuroimaging (fMRI), and used a univariate, parametric design to test for correlations with the eleven economic parameters that varied across gambles, including expected value (EV) and amount magnitude. Consistent with behavioural economic theory, participants were risk-averse. Gamble evaluation generated detectable autonomic responses, but only weak correlations with outcome uncertainty were found, suggesting that peripheral autonomic feedback does not play a major role in this task. Long-latency stimulus-evoked EEG potentials were sensitive to expected gain and expected value, while alpha-band power reflected expected loss and amount magnitude, suggesting parallel representations of distinct economic qualities in cortical activation and central arousal. Neural correlates of expected value representation were localized using fMRI to ventromedial prefrontal cortex, while the processing of other economic parameters was associated with distinct patterns across lateral prefrontal, cingulate, insula and occipital cortices including default-mode network and early visual areas. These multimodal data provide complementary evidence for distributed substrates of choice evaluation across multiple, predominantly cortical, brain systems wherein distinct regions are preferentially attuned to specific economic features. Our findings extend biologically-plausible models of risky decision-making while providing potential biomarkers of economic representations that can be applied to the study of deficits in motivational behaviour in neurological and psychiatric patients.

  18. Multivariate neural biomarkers of emotional states are categorically distinct

    PubMed Central

    Kragel, Philip A.

    2015-01-01

    Understanding how emotions are represented neurally is a central aim of affective neuroscience. Despite decades of neuroimaging efforts addressing this question, it remains unclear whether emotions are represented as distinct entities, as predicted by categorical theories, or are constructed from a smaller set of underlying factors, as predicted by dimensional accounts. Here, we capitalize on multivariate statistical approaches and computational modeling to directly evaluate these theoretical perspectives. We elicited discrete emotional states using music and films during functional magnetic resonance imaging scanning. Distinct patterns of neural activation predicted the emotion category of stimuli and tracked subjective experience. Bayesian model comparison revealed that combining dimensional and categorical models of emotion best characterized the information content of activation patterns. Surprisingly, categorical and dimensional aspects of emotion experience captured unique and opposing sources of neural information. These results indicate that diverse emotional states are poorly differentiated by simple models of valence and arousal, and that activity within separable neural systems can be mapped to unique emotion categories. PMID:25813790

  19. Dissociation of motor and sensory inhibition processes in normal aging.

    PubMed

    Anguera, Joaquin A; Gazzaley, Adam

    2012-04-01

    Age-related cognitive impairments have been attributed to deficits in inhibitory processes that mediate both motor restraint and sensory filtering. However, behavioral studies have failed to show an association between tasks that measure these distinct types of inhibition. In the present study, we hypothesized neural markers reflecting each type of inhibition may reveal a relationship across inhibitory domains in older adults. Electroencephalography (EEG) and behavioral measures were used to explore whether there was an across-participant correlation between sensory suppression and motor inhibition. Sixteen healthy older adult participants (65-80 years) engaged in two separate experimental paradigms: a selective attention, delayed-recognition task and a stop-signal task. Findings revealed no significant relationship existed between neural markers of sensory suppression (P1 amplitude; N170 latency) and markers of motor inhibition (N2 and P3 amplitude and latency) in older adults. These distinct inhibitory domains are differentially impacted in normal aging, as evidenced by previous behavioral work and the current neural findings. Thus a generalized inhibitory deficit may not be a common impairment in cognitive aging. Given that some theories of cognitive aging suggest age-related failure of inhibitory mechanisms may span different modalities, the present findings contribute to an alternative view where age-related declines within each inhibitory modality are unrelated. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Music enrichment programs improve the neural encoding of speech in at-risk children.

    PubMed

    Kraus, Nina; Slater, Jessica; Thompson, Elaine C; Hornickel, Jane; Strait, Dana L; Nicol, Trent; White-Schwoch, Travis

    2014-09-03

    Musicians are often reported to have enhanced neurophysiological functions, especially in the auditory system. Musical training is thought to improve nervous system function by focusing attention on meaningful acoustic cues, and these improvements in auditory processing cascade to language and cognitive skills. Correlational studies have reported musician enhancements in a variety of populations across the life span. In light of these reports, educators are considering the potential for co-curricular music programs to provide auditory-cognitive enrichment to children during critical developmental years. To date, however, no studies have evaluated biological changes following participation in existing, successful music education programs. We used a randomized control design to investigate whether community music participation induces a tangible change in auditory processing. The community music training was a longstanding and successful program that provides free music instruction to children from underserved backgrounds who stand at high risk for learning and social problems. Children who completed 2 years of music training had a stronger neurophysiological distinction of stop consonants, a neural mechanism linked to reading and language skills. One year of training was insufficient to elicit changes in nervous system function; beyond 1 year, however, greater amounts of instrumental music training were associated with larger gains in neural processing. We therefore provide the first direct evidence that community music programs enhance the neural processing of speech in at-risk children, suggesting that active and repeated engagement with sound changes neural function. Copyright © 2014 the authors 0270-6474/14/3411913-06$15.00/0.

  1. Neural correlates of novelty and appropriateness processing in externally induced constraint relaxation.

    PubMed

    Huang, Furong; Tang, Shuang; Sun, Pei; Luo, Jing

    2018-05-15

    Novelty and appropriateness are considered the two fundamental features of creative thinking, including insight problem solving, which can be performed through chunk decomposition and constraint relaxation. Based on a previous study that separated the neural bases of novelty and appropriateness in chunk decomposition, in this study, we used event-related functional magnetic resonance imaging (fMRI) to further dissociate these mechanisms in constraint relaxation. Participants were guided to mentally represent the method of problem solving according to the externally provided solutions that were elaborately prepared in advance and systematically varied in their novelty and appropriateness for the given problem situation. The results showed that novelty processing was completed by the temporoparietal junction (TPJ) and regions in the executive system (dorsolateral prefrontal cortex [DLPFC]), whereas appropriateness processing was completed by the TPJ and regions in the episodic memory (hippocampus), emotion (amygdala), and reward systems (orbitofrontal cortex [OFC]). These results likely indicate that appropriateness processing can result in a more memorable and richer experience than novelty processing in constraint relaxation. The shared and distinct neural mechanisms of the features of novelty and appropriateness in constraint relaxation are discussed, enriching the representation of the change theory of insight. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. False recognition depends on depth of prior word processing: a magnetoencephalographic (MEG) study.

    PubMed

    Walla, P; Hufnagl, B; Lindinger, G; Deecke, L; Imhof, H; Lang, W

    2001-04-01

    Brain activity was measured with a whole head magnetoencephalograph (MEG) during the test phases of word recognition experiments. Healthy young subjects had to discriminate between previously presented and new words. During prior study phases two different levels of word processing were provided according to two different kinds of instructions (shallow and deep encoding). Event-related fields (ERFs) associated with falsely recognized words (false alarms) were found to depend on the depth of processing during the prior study phase. False alarms elicited higher brain activity (as reflected by dipole strength) in case of prior deep encoding as compared to shallow encoding between 300 and 500 ms after stimulus onset at temporal brain areas. Between 500 and 700 ms we found evidence for differences in the involvement of neural structures related to both conditions of false alarms. Furthermore, the number of false alarms was found to depend on depth of processing. Shallow encoding led to a higher number of false alarms than deep encoding. All data are discussed as strong support for the ideas that a certain level of word processing is performed by a distinct set of neural systems and that the same neural systems which encode information are reactivated during the retrieval.

  3. Distinguishing Neurocognitive Processes Reflected by P600 Effects: Evidence from ERPs and Neural Oscillations

    PubMed Central

    Regel, Stefanie; Meyer, Lars; Gunter, Thomas C.

    2014-01-01

    Research on language comprehension using event-related potentials (ERPs) reported distinct ERP components reliably related to the processing of semantic (N400) and syntactic information (P600). Recent ERP studies have challenged this well-defined distinction by showing P600 effects for semantic and pragmatic anomalies. So far, it is still unresolved whether the P600 reflects specific or rather common processes. The present study addresses this question by investigating ERPs in response to a syntactic and pragmatic (irony) manipulation, as well as a combined syntactic and pragmatic manipulation. For the syntactic condition, a morphosyntactic violation was applied, whereas for the pragmatic condition, such as “That is rich”, either an ironic or literal interpretation was achieved, depending on the prior context. The ERPs at the critical word showed a LAN-P600 pattern for syntactically incorrect sentences relative to correct ones. For ironic compared to literal sentences, ERPs showed a P200 effect followed by a P600 component. In comparison of the syntax-related P600 to the irony-related P600, distributional differences were found. Moreover, for the P600 time window (i.e., 500–900 ms), different changes in theta power between the syntax and pragmatics effects were found, suggesting that different patterns of neural activity contributed to each respective effect. Thus, both late positivities seem to be differently sensitive to these two types of linguistic information, and might reflect distinct neurocognitive processes, such as reanalysis of the sentence structure versus pragmatic reanalysis. PMID:24844290

  4. Neural evidence that human emotions share core affective properties.

    PubMed

    Wilson-Mendenhall, Christine D; Barrett, Lisa Feldman; Barsalou, Lawrence W

    2013-06-01

    Research on the "emotional brain" remains centered around the idea that emotions like fear, happiness, and sadness result from specialized and distinct neural circuitry. Accumulating behavioral and physiological evidence suggests, instead, that emotions are grounded in core affect--a person's fluctuating level of pleasant or unpleasant arousal. A neuroimaging study revealed that participants' subjective ratings of valence (i.e., pleasure/displeasure) and of arousal evoked by various fear, happiness, and sadness experiences correlated with neural activity in specific brain regions (orbitofrontal cortex and amygdala, respectively). We observed these correlations across diverse instances within each emotion category, as well as across instances from all three categories. Consistent with a psychological construction approach to emotion, the results suggest that neural circuitry realizes more basic processes across discrete emotions. The implicated brain regions regulate the body to deal with the world, producing the affective changes at the core of emotions and many other psychological phenomena.

  5. Neural Evidence that Human Emotions Share Core Affective Properties

    PubMed Central

    Wilson-Mendenhall, Christine D.; Barrett, Lisa Feldman; Barsalou, Lawrence W.

    2014-01-01

    Research on the “emotional brain” remains centered around the idea that emotions like fear, happiness, and sadness result from specialized and distinct neural circuitry. Accumulating behavioral and physiological evidence suggests, instead, that emotions are grounded in core affect – a person's fluctuating level of pleasant or unpleasant arousal. A neuroimaging study revealed that participants' subjective ratings of valence (i.e., pleasure/displeasure) and of arousal evoked by various fear, happiness, and sadness experiences correlated with neural activity in specific brain regions (orbitofrontal cortex and amygdala, respectively). We observed these correlations across diverse instances within each emotion category, as well as across instances from all three categories. Consistent with a psychological construction approach to emotion, the results suggest that neural circuitry realizes more basic processes across discrete emotions. The implicated brain regions regulate the body to deal with the world, producing the affective changes at the core of emotions and many other psychological phenomena. PMID:23603916

  6. Mammalian brain development and our grandmothering life history.

    PubMed

    Hawkes, Kristen; Finlay, Barbara L

    2018-05-02

    Among mammals, including humans, adult brain size and the relative size of brain components depend precisely on the duration of a highly regular process of neural development. Much wider variation is seen in rates of body growth and the state of neural maturation at life history events like birth and weaning. Large brains result from slow maturation, which in humans is accompanied by weaning early with respect to both neural maturation and longevity. The grandmother hypothesis proposes this distinctive combination of life history features evolved as ancestral populations began to depend on foods that just weaned juveniles couldn't handle. Here we trace possible reciprocal connections between brain development and life history, highlighting the resulting extended neural plasticity in a wider cognitive ecology of allomaternal care that distinguishes human ontogeny with consequences for other peculiarities of our lineage. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Decoding the Charitable Brain: Empathy, Perspective Taking, and Attention Shifts Differentially Predict Altruistic Giving.

    PubMed

    Tusche, Anita; Böckler, Anne; Kanske, Philipp; Trautwein, Fynn-Mathis; Singer, Tania

    2016-04-27

    Altruistic behavior varies considerably across people and decision contexts. The relevant computational and motivational mechanisms that underlie its heterogeneity, however, are poorly understood. Using a charitable giving task together with multivariate decoding techniques, we identified three distinct psychological mechanisms underlying altruistic decision-making (empathy, perspective taking, and attentional reorienting) and linked them to dissociable neural computations. Neural responses in the anterior insula (AI) (but not temporoparietal junction [TPJ]) encoded trial-wise empathy for beneficiaries, whereas the TPJ (but not AI) predicted the degree of perspective taking. Importantly, the relative influence of both socio-cognitive processes differed across individuals: participants whose donation behavior was heavily influenced by affective empathy exhibited higher predictive accuracies for generosity in AI, whereas those who strongly relied on cognitive perspective taking showed improved predictions of generous donations in TPJ. Furthermore, subject-specific contributions of both processes for donations were reflected in participants' empathy and perspective taking responses in a separate fMRI task (EmpaToM), suggesting that process-specific inputs into altruistic choices may reflect participants' general propensity to either empathize or mentalize. Finally, using independent attention task data, we identified shared neural codes for attentional reorienting and generous donations in the posterior superior temporal sulcus, suggesting that domain-general attention shifts also contribute to generous behavior (but not in TPJ or AI). Overall, our findings demonstrate highly specific roles of AI for affective empathy and TPJ for cognitive perspective taking as precursors of prosocial behavior and suggest that these discrete routes of social cognition differentially drive intraindividual and interindividual differences in altruistic behavior. Human societies depend on the altruistic behavior of their members, but teasing apart its underlying motivations and neural mechanisms poses a serious challenge. Using multivariate decoding techniques, we delineated three distinct processes for altruistic decision-making (affective empathy, cognitive perspective taking, and domain-general attention shifts), linked them to dissociable neural computations, and identified their relative influence across individuals. Distinguishing process-specific computations both behaviorally and neurally is crucial for developing complete theoretical and neuroscientific accounts of altruistic behavior and more effective means of increasing it. Moreover, information on the relative influence of subprocesses across individuals and its link to people's more general propensity to engage empathy or perspective taking can inform training programs to increase prosociality, considering their "fit" with different individuals. Copyright © 2016 the authors 0270-6474/16/364719-14$15.00/0.

  8. Neural Correlates of Verb Argument Structure Processing

    PubMed Central

    Thompson, Cynthia K.; Bonakdarpour, Borna; Fix, Stephen C.; Blumenfeld, Henrike K.; Parrish, Todd B.; Gitelman, Darren R.; Mesulam, M.-Marsel

    2008-01-01

    Neuroimaging and lesion studies suggest that processing of word classes, such as verbs and nouns, is associated with distinct neural mechanisms. Such studies also suggest that subcategories within these broad word class categories are differentially processed in the brain. Within the class of verbs, argument structure provides one linguistic dimension that distinguishes among verb exemplars, with some requiring more complex argument structure entries than others. This study examined the neural instantiation of verbs by argument structure complexity: one-, two-, and three-argument verbs. Stimuli of each type, along with nouns and pseudowords, were presented for lexical decision using an event-related functional magnetic resonance imaging design. Results for 14 young normal participants indicated largely overlapping activation maps for verbs and nouns, with no areas of significant activation for verbs compared to nouns, or vice versa. Pseudowords also engaged neural tissue overlapping with that for both word classes, with more widespread activation noted in visual, motor, and peri-sylvian regions. Examination of verbs by argument structure revealed activation of the supramarginal and angular gyri, limited to the left hemisphere only when verbs with two obligatory arguments were compared to verbs with a single argument. However, bilateral activation was noted when both two- and three-argument verbs were compared to one-argument verbs. These findings suggest that posterior peri-sylvian regions are engaged for processing argument structure information associated with verbs, with increasing neural tissue in the inferior parietal region associated with increasing argument structure complexity. These findings are consistent with processing accounts, which suggest that these regions are crucial for semantic integration. PMID:17958479

  9. Distinct Expression of Phenotypic Markers in Placodes- and Neural Crest-Derived Afferent Neurons Innervating the Rat Stomach.

    PubMed

    Trancikova, Alzbeta; Kovacova, Eva; Ru, Fei; Varga, Kristian; Brozmanova, Mariana; Tatar, Milos; Kollarik, Marian

    2018-02-01

    Visceral pain is initiated by activation of primary afferent neurons among which the capsaicin-sensitive (TRPV1-positive) neurons play an important role. The stomach is a common source of visceral pain. Similar to other organs, the stomach receives dual spinal and vagal afferent innervation. Developmentally, spinal dorsal root ganglia (DRG) and vagal jugular neurons originate from embryonic neural crest and vagal nodose neurons originate from placodes. In thoracic organs the neural crest- and placodes-derived TRPV1-positive neurons have distinct phenotypes differing in activation profile, neurotrophic regulation and reflex responses. It is unknown to whether such distinction exists in the stomach. We hypothesized that gastric neural crest- and placodes-derived TRPV1-positive neurons express phenotypic markers indicative of placodes and neural crest phenotypes. Gastric DRG and vagal neurons were retrogradely traced by DiI injected into the rat stomach wall. Single-cell RT-PCR was performed on traced gastric neurons. Retrograde tracing demonstrated that vagal gastric neurons locate exclusively into the nodose portion of the rat jugular/petrosal/nodose complex. Gastric DRG TRPV1-positive neurons preferentially expressed markers PPT-A, TrkA and GFRα 3 typical for neural crest-derived TRPV1-positive visceral neurons. In contrast, gastric nodose TRPV1-positive neurons preferentially expressed markers P2X 2 and TrkB typical for placodes-derived TRPV1-positive visceral neurons. Differential expression of neural crest and placodes markers was less pronounced in TRPV1-negative DRG and nodose populations. There are phenotypic distinctions between the neural crest-derived DRG and placodes-derived vagal nodose TRPV1-positive neurons innervating the rat stomach that are similar to those described in thoracic organs.

  10. A Mechanism for Graded, Dynamically Routable Current Propagation in Pulse-Gated Synfire Chains and Implications for Information Coding

    PubMed Central

    Sornborger, Andrew T.; Wang, Zhuo; Tao, Louis

    2015-01-01

    Neural oscillations can enhance feature recognition [1], modulate interactions between neurons [2], and improve learning and memory [3]. Numerical studies have shown that coherent spiking can give rise to windows in time during which information transfer can be enhanced in neuronal networks [4–6]. Unanswered questions are: 1) What is the transfer mechanism? And 2) how well can a transfer be executed? Here, we present a pulse-based mechanism by which a graded current amplitude may be exactly propagated from one neuronal population to another. The mechanism relies on the downstream gating of mean synaptic current amplitude from one population of neurons to another via a pulse. Because transfer is pulse-based, information may be dynamically routed through a neural circuit with fixed connectivity. We demonstrate the transfer mechanism in a realistic network of spiking neurons and show that it is robust to noise in the form of pulse timing inaccuracies, random synaptic strengths and finite size effects. We also show that the mechanism is structurally robust in that it may be implemented using biologically realistic pulses. The transfer mechanism may be used as a building block for fast, complex information processing in neural circuits. We show that the mechanism naturally leads to a framework wherein neural information coding and processing can be considered as a product of linear maps under the active control of a pulse generator. Distinct control and processing components combine to form the basis for the binding, propagation, and processing of dynamically routed information within neural pathways. Using our framework, we construct example neural circuits to 1) maintain a short-term memory, 2) compute time-windowed Fourier transforms, and 3) perform spatial rotations. We postulate that such circuits, with automatic and stereotyped control and processing of information, are the neural correlates of Crick and Koch’s zombie modes. PMID:26227067

  11. The functional highly sensitive brain: a review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders.

    PubMed

    Acevedo, Bianca; Aron, Elaine; Pospos, Sarah; Jessen, Dana

    2018-04-19

    During the past decade, research on the biological basis of sensory processing sensitivity (SPS)-a genetically based trait associated with greater sensitivity and responsivity to environmental and social stimuli-has burgeoned. As researchers try to characterize this trait, it is still unclear how SPS is distinct from seemingly related clinical disorders that have overlapping symptoms, such as sensitivity to the environment and hyper-responsiveness to incoming stimuli. Thus, in this review, we compare the neural regions implicated in SPS with those found in fMRI studies of-Autism Spectrum Disorder (ASD), Schizophrenia (SZ) and Post-Traumatic Stress Disorder (PTSD) to elucidate the neural markers and cardinal features of SPS versus these seemingly related clinical disorders. We propose that SPS is a stable trait that is characterized by greater empathy, awareness, responsivity and depth of processing to salient stimuli. We conclude that SPS is distinct from ASD, SZ and PTSD in that in response to social and emotional stimuli, SPS differentially engages brain regions involved in reward processing, memory, physiological homeostasis, self-other processing, empathy and awareness. We suggest that this serves species survival via deep integration and memory for environmental and social information that may subserve well-being and cooperation.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Authors.

  12. Phase locked neural activity in the human brainstem predicts preference for musical consonance.

    PubMed

    Bones, Oliver; Hopkins, Kathryn; Krishnan, Ananthanarayan; Plack, Christopher J

    2014-05-01

    When musical notes are combined to make a chord, the closeness of fit of the combined spectrum to a single harmonic series (the 'harmonicity' of the chord) predicts the perceived consonance (how pleasant and stable the chord sounds; McDermott, Lehr, & Oxenham, 2010). The distinction between consonance and dissonance is central to Western musical form. Harmonicity is represented in the temporal firing patterns of populations of brainstem neurons. The current study investigates the role of brainstem temporal coding of harmonicity in the perception of consonance. Individual preference for consonant over dissonant chords was measured using a rating scale for pairs of simultaneous notes. In order to investigate the effects of cochlear interactions, notes were presented in two ways: both notes to both ears or each note to different ears. The electrophysiological frequency following response (FFR), reflecting sustained neural activity in the brainstem synchronised to the stimulus, was also measured. When both notes were presented to both ears the perceptual distinction between consonant and dissonant chords was stronger than when the notes were presented to different ears. In the condition in which both notes were presented to the both ears additional low-frequency components, corresponding to difference tones resulting from nonlinear cochlear processing, were observable in the FFR effectively enhancing the neural harmonicity of consonant chords but not dissonant chords. Suppressing the cochlear envelope component of the FFR also suppressed the additional frequency components. This suggests that, in the case of consonant chords, difference tones generated by interactions between notes in the cochlea enhance the perception of consonance. Furthermore, individuals with a greater distinction between consonant and dissonant chords in the FFR to individual harmonics had a stronger preference for consonant over dissonant chords. Overall, the results provide compelling evidence for the role of neural temporal coding in the perception of consonance, and suggest that the representation of harmonicity in phase locked neural firing drives the perception of consonance. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Anterograde episodic memory in Korsakoff syndrome.

    PubMed

    Fama, Rosemary; Pitel, Anne-Lise; Sullivan, Edith V

    2012-06-01

    A profound anterograde memory deficit for information, regardless of the nature of the material, is the hallmark of Korsakoff syndrome, an amnesic condition resulting from severe thiamine (vitamin B1) deficiency. Since the late nineteenth century when the Russian physician, S. S. Korsakoff, initially described this syndrome associated with "polyneuropathy," the observed global amnesia has been a primary focus of neuroscience and neuropsychology. In this review we highlight the historical studies that examined anterograde episodic memory processes in KS, present a timeline and evidence supporting the myriad theories proffered to account for this memory dysfunction, and summarize what is known about the neuroanatomical correlates and neural systems presumed affected in KS. Rigorous study of KS amnesia and associated memory disorders of other etiologies provide evidence for distinct mnemonic component processes and neural networks imperative for normal declarative and nondeclarative memory abilities and for mnemonic processes spared in KS, from whence emerged the appreciation that memory is not a unitary function. Debate continues regarding the qualitative and quantitative differences between KS and other amnesias and what brain regions and neural pathways are necessary and sufficient to produce KS amnesia.

  14. Anterograde Episodic Memory in Korsakoff Syndrome

    PubMed Central

    Fama, Rosemary; Pitel, Anne-Lise; Sullivan, Edith V.

    2016-01-01

    A profound anterograde memory deficit for information, regardless of the nature of the material, is the hallmark of Korsakoff syndrome, an amnesic condition resulting from severe thiamine (vitamin B1) deficiency. Since the late nineteenth century when the Russian physician, S. S. Korsakoff, initially described this syndrome associated with “polyneuropathy,” the observed global amnesia has been a primary focus of neuroscience and neuropsychology. In this review we highlight the historical studies that examined anterograde episodic memory processes in KS, present a timeline and evidence supporting the myriad theories proffered to account for this memory dysfunction, and summarize what is known about the neuroanatomical correlates and neural systems presumed affected in KS. Rigorous study of KS amnesia and associated memory disorders of other etiologies provide evidence for distinct mnemonic component processes and neural networks imperative for normal declarative and nondeclarative memory abilities and for mnemonic processes spared in KS, from whence emerged the appreciation that memory is not a unitary function. Debate continues regarding the qualitative and quantitative differences between KS and other amnesias and what brain regions and neural pathways are necessary and sufficient to produce KS amnesia. PMID:22644546

  15. Local Versus Global Effects of Isoflurane Anesthesia on Visual Processing in the Fly Brain

    PubMed Central

    2016-01-01

    Abstract What characteristics of neural activity distinguish the awake and anesthetized brain? Drugs such as isoflurane abolish behavioral responsiveness in all animals, implying evolutionarily conserved mechanisms. However, it is unclear whether this conservation is reflected at the level of neural activity. Studies in humans have shown that anesthesia is characterized by spatially distinct spectral and coherence signatures that have also been implicated in the global impairment of cortical communication. We questioned whether anesthesia has similar effects on global and local neural processing in one of the smallest brains, that of the fruit fly (Drosophila melanogaster). Using a recently developed multielectrode technique, we recorded local field potentials from different areas of the fly brain simultaneously, while manipulating the concentration of isoflurane. Flickering visual stimuli (‘frequency tags’) allowed us to track evoked responses in the frequency domain and measure the effects of isoflurane throughout the brain. We found that isoflurane reduced power and coherence at the tagging frequency (13 or 17 Hz) in central brain regions. Unexpectedly, isoflurane increased power and coherence at twice the tag frequency (26 or 34 Hz) in the optic lobes of the fly, but only for specific stimulus configurations. By modeling the periodic responses, we show that the increase in power in peripheral areas can be attributed to local neuroanatomy. We further show that the effects on coherence can be explained by impacted signal-to-noise ratios. Together, our results show that general anesthesia has distinct local and global effects on neuronal processing in the fruit fly brain. PMID:27517084

  16. Local Versus Global Effects of Isoflurane Anesthesia on Visual Processing in the Fly Brain.

    PubMed

    Cohen, Dror; Zalucki, Oressia H; van Swinderen, Bruno; Tsuchiya, Naotsugu

    2016-01-01

    What characteristics of neural activity distinguish the awake and anesthetized brain? Drugs such as isoflurane abolish behavioral responsiveness in all animals, implying evolutionarily conserved mechanisms. However, it is unclear whether this conservation is reflected at the level of neural activity. Studies in humans have shown that anesthesia is characterized by spatially distinct spectral and coherence signatures that have also been implicated in the global impairment of cortical communication. We questioned whether anesthesia has similar effects on global and local neural processing in one of the smallest brains, that of the fruit fly (Drosophila melanogaster). Using a recently developed multielectrode technique, we recorded local field potentials from different areas of the fly brain simultaneously, while manipulating the concentration of isoflurane. Flickering visual stimuli ('frequency tags') allowed us to track evoked responses in the frequency domain and measure the effects of isoflurane throughout the brain. We found that isoflurane reduced power and coherence at the tagging frequency (13 or 17 Hz) in central brain regions. Unexpectedly, isoflurane increased power and coherence at twice the tag frequency (26 or 34 Hz) in the optic lobes of the fly, but only for specific stimulus configurations. By modeling the periodic responses, we show that the increase in power in peripheral areas can be attributed to local neuroanatomy. We further show that the effects on coherence can be explained by impacted signal-to-noise ratios. Together, our results show that general anesthesia has distinct local and global effects on neuronal processing in the fruit fly brain.

  17. Neural Signatures of Controlled and Automatic Retrieval Processes in Memory-based Decision-making.

    PubMed

    Khader, Patrick H; Pachur, Thorsten; Weber, Lilian A E; Jost, Kerstin

    2016-01-01

    Decision-making often requires retrieval from memory. Drawing on the neural ACT-R theory [Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A. A central circuit of the mind. Trends in Cognitive Sciences, 12, 136-143, 2008] and other neural models of memory, we delineated the neural signatures of two fundamental retrieval aspects during decision-making: automatic and controlled activation of memory representations. To disentangle these processes, we combined a paradigm developed to examine neural correlates of selective and sequential memory retrieval in decision-making with a manipulation of associative fan (i.e., the decision options were associated with one, two, or three attributes). The results show that both the automatic activation of all attributes associated with a decision option and the controlled sequential retrieval of specific attributes can be traced in material-specific brain areas. Moreover, the two facets of memory retrieval were associated with distinct activation patterns within the frontoparietal network: The dorsolateral prefrontal cortex was found to reflect increasing retrieval effort during both automatic and controlled activation of attributes. In contrast, the superior parietal cortex only responded to controlled retrieval, arguably reflecting the sequential updating of attribute information in working memory. This dissociation in activation pattern is consistent with ACT-R and constitutes an important step toward a neural model of the retrieval dynamics involved in memory-based decision-making.

  18. Inter-progenitor pool wiring: An evolutionarily conserved strategy that expands neural circuit diversity.

    PubMed

    Suzuki, Takumi; Sato, Makoto

    2017-11-15

    Diversification of neuronal types is key to establishing functional variations in neural circuits. The first critical step to generate neuronal diversity is to organize the compartmental domains of developing brains into spatially distinct neural progenitor pools. Neural progenitors in each pool then generate a unique set of diverse neurons through specific spatiotemporal specification processes. In this review article, we focus on an additional mechanism, 'inter-progenitor pool wiring', that further expands the diversity of neural circuits. After diverse types of neurons are generated in one progenitor pool, a fraction of these neurons start migrating toward a remote brain region containing neurons that originate from another progenitor pool. Finally, neurons of different origins are intermingled and eventually form complex but precise neural circuits. The developing cerebral cortex of mammalian brains is one of the best examples of inter-progenitor pool wiring. However, Drosophila visual system development has revealed similar mechanisms in invertebrate brains, suggesting that inter-progenitor pool wiring is an evolutionarily conserved strategy that expands neural circuit diversity. Here, we will discuss how inter-progenitor pool wiring is accomplished in mammalian and fly brain systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Re-Evaluating Dissociations between Implicit and Explicit Category Learning: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Gureckis, Todd M.; James, Thomas W.; Nosofsky, Robert M.

    2011-01-01

    Recent fMRI studies have found that distinct neural systems may mediate perceptual category learning under implicit and explicit learning conditions. In these previous studies, however, different stimulus-encoding processes may have been associated with implicit versus explicit learning. The present design was aimed at decoupling the influence of…

  20. Rise Time and Formant Transition Duration in the Discrimination of Speech Sounds: The Ba-Wa Distinction in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Goswami, Usha; Fosker, Tim; Huss, Martina; Mead, Natasha; Szucs, Denes

    2011-01-01

    Across languages, children with developmental dyslexia have a specific difficulty with the neural representation of the sound structure (phonological structure) of speech. One likely cause of their difficulties with phonology is a perceptual difficulty in auditory temporal processing (Tallal, 1980). Tallal (1980) proposed that basic auditory…

  1. Distinct Brain Systems Underlie the Processing of Valence and Arousal of Affective Pictures

    ERIC Educational Resources Information Center

    Nielen, M. M. A.; Heslenfeld, D. J.; Heinen, K.; Van Strien, J. W.; Witter, M. P.; Jonker, C.; Veltman, D. J.

    2009-01-01

    Valence and arousal are thought to be the primary dimensions of human emotion. However, the degree to which valence and arousal interact in determining brain responses to emotional pictures is still elusive. This functional MRI study aimed to delineate neural systems responding to valence and arousal, and their interaction. We measured neural…

  2. Prominence vs. Aboutness in Sequencing: A Functional Distinction within the Left Inferior Frontal Gyrus

    ERIC Educational Resources Information Center

    Bornkessel-Schlesewsky, Ina; Grewe, Tanja; Schlesewsky, Matthias

    2012-01-01

    Prior research on the neural bases of syntactic comprehension suggests that activation in the left inferior frontal gyrus (lIFG) correlates with the processing of word order variations. However, there are inconsistencies with respect to the specific subregion within the IFG that is implicated by these findings: the pars opercularis or the pars…

  3. The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations

    PubMed Central

    Florin, Esther; Baillet, Sylvain

    2015-01-01

    Functional imaging of the resting brain consistently reveals broad motifs of correlated blood oxygen level dependent (BOLD) activity that engage cerebral regions from distinct functional systems. Yet, the neurophysiological processes underlying these organized, large-scale fluctuations remain to be uncovered. Using magnetoencephalography (MEG) imaging during rest in 12 healthy subjects we analyse the resting state networks and their underlying neurophysiology. We first demonstrate non-invasively that cortical occurrences of high-frequency oscillatory activity are conditioned to the phase of slower spontaneous fluctuations in neural ensembles. We further show that resting-state networks emerge from synchronized phase-amplitude coupling across the brain. Overall, these findings suggest a unified principle of local-to-global neural signaling for long-range brain communication. PMID:25680519

  4. Cultured Cortical Neurons Can Perform Blind Source Separation According to the Free-Energy Principle

    PubMed Central

    Isomura, Takuya; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-01-01

    Blind source separation is the computation underlying the cocktail party effect––a partygoer can distinguish a particular talker’s voice from the ambient noise. Early studies indicated that the brain might use blind source separation as a signal processing strategy for sensory perception and numerous mathematical models have been proposed; however, it remains unclear how the neural networks extract particular sources from a complex mixture of inputs. We discovered that neurons in cultures of dissociated rat cortical cells could learn to represent particular sources while filtering out other signals. Specifically, the distinct classes of neurons in the culture learned to respond to the distinct sources after repeating training stimulation. Moreover, the neural network structures changed to reduce free energy, as predicted by the free-energy principle, a candidate unified theory of learning and memory, and by Jaynes’ principle of maximum entropy. This implicit learning can only be explained by some form of Hebbian plasticity. These results are the first in vitro (as opposed to in silico) demonstration of neural networks performing blind source separation, and the first formal demonstration of neuronal self-organization under the free energy principle. PMID:26690814

  5. The Potato Chip Really Does Look Like Elvis! Neural Hallmarks of Conceptual Processing Associated with Finding Novel Shapes Subjectively Meaningful

    PubMed Central

    Federmeier, Kara D.; Paller, Ken A.

    2012-01-01

    Clouds and inkblots often compellingly resemble something else—faces, animals, or other identifiable objects. Here, we investigated illusions of meaning produced by novel visual shapes. Individuals found some shapes meaningful and others meaningless, with considerable variability among individuals in these subjective categorizations. Repetition for shapes endorsed as meaningful produced conceptual priming in a priming test along with concurrent activity reductions in cortical regions associated with conceptual processing of real objects. Subjectively meaningless shapes elicited robust activity in the same brain areas, but activity was not influenced by repetition. Thus, all shapes were conceptually evaluated, but stable conceptual representations supported neural priming for meaningful shapes only. During a recognition memory test, performance was associated with increased frontoparietal activity, regardless of meaningfulness. In contrast, neural conceptual priming effects for meaningful shapes occurred during both priming and recognition testing. These different patterns of brain activation as a function of stimulus repetition, type of memory test, and subjective meaningfulness underscore the distinctive neural bases of conceptual fluency versus episodic memory retrieval. Finding meaning in ambiguous stimuli appears to depend on conceptual evaluation and cortical processing events similar to those typically observed for known objects. To the brain, the vaguely Elvis-like potato chip truly can provide a substitute for the King himself. PMID:22079921

  6. Cultural differences in human brain activity: a quantitative meta-analysis.

    PubMed

    Han, Shihui; Ma, Yina

    2014-10-01

    Psychologists have been trying to understand differences in cognition and behavior between East Asian and Western cultures within a single cognitive framework such as holistic versus analytic or interdependent versus independent processes. However, it remains unclear whether cultural differences in multiple psychological processes correspond to the same or different neural networks. We conducted a quantitative meta-analysis of 35 functional MRI studies to examine cultural differences in brain activity engaged in social and non-social processes. We showed that social cognitive processes are characterized by stronger activity in the dorsal medial prefrontal cortex, lateral frontal cortex and temporoparietal junction in East Asians but stronger activity in the anterior cingulate, ventral medial prefrontal cortex and bilateral insula in Westerners. Social affective processes are associated with stronger activity in the right dorsal lateral frontal cortex in East Asians but greater activity in the left insula and right temporal pole in Westerners. Non-social processes induce stronger activity in the left inferior parietal cortex, left middle occipital and left superior parietal cortex in East Asians but greater activations in the right lingual gyrus, right inferior parietal cortex and precuneus in Westerners. The results suggest that cultural differences in social and non-social processes are mediated by distinct neural networks. Moreover, East Asian cultures are associated with increased neural activity in the brain regions related to inference of others' mind and emotion regulation whereas Western cultures are associated with enhanced neural activity in the brain areas related to self-relevance encoding and emotional responses during social cognitive/affective processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Neural effects of methylphenidate and nicotine during smooth pursuit eye movements.

    PubMed

    Kasparbauer, Anna-Maria; Meyhöfer, Inga; Steffens, Maria; Weber, Bernd; Aydin, Merve; Kumari, Veena; Hurlemann, Rene; Ettinger, Ulrich

    2016-11-01

    Nicotine and methylphenidate are putative cognitive enhancers in healthy and patient populations. Although they stimulate different neurotransmitter systems, they have been shown to enhance performance on overlapping measures of attention. So far, there has been no direct comparison of the effects of these two stimulants on behavioural performance or brain function in healthy humans. Here, we directly compare the two compounds using a well-established oculomotor biomarker in order to explore common and distinct behavioural and neural effects. Eighty-two healthy male non-smokers performed a smooth pursuit eye movement task while lying in an fMRI scanner. In a between-subjects, double-blind design, subjects either received placebo (placebo patch and capsule), nicotine (7mg nicotine patch and placebo capsule), or methylphenidate (placebo patch and 40mg methylphenidate capsule). There were no significant drug effects on behavioural measures. At the neural level, methylphenidate elicited higher activation in left frontal eye field compared to nicotine, with an intermediate response under placebo. The reduced activation of task-related regions under nicotine could be associated with more efficient neural processing, while increased hemodynamic response under methylphenidate is interpretable as enhanced processing of task-relevant networks. Together, these findings suggest dissociable neural effects of these putative cognitive enhancers. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Investigating the neural correlates of smoking: Feasibility and results of combining electronic cigarettes with fMRI.

    PubMed

    Wall, Matthew B; Mentink, Alexander; Lyons, Georgina; Kowalczyk, Oliwia S; Demetriou, Lysia; Newbould, Rexford D

    2017-09-12

    Cigarette addiction is driven partly by the physiological effects of nicotine, but also by the distinctive sensory and behavioural aspects of smoking, and understanding the neural effects of such processes is vital. There are many practical difficulties associated with subjects smoking in the modern neuroscientific laboratory environment, however electronic cigarettes obviate many of these issues, and provide a close simulation of smoking tobacco cigarettes. We have examined the neural effects of 'smoking' electronic cigarettes with concurrent functional Magnetic Resonance Imaging (fMRI). The results demonstrate the feasibility of using these devices in the MRI environment, and show brain activation in a network of cortical (motor cortex, insula, cingulate, amygdala) and sub-cortical (putamen, thalamus, globus pallidus, cerebellum) regions. Concomitant relative deactivations were seen in the ventral striatum and orbitofrontal cortex. These results reveal the brain processes involved in (simulated) smoking for the first time, and validate a novel approach to the study of smoking, and addiction more generally.

  9. A common neural hub resolves syntactic and non-syntactic conflict through cooperation with task-specific networks

    PubMed Central

    Hsu, Nina S.; Jaeggi, Susanne M.; Novick, Jared M.

    2017-01-01

    Regions within the left inferior frontal gyrus (LIFG) have simultaneously been implicated in syntactic processing and cognitive control. Accounts attempting to unify LIFG’s function hypothesize that, during comprehension, cognitive control resolves conflict between incompatible representations of sentence meaning. Some studies demonstrate co-localized activity within LIFG for syntactic and non-syntactic conflict resolution, suggesting domain-generality, but others show non-overlapping activity, suggesting domain-specific cognitive control and/or regions that respond uniquely to syntax. We propose however that examining exclusive activation sites for certain contrasts creates a false dichotomy: both domain-general and domain-specific neural machinery must coordinate to facilitate conflict resolution across domains. Here, subjects completed four diverse tasks involving conflict —one syntactic, three non-syntactic— while undergoing fMRI. Though LIFG consistently activated within individuals during conflict processing, functional connectivity analyses revealed task-specific coordination with distinct brain networks. Thus, LIFG may function as a conflict-resolution “hub” that cooperates with specialized neural systems according to information content. PMID:28110105

  10. Towards a neural circuit model of verbal humor processing: an fMRI study of the neural substrates of incongruity detection and resolution.

    PubMed

    Chan, Yu-Chen; Chou, Tai-Li; Chen, Hsueh-Chih; Yeh, Yu-Chu; Lavallee, Joseph P; Liang, Keng-Chen; Chang, Kuo-En

    2013-02-01

    The present study builds on our previous study within the framework of Wyer and Collin's comprehension-elaboration theory of humor processing. In this study, an attempt is made to segregate the neural substrates of incongruity detection and incongruity resolution during the comprehension of verbal jokes. Although a number of fMRI studies have investigated the incongruity-resolution process, the differential neurological substrates of comprehension are still not fully understood. The present study utilized an event-related fMRI design incorporating three conditions (unfunny, nonsensical and funny) to examine distinct brain regions associated with the detection and resolution of incongruities. Stimuli in the unfunny condition contained no incongruities; stimuli in the nonsensical condition contained irresolvable incongruities; and stimuli in the funny condition contained resolvable incongruities. The results showed that the detection of incongruities was associated with greater activation in the right middle temporal gyrus and right medial frontal gyrus, and the resolution of incongruities with greater activation in the left superior frontal gyrus and left inferior parietal lobule. Further analysis based on participants' rating scores provided converging results. Our findings suggest a three-stage neural circuit model of verbal humor processing: incongruity detection and incongruity resolution during humor comprehension and inducement of the feeling of amusement during humor elaboration. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia

    PubMed Central

    Crabtree, Gregg W.; Gogos, Joseph A.

    2014-01-01

    Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations. PMID:25505409

  12. Multivariate neural biomarkers of emotional states are categorically distinct.

    PubMed

    Kragel, Philip A; LaBar, Kevin S

    2015-11-01

    Understanding how emotions are represented neurally is a central aim of affective neuroscience. Despite decades of neuroimaging efforts addressing this question, it remains unclear whether emotions are represented as distinct entities, as predicted by categorical theories, or are constructed from a smaller set of underlying factors, as predicted by dimensional accounts. Here, we capitalize on multivariate statistical approaches and computational modeling to directly evaluate these theoretical perspectives. We elicited discrete emotional states using music and films during functional magnetic resonance imaging scanning. Distinct patterns of neural activation predicted the emotion category of stimuli and tracked subjective experience. Bayesian model comparison revealed that combining dimensional and categorical models of emotion best characterized the information content of activation patterns. Surprisingly, categorical and dimensional aspects of emotion experience captured unique and opposing sources of neural information. These results indicate that diverse emotional states are poorly differentiated by simple models of valence and arousal, and that activity within separable neural systems can be mapped to unique emotion categories. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Distributed and Dynamic Neural Encoding of Multiple Motion Directions of Transparently Moving Stimuli in Cortical Area MT

    PubMed Central

    Xiao, Jianbo

    2015-01-01

    Segmenting visual scenes into distinct objects and surfaces is a fundamental visual function. To better understand the underlying neural mechanism, we investigated how neurons in the middle temporal cortex (MT) of macaque monkeys represent overlapping random-dot stimuli moving transparently in slightly different directions. It has been shown that the neuronal response elicited by two stimuli approximately follows the average of the responses elicited by the constituent stimulus components presented alone. In this scheme of response pooling, the ability to segment two simultaneously presented motion directions is limited by the width of the tuning curve to motion in a single direction. We found that, although the population-averaged neuronal tuning showed response averaging, subgroups of neurons showed distinct patterns of response tuning and were capable of representing component directions that were separated by a small angle—less than the tuning width to unidirectional stimuli. One group of neurons preferentially represented the component direction at a specific side of the bidirectional stimuli, weighting one stimulus component more strongly than the other. Another group of neurons pooled the component responses nonlinearly and showed two separate peaks in their tuning curves even when the average of the component responses was unimodal. We also show for the first time that the direction tuning of MT neurons evolved from initially representing the vector-averaged direction of slightly different stimuli to gradually representing the component directions. Our results reveal important neural processes underlying image segmentation and suggest that information about slightly different stimulus components is computed dynamically and distributed across neurons. SIGNIFICANCE STATEMENT Natural scenes often contain multiple entities. The ability to segment visual scenes into distinct objects and surfaces is fundamental to sensory processing and is crucial for generating the perception of our environment. Because cortical neurons are broadly tuned to a given visual feature, segmenting two stimuli that differ only slightly is a challenge for the visual system. In this study, we discovered that many neurons in the visual cortex are capable of representing individual components of slightly different stimuli by selectively and nonlinearly pooling the responses elicited by the stimulus components. We also show for the first time that the neural representation of individual stimulus components developed over a period of ∼70–100 ms, revealing a dynamic process of image segmentation. PMID:26658869

  14. The Roles and Regulation of Polycomb Complexes in Neural Development

    PubMed Central

    Corley, Matthew; Kroll, Kristen L.

    2014-01-01

    In the developing mammalian nervous system, common progenitors integrate both cell extrinsic and intrinsic regulatory programs to produce distinct neuronal and glial cell types as development proceeds. This spatiotemporal restriction of neural progenitor differentiation is enforced, in part, by the dynamic reorganization of chromatin into repressive domains by Polycomb Repressive Complexes, effectively limiting the expression of fate-determining genes. Here, we review distinct roles that the Polycomb Repressive Complexes play during neurogenesis and gliogenesis, while also highlighting recent work describing the molecular mechanisms that govern their dynamic activity in neural development. Further investigation of how Polycomb complexes are regulated in neural development will enable more precise manipulation of neural progenitor differentiation, facilitating the efficient generation of specific neuronal and glial cell types for many biological applications. PMID:25367430

  15. Differential Processing of Isolated Object and Multi-item Pop-Out Displays in LIP and PFC.

    PubMed

    Meyers, Ethan M; Liang, Andy; Katsuki, Fumi; Constantinidis, Christos

    2017-10-11

    Objects that are highly distinct from their surroundings appear to visually "pop-out." This effect is present for displays in which: (1) a single cue object is shown on a blank background, and (2) a single cue object is highly distinct from surrounding objects; it is generally assumed that these 2 display types are processed in the same way. To directly examine this, we applied a decoding analysis to neural activity recorded from the lateral intraparietal (LIP) area and the dorsolateral prefrontal cortex (dlPFC). Our analyses showed that for the single-object displays, cue location information appeared earlier in LIP than in dlPFC. However, for the display with distractors, location information was substantially delayed in both brain regions, and information first appeared in dlPFC. Additionally, we see that pattern of neural activity is similar for both types of displays and across different color transformations of the stimuli, indicating that location information is being coded in the same way regardless of display type. These results lead us to hypothesize that 2 different pathways are involved processing these 2 types of pop-out displays. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Enhanced music sensitivity in 9-month-old bilingual infants.

    PubMed

    Liu, Liquan; Kager, René

    2017-02-01

    This study explores the influence of bilingualism on the cognitive processing of language and music. Specifically, we investigate how infants learning a non-tone language perceive linguistic and musical pitch and how bilingualism affects cross-domain pitch perception. Dutch monolingual and bilingual infants of 8-9 months participated in the study. All infants had Dutch as one of the first languages. The other first languages, varying among bilingual families, were not tone or pitch accent languages. In two experiments, infants were tested on the discrimination of a lexical (N = 42) or a violin (N = 48) pitch contrast via a visual habituation paradigm. The two contrasts shared identical pitch contours but differed in timbre. Non-tone language learning infants did not discriminate the lexical contrast regardless of their ambient language environment. When perceiving the violin contrast, bilingual but not monolingual infants demonstrated robust discrimination. We attribute bilingual infants' heightened sensitivity in the musical domain to the enhanced acoustic sensitivity stemming from a bilingual environment. The distinct perceptual patterns between language and music and the influence of acoustic salience on perception suggest processing diversion and association in the first year of life. Results indicate that the perception of music may entail both shared neural network with language processing, and unique neural network that is distinct from other cognitive functions.

  17. Neural priming in human frontal cortex: multiple forms of learning reduce demands on the prefrontal executive system.

    PubMed

    Race, Elizabeth A; Shanker, Shanti; Wagner, Anthony D

    2009-09-01

    Past experience is hypothesized to reduce computational demands in PFC by providing bottom-up predictive information that informs subsequent stimulus-action mapping. The present fMRI study measured cortical activity reductions ("neural priming"/"repetition suppression") during repeated stimulus classification to investigate the mechanisms through which learning from the past decreases demands on the prefrontal executive system. Manipulation of learning at three levels of representation-stimulus, decision, and response-revealed dissociable neural priming effects in distinct frontotemporal regions, supporting a multiprocess model of neural priming. Critically, three distinct patterns of neural priming were identified in lateral frontal cortex, indicating that frontal computational demands are reduced by three forms of learning: (a) cortical tuning of stimulus-specific representations, (b) retrieval of learned stimulus-decision mappings, and (c) retrieval of learned stimulus-response mappings. The topographic distribution of these neural priming effects suggests a rostrocaudal organization of executive function in lateral frontal cortex.

  18. Processing of Communication Sounds: Contributions of Learning, Memory, and Experience

    PubMed Central

    Bigelow, James; Rossi, Breein

    2013-01-01

    Abundant evidence from both field and lab studies has established that conspecific vocalizations (CVs) are of critical ecological significance for a wide variety of species, including humans, nonhuman primates, rodents, and other mammals and birds. Correspondingly, a number of experiments have demonstrated behavioral processing advantages for CVs, such as in discrimination and memory tasks. Further, a wide range of experiments have described brain regions in many species that appear to be specialized for processing CVs. For example, several neural regions have been described in both mammals and birds wherein greater neural responses are elicited by CVs than by comparison stimuli such as heterospecific vocalizations, nonvocal complex sounds, and artificial stimuli. These observations raise the question of whether these regions reflect domain-specific neural mechanisms dedicated to processing CVs, or alternatively, if these regions reflect domain-general neural mechanisms for representing complex sounds of learned significance. Inasmuch as CVs can be viewed as complex combinations of basic spectrotemporal features, the plausibility of the latter position is supported by a large body of literature describing modulated cortical and subcortical representation of a variety of acoustic features that have been experimentally associated with stimuli of natural behavioral significance (such as food rewards). Herein, we review a relatively small body of existing literature describing the roles of experience, learning, and memory in the emergence of species-typical neural representations of CVs and auditory system plasticity. In both songbirds and mammals, manipulations of auditory experience as well as specific learning paradigms are shown to modulate neural responses evoked by CVs, either in terms of overall firing rate or temporal firing patterns. In some cases, CV-sensitive neural regions gradually acquire representation of non-CV stimuli with which subjects have training and experience. These results parallel literature in humans describing modulation of responses in face-sensitive neural regions through learning and experience. Thus, although many questions remain, the available evidence is consistent with the notion that CVs may acquire distinct neural representation through domain-general mechanisms for representing complex auditory objects that are of learned importance to the animal. PMID:23792078

  19. Dopamine controls the neural dynamics of memory signals and retrieval accuracy.

    PubMed

    Apitz, Thore; Bunzeck, Nico

    2013-11-01

    The human brain is capable of differentiating between new and already stored information rapidly to allow optimal behavior and decision-making. Although the neural mechanisms of novelty discrimination were often described as temporally constant (ie, with specific latencies), recent electrophysiological studies have demonstrated that the onset of neural novelty signals (ie, differences in event-related responses to new and old items) can be accelerated by reward motivation. While the precise physiological mechanisms underlying this acceleration remain unclear, the involvement of the neurotransmitter dopamine in both novelty and reward processing suggests that enhanced dopamine levels in the context of reward prospect may have a role. To investigate this hypothesis, we used magnetoencephalography (MEG) in combination with an old/new recognition memory task in which correct discrimination between old and new items was rewarded. Importantly, before the task, human subjects received either 150 mg of the dopamine precursor levodopa or placebo. For the placebo group, old/new signals peaked at ∼100 ms after stimulus onset over left temporal/occipital sensors. In contrast, after levodopa administration earliest old/new effects only emerged after ∼400 ms and retrieval accuracy was reduced as expressed in lower d' values. As such, our results point towards a previously unreported role of dopamine in controlling the chronometry of neural processes underlying the distinction between old and new information. They also suggest that this relationship follows a nonlinear function whereby slightly enhanced dopamine levels accelerate neural/cognitive processes and excessive dopamine levels impair them.

  20. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme

    PubMed Central

    Lee, Raymond Teck Ho; Nagai, Hiroki; Nakaya, Yukiko; Sheng, Guojun; Trainor, Paul A.; Weston, James A.; Thiery, Jean Paul

    2013-01-01

    The neural crest is a transient structure unique to vertebrate embryos that gives rise to multiple lineages along the rostrocaudal axis. In cranial regions, neural crest cells are thought to differentiate into chondrocytes, osteocytes, pericytes and stromal cells, which are collectively termed ectomesenchyme derivatives, as well as pigment and neuronal derivatives. There is still no consensus as to whether the neural crest can be classified as a homogenous multipotent population of cells. This unresolved controversy has important implications for the formation of ectomesenchyme and for confirmation of whether the neural fold is compartmentalized into distinct domains, each with a different repertoire of derivatives. Here we report in mouse and chicken that cells in the neural fold delaminate over an extended period from different regions of the cranial neural fold to give rise to cells with distinct fates. Importantly, cells that give rise to ectomesenchyme undergo epithelial-mesenchymal transition from a lateral neural fold domain that does not express definitive neural markers, such as Sox1 and N-cadherin. Additionally, the inference that cells originating from the cranial neural ectoderm have a common origin and cell fate with trunk neural crest cells prompted us to revisit the issue of what defines the neural crest and the origin of the ectomesenchyme. PMID:24198279

  1. Visual crowding illustrates the inadequacy of local vs. global and feedforward vs. feedback distinctions in modeling visual perception

    PubMed Central

    Clarke, Aaron M.; Herzog, Michael H.; Francis, Gregory

    2014-01-01

    Experimentalists tend to classify models of visual perception as being either local or global, and involving either feedforward or feedback processing. We argue that these distinctions are not as helpful as they might appear, and we illustrate these issues by analyzing models of visual crowding as an example. Recent studies have argued that crowding cannot be explained by purely local processing, but that instead, global factors such as perceptual grouping are crucial. Theories of perceptual grouping, in turn, often invoke feedback connections as a way to account for their global properties. We examined three types of crowding models that are representative of global processing models, and two of which employ feedback processing: a model based on Fourier filtering, a feedback neural network, and a specific feedback neural architecture that explicitly models perceptual grouping. Simulations demonstrate that crucial empirical findings are not accounted for by any of the models. We conclude that empirical investigations that reject a local or feedforward architecture offer almost no constraints for model construction, as there are an uncountable number of global and feedback systems. We propose that the identification of a system as being local or global and feedforward or feedback is less important than the identification of a system's computational details. Only the latter information can provide constraints on model development and promote quantitative explanations of complex phenomena. PMID:25374554

  2. Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice.

    PubMed

    Balasubramani, Pragathi P; Moreno-Bote, Rubén; Hayden, Benjamin Y

    2018-01-01

    The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make choices using distributed principles have not been explored. Our goal in this perspective is to delineate some of those distributed principles using a neural network method and use its results as a lens through which to reconsider some previously published neurophysiological data. To allow for direct comparison with our own data, we trained the neural network to perform binary risky choices. We find that value correlates are ubiquitous and are always accompanied by non-value information, including spatial information (i.e., no pure value signals). Evaluation, comparison, and selection were not distinct processes; indeed, value signals even in the earliest stages contributed directly, albeit weakly, to action selection. There was no place, other than at the level of action selection, at which dimensions were fully integrated. No units were specialized for specific offers; rather, all units encoded the values of both offers in an anti-correlated format, thus contributing to comparison. Individual network layers corresponded to stages in a continuous rotation from input to output space rather than to functionally distinct modules. While our network is likely to not be a direct reflection of brain processes, we propose that these principles should serve as hypotheses to be tested and evaluated for future studies.

  3. Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice

    PubMed Central

    Balasubramani, Pragathi P.; Moreno-Bote, Rubén; Hayden, Benjamin Y.

    2018-01-01

    The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make choices using distributed principles have not been explored. Our goal in this perspective is to delineate some of those distributed principles using a neural network method and use its results as a lens through which to reconsider some previously published neurophysiological data. To allow for direct comparison with our own data, we trained the neural network to perform binary risky choices. We find that value correlates are ubiquitous and are always accompanied by non-value information, including spatial information (i.e., no pure value signals). Evaluation, comparison, and selection were not distinct processes; indeed, value signals even in the earliest stages contributed directly, albeit weakly, to action selection. There was no place, other than at the level of action selection, at which dimensions were fully integrated. No units were specialized for specific offers; rather, all units encoded the values of both offers in an anti-correlated format, thus contributing to comparison. Individual network layers corresponded to stages in a continuous rotation from input to output space rather than to functionally distinct modules. While our network is likely to not be a direct reflection of brain processes, we propose that these principles should serve as hypotheses to be tested and evaluated for future studies. PMID:29643773

  4. Behavioral training promotes multiple adaptive processes following acute hearing loss.

    PubMed

    Keating, Peter; Rosenior-Patten, Onayomi; Dahmen, Johannes C; Bell, Olivia; King, Andrew J

    2016-03-23

    The brain possesses a remarkable capacity to compensate for changes in inputs resulting from a range of sensory impairments. Developmental studies of sound localization have shown that adaptation to asymmetric hearing loss can be achieved either by reinterpreting altered spatial cues or by relying more on those cues that remain intact. Adaptation to monaural deprivation in adulthood is also possible, but appears to lack such flexibility. Here we show, however, that appropriate behavioral training enables monaurally-deprived adult humans to exploit both of these adaptive processes. Moreover, cortical recordings in ferrets reared with asymmetric hearing loss suggest that these forms of plasticity have distinct neural substrates. An ability to adapt to asymmetric hearing loss using multiple adaptive processes is therefore shared by different species and may persist throughout the lifespan. This highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders.

  5. Neural Correlates of Explicit Social Judgments on Vocal Stimuli

    PubMed Central

    Hensel, Lukas; Bzdok, Danilo; Müller, Veronika I.; Zilles, Karl; Eickhoff, Simon B.

    2015-01-01

    Functional neuroimaging research on the neural basis of social evaluation has traditionally focused on face perception paradigms. Thus, little is known about the neurobiology of social evaluation processes based on auditory cues, such as voices. To investigate the top-down effects of social trait judgments on voices, hemodynamic responses of 44 healthy participants were measured during social trait (trustworthiness [TR] and attractiveness [AT]), emotional (happiness, HA), and cognitive (age, AG) voice judgments. Relative to HA and AG judgments, TR and AT judgments both engaged the bilateral inferior parietal cortex (IPC; area PGa) and the dorsomedial prefrontal cortex (dmPFC) extending into the perigenual anterior cingulate cortex. This dmPFC activation overlapped with previously reported areas specifically involved in social judgments on ‘faces.’ Moreover, social trait judgments were expected to share neural correlates with emotional HA and cognitive AG judgments. Comparison of effects pertaining to social, social–emotional, and social–cognitive appraisal processes revealed a dissociation of the left IPC into 3 functional subregions assigned to distinct cytoarchitectonic subdivisions. In total, the dmPFC is proposed to assume a central role in social attribution processes across sensory qualities. In social judgments on voices, IPC activity shifts from rostral processing of more emotional judgment facets to caudal processing of more cognitive judgment facets. PMID:24243619

  6. Learning and Motivational Processes Contributing to Pavlovian-Instrumental Transfer and Their Neural Bases: Dopamine and Beyond.

    PubMed

    Corbit, Laura H; Balleine, Bernard W

    2016-01-01

    Pavlovian stimuli exert a range of effects on behavior from simple conditioned reflexes, such as salivation, to altering the vigor and direction of instrumental actions. It is currently accepted that these distinct behavioral effects stem from two sources (i) the various associative connections between predictive stimuli and the component features of the events that these stimuli predict and (ii) the distinct motivational and cognitive functions served by cues, particularly their arousing and informational effects on the selection and performance of specific actions. Here, we describe studies that have assessed these latter phenomena using a paradigm that has come to be called Pavlovian-instrumental transfer. We focus first on behavioral experiments that have described distinct sources of stimulus control derived from the general affective and outcome-specific predictions of conditioned stimuli, referred to as general transfer and specific transfer, respectively. Subsequently, we describe research efforts attempting to establish the neural bases of these transfer effects, largely in the afferent and efferent connections of the nucleus accumbens (NAc) core and shell. Finally, we examine the role of predictive cues in examples of aberrant stimulus control associated with psychiatric disorders and addiction.

  7. Serotonergic Modulation Differentially Targets Distinct Network Elements within the Antennal Lobe of Drosophila melanogaster

    PubMed Central

    Sizemore, Tyler R.; Dacks, Andrew M.

    2016-01-01

    Neuromodulation confers flexibility to anatomically-restricted neural networks so that animals are able to properly respond to complex internal and external demands. However, determining the mechanisms underlying neuromodulation is challenging without knowledge of the functional class and spatial organization of neurons that express individual neuromodulatory receptors. Here, we describe the number and functional identities of neurons in the antennal lobe of Drosophila melanogaster that express each of the receptors for one such neuromodulator, serotonin (5-HT). Although 5-HT enhances odor-evoked responses of antennal lobe projection neurons (PNs) and local interneurons (LNs), the receptor basis for this enhancement is unknown. We used endogenous reporters of transcription and translation for each of the five 5-HT receptors (5-HTRs) to identify neurons, based on cell class and transmitter content, that express each receptor. We find that specific receptor types are expressed by distinct combinations of functional neuronal classes. For instance, the excitatory PNs express the excitatory 5-HTRs, while distinct classes of LNs each express different 5-HTRs. This study therefore provides a detailed atlas of 5-HT receptor expression within a well-characterized neural network, and enables future dissection of the role of serotonergic modulation of olfactory processing. PMID:27845422

  8. Specific Interference between a Cognitive Task and Sensory Organization for Stance Balance Control in Healthy Young Adults: Visuospatial Effects

    ERIC Educational Resources Information Center

    Chong, Raymond K. Y.; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun

    2010-01-01

    We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed),…

  9. Neural integration of iconic and unrelated coverbal gestures: a functional MRI study.

    PubMed

    Green, Antonia; Straube, Benjamin; Weis, Susanne; Jansen, Andreas; Willmes, Klaus; Konrad, Kerstin; Kircher, Tilo

    2009-10-01

    Gestures are an important part of interpersonal communication, for example by illustrating physical properties of speech contents (e.g., "the ball is round"). The meaning of these so-called iconic gestures is strongly intertwined with speech. We investigated the neural correlates of the semantic integration for verbal and gestural information. Participants watched short videos of five speech and gesture conditions performed by an actor, including variation of language (familiar German vs. unfamiliar Russian), variation of gesture (iconic vs. unrelated), as well as isolated familiar language, while brain activation was measured using functional magnetic resonance imaging. For familiar speech with either of both gesture types contrasted to Russian speech-gesture pairs, activation increases were observed at the left temporo-occipital junction. Apart from this shared location, speech with iconic gestures exclusively engaged left occipital areas, whereas speech with unrelated gestures activated bilateral parietal and posterior temporal regions. Our results demonstrate that the processing of speech with speech-related versus speech-unrelated gestures occurs in two distinct but partly overlapping networks. The distinct processing streams (visual versus linguistic/spatial) are interpreted in terms of "auxiliary systems" allowing the integration of speech and gesture in the left temporo-occipital region.

  10. Resting-State Functional Connectivity Differentiates Anxious Apprehension and Anxious Arousal

    PubMed Central

    Burdwood, Erin N.; Infantolino, Zachary P.; Crocker, Laura D.; Spielberg, Jeffrey M.; Banich, Marie T.; Miller, Gregory A.; Heller, Wendy

    2016-01-01

    Brain regions in the default mode network (DMN) display greater functional connectivity at rest or during self-referential processing than during goal-directed tasks. The present study assessed resting-state connectivity as a function of anxious apprehension and anxious arousal, independent of depressive symptoms, in order to understand how these dimensions disrupt cognition. Whole-brain, seed-based analyses indicated differences between anxious apprehension and anxious arousal in DMN functional connectivity. Lower connectivity associated with higher anxious apprehension suggests decreased adaptive, inner-focused thought processes, whereas higher connectivity at higher levels of anxious arousal may reflect elevated monitoring of physiological responses to threat. These findings further the conceptualization of anxious apprehension and anxious arousal as distinct psychological dimensions with distinct neural instantiations. PMID:27406406

  11. Losing the music: aging affects the perception and subcortical neural representation of musical harmony.

    PubMed

    Bones, Oliver; Plack, Christopher J

    2015-03-04

    When two musical notes with simple frequency ratios are played simultaneously, the resulting musical chord is pleasing and evokes a sense of resolution or "consonance". Complex frequency ratios, on the other hand, evoke feelings of tension or "dissonance". Consonance and dissonance form the basis of harmony, a central component of Western music. In earlier work, we provided evidence that consonance perception is based on neural temporal coding in the brainstem (Bones et al., 2014). Here, we show that for listeners with clinically normal hearing, aging is associated with a decline in both the perceptual distinction and the distinctiveness of the neural representations of different categories of two-note chords. Compared with younger listeners, older listeners rated consonant chords as less pleasant and dissonant chords as more pleasant. Older listeners also had less distinct neural representations of consonant and dissonant chords as measured using a Neural Consonance Index derived from the electrophysiological "frequency-following response." The results withstood a control for the effect of age on general affect, suggesting that different mechanisms are responsible for the perceived pleasantness of musical chords and affective voices and that, for listeners with clinically normal hearing, age-related differences in consonance perception are likely to be related to differences in neural temporal coding. Copyright © 2015 Bones and Plack.

  12. Losing the Music: Aging Affects the Perception and Subcortical Neural Representation of Musical Harmony

    PubMed Central

    Plack, Christopher J.

    2015-01-01

    When two musical notes with simple frequency ratios are played simultaneously, the resulting musical chord is pleasing and evokes a sense of resolution or “consonance”. Complex frequency ratios, on the other hand, evoke feelings of tension or “dissonance”. Consonance and dissonance form the basis of harmony, a central component of Western music. In earlier work, we provided evidence that consonance perception is based on neural temporal coding in the brainstem (Bones et al., 2014). Here, we show that for listeners with clinically normal hearing, aging is associated with a decline in both the perceptual distinction and the distinctiveness of the neural representations of different categories of two-note chords. Compared with younger listeners, older listeners rated consonant chords as less pleasant and dissonant chords as more pleasant. Older listeners also had less distinct neural representations of consonant and dissonant chords as measured using a Neural Consonance Index derived from the electrophysiological “frequency-following response.” The results withstood a control for the effect of age on general affect, suggesting that different mechanisms are responsible for the perceived pleasantness of musical chords and affective voices and that, for listeners with clinically normal hearing, age-related differences in consonance perception are likely to be related to differences in neural temporal coding. PMID:25740534

  13. Neuromolecular correlates of cooperation and conflict during territory defense in a cichlid fish.

    PubMed

    Weitekamp, Chelsea A; Hofmann, Hans A

    2017-03-01

    Cooperative behavior is widespread among animals, yet the neural mechanisms have not been studied in detail. We examined cooperative territory defense behavior and associated neural activity in candidate forebrain regions in the cichlid fish, Astatotilapia burtoni. We find that a territorial male neighbor will engage in territory defense dependent on the perceived threat of the intruder. The resident male, on the other hand, engages in defense based on the size and behavior of his partner, the neighbor. In the neighbor, we find that an index of engagement correlates with neural activity in the putative homolog of the mammalian basolateral amygdala and in the preoptic area, as well as in preoptic dopaminergic neurons. In the resident, neighbor behavior is correlated with neural activity in the homolog of the mammalian hippocampus. Overall, we find distinct neural activity patterns between the neighbor and the resident, suggesting that an individual perceives and processes an intruder challenge differently during cooperative territory defense depending on its own behavioral role. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process.

    PubMed

    Hamamé, Carlos M; Cosmelli, Diego; Henriquez, Rodrigo; Aboitiz, Francisco

    2011-04-26

    Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing. We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.

  15. Common and distinct neural correlates of facial emotion processing in social anxiety disorder and Williams syndrome: A systematic review and voxel-based meta-analysis of functional resonance imaging studies.

    PubMed

    Binelli, C; Subirà, S; Batalla, A; Muñiz, A; Sugranyés, G; Crippa, J A; Farré, M; Pérez-Jurado, L; Martín-Santos, R

    2014-11-01

    Social Anxiety Disorder (SAD) and Williams-Beuren Syndrome (WS) are two conditions which seem to be at opposite ends in the continuum of social fear but show compromised abilities in some overlapping areas, including some social interactions, gaze contact and processing of facial emotional cues. The increase in the number of neuroimaging studies has greatly expanded our knowledge of the neural bases of facial emotion processing in both conditions. However, to date, SAD and WS have not been compared. We conducted a systematic review of functional magnetic resonance imaging (fMRI) studies comparing SAD and WS cases to healthy control participants (HC) using facial emotion processing paradigms. Two researchers conducted comprehensive PubMed/Medline searches to identify all fMRI studies of facial emotion processing in SAD and WS. The following search key-words were used: "emotion processing"; "facial emotion"; "social anxiety"; "social phobia"; "Williams syndrome"; "neuroimaging"; "functional magnetic resonance"; "fMRI" and their combinations, as well as terms specifying individual facial emotions. We extracted spatial coordinates from each study and conducted two separate voxel-wise activation likelihood estimation meta-analyses, one for SAD and one for WS. Twenty-two studies met the inclusion criteria: 17 studies of SAD and five of WS. We found evidence for both common and distinct patterns of neural activation. Limbic engagement was common to SAD and WS during facial emotion processing, although we observed opposite patterns of activation for each disorder. Compared to HC, SAD cases showed hyperactivation of the amygdala, the parahippocampal gyrus and the globus pallidus. Compared to controls, participants with WS showed hypoactivation of these regions. Differential activation in a number of regions specific to either condition was also identified: SAD cases exhibited greater activation of the insula, putamen, the superior temporal gyrus, medial frontal regions and the cuneus, while WS subjects showed decreased activation in the inferior region of the parietal lobule. The identification of limbic structures as a shared correlate and the patterns of activation observed for each condition may reflect the aberrant patterns of facial emotion processing that the two conditions share, and may contribute to explaining part of the underlying neural substrate of exaggerated/diminished fear responses to social cues that characterize SAD and WS respectively. We believe that insights from WS and the inclusion of this syndrome as a control group in future experimental studies may improve our understanding of the neural correlates of social fear in general, and of SAD in particular. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Neural activation toward erotic stimuli in homosexual and heterosexual males.

    PubMed

    Kagerer, Sabine; Klucken, Tim; Wehrum, Sina; Zimmermann, Mark; Schienle, Anne; Walter, Bertram; Vaitl, Dieter; Stark, Rudolf

    2011-11-01

    Studies investigating sexual arousal exist, yet there are diverging findings on the underlying neural mechanisms with regard to sexual orientation. Moreover, sexual arousal effects have often been confounded with general arousal effects. Hence, it is still unclear which structures underlie the sexual arousal response in homosexual and heterosexual men. Neural activity and subjective responses were investigated in order to disentangle sexual from general arousal. Considering sexual orientation, differential and conjoint neural activations were of interest. The functional magnetic resonance imaging (fMRI) study focused on the neural networks involved in the processing of sexual stimuli in 21 male participants (11 homosexual, 10 heterosexual). Both groups viewed pictures with erotic content as well as aversive and neutral stimuli. The erotic pictures were subdivided into three categories (most sexually arousing, least sexually arousing, and rest) based on the individual subjective ratings of each participant. Blood oxygen level-dependent responses measured by fMRI and subjective ratings. A conjunction analysis revealed conjoint neural activation related to sexual arousal in thalamus, hypothalamus, occipital cortex, and nucleus accumbens. Increased insula, amygdala, and anterior cingulate gyrus activation could be linked to general arousal. Group differences emerged neither when viewing the most sexually arousing pictures compared with highly arousing aversive pictures nor compared with neutral pictures. Results suggest that a widespread neural network is activated by highly sexually arousing visual stimuli. A partly distinct network of structures underlies sexual and general arousal effects. The processing of preferred, highly sexually arousing stimuli recruited similar structures in homosexual and heterosexual males. © 2011 International Society for Sexual Medicine.

  17. The Functional Architecture of the Brain Underlies Strategic Deception in Impression Management

    PubMed Central

    Luo, Qiang; Ma, Yina; Bhatt, Meghana A.; Montague, P. Read; Feng, Jianfeng

    2017-01-01

    Impression management, as one of the most essential skills of social function, impacts one's survival and success in human societies. However, the neural architecture underpinning this social skill remains poorly understood. By employing a two-person bargaining game, we exposed three strategies involving distinct cognitive processes for social impression management with different levels of strategic deception. We utilized a novel adaptation of Granger causality accounting for signal-dependent noise (SDN), which captured the directional connectivity underlying the impression management during the bargaining game. We found that the sophisticated strategists engaged stronger directional connectivity from both dorsal anterior cingulate cortex and retrosplenial cortex to rostral prefrontal cortex, and the strengths of these directional influences were associated with higher level of deception during the game. Using the directional connectivity as a neural signature, we identified the strategic deception with 80% accuracy by a machine-learning classifier. These results suggest that different social strategies are supported by distinct patterns of directional connectivity among key brain regions for social cognition. PMID:29163095

  18. The Functional Architecture of the Brain Underlies Strategic Deception in Impression Management.

    PubMed

    Luo, Qiang; Ma, Yina; Bhatt, Meghana A; Montague, P Read; Feng, Jianfeng

    2017-01-01

    Impression management, as one of the most essential skills of social function, impacts one's survival and success in human societies. However, the neural architecture underpinning this social skill remains poorly understood. By employing a two-person bargaining game, we exposed three strategies involving distinct cognitive processes for social impression management with different levels of strategic deception. We utilized a novel adaptation of Granger causality accounting for signal-dependent noise (SDN), which captured the directional connectivity underlying the impression management during the bargaining game. We found that the sophisticated strategists engaged stronger directional connectivity from both dorsal anterior cingulate cortex and retrosplenial cortex to rostral prefrontal cortex, and the strengths of these directional influences were associated with higher level of deception during the game. Using the directional connectivity as a neural signature, we identified the strategic deception with 80% accuracy by a machine-learning classifier. These results suggest that different social strategies are supported by distinct patterns of directional connectivity among key brain regions for social cognition.

  19. Structure and function of complex brain networks

    PubMed Central

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  20. Orientation-Selective Retinal Circuits in Vertebrates

    PubMed Central

    Antinucci, Paride; Hindges, Robert

    2018-01-01

    Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such ‘orientation-selective’ neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates. PMID:29467629

  1. Orientation-Selective Retinal Circuits in Vertebrates.

    PubMed

    Antinucci, Paride; Hindges, Robert

    2018-01-01

    Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such 'orientation-selective' neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.

  2. Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking

    PubMed Central

    Kievit, Rogier A.; Davis, Simon W.; Mitchell, Daniel J.; Taylor, Jason R.; Duncan, John; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Ed; Calder, Andrew; Cusack, Rhodri; Dalgleish, Tim; Matthews, Fiona; Marslen-Wilson, William; Rowe, James; Shafto, Meredith; Campbell, Karen; Cheung, Teresa; Geerligs, Linda; McCarrey, Anna; Tsvetanov, Kamen; Williams, Nitin; Bates, Lauren; Emery, Tina; Erzinçlioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, Richard N.A.

    2014-01-01

    Ageing is characterized by declines on a variety of cognitive measures. These declines are often attributed to a general, unitary underlying cause, such as a reduction in executive function owing to atrophy of the prefrontal cortex. However, age-related changes are likely multifactorial, and the relationship between neural changes and cognitive measures is not well-understood. Here we address this in a large (N=567), population-based sample drawn from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data. We relate fluid intelligence and multitasking to multiple brain measures, including grey matter in various prefrontal regions and white matter integrity connecting those regions. We show that multitasking and fluid intelligence are separable cognitive abilities, with differential sensitivities to age, which are mediated by distinct neural subsystems that show different prediction in older versus younger individuals. These results suggest that prefrontal ageing is a manifold process demanding multifaceted models of neurocognitive ageing. PMID:25519467

  3. Compassion: An Evolutionary Analysis and Empirical Review

    PubMed Central

    Goetz, Jennifer L.; Keltner, Dacher; Simon-Thomas, Emiliana

    2010-01-01

    What is compassion? And how did it evolve? In this review, we integrate three evolutionary arguments that converge on the hypothesis that compassion evolved as a distinct affective experience whose primary function is to facilitate cooperation and protection of the weak and those who suffer. Our empirical review reveals compassion to have distinct appraisal processes attuned to undeserved suffering, distinct signaling behavior related to caregiving patterns of touch, posture, and vocalization, and a phenomenological experience and physiological response that orients the individual to social approach. This response profile of compassion differs from those of distress, sadness, and love, suggesting that compassion is indeed a distinct emotion. We conclude by considering how compassion shapes moral judgment and action, how it varies across different cultures, and how it may engage specific patterns of neural activation, as well as emerging directions of research. PMID:20438142

  4. The behavioural patterns and neural correlates of concrete and abstract verb processing in aphasia: A novel verb semantic battery.

    PubMed

    Alyahya, Reem S W; Halai, Ajay D; Conroy, Paul; Lambon Ralph, Matthew A

    2018-01-01

    Typically, processing is more accurate and efficient for concrete than abstract concepts in both healthy adults and individuals with aphasia. While, concreteness effects have been thoroughly documented with respect to noun processing, other words classes have received little attention despite tending to be less concrete than nouns. The aim of the current study was to explore concrete-abstract differences in verbs and identify their neural correlates in post-stroke aphasia. Given the dearth of comprehension tests for verbs, a battery of neuropsychological tests was developed in this study to assess the comprehension of concrete and abstract verbs. Specifically, a sensitive verb synonym judgment test was generated that varied both the items' imageability and frequency, and a picture-to-word matching test with numerous concrete verbs. Normative data were then collected and the tests were administered to a cohort of 48 individuals with chronic post-stroke aphasia to explore the behavioural patterns and neural correlates of verb processing. The results revealed significantly better comprehension of concrete than abstract verbs, aligning with the existing aphasiological literature on noun processing. In addition, the patients performed better during verb comprehension than verb production. Lesion-symptom correlational analyses revealed common areas that support processing of concrete and abstract verbs, including the left anterior temporal lobe, posterior supramarginal gyrus and superior lateral occipital cortex. A direct contrast between them revealed additional regions with graded differences. Specifically, the left frontal regions were associated with processing abstract verbs; whereas, the left posterior temporal and occipital regions were associated with processing concrete verbs. Moreover, overlapping and distinct neural correlates were identified in association with the comprehension and production of concrete verbs. These patient findings align with data from functional neuroimaging and neuro-stimulation, and existing models of language organisation.

  5. Tracking the Spatiotemporal Neural Dynamics of Real-world Object Size and Animacy in the Human Brain.

    PubMed

    Khaligh-Razavi, Seyed-Mahdi; Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2018-06-07

    Animacy and real-world size are properties that describe any object and thus bring basic order into our perception of the visual world. Here, we investigated how the human brain processes real-world size and animacy. For this, we applied representational similarity to fMRI and MEG data to yield a view of brain activity with high spatial and temporal resolutions, respectively. Analysis of fMRI data revealed that a distributed and partly overlapping set of cortical regions extending from occipital to ventral and medial temporal cortex represented animacy and real-world size. Within this set, parahippocampal cortex stood out as the region representing animacy and size stronger than most other regions. Further analysis of the detailed representational format revealed differences among regions involved in processing animacy. Analysis of MEG data revealed overlapping temporal dynamics of animacy and real-world size processing starting at around 150 msec and provided the first neuromagnetic signature of real-world object size processing. Finally, to investigate the neural dynamics of size and animacy processing simultaneously in space and time, we combined MEG and fMRI with a novel extension of MEG-fMRI fusion by representational similarity. This analysis revealed partly overlapping and distributed spatiotemporal dynamics, with parahippocampal cortex singled out as a region that represented size and animacy persistently when other regions did not. Furthermore, the analysis highlighted the role of early visual cortex in representing real-world size. A control analysis revealed that the neural dynamics of processing animacy and size were distinct from the neural dynamics of processing low-level visual features. Together, our results provide a detailed spatiotemporal view of animacy and size processing in the human brain.

  6. Primary and Secondary Variants of Psychopathy in a Volunteer Sample Are Associated With Different Neurocognitive Mechanisms.

    PubMed

    Sethi, Arjun; McCrory, Eamon; Puetz, Vanessa; Hoffmann, Ferdinand; Knodt, Annchen R; Radtke, Spenser R; Brigidi, Bartholomew D; Hariri, Ahmad R; Viding, Essi

    2018-04-12

    Recent work has indicated that there at least two distinct subtypes of psychopathy. Primary psychopathy is characterized by low anxiety and thought to result from a genetic predisposition, whereas secondary psychopathy is characterized by high anxiety and thought to develop in response to environmental adversity. Primary psychopathy is robustly associated with reduced neural activation to others' emotions and, in particular, distress. However, it has been proposed that the secondary presentation has different neurocognitive correlates. Primary (n = 50), secondary (n = 100), and comparison (n = 82) groups were drawn from a large volunteer sample (N = 1444) using a quartile-split approach across psychopathic trait (affective-interpersonal) and anxiety measures. Participants performed a widely utilized emotional face processing task during functional magnetic resonance imaging. The primary group showed reduced amygdala and insula activity in response to fear. The secondary group did not differ from the comparison group in these regions. Instead, the secondary group showed reduced activity compared with the comparison group in other areas, including the superior temporal sulcus/inferior parietal lobe, thalamus, pallidum, and substantia nigra. Both psychopathy groups also showed reduced activity in response to fear in the anterior cingulate cortex. During anger processing, the secondary group exhibited reduced activity in the anterior cingulate cortex compared with the primary group. Distinct neural correlates of fear processing characterize individuals with primary and secondary psychopathy. The reduced neural response to fear that characterizes individuals with the primary variant of psychopathic traits is not observed in individuals with the secondary presentation. The neurocognitive mechanisms underpinning secondary psychopathy warrant further systematic investigation. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Adaptation to conflict via context-driven anticipatory signals in the dorsomedial prefrontal cortex.

    PubMed

    Horga, Guillermo; Maia, Tiago V; Wang, Pengwei; Wang, Zhishun; Marsh, Rachel; Peterson, Bradley S

    2011-11-09

    Behavioral interference elicited by competing response tendencies adapts to contextual changes. Recent nonhuman primate research suggests a key mnemonic role of distinct prefrontal cells in supporting such context-driven behavioral adjustments by maintaining conflict information across trials, but corresponding prefrontal functions have yet to be probed in humans. Using event-related functional magnetic resonance imaging, we investigated the human neural substrates of contextual adaptations to conflict. We found that a neural system comprising the rostral dorsomedial prefrontal cortex and portions of the dorsolateral prefrontal cortex specifically encodes the history of previously experienced conflict and influences subsequent adaptation to conflict on a trial-by-trial basis. This neural system became active in anticipation of stimulus onsets during preparatory periods and interacted with a second neural system engaged during the processing of conflict. Our findings suggest that a dynamic interaction between a system that represents conflict history and a system that resolves conflict underlies the contextual adaptation to conflict.

  8. Adaptation to Conflict via Context-Driven Anticipatory Signals in the Dorsomedial Prefrontal Cortex

    PubMed Central

    Horga, Guillermo; Maia, Tiago V.; Wang, Pengwei; Wang, Zhishun; Marsh, Rachel; Peterson, Bradley S.

    2011-01-01

    Behavioral interference elicited by competing response tendencies adapts to contextual changes. Recent nonhuman primate research suggests a key mnemonic role of distinct prefrontal cells in supporting such context-driven behavioral adjustments by maintaining conflict information across trials, but corresponding prefrontal functions have yet to be probed in humans. Using event-related functional magnetic resonance imaging (fMRI), we investigated the human neural substrates of contextual adaptations to conflict. We found that a neural system comprising the rostral dorsomedial prefrontal cortex and portions of the dorsolateral prefrontal cortex specifically encodes the history of previously experienced conflict and influences subsequent adaptation to conflict on a trial-by-trial basis. This neural system became active in anticipation of stimulus onsets during preparatory periods and interacted with a second neural system engaged during the processing of conflict. Our findings suggest that a dynamic interaction between a system that represents conflict history and a system that resolves conflict underlies the contextual adaptation to conflict. PMID:22072672

  9. Levels of processing and language modality specificity in working memory.

    PubMed

    Rudner, Mary; Karlsson, Thomas; Gunnarsson, Johan; Rönnberg, Jerker

    2013-03-01

    Neural networks underpinning working memory demonstrate sign language specific components possibly related to differences in temporary storage mechanisms. A processing approach to memory systems suggests that the organisation of memory storage is related to type of memory processing as well. In the present study, we investigated for the first time semantic, phonological and orthographic processing in working memory for sign- and speech-based language. During fMRI we administered a picture-based 2-back working memory task with Semantic, Phonological, Orthographic and Baseline conditions to 11 deaf signers and 20 hearing non-signers. Behavioural data showed poorer and slower performance for both groups in Phonological and Orthographic conditions than in the Semantic condition, in line with depth-of-processing theory. An exclusive masking procedure revealed distinct sign-specific neural networks supporting working memory components at all three levels of processing. The overall pattern of sign-specific activations may reflect a relative intermodality difference in the relationship between phonology and semantics influencing working memory storage and processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Distinct Neural-Functional Effects of Treatments With Selective Serotonin Reuptake Inhibitors, Electroconvulsive Therapy, and Transcranial Magnetic Stimulation and Their Relations to Regional Brain Function in Major Depression: A Meta-analysis.

    PubMed

    Chau, David T; Fogelman, Phoebe; Nordanskog, Pia; Drevets, Wayne C; Hamilton, J Paul

    2017-05-01

    Functional neuroimaging studies have examined the neural substrates of treatments for major depressive disorder (MDD). Low sample size and methodological heterogeneity, however, undermine the generalizability of findings from individual studies. We conducted a meta-analysis to identify reliable neural changes resulting from different modes of treatment for MDD and compared them with each other and with reliable neural functional abnormalities observed in depressed versus control samples. We conducted a meta-analysis of studies reporting changes in brain activity (e.g., as indexed by positron emission tomography) following treatments with selective serotonin reuptake inhibitors (SSRIs), electroconvulsive therapy (ECT), or transcranial magnetic stimulation. Additionally, we examined the statistical reliability of overlap among thresholded meta-analytic SSRI, ECT, and transcranial magnetic stimulation maps as well as a map of abnormal neural function in MDD. Our meta-analysis revealed that 1) SSRIs decrease activity in the anterior insula, 2) ECT decreases activity in central nodes of the default mode network, 3) transcranial magnetic stimulation does not result in reliable neural changes, and 4) regional effects of these modes of treatment do not significantly overlap with each other or with regions showing reliable functional abnormality in MDD. SSRIs and ECT produce neurally distinct effects relative to each other and to the functional abnormalities implicated in depression. These treatments therefore may exert antidepressant effects by diminishing neural functions not implicated in depression but that nonetheless impact mood. We discuss how the distinct neural changes resulting from SSRIs and ECT can account for both treatment effects and side effects from these therapies as well as how to individualize these treatments. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Distinct but Overlapping Patterns of Response to Words and Faces in the Fusiform Gyrus.

    PubMed

    Harris, Richard J; Rice, Grace E; Young, Andrew W; Andrews, Timothy J

    2016-07-01

    Converging evidence suggests that the fusiform gyrus is involved in the processing of both faces and words. We used fMRI to investigate the extent to which the representation of words and faces in this region of the brain is based on a common neural representation. In Experiment 1, a univariate analysis revealed regions in the fusiform gyrus that were only selective for faces and other regions that were only selective for words. However, we also found regions that showed both word-selective and face-selective responses, particularly in the left hemisphere. We then used a multivariate analysis to measure the pattern of response to faces and words. Despite the overlap in regional responses, we found distinct patterns of response to both faces and words in the left and right fusiform gyrus. In Experiment 2, fMR adaptation was used to determine whether information about familiar faces and names is integrated in the fusiform gyrus. Distinct regions of the fusiform gyrus showed adaptation to either familiar faces or familiar names. However, there was no adaptation to sequences of faces and names with the same identity. Taken together, these results provide evidence for distinct, but overlapping, neural representations for words and faces in the fusiform gyrus. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Selective attention on representations in working memory: cognitive and neural mechanisms.

    PubMed

    Ku, Yixuan

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  13. Selective attention on representations in working memory: cognitive and neural mechanisms

    PubMed Central

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory. PMID:29629245

  14. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning

    PubMed Central

    Schad, Daniel J.; Jünger, Elisabeth; Sebold, Miriam; Garbusow, Maria; Bernhardt, Nadine; Javadi, Amir-Homayoun; Zimmermann, Ulrich S.; Smolka, Michael N.; Heinz, Andreas; Rapp, Michael A.; Huys, Quentin J. M.

    2014-01-01

    Theories of decision-making and its neural substrates have long assumed the existence of two distinct and competing valuation systems, variously described as goal-directed vs. habitual, or, more recently and based on statistical arguments, as model-free vs. model-based reinforcement-learning. Though both have been shown to control choices, the cognitive abilities associated with these systems are under ongoing investigation. Here we examine the link to cognitive abilities, and find that individual differences in processing speed covary with a shift from model-free to model-based choice control in the presence of above-average working memory function. This suggests shared cognitive and neural processes; provides a bridge between literatures on intelligence and valuation; and may guide the development of process models of different valuation components. Furthermore, it provides a rationale for individual differences in the tendency to deploy valuation systems, which may be important for understanding the manifold neuropsychiatric diseases associated with malfunctions of valuation. PMID:25566131

  15. Distinct Neural Circuits Support Transient and Sustained Processes in Prospective Memory and Working Memory

    PubMed Central

    West, Robert; Braver, Todd

    2009-01-01

    Current theories are divided as to whether prospective memory (PM) involves primarily sustained processes such as strategic monitoring, or transient processes such as the retrieval of intentions from memory when a relevant cue is encountered. The current study examined the neural correlates of PM using a functional magnetic resonance imaging design that allows for the decomposition of brain activity into sustained and transient components. Performance of the PM task was primarily associated with sustained responses in a network including anterior prefrontal cortex (lateral Brodmann area 10), and these responses were dissociable from sustained responses associated with active maintenance in working memory. Additionally, the sustained responses in anterior prefrontal cortex correlated with faster response times for prospective responses. Prospective cues also elicited selective transient activity in a region of interest along the right middle temporal gyrus. The results support the conclusion that both sustained and transient processes contribute to efficient PM and provide novel constraints on the functional role of anterior PFC in higher-order cognition. PMID:18854581

  16. Do intuitive and deliberate judgments rely on two distinct neural systems? A case study in face processing

    PubMed Central

    Mega, Laura F.; Gigerenzer, Gerd; Volz, Kirsten G.

    2015-01-01

    Arguably the most influential models of human decision-making today are based on the assumption that two separable systems – intuition and deliberation – underlie the judgments that people make. Our recent work is among the first to present neural evidence contrary to the predictions of these dual-systems accounts. We measured brain activations using functional magnetic resonance imaging while participants were specifically instructed to either intuitively or deliberately judge the authenticity of emotional facial expressions. Results from three different analyses revealed both common brain networks of activation across decision mode and differential activations as a function of strategy adherence. We take our results to contradict popular dual-systems accounts that propose a clear-cut dichotomy of the processing systems, and to support rather a unified model. According to this, intuitive and deliberate judgment processes rely on the same rules, though only the former are thought to be characterized by non-conscious processing. PMID:26379523

  17. TMS uncovers details about sub-regional language-specific processing networks in early bilinguals.

    PubMed

    Hämäläinen, Sini; Mäkelä, Niko; Sairanen, Viljami; Lehtonen, Minna; Kujala, Teija; Leminen, Alina

    2018-05-01

    Despite numerous functional neuroimaging and intraoperative electrical cortical mapping studies aimed at investigating the cortical organisation of native (L1) and second (L2) language processing, the neural underpinnings of bilingualism remain elusive. We investigated whether the neural network engaged in speech production over the bilateral posterior inferior frontal gyrus (pIFG) is the same (i.e., shared) or different (i.e., language-specific) for the two languages of bilingual speakers. Navigated transcranial magnetic stimulation (TMS) was applied over the left and right posterior inferior gyrus (pIFG), while early simultaneous bilinguals performed a picture naming task with their native languages. An ex-Gaussian distribution was fitted to the naming latencies and the resulting parameters were compared between languages and across stimulation conditions. The results showed that although the naming performance in general was highly comparable between the languages, TMS produced a language-specific effect when the pulses were delivered to the left pIFG at 200 ms poststimulus. We argue that this result causally demonstrates, for the first time, that even within common language-processing areas, there are distinct language-specific neural populations for the different languages in early simultaneous bilinguals. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Neural and neurochemical basis of reinforcement-guided decision making.

    PubMed

    Khani, Abbas; Rainer, Gregor

    2016-08-01

    Decision making is an adaptive behavior that takes into account several internal and external input variables and leads to the choice of a course of action over other available and often competing alternatives. While it has been studied in diverse fields ranging from mathematics, economics, ecology, and ethology to psychology and neuroscience, recent cross talk among perspectives from different fields has yielded novel descriptions of decision processes. Reinforcement-guided decision making models are based on economic and reinforcement learning theories, and their focus is on the maximization of acquired benefit over a defined period of time. Studies based on reinforcement-guided decision making have implicated a large network of neural circuits across the brain. This network includes a wide range of cortical (e.g., orbitofrontal cortex and anterior cingulate cortex) and subcortical (e.g., nucleus accumbens and subthalamic nucleus) brain areas and uses several neurotransmitter systems (e.g., dopaminergic and serotonergic systems) to communicate and process decision-related information. This review discusses distinct as well as overlapping contributions of these networks and neurotransmitter systems to the processing of decision making. We end the review by touching on neural circuitry and neuromodulatory regulation of exploratory decision making. Copyright © 2016 the American Physiological Society.

  19. Development of the posterior neural tube in human embryos.

    PubMed

    Saitsu, Hirotomo; Yamada, Shigehito; Uwabe, Chigako; Ishibashi, Makoto; Shiota, Kohei

    2004-12-01

    Development of the posterior neural tube (PNT) in human embryos is a complicated process that involves both primary and secondary neurulation. Because normal development of the PNT is not fully understood, pathogenesis of spinal neural tube defects remains elusive. To clarify the mechanism of PNT development, we histologically examined 20 human embryos around the stage of posterior neuropore closure and found that the developing PNT can be divided into three parts: 1) the most rostral region, which corresponds to the posterior part of the primary neural tube, 2) the junctional region of the primary and secondary neural tubes, and 3) the caudal region, which emerges from the neural cord. In the junctional region, the axially-condensed mesenchyme (AM) intervened between the neural plate/tube and the notochord at the stage of posterior neuropore closure, while the notochord was directly attached to the neural plate/tube in the most rostral region. A single cavity was found to be formed in the AM as the presumptive luminal surface cells were radially aligned in the junctional region prior to the formation of the neural cord. The single cavity was continuous with the central cavity of the primary neural tube. In contrast, multiple or isolated cavities were frequently observed in the caudal region of the PNT. Our observation suggests that the junctional region of the PNT is distinct from other regions in terms of the relationship with the notochord and the mode of cavitation during secondary neurulation.

  20. Retrieving Tract Variables From Acoustics: A Comparison of Different Machine Learning Strategies.

    PubMed

    Mitra, Vikramjit; Nam, Hosung; Espy-Wilson, Carol Y; Saltzman, Elliot; Goldstein, Louis

    2010-09-13

    Many different studies have claimed that articulatory information can be used to improve the performance of automatic speech recognition systems. Unfortunately, such articulatory information is not readily available in typical speaker-listener situations. Consequently, such information has to be estimated from the acoustic signal in a process which is usually termed "speech-inversion." This study aims to propose and compare various machine learning strategies for speech inversion: Trajectory mixture density networks (TMDNs), feedforward artificial neural networks (FF-ANN), support vector regression (SVR), autoregressive artificial neural network (AR-ANN), and distal supervised learning (DSL). Further, using a database generated by the Haskins Laboratories speech production model, we test the claim that information regarding constrictions produced by the distinct organs of the vocal tract (vocal tract variables) is superior to flesh-point information (articulatory pellet trajectories) for the inversion process.

  1. Economic decision-making in the ultimatum game by smokers.

    PubMed

    Takahashi, Taiki

    2007-10-01

    No study to date compared degrees of inequity aversion in economic decision-making in the ultimatum game between non-addictive and addictive reinforcers. The comparison is potentially important in neuroeconomics and reinforcement learning theory of addiction. We compared the degrees of inequity aversion in the ultimatum game between money and cigarettes in habitual smokers. Smokers avoided inequity in the ultimatum game more dramatically for money than for cigarettes; i.e., there was a "domain effect" in decision-making in the ultimatum game. Reward-processing neural activities in the brain for non-addictive and addictive reinforcers may be distinct and the insula activation due to cue-induced craving may conflict with unfair offer-induced insula activation. Future studies in neuroeconomics of addiction should employ game-theoretic decision tasks for elucidating reinforcement learning processes in dopaminergic neural circuits.

  2. Personal Familiarity Influences the Processing of Upright and Inverted Faces in Infants

    PubMed Central

    Balas, Benjamin J.; Nelson, Charles A.; Westerlund, Alissa; Vogel-Farley, Vanessa; Riggins, Tracy; Kuefner, Dana

    2009-01-01

    Infant face processing becomes more selective during the first year of life as a function of varying experience with distinct face categories defined by species, race, and age. Given that any individual face belongs to many such categories (e.g. A young Caucasian man's face) we asked how the neural selectivity for one aspect of facial appearance was affected by category membership along another dimension of variability. 6-month-old infants were shown upright and inverted pictures of either their own mother or a stranger while event-related potentials (ERPs) were recorded. We found that the amplitude of the P400 (a face-sensitive ERP component) was only sensitive to the orientation of the mother's face, suggesting that “tuning” of the neural response to faces is realized jointly across multiple dimensions of face appearance. PMID:20204154

  3. Distinct Patterns of Neural Activity during Memory Formation of Nonwords versus Words

    PubMed Central

    Otten, Leun J.; Sveen, Josefin; Quayle, Angela H.

    2008-01-01

    Research into the neural underpinnings of memory formation has focused on the encoding of familiar verbal information. Here, we address how the brain supports the encoding of novel information that does not have meaning. Electrical brain activity was recorded from the scalps of healthy young adults while they performed an incidental encoding task (syllable judgments) on separate series of words and ‘nonwords’ (nonsense letter strings that are orthographically legal and pronounceable). Memory for the items was then probed with a recognition memory test. For words as well as nonwords, event-related potentials differed depending on whether an item would subsequently be remembered or forgotten. However, the polarity and timing of the effect varied across item type. For words, subsequently remembered items showed the usually observed positive-going, frontally-distributed modulation from around 600 ms after word onset. For nonwords, by contrast, a negative-going, spatially widespread modulation predicted encoding success from 1000 ms onwards. Nonwords also showed a modulation shortly after item onset. These findings imply that the brain supports the encoding of familiar and unfamiliar letter strings in qualitatively different ways, including the engagement of distinct neural activity at different points in time. The processing of semantic attributes plays an important role in the encoding of words and the associated positive frontal modulation. PMID:17958481

  4. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.

    PubMed

    Sebastian, Alexandra; Rössler, Kora; Wibral, Michael; Mobascher, Arian; Lieb, Klaus; Jung, Patrick; Tüscher, Oliver

    2017-10-04

    In stimulus-selective stop-signal tasks, the salient stop signal needs attentional processing before genuine response inhibition is completed. Differential prefrontal involvement in attentional capture and response inhibition has been linked to the right inferior frontal junction (IFJ) and ventrolateral prefrontal cortex (VLPFC), respectively. Recently, it has been suggested that stimulus-selective stopping may be accomplished by the following different strategies: individuals may selectively inhibit their response only upon detecting a stop signal (independent discriminate then stop strategy) or unselectively whenever detecting a stop or attentional capture signal (stop then discriminate strategy). Alternatively, the discrimination process of the critical signal (stop vs attentional capture signal) may interact with the go process (dependent discriminate then stop strategy). Those different strategies might differentially involve attention- and stopping-related processes that might be implemented by divergent neural networks. This should lead to divergent activation patterns and, if disregarded, interfere with analyses in neuroimaging studies. To clarify this crucial issue, we studied 87 human participants of both sexes during a stimulus-selective stop-signal task and performed strategy-dependent functional magnetic resonance imaging analyses. We found that, regardless of the strategy applied, outright stopping displayed indistinguishable brain activation patterns. However, during attentional capture different strategies resulted in divergent neural activation patterns with variable activation of right IFJ and bilateral VLPFC. In conclusion, the neural network involved in outright stopping is ubiquitous and independent of strategy, while different strategies impact on attention-related processes and underlying neural network usage. Strategic differences should therefore be taken into account particularly when studying attention-related processes in stimulus-selective stopping. SIGNIFICANCE STATEMENT Dissociating inhibition from attention has been a major challenge for the cognitive neuroscience of executive functions. Selective stopping tasks have been instrumental in addressing this question. However, recent theoretical, cognitive and behavioral research suggests that different strategies are applied in successful execution of the task. The underlying strategy-dependent neural networks might differ substantially. Here, we show evidence that, regardless of the strategy used, the neural network involved in outright stopping is ubiquitous. However, significant differences can only be found in the attention-related processes underlying those different strategies. Thus, when studying attentional processing of salient stop signals, strategic differences should be considered. In contrast, the neural networks implementing outright stopping seem less or not at all affected by strategic differences. Copyright © 2017 the authors 0270-6474/17/379786-10$15.00/0.

  5. Msx1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals.

    PubMed

    Bélanger, Marie-Claude; Robert, Benoit; Cayouette, Michel

    2017-01-23

    In lower vertebrates, stem/progenitor cells located in a peripheral domain of the retina, called the ciliary margin zone (CMZ), cooperate with retinal domain progenitors to build the mature neural retina. In mammals, it is believed that the CMZ lacks neurogenic potential and that the retina develops from one pool of multipotent retinal progenitor cells (RPCs). Here we identify a population of Msx1-expressing progenitors in the mouse CMZ that is both molecularly and functionally distinct from RPCs. Using genetic lineage tracing, we report that Msx1 progenitors have unique developmental properties compared with RPCs. Msx1 lineages contain both neural retina and non-neural ciliary epithelial progenies and overall generate fewer photoreceptors than classical RPC lineages. Furthermore, we show that the endocytic adaptor protein Numb regulates the balance between neural and non-neural fates in Msx1 progenitors. These results uncover a population of CMZ progenitors, distinct from classical RPCs, that also contributes to mammalian retinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Neural networks for dimensionality reduction of fluorescence spectra and prediction of drinking water disinfection by-products.

    PubMed

    Peleato, Nicolas M; Legge, Raymond L; Andrews, Robert C

    2018-06-01

    The use of fluorescence data coupled with neural networks for improved predictability of drinking water disinfection by-products (DBPs) was investigated. Novel application of autoencoders to process high-dimensional fluorescence data was related to common dimensionality reduction techniques of parallel factors analysis (PARAFAC) and principal component analysis (PCA). The proposed method was assessed based on component interpretability as well as for prediction of organic matter reactivity to formation of DBPs. Optimal prediction accuracies on a validation dataset were observed with an autoencoder-neural network approach or by utilizing the full spectrum without pre-processing. Latent representation by an autoencoder appeared to mitigate overfitting when compared to other methods. Although DBP prediction error was minimized by other pre-processing techniques, PARAFAC yielded interpretable components which resemble fluorescence expected from individual organic fluorophores. Through analysis of the network weights, fluorescence regions associated with DBP formation can be identified, representing a potential method to distinguish reactivity between fluorophore groupings. However, distinct results due to the applied dimensionality reduction approaches were observed, dictating a need for considering the role of data pre-processing in the interpretability of the results. In comparison to common organic measures currently used for DBP formation prediction, fluorescence was shown to improve prediction accuracies, with improvements to DBP prediction best realized when appropriate pre-processing and regression techniques were applied. The results of this study show promise for the potential application of neural networks to best utilize fluorescence EEM data for prediction of organic matter reactivity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The functional neuroanatomy of autobiographical memory: A meta-analysis

    PubMed Central

    Svoboda, Eva; McKinnon, Margaret C.; Levine, Brian

    2007-01-01

    Autobiographical memory (AM) entails a complex set of operations, including episodic memory, self-reflection, emotion, visual imagery, attention, executive functions, and semantic processes. The heterogeneous nature of AM poses significant challenges in capturing its behavioral and neuroanatomical correlates. Investigators have recently turned their attention to the functional neuroanatomy of AM. We used the effect-location method of meta-analysis to analyze data from 24 functional imaging studies of AM. The results indicated a core neural network of left-lateralized regions, including the medial and ventrolateral prefrontal, medial and lateral temporal and retrosplenial/posterior cingulate cortices, the temporoparietal junction and the cerebellum. Secondary and tertiary regions, less frequently reported in imaging studies of AM, are also identified. We examined the neural correlates of putative component processes in AM, including, executive functions, self-reflection, episodic remembering and visuospatial processing. We also separately analyzed the effect of select variables on the AM network across individual studies, including memory age, qualitative factors (personal significance, level of detail and vividness), semantic and emotional content, and the effect of reference conditions. We found that memory age effects on medial temporal lobe structures may be modulated by qualitative aspects of memory. Studies using rest as a control task masked process-specific components of the AM neural network. Our findings support a neural distinction between episodic and semantic memory in AM. Finally, emotional events produced a shift in lateralization of the AM network with activation observed in emotion-centered regions and deactivation (or lack of activation) observed in regions associated with cognitive processes. PMID:16806314

  8. Multi-voxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    PubMed Central

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350

  9. Children's neural processing of moral scenarios provides insight into the formation and reduction of in-group biases.

    PubMed

    Meidenbauer, Kimberly L; Cowell, Jason M; Decety, Jean

    2018-04-25

    Survival is dependent on sociality within groups which ensure sustenance and protection. From an early age, children show a natural tendency to sort people into groups and discriminate among them. The computations guiding evaluation of third-party behaviors are complex, requiring integration of intent, consequences, and knowledge of group affiliation. This study examined how perceiving third-party morally laden behavior influences children's likelihood to exhibit or reduce group bias. Following a minimal group paradigm assignment, young children (4-7 years) performed a moral evaluation task where group affiliations and moral actions were systematically juxtaposed, so that they were exposed to disproportionately antisocial in-group and prosocial out-group scenarios. Electroencephalography was recorded, and group preference was assessed with a resource allocation game before and after the EEG session. Across all children, evaluations of others' moral actions arose from early and automatic processing (~150 ms), followed by later interactive processing of affiliation and moral valence (~500 ms). Importantly, individual differences in bias manifestation and attitude change were predicted by children's neural responses. Children with high baseline bias selectively exhibited a rapid detection (~200 ms) of scenarios inconsistent with their bias (in-group harm and out-group help). Changes in bias corresponded to distinct patterns in longer latency neural processing. These new developmental neuroscience findings elucidate the multifaceted processing involved in moral evaluation of others' actions, their group affiliations, the nature of the integration of both into full judgments, and the relation of individual differences in neural responses to social decision-making in childhood. © 2018 John Wiley & Sons Ltd.

  10. Sleep Disrupts High-Level Speech Parsing Despite Significant Basic Auditory Processing.

    PubMed

    Makov, Shiri; Sharon, Omer; Ding, Nai; Ben-Shachar, Michal; Nir, Yuval; Zion Golumbic, Elana

    2017-08-09

    The extent to which the sleeping brain processes sensory information remains unclear. This is particularly true for continuous and complex stimuli such as speech, in which information is organized into hierarchically embedded structures. Recently, novel metrics for assessing the neural representation of continuous speech have been developed using noninvasive brain recordings that have thus far only been tested during wakefulness. Here we investigated, for the first time, the sleeping brain's capacity to process continuous speech at different hierarchical levels using a newly developed Concurrent Hierarchical Tracking (CHT) approach that allows monitoring the neural representation and processing-depth of continuous speech online. Speech sequences were compiled with syllables, words, phrases, and sentences occurring at fixed time intervals such that different linguistic levels correspond to distinct frequencies. This enabled us to distinguish their neural signatures in brain activity. We compared the neural tracking of intelligible versus unintelligible (scrambled and foreign) speech across states of wakefulness and sleep using high-density EEG in humans. We found that neural tracking of stimulus acoustics was comparable across wakefulness and sleep and similar across all conditions regardless of speech intelligibility. In contrast, neural tracking of higher-order linguistic constructs (words, phrases, and sentences) was only observed for intelligible speech during wakefulness and could not be detected at all during nonrapid eye movement or rapid eye movement sleep. These results suggest that, whereas low-level auditory processing is relatively preserved during sleep, higher-level hierarchical linguistic parsing is severely disrupted, thereby revealing the capacity and limits of language processing during sleep. SIGNIFICANCE STATEMENT Despite the persistence of some sensory processing during sleep, it is unclear whether high-level cognitive processes such as speech parsing are also preserved. We used a novel approach for studying the depth of speech processing across wakefulness and sleep while tracking neuronal activity with EEG. We found that responses to the auditory sound stream remained intact; however, the sleeping brain did not show signs of hierarchical parsing of the continuous stream of syllables into words, phrases, and sentences. The results suggest that sleep imposes a functional barrier between basic sensory processing and high-level cognitive processing. This paradigm also holds promise for studying residual cognitive abilities in a wide array of unresponsive states. Copyright © 2017 the authors 0270-6474/17/377772-10$15.00/0.

  11. Early distinction system of mine fire in underground by using a neural-network system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohga, Kotaro; Higuchi, Kiyoshi

    1996-12-31

    In our laboratory, a new detection system using smell detectors was developed to detect the spontaneous combustion of coal and the combustion of other materials used underground. The results of experiments clearly the combustion of materials can be detected earlier by this detection system than by conventional detectors for gas and smoke, and there were significant differences between output data from each smell detector for coal, rubber, oil and wood. In order to discern the source of combustion gases, we have been developing a distinction system using a neural-network system. It has shown successful results in laboratory tests. This papermore » describes our detection system using smell detectors and our distinction system which uses a neural-network system, and presents results of experiments using both systems.« less

  12. A common neural hub resolves syntactic and non-syntactic conflict through cooperation with task-specific networks.

    PubMed

    Hsu, Nina S; Jaeggi, Susanne M; Novick, Jared M

    2017-03-01

    Regions within the left inferior frontal gyrus (LIFG) have simultaneously been implicated in syntactic processing and cognitive control. Accounts attempting to unify LIFG's function hypothesize that, during comprehension, cognitive control resolves conflict between incompatible representations of sentence meaning. Some studies demonstrate co-localized activity within LIFG for syntactic and non-syntactic conflict resolution, suggesting domain-generality, but others show non-overlapping activity, suggesting domain-specific cognitive control and/or regions that respond uniquely to syntax. We propose however that examining exclusive activation sites for certain contrasts creates a false dichotomy: both domain-general and domain-specific neural machinery must coordinate to facilitate conflict resolution across domains. Here, subjects completed four diverse tasks involving conflict -one syntactic, three non-syntactic- while undergoing fMRI. Though LIFG consistently activated within individuals during conflict processing, functional connectivity analyses revealed task-specific coordination with distinct brain networks. Thus, LIFG may function as a conflict-resolution "hub" that cooperates with specialized neural systems according to information content. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Trait self-esteem and neural activities related to self-evaluation and social feedback

    PubMed Central

    Yang, Juan; Xu, Xiaofan; Chen, Yu; Shi, Zhenhao; Han, Shihui

    2016-01-01

    Self-esteem has been associated with neural responses to self-reflection and attitude toward social feedback but in different brain regions. The distinct associations might arise from different tasks or task-related attitudes in the previous studies. The current study aimed to clarify these by investigating the association between self-esteem and neural responses to evaluation of one’s own personality traits and of others’ opinion about one’s own personality traits. We scanned 25 college students using functional MRI during evaluation of oneself or evaluation of social feedback. Trait self-esteem was measured using the Rosenberg self-esteem scale after scanning. Whole-brain regression analyses revealed that trait self-esteem was associated with the bilateral orbitofrontal activity during evaluation of one’s own positive traits but with activities in the medial prefrontal cortex, posterior cingulate, and occipital cortices during evaluation of positive social feedback. Our findings suggest that trait self-esteem modulates the degree of both affective processes in the orbitofrontal cortex during self-reflection and cognitive processes in the medial prefrontal cortex during evaluation of social feedback. PMID:26842975

  14. Trait self-esteem and neural activities related to self-evaluation and social feedback.

    PubMed

    Yang, Juan; Xu, Xiaofan; Chen, Yu; Shi, Zhenhao; Han, Shihui

    2016-02-04

    Self-esteem has been associated with neural responses to self-reflection and attitude toward social feedback but in different brain regions. The distinct associations might arise from different tasks or task-related attitudes in the previous studies. The current study aimed to clarify these by investigating the association between self-esteem and neural responses to evaluation of one's own personality traits and of others' opinion about one's own personality traits. We scanned 25 college students using functional MRI during evaluation of oneself or evaluation of social feedback. Trait self-esteem was measured using the Rosenberg self-esteem scale after scanning. Whole-brain regression analyses revealed that trait self-esteem was associated with the bilateral orbitofrontal activity during evaluation of one's own positive traits but with activities in the medial prefrontal cortex, posterior cingulate, and occipital cortices during evaluation of positive social feedback. Our findings suggest that trait self-esteem modulates the degree of both affective processes in the orbitofrontal cortex during self-reflection and cognitive processes in the medial prefrontal cortex during evaluation of social feedback.

  15. Perception of Upright: Multisensory Convergence and the Role of Temporo-Parietal Cortex

    PubMed Central

    Kheradmand, Amir; Winnick, Ariel

    2017-01-01

    We inherently maintain a stable perception of the world despite frequent changes in the head, eye, and body positions. Such “orientation constancy” is a prerequisite for coherent spatial perception and sensorimotor planning. As a multimodal sensory reference, perception of upright represents neural processes that subserve orientation constancy through integration of sensory information encoding the eye, head, and body positions. Although perception of upright is distinct from perception of body orientation, they share similar neural substrates within the cerebral cortical networks involved in perception of spatial orientation. These cortical networks, mainly within the temporo-parietal junction, are crucial for multisensory processing and integration that generate sensory reference frames for coherent perception of self-position and extrapersonal space transformations. In this review, we focus on these neural mechanisms and discuss (i) neurobehavioral aspects of orientation constancy, (ii) sensory models that address the neurophysiology underlying perception of upright, and (iii) the current evidence for the role of cerebral cortex in perception of upright and orientation constancy, including findings from the neurological disorders that affect cortical function. PMID:29118736

  16. Skeletogenesis in the swell shark Cephaloscyllium ventriosum.

    PubMed

    Eames, B Frank; Allen, Nancy; Young, Jonathan; Kaplan, Angelo; Helms, Jill A; Schneider, Richard A

    2007-05-01

    Extant chondrichthyans possess a predominantly cartilaginous skeleton, even though primitive chondrichthyans produced bone. To gain insights into this peculiar skeletal evolution, and in particular to evaluate the extent to which chondrichthyan skeletogenesis retains features of an osteogenic programme, we performed a histological, histochemical and immunohistochemical analysis of the entire embryonic skeleton during development of the swell shark Cephaloscyllium ventriosum. Specifically, we compared staining properties among various mineralizing tissues, including neural arches of the vertebrae, dermal tissues supporting oral denticles and Meckel's cartilage of the lower jaw. Patterns of mineralization were predicted by spatially restricted alkaline phosphatase activity earlier in development. Regarding evidence for an osteogenic programme in extant sharks, a mineralized tissue in the perichondrium of C. ventriosum neural arches, and to a lesser extent a tissue supporting the oral denticle, displayed numerous properties of bone. Although we uncovered many differences between tissues in Meckel's cartilage and neural arches of C. ventriosum, both elements impart distinct tissue characteristics to the perichondral region. Considering the evolution of osteogenic processes, shark skeletogenesis may illuminate the transition from perichondrium to periosteum, which is a major bone-forming tissue during the process of endochondral ossification.

  17. Cellular and Synaptic Properties of Local Inhibitory Circuits.

    PubMed

    Hull, Court

    2017-05-01

    Inhibitory interneurons play a key role in sculpting the information processed by neural circuits. Despite the wide range of physiologically and morphologically distinct types of interneurons that have been identified, common principles have emerged that have shed light on how synaptic inhibition operates, both mechanistically and functionally, across cell types and circuits. This introduction summarizes how electrophysiological approaches have been used to illuminate these key principles, including basic interneuron circuit motifs, the functional properties of inhibitory synapses, and the main roles for synaptic inhibition in regulating neural circuit function. It also highlights how some key electrophysiological methods and experiments have advanced our understanding of inhibitory synapse function. © 2017 Cold Spring Harbor Laboratory Press.

  18. Resting-state functional connectivity differentiates anxious apprehension and anxious arousal.

    PubMed

    Burdwood, Erin N; Infantolino, Zachary P; Crocker, Laura D; Spielberg, Jeffrey M; Banich, Marie T; Miller, Gregory A; Heller, Wendy

    2016-10-01

    Brain regions in the default mode network (DMN) display greater functional connectivity at rest or during self-referential processing than during goal-directed tasks. The present study assessed resting-state connectivity as a function of anxious apprehension and anxious arousal, independent of depressive symptoms, in order to understand how these dimensions disrupt cognition. Whole-brain, seed-based analyses indicated differences between anxious apprehension and anxious arousal in DMN functional connectivity. Lower connectivity associated with higher anxious apprehension suggests decreased adaptive, inner-focused thought processes, whereas higher connectivity at higher levels of anxious arousal may reflect elevated monitoring of physiological responses to threat. These findings further the conceptualization of anxious apprehension and anxious arousal as distinct psychological dimensions with distinct neural instantiations. © 2016 Society for Psychophysiological Research.

  19. Central auditory neurons have composite receptive fields.

    PubMed

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-02

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.

  20. Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains

    PubMed Central

    Litwin-Kumar, Ashok; Oswald, Anne-Marie M.; Urban, Nathaniel N.; Doiron, Brent

    2011-01-01

    Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states. PMID:22215995

  1. Neuroanatomic organization of sound memory in humans.

    PubMed

    Kraut, Michael A; Pitcock, Jeffery A; Calhoun, Vince; Li, Juan; Freeman, Thomas; Hart, John

    2006-11-01

    The neural interface between sensory perception and memory is a central issue in neuroscience, particularly initial memory organization following perceptual analyses. We used functional magnetic resonance imaging to identify anatomic regions extracting initial auditory semantic memory information related to environmental sounds. Two distinct anatomic foci were detected in the right superior temporal gyrus when subjects identified sounds representing either animals or threatening items. Threatening animal stimuli elicited signal changes in both foci, suggesting a distributed neural representation. Our results demonstrate both category- and feature-specific responses to nonverbal sounds in early stages of extracting semantic memory information from these sounds. This organization allows for these category-feature detection nodes to extract early, semantic memory information for efficient processing of transient sound stimuli. Neural regions selective for threatening sounds are similar to those of nonhuman primates, demonstrating semantic memory organization for basic biological/survival primitives are present across species.

  2. Locating the cortical bottleneck for slow reading in peripheral vision

    PubMed Central

    Yu, Deyue; Jiang, Yi; Legge, Gordon E.; He, Sheng

    2015-01-01

    Yu, Legge, Park, Gage, and Chung (2010) suggested that the neural bottleneck for slow peripheral reading is located in nonretinotopic areas. We investigated the potential rate-limiting neural site for peripheral reading using fMRI, and contrasted peripheral reading with recognition of peripherally presented line drawings of common objects. We measured the BOLD responses to both text (three-letter words/nonwords) and line-drawing objects presented either in foveal or peripheral vision (10° lower right visual field) at three presentation rates (2, 4, and 8/second). The statistically significant interaction effect of visual field × presentation rate on the BOLD response for text but not for line drawings provides evidence for distinctive processing of peripheral text. This pattern of results was obtained in all five regions of interest (ROIs). At the early retinotopic cortical areas, the BOLD signal slightly increased with increasing presentation rate for foveal text, and remained fairly constant for peripheral text. In the Occipital Word-Responsive Area (OWRA), Visual Word Form Area (VWFA), and object sensitive areas (LO and PHA), the BOLD responses to text decreased with increasing presentation rate for peripheral but not foveal presentation. In contrast, there was no rate-dependent reduction in BOLD response for line-drawing objects in all the ROIs for either foveal or peripheral presentation. Only peripherally presented text showed a distinctive rate-dependence pattern. Although it is possible that the differentiation starts to emerge at the early retinotopic cortical representation, the neural bottleneck for slower reading of peripherally presented text may be a special property of peripheral text processing in object category selective cortex. PMID:26237299

  3. Neural changes associated to procedural learning and automatization process in Developmental Coordination Disorder and/or Developmental Dyslexia.

    PubMed

    Biotteau, Maëlle; Péran, Patrice; Vayssière, Nathalie; Tallet, Jessica; Albaret, Jean-Michel; Chaix, Yves

    2017-03-01

    Recent theories hypothesize that procedural learning may support the frequent overlap between neurodevelopmental disorders. The neural circuitry supporting procedural learning includes, among others, cortico-cerebellar and cortico-striatal loops. Alteration of these loops may account for the frequent comorbidity between Developmental Coordination Disorder (DCD) and Developmental Dyslexia (DD). The aim of our study was to investigate cerebral changes due to the learning and automatization of a sequence learning task in children with DD, or DCD, or both disorders. fMRI on 48 children (aged 8-12) with DD, DCD or DD + DCD was used to explore their brain activity during procedural tasks, performed either after two weeks of training or in the early stage of learning. Firstly, our results indicate that all children were able to perform the task with the same level of automaticity, but recruit different brain processes to achieve the same performance. Secondly, our fMRI results do not appear to confirm Nicolson and Fawcett's model. The neural correlates recruited for procedural learning by the DD and the comorbid groups are very close, while the DCD group presents distinct characteristics. This provide a promising direction on the neural mechanisms associated with procedural learning in neurodevelopmental disorders and for understanding comorbidity. Published by Elsevier Ltd.

  4. Using Neural Pattern Classifiers to Quantify the Modularity of Conflict–Control Mechanisms in the Human Brain

    PubMed Central

    Jiang, Jiefeng; Egner, Tobias

    2014-01-01

    Resolving conflicting sensory and motor representations is a core function of cognitive control, but it remains uncertain to what degree control over different sources of conflict is implemented by shared (domain general) or distinct (domain specific) neural resources. Behavioral data suggest conflict–control to be domain specific, but results from neuroimaging studies have been ambivalent. Here, we employed multivoxel pattern analyses that can decode a brain region's informational content, allowing us to distinguish incidental activation overlap from actual shared information processing. We trained independent sets of “searchlight” classifiers on functional magnetic resonance imaging data to decode control processes associated with stimulus-conflict (Stroop task) and ideomotor-conflict (Simon task). Quantifying the proportion of domain-specific searchlights (capable of decoding only one type of conflict) and domain-general searchlights (capable of decoding both conflict types) in each subject, we found both domain-specific and domain-general searchlights, though the former were more common. When mapping anatomical loci of these searchlights across subjects, neural substrates of stimulus- and ideomotor-specific conflict–control were found to be anatomically consistent across subjects, whereas the substrates of domain-general conflict–control were not. Overall, these findings suggest a hybrid neural architecture of conflict–control that entails both modular (domain specific) and global (domain general) components. PMID:23402762

  5. Distinct representations of subtraction and multiplication in the neural systems for numerosity and language

    PubMed Central

    Prado, Jérôme; Mutreja, Rachna; Zhang, Hongchuan; Mehta, Rucha; Desroches, Amy S.; Minas, Jennifer E.; Booth, James R.

    2010-01-01

    It has been proposed that recent cultural inventions such as symbolic arithmetic recycle evolutionary older neural mechanisms. A central assumption of this hypothesis is that the degree to which a pre-existing mechanism is recycled depends upon the degree of similarity between its initial function and the novel task. To test this assumption, we investigated whether the brain region involved in magnitude comparison in the intraparietal sulcus (IPS), localized by a numerosity comparison task, is recruited to a greater degree by arithmetic problems that involve number comparison (single-digit subtractions) than by problems that involve retrieving facts from memory (single-digit multiplications). Our results confirmed that subtractions are associated with greater activity in the IPS than multiplications, whereas multiplications elicit greater activity than subtractions in regions involved in verbal processing including the middle temporal gyrus and inferior frontal gyrus that were localized by a phonological processing task. Pattern analyses further indicated that the neural mechanisms more active for subtraction than multiplication in the IPS overlap with those involved in numerosity comparison, and that the strength of this overlap predicts inter-individual performance in the subtraction task. These findings provide novel evidence that elementary arithmetic relies on the co-option of evolutionary older neural circuits. PMID:21246667

  6. Compassion: an evolutionary analysis and empirical review.

    PubMed

    Goetz, Jennifer L; Keltner, Dacher; Simon-Thomas, Emiliana

    2010-05-01

    What is compassion? And how did it evolve? In this review, we integrate 3 evolutionary arguments that converge on the hypothesis that compassion evolved as a distinct affective experience whose primary function is to facilitate cooperation and protection of the weak and those who suffer. Our empirical review reveals compassion to have distinct appraisal processes attuned to undeserved suffering; distinct signaling behavior related to caregiving patterns of touch, posture, and vocalization; and a phenomenological experience and physiological response that orients the individual to social approach. This response profile of compassion differs from those of distress, sadness, and love, suggesting that compassion is indeed a distinct emotion. We conclude by considering how compassion shapes moral judgment and action, how it varies across different cultures, and how it may engage specific patterns of neural activation, as well as emerging directions of research. (c) 2010 APA, all rights reserved.

  7. Functionally integrated neural processing of linguistic and talker information: An event-related fMRI and ERP study.

    PubMed

    Zhang, Caicai; Pugh, Kenneth R; Mencl, W Einar; Molfese, Peter J; Frost, Stephen J; Magnuson, James S; Peng, Gang; Wang, William S-Y

    2016-01-01

    Speech signals contain information of both linguistic content and a talker's voice. Conventionally, linguistic and talker processing are thought to be mediated by distinct neural systems in the left and right hemispheres respectively, but there is growing evidence that linguistic and talker processing interact in many ways. Previous studies suggest that talker-related vocal tract changes are processed integrally with phonetic changes in the bilateral posterior superior temporal gyrus/superior temporal sulcus (STG/STS), because the vocal tract parameter influences the perception of phonetic information. It is yet unclear whether the bilateral STG is also activated by the integral processing of another parameter - pitch, which influences the perception of lexical tone information and is related to talker differences in tone languages. In this study, we conducted separate functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments to examine the spatial and temporal loci of interactions of lexical tone and talker-related pitch processing in Cantonese. We found that the STG was activated bilaterally during the processing of talker changes when listeners attended to lexical tone changes in the stimuli and during the processing of lexical tone changes when listeners attended to talker changes, suggesting that lexical tone and talker processing are functionally integrated in the bilateral STG. It extends the previous study, providing evidence for a general neural mechanism of integral phonetic and talker processing in the bilateral STG. The ERP results show interactions of lexical tone and talker processing 500-800ms after auditory word onset (a simultaneous posterior P3b and a frontal negativity). Moreover, there is some asymmetry in the interaction, such that unattended talker changes affect linguistic processing more than vice versa, which may be related to the ambiguity that talker changes cause in speech perception and/or attention bias to talker changes. Our findings have implications for understanding the neural encoding of linguistic and talker information. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Neural evidence for moral intuition and the temporal dynamics of interactions between emotional processes and moral cognition.

    PubMed

    Gui, Dan-Yang; Gan, Tian; Liu, Chao

    2016-01-01

    Behavioral and neurological studies have revealed that emotions influence moral cognition. Although moral stimuli are emotionally charged, the time course of interactions between emotions and moral judgments remains unknown. In the present study, we investigated the temporal dynamics of the interaction between emotional processes and moral cognition. The results revealed that when making moral judgments, the time course of the event-related potential (ERP) waveform was significantly different between high emotional arousal and low emotional arousal contexts. Different stages of processing were distinguished, showing distinctive interactions between emotional processes and moral reasoning. The precise time course of moral intuition and moral reasoning sheds new light on theoretical models of moral psychology. Specifically, the N1 component (interpreted as representing moral intuition) did not appear to be influenced by emotional arousal. However, the N2 component and late positive potential were strongly affected by emotional arousal; the slow wave was influenced by both emotional arousal and morality, suggesting distinct moral processing at different emotional arousal levels.

  9. Contrasting Specializations for Facial Motion Within the Macaque Face-Processing System

    PubMed Central

    Fisher, Clark; Freiwald, Winrich A.

    2014-01-01

    SUMMARY Facial motion transmits rich and ethologically vital information [1, 2], but how the brain interprets this complex signal is poorly understood. Facial form is analyzed by anatomically distinct face patches in the macaque brain [3, 4], and facial motion activates these patches and surrounding areas [5, 6]. Yet it is not known whether facial motion is processed by its own distinct and specialized neural machinery, and if so, what that machinery’s organization might be. To address these questions, we used functional magnetic resonance imaging (fMRI) to monitor the brain activity of macaque monkeys while they viewed low- and high-level motion and form stimuli. We found that, beyond classical motion areas and the known face patch system, moving faces recruited a heretofore-unrecognized face patch. Although all face patches displayed distinctive selectivity for face motion over object motion, only two face patches preferred naturally moving faces, while three others preferred randomized, rapidly varying sequences of facial form. This functional divide was anatomically specific, segregating dorsal from ventral face patches, thereby revealing a new organizational principle of the macaque face-processing system. PMID:25578903

  10. Parametric modulation of neural activity by emotion in youth with bipolar disorder, youth with severe mood dysregulation, and healthy volunteers.

    PubMed

    Thomas, Laura A; Brotman, Melissa A; Muhrer, Eli J; Rosen, Brooke H; Bones, Brian L; Reynolds, Richard C; Deveney, Christen M; Pine, Daniel S; Leibenluft, Ellen

    2012-12-01

    CONTEXT Youth with bipolar disorder (BD) and those with severe, nonepisodic irritability (severe mood dysregulation [SMD]) exhibit amygdala dysfunction during facial emotion processing. However, studies have not compared such patients with each other and with comparison individuals in neural responsiveness to subtle changes in facial emotion; the ability to process such changes is important for social cognition. To evaluate this, we used a novel, parametrically designed faces paradigm. OBJECTIVE To compare activation in the amygdala and across the brain in BD patients, SMD patients, and healthy volunteers (HVs). DESIGN Case-control study. SETTING Government research institute. PARTICIPANTS Fifty-seven youths (19 BD, 15 SMD, and 23 HVs). MAIN OUTCOME MEASURE Blood oxygenation level-dependent data. Neutral faces were morphed with angry and happy faces in 25% intervals; static facial stimuli appeared for 3000 milliseconds. Participants performed hostility or nonemotional facial feature (ie, nose width) ratings. The slope of blood oxygenation level-dependent activity was calculated across neutral-to-angry and neutral-to-happy facial stimuli. RESULTS In HVs, but not BD or SMD participants, there was a positive association between left amygdala activity and anger on the face. In the neutral-to-happy whole-brain analysis, BD and SMD participants modulated parietal, temporal, and medial-frontal areas differently from each other and from that in HVs; with increasing facial happiness, SMD patients demonstrated increased, and BD patients decreased, activity in the parietal, temporal, and frontal regions. CONCLUSIONS Youth with BD or SMD differ from HVs in modulation of amygdala activity in response to small changes in facial anger displays. In contrast, individuals with BD or SMD show distinct perturbations in regions mediating attention and face processing in association with changes in the emotional intensity of facial happiness displays. These findings demonstrate similarities and differences in the neural correlates of facial emotion processing in BD and SMD, suggesting that these distinct clinical presentations may reflect differing dysfunctions along a mood disorders spectrum.

  11. Parametric modulation of neural activity by emotion in youth with bipolar disorder, severe mood dysregulation, and healthy subjects

    PubMed Central

    Thomas, Laura A.; Brotman, Melissa A.; Muhrer, Eli M.; Rosen, Brooke H.; Bones, Brian L.; Reynolds, Richard C.; Deveney, Christen; Pine, Daniel S.; Leibenluft, Ellen

    2012-01-01

    Context Youth with bipolar disorder (BD) and those with severe, non-episodic irritability (severe mood dysregulation, SMD) show amygdala dysfunction during face emotion processing. However, studies have not compared such patients to each other and to comparison subjects in neural responsiveness to subtle changes in face emotion; the ability to process such changes is important for social cognition. We employed a novel parametrically designed faces paradigm. Objective Using a parametrically morphed emotional faces task, we compared activation in the amygdala and across the brain in BD, SMD, and healthy volunteers (HV). Design Case-control study. Setting Government research institute. Participants 57 youths (19 BD, 15 SMD, 23 HV). Main Outcome Measure Blood oxygenated level dependent (BOLD) data. Neutral faces were morphed with angry and happy faces in 25% intervals; static face stimuli appeared for 3000ms. Subjects performed hostility or non-emotional facial feature (i.e., nose width) ratings. Slope of BOLD activity was calculated across neutral-to-angry (N→A) and neutral-to-happy (N→H) face stimuli. Results In HV, but not BD or SMD, there was a positive association between left amygdala activity and anger on the face. In the N→H whole brain analysis, BD and SMD modulated parietal, temporal, and medial-frontal areas differently from each other and from HV; with increasing facial-happiness, SMD increased, while BD decreased, activity in parietal, temporal, and frontal regions. Conclusions Youth with BD or SMD differ from HV in modulation of amygdala activity in response to small changes in facial anger displays. In contrast, BD and SMD show distinct perturbations in regions mediating attention and face processing in association with changes in the emotional intensity of facial happiness displays. These findings demonstrate similarities and differences in the neural correlates of face emotion processing in BD and SMD, suggesting these distinct clinical presentations may reflect differing pathologies along a mood disorders spectrum. PMID:23026912

  12. Neuroimaging social emotional processing in women: fMRI study of script-driven imagery

    PubMed Central

    Dozois, David J. A.; Neufeld, Richard W. J.; Densmore, Maria; Stevens, Todd K.; Lanius, Ruth A.

    2011-01-01

    Emotion theory emphasizes the distinction between social vs non-social emotional-processing (E-P) although few functional neuroimaging studies have examined whether the neural systems that mediate social vs non-social E-P are similar or distinct. The present fMRI study of script-driven imagery in 20 women demonstrates that social E-P, independent of valence, more strongly recruits brain regions involved in social- and self-referential processing, specifically the dorsomedial prefrontal cortex, posterior cingulate/precuneus, bilateral temporal poles, bilateral temporoparietal junction and right amygdala. Functional response within brain regions involved in E-P was also significantly more pronounced during negatively relative to positively valenced E-P. Finally, the effect for social E-P was increased for positive relative to negative stimuli in many of these same regions. Future research directions for social and affective neuroscience are discussed. PMID:20525743

  13. Neural mechanisms of rhythm perception: current findings and future perspectives.

    PubMed

    Grahn, Jessica A

    2012-10-01

    Perception of temporal patterns is fundamental to normal hearing, speech, motor control, and music. Certain types of pattern understanding are unique to humans, such as musical rhythm. Although human responses to musical rhythm are universal, there is much we do not understand about how rhythm is processed in the brain. Here, I consider findings from research into basic timing mechanisms and models through to the neuroscience of rhythm and meter. A network of neural areas, including motor regions, is regularly implicated in basic timing as well as processing of musical rhythm. However, fractionating the specific roles of individual areas in this network has remained a challenge. Distinctions in activity patterns appear between "automatic" and "cognitively controlled" timing processes, but the perception of musical rhythm requires features of both automatic and controlled processes. In addition, many experimental manipulations rely on participants directing their attention toward or away from certain stimulus features, and measuring corresponding differences in neural activity. Many temporal features, however, are implicitly processed whether attended to or not, making it difficult to create controlled baseline conditions for experimental comparisons. The variety of stimuli, paradigms, and definitions can further complicate comparisons across domains or methodologies. Despite these challenges, the high level of interest and multitude of methodological approaches from different cognitive domains (including music, language, and motor learning) have yielded new insights and hold promise for future progress. Copyright © 2012 Cognitive Science Society, Inc.

  14. User Preference-Based Dual-Memory Neural Model With Memory Consolidation Approach.

    PubMed

    Nasir, Jauwairia; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan; Nasir, Jauwairia; Yong-Ho Yoo; Deok-Hwa Kim; Jong-Hwan Kim; Nasir, Jauwairia; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan

    2018-06-01

    Memory modeling has been a popular topic of research for improving the performance of autonomous agents in cognition related problems. Apart from learning distinct experiences correctly, significant or recurring experiences are expected to be learned better and be retrieved easier. In order to achieve this objective, this paper proposes a user preference-based dual-memory adaptive resonance theory network model, which makes use of a user preference to encode memories with various strengths and to learn and forget at various rates. Over a period of time, memories undergo a consolidation-like process at a rate proportional to the user preference at the time of encoding and the frequency of recall of a particular memory. Consolidated memories are easier to recall and are more stable. This dual-memory neural model generates distinct episodic memories and a flexible semantic-like memory component. This leads to an enhanced retrieval mechanism of experiences through two routes. The simulation results are presented to evaluate the proposed memory model based on various kinds of cues over a number of trials. The experimental results on Mybot are also presented. The results verify that not only are distinct experiences learned correctly but also that experiences associated with higher user preference and recall frequency are consolidated earlier. Thus, these experiences are recalled more easily relative to the unconsolidated experiences.

  15. Abacus Training Modulates the Neural Correlates of Exact and Approximate Calculations in Chinese Children: An fMRI Study

    PubMed Central

    Du, Fenglei; Chen, Feiyan; Li, Yongxin; Hu, Yuzheng; Tian, Mei; Zhang, Hong

    2013-01-01

    Exact (EX) and approximate (AP) calculations rely on distinct neural circuits. However, the training effect on the neural correlates of EX and AP calculations is largely unknown, especially for the AP calculation. Abacus-based mental calculation (AMC) is a particular arithmetic skill that can be acquired by long-term abacus training. The present study investigated whether and how the abacus training modulates the neural correlates of EX and AP calculations by functional magnetic resonance imaging (fMRI). Neural activations were measured in 20 abacus-trained and 19 nontrained Chinese children during AP and EX calculation tasks. Our results demonstrated that: (1) in nontrained children, similar neural regions were activated in both tasks, while the size of activated regions was larger in AP than those in the EX; (2) in abacus-trained children, no significant difference was found between these two tasks; (3) more visuospatial areas were activated in abacus-trained children under the EX task compared to the nontrained. These results suggested that more visuospatial strategies were used by the nontrained children in the AP task compared to the EX; abacus-trained children adopted a similar strategy in both tasks; after long-term abacus training, children were more inclined to apply a visuospatial strategy during processing EX calculations. PMID:24288683

  16. Two Distinct Scene-Processing Networks Connecting Vision and Memory.

    PubMed

    Baldassano, Christopher; Esteva, Andre; Fei-Fei, Li; Beck, Diane M

    2016-01-01

    A number of regions in the human brain are known to be involved in processing natural scenes, but the field has lacked a unifying framework for understanding how these different regions are organized and interact. We provide evidence from functional connectivity and meta-analyses for a new organizational principle, in which scene processing relies upon two distinct networks that split the classically defined parahippocampal place area (PPA). The first network of strongly connected regions consists of the occipital place area/transverse occipital sulcus and posterior PPA, which contain retinotopic maps and are not strongly coupled to the hippocampus at rest. The second network consists of the caudal inferior parietal lobule, retrosplenial complex, and anterior PPA, which connect to the hippocampus (especially anterior hippocampus), and are implicated in both visual and nonvisual tasks, including episodic memory and navigation. We propose that these two distinct networks capture the primary functional division among scene-processing regions, between those that process visual features from the current view of a scene and those that connect information from a current scene view with a much broader temporal and spatial context. This new framework for understanding the neural substrates of scene-processing bridges results from many lines of research, and makes specific functional predictions.

  17. Assessing the Depth of Cognitive Processing as the Basis for Potential User-State Adaptation

    PubMed Central

    Nicolae, Irina-Emilia; Acqualagna, Laura; Blankertz, Benjamin

    2017-01-01

    Objective: Decoding neurocognitive processes on a single-trial basis with Brain-Computer Interface (BCI) techniques can reveal the user's internal interpretation of the current situation. Such information can potentially be exploited to make devices and interfaces more user aware. In this line of research, we took a further step by studying neural correlates of different levels of cognitive processes and developing a method that allows to quantify how deeply presented information is processed in the brain. Methods/Approach: Seventeen participants took part in an EEG study in which we evaluated different levels of cognitive processing (no processing, shallow, and deep processing) within three distinct domains (memory, language, and visual imagination). Our investigations showed gradual differences in the amplitudes of event-related potentials (ERPs) and in the extend and duration of event-related desynchronization (ERD) which both correlate with task difficulty. We performed multi-modal classification to map the measured correlates of neurocognitive processing to the corresponding level of processing. Results: Successful classification of the neural components was achieved, which reflects the level of cognitive processing performed by the participants. The results show performances above chance level for each participant and a mean performance of 70–90% for all conditions and classification pairs. Significance: The successful estimation of the level of cognition on a single-trial basis supports the feasibility of user-state adaptation based on ongoing neural activity. There is a variety of potential use cases such as: a user-friendly adaptive design of an interface or the development of assistance systems in safety critical workplaces. PMID:29046625

  18. Assessing the Depth of Cognitive Processing as the Basis for Potential User-State Adaptation.

    PubMed

    Nicolae, Irina-Emilia; Acqualagna, Laura; Blankertz, Benjamin

    2017-01-01

    Objective: Decoding neurocognitive processes on a single-trial basis with Brain-Computer Interface (BCI) techniques can reveal the user's internal interpretation of the current situation. Such information can potentially be exploited to make devices and interfaces more user aware. In this line of research, we took a further step by studying neural correlates of different levels of cognitive processes and developing a method that allows to quantify how deeply presented information is processed in the brain. Methods/Approach: Seventeen participants took part in an EEG study in which we evaluated different levels of cognitive processing (no processing, shallow, and deep processing) within three distinct domains (memory, language, and visual imagination). Our investigations showed gradual differences in the amplitudes of event-related potentials (ERPs) and in the extend and duration of event-related desynchronization (ERD) which both correlate with task difficulty. We performed multi-modal classification to map the measured correlates of neurocognitive processing to the corresponding level of processing. Results: Successful classification of the neural components was achieved, which reflects the level of cognitive processing performed by the participants. The results show performances above chance level for each participant and a mean performance of 70-90% for all conditions and classification pairs. Significance: The successful estimation of the level of cognition on a single-trial basis supports the feasibility of user-state adaptation based on ongoing neural activity. There is a variety of potential use cases such as: a user-friendly adaptive design of an interface or the development of assistance systems in safety critical workplaces.

  19. The Verriest Lecture: Color lessons from space, time, and motion

    PubMed Central

    Shevell, Steven K.

    2012-01-01

    The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time and motion – color’s colleagues – reveal the richness of chromatic neural processing. PMID:22330398

  20. A Framework of Hyperspectral Image Compression using Neural Networks

    DOE PAGES

    Masalmah, Yahya M.; Martínez Nieves, Christian; Rivera Soto, Rafael; ...

    2015-01-01

    Hyperspectral image analysis has gained great attention due to its wide range of applications. Hyperspectral images provide a vast amount of information about underlying objects in an image by using a large range of the electromagnetic spectrum for each pixel. However, since the same image is taken multiple times using distinct electromagnetic bands, the size of such images tend to be significant, which leads to greater processing requirements. The aim of this paper is to present a proposed framework for image compression and to study the possible effects of spatial compression on quality of unmixing results. Image compression allows usmore » to reduce the dimensionality of an image while still preserving most of the original information, which could lead to faster image processing. Lastly, this paper presents preliminary results of different training techniques used in Artificial Neural Network (ANN) based compression algorithm.« less

  1. Volition and eye movements.

    PubMed

    Nachev, Parashkev; Husain, Masud; Kennard, Christopher

    2008-01-01

    Although the conceptual distinction between voluntary and automatic acts seems intuitively obvious, its neural basis remains opaque. Assigning volition--or some paraphrase such as action selection--to discrete parts of the brain arguably tells us nothing about what volition actually is in neural terms. Equally, exploring the relative sensitivity of discrete brain areas to manipulations of action choice, including its asymptote--free choice--would only be informative if voluntary processes could thereby be reliably isolated. Unfortunately, such manipulations are subject to ineliminable confounds, such as the complexity of the underlying condition-action associations. Here we propose an adaptation of a classic oculomotor task--saccadic choice with asynchronous targets--where the processes engaged in free choice manifest as interference in the performance of an automatic task, thereby circumventing the difficulties in parameterising volition. We suggest that this task may be useful in probing deficits in voluntary action in pathological states.

  2. Investigating the Neural Basis of Theta Burst Stimulation to Premotor Cortex on Emotional Vocalization Perception: A Combined TMS-fMRI Study

    PubMed Central

    Agnew, Zarinah K.; Banissy, Michael J.; McGettigan, Carolyn; Walsh, Vincent; Scott, Sophie K.

    2018-01-01

    Previous studies have established a role for premotor cortex in the processing of auditory emotional vocalizations. Inhibitory continuous theta burst transcranial magnetic stimulation (cTBS) applied to right premotor cortex selectively increases the reaction time to a same-different task, implying a causal role for right ventral premotor cortex (PMv) in the processing of emotional sounds. However, little is known about the functional networks to which PMv contribute across the cortical hemispheres. In light of these data, the present study aimed to investigate how and where in the brain cTBS affects activity during the processing of auditory emotional vocalizations. Using functional neuroimaging, we report that inhibitory cTBS applied to the right premotor cortex (compared to vertex control site) results in three distinct response profiles: following stimulation of PMv, widespread frontoparietal cortices, including a site close to the target site, and parahippocampal gyrus displayed an increase in activity, whereas the reverse response profile was apparent in a set of midline structures and right IFG. A third response profile was seen in left supramarginal gyrus in which activity was greater post-stimulation at both stimulation sites. Finally, whilst previous studies have shown a condition specific behavioral effect following cTBS to premotor cortex, we did not find a condition specific neural change in BOLD response. These data demonstrate a complex relationship between cTBS and activity in widespread neural networks and are discussed in relation to both emotional processing and the neural basis of cTBS. PMID:29867402

  3. Genetic dissection of GABAergic neural circuits in mouse neocortex

    PubMed Central

    Taniguchi, Hiroki

    2014-01-01

    Diverse and flexible cortical functions rely on the ability of neural circuits to perform multiple types of neuronal computations. GABAergic inhibitory interneurons significantly contribute to this task by regulating the balance of activity, synaptic integration, spiking, synchrony, and oscillation in a neural ensemble. GABAergic interneurons display a high degree of cellular diversity in morphology, physiology, connectivity, and gene expression. A considerable number of subtypes of GABAergic interneurons diversify modes of cortical inhibition, enabling various types of information processing in the cortex. Thus, comprehensively understanding fate specification, circuit assembly, and physiological function of GABAergic interneurons is a key to elucidate the principles of cortical wiring and function. Recent advances in genetically encoded molecular tools have made a breakthrough to systematically study cortical circuitry at the molecular, cellular, circuit, and whole animal levels. However, the biggest obstacle to fully applying the power of these to analysis of GABAergic circuits was that there were no efficient and reliable methods to express them in subtypes of GABAergic interneurons. Here, I first summarize cortical interneuron diversity and current understanding of mechanisms, by which distinct classes of GABAergic interneurons are generated. I then review recent development in genetically encoded molecular tools for neural circuit research, and genetic targeting of GABAergic interneuron subtypes, particularly focusing on our recent effort to develop and characterize Cre/CreER knockin lines. Finally, I highlight recent success in genetic targeting of chandelier cells, the most unique and distinct GABAergic interneuron subtype, and discuss what kind of questions need to be addressed to understand development and function of cortical inhibitory circuits. PMID:24478631

  4. Neural Basis of Interpersonal Traits in Neurodegenerative Diseases

    PubMed Central

    Sollberger, Marc; Stanley, Christine M.; Wilson, Stephen M.; Gyurak, Anett; Beckman, Victoria; Growdon, Matthew; Jang, Jung; Weiner, Michael W.; Miller, Bruce L.; Rankin, Katherine P.

    2009-01-01

    Several functional and structural imaging studies have investigated the neural basis of personality in healthy adults, but human lesions studies are scarce. Personality changes are a common symptom in patients with neurodegenerative diseases like frontotemporal dementia (FTD) and semantic dementia (SD), allowing a unique window into the neural basis of personality. In this study, we used the Interpersonal Adjective Scales to investigate the structural basis of eight interpersonal traits (dominance, arrogance, coldness, introversion, submissiveness, ingenuousness, warmth, and extraversion) in 257 subjects: 214 patients with neurodegenerative diseases such as FTD, SD, progressive non-fluent aphasia, Alzheimer’s disease, amnestic mild cognitive impairment, corticobasal degeneration, and progressive supranuclear palsy and 43 healthy elderly people. Measures of interpersonal traits were correlated with regional atrophy pattern using voxel-based morphometry (VBM) analysis of structural MR images. Interpersonal traits mapped onto distinct brain regions depending on the degree to which they involved agency and affiliation. Interpersonal traits high in agency related to left dorsolateral prefrontal and left lateral frontopolar regions, whereas interpersonal traits high in affiliation related to right ventromedial prefrontal and right anteromedial temporal regions. Consistent with the existing literature on neural networks underlying social cognition, these results indicate that brain regions related to externally-focused, executive control-related processes underlie agentic interpersonal traits such as dominance, whereas brain regions related to internally-focused, emotion- and reward-related processes underlie affiliative interpersonal traits such as warmth. In addition, these findings indicate that interpersonal traits are subserved by complex neural networks rather than discrete anatomic areas. PMID:19540253

  5. Neural Mechanisms Underlying Risk and Ambiguity Attitudes.

    PubMed

    Blankenstein, Neeltje E; Peper, Jiska S; Crone, Eveline A; van Duijvenvoorde, Anna C K

    2017-11-01

    Individual differences in attitudes to risk (a taste for risk, known probabilities) and ambiguity (a tolerance for uncertainty, unknown probabilities) differentially influence risky decision-making. However, it is not well understood whether risk and ambiguity are coded differently within individuals. Here, we tested whether individual differences in risk and ambiguity attitudes were reflected in distinct neural correlates during choice and outcome processing of risky and ambiguous gambles. To these ends, we developed a neuroimaging task in which participants ( n = 50) chose between a sure gain and a gamble, which was either risky or ambiguous, and presented decision outcomes (gains, no gains). From a separate task in which the amount, probability, and ambiguity level were varied, we estimated individuals' risk and ambiguity attitudes. Although there was pronounced neural overlap between risky and ambiguous gambling in a network typically related to decision-making under uncertainty, relatively more risk-seeking attitudes were associated with increased activation in valuation regions of the brain (medial and lateral OFC), whereas relatively more ambiguity-seeking attitudes were related to temporal cortex activation. In addition, although striatum activation was observed during reward processing irrespective of a prior risky or ambiguous gamble, reward processing after an ambiguous gamble resulted in enhanced dorsomedial PFC activation, possibly functioning as a general signal of uncertainty coding. These findings suggest that different neural mechanisms reflect individual differences in risk and ambiguity attitudes and that risk and ambiguity may impact overt risk-taking behavior in different ways.

  6. A distributed, hierarchical and recurrent framework for reward-based choice

    PubMed Central

    Hunt, Laurence T.; Hayden, Benjamin Y.

    2017-01-01

    Many accounts of reward-based choice argue for distinct component processes that are serial and functionally localized. In this article, we argue for an alternative viewpoint, in which choices emerge from repeated computations that are distributed across many brain regions. We emphasize how several features of neuroanatomy may support the implementation of choice, including mutual inhibition in recurrent neural networks and the hierarchical organisation of timescales for information processing across the cortex. This account also suggests that certain correlates of value may be emergent rather than represented explicitly in the brain. PMID:28209978

  7. A shared neural ensemble links distinct contextual memories encoded close in time

    NASA Astrophysics Data System (ADS)

    Cai, Denise J.; Aharoni, Daniel; Shuman, Tristan; Shobe, Justin; Biane, Jeremy; Song, Weilin; Wei, Brandon; Veshkini, Michael; La-Vu, Mimi; Lou, Jerry; Flores, Sergio E.; Kim, Isaac; Sano, Yoshitake; Zhou, Miou; Baumgaertel, Karsten; Lavi, Ayal; Kamata, Masakazu; Tuszynski, Mark; Mayford, Mark; Golshani, Peyman; Silva, Alcino J.

    2016-06-01

    Recent studies suggest that a shared neural ensemble may link distinct memories encoded close in time. According to the memory allocation hypothesis, learning triggers a temporary increase in neuronal excitability that biases the representation of a subsequent memory to the neuronal ensemble encoding the first memory, such that recall of one memory increases the likelihood of recalling the other memory. Here we show in mice that the overlap between the hippocampal CA1 ensembles activated by two distinct contexts acquired within a day is higher than when they are separated by a week. Several findings indicate that this overlap of neuronal ensembles links two contextual memories. First, fear paired with one context is transferred to a neutral context when the two contexts are acquired within a day but not across a week. Second, the first memory strengthens the second memory within a day but not across a week. Older mice, known to have lower CA1 excitability, do not show the overlap between ensembles, the transfer of fear between contexts, or the strengthening of the second memory. Finally, in aged mice, increasing cellular excitability and activating a common ensemble of CA1 neurons during two distinct context exposures rescued the deficit in linking memories. Taken together, these findings demonstrate that contextual memories encoded close in time are linked by directing storage into overlapping ensembles. Alteration of these processes by ageing could affect the temporal structure of memories, thus impairing efficient recall of related information.

  8. Live Imaging Followed by Single Cell Tracking to Monitor Cell Biology and the Lineage Progression of Multiple Neural Populations.

    PubMed

    Gómez-Villafuertes, Rosa; Paniagua-Herranz, Lucía; Gascon, Sergio; de Agustín-Durán, David; Ferreras, María de la O; Gil-Redondo, Juan Carlos; Queipo, María José; Menendez-Mendez, Aida; Pérez-Sen, Ráquel; Delicado, Esmerilda G; Gualix, Javier; Costa, Marcos R; Schroeder, Timm; Miras-Portugal, María Teresa; Ortega, Felipe

    2017-12-16

    Understanding the mechanisms that control critical biological events of neural cell populations, such as proliferation, differentiation, or cell fate decisions, will be crucial to design therapeutic strategies for many diseases affecting the nervous system. Current methods to track cell populations rely on their final outcomes in still images and they generally fail to provide sufficient temporal resolution to identify behavioral features in single cells. Moreover, variations in cell death, behavioral heterogeneity within a cell population, dilution, spreading, or the low efficiency of the markers used to analyze cells are all important handicaps that will lead to incomplete or incorrect read-outs of the results. Conversely, performing live imaging and single cell tracking under appropriate conditions represents a powerful tool to monitor each of these events. Here, a time-lapse video-microscopy protocol, followed by post-processing, is described to track neural populations with single cell resolution, employing specific software. The methods described enable researchers to address essential questions regarding the cell biology and lineage progression of distinct neural populations.

  9. Social learning in humans and other animals

    PubMed Central

    Gariépy, Jean-François; Watson, Karli K.; Du, Emily; Xie, Diana L.; Erb, Joshua; Amasino, Dianna; Platt, Michael L.

    2014-01-01

    Decisions made by individuals can be influenced by what others think and do. Social learning includes a wide array of behaviors such as imitation, observational learning of novel foraging techniques, peer or parental influences on individual preferences, as well as outright teaching. These processes are believed to underlie an important part of cultural variation among human populations and may also explain intraspecific variation in behavior between geographically distinct populations of animals. Recent neurobiological studies have begun to uncover the neural basis of social learning. Here we review experimental evidence from the past few decades showing that social learning is a widespread set of skills present in multiple animal species. In mammals, the temporoparietal junction, the dorsomedial, and dorsolateral prefrontal cortex, as well as the anterior cingulate gyrus, appear to play critical roles in social learning. Birds, fish, and insects also learn from others, but the underlying neural mechanisms remain poorly understood. We discuss the evolutionary implications of these findings and highlight the importance of emerging animal models that permit precise modification of neural circuit function for elucidating the neural basis of social learning. PMID:24765063

  10. Ordinality and the nature of symbolic numbers.

    PubMed

    Lyons, Ian M; Beilock, Sian L

    2013-10-23

    The view that representations of symbolic and nonsymbolic numbers are closely tied to one another is widespread. However, the link between symbolic and nonsymbolic numbers is almost always inferred from cardinal processing tasks. In the current work, we show that considering ordinality instead points to striking differences between symbolic and nonsymbolic numbers. Human behavioral and neural data show that ordinal processing of symbolic numbers (Are three Indo-Arabic numerals in numerical order?) is distinct from symbolic cardinal processing (Which of two numerals represents the greater quantity?) and nonsymbolic number processing (ordinal and cardinal judgments of dot-arrays). Behaviorally, distance-effects were reversed when assessing ordinality in symbolic numbers, but canonical distance-effects were observed for cardinal judgments of symbolic numbers and all nonsymbolic judgments. At the neural level, symbolic number-ordering was the only numerical task that did not show number-specific activity (greater than control) in the intraparietal sulcus. Only activity in left premotor cortex was specifically associated with symbolic number-ordering. For nonsymbolic numbers, activation in cognitive-control areas during ordinal processing and a high degree of overlap between ordinal and cardinal processing networks indicate that nonsymbolic ordinality is assessed via iterative cardinality judgments. This contrasts with a striking lack of neural overlap between ordinal and cardinal judgments anywhere in the brain for symbolic numbers, suggesting that symbolic number processing varies substantially with computational context. Ordinal processing sheds light on key differences between symbolic and nonsymbolic number processing both behaviorally and in the brain. Ordinality may prove important for understanding the power of representing numbers symbolically.

  11. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.

    PubMed

    Czeisler, Catherine; Short, Aaron; Nelson, Tyler; Gygli, Patrick; Ortiz, Cristina; Catacutan, Fay Patsy; Stocker, Ben; Cronin, James; Lannutti, John; Winter, Jessica; Otero, José Javier

    2016-12-01

    We sought to determine the contribution of scaffold topography to the migration and morphology of neural stem cells by mimicking anatomical features of scaffolds found in vivo. We mimicked two types of central nervous system scaffolds encountered by neural stem cells during development in vitro by constructing different diameter electrospun polycaprolactone (PCL) fiber mats, a substrate that we have shown to be topographically similar to brain scaffolds. We compared the effects of large fibers (made to mimic blood vessel topography) with those of small-diameter fibers (made to mimic radial glial process topography) on the migration and differentiation of neural stem cells. Neural stem cells showed differential migratory and morphological reactions with laminin in different topographical contexts. We demonstrate, for the first time, that neural stem cell biological responses to laminin are dependent on topographical context. Large-fiber topography without laminin prevented cell migration, which was partially reversed by treatment with rock inhibitor. Cell morphology complexity assayed by fractal dimension was inhibited in nocodazole- and cytochalasin-D-treated neural precursor cells in large-fiber topography, but was not changed in small-fiber topography with these inhibitors. These data indicate that cell morphology has different requirements on cytoskeletal proteins dependent on the topographical environment encountered by the cell. We propose that the physical structure of distinct scaffolds induces unique signaling cascades that regulate migration and morphology in embryonic neural precursor cells. J. Comp. Neurol. 524:3485-3502, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Neural correlates of context-dependent feature conjunction learning in visual search tasks.

    PubMed

    Reavis, Eric A; Frank, Sebastian M; Greenlee, Mark W; Tse, Peter U

    2016-06-01

    Many perceptual learning experiments show that repeated exposure to a basic visual feature such as a specific orientation or spatial frequency can modify perception of that feature, and that those perceptual changes are associated with changes in neural tuning early in visual processing. Such perceptual learning effects thus exert a bottom-up influence on subsequent stimulus processing, independent of task-demands or endogenous influences (e.g., volitional attention). However, it is unclear whether such bottom-up changes in perception can occur as more complex stimuli such as conjunctions of visual features are learned. It is not known whether changes in the efficiency with which people learn to process feature conjunctions in a task (e.g., visual search) reflect true bottom-up perceptual learning versus top-down, task-related learning (e.g., learning better control of endogenous attention). Here we show that feature conjunction learning in visual search leads to bottom-up changes in stimulus processing. First, using fMRI, we demonstrate that conjunction learning in visual search has a distinct neural signature: an increase in target-evoked activity relative to distractor-evoked activity (i.e., a relative increase in target salience). Second, we demonstrate that after learning, this neural signature is still evident even when participants passively view learned stimuli while performing an unrelated, attention-demanding task. This suggests that conjunction learning results in altered bottom-up perceptual processing of the learned conjunction stimuli (i.e., a perceptual change independent of the task). We further show that the acquired change in target-evoked activity is contextually dependent on the presence of distractors, suggesting that search array Gestalts are learned. Hum Brain Mapp 37:2319-2330, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Identifying temporal and causal contributions of neural processes underlying the Implicit Association Test (IAT)

    PubMed Central

    Forbes, Chad E.; Cameron, Katherine A.; Grafman, Jordan; Barbey, Aron; Solomon, Jeffrey; Ritter, Walter; Ruchkin, Daniel S.

    2012-01-01

    The Implicit Association Test (IAT) is a popular behavioral measure that assesses the associative strength between outgroup members and stereotypical and counterstereotypical traits. Less is known, however, about the degree to which the IAT reflects automatic processing. Two studies examined automatic processing contributions to a gender-IAT using a data driven, social neuroscience approach. Performance on congruent (e.g., categorizing male names with synonyms of strength) and incongruent (e.g., categorizing female names with synonyms of strength) IAT blocks were separately analyzed using EEG (event-related potentials, or ERPs, and coherence; Study 1) and lesion (Study 2) methodologies. Compared to incongruent blocks, performance on congruent IAT blocks was associated with more positive ERPs that manifested in frontal and occipital regions at automatic processing speeds, occipital regions at more controlled processing speeds and was compromised by volume loss in the anterior temporal lobe (ATL), insula and medial PFC. Performance on incongruent blocks was associated with volume loss in supplementary motor areas, cingulate gyrus and a region in medial PFC similar to that found for congruent blocks. Greater coherence was found between frontal and occipital regions to the extent individuals exhibited more bias. This suggests there are separable neural contributions to congruent and incongruent blocks of the IAT but there is also a surprising amount of overlap. Given the temporal and regional neural distinctions, these results provide converging evidence that stereotypic associative strength assessed by the IAT indexes automatic processing to a degree. PMID:23226123

  14. General methodology for nonlinear modeling of neural systems with Poisson point-process inputs.

    PubMed

    Marmarelis, V Z; Berger, T W

    2005-07-01

    This paper presents a general methodological framework for the practical modeling of neural systems with point-process inputs (sequences of action potentials or, more broadly, identical events) based on the Volterra and Wiener theories of functional expansions and system identification. The paper clarifies the distinctions between Volterra and Wiener kernels obtained from Poisson point-process inputs. It shows that only the Wiener kernels can be estimated via cross-correlation, but must be defined as zero along the diagonals. The Volterra kernels can be estimated far more accurately (and from shorter data-records) by use of the Laguerre expansion technique adapted to point-process inputs, and they are independent of the mean rate of stimulation (unlike their P-W counterparts that depend on it). The Volterra kernels can also be estimated for broadband point-process inputs that are not Poisson. Useful applications of this modeling approach include cases where we seek to determine (model) the transfer characteristics between one neuronal axon (a point-process 'input') and another axon (a point-process 'output') or some other measure of neuronal activity (a continuous 'output', such as population activity) with which a causal link exists.

  15. Spatio-temporal dynamics of processing non-symbolic number: An ERP source localization study

    PubMed Central

    Hyde, Daniel C.; Spelke, Elizabeth S.

    2013-01-01

    Coordinated studies with adults, infants, and nonhuman animals provide evidence for two distinct systems of non-verbal number representation. The ‘parallel individuation’ system selects and retains information about 1–3 individual entities and the ‘numerical magnitude’ system establishes representations of the approximate cardinal value of a group. Recent ERP work has demonstrated that these systems reliably evoke functionally and temporally distinct patterns of brain response that correspond to established behavioral signatures. However, relatively little is known about the neural generators of these ERP signatures. To address this question, we targeted known ERP signatures of these systems, by contrasting processing of small versus large non-symbolic numbers, and used a source localization algorithm (LORETA) to identify their cortical origins. Early processing of small numbers, showing the signature effects of parallel individuation on the N1 (∼150 ms), was localized primarily to extrastriate visual regions. In contrast, qualitatively and temporally distinct processing of large numbers, showing the signatures of approximate number representation on the mid-latency P2p (∼200–250 ms), was localized primarily to right intraparietal regions. In comparison, mid-latency small number processing was localized to the right temporal-parietal junction and left-lateralized intraparietal regions. These results add spatial information to the emerging ERP literature documenting the process by which we represent number. Furthermore, these results substantiate recent claims that early attentional processes determine whether a collection of objects will be represented through parallel individuation or as an approximate numerical magnitude by providing evidence that downstream processing diverges to distinct cortical regions. PMID:21830257

  16. Spatiotemporal dynamics of processing nonsymbolic number: an event-related potential source localization study.

    PubMed

    Hyde, Daniel C; Spelke, Elizabeth S

    2012-09-01

    Coordinated studies with adults, infants, and nonhuman animals provide evidence for two distinct systems of nonverbal number representation. The "parallel individuation" (PI) system selects and retains information about one to three individual entities and the "numerical magnitude" system establishes representations of the approximate cardinal value of a group. Recent event-related potential (ERP) work has demonstrated that these systems reliably evoke functionally and temporally distinct patterns of brain response that correspond to established behavioral signatures. However, relatively little is known about the neural generators of these ERP signatures. To address this question, we targeted known ERP signatures of these systems, by contrasting processing of small versus large nonsymbolic numbers, and used a source localization algorithm (LORETA) to identify their cortical origins. Early processing of small numbers, showing the signature effects of PI on the N1 (∼150 ms), was localized primarily to extrastriate visual regions. In contrast, qualitatively and temporally distinct processing of large numbers, showing the signatures of approximate number representation on the mid-latency P2p (∼200-250 ms), was localized primarily to right intraparietal regions. In comparison, mid-latency small number processing was localized to the right temporal-parietal junction and left-lateralized intraparietal regions. These results add spatial information to the emerging ERP literature documenting the process by which we represent number. Furthermore, these results substantiate recent claims that early attentional processes determine whether a collection of objects will be represented through PI or as an approximate numerical magnitude by providing evidence that downstream processing diverges to distinct cortical regions. Copyright © 2011 Wiley Periodicals, Inc.

  17. Grammatical categories in the brain: the role of morphological structure.

    PubMed

    Longe, O; Randall, B; Stamatakis, E A; Tyler, L K

    2007-08-01

    The current study addresses the controversial issue of how different grammatical categories are neurally processed. Several lesion-deficit studies suggest that distinct neural substrates underlie the representation of nouns and verbs, with verb deficits associated with damage to left inferior frontal gyrus (LIFG) and noun deficits with damage to left temporal cortex. However, this view is not universally shared by neuropsychological and neuroimaging studies. We have suggested that these inconsistencies may reflect interactions between the morphological structure of nouns and verbs and the processing implications of this, rather than differences in their neural representations (Tyler et al. 2004). We tested this hypothesis using event-related functional magnetic resonance imaging, to scan subjects performing a valence judgment on unambiguous nouns and verbs, presented as stems ('snail, hear') and inflected forms ('snails, hears'). We predicted that activations for noun and verb stems would not differ, whereas inflected verbs would generate more activation in left frontotemporal areas than inflected nouns. Our findings supported this hypothesis, with greater activation of this network for inflected verbs compared with inflected nouns. These results support the claim that form class is not a first-order organizing principle underlying the representation of words but rather interacts with the processes that operate over lexical representations.

  18. Neural activity tied to reading predicts individual differences in extended-text comprehension

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Paller, Ken A.; Suzuki, Satoru

    2013-01-01

    Reading comprehension depends on neural processes supporting the access, understanding, and storage of words over time. Examinations of the neural activity correlated with reading have contributed to our understanding of reading comprehension, especially for the comprehension of sentences and short passages. However, the neural activity associated with comprehending an extended text is not well-understood. Here we describe a current-source-density (CSD) index that predicts individual differences in the comprehension of an extended text. The index is the difference in CSD-transformed event-related potentials (ERPs) to a target word between two conditions: a comprehension condition with words from a story presented in their original order, and a scrambled condition with the same words presented in a randomized order. In both conditions participants responded to the target word, and in the comprehension condition they also tried to follow the story in preparation for a comprehension test. We reasoned that the spatiotemporal pattern of difference-CSDs would reflect comprehension-related processes beyond word-level processing. We used a pattern-classification method to identify the component of the difference-CSDs that accurately (88%) discriminated good from poor comprehenders. The critical CSD index was focused at a frontal-midline scalp site, occurred 400–500 ms after target-word onset, and was strongly correlated with comprehension performance. Behavioral data indicated that group differences in effort or motor preparation could not explain these results. Further, our CSD index appears to be distinct from the well-known P300 and N400 components, and CSD transformation seems to be crucial for distinguishing good from poor comprehenders using our experimental paradigm. Once our CSD index is fully characterized, this neural signature of individual differences in extended-text comprehension may aid the diagnosis and remediation of reading comprehension deficits. PMID:24223540

  19. A Systematic Survey of Expression and Function of Zebrafish frizzled Genes

    PubMed Central

    Nikaido, Masataka; Law, Edward W. P.; Kelsh, Robert N.

    2013-01-01

    Wnt signaling is crucial for the regulation of numerous processes in development. Consistent with this, the gene families for both the ligands (Wnts) and receptors (Frizzleds) are very large. Surprisingly, while we have a reasonable understanding of the Wnt ligands likely to mediate specific Wnt-dependent processes, the corresponding receptors usually remain to be elucidated. Taking advantage of the zebrafish model's excellent genomic and genetic properties, we undertook a comprehensive analysis of the expression patterns of frizzled (fzd) genes in zebrafish. To explore their functions, we focused on testing their requirement in several developmental events known to be regulated by Wnt signaling, convergent extension movements of gastrulation, neural crest induction, and melanocyte specification. We found fourteen distinct fzd genes in the zebrafish genome. Systematic analysis of their expression patterns between 1-somite and 30 hours post-fertilization revealed complex, dynamic and overlapping expression patterns. This analysis demonstrated that only fzd3a, fzd9b, and fzd10 are expressed in the dorsal neural tube at stages corresponding to the timing of melanocyte specification. Surprisingly, however, morpholino knockdown of these, alone or in combination, gave no indication of reduction of melanocytes, suggesting the important involvement of untested fzds or another type of Wnt receptor in this process. Likewise, we found only fzd7b and fzd10 expressed at the border of the neural plate at stages appropriate for neural crest induction. However, neural crest markers were not reduced by knockdown of these receptors. Instead, these morpholino knockdown studies showed that fzd7a and fzd7b work co-operatively to regulate convergent extension movement during gastrulation. Furthermore, we show that the two fzd7 genes function together with fzd10 to regulate epiboly movements and mesoderm differentiation. PMID:23349976

  20. Common and Distinct Neural Mechanisms of Attentional Switching and Response Conflict

    PubMed Central

    Kim, Chobok; Johnson, Nathan F.; Gold, Brian T.

    2012-01-01

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. PMID:22750124

  1. Common and distinct neural mechanisms of attentional switching and response conflict.

    PubMed

    Kim, Chobok; Johnson, Nathan F; Gold, Brian T

    2012-08-21

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Love flows downstream: mothers' and children's neural representation similarity in perceiving distress of self and family.

    PubMed

    Lee, Tae-Ho; Qu, Yang; Telzer, Eva H

    2017-12-01

    The current study aimed to capture empathy processing in an interpersonal context. Mother-adolescent dyads (N = 22) each completed an empathy task during fMRI, in which they imagined the target person in distressing scenes as either themselves or their family (i.e. child for the mother, mother for the child). Using multi-voxel pattern approach, we compared neural pattern similarity for the self and family conditions and found that mothers showed greater perceptual similarity between self and child in the fusiform face area (FFA), representing high self-child overlap, whereas adolescents showed significantly less self-mother overlap. Adolescents' pattern similarity was dependent upon family relationship quality, such that they showed greater self-mother overlap with higher relationship quality, whereas mothers' pattern similarity was independent of relationship quality. Furthermore, adolescents' perceptual similarity in the FFA was associated with increased social brain activation (e.g. temporal parietal junction). Mediation analyses indicated that high relationship quality was associated with greater social brain activation, which was mediated by greater self-mother overlap in the FFA. Our findings suggest that adolescents show more distinct neural patterns in perceiving their own vs their mother's distress, and such distinction is sensitive to mother-child relationship quality. In contrast, mothers' perception for their own and child's distress is highly similar and unconditional. © The Author (2017). Published by Oxford University Press.

  3. Love flows downstream: mothers’ and children’s neural representation similarity in perceiving distress of self and family

    PubMed Central

    Qu, Yang

    2017-01-01

    Abstract The current study aimed to capture empathy processing in an interpersonal context. Mother–adolescent dyads (N = 22) each completed an empathy task during fMRI, in which they imagined the target person in distressing scenes as either themselves or their family (i.e. child for the mother, mother for the child). Using multi-voxel pattern approach, we compared neural pattern similarity for the self and family conditions and found that mothers showed greater perceptual similarity between self and child in the fusiform face area (FFA), representing high self–child overlap, whereas adolescents showed significantly less self–mother overlap. Adolescents’ pattern similarity was dependent upon family relationship quality, such that they showed greater self–mother overlap with higher relationship quality, whereas mothers’ pattern similarity was independent of relationship quality. Furthermore, adolescents’ perceptual similarity in the FFA was associated with increased social brain activation (e.g. temporal parietal junction). Mediation analyses indicated that high relationship quality was associated with greater social brain activation, which was mediated by greater self–mother overlap in the FFA. Our findings suggest that adolescents show more distinct neural patterns in perceiving their own vs their mother’s distress, and such distinction is sensitive to mother–child relationship quality. In contrast, mothers’ perception for their own and child’s distress is highly similar and unconditional. PMID:29069521

  4. Modalities of Thinking: State and Trait Effects on Cross-Frequency Functional Independent Brain Networks.

    PubMed

    Milz, Patricia; Pascual-Marqui, Roberto D; Lehmann, Dietrich; Faber, Pascal L

    2016-05-01

    Functional states of the brain are constituted by the temporally attuned activity of spatially distributed neural networks. Such networks can be identified by independent component analysis (ICA) applied to frequency-dependent source-localized EEG data. This methodology allows the identification of networks at high temporal resolution in frequency bands of established location-specific physiological functions. EEG measurements are sensitive to neural activity changes in cortical areas of modality-specific processing. We tested effects of modality-specific processing on functional brain networks. Phasic modality-specific processing was induced via tasks (state effects) and tonic processing was assessed via modality-specific person parameters (trait effects). Modality-specific person parameters and 64-channel EEG were obtained from 70 male, right-handed students. Person parameters were obtained using cognitive style questionnaires, cognitive tests, and thinking modality self-reports. EEG was recorded during four conditions: spatial visualization, object visualization, verbalization, and resting. Twelve cross-frequency networks were extracted from source-localized EEG across six frequency bands using ICA. RMANOVAs, Pearson correlations, and path modelling examined effects of tasks and person parameters on networks. Results identified distinct state- and trait-dependent functional networks. State-dependent networks were characterized by decreased, trait-dependent networks by increased alpha activity in sub-regions of modality-specific pathways. Pathways of competing modalities showed opposing alpha changes. State- and trait-dependent alpha were associated with inhibitory and automated processing, respectively. Antagonistic alpha modulations in areas of competing modalities likely prevent intruding effects of modality-irrelevant processing. Considerable research suggested alpha modulations related to modality-specific states and traits. This study identified the distinct electrophysiological cortical frequency-dependent networks within which they operate.

  5. The ventral visual pathway: an expanded neural framework for the processing of object quality.

    PubMed

    Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Ungerleider, Leslie G; Mishkin, Mortimer

    2013-01-01

    Since the original characterization of the ventral visual pathway, our knowledge of its neuroanatomy, functional properties, and extrinsic targets has grown considerably. Here we synthesize this recent evidence and propose that the ventral pathway is best understood as a recurrent occipitotemporal network containing neural representations of object quality both utilized and constrained by at least six distinct cortical and subcortical systems. Each system serves its own specialized behavioral, cognitive, or affective function, collectively providing the raison d'être for the ventral visual pathway. This expanded framework contrasts with the depiction of the ventral visual pathway as a largely serial staged hierarchy culminating in singular object representations and more parsimoniously incorporates attentional, contextual, and feedback effects. Published by Elsevier Ltd.

  6. Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience

    PubMed Central

    Dajani, Dina R.; Uddin, Lucina Q.

    2015-01-01

    Cognitive flexibility, the readiness with which one can selectively switch between mental processes to generate appropriate behavioral responses, develops in a protracted manner and is compromised in several prevalent neurodevelopmental disorders. It is unclear whether cognitive flexibility arises from neural substrates distinct from the executive control network, or from the interplay of nodes within this and other networks. Here we review neuroimaging studies of cognitive flexibility, focusing on set shifting and task switching. We propose that more consistent operationalization and study of cognitive flexibility is required in clinical and developmental neuroscience. We suggest that an important avenue for future research is the characterization of the relationship between neural flexibility and cognitive flexibility in typical and atypical development. PMID:26343956

  7. Population clocks: motor timing with neural dynamics

    PubMed Central

    Buonomano, Dean V.; Laje, Rodrigo

    2010-01-01

    An understanding of sensory and motor processing will require elucidation of the mechanisms by which the brain tells time. Open questions relate to whether timing relies on dedicated or intrinsic mechanisms and whether distinct mechanisms underlie timing across scales and modalities. Although experimental and theoretical studies support the notion that neural circuits are intrinsically capable of sensory timing on short scales, few general models of motor timing have been proposed. For one class of models, population clocks, it is proposed that time is encoded in the time-varying patterns of activity of a population of neurons. We argue that population clocks emerge from the internal dynamics of recurrently connected networks, are biologically realistic and account for many aspects of motor timing. PMID:20889368

  8. Neural correlates of anticipation and processing of performance feedback in social anxiety.

    PubMed

    Heitmann, Carina Y; Peterburs, Jutta; Mothes-Lasch, Martin; Hallfarth, Marlit C; Böhme, Stephanie; Miltner, Wolfgang H R; Straube, Thomas

    2014-12-01

    Fear of negative evaluation, such as negative social performance feedback, is the core symptom of social anxiety. The present study investigated the neural correlates of anticipation and perception of social performance feedback in social anxiety. High (HSA) and low (LSA) socially anxious individuals were asked to give a speech on a personally relevant topic and received standardized but appropriate expert performance feedback in a succeeding experimental session in which neural activity was measured during anticipation and presentation of negative and positive performance feedback concerning the speech performance, or a neutral feedback-unrelated control condition. HSA compared to LSA subjects reported greater anxiety during anticipation of negative feedback. Functional magnetic resonance imaging results showed deactivation of medial prefrontal brain areas during anticipation of negative feedback relative to the control and the positive condition, and medial prefrontal and insular hyperactivation during presentation of negative as well as positive feedback in HSA compared to LSA subjects. The results indicate distinct processes underlying feedback processing during anticipation and presentation of feedback in HSA as compared to LSA individuals. In line with the role of the medial prefrontal cortex in self-referential information processing and the insula in interoception, social anxiety seems to be associated with lower self-monitoring during feedback anticipation, and an increased self-focus and interoception during feedback presentation, regardless of feedback valence. © 2014 Wiley Periodicals, Inc.

  9. Categorical speech processing in Broca's area: an fMRI study using multivariate pattern-based analysis.

    PubMed

    Lee, Yune-Sang; Turkeltaub, Peter; Granger, Richard; Raizada, Rajeev D S

    2012-03-14

    Although much effort has been directed toward understanding the neural basis of speech processing, the neural processes involved in the categorical perception of speech have been relatively less studied, and many questions remain open. In this functional magnetic resonance imaging (fMRI) study, we probed the cortical regions mediating categorical speech perception using an advanced brain-mapping technique, whole-brain multivariate pattern-based analysis (MVPA). Normal healthy human subjects (native English speakers) were scanned while they listened to 10 consonant-vowel syllables along the /ba/-/da/ continuum. Outside of the scanner, individuals' own category boundaries were measured to divide the fMRI data into /ba/ and /da/ conditions per subject. The whole-brain MVPA revealed that Broca's area and the left pre-supplementary motor area evoked distinct neural activity patterns between the two perceptual categories (/ba/ vs /da/). Broca's area was also found when the same analysis was applied to another dataset (Raizada and Poldrack, 2007), which previously yielded the supramarginal gyrus using a univariate adaptation-fMRI paradigm. The consistent MVPA findings from two independent datasets strongly indicate that Broca's area participates in categorical speech perception, with a possible role of translating speech signals into articulatory codes. The difference in results between univariate and multivariate pattern-based analyses of the same data suggest that processes in different cortical areas along the dorsal speech perception stream are distributed on different spatial scales.

  10. Neural mechanisms of planning: A computational analysis using event-related fMRI

    PubMed Central

    Fincham, Jon M.; Carter, Cameron S.; van Veen, Vincent; Stenger, V. Andrew; Anderson, John R.

    2002-01-01

    To investigate the neural mechanisms of planning, we used a novel adaptation of the Tower of Hanoi (TOH) task and event-related functional MRI. Participants were trained in applying a specific strategy to an isomorph of the five-disk TOH task. After training, participants solved novel problems during event-related functional MRI. A computational cognitive model of the task was used to generate a reference time series representing the expected blood oxygen level-dependent response in brain areas involved in the manipulation and planning of goals. This time series was used as one term within a general linear modeling framework to identify brain areas in which the time course of activity varied as a function of goal-processing events. Two distinct time courses of activation were identified, one in which activation varied parametrically with goal-processing operations, and the other in which activation became pronounced only during goal-processing intensive trials. Regions showing the parametric relationship comprised a frontoparietal system and include right dorsolateral prefrontal cortex [Brodmann's area (BA 9)], bilateral parietal (BA 40/7), and bilateral premotor (BA 6) areas. Regions preferentially engaged only during goal-intensive processing include left inferior frontal gyrus (BA 44). The implications of these results for the current model, as well as for our understanding of the neural mechanisms of planning and functional specialization of the prefrontal cortex, are discussed. PMID:11880658

  11. The neural circuits of innate fear: detection, integration, action, and memorization

    PubMed Central

    Silva, Bianca A.; Gross, Cornelius T.

    2016-01-01

    How fear is represented in the brain has generated a lot of research attention, not only because fear increases the chances for survival when appropriately expressed but also because it can lead to anxiety and stress-related disorders when inadequately processed. In this review, we summarize recent progress in the understanding of the neural circuits processing innate fear in rodents. We propose that these circuits are contained within three main functional units in the brain: a detection unit, responsible for gathering sensory information signaling the presence of a threat; an integration unit, responsible for incorporating the various sensory information and recruiting downstream effectors; and an output unit, in charge of initiating appropriate bodily and behavioral responses to the threatful stimulus. In parallel, the experience of innate fear also instructs a learning process leading to the memorization of the fearful event. Interestingly, while the detection, integration, and output units processing acute fear responses to different threats tend to be harbored in distinct brain circuits, memory encoding of these threats seems to rely on a shared learning system. PMID:27634145

  12. CI Controls for Energy and Environment

    NASA Technical Reports Server (NTRS)

    Biondo, Samuel J.

    1996-01-01

    Computational intelligence (CI) is a rapidly evolving field that utilizes life imitating metaphors for guiding model building including, but not limited to neural networks, fuzzy logic, genetic algorithms, artificial life, and hybrid CI paradigms. Although the boundaries between artificial intelligence (AI) and CI are not distinct, their research communities are separate and distinct. CI researchers tend to focus on processing numerical data from sensors, while the AI community generally relies on symbolic computing to capture human knowledge. In both areas, there is a great deal of interest and activity in hybrid systems that can offset the limitations of individual methods, extend their capabilities, and create new capabilities. Examples of the benefits that can accrue from hybrid systems are contained.

  13. Approaching the Distinction between Intuition and Insight.

    PubMed

    Zhang, Zhonglu; Lei, Yi; Li, Hong

    2016-01-01

    Intuition and insight share similar cognitive and neural basis. Though, there are still some essential differences between the two. Here in this short review, we discriminated between intuition, and insight in two aspects. First, intuition, and insight are toward different aspects of information processing. Whereas intuition involves judgment about "yes or no," insight is related to "what" is the solution. Second, tacit knowledge play different roles in between intuition and insight. On the one hand, tacit knowledge is conducive to intuitive judgment. On the other hand, tacit knowledge may first impede but later facilitate insight occurrence. Furthermore, we share theoretical, and methodological views on how to access the distinction between intuition and insight.

  14. Native-language N400 and P600 predict dissociable language-learning abilities in adults

    PubMed Central

    Qi, Zhenghan; Beach, Sara D.; Finn, Amy S.; Minas, Jennifer; Goetz, Calvin; Chan, Brian; Gabrieli, John D.E.

    2018-01-01

    Language learning aptitude during adulthood varies markedly across individuals. An individual’s native-language ability has been associated with success in learning a new language as an adult. However, little is known about how native-language processing affects learning success and what neural markers of native-language processing, if any, are related to success in learning. We therefore related variation in electrophysiology during native-language processing to success in learning a novel artificial language. Event-related potentials (ERPs) were recorded while native English speakers judged the acceptability of English sentences prior to learning an artificial language. There was a trend towards a double dissociation between native-language ERPs and their relationships to novel syntax and vocabulary learning. Individuals who exhibited a greater N400 effect when processing English semantics showed better future learning of the artificial language overall. The N400 effect was related to syntax learning via its specific relationship to vocabulary learning. In contrast, the P600 effect size when processing English syntax predicted future syntax learning but not vocabulary learning. These findings show that distinct neural signatures of native-language processing relate to dissociable abilities for learning novel semantic and syntactic information. PMID:27737775

  15. An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging.

    PubMed

    Mohammed, Ali I; Gritton, Howard J; Tseng, Hua-an; Bucklin, Mark E; Yao, Zhaojie; Han, Xue

    2016-02-08

    Advances in neurotechnology have been integral to the investigation of neural circuit function in systems neuroscience. Recent improvements in high performance fluorescent sensors and scientific CMOS cameras enables optical imaging of neural networks at a much larger scale. While exciting technical advances demonstrate the potential of this technique, further improvement in data acquisition and analysis, especially those that allow effective processing of increasingly larger datasets, would greatly promote the application of optical imaging in systems neuroscience. Here we demonstrate the ability of wide-field imaging to capture the concurrent dynamic activity from hundreds to thousands of neurons over millimeters of brain tissue in behaving mice. This system allows the visualization of morphological details at a higher spatial resolution than has been previously achieved using similar functional imaging modalities. To analyze the expansive data sets, we developed software to facilitate rapid downstream data processing. Using this system, we show that a large fraction of anatomically distinct hippocampal neurons respond to discrete environmental stimuli associated with classical conditioning, and that the observed temporal dynamics of transient calcium signals are sufficient for exploring certain spatiotemporal features of large neural networks.

  16. [On the necessity to distinguishing judgment from subjective choice in the cognitive neuroscience of morality].

    PubMed

    Tassy, Sébastien

    2011-10-01

    Recently, cognitive neuroscience has shed new light on our understanding of the neural underpinning of humans' morality. These findings allow for a fundamental questioning and rethinking of the alleged dichotomy between reason and emotion, that has profoundly shaped both moral philosophy and moral psychology. Functional neuroimaging and neuropsychology studies have provided strong arguments favoring a dynamic and interdependent interaction between rational and emotional processes in the brain. Yet another fundamental issue remains largely unexplored: the dissociation between certain behaviours and the moral judgments that seem to precede them. The importance of this dissociation was highlighted in a study of psychopathic patients during which they preserved their moral judgments while frequently engaging in completely non moral behaviour. Such dissociation could result from the cognitive difference between an objective moral judgement with no personal consequence, and a subjective behavioural choice that has effective or potential personal consequences. Consequently, the results of moral dilemma experiments would differ widely depending whether they explore objective or subjective moral evaluations. That these evaluations involve two distinct neural processes should be taken into account when exploring the neural bases of human morality. © 2011 médecine/sciences – Inserm / SRMS.

  17. Common neural systems associated with the recognition of famous faces and names: An event-related fMRI study

    PubMed Central

    Nielson, Kristy A.; Seidenberg, Michael; Woodard, John L.; Durgerian, Sally; Zhang, Qi; Gross, William L.; Gander, Amelia; Guidotti, Leslie M.; Antuono, Piero; Rao, Stephen M.

    2010-01-01

    Person recognition can be accomplished through several modalities (face, name, voice). Lesion, neurophysiology and neuroimaging studies have been conducted in an attempt to determine the similarities and differences in the neural networks associated with person identity via different modality inputs. The current study used event-related functional-MRI in 17 healthy participants to directly compare activation in response to randomly presented famous and non-famous names and faces (25 stimuli in each of the four categories). Findings indicated distinct areas of activation that differed for faces and names in regions typically associated with pre-semantic perceptual processes. In contrast, overlapping brain regions were activated in areas associated with the retrieval of biographical knowledge and associated social affective features. Specifically, activation for famous faces was primarily right lateralized and famous names were left lateralized. However, for both stimuli, similar areas of bilateral activity were observed in the early phases of perceptual processing. Activation for fame, irrespective of stimulus modality, activated an extensive left hemisphere network, with bilateral activity observed in the hippocampi, posterior cingulate, and middle temporal gyri. Findings are discussed within the framework of recent proposals concerning the neural network of person identification. PMID:20167415

  18. The primate amygdala represents the positive and negative value of visual stimuli during learning

    PubMed Central

    Paton, Joseph J.; Belova, Marina A.; Morrison, Sara E.; Salzman, C. Daniel

    2008-01-01

    Visual stimuli can acquire positive or negative value through their association with rewards and punishments, a process called reinforcement learning. Although we now know a great deal about how the brain analyses visual information, we know little about how visual representations become linked with values. To study this process, we turned to the amygdala, a brain structure implicated in reinforcement learning1–5. We recorded the activity of individual amygdala neurons in monkeys while abstract images acquired either positive or negative value through conditioning. After monkeys had learned the initial associations, we reversed image value assignments. We examined neural responses in relation to these reversals in order to estimate the relative contribution to neural activity of the sensory properties of images and their conditioned values. Here we show that changes in the values of images modulate neural activity, and that this modulation occurs rapidly enough to account for, and correlates with, monkeys’ learning. Furthermore, distinct populations of neurons encode the positive and negative values of visual stimuli. Behavioural and physiological responses to visual stimuli may therefore be based in part on the plastic representation of value provided by the amygdala. PMID:16482160

  19. Skeletogenesis in the swell shark Cephaloscyllium ventriosum

    PubMed Central

    Eames, B Frank; Allen, Nancy; Young, Jonathan; Kaplan, Angelo; Helms, Jill A; Schneider, Richard A

    2007-01-01

    Extant chondrichthyans possess a predominantly cartilaginous skeleton, even though primitive chondrichthyans produced bone. To gain insights into this peculiar skeletal evolution, and in particular to evaluate the extent to which chondrichthyan skeletogenesis retains features of an osteogenic programme, we performed a histological, histochemical and immunohistochemical analysis of the entire embryonic skeleton during development of the swell shark Cephaloscyllium ventriosum. Specifically, we compared staining properties among various mineralizing tissues, including neural arches of the vertebrae, dermal tissues supporting oral denticles and Meckel's cartilage of the lower jaw. Patterns of mineralization were predicted by spatially restricted alkaline phosphatase activity earlier in development. Regarding evidence for an osteogenic programme in extant sharks, a mineralized tissue in the perichondrium of C. ventriosum neural arches, and to a lesser extent a tissue supporting the oral denticle, displayed numerous properties of bone. Although we uncovered many differences between tissues in Meckel's cartilage and neural arches of C. ventriosum, both elements impart distinct tissue characteristics to the perichondral region. Considering the evolution of osteogenic processes, shark skeletogenesis may illuminate the transition from perichondrium to periosteum, which is a major bone-forming tissue during the process of endochondral ossification. PMID:17451531

  20. Distinct and Overlapping Brain Areas Engaged during Value-Based, Mathematical, and Emotional Decision Processing

    PubMed Central

    Hsu, Chun-Wei; Goh, Joshua O. S.

    2016-01-01

    When comparing between the values of different choices, human beings can rely on either more cognitive processes, such as using mathematical computation, or more affective processes, such as using emotion. However, the neural correlates of how these two types of processes operate during value-based decision-making remain unclear. In this study, we investigated the extent to which neural regions engaged during value-based decision-making overlap with those engaged during mathematical and emotional processing in a within-subject manner. In a functional magnetic resonance imaging experiment, participants viewed stimuli that always consisted of numbers and emotional faces that depicted two choices. Across tasks, participants decided between the two choices based on the expected value of the numbers, a mathematical result of the numbers, or the emotional face stimuli. We found that all three tasks commonly involved various cortical areas including frontal, parietal, motor, somatosensory, and visual regions. Critically, the mathematical task shared common areas with the value but not emotion task in bilateral striatum. Although the emotion task overlapped with the value task in parietal, motor, and sensory areas, the mathematical task also evoked responses in other areas within these same cortical structures. Minimal areas were uniquely engaged for the value task apart from the other two tasks. The emotion task elicited a more expansive area of neural activity whereas value and mathematical task responses were in more focal regions. Whole-brain spatial correlation analysis showed that valuative processing engaged functional brain responses more similarly to mathematical processing than emotional processing. While decisions on expected value entail both mathematical and emotional processing regions, mathematical processes have a more prominent contribution particularly in subcortical processes. PMID:27375466

  1. Distinct and Overlapping Brain Areas Engaged during Value-Based, Mathematical, and Emotional Decision Processing.

    PubMed

    Hsu, Chun-Wei; Goh, Joshua O S

    2016-01-01

    When comparing between the values of different choices, human beings can rely on either more cognitive processes, such as using mathematical computation, or more affective processes, such as using emotion. However, the neural correlates of how these two types of processes operate during value-based decision-making remain unclear. In this study, we investigated the extent to which neural regions engaged during value-based decision-making overlap with those engaged during mathematical and emotional processing in a within-subject manner. In a functional magnetic resonance imaging experiment, participants viewed stimuli that always consisted of numbers and emotional faces that depicted two choices. Across tasks, participants decided between the two choices based on the expected value of the numbers, a mathematical result of the numbers, or the emotional face stimuli. We found that all three tasks commonly involved various cortical areas including frontal, parietal, motor, somatosensory, and visual regions. Critically, the mathematical task shared common areas with the value but not emotion task in bilateral striatum. Although the emotion task overlapped with the value task in parietal, motor, and sensory areas, the mathematical task also evoked responses in other areas within these same cortical structures. Minimal areas were uniquely engaged for the value task apart from the other two tasks. The emotion task elicited a more expansive area of neural activity whereas value and mathematical task responses were in more focal regions. Whole-brain spatial correlation analysis showed that valuative processing engaged functional brain responses more similarly to mathematical processing than emotional processing. While decisions on expected value entail both mathematical and emotional processing regions, mathematical processes have a more prominent contribution particularly in subcortical processes.

  2. How are things adding up? Neural differences between arithmetic operations are due to general problem solving strategies.

    PubMed

    Tschentscher, Nadja; Hauk, Olaf

    2014-05-15

    A number of previous studies have interpreted differences in brain activation between arithmetic operation types (e.g. addition and multiplication) as evidence in favor of distinct cortical representations, processes or neural systems. It is still not clear how differences in general task complexity contribute to these neural differences. Here, we used a mental arithmetic paradigm to disentangle brain areas related to general problem solving from those involved in operation type specific processes (addition versus multiplication). We orthogonally varied operation type and complexity. Importantly, complexity was defined not only based on surface criteria (for example number size), but also on the basis of individual participants' strategy ratings, which were validated in a detailed behavioral analysis. We replicated previously reported operation type effects in our analyses based on surface criteria. However, these effects vanished when controlling for individual strategies. Instead, procedural strategies contrasted with memory retrieval reliably activated fronto-parietal and motor regions, while retrieval strategies activated parietal cortices. This challenges views that operation types rely on partially different neural systems, and suggests that previously reported differences between operation types may have emerged due to invalid measures of complexity. We conclude that mental arithmetic is a powerful paradigm to study brain networks of abstract problem solving, as long as individual participants' strategies are taken into account. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Using neural pattern classifiers to quantify the modularity of conflict-control mechanisms in the human brain.

    PubMed

    Jiang, Jiefeng; Egner, Tobias

    2014-07-01

    Resolving conflicting sensory and motor representations is a core function of cognitive control, but it remains uncertain to what degree control over different sources of conflict is implemented by shared (domain general) or distinct (domain specific) neural resources. Behavioral data suggest conflict-control to be domain specific, but results from neuroimaging studies have been ambivalent. Here, we employed multivoxel pattern analyses that can decode a brain region's informational content, allowing us to distinguish incidental activation overlap from actual shared information processing. We trained independent sets of "searchlight" classifiers on functional magnetic resonance imaging data to decode control processes associated with stimulus-conflict (Stroop task) and ideomotor-conflict (Simon task). Quantifying the proportion of domain-specific searchlights (capable of decoding only one type of conflict) and domain-general searchlights (capable of decoding both conflict types) in each subject, we found both domain-specific and domain-general searchlights, though the former were more common. When mapping anatomical loci of these searchlights across subjects, neural substrates of stimulus- and ideomotor-specific conflict-control were found to be anatomically consistent across subjects, whereas the substrates of domain-general conflict-control were not. Overall, these findings suggest a hybrid neural architecture of conflict-control that entails both modular (domain specific) and global (domain general) components. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Morphogenesis of the mouse neural plate depends on distinct roles of cofilin 1 in apical and basal epithelial domains

    PubMed Central

    Grego-Bessa, Joaquim; Hildebrand, Jeffrey; Anderson, Kathryn V.

    2015-01-01

    The genetic control of mammalian epithelial polarity and dynamics can be studied in vivo at cellular resolution during morphogenesis of the mouse neural tube. The mouse neural plate is a simple epithelium that is transformed into a columnar pseudostratified tube over the course of ∼24 h. Apical F-actin is known to be important for neural tube closure, but the precise roles of actin dynamics in the neural epithelium are not known. To determine how the organization of the neural epithelium and neural tube closure are affected when actin dynamics are blocked, we examined the cellular basis of the neural tube closure defect in mouse mutants that lack the actin-severing protein cofilin 1 (CFL1). Although apical localization of the adherens junctions, the Par complex, the Crumbs complex and SHROOM3 is normal in the mutants, CFL1 has at least two distinct functions in the apical and basal domains of the neural plate. Apically, in the absence of CFL1 myosin light chain does not become phosphorylated, indicating that CFL1 is required for the activation of apical actomyosin required for neural tube closure. On the basal side of the neural plate, loss of CFL1 has the opposite effect on myosin: excess F-actin and myosin accumulate and the ectopic myosin light chain is phosphorylated. The basal accumulation of F-actin is associated with the assembly of ectopic basal tight junctions and focal disruptions of the basement membrane, which eventually lead to a breakdown of epithelial organization. PMID:25742799

  5. Audio-visual synchrony and spatial attention enhance processing of dynamic visual stimulation independently and in parallel: A frequency-tagging study.

    PubMed

    Covic, Amra; Keitel, Christian; Porcu, Emanuele; Schröger, Erich; Müller, Matthias M

    2017-11-01

    The neural processing of a visual stimulus can be facilitated by attending to its position or by a co-occurring auditory tone. Using frequency-tagging, we investigated whether facilitation by spatial attention and audio-visual synchrony rely on similar neural processes. Participants attended to one of two flickering Gabor patches (14.17 and 17 Hz) located in opposite lower visual fields. Gabor patches further "pulsed" (i.e. showed smooth spatial frequency variations) at distinct rates (3.14 and 3.63 Hz). Frequency-modulating an auditory stimulus at the pulse-rate of one of the visual stimuli established audio-visual synchrony. Flicker and pulsed stimulation elicited stimulus-locked rhythmic electrophysiological brain responses that allowed tracking the neural processing of simultaneously presented Gabor patches. These steady-state responses (SSRs) were quantified in the spectral domain to examine visual stimulus processing under conditions of synchronous vs. asynchronous tone presentation and when respective stimulus positions were attended vs. unattended. Strikingly, unique patterns of effects on pulse- and flicker driven SSRs indicated that spatial attention and audiovisual synchrony facilitated early visual processing in parallel and via different cortical processes. We found attention effects to resemble the classical top-down gain effect facilitating both, flicker and pulse-driven SSRs. Audio-visual synchrony, in turn, only amplified synchrony-producing stimulus aspects (i.e. pulse-driven SSRs) possibly highlighting the role of temporally co-occurring sights and sounds in bottom-up multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Closing in on the constitution of consciousness

    PubMed Central

    Miller, Steven M.

    2014-01-01

    The science of consciousness is a nascent and thriving field of research that is founded on identifying the minimally sufficient neural correlates of consciousness. However, I have argued that it is the neural constitution of consciousness that science seeks to understand and that there are no evident strategies for distinguishing the correlates and constitution of (phenomenal) consciousness. Here I review this correlation/constitution distinction problem and challenge the existing foundations of consciousness science. I present the main analyses from a longer paper in press on this issue, focusing on recording, inhibition, stimulation, and combined inhibition/stimulation strategies, including proposal of the Jenga analogy to illustrate why identifying the minimally sufficient neural correlates of consciousness should not be considered the ultimate target of consciousness science. Thereafter I suggest that while combined inhibition and stimulation strategies might identify some constitutive neural activities—indeed minimally sufficient constitutive neural activities—such strategies fail to identify the whole neural constitution of consciousness and thus the correlation/constitution distinction problem is not fully solved. Various clarifications, potential objections and related scientific and philosophical issues are also discussed and I conclude by proposing new foundational claims for consciousness science. PMID:25452738

  7. Neural correlates of audiotactile phonetic processing in early-blind readers: an fMRI study.

    PubMed

    Pishnamazi, Morteza; Nojaba, Yasaman; Ganjgahi, Habib; Amousoltani, Asie; Oghabian, Mohammad Ali

    2016-05-01

    Reading is a multisensory function that relies on arbitrary associations between auditory speech sounds and symbols from a second modality. Studies of bimodal phonetic perception have mostly investigated the integration of visual letters and speech sounds. Blind readers perform an analogous task by using tactile Braille letters instead of visual letters. The neural underpinnings of audiotactile phonetic processing have not been studied before. We used functional magnetic resonance imaging to reveal the neural correlates of audiotactile phonetic processing in 16 early-blind Braille readers. Braille letters and corresponding speech sounds were presented in unimodal, and congruent/incongruent bimodal configurations. We also used a behavioral task to measure the speed of blind readers in identifying letters presented via tactile and/or auditory modalities. Reaction times for tactile stimuli were faster. The reaction times for bimodal stimuli were equal to those for the slower auditory-only stimuli. fMRI analyses revealed the convergence of unimodal auditory and unimodal tactile responses in areas of the right precentral gyrus and bilateral crus I of the cerebellum. The left and right planum temporale fulfilled the 'max criterion' for bimodal integration, but activities of these areas were not sensitive to the phonetical congruency between sounds and Braille letters. Nevertheless, congruency effects were found in regions of frontal lobe and cerebellum. Our findings suggest that, unlike sighted readers who are assumed to have amodal phonetic representations, blind readers probably process letters and sounds separately. We discuss that this distinction might be due to mal-development of multisensory neural circuits in early blinds or it might be due to inherent differences between Braille and print reading mechanisms.

  8. Selective attention modulates neural substrates of repetition priming and "implicit" visual memory: suppressions and enhancements revealed by FMRI.

    PubMed

    Vuilleumier, Patrik; Schwartz, Sophie; Duhoux, Stéphanie; Dolan, Raymond J; Driver, Jon

    2005-08-01

    Attention can enhance processing for relevant information and suppress this for ignored stimuli. However, some residual processing may still arise without attention. Here we presented overlapping outline objects at study, with subjects attending to those in one color but not the other. Attended objects were subsequently recognized on a surprise memory test, whereas there was complete amnesia for ignored items on such direct explicit testing; yet reliable behavioral priming effects were found on indirect testing. Event-related fMRI examined neural responses to previously attended or ignored objects, now shown alone in the same or mirror-reversed orientation as before, intermixed with new items. Repetition-related decreases in fMRI responses for objects previously attended and repeated in the same orientation were found in the right posterior fusiform, lateral occipital, and left inferior frontal cortex. More anterior fusiform regions also showed some repetition decreases for ignored objects, irrespective of orientation. View-specific repetition decreases were found in the striate cortex, particularly for previously attended items. In addition, previously ignored objects produced some fMRI response increases in the bilateral lingual gyri, relative to new objects. Selective attention at exposure can thus produce several distinct long-term effects on processing of stimuli repeated later, with neural response suppression stronger for previously attended objects, and some response enhancement for previously ignored objects, with these effects arising in different brain areas. Although repetition decreases may relate to positive priming phenomena, the repetition increases for ignored objects shown here for the first time might relate to processes that can produce "negative priming" in some behavioral studies. These results reveal quantitative and qualitative differences between neural substrates of long-term repetition effects for attended versus unattended objects.

  9. Cell fate control in the developing central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatmentsmore » of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.« less

  10. Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory

    PubMed Central

    Shuai, Yichun; Hirokawa, Areekul; Ai, Yulian; Zhang, Min; Li, Wanhe; Zhong, Yi

    2015-01-01

    Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β′1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts. PMID:26627257

  11. Processing of Intentional and Automatic Number Magnitudes in Children Born Prematurely: Evidence From fMRI

    PubMed Central

    Klein, Elise; Moeller, Korbinian; Kiechl-Kohlendorfer, Ursula; Kremser, Christian; Starke, Marc; Cohen Kadosh, Roi; Pupp-Peglow, Ulrike; Schocke, Michael; Kaufmann, Liane

    2014-01-01

    This study examined the neural correlates of intentional and automatic number processing (indexed by number comparison and physical Stroop task, respectively) in 6- and 7-year-old children born prematurely. Behavioral results revealed significant numerical distance and size congruity effects. Imaging results disclosed (1) largely overlapping fronto-parietal activation for intentional and automatic number processing, (2) a frontal to parietal shift of activation upon considering the risk factors gestational age and birth weight, and (3) a task-specific link between math proficiency and functional magnetic resonance imaging (fMRI) signal within distinct regions of the parietal lobes—indicating commonalities but also specificities of intentional and automatic number processing. PMID:25090014

  12. Dynamic and Differential Regulation of Stem Cell Factor FoxD3 in the Neural Crest Is Encrypted in the Genome

    PubMed Central

    Tan-Cabugao, Joanne; Sauka-Spengler, Tatjana; Bronner, Marianne E.

    2012-01-01

    The critical stem cell transcription factor FoxD3 is expressed by the premigratory and migrating neural crest, an embryonic stem cell population that forms diverse derivatives. Despite its important role in development and stem cell biology, little is known about what mediates FoxD3 activity in these cells. We have uncovered two FoxD3 enhancers, NC1 and NC2, that drive reporter expression in spatially and temporally distinct manners. Whereas NC1 activity recapitulates initial FoxD3 expression in the cranial neural crest, NC2 activity recapitulates initial FoxD3 expression at vagal/trunk levels while appearing only later in migrating cranial crest. Detailed mutational analysis, in vivo chromatin immunoprecipitation, and morpholino knock-downs reveal that transcription factors Pax7 and Msx1/2 cooperate with the neural crest specifier gene, Ets1, to bind to the cranial NC1 regulatory element. However, at vagal/trunk levels, they function together with the neural plate border gene, Zic1, which directly binds to the NC2 enhancer. These results reveal dynamic and differential regulation of FoxD3 in distinct neural crest subpopulations, suggesting that heterogeneity is encrypted at the regulatory level. Isolation of neural crest enhancers not only allows establishment of direct regulatory connections underlying neural crest formation, but also provides valuable tools for tissue specific manipulation and investigation of neural crest cell identity in amniotes. PMID:23284303

  13. Probing Compulsive and Impulsive Behaviors, from Animal Models to Endophenotypes: A Narrative Review

    PubMed Central

    Fineberg, Naomi A; Potenza, Marc N; Chamberlain, Samuel R; Berlin, Heather A; Menzies, Lara; Bechara, Antoine; Sahakian, Barbara J; Robbins, Trevor W; Bullmore, Edward T; Hollander, Eric

    2010-01-01

    Failures in cortical control of fronto-striatal neural circuits may underpin impulsive and compulsive acts. In this narrative review, we explore these behaviors from the perspective of neural processes and consider how these behaviors and neural processes contribute to mental disorders such as obsessive–compulsive disorder (OCD), obsessive–compulsive personality disorder, and impulse-control disorders such as trichotillomania and pathological gambling. We present findings from a broad range of data, comprising translational and human endophenotypes research and clinical treatment trials, focussing on the parallel, functionally segregated, cortico-striatal neural projections, from orbitofrontal cortex (OFC) to medial striatum (caudate nucleus), proposed to drive compulsive activity, and from the anterior cingulate/ventromedial prefrontal cortex to the ventral striatum (nucleus accumbens shell), proposed to drive impulsive activity, and the interaction between them. We suggest that impulsivity and compulsivity each seem to be multidimensional. Impulsive or compulsive behaviors are mediated by overlapping as well as distinct neural substrates. Trichotillomania may stand apart as a disorder of motor-impulse control, whereas pathological gambling involves abnormal ventral reward circuitry that identifies it more closely with substance addiction. OCD shows motor impulsivity and compulsivity, probably mediated through disruption of OFC-caudate circuitry, as well as other frontal, cingulate, and parietal connections. Serotonin and dopamine interact across these circuits to modulate aspects of both impulsive and compulsive responding and as yet unidentified brain-based systems may also have important functions. Targeted application of neurocognitive tasks, receptor-specific neurochemical probes, and brain systems neuroimaging techniques have potential for future research in this field. PMID:19940844

  14. By the sound of it. An ERP investigation of human action sound processing in 7-month-old infants

    PubMed Central

    Geangu, Elena; Quadrelli, Ermanno; Lewis, James W.; Macchi Cassia, Viola; Turati, Chiara

    2015-01-01

    Recent evidence suggests that human adults perceive human action sounds as a distinct category from human vocalizations, environmental, and mechanical sounds, activating different neural networks (Engel et al., 2009; Lewis et al., 2011). Yet, little is known about the development of such specialization. Using event-related potentials (ERP), this study investigated neural correlates of 7-month-olds’ processing of human action (HA) sounds in comparison to human vocalizations (HV), environmental (ENV), and mechanical (MEC) sounds. Relative to the other categories, HA sounds led to increased positive amplitudes between 470 and 570 ms post-stimulus onset at left anterior temporal locations, while HV led to increased negative amplitudes at the more posterior temporal locations in both hemispheres. Collectively, human produced sounds (HA + HV) led to significantly different response profiles compared to non-living sound sources (ENV + MEC) at parietal and frontal locations in both hemispheres. Overall, by 7 months of age human action sounds are being differentially processed in the brain, consistent with a dichotomy for processing living versus non-living things. This provides novel evidence regarding the typical categorical processing of socially relevant sounds. PMID:25732377

  15. Dissociating sensory from decision processes in human perceptual decision making.

    PubMed

    Mostert, Pim; Kok, Peter; de Lange, Floris P

    2015-12-15

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.

  16. Neural correlates of successful semantic processing during propofol sedation.

    PubMed

    Adapa, Ram M; Davis, Matthew H; Stamatakis, Emmanuel A; Absalom, Anthony R; Menon, David K

    2014-07-01

    Sedation has a graded effect on brain responses to auditory stimuli: perceptual processing persists at sedation levels that attenuate more complex processing. We used fMRI in healthy volunteers sedated with propofol to assess changes in neural responses to spoken stimuli. Volunteers were scanned awake, sedated, and during recovery, while making perceptual or semantic decisions about nonspeech sounds or spoken words respectively. Sedation caused increased error rates and response times, and differentially affected responses to words in the left inferior frontal gyrus (LIFG) and the left inferior temporal gyrus (LITG). Activity in LIFG regions putatively associated with semantic processing, was significantly reduced by sedation despite sedated volunteers continuing to make accurate semantic decisions. Instead, LITG activity was preserved for words greater than nonspeech sounds and may therefore be associated with persistent semantic processing during the deepest levels of sedation. These results suggest functionally distinct contributions of frontal and temporal regions to semantic decision making. These results have implications for functional imaging studies of language, for understanding mechanisms of impaired speech comprehension in postoperative patients with residual levels of anesthetic, and may contribute to the development of frameworks against which EEG based monitors could be calibrated to detect awareness under anesthesia. Copyright © 2013 Wiley Periodicals, Inc.

  17. Qualitatively similar processing for own- and other-race faces: Evidence from efficiency and equivalent input noise.

    PubMed

    Shafai, Fakhri; Oruc, Ipek

    2018-02-01

    The other-race effect is the finding of diminished performance in recognition of other-race faces compared to those of own-race. It has been suggested that the other-race effect stems from specialized expert processes being tuned exclusively to own-race faces. In the present study, we measured recognition contrast thresholds for own- and other-race faces as well as houses for Caucasian observers. We have factored face recognition performance into two invariant aspects of visual function: efficiency, which is related to neural computations and processing demanded by the task, and equivalent input noise, related to signal degradation within the visual system. We hypothesized that if expert processes are available only to own-race faces, this should translate into substantially greater recognition efficiencies for own-race compared to other-race faces. Instead, we found similar recognition efficiencies for both own- and other-race faces. The other-race effect manifested as increased equivalent input noise. These results argue against qualitatively distinct perceptual processes. Instead they suggest that for Caucasian observers, similar neural computations underlie recognition of own- and other-race faces. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Dissociating sensory from decision processes in human perceptual decision making

    PubMed Central

    Mostert, Pim; Kok, Peter; de Lange, Floris P.

    2015-01-01

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions. PMID:26666393

  19. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration

    PubMed Central

    Addis, Donna Rose; Wong, Alana T.; Schacter, Daniel L.

    2007-01-01

    People can consciously re-experience past events and pre-experience possible future events. This fMRI study examined the neural regions mediating the construction and elaboration of past and future events. Participants were cued with a noun for 20 seconds and instructed to construct a past or future event within a specified time period (week, year, 5–20 years). Once participants had the event in mind, they made a button press and for the remainder of the 20 seconds elaborated on the event. Importantly, all events generated were episodic and did not differ on a number of phenomenological qualities (detail, emotionality, personal significance, field/observer perspective). Conjunction analyses indicated the left hippocampus was commonly engaged by past and future event construction, along with posterior visuospatial regions, but considerable neural differentiation was also observed during the construction phase. Future events recruited regions involved in prospective thinking and generation processes, specifically right frontopolar cortex and left ventrolateral prefrontal cortex, respectively. Furthermore, future event construction uniquely engaged the right hippocampus, possibly as a response to the novelty of these events. In contrast to the construction phase, elaboration was characterized by remarkable overlap in regions comprising the autobiographical memory retrieval network, attributable to the common processes engaged during elaboration, including self-referential processing, contextual and episodic imagery. This striking neural overlap is consistent with findings that amnesic patients exhibit deficits in both past and future thinking, and confirms that the episodic system contributes importantly to imagining the future. PMID:17126370

  20. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Valente, Giancarlo; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2017-01-01

    Ethological views of brain functioning suggest that sound representations and computations in the auditory neural system are optimized finely to process and discriminate behaviorally relevant acoustic features and sounds (e.g., spectrotemporal modulations in the songs of zebra finches). Here, we show that modeling of neural sound representations in terms of frequency-specific spectrotemporal modulations enables accurate and specific reconstruction of real-life sounds from high-resolution functional magnetic resonance imaging (fMRI) response patterns in the human auditory cortex. Region-based analyses indicated that response patterns in separate portions of the auditory cortex are informative of distinctive sets of spectrotemporal modulations. Most relevantly, results revealed that in early auditory regions, and progressively more in surrounding regions, temporal modulations in a range relevant for speech analysis (∼2–4 Hz) were reconstructed more faithfully than other temporal modulations. In early auditory regions, this effect was frequency-dependent and only present for lower frequencies (<∼2 kHz), whereas for higher frequencies, reconstruction accuracy was higher for faster temporal modulations. Further analyses suggested that auditory cortical processing optimized for the fine-grained discrimination of speech and vocal sounds underlies this enhanced reconstruction accuracy. In sum, the present study introduces an approach to embed models of neural sound representations in the analysis of fMRI response patterns. Furthermore, it reveals that, in the human brain, even general purpose and fundamental neural processing mechanisms are shaped by the physical features of real-world stimuli that are most relevant for behavior (i.e., speech, voice). PMID:28420788

  1. Neural substrates of perceptual integration during bistable object perception

    PubMed Central

    Flevaris, Anastasia V.; Martínez, Antigona; Hillyard, Steven A.

    2013-01-01

    The way we perceive an object depends both on feedforward, bottom-up processing of its physical stimulus properties and on top-down factors such as attention, context, expectation, and task relevance. Here we compared neural activity elicited by varying perceptions of the same physical image—a bistable moving image in which perception spontaneously alternates between dissociated fragments and a single, unified object. A time-frequency analysis of EEG changes associated with the perceptual switch from object to fragment and vice versa revealed a greater decrease in alpha (8–12 Hz) accompanying the switch to object percept than to fragment percept. Recordings of event-related potentials elicited by irrelevant probes superimposed on the moving image revealed an enhanced positivity between 184 and 212 ms when the probes were contained within the boundaries of the perceived unitary object. The topography of the positivity (P2) in this latency range elicited by probes during object perception was distinct from the topography elicited by probes during fragment perception, suggesting that the neural processing of probes differed as a function of perceptual state. Two source localization algorithms estimated the neural generator of this object-related difference to lie in the lateral occipital cortex, a region long associated with object perception. These data suggest that perceived objects attract attention, incorporate visual elements occurring within their boundaries into unified object representations, and enhance the visual processing of elements occurring within their boundaries. Importantly, the perceived object in this case emerged as a function of the fluctuating perceptual state of the viewer. PMID:24246467

  2. Can modular psychological concepts like affect and emotion be assigned to a distinct subset of regional neural circuits?. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    NASA Astrophysics Data System (ADS)

    Fehr, Thorsten; Herrmann, Manfred

    2015-06-01

    The proposed Quartet Theory of Human Emotions by Koelsch and co-workers [11] adumbrates evidence from various scientific sources to integrate and assign the psychological concepts of 'affect' and 'emotion' to four brain circuits or to four neuronal core systems for affect-processing in the brain. The authors differentiate between affect and emotion and assign several facultative, or to say modular, psychological domains and principles of information processing, such as learning and memory, antecedents of affective activity, emotion satiation, cognitive complexity, subjective quality feelings, degree of conscious appraisal, to different affect systems. Furthermore, they relate orbito-frontal brain structures to moral affects as uniquely human, and the hippocampus to attachment-related affects. An additional feature of the theory describes 'emotional effector-systems' for motor-related processes (e.g., emotion-related actions), physiological arousal, attention and memory that are assumed to be cross-linked with the four proposed affect systems. Thus, higher principles of emotional information processing, but also modular affect-related issues, such as moral and attachment related affects, are thought to be handled by these four different physiological sub-systems that are on the other side assumed to be highly interwoven at both physiological and functional levels. The authors also state that the proposed sub-systems have many features in common, such as the selection and modulation of biological processes related to behaviour, perception, attention and memory. The latter aspect challenges an ongoing discussion about the mind-body problem: To which degree do the proposed sub-systems 'sufficiently' cover the processing of complex modular or facultative emotional/affective and/or cognitive phenomena? There are current models and scientific positions that almost completely reject the idea that modular psychological phenomena are handled by a distinct selection of regional brain systems or neural modules, but rather suggest highly complex and cross-linked neural networks individually shaped by livelong learning and experience [e.g., 6,7,10,13]. This holds in particular true for complex emotional phenomena such as aggression or empathy in social interaction [8,13]. It thus remains questionable, whether - beyond primary sensory and motor-processing - a small number of modular sub-systems sufficiently cover the organisation of specific phenomenological and social features of perception and behaviour [7,10].

  3. Unification of automatic target tracking and automatic target recognition

    NASA Astrophysics Data System (ADS)

    Schachter, Bruce J.

    2014-06-01

    The subject being addressed is how an automatic target tracker (ATT) and an automatic target recognizer (ATR) can be fused together so tightly and so well that their distinctiveness becomes lost in the merger. This has historically not been the case outside of biology and a few academic papers. The biological model of ATT∪ATR arises from dynamic patterns of activity distributed across many neural circuits and structures (including retina). The information that the brain receives from the eyes is "old news" at the time that it receives it. The eyes and brain forecast a tracked object's future position, rather than relying on received retinal position. Anticipation of the next moment - building up a consistent perception - is accomplished under difficult conditions: motion (eyes, head, body, scene background, target) and processing limitations (neural noise, delays, eye jitter, distractions). Not only does the human vision system surmount these problems, but it has innate mechanisms to exploit motion in support of target detection and classification. Biological vision doesn't normally operate on snapshots. Feature extraction, detection and recognition are spatiotemporal. When vision is viewed as a spatiotemporal process, target detection, recognition, tracking, event detection and activity recognition, do not seem as distinct as they are in current ATT and ATR designs. They appear as similar mechanism taking place at varying time scales. A framework is provided for unifying ATT and ATR.

  4. Sensitivity to musical structure in the human brain

    PubMed Central

    McDermott, Josh H.; Norman-Haignere, Sam; Kanwisher, Nancy

    2012-01-01

    Evidence from brain-damaged patients suggests that regions in the temporal lobes, distinct from those engaged in lower-level auditory analysis, process the pitch and rhythmic structure in music. In contrast, neuroimaging studies targeting the representation of music structure have primarily implicated regions in the inferior frontal cortices. Combining individual-subject fMRI analyses with a scrambling method that manipulated musical structure, we provide evidence of brain regions sensitive to musical structure bilaterally in the temporal lobes, thus reconciling the neuroimaging and patient findings. We further show that these regions are sensitive to the scrambling of both pitch and rhythmic structure but are insensitive to high-level linguistic structure. Our results suggest the existence of brain regions with representations of musical structure that are distinct from high-level linguistic representations and lower-level acoustic representations. These regions provide targets for future research investigating possible neural specialization for music or its associated mental processes. PMID:23019005

  5. Electrophysiological evidence for phenomenal consciousness.

    PubMed

    Revonsuo, Antti; Koivisto, Mika

    2010-09-01

    Abstract Recent evidence from event-related brain potentials (ERPs) lends support to two central theses in Lamme's theory. The earliest ERP correlate of visual consciousness appears over posterior visual cortex around 100-200 ms after stimulus onset. Its scalp topography and time window are consistent with recurrent processing in the visual cortex. This electrophysiological correlate of visual consciousness is mostly independent of later ERPs reflecting selective attention and working memory functions. Overall, the ERP evidence supports the view that phenomenal consciousness of a visual stimulus emerges earlier than access consciousness, and that attention and awareness are served by distinct neural processes.

  6. Reduced temporal processing in older, normal-hearing listeners evident from electrophysiological responses to shifts in interaural time difference.

    PubMed

    Ozmeral, Erol J; Eddins, David A; Eddins, Ann C

    2016-12-01

    Previous electrophysiological studies of interaural time difference (ITD) processing have demonstrated that ITDs are represented by a nontopographic population rate code. Rather than narrow tuning to ITDs, neural channels have broad tuning to ITDs in either the left or right auditory hemifield, and the relative activity between the channels determines the perceived lateralization of the sound. With advancing age, spatial perception weakens and poor temporal processing contributes to declining spatial acuity. At present, it is unclear whether age-related temporal processing deficits are due to poor inhibitory controls in the auditory system or degraded neural synchrony at the periphery. Cortical processing of spatial cues based on a hemifield code are susceptible to potential age-related physiological changes. We consider two distinct predictions of age-related changes to ITD sensitivity: declines in inhibitory mechanisms would lead to increased excitation and medial shifts to rate-azimuth functions, whereas a general reduction in neural synchrony would lead to reduced excitation and shallower slopes in the rate-azimuth function. The current study tested these possibilities by measuring an evoked response to ITD shifts in a narrow-band noise. Results were more in line with the latter outcome, both from measured latencies and amplitudes of the global field potentials and source-localized waveforms in the left and right auditory cortices. The measured responses for older listeners also tended to have reduced asymmetric distribution of activity in response to ITD shifts, which is consistent with other sensory and cognitive processing models of aging. Copyright © 2016 the American Physiological Society.

  7. How distinct is the coding of face identity and expression? Evidence for some common dimensions in face space.

    PubMed

    Rhodes, Gillian; Pond, Stephen; Burton, Nichola; Kloth, Nadine; Jeffery, Linda; Bell, Jason; Ewing, Louise; Calder, Andrew J; Palermo, Romina

    2015-09-01

    Traditional models of face perception emphasize distinct routes for processing face identity and expression. These models have been highly influential in guiding neural and behavioural research on the mechanisms of face perception. However, it is becoming clear that specialised brain areas for coding identity and expression may respond to both attributes and that identity and expression perception can interact. Here we use perceptual aftereffects to demonstrate the existence of dimensions in perceptual face space that code both identity and expression, further challenging the traditional view. Specifically, we find a significant positive association between face identity aftereffects and expression aftereffects, which dissociates from other face (gaze) and non-face (tilt) aftereffects. Importantly, individual variation in the adaptive calibration of these common dimensions significantly predicts ability to recognize both identity and expression. These results highlight the role of common dimensions in our ability to recognize identity and expression, and show why the high-level visual processing of these attributes is not entirely distinct. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Differential involvement of left prefrontal cortex in inductive and deductive reasoning.

    PubMed

    Goel, Vinod; Dolan, Raymond J

    2004-10-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.

  9. The ventral visual pathway: An expanded neural framework for the processing of object quality

    PubMed Central

    Kravitz, Dwight J.; Saleem, Kadharbatcha S.; Baker, Chris I.; Ungerleider, Leslie G.; Mishkin, Mortimer

    2012-01-01

    Since the original characterization of the ventral visual pathway our knowledge of its neuroanatomy, functional properties, and extrinsic targets has grown considerably. Here we synthesize this recent evidence and propose that the ventral pathway is best understood as a recurrent occipitotemporal network containing neural representations of object quality both utilized and constrained by at least six distinct cortical and subcortical systems. Each system serves its own specialized behavioral, cognitive, or affective function, collectively providing the raison d’etre for the ventral visual pathway. This expanded framework contrasts with the depiction of the ventral visual pathway as a largely serial staged hierarchy that culminates in singular object representations for utilization mainly by ventrolateral prefrontal cortex and, more parsimoniously than this account, incorporates attentional, contextual, and feedback effects. PMID:23265839

  10. Heparan Sulfate Proteoglycans as Drivers of Neural Progenitors Derived From Human Mesenchymal Stem Cells.

    PubMed

    Okolicsanyi, Rachel K; Oikari, Lotta E; Yu, Chieh; Griffiths, Lyn R; Haupt, Larisa M

    2018-01-01

    Background: Due to their relative ease of isolation and their high ex vivo and in vitro expansive potential, human mesenchymal stem cells (hMSCs) are an attractive candidate for therapeutic applications in the treatment of brain injury and neurological diseases. Heparan sulfate proteoglycans (HSPGs) are a family of ubiquitous proteins involved in a number of vital cellular processes including proliferation and stem cell lineage differentiation. Methods: Following the determination that hMSCs maintain neural potential throughout extended in vitro expansion, we examined the role of HSPGs in mediating the neural potential of hMSCs. hMSCs cultured in basal conditions (undifferentiated monolayer cultures) were found to co-express neural markers and HSPGs throughout expansion with modulation of the in vitro niche through the addition of exogenous HS influencing cellular HSPG and neural marker expression. Results: Conversion of hMSCs into hMSC Induced Neurospheres (hMSC IN) identified distinctly localized HSPG staining within the spheres along with altered gene expression of HSPG core protein and biosynthetic enzymes when compared to undifferentiated hMSCs. Conclusion: Comparison of markers of pluripotency, neural self-renewal and neural lineage specification between hMSC IN, hMSC and human neural stem cell (hNSC H9) cultures suggest that in vitro generated hMSC IN may represent an intermediary neurogenic cell type, similar to a common neural progenitor cell. In addition, this data demonstrates HSPGs and their biosynthesis machinery, are associated with hMSC IN formation. The identification of specific HSPGs driving hMSC lineage-specification will likely provide new markers to allow better use of hMSCs in therapeutic applications and improve our understanding of human neurogenesis.

  11. Distinct hippocampal functional networks revealed by tractography-based parcellation.

    PubMed

    Adnan, Areeba; Barnett, Alexander; Moayedi, Massieh; McCormick, Cornelia; Cohn, Melanie; McAndrews, Mary Pat

    2016-07-01

    Recent research suggests the anterior and posterior hippocampus form part of two distinct functional neural networks. Here we investigate the structural underpinnings of this functional connectivity difference using diffusion-weighted imaging-based parcellation. Using this technique, we substantiated that the hippocampus can be parcellated into distinct anterior and posterior segments. These structurally defined segments did indeed show different patterns of resting state functional connectivity, in that the anterior segment showed greater connectivity with temporal and orbitofrontal cortex, whereas the posterior segment was more highly connected to medial and lateral parietal cortex. Furthermore, we showed that the posterior hippocampal connectivity to memory processing regions, including the dorsolateral prefrontal cortex, parahippocampal, inferior temporal and fusiform gyri and the precuneus, predicted interindividual relational memory performance. These findings provide important support for the integration of structural and functional connectivity in understanding the brain networks underlying episodic memory.

  12. General Anesthetics and Molecular Mechanisms of Unconsciousness

    PubMed Central

    Forman, Stuart A.; Chin, Victor A.

    2013-01-01

    General anesthetic agents are unique in clinical medicine, because they are the only drugs used to produce unconsciousness as a therapeutic goal. In contrast to older hypotheses that assumed all general anesthetics produce their central nervous system effects through a common mechanism, we outline evidence that general anesthesia represents a number of distinct pharmacological effects that are likely mediated by different neural circuits, and perhaps via different molecular targets. Within the context of this neurobiological framework, we review recent molecular pharmacological and transgenic animal studies. These studies reveal that different groups of general anesthetics, which can be discerned based on their clinical features, produce unconsciousness via distinct molecular targets and therefore via distinct mechanisms. We further postulate that different types of general anesthetics selectively disrupt different critical steps (perhaps in different neuronal circuits) in the processing of sensory information and memory that results in consciousness. PMID:18617817

  13. Direct neural pathways convey distinct visual information to Drosophila mushroom bodies

    PubMed Central

    Vogt, Katrin; Aso, Yoshinori; Hige, Toshihide; Knapek, Stephan; Ichinose, Toshiharu; Friedrich, Anja B; Turner, Glenn C; Rubin, Gerald M; Tanimoto, Hiromu

    2016-01-01

    Previously, we demonstrated that visual and olfactory associative memories of Drosophila share mushroom body (MB) circuits (Vogt et al., 2014). Unlike for odor representation, the MB circuit for visual information has not been characterized. Here, we show that a small subset of MB Kenyon cells (KCs) selectively responds to visual but not olfactory stimulation. The dendrites of these atypical KCs form a ventral accessory calyx (vAC), distinct from the main calyx that receives olfactory input. We identified two types of visual projection neurons (VPNs) directly connecting the optic lobes and the vAC. Strikingly, these VPNs are differentially required for visual memories of color and brightness. The segregation of visual and olfactory domains in the MB allows independent processing of distinct sensory memories and may be a conserved form of sensory representations among insects. DOI: http://dx.doi.org/10.7554/eLife.14009.001 PMID:27083044

  14. Common and Segregated Neural Substrates for Automatic Conceptual and Affective Priming as Revealed by Event-Related Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Liu, Hongyan; Hu, Zhiguo; Peng, Danling; Yang, Yanhui; Li, Kuncheng

    2010-01-01

    The brain activity associated with automatic semantic priming has been extensively studied. Thus far there has been no prior study that directly contrasts the neural mechanisms of semantic and affective priming. The present study employed event-related fMRI to examine the common and distinct neural bases underlying conceptual and affective priming…

  15. Distinct neural substrates for visual short-term memory of actions.

    PubMed

    Cai, Ying; Urgolites, Zhisen; Wood, Justin; Chen, Chuansheng; Li, Siyao; Chen, Antao; Xue, Gui

    2018-06-26

    Fundamental theories of human cognition have long posited that the short-term maintenance of actions is supported by one of the "core knowledge" systems of human visual cognition, yet its neural substrates are still not well understood. In particular, it is unclear whether the visual short-term memory (VSTM) of actions has distinct neural substrates or, as proposed by the spatio-object architecture of VSTM, shares them with VSTM of objects and spatial locations. In two experiments, we tested these two competing hypotheses by directly contrasting the neural substrates for VSTM of actions with those for objects and locations. Our results showed that the bilateral middle temporal cortex (MT) was specifically involved in VSTM of actions because its activation and its functional connectivity with the frontal-parietal network (FPN) were only modulated by the memory load of actions, but not by that of objects/agents or locations. Moreover, the brain regions involved in the maintenance of spatial location information (i.e., superior parietal lobule, SPL) was also recruited during the maintenance of actions, consistent with the temporal-spatial nature of actions. Meanwhile, the frontoparietal network (FPN) was commonly involved in all types of VSTM and showed flexible functional connectivity with the domain-specific regions, depending on the current working memory tasks. Together, our results provide clear evidence for a distinct neural system for maintaining actions in VSTM, which supports the core knowledge system theory and the domain-specific and domain-general architectures of VSTM. © 2018 Wiley Periodicals, Inc.

  16. Distinct neural circuits for control of movement vs. holding still

    PubMed Central

    2017-01-01

    In generating a point-to-point movement, the brain does more than produce the transient commands needed to move the body part; it also produces the sustained commands that are needed to hold the body part at its destination. In the oculomotor system, these functions are mapped onto two distinct circuits: a premotor circuit that specializes in generating the transient activity that displaces the eyes and a “neural integrator” that transforms that transient input into sustained activity that holds the eyes. Different parts of the cerebellum adaptively control the motor commands during these two phases: the oculomotor vermis participates in fine tuning the transient neural signals that move the eyes, monitoring the activity of the premotor circuit via efference copy, whereas the flocculus participates in controlling the sustained neural signals that hold the eyes, monitoring the activity of the neural integrator. Here, I review the oculomotor literature and then ask whether this separation of control between moving and holding is a design principle that may be shared with other modalities of movement. To answer this question, I consider neurophysiological and psychophysical data in various species during control of head movements, arm movements, and locomotion, focusing on the brain stem, motor cortex, and hippocampus, respectively. The review of the data raises the possibility that across modalities of motor control, circuits that are responsible for producing commands that change the sensory state of a body part are distinct from those that produce commands that maintain that sensory state. PMID:28053244

  17. Motivated To Win: Relationship between Anticipatory and Outcome Reward-Related Neural Activity

    PubMed Central

    Nusslock, Robin

    2015-01-01

    Reward-processing involves two temporal stages characterized by two distinct neural processes: reward-anticipation and reward-outcome. Intriguingly, very little research has examined the relationship between neural processes involved in reward-anticipation and reward-outcome. To investigate this, one needs to consider the heterogeneity of reward-processing within each stage. To identify different stages of reward processing, we adapted a reward time-estimation task. While EEG data were recorded, participants were instructed to button-press 3.5 s after the onset of an Anticipation-Cue and received monetary reward for good time-estimation on the Reward trials, but not on No-Reward trials. We first separated reward-anticipation into event related potentials (ERPs) occurring at three sub-stages: reward/no-reward cue-evaluation, motor-preparation and feedback-anticipation. During reward/no-reward cue-evaluation, the Reward-Anticipation Cue led to a smaller N2 and larger P3. During motor-preparation, we report, for the first time, that the Reward-Anticipation Cue enhanced the Readiness Potential (RP), starting approximately 1 s before movement. At the subsequent feedback-anticipation stage, the Reward-Anticipation Cue elevated the Stimulus-Preceding Negativity (SPN). We also separated reward-outcome ERPs into different components occurring at different time-windows: the Feedback-Related Negativity (FRN), Feedback-P3 (FB-P3) and Late-Positive Potentials (LPP). Lastly, we examined the relationship between reward-anticipation and reward-outcome ERPs. We report that individual-differences in specific reward-anticipation ERPs uniquely predicted specific reward-outcome ERPs. In particular, the reward-anticipation Early-RP (1 to .8 s before movement) predicted early reward-outcome ERPs (FRN and FB-P3), whereas, the reward-anticipation SPN most strongly predicted a later reward-outcome ERP (LPP). Results have important implications for understanding the nature of the relationship between reward-anticipation and reward-outcome neural-processes. PMID:26433773

  18. How Social Ties Influence Consumer: Evidence from Event-Related Potentials.

    PubMed

    Luan, Jing; Yao, Zhong; Bai, Yan

    2017-01-01

    A considerable amount of marketing research has reported that consumers are more saliently influenced by friends (strong social ties) than by acquaintances and strangers (weak social ties). To shed light on the neural and psychological processes underlying such phenomenon, in this study we designed an amended S1-S2 paradigm (product-[reviewer-review]) that is based on realistic consumer purchase experiences. After incoming all given information (product, reviewer, review), participants were required to state their purchase intentions. The neurocognitive and emotional processes related to friend and stranger stimuli were delineated to suggest how social ties influence consumers during their shopping processes. Larger P2 (fronto-central scalp areas) and P3 (central and posterior-parietal scalp areas) components under stranger condition were elicited successfully. These findings demonstrate that the cognitive and emotional processing of friend and stranger stimuli occurs at stages of neural activity, and can be indicated by the P2 and P3 components. Electrophysiological data also support the hypothesis that different neural and emotional processing magnitude and strength underlie friend and stranger effect in the context of consumer purchase. During this process, the perception of stimuli evoked P2, subsequently emotional processing and attention modulation were activated and indicated by P2 and P3. The friend dominated phenomenon can be interpreted as the result of distinctive neurocognitive and emotional processing magnitude, which suggests that psychological and emotional factors can guide consumer decision making. This study consolidates that event related potential (ERP) methodology is likely to be a more sensitive method for investigating consumer behaviors. From the perspectives of management and marketing, our findings show that the P2 and P3 components can be employed as an indicator to probe the influential factors of consumer purchase intentions.

  19. How Social Ties Influence Consumer: Evidence from Event-Related Potentials

    PubMed Central

    Yao, Zhong

    2017-01-01

    A considerable amount of marketing research has reported that consumers are more saliently influenced by friends (strong social ties) than by acquaintances and strangers (weak social ties). To shed light on the neural and psychological processes underlying such phenomenon, in this study we designed an amended S1-S2 paradigm (product-[reviewer-review]) that is based on realistic consumer purchase experiences. After incoming all given information (product, reviewer, review), participants were required to state their purchase intentions. The neurocognitive and emotional processes related to friend and stranger stimuli were delineated to suggest how social ties influence consumers during their shopping processes. Larger P2 (fronto-central scalp areas) and P3 (central and posterior-parietal scalp areas) components under stranger condition were elicited successfully. These findings demonstrate that the cognitive and emotional processing of friend and stranger stimuli occurs at stages of neural activity, and can be indicated by the P2 and P3 components. Electrophysiological data also support the hypothesis that different neural and emotional processing magnitude and strength underlie friend and stranger effect in the context of consumer purchase. During this process, the perception of stimuli evoked P2, subsequently emotional processing and attention modulation were activated and indicated by P2 and P3. The friend dominated phenomenon can be interpreted as the result of distinctive neurocognitive and emotional processing magnitude, which suggests that psychological and emotional factors can guide consumer decision making. This study consolidates that event related potential (ERP) methodology is likely to be a more sensitive method for investigating consumer behaviors. From the perspectives of management and marketing, our findings show that the P2 and P3 components can be employed as an indicator to probe the influential factors of consumer purchase intentions. PMID:28081196

  20. Retinal pigment epithelium expansion around the neural retina occurs in two separate phases with distinct mechanisms.

    PubMed

    Cechmanek, Paula Bernice; McFarlane, Sarah

    2017-08-01

    The retinal pigment epithelium (RPE) is a specialized monolayer of epithelial cells that forms a tight barrier surrounding the neural retina. RPE cells are indispensable for mature photoreceptor renewal and survival, yet how the initial RPE cell population expands around the neural retina during eye development is poorly understood. Here we characterize the differentiation, proliferation, and movements of RPE progenitors in the Zebrafish embryo over the period of optic cup morphogenesis. RPE progenitors are present in the dorsomedial eye vesicle shortly after eye vesicle evagination. We define two separate phases that allow for full RPE expansion. The first phase involves a previously uncharacterized antero-wards expansion of the RPE progenitor domain in the inner eye vesicle leaflet, driven largely by an increase in cell number. During this phase, RPE progenitors start to express differentiation markers. In the second phase, the progenitor domain stretches in the dorsoventral and posterior axes, involving cell movements and shape changes, and coinciding with optic cup morphogenesis. Significantly, cell division is not required for RPE expansion. RPE development to produce the monolayer epithelium that covers the back of the neural retina occurs in two distinct phases driven by distinct mechanisms. Developmental Dynamics 246:598-609, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. The control of voluntary eye movements: new perspectives.

    PubMed

    Krauzlis, Richard J

    2005-04-01

    Primates use two types of voluntary eye movements to track objects of interest: pursuit and saccades. Traditionally, these two eye movements have been viewed as distinct systems that are driven automatically by low-level visual inputs. However, two sets of findings argue for a new perspective on the control of voluntary eye movements. First, recent experiments have shown that pursuit and saccades are not controlled by entirely different neural pathways but are controlled by similar networks of cortical and subcortical regions and, in some cases, by the same neurons. Second, pursuit and saccades are not automatic responses to retinal inputs but are regulated by a process of target selection that involves a basic form of decision making. The selection process itself is guided by a variety of complex processes, including attention, perception, memory, and expectation. Together, these findings indicate that pursuit and saccades share a similar functional architecture. These points of similarity may hold the key for understanding how neural circuits negotiate the links between the many higher order functions that can influence behavior and the singular and coordinated motor actions that follow.

  2. The special status of sad infant faces: age and valence differences in adults' cortical face processing.

    PubMed

    Colasante, Tyler; Mossad, Sarah I; Dudek, Joanna; Haley, David W

    2017-04-01

    Understanding the relative and joint prioritization of age- and valence-related face characteristics in adults' cortical face processing remains elusive because these two characteristics have not been manipulated in a single study of neural face processing. We used electroencephalography to investigate adults' P1, N170, P2 and LPP responses to infant and adult faces with happy and sad facial expressions. Viewing infant vs adult faces was associated with significantly larger P1, N170, P2 and LPP responses, with hemisphere and/or participant gender moderating this effect in select cases. Sad faces were associated with significantly larger N170 responses than happy faces. Sad infant faces were associated with significantly larger N170 responses in the right hemisphere than all other combinations of face age and face valence characteristics. We discuss the relative and joint neural prioritization of infant face characteristics and negative facial affect, and their biological value as distinct caregiving and social cues. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Taking one’s time in feeling other-race pain: an event-related potential investigation on the time-course of cross-racial empathy

    PubMed Central

    Meconi, Federica; Castelli, Luigi; Dell’Acqua, Roberto

    2014-01-01

    Using the event-related potential (ERP) approach, we tracked the time-course of white participants’ empathic reactions to white (own-race) and black (other-race) faces displayed in a painful condition (i.e. with a needle penetrating the skin) and in a nonpainful condition (i.e. with Q-tip touching the skin). In a 280–340 ms time-window, neural responses to the pain of own-race individuals under needle penetration conditions were amplified relative to neural responses to the pain of other-race individuals displayed under analogous conditions. This ERP reaction to pain, whose source was localized in the inferior frontal gyrus, correlated with the empathic concern ratings of the Interpersonal Reactivity Index questionnaire. In a 400–750 ms time-window, the difference between neural reactions to the pain of own-race individuals, localized in the middle frontal gyrus and other-race individuals, localized in the temporoparietal junction was reduced to nil. These findings support a functional, neural and temporal distinction between two sequential processing stages underlying empathy, namely, a race-biased stage of pain sharing/mirroring followed by a race-unbiased stage of cognitive evaluation of pain. PMID:23314008

  4. Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.

    PubMed

    Seither-Preisler, Annemarie; Parncutt, Richard; Schneider, Peter

    2014-08-13

    Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered. Copyright © 2014 the authors 0270-6474/14/3410937-13$15.00/0.

  5. Neural processing of race by individuals with Williams syndrome: Do they show the other-race effect? (And why it matters)

    PubMed Central

    Fishman, Inna; Ng, Rowena; Bellugi, Ursula

    2012-01-01

    Williams syndrome (WS) is a genetic condition with a distinctive social phenotype characterized by excessive sociability, accompanied by a relative proficiency in face recognition, despite severe deficits in visuospatial domain of cognition. This consistent phenotypic characteristic and the relative homogeneity of the WS genotype make WS a compelling human model for examining the genotype-phenotype relations, especially with respect to social behavior. Following up on a recent report suggesting that individuals with WS do not show race bias and racial stereotyping, this study was designed to investigate the neural correlates of the perception of faces from different races, in individuals with WS as compared to typically developing (TD) controls. Caucasian WS and TD participants performed a gender identification task with own-race (White) and other-race (Black) faces while event-related potentials (ERPs) were recorded. In line with previous studies with TD participants, other-race faces elicited larger amplitudes ERPs within the first 200 ms following the face onset, in WS and TD participants alike. These results suggest that, just like their TD counterparts, individuals with WS differentially processed faces of own- vs. other-race, at relatively early stages of processing, starting as early as 115 ms after the face onset. Overall, these results indicate that neural processing of faces in individuals with WS is moderated by race at early perceptual stages, calling for a reconsideration of the previous claim that they are uniquely insensitive to race. PMID:22022973

  6. The lateralized arcuate fasciculus in developmental pitch disorders among mandarin amusics: left for speech and right for music.

    PubMed

    Chen, Xizhuo; Zhao, Yanxin; Zhong, Suyu; Cui, Zaixu; Li, Jiaqi; Gong, Gaolang; Dong, Qi; Nan, Yun

    2018-05-01

    The arcuate fasciculus (AF) is a neural fiber tract that is critical to speech and music development. Although the predominant role of the left AF in speech development is relatively clear, how the AF engages in music development is not understood. Congenital amusia is a special neurodevelopmental condition, which not only affects musical pitch but also speech tone processing. Using diffusion tensor tractography, we aimed at understanding the role of AF in music and speech processing by examining the neural connectivity characteristics of the bilateral AF among thirty Mandarin amusics. Compared to age- and intelligence quotient (IQ)-matched controls, amusics demonstrated increased connectivity as reflected by the increased fractional anisotropy in the right posterior AF but decreased connectivity as reflected by the decreased volume in the right anterior AF. Moreover, greater fractional anisotropy in the left direct AF was correlated with worse performance in speech tone perception among amusics. This study is the first to examine the neural connectivity of AF in the neurodevelopmental condition of amusia as a result of disrupted music pitch and speech tone processing. We found abnormal white matter structural connectivity in the right AF for the amusic individuals. Moreover, we demonstrated that the white matter microstructural properties of the left direct AF is modulated by lexical tone deficits among the amusic individuals. These data support the notion of distinctive pitch processing systems between music and speech.

  7. Numerosity processing in early visual cortex.

    PubMed

    Fornaciai, Michele; Brannon, Elizabeth M; Woldorff, Marty G; Park, Joonkoo

    2017-08-15

    While parietal cortex is thought to be critical for representing numerical magnitudes, we recently reported an event-related potential (ERP) study demonstrating selective neural sensitivity to numerosity over midline occipital sites very early in the time course, suggesting the involvement of early visual cortex in numerosity processing. However, which specific brain area underlies such early activation is not known. Here, we tested whether numerosity-sensitive neural signatures arise specifically from the initial stages of visual cortex, aiming to localize the generator of these signals by taking advantage of the distinctive folding pattern of early occipital cortices around the calcarine sulcus, which predicts an inversion of polarity of ERPs arising from these areas when stimuli are presented in the upper versus lower visual field. Dot arrays, including 8-32dots constructed systematically across various numerical and non-numerical visual attributes, were presented randomly in either the upper or lower visual hemifields. Our results show that neural responses at about 90ms post-stimulus were robustly sensitive to numerosity. Moreover, the peculiar pattern of polarity inversion of numerosity-sensitive activity at this stage suggested its generation primarily in V2 and V3. In contrast, numerosity-sensitive ERP activity at occipito-parietal channels later in the time course (210-230ms) did not show polarity inversion, indicating a subsequent processing stage in the dorsal stream. Overall, these results demonstrate that numerosity processing begins in one of the earliest stages of the cortical visual stream. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dissociable neural representations of reinforcement and belief prediction errors underlie strategic learning

    PubMed Central

    Zhu, Lusha; Mathewson, Kyle E.; Hsu, Ming

    2012-01-01

    Decision-making in the presence of other competitive intelligent agents is fundamental for social and economic behavior. Such decisions require agents to behave strategically, where in addition to learning about the rewards and punishments available in the environment, they also need to anticipate and respond to actions of others competing for the same rewards. However, whereas we know much about strategic learning at both theoretical and behavioral levels, we know relatively little about the underlying neural mechanisms. Here, we show using a multi-strategy competitive learning paradigm that strategic choices can be characterized by extending the reinforcement learning (RL) framework to incorporate agents’ beliefs about the actions of their opponents. Furthermore, using this characterization to generate putative internal values, we used model-based functional magnetic resonance imaging to investigate neural computations underlying strategic learning. We found that the distinct notions of prediction errors derived from our computational model are processed in a partially overlapping but distinct set of brain regions. Specifically, we found that the RL prediction error was correlated with activity in the ventral striatum. In contrast, activity in the ventral striatum, as well as the rostral anterior cingulate (rACC), was correlated with a previously uncharacterized belief-based prediction error. Furthermore, activity in rACC reflected individual differences in degree of engagement in belief learning. These results suggest a model of strategic behavior where learning arises from interaction of dissociable reinforcement and belief-based inputs. PMID:22307594

  9. Dissociable neural representations of reinforcement and belief prediction errors underlie strategic learning.

    PubMed

    Zhu, Lusha; Mathewson, Kyle E; Hsu, Ming

    2012-01-31

    Decision-making in the presence of other competitive intelligent agents is fundamental for social and economic behavior. Such decisions require agents to behave strategically, where in addition to learning about the rewards and punishments available in the environment, they also need to anticipate and respond to actions of others competing for the same rewards. However, whereas we know much about strategic learning at both theoretical and behavioral levels, we know relatively little about the underlying neural mechanisms. Here, we show using a multi-strategy competitive learning paradigm that strategic choices can be characterized by extending the reinforcement learning (RL) framework to incorporate agents' beliefs about the actions of their opponents. Furthermore, using this characterization to generate putative internal values, we used model-based functional magnetic resonance imaging to investigate neural computations underlying strategic learning. We found that the distinct notions of prediction errors derived from our computational model are processed in a partially overlapping but distinct set of brain regions. Specifically, we found that the RL prediction error was correlated with activity in the ventral striatum. In contrast, activity in the ventral striatum, as well as the rostral anterior cingulate (rACC), was correlated with a previously uncharacterized belief-based prediction error. Furthermore, activity in rACC reflected individual differences in degree of engagement in belief learning. These results suggest a model of strategic behavior where learning arises from interaction of dissociable reinforcement and belief-based inputs.

  10. Ventral and dorsal streams for choosing word order during sentence production

    PubMed Central

    Thothathiri, Malathi; Rattinger, Michelle

    2015-01-01

    Proficient language use requires speakers to vary word order and choose between different ways of expressing the same meaning. Prior statistical associations between individual verbs and different word orders are known to influence speakers’ choices, but the underlying neural mechanisms are unknown. Here we show that distinct neural pathways are used for verbs with different statistical associations. We manipulated statistical experience by training participants in a language containing novel verbs and two alternative word orders (agent-before-patient, AP; patient-before-agent, PA). Some verbs appeared exclusively in AP, others exclusively in PA, and yet others in both orders. Subsequently, we used sparse sampling neuroimaging to examine the neural substrates as participants generated new sentences in the scanner. Behaviorally, participants showed an overall preference for AP order, but also increased PA order for verbs experienced in that order, reflecting statistical learning. Functional activation and connectivity analyses revealed distinct networks underlying the increased PA production. Verbs experienced in both orders during training preferentially recruited a ventral stream, indicating the use of conceptual processing for mapping meaning to word order. In contrast, verbs experienced solely in PA order recruited dorsal pathways, indicating the use of selective attention and sensorimotor integration for choosing words in the right order. These results show that the brain tracks the structural associations of individual verbs and that the same structural output may be achieved via ventral or dorsal streams, depending on the type of regularities in the input. PMID:26621706

  11. Asymmetric Correlation between Experienced Parental Attachment and Event-Related Potentials Evoked in Response to Parental Faces

    PubMed Central

    Dai, Junqiang; Zhai, Hongchang; Zhou, Anbang; Gong, Yongyuan; Luo, Lin

    2013-01-01

    This study aims to explore the modulation effects of attachment relationships with parents on the neural correlates that are associated with parental faces. The event-related potentials elicited in 31 college students while viewing facial stimuli of their parents in two single oddball paradigms (father vs. unfamiliar male and mother vs. unfamiliar female) were measured. We found that enhanced P3a and P3b and attenuated N2b were elicited by parental faces; however, the N170 component failed to discriminate parental faces from unfamiliar faces. An experienced attachment relationship with the father was positively correlated to the P3a response associated with the father’s face, whereas no correlation was found in the case of mothers. Further exploration in dipole source localization showed that, within the time window of the P300, distinctive brain regions were involved in the processing of parental faces; the father’s face was located in the medial frontal gyrus, which might be involved in self effect, and the anterior cingulate gyrus was activated in response to the mother’s face. This research is the first to demonstrate that neural mechanisms involved with parents can be modulated differentially by the qualities of the attachments to the parents. In addition, parental faces share a highly similar temporal pattern, but the origins of these neural responses are distinct, which could merit further investigation. PMID:23844240

  12. On the Wrong Track: Process and Content in Moral Psychology

    PubMed Central

    Kahane, Guy

    2012-01-01

    According to Joshua Greene's influential dual process model of moral judgment, different modes of processing are associated with distinct moral outputs: automatic processing with deontological judgment, and controlled processing with utilitarian judgment. This article aims to clarify and assess Greene's model. I argue that the proposed tie between process and content is based on a misinterpretation of the evidence, and that the supposed evidence for controlled processing in utilitarian judgment is actually likely to reflect, not ‘utilitarian reasoning’, but a form of moral deliberation which, ironically, is actually in serious tension with a utilitarian outlook. This alternative account is further supported by the results of a neuroimaging study showing that intuitive and counterintuitive judgments have similar neural correlates whether or not their content is utilitarian or deontological. PMID:23335831

  13. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies

    PubMed Central

    Azzarelli, Roberta; Kerloch, Thomas; Pacary, Emilie

    2015-01-01

    The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations. PMID:25610373

  14. Decoding the neural mechanisms of human tool use

    PubMed Central

    Gallivan, Jason P; McLean, D Adam; Valyear, Kenneth F; Culham, Jody C

    2013-01-01

    Sophisticated tool use is a defining characteristic of the primate species but how is it supported by the brain, particularly the human brain? Here we show, using functional MRI and pattern classification methods, that tool use is subserved by multiple distributed action-centred neural representations that are both shared with and distinct from those of the hand. In areas of frontoparietal cortex we found a common representation for planned hand- and tool-related actions. In contrast, in parietal and occipitotemporal regions implicated in hand actions and body perception we found that coding remained selectively linked to upcoming actions of the hand whereas in parietal and occipitotemporal regions implicated in tool-related processing the coding remained selectively linked to upcoming actions of the tool. The highly specialized and hierarchical nature of this coding suggests that hand- and tool-related actions are represented separately at earlier levels of sensorimotor processing before becoming integrated in frontoparietal cortex. DOI: http://dx.doi.org/10.7554/eLife.00425.001 PMID:23741616

  15. Age-related behavioural and neurofunctional patterns of second language word learning: different ways of being successful.

    PubMed

    Marcotte, Karine; Ansaldo, Ana Inés

    2014-08-01

    This study aimed at investigating the neural basis of word learning as a function of age and word type. Ten young and ten elderly French-speaking participants were trained by means of a computerized Spanish word program. Both age groups reached a similar naming accuracy, but the elderly required significantly more time. Despite equivalent performance, distinct neural networks characterized the ceiling. While the young cohort showed subcortical activations, the elderly recruited the left inferior frontal gyrus, the left lingual gyrus and the precuneus. The learning trajectory of the elderly, the neuroimaging findings together with their performance on the Stroop suggest that the young adults relied on control processing areas whereas the elderly relied on episodic memory circuits, which may reflect resorting to better preserved cognitive resources. Finally, the recruitment of visual processing areas by the elderly may reflect the impact of the language training method used. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?

    PubMed

    Rothwell, Patrick E

    2016-01-01

    Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction.

  17. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?

    PubMed Central

    Rothwell, Patrick E.

    2016-01-01

    Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction. PMID:26903789

  18. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    PubMed

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Central neural pathways for thermoregulation.

    PubMed

    Morrison, Shaun F; Nakamura, Kazuhiro

    2011-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction.

  20. A Pause-then-Cancel model of stopping: evidence from basal ganglia neurophysiology

    PubMed Central

    Berke, Joshua D.

    2017-01-01

    Many studies have implicated the basal ganglia in the suppression of action impulses (‘stopping’). Here, we discuss recent neurophysiological evidence that distinct hypothesized processes involved in action preparation and cancellation can be mapped onto distinct basal ganglia cell types and pathways. We examine how movement-related activity in the striatum is related to a ‘Go’ process and how going may be modulated by brief epochs of beta oscillations. We then describe how, rather than a unitary ‘Stop’ process, there appear to be separate, complementary ‘Pause’ and ‘Cancel’ mechanisms. We discuss the implications of these stopping subprocesses for the interpretation of the stop-signal reaction time—in particular, some activity that seems too slow to causally contribute to stopping when assuming a single Stop processes may actually be fast enough under a Pause-then-Cancel model. Finally, we suggest that combining complementary neural mechanisms that emphasize speed or accuracy respectively may serve more generally to optimize speed–accuracy trade-offs. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’. PMID:28242736

  1. A Pause-then-Cancel model of stopping: evidence from basal ganglia neurophysiology.

    PubMed

    Schmidt, Robert; Berke, Joshua D

    2017-04-19

    Many studies have implicated the basal ganglia in the suppression of action impulses ('stopping'). Here, we discuss recent neurophysiological evidence that distinct hypothesized processes involved in action preparation and cancellation can be mapped onto distinct basal ganglia cell types and pathways. We examine how movement-related activity in the striatum is related to a 'Go' process and how going may be modulated by brief epochs of beta oscillations. We then describe how, rather than a unitary 'Stop' process, there appear to be separate, complementary 'Pause' and 'Cancel' mechanisms. We discuss the implications of these stopping subprocesses for the interpretation of the stop-signal reaction time-in particular, some activity that seems too slow to causally contribute to stopping when assuming a single Stop processes may actually be fast enough under a Pause-then-Cancel model. Finally, we suggest that combining complementary neural mechanisms that emphasize speed or accuracy respectively may serve more generally to optimize speed-accuracy trade-offs.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'. © 2017 The Author(s).

  2. Distinct frontal regions subserve evaluation of linguistic and emotional aspects of speech intonation.

    PubMed

    Wildgruber, D; Hertrich, I; Riecker, A; Erb, M; Anders, S; Grodd, W; Ackermann, H

    2004-12-01

    In addition to the propositional content of verbal utterances, significant linguistic and emotional information is conveyed by the tone of speech. To differentiate brain regions subserving processing of linguistic and affective aspects of intonation, discrimination of sentences differing in linguistic accentuation and emotional expressiveness was evaluated by functional magnetic resonance imaging. Both tasks yielded rightward lateralization of hemodynamic responses at the level of the dorsolateral frontal cortex as well as bilateral thalamic and temporal activation. Processing of linguistic and affective intonation, thus, seems to be supported by overlapping neural networks comprising partially right-sided brain regions. Comparison of hemodynamic activation during the two different tasks, however, revealed bilateral orbito-frontal responses restricted to the affective condition as opposed to activation of the left lateral inferior frontal gyrus confined to evaluation of linguistic intonation. These findings indicate that distinct frontal regions contribute to higher level processing of intonational information depending on its communicational function. In line with other components of language processing, discrimination of linguistic accentuation seems to be lateralized to the left inferior-lateral frontal region whereas bilateral orbito-frontal areas subserve evaluation of emotional expressiveness.

  3. 'Faceness' and affectivity: evidence for genetic contributions to distinct components of electrocortical response to human faces.

    PubMed

    Shannon, Robert W; Patrick, Christopher J; Venables, Noah C; He, Sheng

    2013-12-01

    The ability to recognize a variety of different human faces is undoubtedly one of the most important and impressive functions of the human perceptual system. Neuroimaging studies have revealed multiple brain regions (including the FFA, STS, OFA) and electrophysiological studies have identified differing brain event-related potential (ERP) components (e.g., N170, P200) possibly related to distinct types of face information processing. To evaluate the heritability of ERP components associated with face processing, including N170, P200, and LPP, we examined ERP responses to fearful and neutral face stimuli in monozygotic (MZ) and dizygotic (DZ) twins. Concordance levels for early brain response indices of face processing (N170, P200) were found to be stronger for MZ than DZ twins, providing evidence of a heritable basis to each. These findings support the idea that certain key neural mechanisms for face processing are genetically coded. Implications for understanding individual differences in recognition of facial identity and the emotional content of faces are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Imagine that! ERPs provide evidence for distinct hemispheric contributions to the processing of concrete and abstract concepts

    PubMed Central

    Huang, Hsu-Wen; Lee, Chia-Lin; Federmeier, Kara D.

    2009-01-01

    Although abstract and concrete concepts are processed and remembered differently, the underlying nature of those differences remains in dispute. The current study used visual half-field (VF) presentation methods and event-related potential (ERP) measures to examine how the left (LH) and right (RH) cerebral hemispheres process concrete and abstract meanings of polysemous nouns (e.g., “green book,” referring to the concrete, physical object that is a book, versus “engaging book,” referring to the abstract information that a book conveys). With presentation to the right VF, nouns preceded by concrete modifiers were associated with more positivity on the P2 and N400, suggesting that concrete concepts were easier for the LH to process perceptually and semantically. In contrast, with presentation to the left VF (RH), nouns used in a concrete sense elicited a sustained frontal negativity (500-900 ms) that has been previously linked to imagery. The results thus reveal multiple, distinct neural and cognitive sources for concreteness effects and point to a critical role for the RH in linking language input to sensory imagery. PMID:19631274

  5. From circuits to behaviour in the amygdala

    PubMed Central

    Janak, Patricia H.; Tye, Kay M.

    2015-01-01

    The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits. PMID:25592533

  6. Attention, Imagery and Memory: A Neuromagnetic Investigation

    DTIC Science & Technology

    1991-10-14

    The full complexity of memory processes suggested by the distinctions between short-term and long-term memory , episodic , semantic and declarative...the ;canning of short-term memory . This fol- lows from the fact that bilateral damage to medial temporal cortex results in anterograde amnesia , which...Neural Science AD-A243 859 r󈧅 FINAL TECHNICAL REPORTC Attention, Imagery and Memory 1 March 1988 -30 September 1991 , Q6’i iQ’ UA Dr.~~~~C A..Fel

  7. Unorganized machines for seasonal streamflow series forecasting.

    PubMed

    Siqueira, Hugo; Boccato, Levy; Attux, Romis; Lyra, Christiano

    2014-05-01

    Modern unorganized machines--extreme learning machines and echo state networks--provide an elegant balance between processing capability and mathematical simplicity, circumventing the difficulties associated with the conventional training approaches of feedforward/recurrent neural networks (FNNs/RNNs). This work performs a detailed investigation of the applicability of unorganized architectures to the problem of seasonal streamflow series forecasting, considering scenarios associated with four Brazilian hydroelectric plants and four distinct prediction horizons. Experimental results indicate the pertinence of these models to the focused task.

  8. Neural responses to ambiguity involve domain-general and domain-specific emotion processing systems.

    PubMed

    Neta, Maital; Kelley, William M; Whalen, Paul J

    2013-04-01

    Extant research has examined the process of decision making under uncertainty, specifically in situations of ambiguity. However, much of this work has been conducted in the context of semantic and low-level visual processing. An open question is whether ambiguity in social signals (e.g., emotional facial expressions) is processed similarly or whether a unique set of processors come on-line to resolve ambiguity in a social context. Our work has examined ambiguity using surprised facial expressions, as they have predicted both positive and negative outcomes in the past. Specifically, whereas some people tended to interpret surprise as negatively valenced, others tended toward a more positive interpretation. Here, we examined neural responses to social ambiguity using faces (surprise) and nonface emotional scenes (International Affective Picture System). Moreover, we examined whether these effects are specific to ambiguity resolution (i.e., judgments about the ambiguity) or whether similar effects would be demonstrated for incidental judgments (e.g., nonvalence judgments about ambiguously valenced stimuli). We found that a distinct task control (i.e., cingulo-opercular) network was more active when resolving ambiguity. We also found that activity in the ventral amygdala was greater to faces and scenes that were rated explicitly along the dimension of valence, consistent with findings that the ventral amygdala tracks valence. Taken together, there is a complex neural architecture that supports decision making in the presence of ambiguity: (a) a core set of cortical structures engaged for explicit ambiguity processing across stimulus boundaries and (b) other dedicated circuits for biologically relevant learning situations involving faces.

  9. Neural correlates of semantic associations in patients with schizophrenia.

    PubMed

    Sass, Katharina; Heim, Stefan; Sachs, Olga; Straube, Benjamin; Schneider, Frank; Habel, Ute; Kircher, Tilo

    2014-03-01

    Patients with schizophrenia have semantic processing disturbances leading to expressive language deficits (formal thought disorder). The underlying pathology has been related to alterations in the semantic network and its neural correlates. Moreover, crossmodal processing, an important aspect of communication, is impaired in schizophrenia. Here we investigated specific processing abnormalities in patients with schizophrenia with regard to modality and semantic distance in a semantic priming paradigm. Fourteen patients with schizophrenia and fourteen demographically matched controls made visual lexical decisions on successively presented word-pairs (SOA = 350 ms) with direct or indirect relations, unrelated word-pairs, and pseudoword-target stimuli during fMRI measurement. Stimuli were presented in a unimodal (visual) or crossmodal (auditory-visual) fashion. On the neural level, the effect of semantic relation indicated differences (patients > controls) within the right angular gyrus and precuneus. The effect of modality revealed differences (controls > patients) within the left superior frontal, middle temporal, inferior occipital, right angular gyri, and anterior cingulate cortex. Semantic distance (direct vs. indirect) induced distinct activations within the left middle temporal, fusiform gyrus, right precuneus, and thalamus with patients showing fewer differences between direct and indirect word-pairs. The results highlight aberrant priming-related brain responses in patients with schizophrenia. Enhanced activation for patients possibly reflects deficits in semantic processes that might be caused by a delayed and enhanced spread of activation within the semantic network. Modality-specific decreases of activation in patients might be related to impaired perceptual integration. Those deficits could induce and increase the prominent symptoms of schizophrenia like impaired speech processing.

  10. Neural theory for the perception of causal actions.

    PubMed

    Fleischer, Falk; Christensen, Andrea; Caggiano, Vittorio; Thier, Peter; Giese, Martin A

    2012-07-01

    The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.

  11. Differential Sources for 2 Neural Signatures of Target Detection: An Electrocorticography Study.

    PubMed

    Kam, J W Y; Szczepanski, S M; Canolty, R T; Flinker, A; Auguste, K I; Crone, N E; Kirsch, H E; Kuperman, R A; Lin, J J; Parvizi, J; Knight, R T

    2018-01-01

    Electrophysiology and neuroimaging provide conflicting evidence for the neural contributions to target detection. Scalp electroencephalography (EEG) studies localize the P3b event-related potential component mainly to parietal cortex, whereas neuroimaging studies report activations in both frontal and parietal cortices. We addressed this discrepancy by examining the sources that generate the target-detection process using electrocorticography (ECoG). We recorded ECoG activity from cortex in 14 patients undergoing epilepsy monitoring, as they performed an auditory or visual target-detection task. We examined target-related responses in 2 domains: high frequency band (HFB) activity and the P3b. Across tasks, we observed a greater proportion of electrodes that showed target-specific HFB power relative to P3b over frontal cortex, but their proportions over parietal cortex were comparable. Notably, there was minimal overlap in the electrodes that showed target-specific HFB and P3b activity. These results revealed that the target-detection process is characterized by at least 2 different neural markers with distinct cortical distributions. Our findings suggest that separate neural mechanisms are driving the differential patterns of activity observed in scalp EEG and neuroimaging studies, with the P3b reflecting EEG findings and HFB activity reflecting neuroimaging findings, highlighting the notion that target detection is not a unitary phenomenon. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Role of the cerebellum in high stages of motor planning hierarchy

    PubMed Central

    Federici, Alessandra; Cesareo, Ambra; Biffi, Emilia; Valtorta, Giulia; Molteni, Massimo; Ronconi, Luca; Borgatti, Renato

    2017-01-01

    Motor planning is not a monolithic process, and distinct stages of motor planning are responsible for encoding different levels of abstractness. However, how these distinct components are mapped into different neural substrates remains an open question. We studied one of these high-level motor planning components, defined as second-order motor planning, in a patient (R.G.) with an extremely rare case of cerebellar agenesis but without any other cortical malformations. Second-order motor planning dictates that when two acts must be performed sequentially, planning of the second act can influence execution of the first. We used an optoelectronic system for kinematic analysis to compare R.G.’s performance with age-matched controls in a second-order motor planning task. The first act was to reach for an object, and the second was to place it into a small or large container. Our results showed that despite the expected difficulties in fine-motor skills, second-order motor planning (i.e., the ability to modulate the first act as a function of the nature of the second act) was preserved even in the patient with congenital absence of the cerebellum. These results open new intriguing speculations about the role of the cerebellum in motor planning abilities. Although prudence is imperative when suggesting conclusions made on the basis of single-case findings, this evidence suggests fascinating hypotheses about the neural circuits that support distinct stages of the motor planning hierarchy, and regarding the functional role of second-order motor planning in motor cognition and its potential dysfunction in autism. NEW & NOTEWORTHY Traditionally, the cerebellum was considered essential for motor planning. By studying an extremely rare patient with cerebellar agenesis and a group of neurotypical controls, we found that high stages of the motor planning hierarchy can be preserved even in this patient with congenital absence of the cerebellum. Our results provide interesting insights that shed light on the neural circuits supporting distinct levels of motor planning. Furthermore, the results are intriguing because of their potential clinical implications in autism. PMID:28077667

  13. Neural Correlates of Attentional Processing of Threat in Youth with and without Anxiety Disorders.

    PubMed

    Bechor, Michele; Ramos, Michelle L; Crowley, Michael J; Silverman, Wendy K; Pettit, Jeremy W; Reeb-Sutherland, Bethany C

    2018-04-02

    Late-stage attentional processing of threatening stimuli, quantified through event-related potentials (ERPs), differentiates youth with and without anxiety disorders. It is unknown whether early-stage attentional processing of threatening stimuli differentiates these groups. Examining both early and late stage attentional processes in youth may advance knowledge and enhance efforts to identify biomarkers for translational prevention and treatment research. Twenty-one youth with primary DSM-IV-TR anxiety disorders (10 males, ages 8-15 years) and 21 typically developing Controls (15 males, ages 8-16 years) completed a dot probe task while electroencephalography (EEG) was recorded, and ERPs were examined. Youth with anxiety disorders showed significantly larger (more positive) P1 amplitudes for threatening stimuli than for neutral stimuli, and Controls showed the opposite pattern. Youth with anxiety showed larger (more negative) N170 amplitudes compared with Controls. Controls showed significantly larger (more positive) P2 and P3 amplitudes, regardless of stimuli valence, compared with youth with anxiety disorders. ERPs observed during the dot probe task indicate youth with anxiety disorders display distinct neural processing during early stage attentional orienting and processing of faces; this was not the case for Controls. Such results suggest these ERP components may have potential as biomarkers of anxiety disorders in youth.

  14. Native-language N400 and P600 predict dissociable language-learning abilities in adults.

    PubMed

    Qi, Zhenghan; Beach, Sara D; Finn, Amy S; Minas, Jennifer; Goetz, Calvin; Chan, Brian; Gabrieli, John D E

    2017-04-01

    Language learning aptitude during adulthood varies markedly across individuals. An individual's native-language ability has been associated with success in learning a new language as an adult. However, little is known about how native-language processing affects learning success and what neural markers of native-language processing, if any, are related to success in learning. We therefore related variation in electrophysiology during native-language processing to success in learning a novel artificial language. Event-related potentials (ERPs) were recorded while native English speakers judged the acceptability of English sentences prior to learning an artificial language. There was a trend towards a double dissociation between native-language ERPs and their relationships to novel syntax and vocabulary learning. Individuals who exhibited a greater N400 effect when processing English semantics showed better future learning of the artificial language overall. The N400 effect was related to syntax learning via its specific relationship to vocabulary learning. In contrast, the P600 effect size when processing English syntax predicted future syntax learning but not vocabulary learning. These findings show that distinct neural signatures of native-language processing relate to dissociable abilities for learning novel semantic and syntactic information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Prediction of collision events: an EEG coherence analysis.

    PubMed

    Spapé, Michiel M; Serrien, Deborah J

    2011-05-01

    A common daily-life task is the interaction with moving objects for which prediction of collision events is required. To evaluate the sources of information used in this process, this EEG study required participants to judge whether two moving objects would collide with one another or not. In addition, the effect of a distractor object is evaluated. The measurements included the behavioural decision time and accuracy, eye movement fixation times, and the neural dynamics which was determined by means of EEG coherence, expressing functional connectivity between brain areas. Collision judgment involved widespread information processing across both hemispheres. When a distractor object was present, task-related activity was increased whereas distractor activity induced modulation of local sensory processing. Also relevant were the parietal regions communicating with bilateral occipital and midline areas and a left-sided sensorimotor circuit. Besides visual cues, cognitive and strategic strategies are used to establish a decision of events in time. When distracting information is introduced into the collision judgment process, it is managed at different processing levels and supported by distinct neural correlates. These data shed light on the processing mechanisms that support judgment of collision events; an ability that implicates higher-order decision-making. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography.

    PubMed

    Ozker, Muge; Schepers, Inga M; Magnotti, John F; Yoshor, Daniel; Beauchamp, Michael S

    2017-06-01

    Human speech can be comprehended using only auditory information from the talker's voice. However, comprehension is improved if the talker's face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl's gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech.

  17. A new neural framework for visuospatial processing.

    PubMed

    Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Mishkin, Mortimer

    2011-04-01

    The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.

  18. 4-dimensional functional profiling in the convulsant-treated larval zebrafish brain.

    PubMed

    Winter, Matthew J; Windell, Dylan; Metz, Jeremy; Matthews, Peter; Pinion, Joe; Brown, Jonathan T; Hetheridge, Malcolm J; Ball, Jonathan S; Owen, Stewart F; Redfern, Will S; Moger, Julian; Randall, Andrew D; Tyler, Charles R

    2017-07-26

    Functional neuroimaging, using genetically-encoded Ca 2+ sensors in larval zebrafish, offers a powerful combination of high spatiotemporal resolution and higher vertebrate relevance for quantitative neuropharmacological profiling. Here we use zebrafish larvae with pan-neuronal expression of GCaMP6s, combined with light sheet microscopy and a novel image processing pipeline, for the 4D profiling of chemoconvulsant action in multiple brain regions. In untreated larvae, regions associated with autonomic functionality, sensory processing and stress-responsiveness, consistently exhibited elevated spontaneous activity. The application of drugs targeting different convulsant mechanisms (4-Aminopyridine, Pentylenetetrazole, Pilocarpine and Strychnine) resulted in distinct spatiotemporal patterns of activity. These activity patterns showed some interesting parallels with what is known of the distribution of their respective molecular targets, but crucially also revealed system-wide neural circuit responses to stimulation or suppression. Drug concentration-response curves of neural activity were identified in a number of anatomically-defined zebrafish brain regions, and in vivo larval electrophysiology, also conducted in 4dpf larvae, provided additional measures of neural activity. Our quantification of network-wide chemoconvulsant drug activity in the whole zebrafish brain illustrates the power of this approach for neuropharmacological profiling in applications ranging from accelerating studies of drug safety and efficacy, to identifying pharmacologically-altered networks in zebrafish models of human neurological disorders.

  19. When opportunity meets motivation: Neural engagement during social approach is linked to high approach motivation.

    PubMed

    Radke, Sina; Seidel, Eva-Maria; Eickhoff, Simon B; Gur, Ruben C; Schneider, Frank; Habel, Ute; Derntl, Birgit

    2016-02-15

    Social rewards are processed by the same dopaminergic-mediated brain networks as non-social rewards, suggesting a common representation of subjective value. Individual differences in personality and motivation influence the reinforcing value of social incentives, but it remains open whether the pursuit of social incentives is analogously supported by the neural reward system when positive social stimuli are connected to approach behavior. To test for a modulation of neural activation by approach motivation, individuals with high and low approach motivation (BAS) completed implicit and explicit social approach-avoidance paradigms during fMRI. High approach motivation was associated with faster implicit approach reactions as well as a trend for higher approach ratings, indicating increased approach tendencies. Implicit and explicit positive social approach was accompanied by stronger recruitment of the nucleus accumbens, middle cingulate cortex, and (pre-)cuneus for individuals with high compared to low approach motivation. These results support and extend prior research on social reward processing, self-other distinctions and affective judgments by linking approach motivation to the engagement of reward-related circuits during motivational reactions to social incentives. This interplay between motivational preferences and motivational contexts might underlie the rewarding experience during social interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Unity and diversity of executive functions: Individual differences as a window on cognitive structure.

    PubMed

    Friedman, Naomi P; Miyake, Akira

    2017-01-01

    Executive functions (EFs) are high-level cognitive processes, often associated with the frontal lobes, that control lower level processes in the service of goal-directed behavior. They include abilities such as response inhibition, interference control, working memory updating, and set shifting. EFs show a general pattern of shared but distinct functions, a pattern described as "unity and diversity". We review studies of EF unity and diversity at the behavioral and genetic levels, focusing on studies of normal individual differences and what they reveal about the functional organization of these cognitive abilities. In particular, we review evidence that across multiple ages and populations, commonly studied EFs (a) are robustly correlated but separable when measured with latent variables; (b) are not the same as general intelligence or g; (c) are highly heritable at the latent level and seemingly also highly polygenic; and (d) activate both common and specific neural areas and can be linked to individual differences in neural activation, volume, and connectivity. We highlight how considering individual differences at the behavioral and neural levels can add considerable insight to the investigation of the functional organization of the brain, and conclude with some key points about individual differences to consider when interpreting neuropsychological patterns of dissociation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Secondary neurulation: Fate-mapping and gene manipulation of the neural tube in tail bud.

    PubMed

    Shimokita, Eisuke; Takahashi, Yoshiko

    2011-04-01

    The body tail is a characteristic trait of vertebrates, which endows the animals with a variety of locomotive functions. During embryogenesis, the tail develops from the tail bud, where neural and mesodermal tissues make a major contribution. The neural tube in the tail bud develops by the process known as secondary neurulation (SN), where mesenchymal cells undergo epithelialization and tubulogenesis. These processes contrast with the well known primary neurulation, which is achieved by invagination of an epithelial cell sheet. In this study we have identified the origin of SN-undergoing cells, which is located caudo-medially to Hensen's node of early chicken embryo. This region is distinctly fate-mapped from tail-forming mesoderm. The identification of the presumptive SN region has allowed us to target this region with exogenous genes using in ovo electroporation techniques. The SN-transgenesis has further enabled an exploration of molecular mechanisms underlying mesenchymal-to-epithelial transition during SN, where activity levels of Cdc42 and Rac1 are critical. This is the first demonstration of molecular and cellular analyses of SN, which can be performed at a high resolution separately from tail-forming mesoderm. © 2011 The Authors. Journal compilation © 2011 Japanese Society of Developmental Biologists.

  2. Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity.

    PubMed

    Azim, Kasum; Angonin, Diane; Marcy, Guillaume; Pieropan, Francesca; Rivera, Andrea; Donega, Vanessa; Cantù, Claudio; Williams, Gareth; Berninger, Benedikt; Butt, Arthur M; Raineteau, Olivier

    2017-03-01

    Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ) is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs) and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP), to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases.

  3. Olfactory systems and neural circuits that modulate predator odor fear

    PubMed Central

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear. PMID:24653685

  4. Olfactory systems and neural circuits that modulate predator odor fear.

    PubMed

    Takahashi, Lorey K

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear.

  5. Neural mechanisms of risky decision-making and reward response in adolescent onset cannabis use disorder.

    PubMed

    De Bellis, Michael D; Wang, Lihong; Bergman, Sara R; Yaxley, Richard H; Hooper, Stephen R; Huettel, Scott A

    2013-11-01

    Neural mechanisms of decision-making and reward response in adolescent cannabis use disorder (CUD) are underexplored. Three groups of male adolescents were studied: CUD in full remission (n=15); controls with psychopathology without substance use disorder history (n=23); and healthy controls (n=18). We investigated neural processing of decision-making and reward under conditions of varying risk and uncertainty with the Decision-Reward Uncertainty Task while participants were scanned using functional magnetic resonance imaging. Abstinent adolescents with CUD compared to controls with psychopathology showed hyperactivation in one cluster that spanned left superior parietal lobule/left lateral occipital cortex/precuneus while making risky decisions that involved uncertainty, and hypoactivation in left orbitofrontal cortex to rewarded outcomes compared to no-reward after making risky decisions. Post hoc region of interest analyses revealed that both control groups significantly differed from the CUD group (but not from each other) during both the decision-making and reward outcome phase of the Decision-Reward Uncertainty Task. In the CUD group, orbitofrontal activations to reward significantly and negatively correlated with total number of individual drug classes the CUD patients experimented with prior to treatment. CUD duration significantly and negatively correlated with orbitofrontal activations to no-reward. The adolescent CUD group demonstrated distinctly different activation patterns during risky decision-making and reward processing (after risky decision-making) compared to both the controls with psychopathology and healthy control groups. These findings suggest that neural differences in risky decision-making and reward processes are present in adolescent addiction, persist after remission from first CUD treatment, and may contribute to vulnerability for adolescent addiction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Dissociable Electroencephalograph Correlates of Visual Awareness and Feature-Based Attention

    PubMed Central

    Chen, Yifan; Wang, Xiaochun; Yu, Yanglan; Liu, Ying

    2017-01-01

    Background: The relationship between awareness and attention is complex and controversial. A growing body of literature has shown that the neural bases of consciousness and endogenous attention (voluntary attention) are independent. The important role of exogenous attention (reflexive attention) on conscious experience has been noted in several studies. However, exogenous attention can also modulate subliminal processing, suggesting independence between the two processes. The question of whether visual awareness and exogenous attention rely on independent mechanisms under certain circumstances remains unanswered. Methods: In the current study, electroencephalograph recordings were conducted using 64 channels from 16 subjects while subjects attempted to detect faint speed changes of colored rotating dots. Awareness and attention were manipulated throughout trials in order to test whether exogenous attention and visual awareness rely on independent mechanisms. Results: Neural activity related to consciousness was recorded in the following cue-locked time-windows (event related potential, cluster- based permutation test): 0–50, 150–200, and 750–800 ms. With a more liberal threshold, the inferior occipital lobe was found to be the source of awareness-related activity in the 0–50 ms range. In the later 150–200 ms range, activity in the fusiform and post-central gyrus was related to awareness. Awareness-related activation in the later 750–800 ms range was more widely distributed. This awareness-related activation pattern was quite different from that of attention. Attention-related neural activity was emphasized in the 750–800 ms time window and the main source of attention-related activity was localized to the right angular gyrus. These results suggest that exogenous attention and visual consciousness correspond to different and relatively independent neural mechanisms and are distinct processes under certain conditions. PMID:29180950

  7. Distinct cognitive mechanisms involved in the processing of single objects and object ensembles

    PubMed Central

    Cant, Jonathan S.; Sun, Sol Z.; Xu, Yaoda

    2015-01-01

    Behavioral research has demonstrated that the shape and texture of single objects can be processed independently. Similarly, neuroimaging results have shown that an object's shape and texture are processed in distinct brain regions with shape in the lateral occipital area and texture in parahippocampal cortex. Meanwhile, objects are not always seen in isolation and are often grouped together as an ensemble. We recently showed that the processing of ensembles also involves parahippocampal cortex and that the shape and texture of ensemble elements are processed together within this region. These neural data suggest that the independence seen between shape and texture in single-object perception would not be observed in object-ensemble perception. Here we tested this prediction by examining whether observers could attend to the shape of ensemble elements while ignoring changes in an unattended texture feature and vice versa. Across six behavioral experiments, we replicated previous findings of independence between shape and texture in single-object perception. In contrast, we observed that changes in an unattended ensemble feature negatively impacted the processing of an attended ensemble feature only when ensemble features were attended globally. When they were attended locally, thereby making ensemble processing similar to single-object processing, interference was abolished. Overall, these findings confirm previous neuroimaging results and suggest that distinct cognitive mechanisms may be involved in single-object and object-ensemble perception. Additionally, they show that the scope of visual attention plays a critical role in determining which type of object processing (ensemble or single object) is engaged by the visual system. PMID:26360156

  8. Functional mapping of the neural circuitry of rat maternal motivation: effects of site-specific transient neural inactivation

    PubMed Central

    Pereira, Mariana; Morrell, Joan I.

    2011-01-01

    The present review focuses on recent studies from our laboratory examining the neural circuitry subserving rat maternal motivation across postpartum. We employed a site-specific neural inactivation method by infusion of bupivacaine to map the maternal motivation circuitry using two complementary behavioral approaches: unconditioned maternal responsiveness and choice of pup- over cocaine-conditioned incentives in a concurrent pup/cocaine choice conditioned place preference task. Our findings revealed that during the early postpartum period, distinct brain structures, including the medial preoptic area, ventral tegmental area and medial prefrontal cortex infralimbic and anterior cingulate subregions, contribute a pup-specific bias to the motivational circuitry. As the postpartum period progresses and the pups grow older, our findings further revealed that maternal responsiveness becomes progressively less dependent on medial preoptic area and medial prefrontal cortex infralimbic activity, and more distributed in the maternal circuitry, such that additional network components, including the medial prefrontal cortex prelimbic subregion, are recruited with maternal experience, and contribute to the expression of late postpartum maternal behavior. Collectively, our findings provide strong evidence that the remarkable ability of postpartum females to successfully care for their developing infants is subserved by a distributed neural network that carries out efficient and dynamic processing of complex, constantly changing incoming environmental and pup-related stimuli, ultimately allowing the progression of appropriate expression and waning of maternal responsiveness across the postpartum period. PMID:21815954

  9. Neural predictors of purchases

    PubMed Central

    Knutson, Brian; Rick, Scott; Wimmer, G. Elliott; Prelec, Drazen; Loewenstein, George

    2007-01-01

    Microeconomic theory maintains that purchases are driven by a combination of consumer preference and price. Using event-related FMRI, we investigated how people weigh these factors to make purchasing decisions. Consistent with neuroimaging evidence suggesting that distinct circuits anticipate gain and loss, product preference activated the nucleus accumbens (NAcc), while excessive prices activated the insula and deactivated the mesial prefrontal cortex (MPFC) prior to the purchase decision. Activity from each of these regions independently predicted immediately subsequent purchases above and beyond self-report variables. These findings suggest that activation of distinct neural circuits related to anticipatory affect precedes and supports consumers’ purchasing decisions. PMID:17196537

  10. A computational neural approach to support the discovery of gene function and classes of cancer.

    PubMed

    Azuaje, F

    2001-03-01

    Advances in molecular classification of tumours may play a central role in cancer treatment. Here, a novel approach to genome expression pattern interpretation is described and applied to the recognition of B-cell malignancies as a test set. Using cDNA microarrays data generated by a previous study, a neural network model known as simplified fuzzy ARTMAP is able to identify normal and diffuse large B-cell lymphoma (DLBCL) patients. Furthermore, it discovers the distinction between patients with molecularly distinct forms of DLBCL without previous knowledge of those subtypes.

  11. Direct transdifferentiation in the vertebrate retina.

    PubMed

    Opas, M; Dziak, E

    1998-03-01

    Transdifferentiation is the process by which differentiated cells alter their identity to become other, distinct cell types. The conversion of neural retina into lens epithelium is one of the most spectacular examples of transdifferentiation. We show that the redirection of cell fate from neural retina to lens and subsequent transdifferentiation is independent of cell replication as it occurs in growth-arrested cell populations. Using DNA ratiometry of individual cells in these cultures we show that, indeed, individual amitotic cells do transdifferentiate. Hence, choice of fate in transdifferentiating cells does not rely on a "community effect" but instead can be categorized as a For lack of overt lens progenitors, and most importantly, for its mitotic independence, we conclude that lens colony formation in vitro does occur by direct transdifferentiation and not by clonal proliferation of progenitor cells.

  12. Experience-induced Malleability in Neural Encoding of Pitch, Timbre, and Timing

    PubMed Central

    Kraus, Nina; Skoe, Erika; Parbery-Clark, Alexandra; Ashley, Richard

    2009-01-01

    Speech and music are highly complex signals that have many shared acoustic features. Pitch, Timbre, and Timing can be used as overarching perceptual categories for describing these shared properties. The acoustic cues contributing to these percepts also have distinct subcortical representations which can be selectively enhanced or degraded in different populations. Musically trained subjects are found to have enhanced subcortical representations of pitch, timbre, and timing. The effects of musical experience on subcortical auditory processing are pervasive and extend beyond music to the domains of language and emotion. The sensory malleability of the neural encoding of pitch, timbre, and timing can be affected by lifelong experience and short-term training. This conceptual framework and supporting data can be applied to consider sensory learning of speech and music through a hearing aid or cochlear implant. PMID:19673837

  13. Two-photon excitation based photochemistry and neural imaging

    NASA Astrophysics Data System (ADS)

    Hatch, Kevin Andrew

    Two-photon microscopy is a fluorescence imaging technique which provides distinct advantages in three-dimensional cellular and molecular imaging. The benefits of this technology may extend beyond imaging capabilities through exploitation of the quantum processes responsible for fluorescent events. This study utilized a two-photon microscope to investigate a synthetic photoreactive collagen peptidomimetic, which may serve as a potential material for tissue engineering using the techniques of two-photon photolysis and two-photon polymerization. The combination of these techniques could potentially be used to produce a scaffold for the vascularization of engineered three-dimensional tissues in vitro to address the current limitations of tissue engineering. Additionally, two-photon microscopy was used to observe the effects of the application of the neurotransmitter dopamine to the mushroom body neural structures of Drosophila melanogaster to investigate dopamine's connection to cognitive degeneration.

  14. [Electrophysiological bases of semantic processing of objects].

    PubMed

    Kahlaoui, Karima; Baccino, Thierry; Joanette, Yves; Magnié, Marie-Noële

    2007-02-01

    How pictures and words are stored and processed in the human brain constitute a long-standing question in cognitive psychology. Behavioral studies have yielded a large amount of data addressing this issue. Generally speaking, these data show that there are some interactions between the semantic processing of pictures and words. However, behavioral methods can provide only limited insight into certain findings. Fortunately, Event-Related Potential (ERP) provides on-line cues about the temporal nature of cognitive processes and contributes to the exploration of their neural substrates. ERPs have been used in order to better understand semantic processing of words and pictures. The main objective of this article is to offer an overview of the electrophysiologic bases of semantic processing of words and pictures. Studies presented in this article showed that the processing of words is associated with an N 400 component, whereas pictures elicited both N 300 and N 400 components. Topographical analysis of the N 400 distribution over the scalp is compatible with the idea that both image-mediated concrete words and pictures access an amodal semantic system. However, given the distinctive N 300 patterns, observed only during picture processing, it appears that picture and word processing rely upon distinct neuronal networks, even if they end up activating more or less similar semantic representations.

  15. Commentary: Elucidating the Neural Correlates of Early Childhood Memory

    ERIC Educational Resources Information Center

    Mullally, Sinead L.

    2015-01-01

    Both episodic memory and the key neural structure believed to support it, namely the hippocampus, are believed to undergo protracted periods of postnatal developmental. Critically however, the hippocampus is comprised of distinct subfields and circuits, and these circuits appear to mature at different rates (Lavenex and Banta Lavenex, 2013).…

  16. Distinct Neural Mechanisms Mediate Olfactory Memory Formation at Different Timescales

    ERIC Educational Resources Information Center

    McNamara, Ann Marie; Magidson, Phillip D.; Linster, Christiane; Wilson, Donald A.; Cleland, Thomas A.

    2008-01-01

    Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is…

  17. Neural Mechanisms of Conceptual Relations

    ERIC Educational Resources Information Center

    Lewis, Gwyneth A.

    2017-01-01

    An over-arching goal in neurolinguistic research is to characterize the neural bases of semantic representation. A particularly relevant goal concerns whether we represent features and events (a) together in a generalized semantic hub or (b) separately in distinct but complementary systems. While the left anterior temporal lobe (ATL) is strongly…

  18. Autoshaping and Automaintenance: A Neural-Network Approach

    ERIC Educational Resources Information Center

    Burgos, Jose E.

    2007-01-01

    This article presents an interpretation of autoshaping, and positive and negative automaintenance, based on a neural-network model. The model makes no distinction between operant and respondent learning mechanisms, and takes into account knowledge of hippocampal and dopaminergic systems. Four simulations were run, each one using an "A-B-A" design…

  19. Differentiating between self and others: an ALE meta-analysis of fMRI studies of self-recognition and theory of mind.

    PubMed

    van Veluw, Susanne J; Chance, Steven A

    2014-03-01

    The perception of self and others is a key aspect of social cognition. In order to investigate the neurobiological basis of this distinction we reviewed two classes of task that study self-awareness and awareness of others (theory of mind, ToM). A reliable task to measure self-awareness is the recognition of one's own face in contrast to the recognition of others' faces. False-belief tasks are widely used to identify neural correlates of ToM as a measure of awareness of others. We performed an activation likelihood estimation meta-analysis, using the fMRI literature on self-face recognition and false-belief tasks. The brain areas involved in performing false-belief tasks were the medial prefrontal cortex (MPFC), bilateral temporo-parietal junction, precuneus, and the bilateral middle temporal gyrus. Distinct self-face recognition regions were the right superior temporal gyrus, the right parahippocampal gyrus, the right inferior frontal gyrus/anterior cingulate cortex, and the left inferior parietal lobe. Overlapping brain areas were the superior temporal gyrus, and the more ventral parts of the MPFC. We confirmed that self-recognition in contrast to recognition of others' faces, and awareness of others involves a network that consists of separate, distinct neural pathways, but also includes overlapping regions of higher order prefrontal cortex where these processes may be combined. Insights derived from the neurobiology of disorders such as autism and schizophrenia are consistent with this notion.

  20. Distinct medial temporal networks encode surprise during motivation by reward versus punishment

    PubMed Central

    Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison

    2016-01-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. PMID:26854903

  1. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.

    PubMed

    Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison

    2016-10-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Determining the neural substrates of goal-directed learning in the human brain.

    PubMed

    Valentin, Vivian V; Dickinson, Anthony; O'Doherty, John P

    2007-04-11

    Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome that that response engendered. Lesion studies in rodents suggest that these two distinct components of instrumental conditioning may be mediated by anatomically distinct neural systems. The aim of the present study was to determine the neural substrates of the goal-directed component of instrumental learning in humans. Nineteen human subjects were scanned with functional magnetic resonance imaging while they learned to choose instrumental actions that were associated with the subsequent delivery of different food rewards (tomato juice, chocolate milk, and orange juice). After training, one of these foods was devalued by feeding the subject to satiety on that food. The subjects were then scanned again, while being re-exposed to the instrumental choice procedure (in extinction). We hypothesized that regions of the brain involved in goal-directed learning would show changes in their activity as a function of outcome devaluation. Our results indicate that neural activity in one brain region in particular, the orbitofrontal cortex, showed a strong modulation in its activity during selection of a devalued compared with a nondevalued action. These results suggest an important contribution of orbitofrontal cortex in guiding goal-directed instrumental choices in humans.

  3. Evaluation of the cranial base in amnion rupture sequence involving the anterior neural tube: implications regarding recurrence risk.

    PubMed

    Jones, Kenneth Lyons; Robinson, Luther K; Benirschke, Kurt

    2006-09-01

    Amniotic bands can cause disruption of the cranial end of the developing fetus, leading in some cases to a neural tube closure defect. Although recurrence for unaffected parents of an affected child with a defect in which the neural tube closed normally but was subsequently disrupted by amniotic bands is negligible; for a primary defect in closure of the neural tube to which amnion has subsequently adhered, recurrence risk is 1.7%. In that primary defects of neural tube closure are characterized by typical abnormalities of the base of the skull, evaluation of the cranial base in such fetuses provides an approach for making a distinction between these 2 mechanisms. This distinction has implications regarding recurrence risk. The skull base of 2 fetuses with amnion rupture sequence involving the cranial end of the neural tube were compared to that of 1 fetus with anencephaly as well as that of a structurally normal fetus. The skulls were cleaned, fixed in 10% formalin, recleaned, and then exposed to 10% KOH solution. After washing and recleaning, the skulls were exposed to hydrogen peroxide for bleaching and photography. Despite involvement of the anterior neural tube in both fetuses with amnion rupture sequence, in Case 3 the cranial base was normal while in Case 4 the cranial base was similar to that seen in anencephaly. This technique provides a method for determining the developmental pathogenesis of anterior neural tube defects in cases of amnion rupture sequence. As such, it provides information that can be used to counsel parents of affected children with respect to recurrence risk.

  4. Beyond Natural Numbers: Negative Number Representation in Parietal Cortex

    PubMed Central

    Blair, Kristen P.; Rosenberg-Lee, Miriam; Tsang, Jessica M.; Schwartz, Daniel L.; Menon, Vinod

    2012-01-01

    Unlike natural numbers, negative numbers do not have natural physical referents. How does the brain represent such abstract mathematical concepts? Two competing hypotheses regarding representational systems for negative numbers are a rule-based model, in which symbolic rules are applied to negative numbers to translate them into positive numbers when assessing magnitudes, and an expanded magnitude model, in which negative numbers have a distinct magnitude representation. Using an event-related functional magnetic resonance imaging design, we examined brain responses in 22 adults while they performed magnitude comparisons of negative and positive numbers that were quantitatively near (difference <4) or far apart (difference >6). Reaction times (RTs) for negative numbers were slower than positive numbers, and both showed a distance effect whereby near pairs took longer to compare. A network of parietal, frontal, and occipital regions were differentially engaged by negative numbers. Specifically, compared to positive numbers, negative number processing resulted in greater activation bilaterally in intraparietal sulcus (IPS), middle frontal gyrus, and inferior lateral occipital cortex. Representational similarity analysis revealed that neural responses in the IPS were more differentiated among positive numbers than among negative numbers, and greater differentiation among negative numbers was associated with faster RTs. Our findings indicate that despite negative numbers engaging the IPS more strongly, the underlying neural representation are less distinct than that of positive numbers. We discuss our findings in the context of the two theoretical models of negative number processing and demonstrate how multivariate approaches can provide novel insights into abstract number representation. PMID:22363276

  5. Beyond natural numbers: negative number representation in parietal cortex.

    PubMed

    Blair, Kristen P; Rosenberg-Lee, Miriam; Tsang, Jessica M; Schwartz, Daniel L; Menon, Vinod

    2012-01-01

    Unlike natural numbers, negative numbers do not have natural physical referents. How does the brain represent such abstract mathematical concepts? Two competing hypotheses regarding representational systems for negative numbers are a rule-based model, in which symbolic rules are applied to negative numbers to translate them into positive numbers when assessing magnitudes, and an expanded magnitude model, in which negative numbers have a distinct magnitude representation. Using an event-related functional magnetic resonance imaging design, we examined brain responses in 22 adults while they performed magnitude comparisons of negative and positive numbers that were quantitatively near (difference <4) or far apart (difference >6). Reaction times (RTs) for negative numbers were slower than positive numbers, and both showed a distance effect whereby near pairs took longer to compare. A network of parietal, frontal, and occipital regions were differentially engaged by negative numbers. Specifically, compared to positive numbers, negative number processing resulted in greater activation bilaterally in intraparietal sulcus (IPS), middle frontal gyrus, and inferior lateral occipital cortex. Representational similarity analysis revealed that neural responses in the IPS were more differentiated among positive numbers than among negative numbers, and greater differentiation among negative numbers was associated with faster RTs. Our findings indicate that despite negative numbers engaging the IPS more strongly, the underlying neural representation are less distinct than that of positive numbers. We discuss our findings in the context of the two theoretical models of negative number processing and demonstrate how multivariate approaches can provide novel insights into abstract number representation.

  6. Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: a new hypothesis to explain neurovestibular spaceflight adaptation.

    PubMed

    Merfeld, Daniel M

    2003-01-01

    Normally, the nervous system must process ambiguous graviceptor (e.g., otolith) cues to estimate tilt and translation. The neural processes that help perform these estimation processes must adapt upon exposure to weightlessness and readapt upon return to Earth. In this paper we present a review of evidence supporting a new hypothesis that explains some aspects of these adaptive processes. This hypothesis, which we label the rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis, suggests that the neural processes resulting in spaceflight adaptation include deterioration in the ability of the nervous system to use rotational cues to help accurately estimate the relative orientation of gravity ("tilt"). Changes in the ability to estimate gravity then also influence the ability of the nervous system to estimate linear acceleration ("translation"). We explicitly hypothesize that such changes in the ability to estimate "tilt" and "translation" will be measurable upon return to Earth and will, at least partially, explain the disorientation experienced when astronauts return to Earth. In this paper, we present the details and implications of ROTTR, review data related to ROTTR, and discuss the relationship of ROTTR to the influential otolith tilt-translation reinterpretation (OTTR) hypothesis as well as discuss the distinct differences between ROTTR and OTTR.

  7. Language-Invariant Verb Processing Regions in Spanish-English Bilinguals

    PubMed Central

    Willms, Joanna L.; Shapiro, Kevin A.; Peelen, Marius V.; Pajtas, Petra E.; Costa, Albert; Moo, Lauren R.; Caramazza, Alfonso

    2011-01-01

    Nouns and verbs are fundamental grammatical building blocks of all languages. Studies of brain-damaged patients and healthy individuals have demonstrated that verb processing can be dissociated from noun processing at a neuroanatomical level. In cases where bilingual patients have a noun or verb deficit, the deficit has been observed in both languages. This suggests that the noun-verb distinction may be based on neural components that are common across languages. Here we investigated the cortical organization of grammatical categories in healthy, early Spanish-English bilinguals using functional magnetic resonance imaging (fMRI) in a morphophonological alternation task. Four regions showed greater activity for verbs than for nouns in both languages: left posterior middle temporal gyrus (LMTG), left middle frontal gyrus (LMFG), pre-supplementary motor area (pre-SMA), and right middle occipital gyrus (RMOG); no regions showed greater activation for nouns. Multi-voxel pattern analysis within verb-specific regions showed indistinguishable activity patterns for English and Spanish, indicating language-invariant bilingual processing. In LMTG and LMFG, patterns were more similar within than across grammatical category, both within and across languages, indicating language-invariant grammatical class information. These results suggest that the neural substrates underlying verb-specific processing are largely independent of language in bilinguals, both at the macroscopic neuroanatomical level and at the level of voxel activity patterns. PMID:21515387

  8. Regional neural tube closure defined by the Grainy head-like transcription factors.

    PubMed

    Rifat, Yeliz; Parekh, Vishwas; Wilanowski, Tomasz; Hislop, Nikki R; Auden, Alana; Ting, Stephen B; Cunningham, John M; Jane, Stephen M

    2010-09-15

    Primary neurulation in mammals has been defined by distinct anatomical closure sites, at the hindbrain/cervical spine (closure 1), forebrain/midbrain boundary (closure 2), and rostral end of the forebrain (closure 3). Zones of neurulation have also been characterized by morphologic differences in neural fold elevation, with non-neural ectoderm-induced formation of paired dorso-lateral hinge points (DLHP) essential for neural tube closure in the cranial and lower spinal cord regions, and notochord-induced bending at the median hinge point (MHP) sufficient for closure in the upper spinal region. Here we identify a unifying molecular basis for these observations based on the function of the non-neural ectoderm-specific Grainy head-like genes in mice. Using a gene-targeting approach we show that deletion of Grhl2 results in failed closure 3, with mutants exhibiting a split-face malformation and exencephaly, associated with failure of neuro-epithelial folding at the DLHP. Loss of Grhl3 alone defines a distinct lower spinal closure defect, also with defective DLHP formation. The two genes contribute equally to closure 2, where only Grhl gene dosage is limiting. Combined deletion of Grhl2 and Grhl3 induces severe rostral and caudal neural tube defects, but DLHP-independent closure 1 proceeds normally in the upper spinal region. These findings provide a molecular basis for non-neural ectoderm mediated formation of the DLHP that is critical for complete neuraxis closure. (c) 2010 Elsevier Inc. All rights reserved.

  9. A Generic Framework for Real-Time Multi-Channel Neuronal Signal Analysis, Telemetry Control, and Sub-Millisecond Latency Feedback Generation

    PubMed Central

    Zrenner, Christoph; Eytan, Danny; Wallach, Avner; Thier, Peter; Marom, Shimon

    2010-01-01

    Distinct modules of the neural circuitry interact with each other and (through the motor-sensory loop) with the environment, forming a complex dynamic system. Neuro-prosthetic devices seeking to modulate or restore CNS function need to interact with the information flow at the level of neural modules electrically, bi-directionally and in real-time. A set of freely available generic tools is presented that allow computationally demanding multi-channel short-latency bi-directional interactions to be realized in in vivo and in vitro preparations using standard PC data acquisition and processing hardware and software (Mathworks Matlab and Simulink). A commercially available 60-channel extracellular multi-electrode recording and stimulation set-up connected to an ex vivo developing cortical neuronal culture is used as a model system to validate the method. We demonstrate how complex high-bandwidth (>10 MBit/s) neural recording data can be analyzed in real-time while simultaneously generating specific complex electrical stimulation feedback with deterministically timed responses at sub-millisecond resolution. PMID:21060803

  10. Perceived moral traits of others differentiate the neural activation that underlies inequity-aversion

    PubMed Central

    Nakatani, Hironori; Ogawa, Akitoshi; Suzuki, Chisato; Asamizuya, Takeshi; Ueno, Kenichi; Cheng, Kang; Okanoya, Kazuo

    2017-01-01

    We have a social preference to reduce inequity in the outcomes between oneself and others. Such a preference varies according to others. We performed functional magnetic resonance imaging during an economic game to investigate how the perceived moral traits of others modulate the neural activities that underlie inequity-aversion. The participants unilaterally allocated money to three partners (good, neutral, and bad). During presentation of the good and neutral partners, the anterior region of the rostral medial frontal cortex (arMFC) showed increased functional connectivity with the caudate head and the anterior insula, respectively. Following this, participants allocated more money to the good partner, and less to the bad partner, compared with the neutral partner. The caudate head and anterior insula showed greater activation during fair allocation to the good and unfair allocation to the neutral partners, respectively. However, these regions were silent during allocations to the bad partner. Therefore, the arMFC-caudate/insula circuit encompasses distinct neural processes that underlie inequity-aversion in monetary allocations that the different moral traits of others can modulate. PMID:28230155

  11. Motivational Deficits in Schizophrenia and the Representation of Expected Value

    PubMed Central

    Waltz, James A.; Gold, James M.

    2016-01-01

    Motivational deficits (avolition and anhedonia) have historically been considered important negative symptoms of schizophrenia. Numerous studies have attempted to identify the neural substrates of avolition and anhedonia in schizophrenia, but these studies have not produced much agreement. Deficits in various aspects of reinforcement processing have been observed in individuals with schizophrenia, but it is not exactly clear which of these deficits actually engender motivational impairments in SZ. The purpose of this chapter is to examine how various reinforcement-related behavioral and neural signals could contribute to motivational impairments in both schizophrenia, and psychiatric illness, in general. In particular, we describe different aspects of the concept of expected value (EV), such as the distinction between the EV of stimuli and the expected value of actions, the acquisition of value vs. the estimation of value, and the discounting of value as a consequence of time or effort required. We conclude that avolition and anhedonia in SZ are most commonly tied to aberrant signals for expected value, in the context of learning. We discuss implications for further research on the neural substrates of motivational impairments in psychiatric illness. PMID:26370946

  12. Neural network recognition of chemical class information in mobility spectra obtained at high temperatures

    NASA Technical Reports Server (NTRS)

    Bell, S.; Nazarov, E.; Wang, Y. F.; Rodriguez, J. E.; Eiceman, G. A.

    2000-01-01

    A minimal neural network was applied to a large library of high-temperature mobility spectra drawn from 16 chemical classes including 154 substances with 2000 spectra at various concentrations. A genetic algorithm was used to create a representative subset of points from the mobility spectrum as input to a cascade-type back-propagation network. This network demonstrated that significant information specific to chemical class was located in the spectral region near the reactant ions. This network failed to generalize the solution to unfamiliar compounds necessitating the use of complete spectra in network processing. An extended back-propagation network classified unfamiliar chemicals by functional group with a mean for average values of 0.83 without sulfides and 0.79 with sulfides. Further experiments confirmed that chemical class information was resident in the spectral region near the reactant ions. Deconvolution of spectra demonstrated the presence of ions, merged with the reactant ion peaks that originated from introduced samples. The ability of the neural network to generalize the solution to unfamiliar compounds suggests that these ions are distinct and class specific.

  13. The neural basis for category-specific knowledge: an fMRI study.

    PubMed

    Grossman, Murray; Koenig, Phyllis; DeVita, Chris; Glosser, Guila; Alsop, David; Detre, John; Gee, James

    2002-04-01

    Functional neuroimaging studies of healthy adults have associated different categories of knowledge with distinct activation patterns. The basis for these recruitment patterns has been controversial, due in part to the limited range of categories that has been studied. We used fMRI to monitor regional cortical recruitment patterns while subjects were exposed to printed names of Animals, Implements, and Abstract nouns. Both Implements and Abstract nouns were related to recruitment of left posterolateral temporal cortex and left prefrontal cortex, and Abstract nouns additionally recruited posterolateral temporal and prefrontal regions of the right hemisphere. Animals were associated with activation of ventral-medial occipital cortex in the left hemisphere at a level that approaches significance. These findings are not consistent with the "sensory-motor" model proposed to explain the neural representation of word knowledge. We suggest instead a neural model of semantic memory that reflects the processes common to understanding Implements and Abstract nouns and a selective sensitivity, possibly evolving from adaptive pressures, to the overlapping, intercorrelated visual characteristics of Animals. (C)2002 Elsevier Science (USA).

  14. The relationship between level of processing and hippocampal-cortical functional connectivity during episodic memory formation in humans.

    PubMed

    Schott, Björn H; Wüstenberg, Torsten; Wimber, Maria; Fenker, Daniela B; Zierhut, Kathrin C; Seidenbecher, Constanze I; Heinze, Hans-Jochen; Walter, Henrik; Düzel, Emrah; Richardson-Klavehn, Alan

    2013-02-01

    New episodic memory traces represent a record of the ongoing neocortical processing engaged during memory formation (encoding). Thus, during encoding, deep (semantic) processing typically establishes more distinctive and retrievable memory traces than does shallow (perceptual) processing, as assessed by later episodic memory tests. By contrast, the hippocampus appears to play a processing-independent role in encoding, because hippocampal lesions impair encoding regardless of level of processing. Here, we clarified the neural relationship between processing and encoding by examining hippocampal-cortical connectivity during deep and shallow encoding. Participants studied words during functional magnetic resonance imaging and freely recalled these words after distraction. Deep study processing led to better recall than shallow study processing. For both levels of processing, successful encoding elicited activations of bilateral hippocampus and left prefrontal cortex, and increased functional connectivity between left hippocampus and bilateral medial prefrontal, cingulate and extrastriate cortices. Successful encoding during deep processing was additionally associated with increased functional connectivity between left hippocampus and bilateral ventrolateral prefrontal cortex and right temporoparietal junction. In the shallow encoding condition, on the other hand, pronounced functional connectivity increases were observed between the right hippocampus and the frontoparietal attention network activated during shallow study processing. Our results further specify how the hippocampus coordinates recording of ongoing neocortical activity into long-term memory, and begin to provide a neural explanation for the typical advantage of deep over shallow study processing for later episodic memory. Copyright © 2011 Wiley Periodicals, Inc.

  15. Neural coding of time-varying interaural time differences and time-varying amplitude in the inferior colliculus

    PubMed Central

    2017-01-01

    Binaural cues occurring in natural environments are frequently time varying, either from the motion of a sound source or through interactions between the cues produced by multiple sources. Yet, a broad understanding of how the auditory system processes dynamic binaural cues is still lacking. In the current study, we directly compared neural responses in the inferior colliculus (IC) of unanesthetized rabbits to broadband noise with time-varying interaural time differences (ITD) with responses to noise with sinusoidal amplitude modulation (SAM) over a wide range of modulation frequencies. On the basis of prior research, we hypothesized that the IC, one of the first stages to exhibit tuning of firing rate to modulation frequency, might use a common mechanism to encode time-varying information in general. Instead, we found weaker temporal coding for dynamic ITD compared with amplitude modulation and stronger effects of adaptation for amplitude modulation. The differences in temporal coding of dynamic ITD compared with SAM at the single-neuron level could be a neural correlate of “binaural sluggishness,” the inability to perceive fluctuations in time-varying binaural cues at high modulation frequencies, for which a physiological explanation has so far remained elusive. At ITD-variation frequencies of 64 Hz and above, where a temporal code was less effective, noise with a dynamic ITD could still be distinguished from noise with a constant ITD through differences in average firing rate in many neurons, suggesting a frequency-dependent tradeoff between rate and temporal coding of time-varying binaural information. NEW & NOTEWORTHY Humans use time-varying binaural cues to parse auditory scenes comprising multiple sound sources and reverberation. However, the neural mechanisms for doing so are poorly understood. Our results demonstrate a potential neural correlate for the reduced detectability of fluctuations in time-varying binaural information at high speeds, as occurs in reverberation. The results also suggest that the neural mechanisms for processing time-varying binaural and monaural cues are largely distinct. PMID:28381487

  16. Circuit mechanisms of sensorimotor learning

    PubMed Central

    Makino, Hiroshi; Hwang, Eun Jung; Hedrick, Nathan G.; Komiyama, Takaki

    2016-01-01

    SUMMARY The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process in three hierarchical levels with distinct goals: 1) sensory perceptual learning, 2) sensorimotor associative learning, and 3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior. PMID:27883902

  17. The Medial Temporal Lobe and Recognition Memory

    PubMed Central

    Eichenbaum, H.; Yonelinas, A.R.; Ranganath, C.

    2007-01-01

    The ability to recognize a previously experienced stimulus is supported by two processes: recollection of the stimulus in the context of other information associated with the experience, and a sense of familiarity with the features of the stimulus. Although familiarity and recollection are functionally distinct, there is considerable debate about how these kinds of memory are supported by regions in the medial temporal lobes (MTL). Here, we review evidence for the distinction between recollection and familiarity and then consider the evidence regarding the neural mechanisms of these processes. Evidence from neuropsychological, neuroimaging, and neurophysiological studies of humans, monkeys, and rats indicates that different subregions of the MTL make distinct contributions to recollection and familiarity. The data suggest that the hippocampus is critical for recollection but not familiarity. The parahippocampal cortex also contributes to recollection, possibly via the representation and retrieval of contextual (especially spatial) information, whereas perirhinal cortex contributes to and is necessary for familiarity-based recognition. The findings are consistent with an anatomically guided hypothesis about the functional organization of the MTL and suggest mechanisms by which the anatomical components of the MTL interact to support of the phenomenology of recollection and familiarity. PMID:17417939

  18. Temporal and Spatial Patterns of Neural Activity Associated with Information Selection in Open-ended Creativity.

    PubMed

    Zhou, Siyuan; Chen, Shi; Wang, Shuang; Zhao, Qingbai; Zhou, Zhijin; Lu, Chunming

    2018-02-10

    Novel information selection is a crucial process in creativity and was found to be associated with frontal-temporal functional connectivity in the right brain in closed-ended creativity. Since it has distinct cognitive processing from closed-ended creativity, the information selection in open-ended creativity might be underlain by different neural activity. To address this issue, a creative generation task of Chinese two-part allegorical sayings was adopted, and the trials were classified into novel and normal solutions according to participants' self-ratings. The results showed that (1) novel solutions induced a higher lower alpha power in the temporal area, which might be associated with the automatic, unconscious mental process of retrieving extensive semantic information, and (2) upper alpha power in both frontal and temporal areas and frontal-temporal alpha coherence were higher in novel solutions than in normal solutions, which might reflect the selective inhibition of semantic information. Furthermore, lower alpha power in the temporal area showed a reduction with time, while the frontal-temporal and temporal-temporal coherence in the upper alpha band appeared to increase from the early to the middle phase. These dynamic changes in neural activity might reflect the transformation from divergent thinking to convergent thinking in the creative progress. The advantage of the right brain in frontal-temporal connectivity was not found in the present work, which might result from the diversity of solutions in open-ended creativity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Responses of primate frontal cortex neurons during natural vocal communication.

    PubMed

    Miller, Cory T; Thomas, A Wren; Nummela, Samuel U; de la Mothe, Lisa A

    2015-08-01

    The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors. Copyright © 2015 the American Physiological Society.

  20. Responses of primate frontal cortex neurons during natural vocal communication

    PubMed Central

    Thomas, A. Wren; Nummela, Samuel U.; de la Mothe, Lisa A.

    2015-01-01

    The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors. PMID:26084912

  1. The neural basis of visual dominance in the context of audio-visual object processing.

    PubMed

    Schmid, Carmen; Büchel, Christian; Rose, Michael

    2011-03-01

    Visual dominance refers to the observation that in bimodal environments vision often has an advantage over other senses in human. Therefore, a better memory performance for visual compared to, e.g., auditory material is assumed. However, the reason for this preferential processing and the relation to the memory formation is largely unknown. In this fMRI experiment, we manipulated cross-modal competition and attention, two factors that both modulate bimodal stimulus processing and can affect memory formation. Pictures and sounds of objects were presented simultaneously in two levels of recognisability, thus manipulating the amount of cross-modal competition. Attention was manipulated via task instruction and directed either to the visual or the auditory modality. The factorial design allowed a direct comparison of the effects between both modalities. The resulting memory performance showed that visual dominance was limited to a distinct task setting. Visual was superior to auditory object memory only when allocating attention towards the competing modality. During encoding, cross-modal competition and attention towards the opponent domain reduced fMRI signals in both neural systems, but cross-modal competition was more pronounced in the auditory system and only in auditory cortex this competition was further modulated by attention. Furthermore, neural activity reduction in auditory cortex during encoding was closely related to the behavioural auditory memory impairment. These results indicate that visual dominance emerges from a less pronounced vulnerability of the visual system against competition from the auditory domain. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Neural correlates of conventional and harm/welfare-based moral decision-making.

    PubMed

    White, Stuart F; Zhao, Hui; Leong, Kelly Kimiko; Smetana, Judith G; Nucci, Larry P; Blair, R James R

    2017-12-01

    The degree to which social norms are processed by a unitary system or dissociable systems remains debated. Much research on children's social-cognitive judgments has supported the distinction between "moral" (harm/welfare-based) and "conventional" norms. However, the extent to which these norms are processed by dissociable neural systems remains unclear. To address this issue, 23 healthy participants were scanned with functional magnetic resonance imaging (fMRI) while they rated the wrongness of harm/welfare-based and conventional transgressions and neutral vignettes. Activation significantly greater than the neutral vignette baseline was observed in regions implicated in decision-making regions including rostral/ventral medial frontal, anterior insula and dorsomedial frontal cortices when evaluating both harm/welfare-based and social-conventional transgressions. Greater activation when rating harm/welfare-based relative to social-conventional transgressions was seen through much of ACC and bilateral inferior frontal gyrus. Greater activation was observed in superior temporal gyrus, bilateral middle temporal gyrus, left PCC, and temporal-parietal junction when rating social-conventional transgressions relative to harm/welfare-based transgressions. These data suggest that decisions regarding the wrongness of actions, irrespective of whether they involve care/harm-based or conventional transgressions, recruit regions generally implicated in affect-based decision-making. However, there is neural differentiation between harm/welfare-based and conventional transgressions. This may reflect the particular importance of processing the intent of transgressors of conventional norms and perhaps the greater emotional content or salience of harm/welfare-based transgressions.

  3. The different faces of one’s self: an fMRI study into the recognition of current and past self-facial appearances

    PubMed Central

    Apps, Matthew A. J.; Tajadura-Jiménez, Ana; Turley, Grainne; Tsakiris, Manos

    2013-01-01

    Mirror self-recognition is often considered as an index of self-awareness. Neuroimaging studies have identified a neural circuit specialised for the recognition of one’s own current facial appearance. However, faces change considerably over a lifespan, highlighting the necessity for representations of one’s face to continually be updated. We used fMRI to investigate the different neural circuits involved in the recognition of the childhood and current, adult, faces of one’s self. Participants viewed images of either their own face as it currently looks morphed with the face of a familiar other or their childhood face morphed with the childhood face of the familiar other. Activity in areas which have a generalised selectivity for faces, including the inferior occipital gyrus, the superior parietal lobule and the inferior temporal gyrus, varied with the amount of current self in an image. Activity in areas involved in memory encoding and retrieval, including the hippocampus and the posterior cingulate gyrus, and areas involved in creating a sense of body ownership, including the temporo-parietal junction and the inferior parietal lobule, varied with the amount of childhood self in an image. We suggest that the recognition of one’s own past or present face is underpinned by different cognitive processes in distinct neural circuits. Current self-recognition engages areas involved in perceptual face processing, whereas childhood self-recognition recruits networks involved in body ownership and memory processing. PMID:22940117

  4. The different faces of one's self: an fMRI study into the recognition of current and past self-facial appearances.

    PubMed

    Apps, Matthew A J; Tajadura-Jiménez, Ana; Turley, Grainne; Tsakiris, Manos

    2012-11-15

    Mirror self-recognition is often considered as an index of self-awareness. Neuroimaging studies have identified a neural circuit specialised for the recognition of one's own current facial appearance. However, faces change considerably over a lifespan, highlighting the necessity for representations of one's face to continually be updated. We used fMRI to investigate the different neural circuits involved in the recognition of the childhood and current, adult, faces of one's self. Participants viewed images of either their own face as it currently looks morphed with the face of a familiar other or their childhood face morphed with the childhood face of the familiar other. Activity in areas which have a generalised selectivity for faces, including the inferior occipital gyrus, the superior parietal lobule and the inferior temporal gyrus, varied with the amount of current self in an image. Activity in areas involved in memory encoding and retrieval, including the hippocampus and the posterior cingulate gyrus, and areas involved in creating a sense of body ownership, including the temporo-parietal junction and the inferior parietal lobule, varied with the amount of childhood self in an image. We suggest that the recognition of one's own past or present face is underpinned by different cognitive processes in distinct neural circuits. Current self-recognition engages areas involved in perceptual face processing, whereas childhood self-recognition recruits networks involved in body ownership and memory processing. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Distinct and Atypical Intrinsic and Extrinsic Cell Death Pathways between Photoreceptor Cell Types upon Specific Ablation of Ranbp2 in Cone Photoreceptors

    PubMed Central

    Cho, Kyoung-in; Yu, Minzhong; Hao, Ying; Qiu, Sunny; Pillai, Indulekha C. L.; Peachey, Neal S.; Ferreira, Paulo A.

    2013-01-01

    Non-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2), a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+-apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct retinal spatial signatures as well as with other etiologically distinct neurodegenerative disorders. PMID:23818861

  6. Schizophrenia and Human Self-Domestication: An Evolutionary Linguistics Approach.

    PubMed

    Benítez-Burraco, Antonio; Di Pietro, Lorena; Barba, Marta; Lattanzi, Wanda

    2017-01-01

    Schizophrenia (SZ) is a pervasive neurodevelopmental disorder that entails social and cognitive deficits, including marked language problems. Its complex multifactorial etiopathogenesis, including genetic and environmental factors, is still widely uncertain. SZ incidence has always been high and quite stable in human populations, across time and regardless of cultural implications, for unclear reasons. It has been hypothesized that SZ pathophysiology may involve the biological components that changed during the recent human evolutionary history, and led to our distinctive mode of cognition, which includes language skills. In this paper we explore this hypothesis, focusing on the self-domestication of the human species. This has been claimed to account for many human-specific distinctive traits, including aspects of our behavior and cognition, and to favor the emergence of complex languages through cultural evolution. The "domestication syndrome" in mammals comprises the constellation of traits exhibited by domesticated strains, seemingly resulting from the hypofunction of the neural crest. It is our intention to show that people with SZ exhibit more marked domesticated traits at the morphological, physiological, and behavioral levels. We also show that genes involved in domestication and neural crest development and function comprise nearly 20% of SZ candidates, most of which exhibit altered expression profiles in the brain of SZ patients, specifically in areas involved in language processing. Based on these observations, we conclude that SZ may represent an abnormal ontogenetic itinerary for the human faculty of language, resulting, at least in part, from changes in genes important for the domestication syndrome and primarily involving the neural crest. © 2017 S. Karger AG, Basel.

  7. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology,more » comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)« less

  8. Visual enhancement of unmixed multispectral imagery using adaptive smoothing

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2004-01-01

    Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.

  9. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    ERIC Educational Resources Information Center

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  10. Central neural pathways for thermoregulation

    PubMed Central

    Morrison, Shaun F.; Nakamura, Kazuhiro

    2010-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160

  11. Blood glucose prediction using neural network

    NASA Astrophysics Data System (ADS)

    Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock

    2008-02-01

    We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.

  12. A neural circuit mechanism for regulating vocal variability during song learning in zebra finches.

    PubMed

    Garst-Orozco, Jonathan; Babadi, Baktash; Ölveczky, Bence P

    2014-12-15

    Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural 'noise'. This identifies a simple and general mechanism for learning-related regulation of motor variability.

  13. Classification of intelligence quotient via brainwave sub-band power ratio features and artificial neural network.

    PubMed

    Jahidin, A H; Megat Ali, M S A; Taib, M N; Tahir, N Md; Yassin, I M; Lias, S

    2014-04-01

    This paper elaborates on the novel intelligence assessment method using the brainwave sub-band power ratio features. The study focuses only on the left hemisphere brainwave in its relaxed state. Distinct intelligence quotient groups have been established earlier from the score of the Raven Progressive Matrices. Sub-band power ratios are calculated from energy spectral density of theta, alpha and beta frequency bands. Synthetic data have been generated to increase dataset from 50 to 120. The features are used as input to the artificial neural network. Subsequently, the brain behaviour model has been developed using an artificial neural network that is trained with optimized learning rate, momentum constant and hidden nodes. Findings indicate that the distinct intelligence quotient groups can be classified from the brainwave sub-band power ratios with 100% training and 88.89% testing accuracies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields

    PubMed Central

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-01-01

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931

  15. Event-related EEG responses to anticipation and delivery of monetary and social reward.

    PubMed

    Flores, Amanda; Münte, Thomas F; Doñamayor, Nuria

    2015-07-01

    Monetary and a social incentive delay tasks were used to characterize reward anticipation and delivery with electroencephalography. During reward anticipation, N1, P2 and P3 components were modulated by both prospective reward value and incentive type (monetary or social), suggesting distinctive allocation of attentional and motivational resources depending not only on whether rewards or non-rewards were cued, but also on the monetary and social nature of the prospective outcomes. In the delivery phase, P2, FRN and P3 components were also modulated by levels of reward value and incentive type, illustrating how distinctive affective and cognitive processes were attached to the different outcomes. Our findings imply that neural processing of both reward anticipation and delivery can be specific to incentive type, which might have implications for basic as well as translational research. These results are discussed in the light of previous electrophysiological and neuroimaging work using similar tasks. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    PubMed

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-09-06

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.

  17. Comprehensive analysis of alternative splicing and functionality in neuronal differentiation of P19 cells.

    PubMed

    Suzuki, Hitoshi; Osaki, Ken; Sano, Kaori; Alam, A H M Khurshid; Nakamura, Yuichiro; Ishigaki, Yasuhito; Kawahara, Kozo; Tsukahara, Toshifumi

    2011-02-18

    Alternative splicing, which produces multiple mRNAs from a single gene, occurs in most human genes and contributes to protein diversity. Many alternative isoforms are expressed in a spatio-temporal manner, and function in diverse processes, including in the neural system. The purpose of the present study was to comprehensively investigate neural-splicing using P19 cells. GeneChip Exon Array analysis was performed using total RNAs purified from cells during neuronal cell differentiation. To efficiently and readily extract the alternative exon candidates, 9 filtering conditions were prepared, yielding 262 candidate exons (236 genes). Semiquantitative RT-PCR results in 30 randomly selected candidates suggested that 87% of the candidates were differentially alternatively spliced in neuronal cells compared to undifferentiated cells. Gene ontology and pathway analyses suggested that many of the candidate genes were associated with neural events. Together with 66 genes whose functions in neural cells or organs were reported previously, 47 candidate genes were found to be linked to 189 events in the gene-level profile of neural differentiation. By text-mining for the alternative isoform, distinct functions of the isoforms of 9 candidate genes indicated by the result of Exon Array were confirmed. Alternative exons were successfully extracted. Results from the informatics analyses suggested that neural events were primarily governed by genes whose expression was increased and whose transcripts were differentially alternatively spliced in the neuronal cells. In addition to known functions in neural cells or organs, the uninvestigated alternative splicing events of 11 genes among 47 candidate genes suggested that cell cycle events are also potentially important. These genes may help researchers to differentiate the roles of alternative splicing in cell differentiation and cell proliferation.

  18. Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex

    PubMed Central

    Watanabe, Kei; Funahashi, Shintaro; Stokes, Mark G.

    2017-01-01

    Working memory (WM) provides the stability necessary for high-level cognition. Influential theories typically assume that WM depends on the persistence of stable neural representations, yet increasing evidence suggests that neural states are highly dynamic. Here we apply multivariate pattern analysis to explore the population dynamics in primate lateral prefrontal cortex (PFC) during three variants of the classic memory-guided saccade task (recorded in four animals). We observed the hallmark of dynamic population coding across key phases of a working memory task: sensory processing, memory encoding, and response execution. Throughout both these dynamic epochs and the memory delay period, however, the neural representational geometry remained stable. We identified two characteristics that jointly explain these dynamics: (1) time-varying changes in the subpopulation of neurons coding for task variables (i.e., dynamic subpopulations); and (2) time-varying selectivity within neurons (i.e., dynamic selectivity). These results indicate that even in a very simple memory-guided saccade task, PFC neurons display complex dynamics to support stable representations for WM. SIGNIFICANCE STATEMENT Flexible, intelligent behavior requires the maintenance and manipulation of incoming information over various time spans. For short time spans, this faculty is labeled “working memory” (WM). Dominant models propose that WM is maintained by stable, persistent patterns of neural activity in prefrontal cortex (PFC). However, recent evidence suggests that neural activity in PFC is dynamic, even while the contents of WM remain stably represented. Here, we explored the neural dynamics in PFC during a memory-guided saccade task. We found evidence for dynamic population coding in various task epochs, despite striking stability in the neural representational geometry of WM. Furthermore, we identified two distinct cellular mechanisms that contribute to dynamic population coding. PMID:28559375

  19. When the Brain Takes a Break: A Model-Based Analysis of Mind Wandering

    PubMed Central

    Boekel, Wouter; Tucker, Adrienne M.; Turner, Brandon M.; Heathcote, Andrew; Forstmann, Birte U.

    2014-01-01

    Mind wandering is an ubiquitous phenomenon in everyday life. In the cognitive neurosciences, mind wandering has been associated with several distinct neural processes, most notably increased activity in the default mode network (DMN), suppressed activity within the anti-correlated (task-positive) network (ACN), and changes in neuromodulation. By using an integrative multimodal approach combining machine-learning techniques with modeling of latent cognitive processes, we show that mind wandering in humans is characterized by inefficiencies in executive control (task-monitoring) processes. This failure is predicted by a single-trial signature of (co)activations in the DMN, ACN, and neuromodulation, and accompanied by a decreased rate of evidence accumulation and response thresholds in the cognitive model. PMID:25471568

  20. Object processing in the infant: lessons from neuroscience.

    PubMed

    Wilcox, Teresa; Biondi, Marisa

    2015-07-01

    Object identification is a fundamental cognitive capacity that forms the basis for complex thought and behavior. The adult cortex is organized into functionally distinct visual object-processing pathways that mediate this ability. Insights into the origin of these pathways have begun to emerge through the use of neuroimaging techniques with infant populations. The outcome of this work supports the view that, from the early days of life, object-processing pathways are organized in a way that resembles that of the adult. At the same time, theoretically important changes in patterns of cortical activation are observed during the first year. These findings lead to a new understanding of the cognitive and neural architecture in infants that supports their emerging object-processing capacities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A new neural framework for visuospatial processing

    PubMed Central

    Kravitz, Dwight J.; Saleem, Kadharbatcha S.; Baker, Chris I.; Mishkin, Mortimer

    2012-01-01

    The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a ‘What’ pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception (‘Where’), more recent accounts suggest it primarily serves non-conscious visually guided action (‘How’). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively. PMID:21415848

  2. Parallel Coding of First- and Second-Order Stimulus Attributes by Midbrain Electrosensory Neurons

    PubMed Central

    McGillivray, Patrick; Vonderschen, Katrin; Fortune, Eric S.; Chacron, Maurice J.

    2015-01-01

    Natural stimuli often have time-varying first-order (i.e., mean) and second-order (i.e., variance) attributes that each carry critical information for perception and can vary independently over orders of magnitude. Experiments have shown that sensory systems continuously adapt their responses based on changes in each of these attributes. This adaptation creates ambiguity in the neural code as multiple stimuli may elicit the same neural response. While parallel processing of first- and second-order attributes by separate neural pathways is sufficient to remove this ambiguity, the existence of such pathways and the neural circuits that mediate their emergence have not been uncovered to date. We recorded the responses of midbrain electrosensory neurons in the weakly electric fish Apteronotus leptorhynchus to stimuli with first- and second-order attributes that varied independently in time. We found three distinct groups of midbrain neurons: the first group responded to both first- and second-order attributes, the second group responded selectively to first-order attributes, and the last group responded selectively to second-order attributes. In contrast, all afferent hindbrain neurons responded to both first- and second-order attributes. Using computational analyses, we show how inputs from a heterogeneous population of ON- and OFF-type afferent neurons are combined to give rise to response selectivity to either first- or second-order stimulus attributes in midbrain neurons. Our study thus uncovers, for the first time, generic and widely applicable mechanisms by which parallel processing of first- and second-order stimulus attributes emerges in the brain. PMID:22514313

  3. Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris

    PubMed Central

    Strube-Bloss, Martin F.; Brown, Austin; Spaethe, Johannes; Schmitt, Thomas; Rössler, Wolfgang

    2015-01-01

    To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a ‘dance’ behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL) neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol). The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors. PMID:26340263

  4. The neuroeconomics of alcohol demand: an initial investigation of the neural correlates of alcohol cost-benefit decision making in heavy drinking men.

    PubMed

    MacKillop, James; Amlung, Michael T; Acker, John; Gray, Joshua C; Brown, Courtney L; Murphy, James G; Ray, Lara A; Sweet, Lawrence H

    2014-07-01

    Neuroeconomics integrates concepts and methods from psychology, economics, and cognitive neuroscience to understand how the brain makes decisions. In economics, demand refers to the relationship between a commodity's consumption and its cost, and, in behavioral studies, high alcohol demand has been consistently associated with greater alcohol misuse. Relatively little is known about how the brain processes demand decision making, and the current study is an initial investigation of the neural correlates of alcohol demand among heavy drinkers. Using an event-related functional magnetic resonance imaging (fMRI) paradigm, participants (N=24) selected how much they would drink under varying levels of price. These choices determined access to alcohol during a subsequent bar laboratory self-administration period. During decisions to drink in general, greater activity was present in multiple distinct subunits of the prefrontal and parietal cortices. In contrast, during decisions to drink that were demonstrably affected by the cost of alcohol, significantly greater activation was evident in frontostriatal regions, suggesting an active interplay between cognitive deliberation and subjective reward value. These choices were also characterized by significant deactivation in default mode network regions, suggesting suppression resulting from greater cognitive load. Across choice types, the anterior insula was notably recruited in diverse roles, further implicating the importance of interoceptive processing in decision-making behavior. These findings reveal the neural signatures subserving alcohol cost-benefit decision making, providing a foundation for future clinical applications of this paradigm and extending this approach to understanding the neural correlates of demand for other addictive commodities.

  5. Taxonomic and Thematic Semantic Systems

    PubMed Central

    Mirman, Daniel; Landrigan, Jon-Frederick; Britt, Allison E.

    2017-01-01

    Object concepts are critical for nearly all aspects of human cognition, from perception tasks like object recognition, to understanding and producing language, to making meaningful actions. Concepts can have two very different kinds of relations: similarity relations based on shared features (e.g., dog – bear), which are called “taxonomic” relations, and contiguity relations based on co-occurrence in events or scenarios (e.g., dog – leash), which are called “thematic” relations. Here we report a systematic review of experimental psychology and cognitive neuroscience evidence of this distinction in the structure of semantic memory. We propose two principles that may drive the development of distinct taxonomic and thematic semantic systems: (1) differences between which features determine taxonomic vs. thematic relations and (2) differences in the processing required to extract taxonomic vs. thematic relations. This review brings together distinct threads of behavioral, computational, and neuroscience research on semantic memory in support of a functional and neural dissociation, and defines a framework for future studies of semantic memory. PMID:28333494

  6. Separate Perceptual and Neural Processing of Velocity- and Disparity-Based 3D Motion Signals

    PubMed Central

    Czuba, Thaddeus B.; Cormack, Lawrence K.; Huk, Alexander C.

    2016-01-01

    Although the visual system uses both velocity- and disparity-based binocular information for computing 3D motion, it is unknown whether (and how) these two signals interact. We found that these two binocular signals are processed distinctly at the levels of both cortical activity in human MT and perception. In human MT, adaptation to both velocity-based and disparity-based 3D motions demonstrated direction-selective neuroimaging responses. However, when adaptation to one cue was probed using the other cue, there was no evidence of interaction between them (i.e., there was no “cross-cue” adaptation). Analogous psychophysical measurements yielded correspondingly weak cross-cue motion aftereffects (MAEs) in the face of very strong within-cue adaptation. In a direct test of perceptual independence, adapting to opposite 3D directions generated by different binocular cues resulted in simultaneous, superimposed, opposite-direction MAEs. These findings suggest that velocity- and disparity-based 3D motion signals may both flow through area MT but constitute distinct signals and pathways. SIGNIFICANCE STATEMENT Recent human neuroimaging and monkey electrophysiology have revealed 3D motion selectivity in area MT, which is driven by both velocity-based and disparity-based 3D motion signals. However, to elucidate the neural mechanisms by which the brain extracts 3D motion given these binocular signals, it is essential to understand how—or indeed if—these two binocular cues interact. We show that velocity-based and disparity-based signals are mostly separate at the levels of both fMRI responses in area MT and perception. Our findings suggest that the two binocular cues for 3D motion might be processed by separate specialized mechanisms. PMID:27798134

  7. Separate Perceptual and Neural Processing of Velocity- and Disparity-Based 3D Motion Signals.

    PubMed

    Joo, Sung Jun; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C

    2016-10-19

    Although the visual system uses both velocity- and disparity-based binocular information for computing 3D motion, it is unknown whether (and how) these two signals interact. We found that these two binocular signals are processed distinctly at the levels of both cortical activity in human MT and perception. In human MT, adaptation to both velocity-based and disparity-based 3D motions demonstrated direction-selective neuroimaging responses. However, when adaptation to one cue was probed using the other cue, there was no evidence of interaction between them (i.e., there was no "cross-cue" adaptation). Analogous psychophysical measurements yielded correspondingly weak cross-cue motion aftereffects (MAEs) in the face of very strong within-cue adaptation. In a direct test of perceptual independence, adapting to opposite 3D directions generated by different binocular cues resulted in simultaneous, superimposed, opposite-direction MAEs. These findings suggest that velocity- and disparity-based 3D motion signals may both flow through area MT but constitute distinct signals and pathways. Recent human neuroimaging and monkey electrophysiology have revealed 3D motion selectivity in area MT, which is driven by both velocity-based and disparity-based 3D motion signals. However, to elucidate the neural mechanisms by which the brain extracts 3D motion given these binocular signals, it is essential to understand how-or indeed if-these two binocular cues interact. We show that velocity-based and disparity-based signals are mostly separate at the levels of both fMRI responses in area MT and perception. Our findings suggest that the two binocular cues for 3D motion might be processed by separate specialized mechanisms. Copyright © 2016 the authors 0270-6474/16/3610791-12$15.00/0.

  8. A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography

    PubMed Central

    Ozker, Muge; Schepers, Inga M.; Magnotti, John F.; Yoshor, Daniel; Beauchamp, Michael S.

    2017-01-01

    Human speech can be comprehended using only auditory information from the talker’s voice. However, comprehension is improved if the talker’s face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl’s gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech. PMID:28253074

  9. Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech.

    PubMed

    Khalighinejad, Bahar; Cruzatto da Silva, Guilherme; Mesgarani, Nima

    2017-02-22

    Humans are unique in their ability to communicate using spoken language. However, it remains unclear how the speech signal is transformed and represented in the brain at different stages of the auditory pathway. In this study, we characterized electroencephalography responses to continuous speech by obtaining the time-locked responses to phoneme instances (phoneme-related potential). We showed that responses to different phoneme categories are organized by phonetic features. We found that each instance of a phoneme in continuous speech produces multiple distinguishable neural responses occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Comparing the patterns of phoneme similarity in the neural responses and the acoustic signals confirms a repetitive appearance of acoustic distinctions of phonemes in the neural data. Analysis of the phonetic and speaker information in neural activations revealed that different time intervals jointly encode the acoustic similarity of both phonetic and speaker categories. These findings provide evidence for a dynamic neural transformation of low-level speech features as they propagate along the auditory pathway, and form an empirical framework to study the representational changes in learning, attention, and speech disorders. SIGNIFICANCE STATEMENT We characterized the properties of evoked neural responses to phoneme instances in continuous speech. We show that each instance of a phoneme in continuous speech produces several observable neural responses at different times occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Each temporal event explicitly encodes the acoustic similarity of phonemes, and linguistic and nonlinguistic information are best represented at different time intervals. Finally, we show a joint encoding of phonetic and speaker information, where the neural representation of speakers is dependent on phoneme category. These findings provide compelling new evidence for dynamic processing of speech sounds in the auditory pathway. Copyright © 2017 Khalighinejad et al.

  10. Silencing of ATP11B by RNAi-Induced Changes in Neural Stem Cell Morphology.

    PubMed

    Wang, Jiao; Wang, Qian; Zhou, Fangfang; Wang, Dong; Wen, Tieqiao

    2017-01-01

    RNA interference (RNAi) technology is one of the main research tools in many studies of neural stem cells. This study describes effects of ATP11B on the morphology change of neural stem cells by using RNAi. ATP11B belongs to P4-ATPases family, which is preferential translocate phosphatidylserine of cell membrane. Although it exists in neural stem cells, its physiological function is poorly understood. By using RNAi technology to downregulate expression of ATP11B, we found distinct morphological changes in neural stem cells. More important, psiRNA-ATP11B-transfected cells displayed short neurite outgrowth compared to the control cells. These data strongly suggest that ATP11B plays a key role in the morphological change of neural stem cells.

  11. THE TASTE OF SUGARS

    PubMed Central

    McCaughey, Stuart A.

    2008-01-01

    Sugars evoke a distinctive perceptual quality (“sweetness” in humans) and are generally highly preferred. The neural basis for these phenomena is reviewed for rodents, in which detailed electrophysiological measurements have been made. A receptor has been identified that binds sweeteners and activates G-protein-mediated signaling in taste receptor cells, which leads to changes in neural firing rates in the brain, where perceptions of taste quality, intensity, and palatability are generated. Most cells in gustatory nuclei are broadly-tuned, so quality perception presumably arises from patterns of activity across neural populations. However, some manipulations affect only the most sugar-oriented cells, making it useful to consider them as a distinct neural subtype. Quality perception may also arise partly due to temporal patterns of activity to sugars, especially within sugar-oriented cells that give large but delayed responses. Non-specific gustatory neurons that are excited by both sugars and unpalatable stimuli project to ventral forebrain areas, where neural responses provide a closer match with behavioral preferences. This transition likely involves opposing excitatory and inhibitory influences by different subgroups of gustatory cells. Sweeteners are generally preferred over water, but the strength of this preference can vary across time or between individuals, and higher preferences for sugars are often associated with larger taste-evoked responses. PMID:18499254

  12. Changes in pitch height elicit both language universal and language dependent changes in neural representation of pitch in the brainstem and auditory cortex

    PubMed Central

    Krishnan, Ananthanarayan; Suresh, Chandan H.; Gandour, Jackson T.

    2017-01-01

    Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on i) neural responses to variations in pitch height, ii) presence of asymmetry in cortical pitch representation, and iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na–Pb and Pb–Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na–Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. PMID:28108254

  13. Changes in pitch height elicit both language-universal and language-dependent changes in neural representation of pitch in the brainstem and auditory cortex.

    PubMed

    Krishnan, Ananthanarayan; Suresh, Chandan H; Gandour, Jackson T

    2017-03-27

    Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on (i) neural responses to variations in pitch height, (ii) presence of asymmetry in cortical pitch representation, and (iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na-Pb and Pb-Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na-Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Complexity analysis of spontaneous brain activity in mood disorders: A magnetoencephalography study of bipolar disorder and major depression.

    PubMed

    Fernández, Alberto; Al-Timemy, Ali H; Ferre, Francisco; Rubio, Gabriel; Escudero, Javier

    2018-04-26

    The lack of a biomarker for Bipolar Disorder (BD) causes problems in the differential diagnosis with other mood disorders such as major depression (MD), and misdiagnosis frequently occurs. Bearing this in mind, we investigated non-linear magnetoencephalography (MEG) patterns in BD and MD. Lempel-Ziv Complexity (LZC) was used to evaluate the resting-state MEG activity in a cross-sectional sample of 60 subjects, including 20 patients with MD, 16 patients with BD type-I, and 24 control (CON) subjects. Particular attention was paid to the role of age. The results were aggregated by scalp region. Overall, MD patients showed significantly higher LZC scores than BD patients and CONs. Linear regression analyses demonstrated distinct tendencies of complexity progression as a function of age, with BD patients showing a divergent tendency as compared with MD and CON groups. Logistic regressions confirmed such distinct relationship with age, which allowed the classification of diagnostic groups. The patterns of neural complexity in BD and MD showed not only quantitative differences in their non-linear MEG characteristics but also divergent trajectories of progression as a function of age. Moreover, neural complexity patterns in BD patients resembled those previously observed in schizophrenia, thus supporting preceding evidence of common neuropathological processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Observe, simplify, titrate, model, and synthesize: A paradigm for analyzing behavior

    PubMed Central

    Alberts, Jeffrey R.

    2013-01-01

    Phenomena in behavior and their underlying neural mechanisms are exquisitely complex problems. Infrequently do we reflect on our basic strategies of investigation and analysis, or formally confront the actual challenges of achieving an understanding of the phenomena that inspire research. Philip Teitelbaum is distinct in his elegant approaches to understanding behavioral phenomena and their associated neural processes. He also articulated his views on effective approaches to scientific analyses of brain and behavior, his vision of how behavior and the nervous system are patterned, and what constitutes basic understanding. His rubrics involve careful observation and description of behavior, simplification of the complexity, analysis of elements, and re-integration through different forms of synthesis. Research on the development of huddling behavior by individual and groups of rats is reviewed in a context of Teitelbaum’s rubrics of research, with the goal of appreciating his broad and positive influence on the scientific community. PMID:22481081

  16. Conscious Action/Zombie Action

    PubMed Central

    Shepherd, Joshua

    2015-01-01

    Abstract I argue that the neural realizers of experiences of trying (that is, experiences of directing effort towards the satisfaction of an intention) are not distinct from the neural realizers of actual trying (that is, actual effort directed towards the satisfaction of an intention). I then ask how experiences of trying might relate to the perceptual experiences one has while acting. First, I assess recent zombie action arguments regarding conscious visual experience, and I argue that contrary to what some have claimed, conscious visual experience plays a causal role for action control in some circumstances. Second, I propose a multimodal account of the experience of acting. According to this account, the experience of acting is (at the very least) a temporally extended, co‐conscious collection of agentive and perceptual experiences, functionally integrated and structured both by multimodal perceptual processing as well as by what an agent is, at the time, trying to do. PMID:27667859

  17. Distributed representations in memory: Insights from functional brain imaging

    PubMed Central

    Rissman, Jesse; Wagner, Anthony D.

    2015-01-01

    Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly leveraged powerful analytical tools (e.g., multi-voxel pattern analysis) to decode the information represented within distributed fMRI activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content, and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses. PMID:21943171

  18. Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity

    NASA Astrophysics Data System (ADS)

    Mizusaki, Beatriz E. P.; Agnes, Everton J.; Erichsen, Rubem; Brunnet, Leonardo G.

    2017-08-01

    The plastic character of brain synapses is considered to be one of the foundations for the formation of memories. There are numerous kinds of such phenomenon currently described in the literature, but their role in the development of information pathways in neural networks with recurrent architectures is still not completely clear. In this paper we study the role of an activity-based process, called pre-synaptic dependent homeostatic scaling, in the organization of networks that yield precise-timed spiking patterns. It encodes spatio-temporal information in the synaptic weights as it associates a learned input with a specific response. We introduce a correlation measure to evaluate the precision of the spiking patterns and explore the effects of different inhibitory interactions and learning parameters. We find that large learning periods are important in order to improve the network learning capacity and discuss this ability in the presence of distinct inhibitory currents.

  19. On the role of selective attention in visual perception

    PubMed Central

    Luck, Steven J.; Ford, Michelle A.

    1998-01-01

    What is the role of selective attention in visual perception? Before answering this question, it is necessary to differentiate between attentional mechanisms that influence the identification of a stimulus from those that operate after perception is complete. Cognitive neuroscience techniques are particularly well suited to making this distinction because they allow different attentional mechanisms to be isolated in terms of timing and/or neuroanatomy. The present article describes the use of these techniques in differentiating between perceptual and postperceptual attentional mechanisms and then proposes a specific role of attention in visual perception. Specifically, attention is proposed to resolve ambiguities in neural coding that arise when multiple objects are processed simultaneously. Evidence for this hypothesis is provided by two experiments showing that attention—as measured electrophysiologically—is allocated to visual search targets only under conditions that would be expected to lead to ambiguous neural coding. PMID:9448247

  20. Grammatical Impairments in PPA

    PubMed Central

    Thompson, Cynthia K.; Mack, Jennifer E.

    2015-01-01

    Background Grammatical impairments are commonly observed in the agrammatic subtype of primary progressive aphasia (PPA-G), whereas grammatical processing is relatively preserved in logopenic (PPA-L) and semantic (PPA-S) subtypes. Aims We review research on grammatical deficits in PPA and associated neural mechanisms, with discussion focused on production and comprehension of four aspects of morphosyntactic structure: grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures. We also address assessment of grammatical deficits in PPA, with emphasis on behavioral tests of grammatical processing. Finally, we address research examining the effects of treatment for progressive grammatical impairments. Main Contribution PPA-G is associated with grammatical deficits that are evident across linguistic domains in both production and comprehension. PPA-G is associated with damage to regions including the left inferior frontal gyrus (IFG) and dorsal white matter tracts, which have been linked to impaired comprehension and production of complex sentences. Detailing grammatical deficits in PPA is important for estimating the trajectory of language decline and associated neuropathology. We, therefore, highlight several new assessment tools for examining different aspects of morphosyntactic processing in PPA. Conclusions Individuals with PPA-G present with agrammatic deficit patterns distinct from those associated with PPA-L and PPA-S, but similar to those seen in agrammatism resulting from stroke, and patterns of cortical atrophy and white matter changes associated with PPA-G have been identified. Methods for clinical evaluation of agrammatism, focusing on comprehension and production of grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures are recommended and tools for this are emerging in the literature. Further research is needed to investigate the real-time processes underlying grammatical impairments in PPA, as well as the structural and functional neural correlates of grammatical impairments across linguistic domains. Few studies have examined the effects of treatment for grammatical impairments in PPA; research in this area is needed to better understand how (or if) grammatical processing ability can be improved, the potential for spared neural tissue to be recruited to support this, and whether the neural connections within areas of dysfunctional tissue required for grammatical processing can be enhanced using cortical stimulation. PMID:25642014

  1. Grammatical Impairments in PPA.

    PubMed

    Thompson, Cynthia K; Mack, Jennifer E

    2014-09-01

    Grammatical impairments are commonly observed in the agrammatic subtype of primary progressive aphasia (PPA-G), whereas grammatical processing is relatively preserved in logopenic (PPA-L) and semantic (PPA-S) subtypes. We review research on grammatical deficits in PPA and associated neural mechanisms, with discussion focused on production and comprehension of four aspects of morphosyntactic structure: grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures. We also address assessment of grammatical deficits in PPA, with emphasis on behavioral tests of grammatical processing. Finally, we address research examining the effects of treatment for progressive grammatical impairments. PPA-G is associated with grammatical deficits that are evident across linguistic domains in both production and comprehension. PPA-G is associated with damage to regions including the left inferior frontal gyrus (IFG) and dorsal white matter tracts, which have been linked to impaired comprehension and production of complex sentences. Detailing grammatical deficits in PPA is important for estimating the trajectory of language decline and associated neuropathology. We, therefore, highlight several new assessment tools for examining different aspects of morphosyntactic processing in PPA. Individuals with PPA-G present with agrammatic deficit patterns distinct from those associated with PPA-L and PPA-S, but similar to those seen in agrammatism resulting from stroke, and patterns of cortical atrophy and white matter changes associated with PPA-G have been identified. Methods for clinical evaluation of agrammatism, focusing on comprehension and production of grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures are recommended and tools for this are emerging in the literature. Further research is needed to investigate the real-time processes underlying grammatical impairments in PPA, as well as the structural and functional neural correlates of grammatical impairments across linguistic domains. Few studies have examined the effects of treatment for grammatical impairments in PPA; research in this area is needed to better understand how (or if) grammatical processing ability can be improved, the potential for spared neural tissue to be recruited to support this, and whether the neural connections within areas of dysfunctional tissue required for grammatical processing can be enhanced using cortical stimulation.

  2. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.

    PubMed

    Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F

    2017-08-16

    Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the perisylvian cortex and potentially contribute to the emergence of "coarse" speech representations in inferior frontal gyrus typically associated with high-level language processing. These findings add to the previous work on auditory processing and underline a distinctive role of inferior frontal gyrus in natural speech comprehension. Copyright © 2017 the authors 0270-6474/17/377906-15$15.00/0.

  3. Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making.

    PubMed

    Orsini, Caitlin A; Hernandez, Caesar M; Singhal, Sarthak; Kelly, Kyle B; Frazier, Charles J; Bizon, Jennifer L; Setlow, Barry

    2017-11-29

    Decision making is a multifaceted process, consisting of several distinct phases that likely require different cognitive operations. Previous work showed that the basolateral amygdala (BLA) is a critical substrate for decision making involving risk of punishment; however, it is unclear how the BLA is recruited at different stages of the decision process. To this end, the current study used optogenetics to inhibit the BLA during specific task phases in a model of risky decision making (risky decision-making task) in which rats choose between a small, "safe" reward and a large reward accompanied by varying probabilities of footshock punishment. Male Long-Evans rats received intra-BLA microinjections of viral vectors carrying either halorhodopsin (eNpHR3.0-mCherry) or mCherry alone (control) followed by optic fiber implants and were trained in the risky decision-making task. Laser delivery during the task occurred during intertrial interval, deliberation, or reward outcome phases, the latter of which was further divided into the three possible outcomes (small, safe; large, unpunished; large, punished). Inhibition of the BLA selectively during the deliberation phase decreased choice of the large, risky outcome (decreased risky choice). In contrast, BLA inhibition selectively during delivery of the large, punished outcome increased risky choice. Inhibition had no effect during the other phases, nor did laser delivery affect performance in control rats. Collectively, these data indicate that the BLA can either inhibit or promote choice of risky options, depending on the phase of the decision process in which it is active. SIGNIFICANCE STATEMENT To date, most behavioral neuroscience research on neural mechanisms of decision making has used techniques that preclude assessment of distinct phases of the decision process. Here we show that optogenetic inhibition of the BLA has opposite effects on choice behavior in a rat model of risky decision making, depending on the phase in which inhibition occurs. BLA inhibition during a period of deliberation between small, safe and large, risky outcomes decreased risky choice. In contrast, BLA inhibition during receipt of the large, punished outcome increased risky choice. These findings highlight the importance of temporally targeted approaches to understand neural substrates underlying complex cognitive processes. More importantly, they reveal novel information about dynamic BLA modulation of risky choice. Copyright © 2017 the authors 0270-6474/17/3711537-12$15.00/0.

  4. Neural Correlates of Emotion Processing in Word Detection Task

    PubMed Central

    Zhao, Wenshuang; Chen, Liang; Zhou, Chunxia; Luo, Wenbo

    2018-01-01

    In our previous study, we have proposed a three-stage model of emotion processing; in the current study, we investigated whether the ERP component may be different when the emotional content of stimuli is task-irrelevant. In this study, a dual-target rapid serial visual presentation (RSVP) task was used to investigate how the emotional content of words modulates the time course of neural dynamics. Participants performed the task in which affectively positive, negative, and neutral adjectives were rapidly presented while event-related potentials (ERPs) were recorded from 18 undergraduates. The N170 component was enhanced for negative words relative to positive and neutral words. This indicates that automatic processing of negative information occurred at an early perceptual processing stage. In addition, later brain potentials such as the late positive potential (LPP) were only enhanced for positive words in the 480–580-ms post-stimulus window, while a relatively large amplitude signal was elicited by positive and negative words between 580 and 680 ms. These results indicate that different types of emotional content are processed distinctly at different time windows of the LPP, which is in contrast with the results of studies on task-relevant emotional processing. More generally, these findings suggest that a negativity bias to negative words remains to be found in emotion-irrelevant tasks, and that the LPP component reflects dynamic separation of emotion valence. PMID:29887824

  5. An Emotional ANN (EANN) approach to modeling rainfall-runoff process

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid

    2017-01-01

    This paper presents the first hydrological implementation of Emotional Artificial Neural Network (EANN), as a new generation of Artificial Intelligence-based models for daily rainfall-runoff (r-r) modeling of the watersheds. Inspired by neurophysiological form of brain, in addition to conventional weights and bias, an EANN includes simulated emotional parameters aimed at improving the network learning process. EANN trained by a modified version of back-propagation (BP) algorithm was applied to single and multi-step-ahead runoff forecasting of two watersheds with two distinct climatic conditions. Also to evaluate the ability of EANN trained by smaller training data set, three data division strategies with different number of training samples were considered for the training purpose. The overall comparison of the obtained results of the r-r modeling indicates that the EANN could outperform the conventional feed forward neural network (FFNN) model up to 13% and 34% in terms of training and verification efficiency criteria, respectively. The superiority of EANN over classic ANN is due to its ability to recognize and distinguish dry (rainless days) and wet (rainy days) situations using hormonal parameters of the artificial emotional system.

  6. Common and distinct neural substrates for the perception of speech rhythm and intonation.

    PubMed

    Zhang, Linjun; Shu, Hua; Zhou, Fengying; Wang, Xiaoyi; Li, Ping

    2010-07-01

    The present study examines the neural substrates for the perception of speech rhythm and intonation. Subjects listened passively to synthesized speech stimuli that contained no semantic and phonological information, in three conditions: (1) continuous speech stimuli with fixed syllable duration and fundamental frequency in the standard condition, (2) stimuli with varying vocalic durations of syllables in the speech rhythm condition, and (3) stimuli with varying fundamental frequency in the intonation condition. Compared to the standard condition, speech rhythm activated the right middle superior temporal gyrus (mSTG), whereas intonation activated the bilateral superior temporal gyrus and sulcus (STG/STS) and the right posterior STS. Conjunction analysis further revealed that rhythm and intonation activated a common area in the right mSTG but compared to speech rhythm, intonation elicited additional activations in the right anterior STS. Findings from the current study reveal that the right mSTG plays an important role in prosodic processing. Implications of our findings are discussed with respect to neurocognitive theories of auditory processing. (c) 2009 Wiley-Liss, Inc.

  7. Are There Separate Neural Systems for Spelling? New Insights into the Role of Rules and Memory in Spelling from Functional Magnetic Resonance Imaging.

    PubMed

    Norton, Elizabeth S; Kovelman, Ioulia; Petitto, Laura-Ann

    2007-03-01

    How do people spell the thousands of words at the tips of their tongues? Are words with regular sound-to-letter correspondences (e.g., "blink") spelled using the same neural systems as those with irregular correspondences (e.g., "yacht")? By offering novel neuroimaging evidence, we aim to advance contemporary debate about whether people use a single lexical memory process or whether dual mechanisms of lexical memory and sublexical phonological rules work in concert. We further aim to advance understanding of how people read by taking a fresh look at the related yet distinct capacity to spell. During functional magnetic resonance imaging scanning, 12 participants heard low-frequency regular words, irregular words, and nonwords (e.g., "shelm") and responded whether a visual presentation of the word was spelled correctly or incorrectly. While behavioral measures suggested some differences in accuracy and reaction time for the different word types, the neuroimaging results alone demonstrated robust differential processing and support a dual-route model of spelling, with implications for how spelling is taught and remediated in clinical and educational contexts.

  8. Neurocircuitry of limbic dysfunction in anorexia nervosa.

    PubMed

    Lipsman, Nir; Woodside, D Blake; Lozano, Andres M

    2015-01-01

    Anorexia Nervosa (AN) is a serious psychiatric condition marked by firmly entrenched and maladaptive behaviors and beliefs about body, weight and food, as well as high rates of psychiatric comorbidity. The neural roots of AN are now beginning to emerge, and appear to be related to dysfunctional, primarily limbic, circuits driving pathological thoughts and behaviors. As a result, the significant physical symptoms of AN are increasingly being understood at least partially as a result of abnormal or dysregulated emotional processing. This paper reviews the nature of limbic dysfunction in AN, and how structural and functional imaging has implicated distinct emotional and perceptual neural circuits driving AN symptoms. We propose that top-down and bottom-up influences converge on key limbic modulatory structures, such as the subcallosal cingulate and insula, whose normal functioning is critical to affective regulation and emotional homeostasis. Dysfunctional activity in these structures, as is seen in AN, may lead to emotional processing deficits and psychiatric symptoms, which then drive maladaptive behaviors. Modulating limbic dysregulation may therefore be a potential treatment strategy in some AN patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Repetition-related reductions in neural activity reveal component processes of mental simulation.

    PubMed

    Szpunar, Karl K; St Jacques, Peggy L; Robbins, Clifford A; Wig, Gagan S; Schacter, Daniel L

    2014-05-01

    In everyday life, people adaptively prepare for the future by simulating dynamic events about impending interactions with people, objects and locations. Previous research has consistently demonstrated that a distributed network of frontal-parietal-temporal brain regions supports this ubiquitous mental activity. Nonetheless, little is known about the manner in which specific regions of this network contribute to component features of future simulation. In two experiments, we used a functional magnetic resonance (fMR)-repetition suppression paradigm to demonstrate that distinct frontal-parietal-temporal regions are sensitive to processing the scenarios or what participants imagined was happening in an event (e.g., medial prefrontal, posterior cingulate, temporal-parietal and middle temporal cortices are sensitive to the scenarios associated with future social events), people (medial prefrontal cortex), objects (inferior frontal and premotor cortices) and locations (posterior cingulate/retrosplenial, parahippocampal and posterior parietal cortices) that typically constitute simulations of personal future events. This pattern of results demonstrates that the neural substrates of these component features of event simulations can be reliably identified in the context of a task that requires participants to simulate complex, everyday future experiences.

  10. Cognitive control predicts use of model-based reinforcement learning.

    PubMed

    Otto, A Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D

    2015-02-01

    Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information--in the service of overcoming habitual, stimulus-driven responses--in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior.

  11. Syntactic structure building in the anterior temporal lobe during natural story listening.

    PubMed

    Brennan, Jonathan; Nir, Yuval; Hasson, Uri; Malach, Rafael; Heeger, David J; Pylkkänen, Liina

    2012-02-01

    The neural basis of syntax is a matter of substantial debate. In particular, the inferior frontal gyrus (IFG), or Broca's area, has been prominently linked to syntactic processing, but the anterior temporal lobe has been reported to be activated instead of IFG when manipulating the presence of syntactic structure. These findings are difficult to reconcile because they rely on different laboratory tasks which tap into distinct computations, and may only indirectly relate to natural sentence processing. Here we assessed neural correlates of syntactic structure building in natural language comprehension, free from artificial task demands. Subjects passively listened to Alice in Wonderland during functional magnetic resonance imaging and we correlated brain activity with a word-by-word measure of the amount syntactic structure analyzed. Syntactic structure building correlated with activity in the left anterior temporal lobe, but there was no evidence for a correlation between syntactic structure building and activity in inferior frontal areas. Our results suggest that the anterior temporal lobe computes syntactic structure under natural conditions. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Neural architecture underlying classification of face perception paradigms.

    PubMed

    Laird, Angela R; Riedel, Michael C; Sutherland, Matthew T; Eickhoff, Simon B; Ray, Kimberly L; Uecker, Angela M; Fox, P Mickle; Turner, Jessica A; Fox, Peter T

    2015-10-01

    We present a novel strategy for deriving a classification system of functional neuroimaging paradigms that relies on hierarchical clustering of experiments archived in the BrainMap database. The goal of our proof-of-concept application was to examine the underlying neural architecture of the face perception literature from a meta-analytic perspective, as these studies include a wide range of tasks. Task-based results exhibiting similar activation patterns were grouped as similar, while tasks activating different brain networks were classified as functionally distinct. We identified four sub-classes of face tasks: (1) Visuospatial Attention and Visuomotor Coordination to Faces, (2) Perception and Recognition of Faces, (3) Social Processing and Episodic Recall of Faces, and (4) Face Naming and Lexical Retrieval. Interpretation of these sub-classes supports an extension of a well-known model of face perception to include a core system for visual analysis and extended systems for personal information, emotion, and salience processing. Overall, these results demonstrate that a large-scale data mining approach can inform the evolution of theoretical cognitive models by probing the range of behavioral manipulations across experimental tasks. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Collective Phenomena Emerging from the Interactions between Dynamical Processes in Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Nicosia, Vincenzo; Skardal, Per Sebastian; Arenas, Alex; Latora, Vito

    2017-03-01

    We introduce a framework to intertwine dynamical processes of different nature, each with its own distinct network topology, using a multilayer network approach. As an example of collective phenomena emerging from the interactions of multiple dynamical processes, we study a model where neural dynamics and nutrient transport are bidirectionally coupled in such a way that the allocation of the transport process at one layer depends on the degree of synchronization at the other layer, and vice versa. We show numerically, and we prove analytically, that the multilayer coupling induces a spontaneous explosive synchronization and a heterogeneous distribution of allocations, otherwise not present in the two systems considered separately. Our framework can find application to other cases where two or more dynamical processes such as synchronization, opinion formation, information diffusion, or disease spreading, are interacting with each other.

  14. Out of touch with reality? Social perception in first-episode schizophrenia

    PubMed Central

    Salone, Anatolia; Ferri, Francesca; De Berardis, Domenico; Romani, Gian Luca; Ferro, Filippo M.; Gallese, Vittorio

    2013-01-01

    Social dysfunction has been recognized as an elementary feature of schizophrenia, but it remains a crucial issue whether social deficits in schizophrenia concern the inter-subjective domain or primarily have their roots in disturbances of self-experience. Social perception comprises vicarious processes grounding an experiential inter-relationship with others as well as self-regulation processes allowing to maintain a coherent sense of self. The present study investigated whether the functional neural basis underlying these processes is altered in first-episode schizophrenia (FES). Twenty-four FES patients and 22 healthy control participants underwent functional magnetic resonance imaging during a social perception task requiring them to watch videos depicting other individuals' inanimate and animate/social tactile stimulations, and a tactile localizer condition. Activation in ventral premotor cortex for observed bodily tactile stimulations was reduced in the FES group and negatively correlated with self-experience disturbances. Moreover, FES patients showed aberrant differential activation in posterior insula for first-person tactile experiences and observed affective tactile stimulations. These findings suggest that social perception in FES at a pre-reflective level is characterized by disturbances of self-experience, including impaired multisensory representations and self-other distinction. However, the results also show that social perception in FES involves more complex alterations of neural activation at multiple processing levels. PMID:22275166

  15. Neural Mechanism for Mirrored Self-face Recognition.

    PubMed

    Sugiura, Motoaki; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Akimoto, Yoritaka; Nozawa, Takayuki; Yomogida, Yukihito; Hanawa, Sugiko; Yamamoto, Yuki; Sakuma, Atsushi; Nakagawa, Seishu; Kawashima, Ryuta

    2015-09-01

    Self-face recognition in the mirror is considered to involve multiple processes that integrate 2 perceptual cues: temporal contingency of the visual feedback on one's action (contingency cue) and matching with self-face representation in long-term memory (figurative cue). The aim of this study was to examine the neural bases of these processes by manipulating 2 perceptual cues using a "virtual mirror" system. This system allowed online dynamic presentations of real-time and delayed self- or other facial actions. Perception-level processes were identified as responses to only a single perceptual cue. The effect of the contingency cue was identified in the cuneus. The regions sensitive to the figurative cue were subdivided by the response to a static self-face, which was identified in the right temporal, parietal, and frontal regions, but not in the bilateral occipitoparietal regions. Semantic- or integration-level processes, including amodal self-representation and belief validation, which allow modality-independent self-recognition and the resolution of potential conflicts between perceptual cues, respectively, were identified in distinct regions in the right frontal and insular cortices. The results are supportive of the multicomponent notion of self-recognition and suggest a critical role for contingency detection in the co-emergence of self-recognition and empathy in infants. © The Author 2014. Published by Oxford University Press.

  16. Neural Mechanism for Mirrored Self-face Recognition

    PubMed Central

    Sugiura, Motoaki; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Akimoto, Yoritaka; Nozawa, Takayuki; Yomogida, Yukihito; Hanawa, Sugiko; Yamamoto, Yuki; Sakuma, Atsushi; Nakagawa, Seishu; Kawashima, Ryuta

    2015-01-01

    Self-face recognition in the mirror is considered to involve multiple processes that integrate 2 perceptual cues: temporal contingency of the visual feedback on one's action (contingency cue) and matching with self-face representation in long-term memory (figurative cue). The aim of this study was to examine the neural bases of these processes by manipulating 2 perceptual cues using a “virtual mirror” system. This system allowed online dynamic presentations of real-time and delayed self- or other facial actions. Perception-level processes were identified as responses to only a single perceptual cue. The effect of the contingency cue was identified in the cuneus. The regions sensitive to the figurative cue were subdivided by the response to a static self-face, which was identified in the right temporal, parietal, and frontal regions, but not in the bilateral occipitoparietal regions. Semantic- or integration-level processes, including amodal self-representation and belief validation, which allow modality-independent self-recognition and the resolution of potential conflicts between perceptual cues, respectively, were identified in distinct regions in the right frontal and insular cortices. The results are supportive of the multicomponent notion of self-recognition and suggest a critical role for contingency detection in the co-emergence of self-recognition and empathy in infants. PMID:24770712

  17. Distinctive and common neural underpinnings of major depression, social anxiety, and their comorbidity

    PubMed Central

    Chen, Michael C.; Waugh, Christian E.; Joormann, Jutta; Gotlib, Ian H.

    2015-01-01

    Assessing neural commonalities and differences among depression, anxiety and their comorbidity is critical in developing a more integrative clinical neuroscience and in evaluating currently debated categorical vs dimensional approaches to psychiatric classification. Therefore, in this study, we sought to identify patterns of anomalous neural responding to criticism and praise that are specific to and common among major depressive disorder (MDD), social anxiety disorder (SAD) and comorbid MDD-SAD. Adult females who met formal diagnostic criteria for MDD, SAD or MDD-SAD and psychiatrically healthy participants underwent functional magnetic resonance imaging as they listened to statements directing praise or criticism at them or at another person. MDD groups showed reduced responding to praise across a distributed cortical network, an effect potentially mediated by thalamic nuclei undergirding arousal-mediated attention. SAD groups showed heightened anterior insula and decreased default-mode network response to criticism. The MDD-SAD group uniquely showed reduced responding to praise in the dorsal anterior cingulate cortex. Finally, all groups with psychopathology showed heightened response to criticism in a region of the superior frontal gyrus implicated in attentional gating. The present results suggest novel neural models of anhedonia in MDD, vigilance-withdrawal behaviors in SAD, and poorer outcome in MDD-SAD. Importantly, in identifying unique and common neural substrates of MDD and SAD, these results support a formulation in which common neural components represent general risk factors for psychopathology that, due to factors that are present at illness onset, lead to distinct forms of psychopathology with unique neural signatures. PMID:25038225

  18. The neural correlates of internal and external comparisons: an fMRI study.

    PubMed

    Wen, Xue; Xiang, Yanhui; Cant, Jonathan S; Wang, Tingting; Cupchik, Gerald; Huang, Ruiwang; Mo, Lei

    2017-01-01

    Many previous studies have suggested that various comparisons rely on the same cognitive and neural mechanisms. However, little attention has been paid to exploring the commonalities and differences between the internal comparison based on concepts or rules and the external comparison based on perception. In the present experiment, moral beauty comparison and facial beauty comparison were selected as the representatives of internal comparison and external comparison, respectively. Functional magnetic resonance imaging (fMRI) was used to record brain activity while participants compared the level of moral beauty of two scene drawings containing moral acts or the level of facial beauty of two face photos. In addition, a physical size comparison task with the same stimuli as the beauty comparison was included. We observed that both the internal moral beauty comparison and external facial beauty comparison obeyed a typical distance effect and this behavioral effect recruited a common frontoparietal network involved in comparisons of simple physical magnitudes such as size. In addition, compared to external facial beauty comparison, internal moral beauty comparison induced greater activity in more advanced and complex cortical regions, such as the bilateral middle temporal gyrus and middle occipital gyrus, but weaker activity in the putamen, a subcortical region. Our results provide novel neural evidence for the comparative process and suggest that different comparisons may rely on both common cognitive processes as well as distinct and specific cognitive components.

  19. Neural correlates of admiration and compassion

    PubMed Central

    Immordino-Yang, Mary Helen; McColl, Andrea; Damasio, Hanna; Damasio, Antonio

    2009-01-01

    In an fMRI experiment, participants were exposed to narratives based on true stories designed to evoke admiration and compassion in 4 distinct categories: admiration for virtue (AV), admiration for skill (AS), compassion for social/psychological pain (CSP), and compassion for physical pain (CPP). The goal was to test hypotheses about recruitment of homeostatic, somatosensory, and consciousness-related neural systems during the processing of pain-related (compassion) and non-pain-related (admiration) social emotions along 2 dimensions: emotions about other peoples' social/psychological conditions (AV, CSP) and emotions about others' physical conditions (AS, CPP). Consistent with theoretical accounts, the experience of all 4 emotions engaged brain regions involved in interoceptive representation and homeostatic regulation, including anterior insula, anterior cingulate, hypothalamus, and mesencephalon. However, the study also revealed a previously undescribed pattern within the posteromedial cortices (the ensemble of precuneus, posterior cingulate cortex, and retrosplenial region), an intriguing territory currently known for its involvement in the default mode of brain operation and in self-related/consciousness processes: emotions pertaining to social/psychological and physical situations engaged different networks aligned, respectively, with interoceptive and exteroceptive neural systems. Finally, within the anterior insula, activity correlated with AV and CSP peaked later and was more sustained than that associated with CPP. Our findings contribute insights on the functions of the posteromedial cortices and on the recruitment of the anterior insula in social emotions concerned with physical versus psychological pain. PMID:19414310

  20. Neural correlates of admiration and compassion.

    PubMed

    Immordino-Yang, Mary Helen; McColl, Andrea; Damasio, Hanna; Damasio, Antonio

    2009-05-12

    In an fMRI experiment, participants were exposed to narratives based on true stories designed to evoke admiration and compassion in 4 distinct categories: admiration for virtue (AV), admiration for skill (AS), compassion for social/psychological pain (CSP), and compassion for physical pain (CPP). The goal was to test hypotheses about recruitment of homeostatic, somatosensory, and consciousness-related neural systems during the processing of pain-related (compassion) and non-pain-related (admiration) social emotions along 2 dimensions: emotions about other peoples' social/psychological conditions (AV, CSP) and emotions about others' physical conditions (AS, CPP). Consistent with theoretical accounts, the experience of all 4 emotions engaged brain regions involved in interoceptive representation and homeostatic regulation, including anterior insula, anterior cingulate, hypothalamus, and mesencephalon. However, the study also revealed a previously undescribed pattern within the posteromedial cortices (the ensemble of precuneus, posterior cingulate cortex, and retrosplenial region), an intriguing territory currently known for its involvement in the default mode of brain operation and in self-related/consciousness processes: emotions pertaining to social/psychological and physical situations engaged different networks aligned, respectively, with interoceptive and exteroceptive neural systems. Finally, within the anterior insula, activity correlated with AV and CSP peaked later and was more sustained than that associated with CPP. Our findings contribute insights on the functions of the posteromedial cortices and on the recruitment of the anterior insula in social emotions concerned with physical versus psychological pain.

  1. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.

    PubMed

    François, Clément; Schön, Daniele

    2014-02-01

    There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Neural Correlates of Conceptual Implicit Memory and Their Contamination of Putative Neural Correlates of Explicit Memory

    ERIC Educational Resources Information Center

    Voss, Joel L.; Paller, Ken A.

    2007-01-01

    During episodic recognition tests, meaningful stimuli such as words can engender both conscious retrieval (explicit memory) and facilitated access to meaning that is distinct from the awareness of remembering (conceptual implicit memory). Neuroimaging investigations of one type of memory are frequently subject to the confounding influence of the…

  3. Fear and the Defense Cascade: Clinical Implications and Management.

    PubMed

    Kozlowska, Kasia; Walker, Peter; McLean, Loyola; Carrive, Pascal

    2015-01-01

    Evolution has endowed all humans with a continuum of innate, hard-wired, automatically activated defense behaviors, termed the defense cascade. Arousal is the first step in activating the defense cascade; flight or fight is an active defense response for dealing with threat; freezing is a flight-or-fight response put on hold; tonic immobility and collapsed immobility are responses of last resort to inescapable threat, when active defense responses have failed; and quiescent immobility is a state of quiescence that promotes rest and healing. Each of these defense reactions has a distinctive neural pattern mediated by a common neural pathway: activation and inhibition of particular functional components in the amygdala, hypothalamus, periaqueductal gray, and sympathetic and vagal nuclei. Unlike animals, which generally are able to restore their standard mode of functioning once the danger is past, humans often are not, and they may find themselves locked into the same, recurring pattern of response tied in with the original danger or trauma. Understanding the signature patterns of these innate responses--the particular components that combine to yield the given pattern of defense-is important for developing treatment interventions. Effective interventions aim to activate or deactivate one or more components of the signature neural pattern, thereby producing a shift in the neural pattern and, with it, in mind-body state. The process of shifting the neural pattern is the necessary first step in unlocking the patient's trauma response, in breaking the cycle of suffering, and in helping the patient to adapt to, and overcome, past trauma.

  4. Visual Spatial Cognition in Neurodegenerative Disease

    PubMed Central

    Possin, Katherine L.

    2011-01-01

    Visual spatial impairment is often an early symptom of neurodegenerative disease; however, this multi-faceted domain of cognition is not well-assessed by most typical dementia evaluations. Neurodegenerative diseases cause circumscribed atrophy in distinct neural networks, and accordingly, they impact visual spatial cognition in different and characteristic ways. Anatomically-focused visual spatial assessment can assist the clinician in making an early and accurate diagnosis. This article will review the literature on visual spatial cognition in neurodegenerative disease clinical syndromes, and where research is available, by neuropathologic diagnoses. Visual spatial cognition will be organized primarily according to the following schemes: bottom-up / top-down processing, dorsal / ventral stream processing, and egocentric / allocentric frames of reference. PMID:20526954

  5. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism

    PubMed Central

    Eagleson, Kathie L.; Xie, Zhihui; Levitt, Pat

    2016-01-01

    People with autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy - the influence of one gene on distinct phenotypes - raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multi-functional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain, and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with ASD, reduces transcription and disrupts socially-relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways, and has a complex protein interactome that is enriched in ASD and other NDD candidates. The interactome is co-regulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, impacting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms. PMID:27837921

  6. Transcriptional regulation of cranial sensory placode development

    PubMed Central

    Moody, Sally A.; LaMantia, Anthony-Samuel

    2015-01-01

    Cranial sensory placodes derive from discrete patches of the head ectoderm, and give rise to numerous sensory structures. During gastrulation, a specialized “neural border zone” forms around the neural plate in response to interactions between the neural and non-neural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the pre-placodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with co-factor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest and epidermis by repressing genes that specify the fates of those adjacent ectodermally-derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently subdivides into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, somatic sensory receptor cells, chemosensory neurons, peripheral glia and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes. PMID:25662264

  7. Detecting math problem solving strategies: an investigation into the use of retrospective self-reports, latency and fMRI data.

    PubMed

    Tenison, Caitlin; Fincham, Jon M; Anderson, John R

    2014-02-01

    This research explores how to determine when mathematical problems are solved by retrieval versus computation strategies. Past research has indicated that verbal reports, solution latencies, and neural imaging all provide imperfect indicators of this distinction. Participants in the current study solved mathematical problems involving two distinct problem types, called 'Pyramid' and 'Formula' problems. Participants were given extensive training solving 3 select Pyramid and 3 select Formula problems. Trained problems were highly practiced, whereas untrained problems were not. The distinction between untrained and trained problems was observed in the data. Untrained problems took longer to solve, more often used procedural strategies and showed a greater activation in the horizontal intraparietal sulcus (HIPS) when compared to trained problems. A classifier fit to the neural distinction between trained-untrained problems successfully predicted training within and between the two problem types. We employed this classifier to generate a prediction of strategy use. By combining evidence from the classifier, problem solving latencies, and retrospective reports, we predicted the strategy used to solve each problem in the scanner and gained unexpected insight into the distinction between different strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT

    PubMed Central

    Rogers, Crystal D.; Saxena, Ankur

    2013-01-01

    The neural crest, an embryonic stem cell population, initially resides within the dorsal neural tube but subsequently undergoes an epithelial-to-mesenchymal transition (EMT) to commence migration. Although neural crest and cancer EMTs are morphologically similar, little is known regarding conservation of their underlying molecular mechanisms. We report that Sip1, which is involved in cancer EMT, plays a critical role in promoting the neural crest cell transition to a mesenchymal state. Sip1 transcripts are expressed in premigratory/migrating crest cells. After Sip1 loss, the neural crest specifier gene FoxD3 was abnormally retained in the dorsal neuroepithelium, whereas Sox10, which is normally required for emigration, was diminished. Subsequently, clumps of adherent neural crest cells remained adjacent to the neural tube and aberrantly expressed E-cadherin while lacking N-cadherin. These findings demonstrate two distinct phases of neural crest EMT, detachment and mesenchymalization, with the latter involving a novel requirement for Sip1 in regulation of cadherin expression during completion of neural crest EMT. PMID:24297751

  9. Distinct Neural Properties in the Low-Frequency Region of the Chicken Cochlear Nucleus Magnocellularis

    PubMed Central

    2017-01-01

    Abstract Topography in the avian cochlear nucleus magnocellularis (NM) is represented as gradually increasing characteristic frequency (CF) along the caudolateral-to-rostromedial axis. In this study, we characterized the organization and cell biophysics of the caudolateral NM (NMc) in chickens (Gallus gallus). Examination of cellular and dendritic architecture first revealed that NMc contains small neurons and extensive dendritic processes, in contrast to adendritic, large neurons located more rostromedially. Individual dye-filling study further demonstrated that NMc is divided into two subregions, with NMc2 neurons having larger and more complex dendritic fields than NMc1. Axonal tract tracing studies confirmed that NMc1 and NMc2 neurons receive afferent inputs from the auditory nerve and the superior olivary nucleus, similar to the adendritic NM. However, the auditory axons synapse with NMc neurons via small bouton-like terminals, unlike the large end bulb synapses on adendritic NM neurons. Immunocytochemistry demonstrated that most NMc2 neurons express cholecystokinin but not calretinin, distinct from NMc1 and adendritic NM neurons that are cholecystokinin negative and mostly calretinin positive. Finally, whole-cell current clamp recordings revealed that NMc neurons require significantly lower threshold current for action potential generation than adendritic NM neurons. Moreover, in contrast to adendritic NM neurons that generate a single-onset action potential, NMc neurons generate multiple action potentials to suprathreshold sustained depolarization. Taken together, our data indicate that NMc contains multiple neuron types that are structurally, connectively, molecularly, and physiologically different from traditionally defined NM neurons, emphasizing specialized neural properties for processing low-frequency sounds. PMID:28413822

  10. Neurogenic and myogenic motor patterns of rabbit proximal, mid, and distal colon.

    PubMed

    Dinning, P G; Costa, M; Brookes, S J; Spencer, N J

    2012-07-01

    The rabbit colon consists of four distinct regions. The motility of each region is controlled by myogenic and neurogenic mechanisms. Associating these mechanisms with specific motor patterns throughout all regions of the colon has not previously been achieved. Three sections of the colon (the proximal, mid, and distal colon) were removed from euthanized rabbits. The proximal colon consists of a triply teniated region and a single tenia region. Spatio-temporal maps were constructed from video recordings of colonic wall diameter, with associated intraluminal pressure recorded from the aboral end. Hexamethonium (100 μM) and tetrodotoxin (TTX; 0.6 μM) were used to inhibit neural activity. Four distinct patterns of motility were detected: 1 myogenic and 3 neurogenic. The myogenic activity consisted of circular muscle (CM) contractions (ripples) that occurred throughout the colon and propagated in both antegrade (anal) and retrograde (oral) directions. The neural activity of the proximal colon consisted of slowly (0.1 mm/s) propagating colonic migrating motor complexes, which were abolished by hexamethonium. These complexes were observed in the region of the proximal colon with a single band of tenia. In the distal colon, tetrodotoxin-sensitive, thus neurally mediated, but hexamethonium-resistant, peristaltic (anal) and antiperistaltic (oral) contractions were identified. The distinct patterns of neurogenic and myogenic motor activity recorded from isolated rabbit colon are specific to each anatomically distinct region. The regional specificity motor pattern is likely to facilitate orderly transit of colonic content from semi-liquid to solid composition of feces.

  11. Aging affects the balance of neural entrainment and top-down neural modulation in the listening brain

    PubMed Central

    Henry, Molly J.; Herrmann, Björn; Kunke, Dunja; Obleser, Jonas

    2017-01-01

    Healthy aging is accompanied by listening difficulties, including decreased speech comprehension, that stem from an ill-understood combination of sensory and cognitive changes. Here, we use electroencephalography to demonstrate that auditory neural oscillations of older adults entrain less firmly and less flexibly to speech-paced (∼3 Hz) rhythms than younger adults’ during attentive listening. These neural entrainment effects are distinct in magnitude and origin from the neural response to sound per se. Non-entrained parieto-occipital alpha (8–12 Hz) oscillations are enhanced in young adults, but suppressed in older participants, during attentive listening. Entrained neural phase and task-induced alpha amplitude exert opposite, complementary effects on listening performance: higher alpha amplitude is associated with reduced entrainment-driven behavioural performance modulation. Thus, alpha amplitude as a task-driven, neuro-modulatory signal can counteract the behavioural corollaries of neural entrainment. Balancing these two neural strategies may present new paths for intervention in age-related listening difficulties. PMID:28654081

  12. Dissociated neural basis of two behavioral hallmarks of holistic face processing: The whole-part effect and composite-face effect.

    PubMed

    Li, Jin; Huang, Lijie; Song, Yiying; Liu, Jia

    2017-07-28

    It has been long proposed that our extraordinary face recognition ability stems from holistic face processing. Two widely-used behavioral hallmarks of holistic face processing are the whole-part effect (WPE) and composite-face effect (CFE). However, it remains unknown whether these two effects reflect similar or different aspects of holistic face processing. Here we investigated this question by examining whether the WPE and CFE involved shared or distinct neural substrates in a large sample of participants (N=200). We found that the WPE and CFE showed hemispheric dissociation in the fusiform face area (FFA), that is, the WPE was correlated with face selectivity in the left FFA, while the CFE was correlated with face selectivity in the right FFA. Further, the correlation between the WPE and face selectivity was largely driven by the FFA response to faces, whereas the association between the CFE and face selectivity resulted from suppressed response to objects in the right FFA. Finally, we also observed dissociated correlation patterns of the WPE and CFE in other face-selective regions and across the whole brain. These results suggest that the WPE and CFE may reflect different aspects of holistic face processing, which shed new light on the behavioral dissociations of these two effects demonstrated in literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Distinct Contributions of the Magnocellular and Parvocellular Visual Streams to Perceptual Selection

    PubMed Central

    Denison, Rachel N.; Silver, Michael A.

    2014-01-01

    During binocular rivalry, conflicting images presented to the two eyes compete for perceptual dominance, but the neural basis of this competition is disputed. In interocular switch (IOS) rivalry, rival images periodically exchanged between the two eyes generate one of two types of perceptual alternation: 1) a fast, regular alternation between the images that is time-locked to the stimulus switches and has been proposed to arise from competition at lower levels of the visual processing hierarchy, or 2) a slow, irregular alternation spanning multiple stimulus switches that has been associated with higher levels of the visual system. The existence of these two types of perceptual alternation has been influential in establishing the view that rivalry may be resolved at multiple hierarchical levels of the visual system. We varied the spatial, temporal, and luminance properties of IOS rivalry gratings and found, instead, an association between fast, regular perceptual alternations and processing by the magnocellular stream and between slow, irregular alternations and processing by the parvocellular stream. The magnocellular and parvocellular streams are two early visual pathways that are specialized for the processing of motion and form, respectively. These results provide a new framework for understanding the neural substrates of binocular rivalry that emphasizes the importance of parallel visual processing streams, and not only hierarchical organization, in the perceptual resolution of ambiguities in the visual environment. PMID:21861685

  14. Language-invariant verb processing regions in Spanish-English bilinguals.

    PubMed

    Willms, Joanna L; Shapiro, Kevin A; Peelen, Marius V; Pajtas, Petra E; Costa, Albert; Moo, Lauren R; Caramazza, Alfonso

    2011-07-01

    Nouns and verbs are fundamental grammatical building blocks of all languages. Studies of brain-damaged patients and healthy individuals have demonstrated that verb processing can be dissociated from noun processing at a neuroanatomical level. In cases where bilingual patients have a noun or verb deficit, the deficit has been observed in both languages. This suggests that the noun-verb distinction may be based on neural components that are common across languages. Here we investigated the cortical organization of grammatical categories in healthy, early Spanish-English bilinguals using functional magnetic resonance imaging (fMRI) in a morphophonological alternation task. Four regions showed greater activity for verbs than for nouns in both languages: left posterior middle temporal gyrus (LMTG), left middle frontal gyrus (LMFG), pre-supplementary motor area (pre-SMA), and right middle occipital gyrus (RMOG); no regions showed greater activation for nouns. Multi-voxel pattern analysis within verb-specific regions showed indistinguishable activity patterns for English and Spanish, indicating language-invariant bilingual processing. In LMTG and LMFG, patterns were more similar within than across grammatical category, both within and across languages, indicating language-invariant grammatical class information. These results suggest that the neural substrates underlying verb-specific processing are largely independent of language in bilinguals, both at the macroscopic neuroanatomical level and at the level of voxel activity patterns. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Development of cognitive and affective control networks and decision making.

    PubMed

    Kar, Bhoomika R; Vijay, Nivita; Mishra, Shreyasi

    2013-01-01

    Cognitive control and decision making are two important research areas in the realm of higher-order cognition. Control processes such as interference control and monitoring in cognitive and affective contexts have been found to influence the process of decision making. Development of control processes follows a gradual growth pattern associated with the prolonged maturation of underlying neural circuits including the lateral prefrontal cortex, anterior cingulate, and the medial prefrontal cortex. These circuits are also involved in the control of processes that influences decision making, particularly with respect to choice behavior. Developmental studies on affective control have shown distinct patterns of brain activity with adolescents showing greater activation of amygdala whereas adults showing greater activity in ventral prefrontal cortex. Conflict detection, monitoring, and adaptation involve anticipation and subsequent performance adjustments which are also critical to complex decision making. We discuss the gradual developmental patterns observed in two of our studies on conflict monitoring and adaptation in affective and nonaffective contexts. Findings of these studies indicate the need to look at the differences in the effects of the development of cognitive and affective control on decision making in children and particularly adolescents. Neuroimaging studies have shown the involvement of separable neural networks for cognitive (medial prefrontal cortex and anterior cingulate) and affective control (amygdala, ventral medial prefrontal cortex) shows that one system can affect the other also at the neural level. Hence, an understanding of the interaction and balance between the cognitive and affective brain networks may be crucial for self-regulation and decision making during the developmental period, particularly late childhood and adolescence. The chapter highlights the need for empirical investigation on the interaction between the different aspects of cognitive control and decision making from a developmental perspective. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A network approach for modulating memory processes via direct and indirect brain stimulation: Toward a causal approach for the neural basis of memory.

    PubMed

    Kim, Kamin; Ekstrom, Arne D; Tandon, Nitin

    2016-10-01

    Electrical stimulation of the brain is a unique tool to perturb endogenous neural signals, allowing us to evaluate the necessity of given neural processes to cognitive processing. An important issue, gaining increasing interest in the literature, is whether and how stimulation can be employed to selectively improve or disrupt declarative memory processes. Here, we provide a comprehensive review of both invasive and non-invasive stimulation studies aimed at modulating memory performance. The majority of past studies suggest that invasive stimulation of the hippocampus impairs memory performance; similarly, most non-invasive studies show that disrupting frontal or parietal regions also impairs memory performance, suggesting that these regions also play necessary roles in declarative memory. On the other hand, a handful of both invasive and non-invasive studies have also suggested modest improvements in memory performance following stimulation. These studies typically target brain regions connected to the hippocampus or other memory "hubs," which may affect endogenous activity in connected areas like the hippocampus, suggesting that to augment declarative memory, altering the broader endogenous memory network activity is critical. Together, studies reporting memory improvements/impairments are consistent with the idea that a network of distinct brain "hubs" may be crucial for successful memory encoding and retrieval rather than a single primary hub such as the hippocampus. Thus, it is important to consider neurostimulation from the network perspective, rather than from a purely localizationalist viewpoint. We conclude by proposing a novel approach to neurostimulation for declarative memory modulation that aims to facilitate interactions between multiple brain "nodes" underlying memory rather than considering individual brain regions in isolation. Copyright © 2016. Published by Elsevier Inc.

  17. Neural substrates of cognitive switching and inhibition in a face processing task.

    PubMed

    Piguet, Camille; Sterpenich, Virginie; Desseilles, Martin; Cojan, Yann; Bertschy, Gilles; Vuilleumier, Patrik

    2013-11-15

    We frequently need to change our current occupation, an operation requiring additional effortful cognitive demands. Switching from one task to another may involve two distinct processes: inhibition of the previously relevant task-set, and initiation of a new one. Here we tested whether these two processes are underpinned by separate neural substrates, and whether they differ depending on the nature of the task and the emotional content of stimuli. We used functional magnetic resonance imaging in healthy human volunteers who categorize emotional faces according to three different judgment rules (color, gender, or emotional expression). Our paradigm allowed us to separate neural activity associated with inhibition and switching based on the sequence of the tasks required on successive trials. We found that the bilateral medial superior parietal lobule and left intraparietal sulcus showed consistent activation during switching regardless of the task. On the other hand, no common region was activated (or suppressed) as a consequence of inhibition across all tasks. Rather, task-specific effects were observed in brain regions that were more activated when switching to a particular task but less activated after inhibition of the same task. In addition, compared to other conditions, the emotional task elicited a similar switching cost but lower inhibition cost, accompanied by selective decrease in the anterior cingulate cortex when returning to this task shortly after inhibiting it. These results demonstrate that switching relies on domain-general processes mediated by postero-medial parietal areas, engaged across all tasks, but also provide novel evidence that task inhibition produces domain-specific decreases as a function of particular task demands, with only the latter inhibition component being modulated by emotional information. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Driving the brain towards creativity and intelligence: A network control theory analysis.

    PubMed

    Kenett, Yoed N; Medaglia, John D; Beaty, Roger E; Chen, Qunlin; Betzel, Richard F; Thompson-Schill, Sharon L; Qiu, Jiang

    2018-01-04

    High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, including cognitive control processes. Recent neurocognitive research on these constructs highlight the importance of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control contributes to creativity and intelligence? To address this question, we apply a computational network control theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that intelligence is related to the ability to "drive" the brain system into easy to reach neural states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also find that creativity is related to the ability to "drive" the brain system into difficult to reach states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas. Furthermore, we found that different facets of creativity-fluency, flexibility, and originality-relate to generally similar but not identical network controllability processes. We relate our findings to general theories on intelligence and creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Cortico-basal ganglia networks subserving goal-directed behavior mediated by conditional visuo-goal association

    PubMed Central

    Hoshi, Eiji

    2013-01-01

    Action is often executed according to information provided by a visual signal. As this type of behavior integrates two distinct neural representations, perception and action, it has been thought that identification of the neural mechanisms underlying this process will yield deeper insights into the principles underpinning goal-directed behavior. Based on a framework derived from conditional visuomotor association, prior studies have identified neural mechanisms in the dorsal premotor cortex (PMd), dorsolateral prefrontal cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), and basal ganglia (BG). However, applications resting solely on this conceptualization encounter problems related to generalization and flexibility, essential processes in executive function, because the association mode involves a direct one-to-one mapping of each visual signal onto a particular action. To overcome this problem, we extend this conceptualization and postulate a more general framework, conditional visuo-goal association. According to this new framework, the visual signal identifies an abstract behavioral goal, and an action is subsequently selected and executed to meet this goal. Neuronal activity recorded from the four key areas of the brains of monkeys performing a task involving conditional visuo-goal association revealed three major mechanisms underlying this process. First, visual-object signals are represented primarily in the vlPFC and BG. Second, all four areas are involved in initially determining the goals based on the visual signals, with the PMd and dlPFC playing major roles in maintaining the salience of the goals. Third, the cortical areas play major roles in specifying action, whereas the role of the BG in this process is restrictive. These new lines of evidence reveal that the four areas involved in conditional visuomotor association contribute to goal-directed behavior mediated by conditional visuo-goal association in an area-dependent manner. PMID:24155692

  20. Neural Modularity Helps Organisms Evolve to Learn New Skills without Forgetting Old Skills

    PubMed Central

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-01-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to alleviate the problem of catastrophic forgetting. PMID:25837826

Top